WO2011052638A1 - Process for production of cytokine-induced killer cells - Google Patents

Process for production of cytokine-induced killer cells Download PDF

Info

Publication number
WO2011052638A1
WO2011052638A1 PCT/JP2010/069072 JP2010069072W WO2011052638A1 WO 2011052638 A1 WO2011052638 A1 WO 2011052638A1 JP 2010069072 W JP2010069072 W JP 2010069072W WO 2011052638 A1 WO2011052638 A1 WO 2011052638A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
culture
ligand
positive
Prior art date
Application number
PCT/JP2010/069072
Other languages
French (fr)
Japanese (ja)
Inventor
芽衣子 神
美津子 出野
竜嗣 榎
Original Assignee
タカラバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社 filed Critical タカラバイオ株式会社
Priority to JP2011538454A priority Critical patent/JP5097856B2/en
Priority to CN2010800484438A priority patent/CN102575231B/en
Publication of WO2011052638A1 publication Critical patent/WO2011052638A1/en
Priority to HK12111301.7A priority patent/HK1170533A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/24Interferons [IFN]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex

Definitions

  • the present invention relates to a method for producing a cytokine-induced killer cell (CIK cell) having high efficacy in adoptive immunotherapy, a CIK cell obtained by the production method, a medicine containing the CIK cell, and the like.
  • CIK cell cytokine-induced killer cell
  • the therapy includes, for example, adoptive immunotherapy in which immune-related cells taken out of the body are cultured to increase the number of cells and / or the activity related to the therapeutic effect is enhanced and transplanted to a patient.
  • Lymphokine activated killer (LAK) cells are used as effector cells in adoptive immunotherapy.
  • TIL tumor infiltrating lymphocytes
  • cytotoxic T lymphocytes cytotoxic T lymphocytes
  • CTL cytokine-induced killer
  • LAK cells are a cell population that can be obtained by growing lymphocytes in the presence of interleukin (IL) -2, and have the property of lysing tumor cells but not normal cells.
  • IL interleukin
  • a method of coexisting an anti-CD3 antibody together with IL-2 during culture has been developed.
  • TIL is a T cell infiltrating a tumor tissue, and has a tumor antigen specificity remarkably higher than that of a LAK cell.
  • the cells can also be grown outside the body and used for therapy.
  • TIL needs to be obtained by extracting the tumor tissue of the patient, it has a problem that the sampling operation is complicated and the number of cells obtained is small.
  • CTL induces and proliferates lymphocytes specifically for tumor-associated antigens in the presence of HLA (human leukocyte antigen) -restricted tumor-associated antigens (peptides, proteins, etc.), antigen-presenting cells, and IL-2.
  • HLA human leukocyte antigen
  • peptides, proteins, etc. tumor-associated antigens
  • IL-2 antigen-presenting cells
  • CIK cells are a cell population prepared from peripheral blood mononuclear cells (PBMC) by culturing in the presence of interferon (IFN) - ⁇ , anti-CD3 antibody, and IL-2. Yes, and characterized as a cell population containing CD3-positive and CD56-positive cells.
  • CD3-positive CD56-positive cells are rare cells in PBMC, but can be preferentially grown in the absence of target cells.
  • CIK cells exhibit cytotoxic activity against tumor cells superior to LAK cells in vivo (for example, Non-Patent Document 1).
  • the ratio of CD3-positive CD56-positive cells contained in CIK cells produced by the conventional method is generally about 20%, and the proliferation of CIK cells is about 10 times after 3 weeks of culture. Very low. For this reason, in order to culture a large amount of CIK cells, blood is often collected from a patient, and there is a problem that physical burden is large (for example, Non-Patent Documents 2 and 3).
  • An object of the present invention is to provide a method for producing CIK cells, which can efficiently obtain large amounts of CD3-positive CD56-positive cells.
  • the first aspect of the present invention is that (a) a cell population capable of differentiating into CD3 positive CD56 positive cells and / or a cell population containing CD3 positive CD56 positive cells is cultured in the presence of a CD3 ligand. (B) culturing the cell population obtained in step (a) in the absence of CD3 ligand, and (c) culturing the cell population obtained in step (b) in the presence of CD3 ligand.
  • the present invention relates to a method for producing cytokine-induced killer cells.
  • the culture of the cell population in at least one of steps (a) to (c) may be performed in the presence of interferon- ⁇ and / or interleukin-2.
  • the CD3 ligand is exemplified by an anti-CD3 antibody.
  • the culture in the step (a) may be performed in the presence of a fibronectin fragment and a CD3 ligand.
  • the fibronectin fragment include those containing a region selected from the group consisting of a VLA-4 binding region, a VLA-5 binding region, and a heparin binding region.
  • the second aspect of the present invention relates to a cytokine-induced killer cell that can be obtained by the production method of the first aspect of the present invention.
  • the third aspect of the present invention relates to a medicine containing the cytokine-induced killer cell of the second aspect of the present invention as an active ingredient.
  • the fourth aspect of the present invention relates to a method for treating or preventing a disease, which comprises the step of administering to a subject an effective amount of the cytokine-induced killer cells of the second aspect of the present invention.
  • a fifth aspect of the present invention relates to the use of the cytokine-induced killer cells of the second aspect of the present invention for the manufacture of a medicament.
  • the sixth aspect of the present invention also relates to a cytokine-induced killer cell according to the second aspect of the present invention for use in the treatment of diseases.
  • a seventh aspect of the present invention (A) a step of culturing a cell population capable of differentiating into a CD3-positive CD56-positive cell and / or a CD3-positive CD56-positive cell in a medium containing a CD3 ligand; B) reducing the CD3 ligand concentration in the medium, (C) culturing the cell population in a medium having a decreased CD3 ligand concentration, and (D) adding the CD3 ligand to the medium and further culturing the cell population.
  • the present invention relates to a method for producing cytokine-induced killer cells, comprising a step.
  • a method for producing CIK cells capable of expanding and culturing a cell population containing a high amount of CD3-positive CD56-positive cells having high cytotoxic activity in large quantities.
  • High-quality CIK cells obtained in large quantities by the production method exhibit a high therapeutic effect in vivo, and thus are extremely useful for treatment of diseases by cell therapy.
  • the present inventors surprisingly cultivated a cell population cultured in the presence of CD3 ligand in the absence of CD3 ligand, and further cultured in the presence of CD3 ligand, and surprisingly both CD3 and CD56 on the cell surface.
  • the inventors have found that a large number of cell populations containing a high ratio of cells expressing molecules can be obtained, thereby completing the present invention.
  • the production method of the present invention is a method for producing a CIK cell, that is, a cell population highly containing a sub-cell population characterized as CD3 positive and CD56 positive.
  • the method for producing CIK cells of the present invention comprises (a) culturing a cell population that can be differentiated into CD3 positive CD56 positive cells and / or a cell population containing CD3 positive CD56 positive cells in the presence of a CD3 ligand, (b) step Culturing the cell population obtained by (a) in the absence of CD3 ligand, and (c) culturing the cell population obtained by step (b) in the presence of CD3 ligand.
  • the CIK cell production method of the present invention is a cell population to which stimulation by CD3 ligand [the above step (a); hereinafter, CD3 ligand stimulation in this step is referred to as “initial stimulation”].
  • CD3 ligand stimulation in this step is referred to as “re-stimulation”] It is characterized by adding.
  • the medium is diluted to reduce the concentration of CD3 ligand to a level where no cell growth inhibitory effect is observed, and further culturing of the cell population is continued. By doing so, an effect equivalent to that of the above step (b) can be obtained.
  • the method is also an embodiment of the production method of the present invention.
  • the step (A) of this embodiment can be regarded as the initial stimulation, and the step (D) can be regarded as the restimulation.
  • the concentration of CD3 ligand in the “medium with reduced CD3 ligand concentration” in the above step (C) is not particularly limited as long as the cell growth inhibitory action by CD3 ligand is not observed.
  • step (A) A concentration of about 1/50 to 1/2 times the concentration of CD3 ligand in the medium is exemplified.
  • the “cell population that can be differentiated into CD3 positive CD56 positive cells and / or CD3 positive CD56 positive cells” used in the production method of the present invention can be obtained from peripheral blood, bone marrow, umbilical cord blood and the like. Examples are cell populations or populations of hematopoietic cells separated from these materials. Preferably, PBMC is used in the present invention. Moreover, you may use for this invention the cell population which becomes substantially from the CD3 positive CD56 positive cell isolate
  • the cell population capable of differentiating into CD3-positive CD56-positive cells and / or the cell population containing CD3-positive CD56-positive cells is pre-cultured in the presence of interferon- ⁇ before being used in the present invention. Also good.
  • the CD3 ligand used in the present invention is not particularly limited as long as it is a substance having binding activity to CD3.
  • anti-CD3 antibody particularly preferably anti-CD3 monoclonal antibody such as OKT3 [J. Immunol. 124, No. 6, 2708-2713 (1980)].
  • the concentration of the CD3 ligand in the medium is not particularly limited.
  • an anti-CD3 monoclonal antibody for example, 0.001 to 500 ⁇ g / mL, particularly 0.01 to 100 ⁇ g / mL is suitable for initial stimulation.
  • For re-stimulation for example, 0.001 to 100 ⁇ g / mL, particularly 0.005 to 50 ⁇ g / mL is preferable.
  • an appropriate solid phase for example, cell culture equipment such as a petri dish, flask, bag, etc.
  • culture vessel (culture vessel; open type or closed type) Or may be immobilized on a cell culture carrier such as beads, a membrane, or a slide glass.
  • the material of the solid phase is not particularly limited as long as it can be used for cell culture. If the CD3 ligand is immobilized on the solid phase, the above components and the obtained cell population can be easily separated by simply separating the cells and the solid phase after the completion of the culture. Mixing of components can be prevented.
  • the amount of the immobilized CD3 ligand may be selected so as to have a ratio similar to a desired concentration when the component or carrier is used for culturing and the component is dissolved in a medium. If a desired effect is acquired, it will not specifically limit.
  • step (a) there is no particular limitation on the culture conditions of the above-described step (a), that is, “the step of culturing cells that can differentiate into CD3 positive CD56 positive cells and / or cell populations containing CD3 positive CD56 positive cells in the presence of CD3 ligand”.
  • the conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2.
  • the culture period is not particularly limited, and examples thereof include 1 to 10 days, preferably 1 to 7 days.
  • the number of cells at the start of the culture is not particularly limited, but preferably 1 ⁇ 10 4 to 1 ⁇ 10 8 cells / mL, more preferably 1 ⁇ 10 5 to 5 ⁇ 10 7 cells / mL. Illustrated.
  • step (b) that is, “the step of culturing the cell population obtained in step (a) in the absence of CD3 ligand” includes, for example, cell population and CD3 from the culture obtained in step (a). It is carried out by separating the ligand and further culturing the cell population in the absence of CD3 ligand. Separation of the cell population and the CD3 ligand is not particularly limited to the present invention. For example, when using a cell culture device in which the CD3 ligand is immobilized in the step (a), the cell population is separated from the CD3 ligand. It is carried out by transferring to other cell culture equipment that is not immobilized.
  • step (a) when a medium containing free CD3 ligand is used in step (a), the medium can be replaced with a medium not containing CD3 ligand.
  • the culture conditions in step (b) There are no particular limitations on the culture conditions in step (b), and conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2.
  • the culture period in the step (b) is not particularly limited, and examples thereof include 1 to 20 days, preferably 1 to 10 days.
  • step (c), ie, “the step of culturing the cell population obtained in step (b) in the presence of CD3 ligand” is not particularly limited to the present invention, but was obtained by step (b). You may implement by adding a CD3 ligand to a culture, and you may implement by moving the culture obtained by the process (b) to the cell culture equipment by which CD3 ligand was fix
  • the culture conditions of step (c) There are no particular limitations on the culture conditions of step (c), and the conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2.
  • the culture period is not particularly limited, and examples thereof include 1 to 20 days, preferably 1 to 15 days.
  • a step of culturing the cell population obtained by the step (c) in the absence of CD3 ligand may be further performed as the step (d).
  • the culture conditions in the step (d) are not particularly limited, and the conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2.
  • the culture period when step (d) is carried out is not particularly limited, and examples thereof include 1 to 20 days, preferably 1 to 15 days.
  • cell culture equipment such as petri dishes, flasks, bags, large culture tanks, bioreactors and the like can be used as culture equipment.
  • bag a CO 2 gas permeable bag for cell culture is suitable.
  • a large culture tank may be used.
  • the culture can be carried out in either an open system or a closed system, but is preferably carried out in a closed system.
  • the initial stimulation with CD3 ligand for cells that can differentiate into CD3 positive CD56 positive cells and / or cell populations containing CD3 positive CD56 positive cells is not particularly limited, but preferably Is performed in the presence of a fibronectin fragment.
  • restimulation with CD3 ligand can also be performed in the presence of fibronectin.
  • the concentration of the fibronectin fragment used in the present invention is not particularly limited. For example, 0.001 to 500 ⁇ g / mL, particularly 0.01 to 500 ⁇ g / mL is preferable.
  • the fibronectin fragment can be used by being immobilized on a cell culture device or a cell culture carrier, in addition to being dissolved in the medium and coexisting.
  • the immobilization of the fibronectin fragment on the solid phase can be carried out, for example, by bringing a fragment dissolved in an appropriate buffer into contact with the solid phase, such as WO 97/18318 pamphlet or WO 00/09168 pamphlet. It can implement also by the method as described in (1).
  • the above components and the obtained cell population can be easily separated by simply separating the cell and the solid phase after the end of the culture. It is possible to prevent the components from being mixed in.
  • Fibronectin fragments may be those obtained from nature (such as those obtained by fragmenting natural fibronectin by enzymatic digestion) or those produced by recombinant DNA technology. Fibronectin fragments are, for example, Ruoslati E. [J. Biol. Chem. 256, No. 14, pp. 7277-7281 (1981)], can be produced in substantially pure form from naturally occurring substances. As used herein, “substantially pure form of fibronectin fragments” means that they are essentially free of other proteins that are naturally present with fibronectin. In the present invention, as the fibronectin fragment, a single molecular species may be used, or a plurality of molecular species may be mixed and used.
  • fibronectin fragments that can be used in the present invention and the fragments, see, for example, Corn Bullet A. R. [EMBO J. et al. Vol. 4, No. 7, 1755-1759 (1985)], and Sekiguchi K .; [Biochemistry, Vol. 25, No. 17, 4936-4941 (1986)] and the like. Further, the nucleic acid sequence encoding fibronectin or the amino acid sequence of fibronectin is Genbank Accession No. NM_002026 and NP_002017.
  • a fibronectin fragment having cell adhesion activity and / or heparin binding activity can be preferably used.
  • fibronectin there is a region having an activity of binding to integrin on the cell surface. Examples of the region include a VLA (very rate antigen) -4 or VLA-5 binding region.
  • a region called IIICS exists at a site near the C-terminal side of fibronectin.
  • CS-1 a region consisting of 25 amino acids called CS-1 is included, and this region shows binding activity to VLA-4.
  • the amino acid sequence of the CS-1 region is shown in SEQ ID NO: 1 in the sequence listing.
  • fibronectin has a repetitive sequence called type III, and the 10th type repetitive sequence from the N-terminal side has a cell binding region.
  • the amino acid sequence of the 10th type III repeat sequence is shown in SEQ ID NO: 2 in the sequence listing.
  • the sequence that plays a central role in binding to VLA-5 in the above sequence is 4 amino acids of Arg-Gly-Asp-Ser (RGDS) shown in SEQ ID NO: 3 in the sequence listing.
  • C-274 consisting of the amino acid sequence shown in SEQ ID NO: 4 in the sequence listing is a polypeptide containing the amino acid sequence of SEQ ID NO: 2 and is a recombinant fibronectin fragment having strong cell adhesion activity.
  • fibronectin has an activity of binding to heparin.
  • the heparin-binding region of fibronectin corresponds to the 12th to 14th positions from the N-terminal side of the type III repeat sequence.
  • H-271 consisting of the amino acid sequence shown in SEQ ID NO: 5 in the sequence listing is a recombinant fibronectin fragment consisting of this heparin binding region.
  • a fragment in which two or more of these regions are linked directly or via an appropriate linker can be used.
  • the regions derived from fibronectin contained in the fragment may be the same or different.
  • H-296 amino acid sequence represented by SEQ ID NO: 6 in the sequence listing
  • VLA-4 binding region and heparin binding region VLA-5 binding region and CH-271 containing a heparin binding region (amino acid sequence represented by SEQ ID NO: 7 in the sequence listing)
  • VLA-4 binding region, VLA-5 binding region, and CH-296 containing a heparin binding region amino acid sequence represented by SEQ ID NO: 7 in the sequence listing
  • a polypeptide such as C-CS1 amino acid sequence represented by SEQ ID NO: 9 in the Sequence Listing
  • C-CS1 amino acid sequence represented by SEQ ID NO: 9 in the Sequence Listing
  • the fragment used in the present invention is a fragment having a function equivalent to that of the fragment containing at least a part of the amino acid sequence of natural fibronectin exemplified above as long as the desired effect of the fibronectin fragment is obtained. It may consist of a polypeptide having an amino acid sequence having substitution, deletion, insertion or addition of one or several amino acids in the amino acid sequence of the constituent polypeptide. In addition, for example, C-274 or H-271 may have a deletion of 1 or 2 type III repeat sequence.
  • the cell adhesion activity can be examined by assaying the binding between a fragment (its cell binding domain) used in the present invention and a cell by a known method.
  • Williams D.C. A. [Nature, Vol. 352, pp. 438-441 (1991)].
  • This method is a method for measuring the binding of cells to a fragment immobilized on a culture plate.
  • the heparin binding activity can be examined by assaying the binding of the fragment (its heparin binding domain) used in the present invention to heparin using a known method.
  • the above Williams D.C. A. In these methods, by using heparin (eg, labeled heparin) instead of cells, the binding between the fragment and heparin can be evaluated in the same manner.
  • the use of the recombinant fibronectin fragment in the present invention is preferable from the viewpoint of safety that the quality is uniform and the risk of contamination with viruses is low, in addition to ease of acquisition and handling.
  • the molecular weight of the fibronectin fragment used in the present invention is not particularly limited, but is preferably 1 to 200 kDa, more preferably 5 to 190 kDa, and further preferably 10 to 180 kDa.
  • the molecular weight can be measured, for example, by SDS-polyacrylamide gel electrophoresis.
  • the medium used in the method for producing CIK cells of the present invention is not particularly limited in any of steps (a) to (c), and a known medium that can be used for lymphocyte expansion culture or the like may be used.
  • a commercially available medium can be appropriately selected and used.
  • These media may contain cytokines, appropriate proteins, or other components in addition to the original components.
  • a medium containing at least one selected from the group consisting of IFN- ⁇ and IL-2 is used in the present invention.
  • the concentration of IFN- ⁇ in the medium is not particularly limited, but is 50 to 10,000 U / mL, and more preferably 100 to 5000 U / mL.
  • the concentration of IL-2 in the medium is not limited, but is 10 to 5000 U / mL, preferably 50 to 2000 U / mL. Furthermore, cytokines such as IL-1 ⁇ , IL-7, and IL-12 may be added to the medium.
  • concentration of the component in the medium is not particularly limited as long as a desired effect is obtained.
  • IFN- ⁇ is used in the step (a).
  • IL-2 is preferably used, and IL-2 is preferably used in all the steps (a) to (c).
  • serum or plasma may be added to the medium.
  • the amount added to these media is not particularly limited, but is exemplified by more than 0% to 20% by volume, and the amount of serum or plasma used can be changed depending on the culture stage. For example, the serum or plasma concentration can be decreased in stages and used.
  • the origin of serum or plasma may be either self (meaning that the origin is the same as the cell to be cultured) or non-self (meaning that the origin is different from the cell to be cultured). From the viewpoint of the above, those derived from the self are preferred.
  • An isolated serum component such as human serum albumin may also be added.
  • the “treatment for depriving the proliferation ability” is not particularly limited as long as it is a treatment for losing or reducing the proliferation ability of the cell.
  • the treatment is performed by chemical treatment and / or physical treatment.
  • the chemical treatment include chemical agents (formalin and the like), anticancer agents (mitotic inhibitors such as mitomycin C and the like), heating / heating, freeze-thawing, and ultrasonic treatment.
  • a radiation for example, a gamma ray and a X-ray are used, for example.
  • Irradiation is not particularly limited as long as the proliferation ability of irradiated cells is lost.
  • the number of CIK cells obtained can be increased by adding cells that have been treated to deprive the growth ability of the medium in the production method of the present invention.
  • a cell population exhibiting high cytotoxic activity against lung cancer cell lines and the like can be obtained.
  • Cells that have been treated to deprive them of proliferative ability are cells that have lost or lost their ability to proliferate such as cell division or DNA synthesis.
  • cells that have been subjected to radiation treatment have a reduced proliferative ability, but immediately after the treatment, they exhibit the same morphology and traits as living cells, and maintain the metabolic ability to secrete proteins such as cytokines.
  • the “cell that has been treated to deprive proliferative ability” is derived from the patient itself.
  • the “cells that have been treated to deprive growth ability” used in the present invention are not particularly limited, but are derived from the patient who has been treated to deprive proliferation ability by irradiation of radiation.
  • a cell Autologous-Irradiated cell; AIC is preferably exemplified.
  • the cell concentration of the “cells that have been treated to deprive the growth ability” used in the method of the present invention is not particularly limited.
  • 1 to 1 ⁇ 10 8 cells / mL, preferably 10 to 5 ⁇ 10 7 cells / mL, more preferably 1 ⁇ 10 2 to 2 ⁇ 10 7 cells / mL are exemplified.
  • the medium used in the method for producing CIK cells of the present invention may contain a biological response modifier.
  • Biological response modifier means a group of substances called non-biological response modifier (BRM) that improve non-specific immune response ability in the living body.
  • biological response modifiers include bacterial-derived preparations [OK-432, BCG (Bacillus Calmette Guerin), Streptococcus pyogenes, Corynebacterium parvum and their cell wall skeletons], Basidiomycete-derived polysaccharides (lentinan, schizophyllan, PSK, etc.) Piran copolymers, levamisole, etc.) or cytokines are known.
  • OK-432 means a general name of a bacterial-derived preparation obtained by treating a weakly toxic natural mutant strain (Su strain) of group A type 3 hemolytic streptococci (Streptococcus pyogenes) with penicillin. This formulation is marketed under the trade name Pisibanil®.
  • the present invention uses a biological response modifier, which is a microorganism-derived preparation, and particularly preferably OK-432.
  • the concentration of the biological response modifier in the medium is not particularly limited, but for example, when OK-432 is used, 0.001 to 1 KE / mL, preferably 0.005 to 0.5 KE. / ML, more preferably 0.01 to 0.2 KE / mL.
  • the biological response modifier can be added to the medium at the beginning of the culture.
  • the method for producing CIK cells of the present invention can further include a step of introducing a foreign gene into the cell population.
  • foreign gene means a gene that is artificially introduced into a CIK cell to be transfected, and includes a gene derived from the same species as the cell to be transfected.
  • the means for introducing a foreign gene is not particularly limited, and an appropriate one can be selected and used by a known gene introduction method.
  • the gene transfer step can be performed at any point in the production method of the present invention. For example, it is preferable from the viewpoint of work efficiency to carry out at the same time, during or after the production of the cell population. Gene transfer can be performed with or without a viral vector. A lot of literature has already been published on details of these methods.
  • the viral vector is not particularly limited, and is usually a known viral vector used in gene transfer methods, for example, a retrovirus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, a simian virus vector, a vaccinia virus vector. Sendai virus vectors and the like are used.
  • a retroviral vector or a lentiviral vector that can stably incorporate a foreign gene contained in the vector into the chromosomal DNA of the introduced cell is particularly preferred.
  • those lacking replication ability are preferable so that they cannot self-replicate in infected cells.
  • a substance that improves the efficiency of gene transfer such as RetroNectin (registered trademark), can be used during gene transfer.
  • a method using a carrier such as liposome or ligand-polylysine, a calcium phosphate method, an electroporation method, a particle gun method, or the like can be used.
  • a foreign gene incorporated into plasmid DNA, linear DNA or RNA is introduced.
  • the foreign gene to be introduced is not particularly limited, and any gene desired to be introduced into the cell (for example, an antisense nucleic acid, siRNA (in addition to those encoding proteins such as enzymes, cytokines, receptors, etc.) Small interfering RNA), ribozyme encoding, etc.
  • These foreign genes can be used, for example, inserted into a vector or a plasmid so as to be expressed under the control of an appropriate promoter. Control sequences such as enhancer sequences or terminator sequences may be present in the vector.
  • a gene encoding an enzyme related to resistance to a drug used for treatment of a patient such as cancer is introduced to impart drug resistance to CIK cells.
  • a drug used for treatment of a patient for example, a multidrug resistance gene
  • a gene that confers sensitivity to a specific drug for example, thymidine kinase gene
  • a gene that confers sensitivity to a specific drug for example, thymidine kinase gene
  • foreign genes to be introduced include, for example, nucleic acids encoding tumor antigen-specific T cell receptors (TCR), or antibodies specific for molecules expressed on tumor cells (Such as anti-CD19 antibodies), receptor molecules (such as TCR), ligands, or extracellular regions containing a portion thereof, transmembrane domains, and one or more other signal-related molecules that transduce signals into the cell
  • TCR tumor antigen-specific T cell receptors
  • receptor molecules such as TCR
  • ligands or extracellular regions containing a portion thereof, transmembrane domains, and one or more other signal-related molecules that transduce signals into the cell
  • Nucleic acids encoding chimeric receptors composed of regions can also be used. Useful information regarding the chimeric receptor can be found, for example, in Marc-Marina V. Et al. [Expert Opin. Biol. Ther. No. 9, No. 5, 579-591 (2009)].
  • cytotoxic activity specific to the target tumor cells can be imparted to CIK cells.
  • the extracellular region of the chimeric receptor include, for example, the extracellular region of an antibody or receptor molecule, or an antigen recognition site of an antibody or a ligand recognition site of a receptor molecule, and a spacer / derived from another antibody or receptor molecule (such as CD28).
  • the extracellular region formed by fusing with the hinge region is exemplified.
  • the intracellular region of the chimeric receptor include an intracellular region of a signal-related molecule present on lymphocytes. Examples of the intracellular region of the signal-related molecule include the intracellular region of CD3 ⁇ chain, CD28, 4-1BB, CD134, FcR- ⁇ , Syk-PTK, or these signal transduction domains.
  • the production method of the present invention may further include a step of separating a CD3 positive and CD56 positive cell population from the cell population obtained by the above method. Separation can be performed, for example, using an anti-CD3 antibody or an anti-CD56 antibody by a known method using a cell sorter, magnetic beads, an affinity column, or the like.
  • the cell population thus separated is enriched with cells having high cytotoxic activity, and is expected to exhibit a higher therapeutic effect.
  • the present invention provides a CIK cell obtainable by the above-described method for producing a CIK cell of the present invention.
  • the CIK cell of the present invention contains a higher proportion of CD3-positive CD56-positive cells than CIK cells produced by the conventional method, and thus exhibits higher cytotoxic activity in vivo. Has a therapeutic effect.
  • the ratio of the CD3-positive CD56-positive cells in the CIK cells of the present invention is not particularly limited, but for example, 20% or more of the total number of cells, preferably 25% or more, more preferably 30% or more. Is exemplified.
  • the present invention provides a medicament (therapeutic agent or prophylactic agent) containing CIK cells as an active ingredient.
  • the therapeutic agent containing the CIK cells is suitable for use in immunotherapy.
  • immunotherapy CIK cells suitable for treatment of a patient are administered to the patient by routes such as intravenous, transarterial, subcutaneous, intraperitoneal, etc., for example, by administration by injection or infusion.
  • the therapeutic agent of the present invention does not particularly limit the present invention, but for example, cancer, leukemia, malignant tumor, hepatitis, infectious diseases (for example, influenza, tuberculosis, AIDS, MRSA infection, VRE infection or deep It is very useful in the treatment of diseases sensitive to CIK cells, such as superficial mycosis.
  • the therapeutic agents include donor lymphocyte infusion, anticancer drug treatment, radiation therapy, antibody therapy, thermal therapy for the purpose of preventing infection in immune deficient conditions such as bone marrow transplantation, radiation irradiation, or remission of relapsed leukemia. It can be used in combination with conventional therapies such as therapy and other immunotherapy.
  • the therapeutic agent and prophylactic agent of the present invention follow known methods in the pharmaceutical field, for example, using a cell population produced by the method of the present invention as an active ingredient, known organic or inorganic carriers suitable for parenteral administration, shaping It can be mixed with an agent, a stabilizer and the like, and prepared as an instillation or an injection.
  • the content of the CIK cell of the present invention in the therapeutic agent, the dosage of the therapeutic agent, and various conditions relating to the therapeutic agent can be determined as appropriate according to known immunotherapy.
  • the content of the CIK cell of the present invention in medicine is not particularly limited. For example, it is preferably 1 ⁇ 10 3 to 1 ⁇ 10 11 cells / mL, more preferably 1 ⁇ 10 4 to 1 ⁇ 10 10.
  • the dose of the medicament of the present invention is not particularly limited. For example, it is preferably 1 ⁇ 10 6 to 1 ⁇ 10 12 cells / day, more preferably 1 ⁇ 10 7 to per adult day. Examples include 5 ⁇ 10 11 cells / day, more preferably 1 ⁇ 10 8 to 2 ⁇ 10 11 cells / day.
  • immunotherapy with the therapeutic agent may be used in combination with drug treatment by administration of a known drug, radiation therapy, or treatment by surgical operation.
  • the present invention also provides a method for treating or preventing a disease, comprising administering to a subject an effective amount of CIK cells obtainable by the above-described method.
  • subject refers to, for example, a patient suffering from a disease as described above.
  • the effective amount is the amount of the cell population that can exert a therapeutic or prophylactic effect when the CIK cells are administered.
  • the specific effective amount is appropriately set according to the administration form, administration method, purpose of use, age, weight, symptom, etc. of the subject and is not constant.
  • the administration method There is no limitation on the administration method, and for example, it may be administered by drip, injection or the like, similar to the above-mentioned medicine.
  • the present invention also provides the use of CIK cells obtainable according to the present invention for the manufacture of a medicament. Furthermore, the present invention also provides CIK cells obtainable by the present invention for use in the treatment of diseases.
  • the manufacturing method of the said pharmaceutical is performed like the above-mentioned pharmaceutical.
  • the disease to which the drug is administered is not particularly limited, but is the same as the aforementioned drug.
  • Example 1 CIK cell culture using anti-human CD3 antibody and retronectin (1) Separation and storage of PBMC Ingredients were collected from human healthy donor A, donor B and donor C with informed consent.
  • the component blood collection referred to here is blood collection for the purpose of collecting mononuclear cells).
  • Dulbecco's PBS manufactured by Invitrogen or Nissui Pharmaceutical; hereinafter referred to as DPBS
  • HSA human serum albumin
  • DPBS Dulbecco's PBS
  • HSA human serum albumin
  • Ficoll-Paque PREMIUM or Ficoll-Paque PLUS both manufactured by GE Healthcare Biosciences
  • the diluted component blood samples were layered 30 mL each and centrifuged at 700 ⁇ g for 20 minutes at room temperature.
  • the PBMC layer was collected with a pipette and filled up to 45 mL using RPMI 1640 (manufactured by Invitrogen, Sigma, or Wako Pure Chemical Industries) or 1% HSA / saline. And centrifuged at 650 ⁇ g and 4 ° C. for 10 minutes, and the supernatant was removed. The same washing operation was performed three times in total while decreasing the centrifugal acceleration in steps of 600 ⁇ g and 500 ⁇ g.
  • PBMCs collected from each donor were suspended in a stock solution consisting of an equal volume mixture of CP-1 (manufactured by Kyokuto Pharmaceutical) containing 8% HSA and RPMI 1640 and stored in liquid nitrogen. These stored PBMCs were rapidly thawed in a 37 ° C. water bath, washed with GT-T503 (Takara Bio) containing 10 ⁇ g / mL DNase (Calbiochem), and the number of viable cells was calculated by trypan blue staining. Later, it used for each following experiment.
  • Anti-human CD3 antibody (formulation name: orthoclone OKT3 injection, Janssen Pharma) at a final concentration of 5 ⁇ g / mL or 1 ⁇ g / mL on a 12-well cell culture plate (Corning) And ACD-A solution (Terumo) containing Retronectin (registered trademark, manufactured by Takara Bio Inc.) at a final concentration of 5 ⁇ g / mL was added in an amount of 0.45 mL / well. Next, after 5 hours of incubation at 37 ° C.
  • the ACD-A solution was removed from each well to obtain a cell culture plate on which the anti-CD3 antibody and retronectin were immobilized.
  • cells with anti-CD3 antibody immobilized by performing the same operation as above except that an anti-human CD3 antibody having a final concentration of 5 ⁇ g / mL or 1 ⁇ g / mL and using no ACD-A solution without retronectin is used.
  • a culture plate (a plate on which Retronectin is not immobilized) was also prepared. Each plate prepared here was washed twice with DPBS and once with RPMI 1640 and then used for each of the following experiments.
  • Example 3- (3) CIK cell culture GT-T503 (hereinafter referred to as 0.5% HAB / 0.2% HSA / GT-T503) containing 0.5% HumanAB serum (manufactured by Lonza) and 0.2% HSA
  • the PBMC derived from donor A prepared in Example 1- (1) was suspended at 0.53 ⁇ 10 6 cells / mL.
  • IL-2 preparation name Proleukin: manufactured by Chiron or Novartis
  • IFN- ⁇ formulation name Immunomax- ⁇ Note: manufactured by Shionogi & Co., Ltd.
  • a group to which no anti-human CD3 antibody was added was set as a control group.
  • the culture was continued for the anti-human CD3 antibody restimulation group and the control group, and on day 11 of the culture, a part of the cell fluid in each flask of each group was 0.5% HAB / 0.2% HSA / GT-T503. After diluting 4 times with, pour 10 mL of the diluted solution into a new T-25 cell culture flask (standing), add IL-2 to a final concentration of 500 U / mL, and then add to this flask. The culture was continued.
  • CD3 + CD56 + The cell content ratio and the CD8 + cell content ratio were analyzed with a flow cytometer (Cytomics FC500: manufactured by Beckman Coulter). That is, the cells on the 14th day after the start of culture were washed with DPBS, and then the cells were described as DPBS containing 1% bovine serum albumin (Sigma, hereinafter referred to as BSA) (hereinafter referred to as 1% BSA / DPBS).
  • BSA bovine serum albumin
  • CD3 + CD56 + cells As shown in Table 2, a high ratio of CD3 + CD56 + cells was obtained by restimulation with anti-human CD3 antibody. In addition, CD8 + cells called active bodies of CIK cells were obtained at a high ratio. Moreover, these effects were further enhanced by combining the anti-human CD3 antibody and retronectin to give initial stimulation to the cell population. Furthermore, these effects were remarkable regardless of the immobilized concentration of the anti-human CD3 antibody used as the initial stimulus. As shown in Table 1, CIK cells containing CD3 + CD56 + cells at a very high ratio were obtained with a high expansion culture rate.
  • the production method of the present invention is a method for efficiently obtaining CD3 + CD56 + CD8 + cells that play a large role in the antitumor activity of CIK cells.
  • CIK cells having a high content of CD3 + CD56 + cells can be cultured in large quantities, it was revealed that this is a method for producing a cell population exhibiting a high therapeutic effect.
  • CD3 + CD56 + cells were cultured during the culture period (14 days).
  • the multiplication ratio of CD3, that is, the CD3 + CD56 + cell expansion culture ratio was calculated [the following formula (1)].
  • the content ratio of CD3 + CD56 + cells (CD3 + CD56 + cell content ratio at the start of culture) in PBMC thawed and used this time was 1.54%. The results are shown in Table 3.
  • CD3 + CD56 + cells which are considered to be active components of CIK cells, can be proliferated preferentially, and CD3 plays a major role in the antitumor activity of CIK cells. It was revealed that + CD56 + cells can be obtained efficiently.
  • Example 2 CIK cell culture using anti-human CD3 antibody and retronectin (comparison of IFN- ⁇ added and use of an autologous-irradiated cell)
  • AIC Autologous-irradiated cell
  • PBMC derived from donor A prepared in Example 1- (1) was suspended in 0.5% HAB / 0.2% HSA / GT-T503.
  • 3400R (29.8 Gy) X-rays were irradiated using an X-ray irradiation apparatus (hereinafter, the cells after X-ray irradiation are described as PBMC AIC).
  • the prepared PBMC AIC was suspended again in 0.5% HAB / 0.2% HSA / GT-T503 so as to be 1.06 ⁇ 10 6 cells / mL.
  • Example 2- CIK cell culture derived from donor A prepared in Example 1- (1) so as to be 1.06 ⁇ 10 6 cells / mL in 0.5% HAB / 0.2% HSA / GT-T503 PBMCs were suspended (described as IFN- ⁇ the day before untreated group).
  • PBMCs prepared in the same manner on the day before the start of culture were cultured overnight in the presence of IFN- ⁇ (final concentration 1000 U / mL) and then suspended at the cell concentration at the start of the culture (hereinafter referred to as the following). , Described as IFN- ⁇ the day before treatment group).
  • An anti-human CD3 antibody and retronectin-immobilized plate prepared in the same manner as in Example 1- (2) (where the anti-human CD3 antibody-immobilized concentration was 0.1 ⁇ g / mL) was added to the PBMC (IFN - ⁇ -day-untreated group) or PBMC (IFN- ⁇ -day-treated group) was added at a rate of 0.875 mL / well, and the PBMC AIC prepared in Example 2- (2) was added to the group using AIC by 0. 875 mL / well was added to give a total of 1.75 mL / well.
  • HAB / 0.2% HSA / GT-T503 0.575% HAB / 0.2% HSA / GT-T503 was added at 0.875 mL / well instead of AIC.
  • IL-2 and IFN- ⁇ were added to each well to a final concentration of 1000 U / mL, and the culture was started at 37 ° C. in the presence of 5% CO 2 (culture day 0).
  • the culture method was carried out in the same manner as in Example 1- (3), and dilutions on the 4th, 8th and 11th days of culture, and the anti-human CD3 antibody restimulation group and anti-human CD3 antibody were not added. Group setting and the like were performed in the same manner as in Example 1- (3).
  • the culture was continued until the 14th day, and the number of viable cells was measured by the trypan blue staining method on the 11th and 14th days after the start of the culture, and the expanded culture rate (total number of cells) was compared with the number of cells at the start of the culture. Conversion) was calculated. The results are shown in Table 4.
  • CD3 + in CD56 + cells and CD8 + cells Analysis embodiment of the content ratio 1- (4) and the same method, for example 2- (2) culture the fourteenth day after the initiation of the cells prepared CD3 + CD56 + cell content ratio and CD8 + cell content ratio were analyzed. The results are shown in Table 5.
  • CD3 + CD56 + cells proliferated during the culture period (14 days) using the calculated CD3 + CD56 + cell content ratio and the expanded culture rate (converted to the total number of cells) calculated in Example 2- (2)
  • the magnification ie, CD3 + CD56 + cell expansion culture rate
  • the production method of the present invention is a method for efficiently obtaining CD3 + CD56 + cells, which are important constituents in CIK cells.
  • Example 3 CIK cell culture using anti-human CD3 antibody and retronectin (comparison of anti-human CD3 antibody concentration at restimulation) (1)
  • Preparation of PBMC AIC PBMC AIC was prepared in the same manner as in Example 2- (1) except that donor B-derived PBMC or donor C-derived PBMC were used instead of donor A-derived PBMC.
  • Example 2- (2) CIK cell culture CIK cells were cultured in the same manner as in Example 2- (2).
  • PBMC PBMC derived from donor B or PBMC derived from donor C (using the same donor-derived PBMC as the donor used in Example 3- (1)) was used, and IFN- ⁇ the day before treatment was not performed.
  • concentration of the anti-human CD3 antibody at the time of restimulation with the anti-human CD3 antibody on the 8th day of the culture was set to 50 ng / mL or 200 ng / mL.
  • the culture is continued until the first 14 days of culture, and the number of viable cells is measured by trypan blue staining on the 14th day after the start of the culture. Was calculated. The results are shown in Table 7.
  • CD3 + by CD56 + cells and CD8 + cells Analysis embodiment of the content ratio 1- (4) and the same method, for example 3- (2) culture the fourteenth day after the initiation of the cells prepared CD3 + CD56 + cell content ratio was analyzed. The results are shown in Table 8.
  • CD3 + CD56 + cells can be obtained by combining the anti-human CD3 antibody and retronectin to give initial stimulation to the cell population, and by re-stimulating with the anti-human CD3 antibody during the culture. was obtained at a high ratio. These effects were exhibited regardless of the concentration of the anti-human CD3 antibody at the time of donor or restimulation.
  • the production method of the present invention is a method by which CD3 + CD56 + cells, which are important components in CIK cells, can be obtained efficiently.
  • Example 1- PBMC derived from donor B, donor C-derived PBMC and cells After the start of culture prepared in Example 3- (2) For each of the cells on day 14, the content ratio of CD3 + CD56 + cells was measured in the same manner as in Example 1- (4).
  • CD3 + CD56 + cell content ratio Using the calculated CD3 + CD56 + cell content ratio and the expanded culture rate (converted to the total number of cells) calculated in Example 3- (2), CD3 + CD56 + cells were observed during the culture period (14 days).
  • the multiplication factor ie, CD3 + CD56 + cell expansion culture rate
  • the content ratio of CD3 + CD56 + cells at the start of culture was 1.62% for both donors. The results are shown in Table 9.
  • the production method of the present invention is a method for efficiently obtaining CD3 + CD56 + cells, which are important components in CIK cells.
  • Example 4 CIK Cell Culture Using Gas-Permeable Culture Bag (1) Preparation of Anti-Human CD3 Antibody and RetroNectin Immobilized MultiLife 215 Gas-permeable Culture Bag MultiLife (Registered Trademark) Sealed to a Culture Area of 86 cm 2 10.4 mL of ACD-A solution containing anti-human CD3 antibody with a final concentration of 0.1 or 0.3 ⁇ g / mL and RetroNectin (registered trademark) with a final concentration of 5 ⁇ g / mL was added to 215 (manufactured by Takara Bio Inc.) Incubated for 5 hours at 37 ° C. in the presence of 5% CO 2 . The thus prepared anti-CD3 antibody / retronectin-immobilized MultiLife 215 was washed 3 times with 1% HSA / physiological saline immediately before use.
  • ACD-A solution containing anti-human CD3 antibody with a final concentration of 0.1 or 0.3 ⁇ g / mL
  • Example 5 CIK cell culture using OK-432 (comparison with or without AIC) (1) Preparation of anti-human CD3 antibody and retronectin-immobilized plate
  • Anti-human CD3 antibody and retronectin-immobilized plate were prepared in the same manner as in Example 1- (2). However, the anti-human CD3 antibody was adjusted to a final concentration of 0.1 ⁇ g / mL.
  • Example 2- (2) Expansion culture of CIK cell population Using the anti-human CD3 antibody and retronectin-immobilized plate prepared in Example 5- (1), culture was performed in the same manner as in Example 2- (2). However, the IFN- ⁇ previous day treatment group was not set, and OK-432 (formulation name: Pishibanil: manufactured by Chugai Pharmaceutical Co., Ltd.) was added to all groups so that the final concentration was 0.05 KE / mL. Moreover, the influence of AIC addition was also examined. Incubation continued until day 15. The number of viable cells was counted by trypan blue staining for the cells sampled on the 15th day after the start of the culture, and the expansion culture rate was calculated in comparison with the number of cells at the start of the culture. Further, the CD3 + CD56 + cell content ratio was measured by the same method as in Example 1- (4). The results are shown in Table 11.
  • Cytotoxic activity The cytotoxic activity of the cells prepared in Example 5- (2) on the 15th day after the start of the culture was measured. Cytotoxic activity is determined by measuring cytotoxic activity using Calcein-AM [Lichtenfels R.C. (Lichtenfelds R. et al.), J. Immunol. Methods, Vol. 172, No. 2, pp. 227-239 (1994)]. That is, the chronic myeloid leukemia cell line K562 cell and the lung cancer cell line A549 cell were suspended in RPMI 1640 containing 5% fetal calf serum (manufactured by HyClone) so as to be (1-2) ⁇ 10 6 cells / mL, respectively.
  • Calcein-AM manufactured by Dojindo Laboratories
  • a medium not containing Calcein-AM washed with a medium not containing Calcein-AM and used as Calcein-labeled target cells.
  • Example 5- 15% after the start of culture prepared in Example 5- (2) as effector cells, 5% Human AB type serum, 0.1 mM so as to be 3 ⁇ 10 6 cells / mL, 1 ⁇ 10 5 cells / mL
  • RPMI 1640 containing NEAA mixture 1 mM sodium pyruvate, 2 mM L-glutamine (all manufactured by Lonza), and 1% penicillin-streptomycin (manufactured by Gibco BRL) or 100 ⁇ g / mL streptomycin sulfate (manufactured by Meiji Seika) 100 ⁇ L / well was dispensed into each well of a well cell culture plate (Corning).
  • the minimum release amount is the calcein release amount of a well containing only calcein labeled target cells, and indicates the calcein spontaneous release amount from the calcein labeled target cells.
  • the maximum release amount indicates the release amount of Calcein when the cell is completely destroyed by adding 0.1% surfactant Triton X-100 (manufactured by Nacalai Tesque) to Calcein-labeled target cells. The results of the cytotoxic activity measurement are shown in Table 12.
  • the cell population obtained by the production method of the present invention exhibited high cytotoxic activity. Moreover, it became clear that the cell population which shows high cytotoxic activity with respect to a lung cancer cell line can be obtained by adding AIC.
  • Example 6 Gene introduction into CIK cells (1) Preparation of anti-human CD3 antibody and retronectin-immobilized plate An anti-human CD3 antibody and retronectin-immobilized plate were prepared in the same manner as in Example 1- (2). However, the anti-human CD3 antibody was adjusted to a final concentration of 0.3 ⁇ g / mL.
  • An AcGFP expression vector MT-AcGFP was prepared as follows. Using pIRES2-AcGFP1 (manufactured by Clontech) as a template, PCR was performed using an AcGFP5 primer consisting of the nucleic acid sequence shown in SEQ ID NO: 10 of the sequence listing and an AcGFP3 primer consisting of the nucleic acid sequence shown in SEQ ID NO: 11 of the sequence listing, The amplified fragment was inserted into a pMT vector [pM vector described in Gene Therapy Vol. 7, Item 797-804 (2000)] to prepare an MT-AcGFP plasmid.
  • Example 6- (3) The culture supernatant of the producer cells produced in Example 6- (3) was removed, washed once with DPBS, treated with Trypsin / EDTA, and the cells were detached, and 10% fetal bovine After suspending in serum (manufactured by Invitrogen) and D-MEM (manufactured by Sigma Aldrich) containing 50 U / mL penicillin / 50 mg / mL streptomycin (manufactured by Nacalai Tesque), the cell density was 25000 in 100 mm dish (manufactured by Iwaki). It seed
  • the culture supernatant was removed, and 8 mL of fresh medium was added. After further culturing for 24 hours, the supernatant was collected, filtered through a 0.45 ⁇ m filter, and stored at ⁇ 80 ° C.
  • Retronectin-immobilized plate (at gene introduction) A DPBS solution containing anti-human CD3 antibody having a final concentration of 5 ⁇ g / mL and Retronectin (registered trademark) having a final concentration of 25 ⁇ g / mL was added to a 12-well non-treatment plate (manufactured by Corning) at a rate of 0.95 mL / well. Next, after incubation at 37 ° C. for 5 hours in the presence of 5% CO 2, the DPBS solution was removed from each well to obtain a cell culture plate on which the anti-CD3 antibody and retronectin were immobilized. The plate prepared here was washed 3 times with DPBS and then used for each of the following experiments.
  • Example 6- (1) Gene transfer to CIK cell population and expansion culture Culture using the anti-human CD3 antibody and retronectin immobilized plate prepared in Example 6- (1) in the same manner as in Example 2- (2) Went.
  • the IFN- ⁇ previous day treatment group was not set.
  • gene transfer (hereinafter referred to as a single infection group) on the fourth day of culture, gene transfer (hereinafter referred to as a double infection group) on days 4 and 5 after the start of culture, A non-gene transfer group (hereinafter referred to as a control group) that does not infect the virus was set to the infection group.
  • Example 6- (6) in the single infection group, 0.4 mL of the cell solution was transferred to the plate prepared in Example 6- (6) on the 4th day from the start of culture, and 0.5% HAB / 0.2% HSA / GT-T503 was transferred. Of IL-2 was added to a final concentration of 500 U / mL. The culture was continued on this plate until the 8th day. In the twice infected group, 1.5 mL of the cell solution was transferred to the plate prepared in Example 6- (6) on the 4th day from the start of the culture, and 0.5% HAB / 0.2% HSA / GT-T503 was added as 1. After adding 5 mL and diluting 2-fold, IL-2 was added to a final concentration of 500 U / mL.
  • Example 6- (6) Furthermore, on the fifth day of the culture, 0.8 mL of the cell solution was transferred to the plate prepared in Example 6- (6), and 4.2 mL of 0.5% HAB / 0.2% HSA / GT-T503 was added. IL-2 was added to a final concentration of 500 U / mL after doubling dilution. The culture was continued on this plate until the 8th day. In the control group, the same operation was performed using a plate to which no virus was fixed in both the once-infected group and the twice-infected group. The culture was continued until day 14.
  • the number of viable cells was counted by trypan blue staining for the cells sampled on the 14th day after the start of the culture, and the expansion culture rate was calculated by comparison with the number of cells at the start of the culture. Further, the CD3 + CD56 + cell content ratio was measured by the same method as in Example 1- (4). Furthermore, the expression rate of the protein AcGFP expressed by gene introduction was analyzed with a flow cytometer as gene introduction efficiency. The results are shown in Table 13.
  • the present invention makes it possible to provide a large amount of CIK cells containing a high proportion of CD3-positive CD56-positive cells, which is said to be a sub-cell population suitable for adoptive immunotherapy.
  • the cell population obtainable by the present invention is useful in adoptive immunotherapy.
  • SEQ ID NO: 1 Partial region of fibronectin named CS-1.
  • SEQ ID NO: 2 Partial region of fibronectin named III-10.
  • SEQ ID NO: 3 Partial region of fibronectin in III-10.
  • SEQ ID NO: 4 Fibronectin fragment named C-274.
  • SEQ ID NO: 5 Fibronectin fragment named H-271.
  • SEQ ID NO: 6 Fibronectin fragment named H-296.
  • SEQ ID NO: 7 Fibronectin fragment named CH-271.
  • SEQ ID NO: 8 Fibronectin fragment named CH-296.
  • SEQ ID NO: 9 Fibronectin fragment named C-CS1.
  • SEQ ID NO: 10 Designed oligonucleotide primer to amplify DNA fragment encodeing AcGFP.
  • SEQ ID NO: 11 Designed oligonucleotide primer to amplify DNA fragment encodeing AcGFP.

Abstract

A process for producing cytokine-induced killer cells, comprising the steps of (a) culturing a cell mass that contains cells capable of being differentiated into CD3-positive CD56-positive cells and/or CD3-positive CD56-positive cells in the presence of a CD3 ligand, (b) culturing the cell mass produced in step (a) in the absence of a CD3 ligand, and (c) culturing the cell mass produced in step (b) in the presence of a CD3 ligand; and others.

Description

サイトカイン誘導キラー細胞の製造方法Method for producing cytokine-induced killer cells
 本発明は、養子免疫療法において効力の高いサイトカイン誘導キラー細胞(CIK細胞)の製造方法、当該製造方法により得られるCIK細胞、当該CIK細胞を含有する医薬等に関する。
 なお、本願は、2009年10月28日出願の日本国特許出願第2009-247347号に対して優先権を主張するものであり、日本国特許出願第2009-247347号の全内容を本願に組み込むものである。
The present invention relates to a method for producing a cytokine-induced killer cell (CIK cell) having high efficacy in adoptive immunotherapy, a CIK cell obtained by the production method, a medicine containing the CIK cell, and the like.
This application claims priority to Japanese Patent Application No. 2009-247347 filed on Oct. 28, 2009, and the entire contents of Japanese Patent Application No. 2009-247347 are incorporated in the present application. Is.
 近年、薬剤治療法や放射線療法のように患者に重い肉体的負担がある治療法が見直され、より負担の軽い免疫治療法に関心が高まっている。当該療法には、例えば、体外に取り出した免疫関連細胞を培養して細胞数を増加させ、及び/又は治療効果に係る活性を強化して患者に移植する養子免疫治療法が含まれる。 In recent years, therapies with heavy physical burdens on patients such as drug therapy and radiation therapy have been reviewed, and interest in immunotherapy methods with less burden has increased. The therapy includes, for example, adoptive immunotherapy in which immune-related cells taken out of the body are cultured to increase the number of cells and / or the activity related to the therapeutic effect is enhanced and transplanted to a patient.
 養子免疫療法においてエフェクター細胞として利用される細胞として、リンホカイン活性化キラー(lymphokine activated killer;LAK)細胞、腫瘍内浸潤リンパ球(tumour infiltrating lymphocyte;TIL)、細胞傷害性Tリンパ球(cytotoxic T lymphocyte;CTL)及びサイトカイン誘導キラー(cytokine-induced killer;CIK)細胞が知られている。 Lymphokine activated killer (LAK) cells, tumor infiltrating lymphocytes (TIL), and cytotoxic T lymphocytes (cytotoxic T lymphocytes) are used as effector cells in adoptive immunotherapy. CTL) and cytokine-induced killer (CIK) cells are known.
 LAK細胞は、インターロイキン(IL)-2存在下にリンパ球を増殖させて得ることができる細胞集団であり、腫瘍細胞を溶解するが正常細胞を溶解しないという性質を有している。LAK細胞の調製に関しては、培養時にIL-2とともに抗CD3抗体を共存させる方法も開発されている。 LAK cells are a cell population that can be obtained by growing lymphocytes in the presence of interleukin (IL) -2, and have the property of lysing tumor cells but not normal cells. Regarding the preparation of LAK cells, a method of coexisting an anti-CD3 antibody together with IL-2 during culture has been developed.
 TILは腫瘍組織に浸潤したT細胞であり、LAK細胞よりも著しい腫瘍抗原特異性を有する。本細胞も体外で増殖させ、治療に使用することができる。しかし、TILは患者の腫瘍組織を摘出して入手する必要があるため、採取操作が煩雑であり、また、得られる細胞数も少ないという問題点を有している。 TIL is a T cell infiltrating a tumor tissue, and has a tumor antigen specificity remarkably higher than that of a LAK cell. The cells can also be grown outside the body and used for therapy. However, since TIL needs to be obtained by extracting the tumor tissue of the patient, it has a problem that the sampling operation is complicated and the number of cells obtained is small.
 CTLは、HLA(human leukocyte antigen;ヒト白血球抗原)拘束性の腫瘍関連抗原(ペプチド、タンパク質等)、抗原提示細胞及びIL-2の存在下で腫瘍関連抗原特異的にリンパ球を誘導・増殖させて得ることができる細胞集団であり、高い腫瘍抗原特異性を有している。しかし、CTLは大量培養が困難であり、また、誘導時に使用した腫瘍関連抗原を発現する細胞しか認識しないという性質を有しているため、同じ腫瘍であってもその抗原発現の有無によって効果が著しく異なるという問題点を有している。 CTL induces and proliferates lymphocytes specifically for tumor-associated antigens in the presence of HLA (human leukocyte antigen) -restricted tumor-associated antigens (peptides, proteins, etc.), antigen-presenting cells, and IL-2. Cell populations that can be obtained in a highly functional manner. However, CTL is difficult to cultivate in large quantities and has the property of recognizing only the cells that express the tumor-related antigen used at the time of induction. It has the problem of being significantly different.
 CIK細胞は、末梢血単核細胞(peripheral blood mononuclear cell;PBMC)から、インターフェロン(IFN)-γ、抗CD3抗体、及びIL-2の存在下での培養を行うことにより調製される細胞集団であり、CD3陽性かつCD56陽性の細胞を含有する細胞集団として特徴づけられる。CD3陽性CD56陽性の細胞は、PBMC中では希有な細胞であるが、標的細胞の非存在下で優先的に増殖させることができる。CIK細胞は、インビボにおいてLAK細胞に勝る腫瘍細胞に対する細胞傷害活性を発揮する(例えば、非特許文献1)。ただし、従来の方法により製造されたCIK細胞に含有されるCD3陽性CD56陽性細胞の比率は一般的には20%程度であり、また、CIK細胞の増殖性も3週間の培養で10倍程度と非常に低い。そのため、大量のCIK細胞を培養するためには患者から成分採血をする場合が多く、肉体的負担が大きいという問題点を有している(例えば、非特許文献2及び3)。 CIK cells are a cell population prepared from peripheral blood mononuclear cells (PBMC) by culturing in the presence of interferon (IFN) -γ, anti-CD3 antibody, and IL-2. Yes, and characterized as a cell population containing CD3-positive and CD56-positive cells. CD3-positive CD56-positive cells are rare cells in PBMC, but can be preferentially grown in the absence of target cells. CIK cells exhibit cytotoxic activity against tumor cells superior to LAK cells in vivo (for example, Non-Patent Document 1). However, the ratio of CD3-positive CD56-positive cells contained in CIK cells produced by the conventional method is generally about 20%, and the proliferation of CIK cells is about 10 times after 3 weeks of culture. Very low. For this reason, in order to culture a large amount of CIK cells, blood is often collected from a patient, and there is a problem that physical burden is large (for example, Non-Patent Documents 2 and 3).
 CIK細胞の拡大培養の過程では、PBMCは多くの性質の異なる細胞集団に分化するため、拡大後の細胞集団中のCD3陽性CD56陽性細胞の割合は決して高いものではない。本発明の目的は、CD3陽性CD56陽性細胞を効率よく大量に得ることができるCIK細胞の製造方法を提供する事にある。 In the process of expansion culture of CIK cells, PBMC differentiate into many different cell populations, and thus the proportion of CD3-positive CD56-positive cells in the expanded cell population is not high. An object of the present invention is to provide a method for producing CIK cells, which can efficiently obtain large amounts of CD3-positive CD56-positive cells.
 本発明を概説すれば、本発明の第1の態様は、(a)CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団をCD3リガンド存在下で培養する工程、(b)工程(a)により得られた細胞集団をCD3リガンドの非存在下で培養する工程、及び(c)工程(b)により得られた細胞集団をCD3リガンド存在下で培養する工程を包含するサイトカイン誘導キラー細胞の製造方法に関する。第1の態様において、工程(a)~(c)のうち少なくとも一つの工程における細胞集団の培養が、インターフェロン-γ及び/又はインターロイキン-2の存在下で実施されてもよい。また、第1の態様において、CD3リガンドとしては、抗CD3抗体が例示される。また、第1の態様において、工程(a)における培養は、フィブロネクチンフラグメントとCD3リガンドとの共存下で実施してもよい。当該フィブロネクチンフラグメントとしては、VLA-4結合領域、VLA-5結合領域及びヘパリン結合領域からなる群より選択される領域を含有するものが例示される。 To summarize the present invention, the first aspect of the present invention is that (a) a cell population capable of differentiating into CD3 positive CD56 positive cells and / or a cell population containing CD3 positive CD56 positive cells is cultured in the presence of a CD3 ligand. (B) culturing the cell population obtained in step (a) in the absence of CD3 ligand, and (c) culturing the cell population obtained in step (b) in the presence of CD3 ligand. The present invention relates to a method for producing cytokine-induced killer cells. In the first embodiment, the culture of the cell population in at least one of steps (a) to (c) may be performed in the presence of interferon-γ and / or interleukin-2. In the first embodiment, the CD3 ligand is exemplified by an anti-CD3 antibody. In the first embodiment, the culture in the step (a) may be performed in the presence of a fibronectin fragment and a CD3 ligand. Examples of the fibronectin fragment include those containing a region selected from the group consisting of a VLA-4 binding region, a VLA-5 binding region, and a heparin binding region.
 本発明の第2の態様は、本発明の第1の態様の製造方法により得ることができる、サイトカイン誘導キラー細胞に関する。 The second aspect of the present invention relates to a cytokine-induced killer cell that can be obtained by the production method of the first aspect of the present invention.
 本発明の第3の態様は、本発明の第2の態様のサイトカイン誘導キラー細胞を有効成分として含有する医薬に関する。 The third aspect of the present invention relates to a medicine containing the cytokine-induced killer cell of the second aspect of the present invention as an active ingredient.
 本発明の第4の態様は、対象に、有効量の本発明の第2の態様のサイトカイン誘導キラー細胞を投与する工程を含む、疾患の治療方法又は予防方法に関する。 The fourth aspect of the present invention relates to a method for treating or preventing a disease, which comprises the step of administering to a subject an effective amount of the cytokine-induced killer cells of the second aspect of the present invention.
 本発明の第5の態様は、医薬の製造のための、本発明の第2の態様のサイトカイン誘導キラー細胞の使用に関する。
 また、本発明の第6の態様は、疾患の治療に用いるための、本発明の第2の態様のサイトカイン誘導キラー細胞に関する。
A fifth aspect of the present invention relates to the use of the cytokine-induced killer cells of the second aspect of the present invention for the manufacture of a medicament.
The sixth aspect of the present invention also relates to a cytokine-induced killer cell according to the second aspect of the present invention for use in the treatment of diseases.
 本発明の第7の態様は、(A)CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団を、CD3リガンドを含有する培地中で培養する工程、(B)前記培地のCD3リガンド濃度を低下させる工程、(C)CD3リガンド濃度が低下した培地中で細胞集団を培養する工程、及び(D)培地にCD3リガンドを添加し、さらに細胞集団を培養する工程を包含する、サイトカイン誘導キラー細胞の製造方法に関する。 In a seventh aspect of the present invention, (A) a step of culturing a cell population capable of differentiating into a CD3-positive CD56-positive cell and / or a CD3-positive CD56-positive cell in a medium containing a CD3 ligand; B) reducing the CD3 ligand concentration in the medium, (C) culturing the cell population in a medium having a decreased CD3 ligand concentration, and (D) adding the CD3 ligand to the medium and further culturing the cell population. The present invention relates to a method for producing cytokine-induced killer cells, comprising a step.
 本発明により、高い細胞傷害活性を有するCD3陽性CD56陽性細胞を高含有する細胞集団を大量に拡大培養することが可能な、CIK細胞の製造方法が提供される。当該製造方法により大量に得られかつ高品質なCIK細胞は、生体内において高い治療効果を発揮することから、細胞医療による疾患の治療に極めて有用である。 According to the present invention, there is provided a method for producing CIK cells capable of expanding and culturing a cell population containing a high amount of CD3-positive CD56-positive cells having high cytotoxic activity in large quantities. High-quality CIK cells obtained in large quantities by the production method exhibit a high therapeutic effect in vivo, and thus are extremely useful for treatment of diseases by cell therapy.
 本発明者らは、CD3リガンド存在下で培養された細胞集団をCD3リガンド非存在下で培養し、さらにCD3リガンド存在下で培養することにより、驚くべき事に、細胞表面にCD3及びCD56の両分子を発現する細胞が高い比率で含まれた細胞集団が大量に得られることを見出し、本発明を完成するに至った。 The present inventors surprisingly cultivated a cell population cultured in the presence of CD3 ligand in the absence of CD3 ligand, and further cultured in the presence of CD3 ligand, and surprisingly both CD3 and CD56 on the cell surface. The inventors have found that a large number of cell populations containing a high ratio of cells expressing molecules can be obtained, thereby completing the present invention.
 以下、本発明を具体的に説明する。
(1)本発明のCIK細胞の製造方法
 本発明の製造方法は、CIK細胞、すなわちCD3陽性かつCD56陽性として特徴づけられる亜細胞集団を高含有する細胞集団を製造する方法である。本発明のCIK細胞の製造方法は、(a)CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団をCD3リガンド存在下で培養する工程、(b)工程(a)により得られた細胞集団をCD3リガンドの非存在下で培養する工程、及び(c)工程(b)により得られた細胞集団をCD3リガンド存在下で培養する工程を包含する。 
Hereinafter, the present invention will be specifically described.
(1) Production method of CIK cell of the present invention The production method of the present invention is a method for producing a CIK cell, that is, a cell population highly containing a sub-cell population characterized as CD3 positive and CD56 positive. The method for producing CIK cells of the present invention comprises (a) culturing a cell population that can be differentiated into CD3 positive CD56 positive cells and / or a cell population containing CD3 positive CD56 positive cells in the presence of a CD3 ligand, (b) step Culturing the cell population obtained by (a) in the absence of CD3 ligand, and (c) culturing the cell population obtained by step (b) in the presence of CD3 ligand.
 従来のCIK細胞の製造方法では、CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団に対してCD3リガンドによる刺激を与えた後、CD3リガンド非存在下で培養することにより完結していた。なお、CD3リガンドによる刺激後にCD3リガンド非存在下で培養を行う理由は、CD3リガンドによる過剰な刺激(高濃度、長期間刺激等)が細胞増殖を抑制するためである。これに対して、本発明のCIK細胞の製造方法は、CD3リガンドによる刺激〔上記の工程(a);以下、当該工程におけるCD3リガンド刺激を「初期刺激」と記載する〕が与えられた細胞集団をCD3リガンド非存在下で培養〔上記の工程(b)〕した後に、再度CD3リガンドによる刺激〔上記の工程(c);以下、当該工程におけるCD3リガンド刺激を「再刺激」と記載する〕を加えることを特徴とする。 In the conventional CIK cell production method, cells that can differentiate into CD3 positive CD56 positive cells and / or a cell population containing CD3 positive CD56 positive cells are stimulated with CD3 ligand, and then in the absence of CD3 ligand. It was completed by culturing. The reason why culture is performed in the absence of CD3 ligand after stimulation with CD3 ligand is that excessive stimulation (high concentration, long-term stimulation, etc.) with CD3 ligand suppresses cell proliferation. On the other hand, the CIK cell production method of the present invention is a cell population to which stimulation by CD3 ligand [the above step (a); hereinafter, CD3 ligand stimulation in this step is referred to as “initial stimulation”]. Is cultured in the absence of CD3 ligand [the above step (b)] and then stimulated again with CD3 ligand [the above step (c); hereinafter, the CD3 ligand stimulation in this step is referred to as “re-stimulation”] It is characterized by adding.
 なお、初期刺激にCD3リガンドを含有する培地を用いる場合、初期刺激の後に、培地を希釈してCD3リガンドの濃度を細胞増殖抑制作用が認められない程度まで低下させ、さらに細胞集団の培養を継続することにより、上記の工程(b)と同等の効果を得ることができる。すなわち、(A)CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団を、CD3リガンドを含有する培地中で培養する工程、(B)前記培地のCD3リガンド濃度を低下させる工程、(C)CD3リガンド濃度が低下した培地中で細胞集団を培養する工程、及び(D)培地にCD3リガンドを添加し、さらに細胞集団を培養する工程を含むCIK細胞の製造方法も、本発明の製造方法の一態様である。本態様の工程(A)は前記の初期刺激、工程(D)は、前記の再刺激とみなすことができる。上記の工程(C)における「CD3リガンド濃度が低下した培地」中のCD3リガンド濃度としては、CD3リガンドによる細胞増殖抑制作用が認められない濃度であれば特に限定はなく、例えば、工程(A)における培地中のCD3リガンド濃度の約1/50~1/2倍の濃度が例示される。 When a medium containing CD3 ligand is used for initial stimulation, after the initial stimulation, the medium is diluted to reduce the concentration of CD3 ligand to a level where no cell growth inhibitory effect is observed, and further culturing of the cell population is continued. By doing so, an effect equivalent to that of the above step (b) can be obtained. That is, (A) a step of culturing cells that can differentiate into CD3 positive CD56 positive cells and / or a cell population containing CD3 positive CD56 positive cells in a medium containing CD3 ligand, (B) CD3 ligand of the medium CIK cell production comprising the steps of reducing the concentration, (C) culturing the cell population in a medium having a reduced CD3 ligand concentration, and (D) adding the CD3 ligand to the medium and further culturing the cell population. The method is also an embodiment of the production method of the present invention. The step (A) of this embodiment can be regarded as the initial stimulation, and the step (D) can be regarded as the restimulation. The concentration of CD3 ligand in the “medium with reduced CD3 ligand concentration” in the above step (C) is not particularly limited as long as the cell growth inhibitory action by CD3 ligand is not observed. For example, step (A) A concentration of about 1/50 to 1/2 times the concentration of CD3 ligand in the medium is exemplified.
 本発明の製造方法に使用される「CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団」としては、末梢血、骨髄、臍帯血等から得ることができる細胞集団、あるいはこれらの材料から分離された血球系細胞の集団が例示される。好ましくは、PBMCが本発明に使用される。また、これらの細胞集団から分離されたCD3陽性CD56陽性細胞から実質的になる細胞集団を本発明に使用しても良い。分離は、例えば、セルソーター、磁気ビーズ、アフィニティーカラム等を用いる公知の手法で行うことができる。これらの細胞集団は、生体から採取されたそのまま、もしくは凍結保存されたもののいずれも本発明に使用することができる。また、CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団は、本発明に使用される前にインターフェロン-γ存在下で予め前培養された物であってもよい。 The “cell population that can be differentiated into CD3 positive CD56 positive cells and / or CD3 positive CD56 positive cells” used in the production method of the present invention can be obtained from peripheral blood, bone marrow, umbilical cord blood and the like. Examples are cell populations or populations of hematopoietic cells separated from these materials. Preferably, PBMC is used in the present invention. Moreover, you may use for this invention the cell population which becomes substantially from the CD3 positive CD56 positive cell isolate | separated from these cell populations. Separation can be performed by a known method using, for example, a cell sorter, magnetic beads, an affinity column, or the like. Any of these cell populations collected directly from a living body or cryopreserved can be used in the present invention. In addition, the cell population capable of differentiating into CD3-positive CD56-positive cells and / or the cell population containing CD3-positive CD56-positive cells is pre-cultured in the presence of interferon-γ before being used in the present invention. Also good.
 本発明に使用されるCD3リガンドとしては、CD3に結合活性を有する物質であれば特に限定はないが、例えば、抗CD3抗体、特に好適には、抗CD3モノクローナル抗体、例えば、OKT3〔J. Immunol.,第124巻、第6号、2708~2713(1980)〕が例示される。 The CD3 ligand used in the present invention is not particularly limited as long as it is a substance having binding activity to CD3. For example, anti-CD3 antibody, particularly preferably anti-CD3 monoclonal antibody such as OKT3 [J. Immunol. 124, No. 6, 2708-2713 (1980)].
 CD3リガンドの培地中の濃度としては特に限定はなく、例えば、抗CD3モノクローナル抗体を使用する場合、初期刺激の際には例えば0.001~500μg/mL、特に0.01~100μg/mLが好適であり、再刺激の際には例えば0.001~100μg/mL、特に0.005~50μg/mLが好適である。CD3リガンドは、培地中に溶解して共存させる以外に、適切な固相、例えば、シャーレ、フラスコ、バッグ等の細胞培養用器材(培養用容器;開放系のもの、及び閉鎖系のもののいずれをも含む)、又はビーズ、メンブレン、スライドガラス等の細胞培養用担体に固定化して使用してもよい。それらの固相の材質は、細胞培養に使用可能なものであれば特に限定されるものではない。CD3リガンドを固相に固定化しておけば、培養終了後、細胞と固相とを分離するのみで前記の成分と得られた細胞集団とを容易に分離することができ、細胞集団への前記成分の混入を防ぐことができる。CD3リガンドの固定化量は、前記の器材又は担体を培養に供した際に、該成分を培地中に溶解して用いる場合の所望の濃度と同様の割合となるよう選択されてもよいが、所望の効果が得られれば特に限定されるものではない。 The concentration of the CD3 ligand in the medium is not particularly limited. For example, when an anti-CD3 monoclonal antibody is used, for example, 0.001 to 500 μg / mL, particularly 0.01 to 100 μg / mL is suitable for initial stimulation. For re-stimulation, for example, 0.001 to 100 μg / mL, particularly 0.005 to 50 μg / mL is preferable. In addition to dissolving CD3 ligand in the medium and coexisting with it, an appropriate solid phase, for example, cell culture equipment such as a petri dish, flask, bag, etc. (culture vessel; open type or closed type) Or may be immobilized on a cell culture carrier such as beads, a membrane, or a slide glass. The material of the solid phase is not particularly limited as long as it can be used for cell culture. If the CD3 ligand is immobilized on the solid phase, the above components and the obtained cell population can be easily separated by simply separating the cells and the solid phase after the completion of the culture. Mixing of components can be prevented. The amount of the immobilized CD3 ligand may be selected so as to have a ratio similar to a desired concentration when the component or carrier is used for culturing and the component is dissolved in a medium. If a desired effect is acquired, it will not specifically limit.
 前記の工程(a)、すなわち「CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団をCD3リガンド存在下で培養する工程」の培養条件に特に限定はなく、通常の細胞培養に使用される条件を使用することができる。例えば、37℃、5%CO等の条件で培養することができる。培養期間としては、本発明を特に限定するものではないが、例えば、1~10日間、好適には1~7日間が例示される。また、培養開始時の細胞数としては、特に限定はないが、好適には1×10~1×10cells/mL、より好適には1×10~5×10cells/mLが例示される。 There is no particular limitation on the culture conditions of the above-described step (a), that is, “the step of culturing cells that can differentiate into CD3 positive CD56 positive cells and / or cell populations containing CD3 positive CD56 positive cells in the presence of CD3 ligand”. The conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2. The culture period is not particularly limited, and examples thereof include 1 to 10 days, preferably 1 to 7 days. The number of cells at the start of the culture is not particularly limited, but preferably 1 × 10 4 to 1 × 10 8 cells / mL, more preferably 1 × 10 5 to 5 × 10 7 cells / mL. Illustrated.
 前記の工程(b)、すなわち「工程(a)により得られた細胞集団をCD3リガンドの非存在下で培養する工程」は、例えば、工程(a)により得られた培養物から細胞集団とCD3リガンドとを分離し、さらにCD3リガンド非存在下で当該細胞集団を培養することにより実施される。細胞集団とCD3リガンドとの分離は、特に本発明を限定するものではないが、例えば、工程(a)においてCD3リガンドが固定化された細胞培養器材を用いる場合には、細胞集団をCD3リガンドが固定化されていない他の細胞培養器材に移すことにより実施される。また、例えば、工程(a)において遊離のCD3リガンドを含む培地を用いる場合には、当該培地をCD3リガンドを含まない培地に交換することにより実施することができる。工程(b)の培養条件に特に限定はなく、通常の細胞培養に使用される条件を使用することができる。例えば、37℃、5%CO等の条件で培養することができる。工程(b)の培養期間としては、本発明を特に限定するものではないが、例えば、1~20日間、好適には1~10日間が例示される。 The above-mentioned step (b), that is, “the step of culturing the cell population obtained in step (a) in the absence of CD3 ligand” includes, for example, cell population and CD3 from the culture obtained in step (a). It is carried out by separating the ligand and further culturing the cell population in the absence of CD3 ligand. Separation of the cell population and the CD3 ligand is not particularly limited to the present invention. For example, when using a cell culture device in which the CD3 ligand is immobilized in the step (a), the cell population is separated from the CD3 ligand. It is carried out by transferring to other cell culture equipment that is not immobilized. In addition, for example, when a medium containing free CD3 ligand is used in step (a), the medium can be replaced with a medium not containing CD3 ligand. There are no particular limitations on the culture conditions in step (b), and conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2. The culture period in the step (b) is not particularly limited, and examples thereof include 1 to 20 days, preferably 1 to 10 days.
 前記の工程(c)、すなわち「工程(b)により得られた細胞集団をCD3リガンド存在下で培養する工程」は、本発明を特に限定するものではないが、工程(b)により得られた培養物にCD3リガンドを添加することで実施してもよく、工程(b)により得られた培養物をCD3リガンドが固定化された細胞培養器材に移すことで実施してもよい。工程(c)の培養条件に特に限定はなく、通常の細胞培養に使用される条件を使用することができる。例えば、37℃、5%CO等の条件で培養することができる。培養期間としては、本発明を特に限定するものではないが、例えば、1~20日間、好適には1~15日間が例示される。 The above step (c), ie, “the step of culturing the cell population obtained in step (b) in the presence of CD3 ligand” is not particularly limited to the present invention, but was obtained by step (b). You may implement by adding a CD3 ligand to a culture, and you may implement by moving the culture obtained by the process (b) to the cell culture equipment by which CD3 ligand was fix | immobilized. There are no particular limitations on the culture conditions of step (c), and the conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2. The culture period is not particularly limited, and examples thereof include 1 to 20 days, preferably 1 to 15 days.
 また、前記の工程(c)を実施した後に、さらに、工程(d)として「工程(c)により得られた細胞集団をCD3リガンドの非存在下で培養する工程」を実施してもよい。当該工程(d)の培養条件も特に限定はなく、通常の細胞培養に使用される条件を使用することができる。例えば、37℃、5%CO等の条件で培養することができる。工程(d)を実施した場合の培養期間としては、特に限定するものではないが、例えば、1~20日間、好適には1~15日間が例示される。 Further, after the step (c) is performed, a step of culturing the cell population obtained by the step (c) in the absence of CD3 ligand may be further performed as the step (d). The culture conditions in the step (d) are not particularly limited, and the conditions used for normal cell culture can be used. For example, it is possible to 37 ° C., and cultured under conditions, such as 5% CO 2. The culture period when step (d) is carried out is not particularly limited, and examples thereof include 1 to 20 days, preferably 1 to 15 days.
 本発明の製造方法には、培養器材としてシャーレ、フラスコ、バッグ、大型培養槽、バイオリアクター等の細胞培養用器材(容器)を使用することができる。なお、バッグとしては、細胞培養用COガス透過性バッグが好適である。大量の細胞を必要とする場合には、大型培養槽を使用してもよい。培養は開放系又は閉鎖系のどちらでも実施することができるが、好適には閉鎖系で培養が実施される。 In the production method of the present invention, cell culture equipment (containers) such as petri dishes, flasks, bags, large culture tanks, bioreactors and the like can be used as culture equipment. As the bag, a CO 2 gas permeable bag for cell culture is suitable. When a large amount of cells are required, a large culture tank may be used. The culture can be carried out in either an open system or a closed system, but is preferably carried out in a closed system.
 本発明の製造方法におけるCD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団に対するCD3リガンドによる初期刺激は、本発明を特に限定するものではないが、好適にはフィブロネクチンフラグメントの共存下で行われる。また、CD3リガンドによる再刺激についてもフィブロネクチンの共存下で行うことができる。 In the production method of the present invention, the initial stimulation with CD3 ligand for cells that can differentiate into CD3 positive CD56 positive cells and / or cell populations containing CD3 positive CD56 positive cells is not particularly limited, but preferably Is performed in the presence of a fibronectin fragment. In addition, restimulation with CD3 ligand can also be performed in the presence of fibronectin.
 本発明に使用されるフィブロネクチンフラグメントの濃度には特に限定はないが、例えば、0.001~500μg/mL、特に0.01~500μg/mLが好適である。フィブロネクチンフラグメントは培地中に溶解して共存させる以外に、細胞培養用器材又は細胞培養用担体に固定化して使用することができる。フィブロネクチンフラグメントの固相への固定化は、例えば、適当な緩衝液に溶解したフラグメントを固相と接触させることにより実施でき、国際公開第97/18318号パンフレット、又は国際公開第00/09168号パンフレットに記載の方法によっても実施できる。フィブロネクチンフラグメント及びCD3リガンドを固相に固定化しておけば、培養終了後、細胞と固相とを分離するのみで前記の成分と得られた細胞集団とを容易に分離することができ、細胞集団への前記成分の混入を防ぐことができる。 The concentration of the fibronectin fragment used in the present invention is not particularly limited. For example, 0.001 to 500 μg / mL, particularly 0.01 to 500 μg / mL is preferable. The fibronectin fragment can be used by being immobilized on a cell culture device or a cell culture carrier, in addition to being dissolved in the medium and coexisting. The immobilization of the fibronectin fragment on the solid phase can be carried out, for example, by bringing a fragment dissolved in an appropriate buffer into contact with the solid phase, such as WO 97/18318 pamphlet or WO 00/09168 pamphlet. It can implement also by the method as described in (1). If the fibronectin fragment and the CD3 ligand are immobilized on a solid phase, the above components and the obtained cell population can be easily separated by simply separating the cell and the solid phase after the end of the culture. It is possible to prevent the components from being mixed in.
 フィブロネクチンフラグメントは、天然から得られたもの(天然のフィブロネクチンを酵素消化により断片化したもの等)、又は組換えDNA技術により製造されたもののいずれでもよい。フィブロネクチンフラグメントは、例えば、ルオスラーティ E.ら〔J. Biol. Chem.,第256巻、第14号、第7277~7281頁(1981)〕の開示に基づき、天然起源の物質から実質的に純粋な形態で製造することができる。ここで、本明細書に記載する「実質的に純粋な形態のフィブロネクチンフラグメント」とは、これらが天然においてフィブロネクチンと一緒に存在する他のタンパク質を本質的に含有していないことを意味する。本発明において、フィブロネクチンフラグメントは、単一の分子種を使用してもよく、複数の分子種を混合して使用してもよい。 Fibronectin fragments may be those obtained from nature (such as those obtained by fragmenting natural fibronectin by enzymatic digestion) or those produced by recombinant DNA technology. Fibronectin fragments are, for example, Ruoslati E. [J. Biol. Chem. 256, No. 14, pp. 7277-7281 (1981)], can be produced in substantially pure form from naturally occurring substances. As used herein, “substantially pure form of fibronectin fragments” means that they are essentially free of other proteins that are naturally present with fibronectin. In the present invention, as the fibronectin fragment, a single molecular species may be used, or a plurality of molecular species may be mixed and used.
 本発明に使用できるフィブロネクチンフラグメント、ならびに該フラグメントの調製に関する有用な情報は、例えば、コーンブリット A.R.ら〔EMBO J.、第4巻、第7号、1755~1759(1985)〕、及びセキグチ K.ら〔Biochemistry、第25巻、第17号、4936~4941(1986)〕等より得ることができる。また、フィブロネクチンをコードする核酸配列又はフィブロネクチンのアミノ酸配列は、Genbank Accession No. NM_002026、NP_002017に開示されている。 For useful information regarding the preparation of fibronectin fragments that can be used in the present invention and the fragments, see, for example, Corn Bullet A. R. [EMBO J. et al. Vol. 4, No. 7, 1755-1759 (1985)], and Sekiguchi K .; [Biochemistry, Vol. 25, No. 17, 4936-4941 (1986)] and the like. Further, the nucleic acid sequence encoding fibronectin or the amino acid sequence of fibronectin is Genbank Accession No. NM_002026 and NP_002017.
 本発明には、細胞接着活性及び/又はヘパリン結合活性を有するフィブロネクチンフラグメントが好適に使用できる。フィブロネクチン中には、細胞表面のインテグリンと結合する活性を有する領域が存在する。前記領域として、VLA(very late antigen)-4又はVLA-5結合領域が例示される。フィブロネクチンのC末端側寄りの部位にはIIICSと呼ばれる領域が存在する。ここにはCS-1と呼ばれる25アミノ酸からなる領域が含まれており、当該領域はVLA-4に対して結合活性を示す。CS-1領域のアミノ酸配列を配列表の配列番号1に示す。 In the present invention, a fibronectin fragment having cell adhesion activity and / or heparin binding activity can be preferably used. In fibronectin, there is a region having an activity of binding to integrin on the cell surface. Examples of the region include a VLA (very rate antigen) -4 or VLA-5 binding region. A region called IIICS exists at a site near the C-terminal side of fibronectin. Here, a region consisting of 25 amino acids called CS-1 is included, and this region shows binding activity to VLA-4. The amino acid sequence of the CS-1 region is shown in SEQ ID NO: 1 in the sequence listing.
 また、フィブロネクチンにはIII型と呼ばれる繰り返し配列が存在しており、N末側から10番目のIII型の繰り返し配列には細胞への結合領域が存在している。10番目のIII型の繰り返し配列のアミノ酸配列を配列表の配列番号2に示す。前記配列中の、VLA-5との結合に中心的役割を果たす配列は、配列表の配列番号3に示すArg-Gly-Asp-Ser(RGDS)の4アミノ酸である。配列表の配列番号4に示すアミノ酸配列からなるC-274は、配列番号2のアミノ酸配列を含むポリペプチドであり、強い細胞接着活性を有する組換えフィブロネクチンフラグメントである。 Also, fibronectin has a repetitive sequence called type III, and the 10th type repetitive sequence from the N-terminal side has a cell binding region. The amino acid sequence of the 10th type III repeat sequence is shown in SEQ ID NO: 2 in the sequence listing. The sequence that plays a central role in binding to VLA-5 in the above sequence is 4 amino acids of Arg-Gly-Asp-Ser (RGDS) shown in SEQ ID NO: 3 in the sequence listing. C-274 consisting of the amino acid sequence shown in SEQ ID NO: 4 in the sequence listing is a polypeptide containing the amino acid sequence of SEQ ID NO: 2 and is a recombinant fibronectin fragment having strong cell adhesion activity.
 さらに、フィブロネクチンはヘパリンと結合する活性を有している。フィブロネクチンのヘパリン結合領域は、前記のIII型繰り返し配列のN末側から12番目~14番目に相当する。配列表の配列番号5に示すアミノ酸配列からなるH-271はこのヘパリン結合領域からなる組換えフィブロネクチンフラグメントである。 Furthermore, fibronectin has an activity of binding to heparin. The heparin-binding region of fibronectin corresponds to the 12th to 14th positions from the N-terminal side of the type III repeat sequence. H-271 consisting of the amino acid sequence shown in SEQ ID NO: 5 in the sequence listing is a recombinant fibronectin fragment consisting of this heparin binding region.
 本発明には、各領域を単独で含有するフラグメントのほか、これらの領域の2以上が直接、あるいは適切なリンカーを介して結合されたフラグメントを使用することができる。前記フラグメントに含まれるフィブロネクチン由来の領域は同一のものであっても、異なるものであってもよい。複数の結合領域を分子内に有するフィブロネクチンフラグメントとしては、VLA-4結合領域及びヘパリン結合領域を含有するH-296(配列表の配列番号6で表されるアミノ酸配列)、VLA-5結合領域及びヘパリン結合領域を含有するCH-271(配列表の配列番号7で表されるアミノ酸配列)、VLA-4結合領域、VLA-5結合領域及びヘパリン結合領域を含有するCH-296(配列表の配列番号8で表されるアミノ酸配列)、VLA-4結合領域及びVLA-5結合領域を含有するC-CS1(配列表の配列番号9で表されるアミノ酸配列)等のポリペプチドが例示される。これらの各種ポリペプチドは非特許文献2に記載されており、その開示に従って作製することができる。CH-296は、レトロネクチン(Retronectin:登録商標)の名称でタカラバイオ社より販売されている。 In the present invention, in addition to a fragment containing each region alone, a fragment in which two or more of these regions are linked directly or via an appropriate linker can be used. The regions derived from fibronectin contained in the fragment may be the same or different. As a fibronectin fragment having a plurality of binding regions in the molecule, H-296 (amino acid sequence represented by SEQ ID NO: 6 in the sequence listing) containing VLA-4 binding region and heparin binding region, VLA-5 binding region and CH-271 containing a heparin binding region (amino acid sequence represented by SEQ ID NO: 7 in the sequence listing), VLA-4 binding region, VLA-5 binding region, and CH-296 containing a heparin binding region (sequence listing) A polypeptide such as C-CS1 (amino acid sequence represented by SEQ ID NO: 9 in the Sequence Listing) containing VLA-4 binding region and VLA-5 binding region is exemplified. These various polypeptides are described in Non-Patent Document 2, and can be prepared according to the disclosure. CH-296 is sold by Takara Bio Inc. under the name of Retronectin (registered trademark).
 なお、本発明に使用されるフラグメントとしては、フィブロネクチンフラグメントによる所望の効果が得られる限り、上記に例示した天然のフィブロネクチンのアミノ酸配列の少なくとも一部を含むフラグメントと同等な機能を有する、当該フラグメントを構成するポリペプチドのアミノ酸配列に1もしくは数個のアミノ酸の置換、欠失、挿入もしくは付加を有するアミノ酸配列を有するポリペプチドからなるものであってもよい。また、例えば、C-274やH-271において1又は2のIII型繰り返し配列を欠失させたものであってもよい。 The fragment used in the present invention is a fragment having a function equivalent to that of the fragment containing at least a part of the amino acid sequence of natural fibronectin exemplified above as long as the desired effect of the fibronectin fragment is obtained. It may consist of a polypeptide having an amino acid sequence having substitution, deletion, insertion or addition of one or several amino acids in the amino acid sequence of the constituent polypeptide. In addition, for example, C-274 or H-271 may have a deletion of 1 or 2 type III repeat sequence.
 細胞接着活性は、本発明で使用されるフラグメント(その細胞結合ドメイン)と細胞との結合を公知の方法でアッセイして調べることができる。例えば、このような方法には、ウイリアムズ D.A.らの方法〔Nature、第352巻、第438~441頁(1991)〕が含まれる。当該方法は、培養プレートに固定化したフラグメントに対する細胞の結合を測定する方法である。また、ヘパリン結合活性は、本発明に使用されるフラグメント(そのヘパリン結合ドメイン)とヘパリンとの結合を公知の方法を使用してアッセイすることにより調べることができる。例えば、上記のウイリアムズ D.A.らの方法において、細胞の代わりにヘパリン(例えば、標識ヘパリン)を使用することにより、同様の方法でフラグメントとヘパリンとの結合の評価を行うことができる。 The cell adhesion activity can be examined by assaying the binding between a fragment (its cell binding domain) used in the present invention and a cell by a known method. For example, in such a method, Williams D.C. A. [Nature, Vol. 352, pp. 438-441 (1991)]. This method is a method for measuring the binding of cells to a fragment immobilized on a culture plate. The heparin binding activity can be examined by assaying the binding of the fragment (its heparin binding domain) used in the present invention to heparin using a known method. For example, the above Williams D.C. A. In these methods, by using heparin (eg, labeled heparin) instead of cells, the binding between the fragment and heparin can be evaluated in the same manner.
 組換えフィブロネクチンフラグメントの本発明への使用は、入手、取り扱いの容易さ以外に、その品質の均一性、ウイルス等の混入の危険性が低いという安全面からも好ましい。本発明に使用されるフィブロネクチンフラグメントの分子量には特に限定はないが、好適には1~200kDa、より好適には5~190kDa、さらに好適には10~180kDaである。当該分子量は、例えば、SDS-ポリアクリルアミドゲル電気泳動により測定することができる。 The use of the recombinant fibronectin fragment in the present invention is preferable from the viewpoint of safety that the quality is uniform and the risk of contamination with viruses is low, in addition to ease of acquisition and handling. The molecular weight of the fibronectin fragment used in the present invention is not particularly limited, but is preferably 1 to 200 kDa, more preferably 5 to 190 kDa, and further preferably 10 to 180 kDa. The molecular weight can be measured, for example, by SDS-polyacrylamide gel electrophoresis.
 本発明のCIK細胞の製造方法において使用される培地は、(a)~(c)のどの工程についても特に限定はなく、リンパ球の拡大培養等に使用しうる公知の培地を使用することができ、例えば、市販の培地を適宜選択して使用することができる。これらの培地はその本来の構成成分以外にサイトカイン類、適当なタンパク質、又はその他の成分を含んでいてもよい。通常、IFN-γ及びIL-2からなる群より選択された少なくとも1種を含有する培地が本発明に使用される。IFN-γの培地中の濃度には特に限定はないが、50~10000U/mL、より好適には100~5000U/mLである。IL-2の培地中の濃度にも限定はないが、10~5000U/mL、好適には50~2000U/mLである。さらに、IL-1α、IL-7、IL-12等のサイトカイン類を培地に添加してもよい。当該成分の培地中の濃度は、所望の効果が得られれば特に限定されるものではない。 The medium used in the method for producing CIK cells of the present invention is not particularly limited in any of steps (a) to (c), and a known medium that can be used for lymphocyte expansion culture or the like may be used. For example, a commercially available medium can be appropriately selected and used. These media may contain cytokines, appropriate proteins, or other components in addition to the original components. Usually, a medium containing at least one selected from the group consisting of IFN-γ and IL-2 is used in the present invention. The concentration of IFN-γ in the medium is not particularly limited, but is 50 to 10,000 U / mL, and more preferably 100 to 5000 U / mL. The concentration of IL-2 in the medium is not limited, but is 10 to 5000 U / mL, preferably 50 to 2000 U / mL. Furthermore, cytokines such as IL-1α, IL-7, and IL-12 may be added to the medium. The concentration of the component in the medium is not particularly limited as long as a desired effect is obtained.
 これらの成分は、前記の工程(a)~(c)のいずれの工程においても使用することができ、本発明を特に限定するものではないが、例えばIFN-γは前記の工程(a)において好適に使用され、IL-2は前記の工程(a)~(c)の全ての工程において好適に使用される。 These components can be used in any of the steps (a) to (c), and the present invention is not particularly limited. For example, IFN-γ is used in the step (a). IL-2 is preferably used, and IL-2 is preferably used in all the steps (a) to (c).
 また、培地には血清又は血漿を添加してもよい。これらの培地中への添加量は特に限定はないが、0容量%超~20容量%が例示され、また培養段階に応じて使用する血清又は血漿の量を変更することができる。例えば、血清又は血漿濃度を段階的に減らして使用することもできる。なお、血清又は血漿の由来としては、自己(培養する細胞と由来が同じであることを意味する)もしくは非自己(培養する細胞と由来が異なることを意味する)のいずれでも良いが、安全性の観点から自己由来のものが好適である。また、ヒト血清アルブミンのような、単離された血清成分を添加してもよい。 In addition, serum or plasma may be added to the medium. The amount added to these media is not particularly limited, but is exemplified by more than 0% to 20% by volume, and the amount of serum or plasma used can be changed depending on the culture stage. For example, the serum or plasma concentration can be decreased in stages and used. The origin of serum or plasma may be either self (meaning that the origin is the same as the cell to be cultured) or non-self (meaning that the origin is different from the cell to be cultured). From the viewpoint of the above, those derived from the self are preferred. An isolated serum component such as human serum albumin may also be added.
 また、培地には増殖能を奪う処理が施された細胞を添加してもよい。本明細書において「増殖能を奪う処理」とは、細胞の増殖能を喪失させるか、もしくは低下させる処理であれば特に限定はなく、例えば、化学的処理及び/又は物理的処理により実施することができる。前記の化学的処理としては、例えば、化学薬剤(ホルマリン等)、抗癌剤(有糸分裂インヒビター、例えば、マイトマイシンC等)、加熱・加温、凍結融解又は超音波による処理が例示される。また、前記の物理的処理として、例えば、放射線の照射により前記の処理を実施する場合、例えば、γ線やX線が使用される。放射線の照射は照射された細胞の増殖能が失われる量であれば特に限定はないが、例えば、100~20000R(0.88~175.40Gy)、好ましくは1000~8000R(8.77~70.16Gy)である。本発明の製造方法における培地に増殖能を奪う処理が施された細胞を添加することにより、得られるCIK細胞の数を増大させることができる。また、肺がん細胞株等に対して高い細胞傷害活性を示す細胞集団を得ることができる。 In addition, cells that have been treated to deprive growth ability may be added to the medium. In the present specification, the “treatment for depriving the proliferation ability” is not particularly limited as long as it is a treatment for losing or reducing the proliferation ability of the cell. For example, the treatment is performed by chemical treatment and / or physical treatment. Can do. Examples of the chemical treatment include chemical agents (formalin and the like), anticancer agents (mitotic inhibitors such as mitomycin C and the like), heating / heating, freeze-thawing, and ultrasonic treatment. Moreover, as said physical process, when implementing the said process by irradiation of a radiation, for example, a gamma ray and a X-ray are used, for example. Irradiation is not particularly limited as long as the proliferation ability of irradiated cells is lost. For example, 100 to 20000 R (0.88 to 175.40 Gy), preferably 1000 to 8000 R (8.77 to 70). .16 Gy). The number of CIK cells obtained can be increased by adding cells that have been treated to deprive the growth ability of the medium in the production method of the present invention. In addition, a cell population exhibiting high cytotoxic activity against lung cancer cell lines and the like can be obtained.
 増殖能を奪う処理が施された細胞は、細胞分裂又はDNA合成といった増殖に関わる能力を失った、あるいは当該能力が低下した細胞である。例えば、放射線処理を行った細胞は、増殖能が低下しているが、処理直後は生細胞と同様の形態及び形質を示し、サイトカイン等のタンパク質を分泌する代謝能を維持している。「増殖能を奪う処理が施された細胞」は患者自身に由来するものであることが望ましい。本発明に使用される「増殖能を奪う処理が施された細胞」としては、本発明を特に限定するものではないが、放射線の照射によって増殖能を奪う処理を施した、患者自身に由来する細胞(Autologous-Irradiated cell;AIC)が好適に例示される。 Cells that have been treated to deprive them of proliferative ability are cells that have lost or lost their ability to proliferate such as cell division or DNA synthesis. For example, cells that have been subjected to radiation treatment have a reduced proliferative ability, but immediately after the treatment, they exhibit the same morphology and traits as living cells, and maintain the metabolic ability to secrete proteins such as cytokines. It is desirable that the “cell that has been treated to deprive proliferative ability” is derived from the patient itself. The “cells that have been treated to deprive growth ability” used in the present invention are not particularly limited, but are derived from the patient who has been treated to deprive proliferation ability by irradiation of radiation. A cell (Autologous-Irradiated cell; AIC) is preferably exemplified.
 本発明の方法において使用する「増殖能を奪う処理が施された細胞」の細胞濃度としては、特に限定はないが、例えば、1~1×10cells/mL、好適には10~5×10cells/mL、さらに好適には1×10~2×10cells/mLが例示される。 The cell concentration of the “cells that have been treated to deprive the growth ability” used in the method of the present invention is not particularly limited. For example, 1 to 1 × 10 8 cells / mL, preferably 10 to 5 × 10 7 cells / mL, more preferably 1 × 10 2 to 2 × 10 7 cells / mL are exemplified.
 また、本発明のCIK細胞の製造方法において使用される培地には、生物応答修飾剤が含まれていてもよい。「生物応答修飾剤」とは、Biological response modifier(BRM)とも呼ばれる、生体において非特異的な免疫応答能を向上させる一群の物質を意味する。 In addition, the medium used in the method for producing CIK cells of the present invention may contain a biological response modifier. “Biological response modifier” means a group of substances called non-biological response modifier (BRM) that improve non-specific immune response ability in the living body.
 生物応答修飾剤としては、細菌由来製剤[OK-432、BCG(Bacillus Calmette Guerin)、Streptcoccus pyogenes、Corynebacterium parvum及びこれらの細胞壁骨格]、担子菌由来多糖(レンチナン、シゾフィラン、PSK等)、合成物質(ピランコポリマー、レバミゾール等)、又はサイトカイン類が知られている。「OK-432」とは、A群3型溶血性連鎖球菌(Streptococcus pyogenes)の弱毒性自然変異株(Su株)をペニシリンで処理した細菌由来製剤の一般名を意味する。本製剤は、ピシバニール(登録商標)の商品名で市販されている。好適な態様において、本発明には微生物由来製剤である生物応答修飾剤が使用され、特に好適にはOK-432が使用される。 Examples of biological response modifiers include bacterial-derived preparations [OK-432, BCG (Bacillus Calmette Guerin), Streptococcus pyogenes, Corynebacterium parvum and their cell wall skeletons], Basidiomycete-derived polysaccharides (lentinan, schizophyllan, PSK, etc.) Piran copolymers, levamisole, etc.) or cytokines are known. “OK-432” means a general name of a bacterial-derived preparation obtained by treating a weakly toxic natural mutant strain (Su strain) of group A type 3 hemolytic streptococci (Streptococcus pyogenes) with penicillin. This formulation is marketed under the trade name Pisibanil®. In a preferred embodiment, the present invention uses a biological response modifier, which is a microorganism-derived preparation, and particularly preferably OK-432.
 培地中の生物応答修飾剤の濃度としては、特に本発明を限定するものではないが、例えば、OK-432を使用する場合、0.001~1KE/mL、好ましくは0.005~0.5KE/mL、さらに好ましくは0.01~0.2KE/mLが例示される。通常、生物応答修飾剤は、培養開始時に培地に添加され得る。 The concentration of the biological response modifier in the medium is not particularly limited, but for example, when OK-432 is used, 0.001 to 1 KE / mL, preferably 0.005 to 0.5 KE. / ML, more preferably 0.01 to 0.2 KE / mL. Usually, the biological response modifier can be added to the medium at the beginning of the culture.
 本発明のCIK細胞の製造方法において、当該細胞集団に外来遺伝子を導入する工程をさらに包含することができる。なお、「外来遺伝子」とは、遺伝子導入対象のCIK細胞に人為的に導入される遺伝子のことを意味し、遺伝子導入対象の細胞と同種由来のものも包含される。 The method for producing CIK cells of the present invention can further include a step of introducing a foreign gene into the cell population. The term “foreign gene” means a gene that is artificially introduced into a CIK cell to be transfected, and includes a gene derived from the same species as the cell to be transfected.
 外来遺伝子の導入手段には特に限定はなく、公知の遺伝子導入方法により適切なものを選択して使用することができる。遺伝子導入の工程は、本発明の製造方法における任意の時点で実施することができる。例えば、前記細胞集団の製造と同時もしくは途中で、あるいは該工程の後に実施するのが、作業効率の観点から好適である。遺伝子導入はウイルスベクターを用いて、又はウイルスベクターを用いずに実施することができる。それらの方法の詳細についてはすでに多くの文献が公表されている。 The means for introducing a foreign gene is not particularly limited, and an appropriate one can be selected and used by a known gene introduction method. The gene transfer step can be performed at any point in the production method of the present invention. For example, it is preferable from the viewpoint of work efficiency to carry out at the same time, during or after the production of the cell population. Gene transfer can be performed with or without a viral vector. A lot of literature has already been published on details of these methods.
 前記ウイルスベクターには特に限定はなく、通常、遺伝子導入方法に使用される公知のウイルスベクター、例えば、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、シミアンウイルスベクター、ワクシニアウイルスベクター、センダイウイルスベクター等が使用される。導入される細胞の染色体DNA中にベクターに含まれる外来遺伝子を安定に組み込むことができるレトロウイルスベクター、又はレンチウイルスベクターが特に好適である。上記ウイルスベクターとしては、感染した細胞中で自己複製できないように複製能を欠損させたものが好適である。また、遺伝子導入の際にレトロネクチン(登録商標)などの遺伝子導入効率を向上させる物質を用いることもできる。 The viral vector is not particularly limited, and is usually a known viral vector used in gene transfer methods, for example, a retrovirus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, a simian virus vector, a vaccinia virus vector. Sendai virus vectors and the like are used. A retroviral vector or a lentiviral vector that can stably incorporate a foreign gene contained in the vector into the chromosomal DNA of the introduced cell is particularly preferred. As the above-mentioned viral vector, those lacking replication ability are preferable so that they cannot self-replicate in infected cells. In addition, a substance that improves the efficiency of gene transfer, such as RetroNectin (registered trademark), can be used during gene transfer.
 ウイルスベクターを使用しない遺伝子導入方法として、リポソーム、リガンド-ポリリジンなどの担体を使用する方法、あるいはリン酸カルシウム法、エレクトロポレーション法、パーティクルガン法などを使用することができる。この場合にはプラスミドDNA、直鎖状DNA又はRNAに組み込まれた外来遺伝子が導入される。 As a gene introduction method that does not use a viral vector, a method using a carrier such as liposome or ligand-polylysine, a calcium phosphate method, an electroporation method, a particle gun method, or the like can be used. In this case, a foreign gene incorporated into plasmid DNA, linear DNA or RNA is introduced.
 導入される外来遺伝子には特に限定はなく、前記細胞に導入することが望まれる任意の遺伝子(例えば、酵素、サイトカイン類、レセプター類等のタンパク質をコードするものの以外に、アンチセンス核酸、siRNA(small interfering RNA)、リボザイム等をコードするものが使用できる。これら外来遺伝子は、例えば、適当なプロモーターの制御下で発現されるようにベクター又はプラスミド等に挿入して使用することができる。また、エンハンサー配列又はターミネーター配列のような制御配列がベクター内に存在していてもよい。 The foreign gene to be introduced is not particularly limited, and any gene desired to be introduced into the cell (for example, an antisense nucleic acid, siRNA (in addition to those encoding proteins such as enzymes, cytokines, receptors, etc.) Small interfering RNA), ribozyme encoding, etc. These foreign genes can be used, for example, inserted into a vector or a plasmid so as to be expressed under the control of an appropriate promoter. Control sequences such as enhancer sequences or terminator sequences may be present in the vector.
 本発明の方法によれば、癌等の患者の治療に使用される薬剤に対する耐性に関連する酵素をコードする遺伝子(例えば、多剤耐性遺伝子)を導入してCIK細胞に薬剤耐性を付与することができる。そのような細胞集団を用いれば、免疫療法と薬剤療法とを組み合わせることができ、従って、より高い治療効果を得ることが可能となる。一方、前記の態様とは逆に、特定の薬剤に対する感受性を付与するような遺伝子(例えば、チミジンキナーゼ遺伝子)を導入して、CIK細胞に該薬剤に対する感受性を付与することもできる。かかる場合、生体に移植した後の細胞を当該薬剤の投与によって除去することが可能となる。 According to the method of the present invention, a gene encoding an enzyme related to resistance to a drug used for treatment of a patient such as cancer (for example, a multidrug resistance gene) is introduced to impart drug resistance to CIK cells. Can do. By using such a cell population, it is possible to combine immunotherapy and drug therapy, and thus it is possible to obtain a higher therapeutic effect. On the other hand, conversely to the above-described embodiment, a gene that confers sensitivity to a specific drug (for example, thymidine kinase gene) can be introduced to give CIK cells susceptibility to the drug. In such a case, it becomes possible to remove the cells after transplanted into the living body by administering the drug.
 また、導入される外来遺伝子としては、上記の以外に、例えば、腫瘍抗原特異的なT細胞レセプター(T cell receptor;TCR)をコードする核酸、あるいは腫瘍細胞上に発現する分子に特異的な抗体(抗CD19抗体等)、レセプター分子(TCR等)、リガンド、又はこれらの一部分を含む細胞外領域、膜貫通ドメイン、及び細胞内にシグナルを伝達する他の1種以上のシグナル関連分子の細胞内領域により構成されたキメラレセプターをコードする核酸も利用できる。当該キメラレセプターに関する有用な情報は、例えば、マルク-マリナ V.ら〔Expert Opin. Biol. Ther.、第9巻、第5号、579~591(2009)〕より得られる。CIK細胞に上記のTCRやキメラレセプターをコードする核酸を導入することにより、目的の腫瘍細胞に対して特異的な細胞傷害活性を、CIK細胞に付与することができる。前記キメラレセプターの細胞外領域としては、例えば、抗体もしくはレセプター分子の細胞外領域、又は抗体の抗原認識部位もしくはレセプター分子のリガンド認識部位と、他の抗体もしくはレセプター分子(CD28等)由来のスペーサー/ヒンジ部位とが融合してなる細胞外領域が例示される。また、前記キメラレセプターの細胞内領域としては、例えば、リンパ球上に存在するシグナル関連分子の細胞内領域が例示される。当該シグナル関連分子の細胞内領域としては、例えば、CD3ζ鎖、CD28、4-1BB、CD134、FcR-γ、Syk-PTKの細胞内領域、又はこれらのシグナル伝達ドメインが例示される。 In addition to the above, foreign genes to be introduced include, for example, nucleic acids encoding tumor antigen-specific T cell receptors (TCR), or antibodies specific for molecules expressed on tumor cells (Such as anti-CD19 antibodies), receptor molecules (such as TCR), ligands, or extracellular regions containing a portion thereof, transmembrane domains, and one or more other signal-related molecules that transduce signals into the cell Nucleic acids encoding chimeric receptors composed of regions can also be used. Useful information regarding the chimeric receptor can be found, for example, in Marc-Marina V. Et al. [Expert Opin. Biol. Ther. No. 9, No. 5, 579-591 (2009)]. By introducing a nucleic acid encoding the above-mentioned TCR or chimeric receptor into CIK cells, cytotoxic activity specific to the target tumor cells can be imparted to CIK cells. Examples of the extracellular region of the chimeric receptor include, for example, the extracellular region of an antibody or receptor molecule, or an antigen recognition site of an antibody or a ligand recognition site of a receptor molecule, and a spacer / derived from another antibody or receptor molecule (such as CD28). The extracellular region formed by fusing with the hinge region is exemplified. Examples of the intracellular region of the chimeric receptor include an intracellular region of a signal-related molecule present on lymphocytes. Examples of the intracellular region of the signal-related molecule include the intracellular region of CD3ζ chain, CD28, 4-1BB, CD134, FcR-γ, Syk-PTK, or these signal transduction domains.
 本発明の製造方法は、前記の方法で得られた細胞集団より、さらに、CD3陽性かつCD56陽性の細胞集団を分離する工程を包含してもよい。分離は、例えば、抗CD3抗体又は抗CD56抗体を用いて、セルソーター、磁気ビーズ、アフィニティーカラム等による公知の手法で行うことができる。こうして分離された細胞集団は高い細胞傷害活性を有する細胞が富化されたものであり、より高い治療効果を発揮することが期待される。 The production method of the present invention may further include a step of separating a CD3 positive and CD56 positive cell population from the cell population obtained by the above method. Separation can be performed, for example, using an anti-CD3 antibody or an anti-CD56 antibody by a known method using a cell sorter, magnetic beads, an affinity column, or the like. The cell population thus separated is enriched with cells having high cytotoxic activity, and is expected to exhibit a higher therapeutic effect.
(2)本発明のCIK細胞
 本発明は、上記の本発明のCIK細胞の製造方法で得ることができるCIK細胞を提供する。本発明のCIK細胞は、従来の方法で製造されたCIK細胞に比べてCD3陽性CD56陽性細胞を高比率に含んでいることから、生体内でより強力な細胞傷害活性を発揮することで、高い治療効果を奏する。
(2) CIK cell of the present invention The present invention provides a CIK cell obtainable by the above-described method for producing a CIK cell of the present invention. The CIK cell of the present invention contains a higher proportion of CD3-positive CD56-positive cells than CIK cells produced by the conventional method, and thus exhibits higher cytotoxic activity in vivo. Has a therapeutic effect.
 本発明のCIK細胞中のCD3陽性CD56陽性細胞の比率としては、特に本発明を限定するものではないが、例えば、全細胞数の20%以上、好ましくは25%以上、より好ましくは30%以上が例示される。 The ratio of the CD3-positive CD56-positive cells in the CIK cells of the present invention is not particularly limited, but for example, 20% or more of the total number of cells, preferably 25% or more, more preferably 30% or more. Is exemplified.
(3)本発明の医薬
 本発明は、CIK細胞を有効成分として含有する医薬(治療剤又は予防剤)を提供する。当該CIK細胞を含有する前記治療剤は、免疫療法への使用に適している。免疫療法においては、患者の治療に適したCIK細胞が、例えば、注射又は点滴による投与方法によって、経静脈、経動脈、皮下、腹腔内等の経路で患者に投与される。本発明の治療剤は、本発明を特に限定するものではないが、例えば、癌、白血病、悪性腫瘍、肝炎、感染性疾患(例えば、インフルエンザ、結核、AIDS、MRSA感染症、VRE感染症もしくは深在性真菌症)等のCIK細胞に感受性を有する疾患の治療において非常に有用である。また、当該治療剤は、骨髄移植、放射線照射後等の免疫不全状態での感染症予防又は再発白血病の寛解を目的としたドナーリンパ球輸注、抗がん剤治療、放射線治療、抗体療法、温熱療法、他の免疫療法等の従来の治療法と組み合わせて利用できる。
(3) Medicament of the present invention The present invention provides a medicament (therapeutic agent or prophylactic agent) containing CIK cells as an active ingredient. The therapeutic agent containing the CIK cells is suitable for use in immunotherapy. In immunotherapy, CIK cells suitable for treatment of a patient are administered to the patient by routes such as intravenous, transarterial, subcutaneous, intraperitoneal, etc., for example, by administration by injection or infusion. The therapeutic agent of the present invention does not particularly limit the present invention, but for example, cancer, leukemia, malignant tumor, hepatitis, infectious diseases (for example, influenza, tuberculosis, AIDS, MRSA infection, VRE infection or deep It is very useful in the treatment of diseases sensitive to CIK cells, such as superficial mycosis. In addition, the therapeutic agents include donor lymphocyte infusion, anticancer drug treatment, radiation therapy, antibody therapy, thermal therapy for the purpose of preventing infection in immune deficient conditions such as bone marrow transplantation, radiation irradiation, or remission of relapsed leukemia. It can be used in combination with conventional therapies such as therapy and other immunotherapy.
 本発明の治療剤及び予防剤は製薬分野で公知の方法に従い、例えば、本発明の方法により製造された細胞集団を有効成分として、公知の非経口投与に適した有機又は無機の担体、賦形剤、安定剤等と混合し、点滴剤又は注射剤として調製できる。なお、治療剤における本発明のCIK細胞の含有量、治療剤の投与量、及び当該治療剤に関する諸条件は、公知の免疫療法に従って適宜決定できる。医薬における本発明のCIK細胞の含有量としては、特に限定はないが、例えば、好適には1×10~1×1011cells/mL、より好適には1×10~1×1010cells/mL、さらに好適には1×10~2×10cells/mLが例示される。また、本発明の医薬の投与量としては、特に限定はないが、例えば、成人一日あたり、好適には1×10~1×1012cells/日、より好ましくは、1×10~5×1011cells/日、さらに好ましくは1×10~2×1011cells/日が例示される。さらに、当該治療剤による免疫療法と、公知の薬剤投与による薬剤治療、放射線治療、又は外科的手術による治療とを併用することもできる。 The therapeutic agent and prophylactic agent of the present invention follow known methods in the pharmaceutical field, for example, using a cell population produced by the method of the present invention as an active ingredient, known organic or inorganic carriers suitable for parenteral administration, shaping It can be mixed with an agent, a stabilizer and the like, and prepared as an instillation or an injection. The content of the CIK cell of the present invention in the therapeutic agent, the dosage of the therapeutic agent, and various conditions relating to the therapeutic agent can be determined as appropriate according to known immunotherapy. The content of the CIK cell of the present invention in medicine is not particularly limited. For example, it is preferably 1 × 10 3 to 1 × 10 11 cells / mL, more preferably 1 × 10 4 to 1 × 10 10. cells / mL, and more preferably 1 × 10 5 to 2 × 10 9 cells / mL. The dose of the medicament of the present invention is not particularly limited. For example, it is preferably 1 × 10 6 to 1 × 10 12 cells / day, more preferably 1 × 10 7 to per adult day. Examples include 5 × 10 11 cells / day, more preferably 1 × 10 8 to 2 × 10 11 cells / day. Furthermore, immunotherapy with the therapeutic agent may be used in combination with drug treatment by administration of a known drug, radiation therapy, or treatment by surgical operation.
(4)本発明の治療方法又は予防方法
 本発明はまた、対象に、有効量の前述の方法により得ることができるCIK細胞を投与することを含む、疾患の治療方法又は予防方法を提供する。本明細書中において対象とは、例えば前述のような疾患に罹患した患者を示す。
(4) Therapeutic or preventive method of the present invention The present invention also provides a method for treating or preventing a disease, comprising administering to a subject an effective amount of CIK cells obtainable by the above-described method. The term “subject” as used herein refers to, for example, a patient suffering from a disease as described above.
 本明細書中において有効量とは、前記CIK細胞を投与した場合に治療もしくは予防効果を発揮しうる当該細胞集団の量である。具体的な有効量は、投与形態、投与方法、使用目的、又は対象の年齢、体重、症状等によって適宜設定され一定ではない。投与方法にも限定はなく、例えば、上記の医薬と同様に、点滴、注射等により投与すればよい。 In the present specification, the effective amount is the amount of the cell population that can exert a therapeutic or prophylactic effect when the CIK cells are administered. The specific effective amount is appropriately set according to the administration form, administration method, purpose of use, age, weight, symptom, etc. of the subject and is not constant. There is no limitation on the administration method, and for example, it may be administered by drip, injection or the like, similar to the above-mentioned medicine.
 また、本発明により、医薬の製造のための本発明により得ることができるCIK細胞の使用も提供される。さらに、本発明により、疾患の治療に用いるための、本発明により得ることができるCIK細胞も提供される。当該医薬の製造方法は、前述の医薬と同様に行われる。また、当該医薬の投与される疾患についても、特に限定はないが、前述の医薬と同様である。 The present invention also provides the use of CIK cells obtainable according to the present invention for the manufacture of a medicament. Furthermore, the present invention also provides CIK cells obtainable by the present invention for use in the treatment of diseases. The manufacturing method of the said pharmaceutical is performed like the above-mentioned pharmaceutical. Further, the disease to which the drug is administered is not particularly limited, but is the same as the aforementioned drug.
 以下、実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれらの記載に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these descriptions.
実施例1 抗ヒトCD3抗体及びレトロネクチンを用いたCIK細胞培養
(1)PBMCの分離及び保存
 インフォームド・コンセントの得られたヒト健常人ドナーA、ドナーB及びドナーCより、それぞれ成分採血を実施した(ここでいう成分採血とは、単核球採取を目的とした採血である)。得られた成分採血液をダルベッコPBS(インビトロジェン社製又は日水製薬社製;以下、DPBSと記載する)又は1%ヒト血清アルブミン(製剤名 ブミネート:バクスター社製、以下、HSAと記載する)を含む生理食塩水(以下、1%HSA/生理食塩水と記載する)で約2倍希釈した後、Ficoll-Paque PREMIUM又はFicoll-Paque PLUS(いずれもGEヘルスケア バイオサイエンス社製)15mLの上に希釈した成分採血液を30mLずつそれぞれ重層して、700×g、室温で20分間遠心した。遠心後、分離した層のうち、PBMC層をピペットで回収し、RPMI1640(インビトロジェン社製、シグマ社製又は和光純薬社製)又は1%HSA/生理食塩水を用いて45mLにフィルアップした後、650×g、4℃にて10分間遠心し、上清を除去した。同様の洗浄操作を、600×g、500×gと段階的に遠心加速度を落としながら計3回行った。
Example 1 CIK cell culture using anti-human CD3 antibody and retronectin (1) Separation and storage of PBMC Ingredients were collected from human healthy donor A, donor B and donor C with informed consent. (The component blood collection referred to here is blood collection for the purpose of collecting mononuclear cells). Dulbecco's PBS (manufactured by Invitrogen or Nissui Pharmaceutical; hereinafter referred to as DPBS) or 1% human serum albumin (formulation name Buminate: manufactured by Baxter, hereinafter referred to as HSA) After approximately 2-fold dilution with a physiological saline containing 1% HSA / physiological saline, Ficoll-Paque PREMIUM or Ficoll-Paque PLUS (both manufactured by GE Healthcare Biosciences) The diluted component blood samples were layered 30 mL each and centrifuged at 700 × g for 20 minutes at room temperature. After centrifugation, among the separated layers, the PBMC layer was collected with a pipette and filled up to 45 mL using RPMI 1640 (manufactured by Invitrogen, Sigma, or Wako Pure Chemical Industries) or 1% HSA / saline. And centrifuged at 650 × g and 4 ° C. for 10 minutes, and the supernatant was removed. The same washing operation was performed three times in total while decreasing the centrifugal acceleration in steps of 600 × g and 500 × g.
 こうして各ドナーから採取したPBMCは、8%HSAを含むCP-1(極東製薬社製)とRPMI1640の等量混合液からなる保存液に懸濁し、液体窒素中にて保存した。これら保存PBMCを37℃水浴中にて急速解凍し、10μg/mL DNase(カルビオケム社製)を含むGT-T503(タカラバイオ社製)で洗浄後、トリパンブルー染色法にて生細胞数を算出した後に、以下の各実験に供した。 Thus, PBMCs collected from each donor were suspended in a stock solution consisting of an equal volume mixture of CP-1 (manufactured by Kyokuto Pharmaceutical) containing 8% HSA and RPMI 1640 and stored in liquid nitrogen. These stored PBMCs were rapidly thawed in a 37 ° C. water bath, washed with GT-T503 (Takara Bio) containing 10 μg / mL DNase (Calbiochem), and the number of viable cells was calculated by trypan blue staining. Later, it used for each following experiment.
(2)抗ヒトCD3抗体及びレトロネクチン固定化プレートの作成
 12穴細胞培養プレート(コーニング社製)に終濃度5μg/mL又は1μg/mLの抗ヒトCD3抗体(製剤名:オルソクローンOKT3注、ヤンセンファーマ社製)、及び終濃度5μg/mLのレトロネクチン(登録商標、タカラバイオ社製)を含むACD-A液(テルモ社製)を0.45mL/ウェルずつ添加した。次に、5%CO存在下37℃で5時間インキュベートした後、各ウェルよりACD-A液を除去することにより、抗CD3抗体及びレトロネクチンが固定化された細胞培養プレートを得た。また、終濃度5μg/mL又は1μg/mLの抗ヒトCD3抗体を含み、レトロネクチンを含まないACD-A液を用いる以外は上記と同様の操作を行うことにより、抗CD3抗体が固定化された細胞培養プレート(レトロネクチンが固定化されていないプレート)も作製した。なお、ここで作製した各プレートは、DPBSで2回、及びRPMI1640で1回洗浄した後に以下の各実験に使用した。
(2) Preparation of anti-human CD3 antibody and retronectin-immobilized plate Anti-human CD3 antibody (formulation name: orthoclone OKT3 injection, Janssen Pharma) at a final concentration of 5 μg / mL or 1 μg / mL on a 12-well cell culture plate (Corning) And ACD-A solution (Terumo) containing Retronectin (registered trademark, manufactured by Takara Bio Inc.) at a final concentration of 5 μg / mL was added in an amount of 0.45 mL / well. Next, after 5 hours of incubation at 37 ° C. in the presence of 5% CO 2, the ACD-A solution was removed from each well to obtain a cell culture plate on which the anti-CD3 antibody and retronectin were immobilized. In addition, cells with anti-CD3 antibody immobilized by performing the same operation as above except that an anti-human CD3 antibody having a final concentration of 5 μg / mL or 1 μg / mL and using no ACD-A solution without retronectin is used. A culture plate (a plate on which Retronectin is not immobilized) was also prepared. Each plate prepared here was washed twice with DPBS and once with RPMI 1640 and then used for each of the following experiments.
(3)CIK細胞の培養
 0.5%HumanAB型血清(Lonza社製)及び0.2%HSAを含むGT-T503(以下、0.5%HAB/0.2%HSA/GT-T503と記載する)に0.53×10cells/mLとなるように実施例1-(1)で調製したドナーA由来のPBMCを懸濁した。実施例1-(2)で作成した各種固定化培養プレートに、上記PBMC懸濁液を1mL/ウェルずつ添加し、さらに0.5%HAB/0.2%HSA/GT-T503を0.75mL/ウェルずつ添加して、計1.75mL/ウェルとした。次に、各ウェルにIL-2(製剤名 プロロイキン:カイロン社製又はノバルティス社製)及びIFN-γ(製剤名 イムノマックス―γ注:塩野義製薬社製)をそれぞれ終濃度1000U/mLとなるように添加し、これらのプレートを5%CO存在下37℃で培養を開始した(培養0日目)。培養4日目に、各ウェルの細胞液の一部を0.5%HAB/0.2%HSA/GT-T503を用いて12.5倍希釈し、希釈液10mLをT-25細胞培養フラスコ(培養面積10cm2、コーニング社製)を立てたものに注ぎ、ここに終濃度500U/mLとなるようにIL-2を添加した後、このフラスコにて培養を継続した。培養8日目に、各フラスコ内の細胞液の一部を0.5%HAB/0.2%HSA/GT-T503を用いて4倍希釈し、希釈液10mLを新たなT-25細胞培養フラスコ(立てたもの)に注ぎ、ここに終濃度500U/mLとなるようにIL-2を添加し、さらに終濃度50ng/mLとなるように遊離の抗ヒトCD3抗体を添加した(抗ヒトCD3抗体再刺激群)。この際、対照群として抗ヒトCD3抗体を添加しない群を設定した。抗ヒトCD3抗体再刺激群及び対照群について培養を継続し、培養11日目に、各群の各フラスコ内の細胞液の一部を0.5%HAB/0.2%HSA/GT-T503を用いて4倍希釈し、希釈液10mLを新たなT-25細胞培養フラスコ(立てたもの)に注ぎ、ここに終濃度500U/mLとなるようにIL-2を添加した後、このフラスコにて培養を継続した。
(3) CIK cell culture GT-T503 (hereinafter referred to as 0.5% HAB / 0.2% HSA / GT-T503) containing 0.5% HumanAB serum (manufactured by Lonza) and 0.2% HSA The PBMC derived from donor A prepared in Example 1- (1) was suspended at 0.53 × 10 6 cells / mL. To the various immobilized culture plates prepared in Example 1- (2), 1 mL / well of the above PBMC suspension was added, and 0.5% HAB / 0.2% HSA / GT-T503 was further added to 0.75 mL. Per well to give a total of 1.75 mL / well. Next, IL-2 (preparation name Proleukin: manufactured by Chiron or Novartis) and IFN-γ (formulation name Immunomax-γ Note: manufactured by Shionogi & Co., Ltd.) were respectively added to each well at a final concentration of 1000 U / mL. Then, these plates were cultured at 37 ° C. in the presence of 5% CO 2 (culture day 0). On day 4 of culture, a portion of the cell solution in each well was diluted 12.5 times with 0.5% HAB / 0.2% HSA / GT-T503, and 10 mL of the diluted solution was added to a T-25 cell culture flask. (culture area 10 cm 2, Corning) was poured to that upright, wherein after addition of IL-2 to a final concentration of 500 U / mL, the culture was continued at this flask. On day 8 of culture, a portion of the cell solution in each flask was diluted 4-fold with 0.5% HAB / 0.2% HSA / GT-T503, and 10 mL of the diluted solution was added to a new T-25 cell culture. Pour into a flask (standing), add IL-2 to a final concentration of 500 U / mL, and then add free anti-human CD3 antibody to a final concentration of 50 ng / mL (anti-human CD3 Antibody restimulation group). At this time, a group to which no anti-human CD3 antibody was added was set as a control group. The culture was continued for the anti-human CD3 antibody restimulation group and the control group, and on day 11 of the culture, a part of the cell fluid in each flask of each group was 0.5% HAB / 0.2% HSA / GT-T503. After diluting 4 times with, pour 10 mL of the diluted solution into a new T-25 cell culture flask (standing), add IL-2 to a final concentration of 500 U / mL, and then add to this flask. The culture was continued.
 培養開始14日目まで培養を継続し、14日目にトリパンブルー染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率(総細胞数換算)を算出した。結果を表1に示す。なお、以下の表中、-は無使用、+は使用を意味する。 The culture was continued until the 14th day from the start of the culture, and the number of viable cells was measured by the trypan blue staining method on the 14th day. . The results are shown in Table 1. In the table below,-means no use and + means use.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(4)CD3陽性CD56陽性(CD3CD56)細胞及びCD8陽性(CD8)細胞含有比率の解析
 実施例1-(3)で調製した培養開始後14日目の細胞について、CD3CD56細胞含有比率及びCD8細胞含有比率をフローサイトメーター(Cytomics FC500:ベックマンコールター社製)で解析した。すなわち、培養開始後14日目の細胞をDPBSで洗浄した後、細胞を1%ウシ血清アルブミン(シグマ社製、以下、BSAと記載する)を含むDPBS(以下、1%BSA/DPBSと記載する)中に懸濁し、PC5標識マウス抗ヒトCD3抗体、FITC標識マウス抗ヒトCD8及びRD1標識マウス抗ヒトCD56抗体(全てベックマンコールター社製)を添加した。同様に各細胞集団の一部には、ネガティブコントロールとしてFITC標識マウスIgG1/RD1標識マウスIgG1/PC5標識マウスIgG1(全てベックマンコールター社製)を添加した。各々の抗体を添加後、4℃で30分インキュベートした。インキュベート後、細胞を0.1%BSAを含むDPBS(以下、0.1%BSA/DPBSと記載する)で洗浄し、再度DPBSに懸濁した。これらの細胞をフローサイトメトリーに供し、CD3CD56細胞含有比率及びCD8細胞含有比率を算出した。結果を表2に示す。
(4) Analysis of CD3-positive CD56-positive (CD3 + CD56 + ) cell and CD8-positive (CD8 + ) cell content ratio Regarding the cells on day 14 after the start of culture prepared in Example 1- (3), CD3 + CD56 + The cell content ratio and the CD8 + cell content ratio were analyzed with a flow cytometer (Cytomics FC500: manufactured by Beckman Coulter). That is, the cells on the 14th day after the start of culture were washed with DPBS, and then the cells were described as DPBS containing 1% bovine serum albumin (Sigma, hereinafter referred to as BSA) (hereinafter referred to as 1% BSA / DPBS). PC5-labeled mouse anti-human CD3 antibody, FITC-labeled mouse anti-human CD8 and RD1-labeled mouse anti-human CD56 antibody (all manufactured by Beckman Coulter, Inc.) were added. Similarly, FITC-labeled mouse IgG1 / RD1-labeled mouse IgG1 / PC5-labeled mouse IgG1 (all manufactured by Beckman Coulter) was added to a part of each cell population. Each antibody was added and incubated at 4 ° C. for 30 minutes. After incubation, the cells were washed with DPBS containing 0.1% BSA (hereinafter referred to as 0.1% BSA / DPBS) and suspended again in DPBS. These cells were subjected to flow cytometry, and the CD3 + CD56 + cell content ratio and CD8 + cell content ratio were calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、抗ヒトCD3抗体を用いた再刺激によってCD3CD56細胞が高い比率で得られた。また、CIK細胞の活性本体と言われるCD8細胞が高い比率で得られた。また、抗ヒトCD3抗体とレトロネクチンとを組み合わせて細胞集団に初期刺激を与えることによって、これらの効果はさらに高まった。さらに、それらの効果は初期刺激として使用する抗ヒトCD3抗体の固定化濃度に依らず、著効を発揮した。表1に示されるように、高い拡大培養率でありながら、非常に高い比率でCD3CD56細胞を含むCIK細胞が得られた。 As shown in Table 2, a high ratio of CD3 + CD56 + cells was obtained by restimulation with anti-human CD3 antibody. In addition, CD8 + cells called active bodies of CIK cells were obtained at a high ratio. Moreover, these effects were further enhanced by combining the anti-human CD3 antibody and retronectin to give initial stimulation to the cell population. Furthermore, these effects were remarkable regardless of the immobilized concentration of the anti-human CD3 antibody used as the initial stimulus. As shown in Table 1, CIK cells containing CD3 + CD56 + cells at a very high ratio were obtained with a high expansion culture rate.
 このことから本発明の製造方法は、CIK細胞の抗腫瘍活性に大きな役割を果たすCD3CD56CD8細胞が効率よく得られる方法であることが示された。また、CD3CD56細胞の含有率が高いCIK細胞を大量に培養できることから、高い治療効果を発揮する細胞集団の製造方法であることが明らかとなった。 From this, it was shown that the production method of the present invention is a method for efficiently obtaining CD3 + CD56 + CD8 + cells that play a large role in the antitumor activity of CIK cells. In addition, since CIK cells having a high content of CD3 + CD56 + cells can be cultured in large quantities, it was revealed that this is a method for producing a cell population exhibiting a high therapeutic effect.
(5)CD3CD56細胞の拡大培養率の評価
 実施例1-(1)で調製したドナーA由来のPBMC、及び実施例1-(3)で調製した培養開始後14日目の細胞それぞれについて、実施例1-(4)と同様の方法でCD3CD56細胞含有比率を測定した。ただし、PBMCにおいては赤血球の混入を考慮し、FITC標識マウス抗ヒトCD3抗体、RD1標識マウス抗ヒトCD56抗体及びPC5標識マウス抗ヒトCD45抗体(全てベックマンコールター社製)を使用し、CD45陽性CD3CD56細胞を培養開始時のCD3CD56細胞と定義した。
(5) Evaluation of expansion culture rate of CD3 + CD56 + cells PBMC derived from donor A prepared in Example 1- (1) and cells 14 days after the start of culture prepared in Example 1- (3) For CD1, the CD3 + CD56 + cell content ratio was measured in the same manner as in Example 1- (4). However, in consideration of contamination of erythrocytes in PBMC, FITC-labeled mouse anti-human CD3 antibody, RD1-labeled mouse anti-human CD56 antibody and PC5-labeled mouse anti-human CD45 antibody (all manufactured by Beckman Coulter) were used, and CD45-positive CD3 + CD56 + cells were defined as CD3 + CD56 + cells at the start of culture.
 こうして算出されたCD3CD56細胞含有比率と実施例1-(3)で算出された拡大培養率(総細胞数換算)とを用いて、培養期間中(14日間)にCD3CD56細胞が増殖した倍率すなわちCD3CD56細胞拡大培養比率を算出〔下記の式(1)〕した。なお、今回解凍して使用したPBMCにおけるCD3CD56細胞の含有比率(培養開始時のCD3CD56細胞含有比率)は1.54%であった。結果を表3に示す。 Using the CD3 + CD56 + cell content ratio thus calculated and the expansion culture rate (converted to the total number of cells) calculated in Example 1- (3), CD3 + CD56 + cells were cultured during the culture period (14 days). The multiplication ratio of CD3, that is, the CD3 + CD56 + cell expansion culture ratio was calculated [the following formula (1)]. The content ratio of CD3 + CD56 + cells (CD3 + CD56 + cell content ratio at the start of culture) in PBMC thawed and used this time was 1.54%. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示されるように、抗ヒトCD3抗体とレトロネクチンを組み合わせて細胞集団に初期刺激を与えること、さらには培養途中に抗ヒトCD3抗体を用いて再刺激することによって、培養14日間でのCD3CD56細胞の増殖性が格段に上昇した。また、それらの効果は初期刺激として使用する抗ヒトCD3抗体の固定化濃度に依らず、広い濃度範囲で効果を発揮した。 As shown in Table 3, by combining the anti-human CD3 antibody and retronectin to give initial stimulation to the cell population, and further restimulating with the anti-human CD3 antibody during the culture, CD3 for 14 days in culture. + Proliferation of CD56 + cells was markedly increased. In addition, these effects were exhibited in a wide concentration range regardless of the immobilized concentration of the anti-human CD3 antibody used as the initial stimulus.
 これらのことから、本発明の製造方法によれば、CIK細胞の活性成分と考えられているCD3CD56細胞を優位に増殖させることができ、CIK細胞の抗腫瘍活性に大きな役割を果たすCD3CD56細胞が効率よく得られることが明らかとなった。 Therefore, according to the production method of the present invention, CD3 + CD56 + cells, which are considered to be active components of CIK cells, can be proliferated preferentially, and CD3 plays a major role in the antitumor activity of CIK cells. It was revealed that + CD56 + cells can be obtained efficiently.
実施例2 抗ヒトCD3抗体及びレトロネクチンを用いたCIK細胞培養(IFN-γ添加及びAutologous-irradiated cell使用の比較)
(1)Autologous-irradiated cell(以下、AICと記載する)の調製
 実施例1-(1)で調製したドナーA由来のPBMCを0.5%HAB/0.2%HSA/GT-T503に懸濁後、X線照射装置を使用し3400R(29.8Gy)のX線を照射した(以下、このX線照射後の細胞をPBMC AICと記載する)。この調製したPBMC AICを1.06×10cells/mLとなるように再度0.5%HAB/0.2%HSA/GT-T503に懸濁した。
Example 2 CIK cell culture using anti-human CD3 antibody and retronectin (comparison of IFN-γ added and use of an autologous-irradiated cell)
(1) Preparation of Autologous-irradiated cell (hereinafter referred to as AIC) PBMC derived from donor A prepared in Example 1- (1) was suspended in 0.5% HAB / 0.2% HSA / GT-T503. After turbidity, 3400R (29.8 Gy) X-rays were irradiated using an X-ray irradiation apparatus (hereinafter, the cells after X-ray irradiation are described as PBMC AIC). The prepared PBMC AIC was suspended again in 0.5% HAB / 0.2% HSA / GT-T503 so as to be 1.06 × 10 6 cells / mL.
(2)CIK細胞の培養
 0.5%HAB/0.2%HSA/GT-T503に1.06×10cells/mLとなるように実施例1-(1)で調製したドナーA由来のPBMCを懸濁した(IFN-γ前日無処理群と記載)。ただし、培養開始前日に同様に調製したPBMCを一晩IFN-γ(終濃度1000U/mL)存在下で培養した後、培養開始時に上記細胞濃度になるように懸濁した群も設定した(以下、IFN-γ前日処理群と記載する)。
(2) CIK cell culture derived from donor A prepared in Example 1- (1) so as to be 1.06 × 10 6 cells / mL in 0.5% HAB / 0.2% HSA / GT-T503 PBMCs were suspended (described as IFN-γ the day before untreated group). However, a group was also set in which PBMCs prepared in the same manner on the day before the start of culture were cultured overnight in the presence of IFN-γ (final concentration 1000 U / mL) and then suspended at the cell concentration at the start of the culture (hereinafter referred to as the following). , Described as IFN-γ the day before treatment group).
 実施例1-(2)と同様の方法で作成した抗ヒトCD3抗体及びレトロネクチンの固定化プレート(ただし、抗ヒトCD3抗体固定化濃度は0.1μg/mLとした。)に、上記PBMC(IFN-γ前日無処理群)又はPBMC(IFN-γ前日処理群)を0.875mL/ウェルずつ添加し、さらにAICを使用する群には実施例2-(2)で調製したPBMC AICを0.875mL/ウェルを添加して、計1.75mL/ウェルとした。AICを使用しない群に対しては、AICの代わりに0.5%HAB/0.2%HSA/GT-T503を0.875mL/ウェルずつ添加した。各ウェルにIL-2及びIFN-γをそれぞれ終濃度1000U/mLとなるように添加し、これらのプレートを5%CO存在下37℃で培養を開始した(培養0日目)。培養方法は、実施例1-(3)と同様の方法により行い、培養4日目、8日目及び11日目の希釈、ならびに抗ヒトCD3抗体再刺激群、及び抗ヒトCD3抗体を添加しない群の設定等についても実施例1-(3)と同様に実施した。14日目まで培養を継続し、培養開始後11日目及び14日目にトリパンブルー染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率(総細胞数換算)を算出した。結果を表4に示す。 An anti-human CD3 antibody and retronectin-immobilized plate prepared in the same manner as in Example 1- (2) (where the anti-human CD3 antibody-immobilized concentration was 0.1 μg / mL) was added to the PBMC (IFN -Γ-day-untreated group) or PBMC (IFN-γ-day-treated group) was added at a rate of 0.875 mL / well, and the PBMC AIC prepared in Example 2- (2) was added to the group using AIC by 0. 875 mL / well was added to give a total of 1.75 mL / well. For the group not using AIC, 0.575% HAB / 0.2% HSA / GT-T503 was added at 0.875 mL / well instead of AIC. IL-2 and IFN-γ were added to each well to a final concentration of 1000 U / mL, and the culture was started at 37 ° C. in the presence of 5% CO 2 (culture day 0). The culture method was carried out in the same manner as in Example 1- (3), and dilutions on the 4th, 8th and 11th days of culture, and the anti-human CD3 antibody restimulation group and anti-human CD3 antibody were not added. Group setting and the like were performed in the same manner as in Example 1- (3). The culture was continued until the 14th day, and the number of viable cells was measured by the trypan blue staining method on the 11th and 14th days after the start of the culture, and the expanded culture rate (total number of cells) was compared with the number of cells at the start of the culture. Conversion) was calculated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(3)CD3CD56細胞及びCD8細胞含有比率の解析
 実施例1-(4)と同様の方法で、実施例2-(2)で調製した培養開始後14日目の細胞についてCD3CD56細胞含有比率及びCD8細胞含有比率を解析した。結果を表5に示す。
(3) CD3 + in CD56 + cells and CD8 + cells Analysis embodiment of the content ratio 1- (4) and the same method, for example 2- (2) culture the fourteenth day after the initiation of the cells prepared CD3 + CD56 + cell content ratio and CD8 + cell content ratio were analyzed. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5に示されるように、抗ヒトCD3抗体とレトロネクチンを組み合わせて細胞集団に初期刺激を与えること、さらには培養途中に抗ヒトCD3抗体を用いて再刺激することによって、CD3CD56細胞が高い比率で得られた。また、これらの効果はPBMCに対するIFN-γ処理方法の違い又はAIC使用の有無に依らず、広く発揮された。このことから、本発明の製造方法は、既存のCIK細胞培養方法に広く適応可能であり、CIK細胞における重要構成成分であるCD3CD56細胞が効率よく得られる方法であることが明らかとなった。 As shown in Table 5, by combining the anti-human CD3 antibody and retronectin to give initial stimulation to the cell population, and further restimulating with the anti-human CD3 antibody during the culture, the CD3 + CD56 + cells were A high ratio was obtained. These effects were widely exhibited regardless of the difference in the IFN-γ treatment method for PBMC or the use of AIC. This reveals that the production method of the present invention can be widely applied to existing CIK cell culture methods and can efficiently obtain CD3 + CD56 + cells, which are important components in CIK cells. It was.
(4)CD3CD56細胞の拡大培養率の評価
 実施例1-(1)で調製したドナーA由来のPBMC及び細胞実施例2-(2)で調製した培養開始後14日目の細胞それぞれについて、実施例1-(4)と同様の方法でCD3CD56細胞含有比率を測定した。
(4) Evaluation of expansion culture rate of CD3 + CD56 + cells Each of PBMC derived from donor A prepared in Example 1- (1) and cells on day 14 after the start of culture prepared in cell Example 2- (2) For CD1, the CD3 + CD56 + cell content ratio was measured in the same manner as in Example 1- (4).
 算出されたCD3CD56細胞含有比率と実施例2-(2)で算出された拡大培養率(総細胞数換算)を用いて培養期間中(14日間)にCD3CD56細胞が増殖した倍率(すなわち、CD3CD56細胞拡大培養率)を、実施例1-(5)と同様に算出した。なお、培養開始時におけるCD3CD56細胞の含有比率は0.6%であった。結果を表6に示す。 CD3 + CD56 + cells proliferated during the culture period (14 days) using the calculated CD3 + CD56 + cell content ratio and the expanded culture rate (converted to the total number of cells) calculated in Example 2- (2) The magnification (ie, CD3 + CD56 + cell expansion culture rate) was calculated in the same manner as in Example 1- (5). Note that the content ratio of CD3 + CD56 + cells at the start of the culture was 0.6%. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6に示されるように、抗ヒトCD3抗体とレトロネクチンを組み合わせて細胞集団に初期刺激を与えること、さらには培養途中に抗ヒトCD3抗体を用いて再刺激することによって、CD3CD56細胞の増殖性が格段に上昇し、培養14日間でのCD3CD56細胞拡大培養率が格段に上昇した。加えて、AICを組み合わせることで、その拡大培養率はさらに上昇した。また、これらの効果はPBMCに対するIFN-γ処理方法の違いに依らず発揮された。 As shown in Table 6, the combination of anti-human CD3 antibody and retronectin gives initial stimulation to the cell population, and restimulation with anti-human CD3 antibody in the middle of the culturing leads to CD3 + CD56 + cell Proliferation increased markedly, and the CD3 + CD56 + cell expansion culture rate during 14 days of culture increased markedly. In addition, the expansion culture rate further increased by combining AIC. These effects were exhibited regardless of the difference in the IFN-γ treatment method for PBMC.
 このことから、本発明の製造方法は、CIK細胞における重要構成成分であるCD3CD56細胞を効率よく得られる方法であることが明らかとなった。 From this, it became clear that the production method of the present invention is a method for efficiently obtaining CD3 + CD56 + cells, which are important constituents in CIK cells.
実施例3 抗ヒトCD3抗体及びレトロネクチンを用いたCIK細胞培養(再刺激時の抗ヒトCD3抗体濃度の比較)
(1)PBMC AICの調製
 PBMC AICを、ドナーA由来のPBMCの代わりにドナーB由来のPBMC又はドナーC由来のPBMCを用いる以外は、実施例2-(1)と同様の方法で調製した。
Example 3 CIK cell culture using anti-human CD3 antibody and retronectin (comparison of anti-human CD3 antibody concentration at restimulation)
(1) Preparation of PBMC AIC PBMC AIC was prepared in the same manner as in Example 2- (1) except that donor B-derived PBMC or donor C-derived PBMC were used instead of donor A-derived PBMC.
(2)CIK細胞の培養
 実施例2-(2)と同様の方法でCIK細胞を培養した。ただし、PBMCとしては、ドナーB由来のPBMC又はドナーC由来のPBMC(実施例3-(1)で使用したドナーと同じドナー由来PBMCを使用)を用い、IFN-γ前日処理は行わなかった。また、培養開始8日目の抗ヒトCD3抗体による再刺激の際の抗ヒトCD3抗体の濃度を50ng/mL又は200ng/mLとした。
(2) CIK cell culture CIK cells were cultured in the same manner as in Example 2- (2). However, as PBMC, PBMC derived from donor B or PBMC derived from donor C (using the same donor-derived PBMC as the donor used in Example 3- (1)) was used, and IFN-γ the day before treatment was not performed. In addition, the concentration of the anti-human CD3 antibody at the time of restimulation with the anti-human CD3 antibody on the 8th day of the culture was set to 50 ng / mL or 200 ng / mL.
 培養開始14日目まで培養を継続し、培養開始後14日目にトリパンブルー染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率(総細胞数換算)を算出した。結果を表7に示す。 The culture is continued until the first 14 days of culture, and the number of viable cells is measured by trypan blue staining on the 14th day after the start of the culture. Was calculated. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(3)CD3CD56細胞及びCD8細胞含有比率の解析
 実施例1-(4)と同様の方法で、実施例3-(2)で調製した培養開始後14日目の細胞についてCD3CD56細胞含有比率を解析した。結果を表8に示す。
(3) CD3 + by CD56 + cells and CD8 + cells Analysis embodiment of the content ratio 1- (4) and the same method, for example 3- (2) culture the fourteenth day after the initiation of the cells prepared CD3 + CD56 + cell content ratio was analyzed. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表8に示されるように、抗ヒトCD3抗体とレトロネクチンとを組み合わせて細胞集団に初期刺激を与えること、さらには培養途中に抗ヒトCD3抗体を用いて再度刺激することによって、CD3CD56細胞が高い比率で得られた。また、これらの効果はドナー又は再刺激時の抗ヒトCD3抗体濃度に依らず発揮された。 As shown in Table 8, CD3 + CD56 + cells can be obtained by combining the anti-human CD3 antibody and retronectin to give initial stimulation to the cell population, and by re-stimulating with the anti-human CD3 antibody during the culture. Was obtained at a high ratio. These effects were exhibited regardless of the concentration of the anti-human CD3 antibody at the time of donor or restimulation.
 このことから、本発明の製造方法は、CIK細胞における重要構成成分であるCD3CD56細胞が効率よく得られる方法であることが明らかとなった。 From this, it became clear that the production method of the present invention is a method by which CD3 + CD56 + cells, which are important components in CIK cells, can be obtained efficiently.
(4)CD3CD56細胞の拡大培養率の評価
 実施例1-(1)で調製したドナーB由来のPBMC、ドナーC由来のPBMC及び細胞実施例3-(2)で調製した培養開始後14日目の細胞それぞれについて、実施例1-(4)と同様の方法でCD3CD56細胞含有比率を測定した。
(4) Evaluation of expansion culture rate of CD3 + CD56 + cells Example 1- (1) PBMC derived from donor B, donor C-derived PBMC and cells After the start of culture prepared in Example 3- (2) For each of the cells on day 14, the content ratio of CD3 + CD56 + cells was measured in the same manner as in Example 1- (4).
 算出されたCD3CD56細胞含有比率と実施例3-(2)で算出された拡大培養率(総細胞数換算)とを用いて、培養期間中(14日間)にCD3CD56細胞が増殖した倍率(すなわち、CD3CD56細胞拡大培養率)を実施例1-(5)と同様に算出した。なお、培養開始時におけるCD3CD56細胞の含有比率は両ドナーとも1.62%であった。結果を表9に示す。 Using the calculated CD3 + CD56 + cell content ratio and the expanded culture rate (converted to the total number of cells) calculated in Example 3- (2), CD3 + CD56 + cells were observed during the culture period (14 days). The multiplication factor (ie, CD3 + CD56 + cell expansion culture rate) was calculated in the same manner as in Example 1- (5). The content ratio of CD3 + CD56 + cells at the start of culture was 1.62% for both donors. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9に示されるように、抗ヒトCD3抗体とレトロネクチンを組み合わせて細胞集団に初期刺激を与えること、さらには培養途中に抗ヒトCD3抗体を用いて再度刺激することによって、培養14日間でのCD3CD56細胞の増殖性が格段に上昇した。また、これらの効果はドナーや再刺激時の抗ヒトCD3抗体濃度によらず発揮された。 As shown in Table 9, by combining the anti-human CD3 antibody and retronectin to give initial stimulation to the cell population, and further stimulating again with the anti-human CD3 antibody during the culture, + Proliferation of CD56 + cells was markedly increased. These effects were exhibited regardless of the concentration of the anti-human CD3 antibody at the time of donor and restimulation.
 このことから本発明の製造方法は、CIK細胞における重要構成成分であるCD3CD56細胞を効率よく得られる方法であることが明らかとなった。 From this, it became clear that the production method of the present invention is a method for efficiently obtaining CD3 + CD56 + cells, which are important components in CIK cells.
実施例4 ガス透過性培養バッグを用いたCIK細胞培養
(1)抗ヒトCD3抗体及びレトロネクチン固定化CultiLife 215の作製
 培養面積を86cmになるようにシールしたガス透過性培養バッグCultiLife(登録商標) 215(タカラバイオ社製)に終濃度0.1または0.3μg/mLの抗ヒトCD3抗体、及び終濃度5μg/mLのレトロネクチン(登録商標)を含むACD-A液を10.4mL添加し、5%CO存在下、37℃で5時間インキュベートした。なお、こうして作製した抗CD3抗体/レトロネクチン固定化CultiLife 215は、使用直前に1%HSA/生理食塩水で3回洗浄した。
Example 4 CIK Cell Culture Using Gas-Permeable Culture Bag (1) Preparation of Anti-Human CD3 Antibody and RetroNectin Immobilized MultiLife 215 Gas-permeable Culture Bag MultiLife (Registered Trademark) Sealed to a Culture Area of 86 cm 2 10.4 mL of ACD-A solution containing anti-human CD3 antibody with a final concentration of 0.1 or 0.3 μg / mL and RetroNectin (registered trademark) with a final concentration of 5 μg / mL was added to 215 (manufactured by Takara Bio Inc.) Incubated for 5 hours at 37 ° C. in the presence of 5% CO 2 . The thus prepared anti-CD3 antibody / retronectin-immobilized MultiLife 215 was washed 3 times with 1% HSA / physiological saline immediately before use.
(2)CIK細胞集団の拡大培養
 実施例4-(1)で作製した抗CD3抗体/レトロネクチン固定化CultiLife 215に、実施例1-(1)で調製したPBMCを1.2×10cellsずつ添加し、終濃度1000U/mLとなるようにIL-2を、終濃度1000U/mLとなるようにIFN-γをそれぞれ添加し、0.5%自己血漿(PBMCドナー由来の非働化処理済み血漿)及び0.2%HSAを含むGT-T503(以下、0.5%血漿/0.2%HSA/GT-T503と記載する)を用いて最終的に総液量を40mLとした。細胞液を添加した培養バッグを5%CO存在下、37℃で培養を開始した(培養0日目)。培養開始4日目には、培養面積を300cmになるようにシールしたガス透過性培養バッグCultiLife(登録商標) Eva(タカラバイオ社製)に細胞液23.4mLを移し、終濃度500U/mLとなるようにIL-2を添加した後、0.5%血漿/0.2%HSA/GT-T503を用いて最終的に総液量を300mLとした。8日目には、CultiLife(登録商標) Eva内の細胞液75mLを、新たに培養面積を300cmになるようにシールしたガス透過性培養バッグCultiLife(登録商標) Evaに移し替え、0.5%血漿/0.2%HSA/GT-T503を用いて4倍希釈し総液量を300mLとした後、終濃度500U/mLとなるようにIL-2を添加した。さらに終濃度50ng/mLとなるように抗ヒトCD3抗体を添加することで再刺激を行った。11日目には、0.5%血漿/0.2%HSA/GT-T503を用いて2倍希釈し総液量を600mLとした後、終濃度500U/mLとなるようにIL-2を添加した。培養は15日目まで継続した。培養開始後15日目にサンプリングした細胞についてトリパンブルー染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。また、実施例1-(4)と同様の方法で、CD3+CD56+細胞含有比率を測定した。結果を表10に示す。
(2) Expansion of CIK cell population 1.2 × 10 7 cells of PBMC prepared in Example 1- (1) were added to the anti-CD3 antibody / retronectin-immobilized CultureLife 215 prepared in Example 4- (1). IL-2 was added to a final concentration of 1000 U / mL, and IFN-γ was added to a final concentration of 1000 U / mL. 0.5% autologous plasma (PBMC donor-derived inactivated plasma) ) And GT-T503 (hereinafter referred to as 0.5% plasma / 0.2% HSA / GT-T503) containing 0.2% HSA, and finally the total liquid volume was 40 mL. The culture bag to which the cell solution was added was cultured at 37 ° C. in the presence of 5% CO 2 (culture day 0). On the fourth day of the culture, 23.4 mL of the cell solution was transferred to a gas permeable culture bag, MultiLife (registered trademark) Eva (manufactured by Takara Bio Inc.) sealed so that the culture area was 300 cm 2 , and a final concentration of 500 U / mL. After adding IL-2 so that the total amount was 0.5 mL plasma / 0.2% HSA / GT-T503, the total liquid volume was finally adjusted to 300 mL. On the 8th day, 75 mL of the cell solution in the MultiLife (registered trademark) Eva was transferred to a gas permeable culture bag, MultiLife (registered trademark) Eva, which was newly sealed to have a culture area of 300 cm 2. % Plasma / 0.2% HSA / GT-T503 was diluted 4-fold to a total volume of 300 mL, and IL-2 was added to a final concentration of 500 U / mL. Furthermore, restimulation was performed by adding an anti-human CD3 antibody to a final concentration of 50 ng / mL. On the 11th day, after diluting twice with 0.5% plasma / 0.2% HSA / GT-T503 to make the total volume 600 mL, IL-2 was added so that the final concentration was 500 U / mL. Added. Incubation continued until day 15. The number of viable cells was counted by trypan blue staining for the cells sampled on the 15th day after the start of the culture, and the expansion culture rate was calculated in comparison with the number of cells at the start of the culture. Further, the CD3 + CD56 + cell content ratio was measured by the same method as in Example 1- (4). The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表10に示されるように、ガス透過性培養バッグを用いて本発明の製造方法を実施しても、CD3CD56細胞を高い比率で含有する細胞集団が高い拡大培養率で得られた。また、これらの効果は、初期刺激時の抗ヒトCD3抗体濃度に依らず発揮された。 As shown in Table 10, even when the production method of the present invention was performed using a gas-permeable culture bag, a cell population containing CD3 + CD56 + cells at a high ratio was obtained at a high expansion culture rate. These effects were exhibited regardless of the anti-human CD3 antibody concentration at the time of initial stimulation.
実施例5 OK-432を用いたCIK細胞培養(AIC有無の比較)
(1)抗ヒトCD3抗体及びレトロネクチン固定化プレートの作成
 実施例1-(2)と同様の方法で抗ヒトCD3抗体及びレトロネクチン固定化プレートを作製した。ただし、抗ヒトCD3抗体は終濃度0.1μg/mLとなるようにした。
Example 5 CIK cell culture using OK-432 (comparison with or without AIC)
(1) Preparation of anti-human CD3 antibody and retronectin-immobilized plate Anti-human CD3 antibody and retronectin-immobilized plate were prepared in the same manner as in Example 1- (2). However, the anti-human CD3 antibody was adjusted to a final concentration of 0.1 μg / mL.
(2)CIK細胞集団の拡大培養
 実施例5-(1)で作成した抗ヒトCD3抗体及びレトロネクチン固定化プレートを用いて、実施例2-(2)と同様の方法で培養を行った。ただし、IFN-γ前日処理群は設定せず、すべての群に終濃度0.05KE/mLとなるようにOK-432(製剤名 ピシバニール:中外製薬社製)を添加した。また、AIC添加の影響についても検討した。培養は15日目まで継続した。培養開始後15日目にサンプリングした細胞についてトリパンブルー染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。また、実施例1-(4)と同様の方法で、CD3CD56細胞含有比率を測定した。結果を表11に示す。
(2) Expansion culture of CIK cell population Using the anti-human CD3 antibody and retronectin-immobilized plate prepared in Example 5- (1), culture was performed in the same manner as in Example 2- (2). However, the IFN-γ previous day treatment group was not set, and OK-432 (formulation name: Pishibanil: manufactured by Chugai Pharmaceutical Co., Ltd.) was added to all groups so that the final concentration was 0.05 KE / mL. Moreover, the influence of AIC addition was also examined. Incubation continued until day 15. The number of viable cells was counted by trypan blue staining for the cells sampled on the 15th day after the start of the culture, and the expansion culture rate was calculated in comparison with the number of cells at the start of the culture. Further, the CD3 + CD56 + cell content ratio was measured by the same method as in Example 1- (4). The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11に示されるように、OK-432を添加した場合においても、CD3CD56細胞を高い比率で含む細胞集団が高い拡大培養比率で得られた。また、AICを添加することで拡大培養率が大幅に増加した。 As shown in Table 11, even when OK-432 was added, a cell population containing CD3 + CD56 + cells at a high ratio was obtained at a high expansion culture ratio. Moreover, the expansion culture rate increased significantly by adding AIC.
(3)細胞傷害活性の測定
 実施例5-(2)で調製した培養開始後15日目の細胞について、細胞傷害活性を測定した。細胞傷害活性は、Calcein-AMを用いた細胞傷害活性測定法〔リヒテンフェルズ R.ら(Lichtenfels R.et al.)、J. Immunol. Methods、第172巻、第2号、第227~239頁(1994)〕にて評価した。すなわち、慢性骨髄性白血病細胞株K562細胞及び肺がん細胞株A549細胞をそれぞれ(1~2)×10cells/mLとなるように5%ウシ胎児血清(HyClone社製)を含むRPMI1640に懸濁した後で、終濃度25μMとなるようにCalcein-AM(同仁化学研究所社製)を添加し、37℃で1時間培養した。こうして得られた細胞をCalcein-AMを含まない培地にて洗浄したものを、Calcein標識標的細胞とした。
(3) Measurement of cytotoxic activity The cytotoxic activity of the cells prepared in Example 5- (2) on the 15th day after the start of the culture was measured. Cytotoxic activity is determined by measuring cytotoxic activity using Calcein-AM [Lichtenfels R.C. (Lichtenfelds R. et al.), J. Immunol. Methods, Vol. 172, No. 2, pp. 227-239 (1994)]. That is, the chronic myeloid leukemia cell line K562 cell and the lung cancer cell line A549 cell were suspended in RPMI 1640 containing 5% fetal calf serum (manufactured by HyClone) so as to be (1-2) × 10 6 cells / mL, respectively. Thereafter, Calcein-AM (manufactured by Dojindo Laboratories) was added to a final concentration of 25 μM and cultured at 37 ° C. for 1 hour. The cells thus obtained were washed with a medium not containing Calcein-AM and used as Calcein-labeled target cells.
 実施例5-(2)で調製した培養開始後15日目の細胞をエフェクター細胞として3×10cells/mL、1×10cells/mLとなるように5%HumanAB型血清、0.1mM NEAA mixture、1mM Sodium pyruvate、2mM L-グルタミン(全てLonza社製)、及び1% ペニシリン-ストレプトマイシン(ギブコBRL社製)又は100μg/mL 硫酸ストレプトマイシン(明治製菓社製)を含むRPMI1640で希釈後、96穴細胞培養プレート(コーニング社製)の各ウェルに100μL/ウェルずつ分注した。続いて、1×10cells/mLとなるように調製したCalcein標識標的細胞を、各ウェルに100μLずつ添加した。この際、Calcein標識標的細胞(T)に対するエフェクター細胞(E)の比、すなわちE/T比は、30及び10の2とおりとした。上記細胞懸濁液の入ったプレートを400×gで1分間遠心後、37℃、5%CO存在下で4時間インキュベートした。その後、各ウェルから培養上清100μLを採取し、蛍光プレートリーダー(Mithras LB 940:ベルトールド社製)(励起485nm/測定535nm)によって培養上清中に放出されたCalcein量を測定した。「細胞傷害活性(%)」は以下の式(2)に従って算出した。 15% after the start of culture prepared in Example 5- (2) as effector cells, 5% Human AB type serum, 0.1 mM so as to be 3 × 10 6 cells / mL, 1 × 10 5 cells / mL After dilution with RPMI 1640 containing NEAA mixture, 1 mM sodium pyruvate, 2 mM L-glutamine (all manufactured by Lonza), and 1% penicillin-streptomycin (manufactured by Gibco BRL) or 100 μg / mL streptomycin sulfate (manufactured by Meiji Seika) 100 μL / well was dispensed into each well of a well cell culture plate (Corning). Subsequently, 100 μL of Calcein-labeled target cells prepared to 1 × 10 5 cells / mL were added to each well. At this time, the ratio of the effector cell (E) to the Calcein-labeled target cell (T), that is, the E / T ratio, was set to two values of 30 and 10. The plate containing the cell suspension was centrifuged at 400 × g for 1 minute and then incubated at 37 ° C. in the presence of 5% CO 2 for 4 hours. Thereafter, 100 μL of the culture supernatant was collected from each well, and the amount of calcein released into the culture supernatant was measured with a fluorescent plate reader (Mithras LB 940: manufactured by Bertrud) (excitation 485 nm / measurement 535 nm). “Cytotoxic activity (%)” was calculated according to the following formula (2).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上記式において、最小放出量はCalcein標識標的細胞のみを含有するウェルのCalcein放出量であり、Calcein標識標的細胞からのCalcein自然放出量を示す。また、最大放出量はCalcein標識標的細胞に0.1%界面活性剤Triton X-100(ナカライテスク社製)を加えて細胞を完全破壊した際のCalcein放出量を示している。細胞傷害活性測定の結果を表12に示す。 In the above formula, the minimum release amount is the calcein release amount of a well containing only calcein labeled target cells, and indicates the calcein spontaneous release amount from the calcein labeled target cells. The maximum release amount indicates the release amount of Calcein when the cell is completely destroyed by adding 0.1% surfactant Triton X-100 (manufactured by Nacalai Tesque) to Calcein-labeled target cells. The results of the cytotoxic activity measurement are shown in Table 12.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表12に示されるように、本発明の製造方法により得られた細胞集団は、高い細胞傷害活性を発揮した。また、AICを添加することで、肺がん細胞株に対して高い細胞傷害活性を示す細胞集団が得られることが明らかになった。 As shown in Table 12, the cell population obtained by the production method of the present invention exhibited high cytotoxic activity. Moreover, it became clear that the cell population which shows high cytotoxic activity with respect to a lung cancer cell line can be obtained by adding AIC.
実施例6 CIK細胞への遺伝子導入
(1)抗ヒトCD3抗体及びレトロネクチン固定化プレートの作成
 実施例1-(2)と同様の方法で抗ヒトCD3抗体及びレトロネクチン固定化プレートを作製した。ただし、抗ヒトCD3抗体は終濃度0.3μg/mLとなるようにした。
Example 6 Gene introduction into CIK cells (1) Preparation of anti-human CD3 antibody and retronectin-immobilized plate An anti-human CD3 antibody and retronectin-immobilized plate were prepared in the same manner as in Example 1- (2). However, the anti-human CD3 antibody was adjusted to a final concentration of 0.3 μg / mL.
(2)AcGFP発現レトロウイルスベクタープラスミドの構築
 AcGFP発現ベクターMT-AcGFPを以下のように調製した。pIRES2-AcGFP1(Clontech社製)を鋳型とし、配列表の配列番号10に記載の核酸配列からなるAcGFP5プライマー及び配列表の配列番号11に記載の核酸配列からなるAcGFP3プライマーを用いてPCRを行い、増幅断片をpMTベクター[ジーン セラピー 第7巻、第797-804項(2000)に記載されるpMベクター]に挿入してMT-AcGFPプラスミドを調製した。
(2) Construction of AcGFP Expression Retroviral Vector Plasmid An AcGFP expression vector MT-AcGFP was prepared as follows. Using pIRES2-AcGFP1 (manufactured by Clontech) as a template, PCR was performed using an AcGFP5 primer consisting of the nucleic acid sequence shown in SEQ ID NO: 10 of the sequence listing and an AcGFP3 primer consisting of the nucleic acid sequence shown in SEQ ID NO: 11 of the sequence listing, The amplified fragment was inserted into a pMT vector [pM vector described in Gene Therapy Vol. 7, Item 797-804 (2000)] to prepare an MT-AcGFP plasmid.
(3)プロデューサー細胞の作製
 Retrovirus Packaging Kit(タカラバイオ社製)に含まれているプラスミドpGP、pE-eco及び実施例6-(1)で調製したMT-AcGFPで形質転換された293T細胞よりエコトロピックエンベロープを持つレトロウイルスを作製した。得られたレトロウイルスをプロデューサー細胞PG13(ATCC#:CRL-10686)に3回感染させた後、限界希釈にて複数のクローンを取得した。リアルタイムPCRによる培養上清中のウイルスRNA量の測定結果と、上清と接触させた培養細胞についてフローサイトメトリーで測定したAcGFPの陽性細胞率の結果を指標に1株のクローンを選択し、これをレトロウイルスベクタープロデューサー細胞として以下の実験に用いた。
(3) Production of Producer Cells Eco-friendly from 293T cells transformed with plasmids pGP, pE-eco and MT-AcGFP prepared in Example 6- (1) included in Retrovirus Packaging Kit (manufactured by Takara Bio Inc.) A retrovirus with a tropic envelope was made. The obtained retrovirus was infected with producer cell PG13 (ATCC #: CRL-10686) three times, and a plurality of clones were obtained by limiting dilution. A clone of one strain was selected based on the measurement result of the amount of viral RNA in the culture supernatant by real-time PCR and the result of the positive cell rate of AcGFP measured by flow cytometry for the cultured cells in contact with the supernatant. Was used as a retroviral vector producer cell in the following experiments.
(4)ウイルス溶液の調製
 実施例6-(3)で作製したプロデューサー細胞の培養上清を除き、DPBSで1回洗浄した後、Trypsin/EDTAで処理して細胞を剥離し、10%牛胎児血清(インビトロジェン社製)及び50U/mLペニシリン/50mg/mLストレプトマイシン(ナカライテスク社製)含有D-MEM(シグマアルドリッチ社製)に懸濁した後、100mm dish(イワキ社製)に細胞密度が25000細胞/cmとなるように播種した。24時間培養した後で培養上清を除き、新たな培地8mLを添加した。さらに24時間の培養を行い、上清を回収して0.45μmのフィルターでろ過し、-80℃で保存した。
(4) Preparation of virus solution The culture supernatant of the producer cells produced in Example 6- (3) was removed, washed once with DPBS, treated with Trypsin / EDTA, and the cells were detached, and 10% fetal bovine After suspending in serum (manufactured by Invitrogen) and D-MEM (manufactured by Sigma Aldrich) containing 50 U / mL penicillin / 50 mg / mL streptomycin (manufactured by Nacalai Tesque), the cell density was 25000 in 100 mm dish (manufactured by Iwaki). It seed | inoculated so that it might become a cell / cm < 2 >. After culturing for 24 hours, the culture supernatant was removed, and 8 mL of fresh medium was added. After further culturing for 24 hours, the supernatant was collected, filtered through a 0.45 μm filter, and stored at −80 ° C.
(5)レトロネクチン固定化プレートの作成(遺伝子導入時)
 12穴ノントリートメントプレート(コーニング社製)に終濃度5μg/mLの抗ヒトCD3抗体及び終濃度25μg/mLのレトロネクチン(登録商標)を含むDPBS液を0.95mL/ウェルずつ添加した。次に、5%CO存在下37℃で5時間インキュベートした後、各ウェルよりDPBS液を除去することにより、抗CD3抗体及びレトロネクチンが固定化された細胞培養プレートを得た。なお、ここで作製したプレートは、DPBSで3回洗浄した後に以下の各実験に使用した。
(5) Preparation of retronectin-immobilized plate (at gene introduction)
A DPBS solution containing anti-human CD3 antibody having a final concentration of 5 μg / mL and Retronectin (registered trademark) having a final concentration of 25 μg / mL was added to a 12-well non-treatment plate (manufactured by Corning) at a rate of 0.95 mL / well. Next, after incubation at 37 ° C. for 5 hours in the presence of 5% CO 2, the DPBS solution was removed from each well to obtain a cell culture plate on which the anti-CD3 antibody and retronectin were immobilized. The plate prepared here was washed 3 times with DPBS and then used for each of the following experiments.
(6)遺伝子導入用プレートの作成(ウイルスの固定化)
 実施例6-(5)で作製したプレートに実施例6-(4)で作製したウイルス液を1mL/ウェルずつ添加し、32℃、1000×gで2時間遠心した。ただし、ウイルス液を添加しないウェルも作製した。このときウイルスを含まないウイルス希釈液(5%ウシ胎児血清を含むD-MEM)を1mL/ウェルずつ添加し、同様に遠心した。遠心後はウイルス液を吸引除去し、1.5%HSAを含むDPBSを1mL/ウェルずつ添加しすることで、洗浄した。
(6) Preparation of gene transfer plate (immobilization of virus)
1 mL / well of the virus solution prepared in Example 6- (4) was added to the plate prepared in Example 6- (5), and centrifuged at 32 ° C. and 1000 × g for 2 hours. However, wells to which no virus solution was added were also prepared. At this time, virus diluted solution containing no virus (D-MEM containing 5% fetal bovine serum) was added at 1 mL / well and centrifuged in the same manner. After centrifugation, the virus solution was removed by suction and washed by adding 1 mL / well of DPBS containing 1.5% HSA.
(7)CIK細胞集団への遺伝子導入および拡大培養
 実施例6-(1)で作成した抗ヒトCD3抗体及びレトロネクチンの固定化プレートを用いて、実施例2-(2)と同様の方法で培養を行った。ただし、IFN-γ前日処理群は設定しなかった。さらに、培養開始4日目に遺伝子導入(以下、1回感染群と記載する)、培養開始4及び5日目に連続して遺伝子導入(以下、2回感染群と記載する)、またそれぞれの感染群に対してウイルスを感染させない非遺伝子導入群(以下、対照群と記載する)を設定した。すなわち、1回感染群では、培養開始4日目に、実施例6-(6)で作製したプレートに細胞液0.4mLを移し、0.5%HAB/0.2%HSA/GT-T503を4.6mL添加し、12.5倍希釈した後に終濃度500U/mLとなるようにIL-2を添加した。このプレートにて8日目まで培養を継続した。2回感染群では、培養開始4日目に実施例6-(6)で作製したプレートに細胞液1.5mLを移し、0.5%HAB/0.2%HSA/GT-T503を1.5mL添加し、2倍希釈した後に、終濃度500U/mLとなるようにIL-2を添加した。さらに培養開始5日目に実施例6-(6)で作製したプレートに細胞液0.8mLを移し、0.5%HAB/0.2%HSA/GT-T503を4.2mL添加し、6倍希釈した後に終濃度500U/mLとなるようにIL-2を添加した。このプレートにて8日目まで培養を継続した。対照群では、1回感染群及び2回感染群ともにウイルスを固定していないプレートを用いて、同様の操作を行った。培養は14日目まで継続した。培養開始後14日目にサンプリングした細胞についてトリパンブルー染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。また、実施例1-(4)と同様の方法でCD3CD56細胞含有比率を測定した。さらに、遺伝子導入により発現したタンパク質AcGFPの発現率を、遺伝子導入効率としてフローサイトメーターで解析した。結果を表13に示す。
(7) Gene transfer to CIK cell population and expansion culture Culture using the anti-human CD3 antibody and retronectin immobilized plate prepared in Example 6- (1) in the same manner as in Example 2- (2) Went. However, the IFN-γ previous day treatment group was not set. Furthermore, gene transfer (hereinafter referred to as a single infection group) on the fourth day of culture, gene transfer (hereinafter referred to as a double infection group) on days 4 and 5 after the start of culture, A non-gene transfer group (hereinafter referred to as a control group) that does not infect the virus was set to the infection group. That is, in the single infection group, 0.4 mL of the cell solution was transferred to the plate prepared in Example 6- (6) on the 4th day from the start of culture, and 0.5% HAB / 0.2% HSA / GT-T503 was transferred. Of IL-2 was added to a final concentration of 500 U / mL. The culture was continued on this plate until the 8th day. In the twice infected group, 1.5 mL of the cell solution was transferred to the plate prepared in Example 6- (6) on the 4th day from the start of the culture, and 0.5% HAB / 0.2% HSA / GT-T503 was added as 1. After adding 5 mL and diluting 2-fold, IL-2 was added to a final concentration of 500 U / mL. Furthermore, on the fifth day of the culture, 0.8 mL of the cell solution was transferred to the plate prepared in Example 6- (6), and 4.2 mL of 0.5% HAB / 0.2% HSA / GT-T503 was added. IL-2 was added to a final concentration of 500 U / mL after doubling dilution. The culture was continued on this plate until the 8th day. In the control group, the same operation was performed using a plate to which no virus was fixed in both the once-infected group and the twice-infected group. The culture was continued until day 14. The number of viable cells was counted by trypan blue staining for the cells sampled on the 14th day after the start of the culture, and the expansion culture rate was calculated by comparison with the number of cells at the start of the culture. Further, the CD3 + CD56 + cell content ratio was measured by the same method as in Example 1- (4). Furthermore, the expression rate of the protein AcGFP expressed by gene introduction was analyzed with a flow cytometer as gene introduction efficiency. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表13に示されるように、CIK細胞拡大培養時に遺伝子導入を実施しても、高いCD3CD56細胞比率を保ったまま目的とする遺伝子を発現するCIK細胞が得られた。また、感染回数が多いほど高い遺伝子導入効率が得られることが明らかとなった。 As shown in Table 13, even when gene transfer was performed during CIK cell expansion culture, CIK cells expressing the target gene were obtained while maintaining a high CD3 + CD56 + cell ratio. It was also found that the higher the number of infections, the higher the gene transfer efficiency.
 本発明により、養子免疫療法に好適な亜細胞集団といわれているCD3陽性CD56陽性細胞を高い割合で含有するCIK細胞を大量に提供することが可能になる。本発明によって得ることができる細胞集団は、養子免疫療法において有用である。 The present invention makes it possible to provide a large amount of CIK cells containing a high proportion of CD3-positive CD56-positive cells, which is said to be a sub-cell population suitable for adoptive immunotherapy. The cell population obtainable by the present invention is useful in adoptive immunotherapy.
SEQ ID NO:1 ; Partial region of fibronectin named CS-1.
SEQ ID NO:2 ; Partial region of fibronectin named III-10.
SEQ ID NO:3 ; Partial region of fibronectin in III-10.
SEQ ID NO:4 ; Fibronectin fragment named C-274.
SEQ ID NO:5 ; Fibronectin fragment named H-271.
SEQ ID NO:6 ; Fibronectin fragment named H-296.
SEQ ID NO:7 ; Fibronectin fragment named CH-271.
SEQ ID NO:8 ; Fibronectin fragment named CH-296.
SEQ ID NO:9 ; Fibronectin fragment named C-CS1.
SEQ ID NO:10 ; Designed oligonucleotide primer to amplify DNA fragment encodeing AcGFP.
SEQ ID NO:11 ; Designed oligonucleotide primer to amplify DNA fragment encodeing AcGFP.
SEQ ID NO: 1; Partial region of fibronectin named CS-1.
SEQ ID NO: 2; Partial region of fibronectin named III-10.
SEQ ID NO: 3; Partial region of fibronectin in III-10.
SEQ ID NO: 4; Fibronectin fragment named C-274.
SEQ ID NO: 5; Fibronectin fragment named H-271.
SEQ ID NO: 6; Fibronectin fragment named H-296.
SEQ ID NO: 7; Fibronectin fragment named CH-271.
SEQ ID NO: 8; Fibronectin fragment named CH-296.
SEQ ID NO: 9; Fibronectin fragment named C-CS1.
SEQ ID NO: 10; Designed oligonucleotide primer to amplify DNA fragment encodeing AcGFP.
SEQ ID NO: 11; Designed oligonucleotide primer to amplify DNA fragment encodeing AcGFP.

Claims (10)

  1.  下記工程(a)~(c)を包含する、サイトカイン誘導キラー細胞の製造方法:
    (a)CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団をCD3リガンド存在下で培養する工程;
    (b)工程(a)により得られた細胞集団をCD3リガンドの非存在下で培養する工程;及び
    (c)工程(b)により得られた細胞集団をCD3リガンド存在下で培養する工程。
    A method for producing cytokine-induced killer cells, comprising the following steps (a) to (c):
    (A) culturing a cell population containing cells capable of differentiating into CD3-positive CD56-positive cells and / or CD3-positive CD56-positive cells in the presence of a CD3 ligand;
    (B) culturing the cell population obtained in step (a) in the absence of CD3 ligand; and (c) culturing the cell population obtained in step (b) in the presence of CD3 ligand.
  2.  工程(a)~(c)のうち少なくとも一つの工程における細胞集団の培養が、インターフェロン-γ及び/又はインターロイキン-2の存在下で実施される、請求項1記載の製造方法。 The production method according to claim 1, wherein the culture of the cell population in at least one of steps (a) to (c) is performed in the presence of interferon-γ and / or interleukin-2.
  3.  CD3リガンドが抗CD3抗体である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the CD3 ligand is an anti-CD3 antibody.
  4.  工程(a)における培養が、フィブロネクチンフラグメントとCD3リガンドとの共存下で実施される、請求項1に記載の製造方法。 The production method according to claim 1, wherein the culture in the step (a) is performed in the presence of a fibronectin fragment and a CD3 ligand.
  5.  フィブロネクチンフラグメントが、下記からなる群より選択される領域を含有する、請求項4に記載の製造方法:
     VLA-4結合領域;
     VLA-5結合領域;及び
     ヘパリン結合領域。
    The production method according to claim 4, wherein the fibronectin fragment contains a region selected from the group consisting of:
    A VLA-4 binding region;
    A VLA-5 binding region; and a heparin binding region.
  6.  請求項1~5いずれか1項に記載の方法により得ることができる、サイトカイン誘導キラー細胞。 A cytokine-induced killer cell obtainable by the method according to any one of claims 1 to 5.
  7.  請求項6記載のサイトカイン誘導キラー細胞を有効成分として含有する医薬。 A medicament comprising the cytokine-induced killer cell according to claim 6 as an active ingredient.
  8.  請求項6記載のサイトカイン誘導キラー細胞の有効量を対象に投与する工程を含む疾患の治療方法又は予防方法。 A method for treating or preventing a disease, comprising a step of administering an effective amount of the cytokine-induced killer cell according to claim 6 to a subject.
  9.  疾患の治療に用いるための請求項6記載のサイトカイン誘導キラー細胞。 The cytokine-induced killer cell according to claim 6, for use in the treatment of a disease.
  10.  下記工程(A)~(D)を包含する、サイトカイン誘導キラー細胞の製造方法:
    (A)CD3陽性CD56陽性細胞に分化しうる細胞及び/又はCD3陽性CD56陽性細胞を含有する細胞集団を、CD3リガンドを含有する培地中で培養する工程;
    (B)前記培地のCD3リガンド濃度を低下させる工程;
    (C)CD3リガンド濃度が低下した培地中で細胞集団を培養する工程;及び
    (D)培地にCD3リガンドを添加し、さらに細胞集団を培養する工程。
    A method for producing cytokine-induced killer cells, comprising the following steps (A) to (D):
    (A) a step of culturing a cell population capable of differentiating into a CD3 positive CD56 positive cell and / or a cell population containing a CD3 positive CD56 positive cell in a medium containing a CD3 ligand;
    (B) reducing the CD3 ligand concentration in the medium;
    (C) culturing the cell population in a medium having a reduced CD3 ligand concentration; and (D) adding CD3 ligand to the medium and further culturing the cell population.
PCT/JP2010/069072 2009-10-28 2010-10-27 Process for production of cytokine-induced killer cells WO2011052638A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011538454A JP5097856B2 (en) 2009-10-28 2010-10-27 Method for producing cytokine-induced killer cells
CN2010800484438A CN102575231B (en) 2009-10-28 2010-10-27 Process for production of cytokine-induced killer cells
HK12111301.7A HK1170533A1 (en) 2009-10-28 2012-11-08 Process for production of cytokine-induced killer cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-247347 2009-10-28
JP2009247347 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011052638A1 true WO2011052638A1 (en) 2011-05-05

Family

ID=43922063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069072 WO2011052638A1 (en) 2009-10-28 2010-10-27 Process for production of cytokine-induced killer cells

Country Status (4)

Country Link
JP (1) JP5097856B2 (en)
CN (1) CN102575231B (en)
HK (1) HK1170533A1 (en)
WO (1) WO2011052638A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289624A1 (en) * 2013-12-18 2016-10-06 Toyo Seikan Group Holdings, Ltd. Culture container, method for culturing lymphocytes, culture-container production method, and solid-phasing apparatus
WO2018156735A1 (en) * 2017-02-22 2018-08-30 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bispecific antibody for cancer immunotherapy
US11524988B2 (en) 2016-09-19 2022-12-13 H. Lee Moffitt Cancer Center And Research Institute, Inc. Artificial antigen presenting cells for genetic engineering of immune cells
JP7190022B2 (en) 2018-07-10 2022-12-14 イミュニティーバイオ インコーポレイテッド Method for producing CIK NKT cells from cord blood
CN115651905A (en) * 2022-11-16 2023-01-31 南京鼓楼医院 Staged culture method for in-vitro amplification of human CIK cells and application thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103642754A (en) * 2013-12-04 2014-03-19 深圳市合一康生物科技有限公司 Preparation method of human D-CIK (dendritic cell activated and cytokine induced killer) cell with high toxicity and high value-adding capacity
CN103642752A (en) * 2013-12-04 2014-03-19 深圳市合一康生物科技有限公司 Preparation method of human CD3+CD8+CIK (cytokine induced killer) cells
CN103756960A (en) * 2013-12-04 2014-04-30 深圳市合一康生物科技有限公司 Special kit for high-toxicity and high-value-adding-capability human D-CIK cells
CN103642753A (en) * 2013-12-04 2014-03-19 深圳市合一康生物科技有限公司 Special kit for preparing human CD3+CD8+CIK (cytokine induced killer) cells
CN106011059A (en) * 2016-06-03 2016-10-12 福州市传染病医院 Method for enrichment culture of high-purity CD56 positive cells
CN107812013B (en) * 2017-10-20 2020-07-28 胥萍 Biological preparation for treating drug-resistant tuberculosis and preparation method thereof
CN113957051B (en) * 2021-11-24 2023-08-25 广东齐美生命医学技术研究院 CIK cell culture medium and culture method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139413A1 (en) * 2008-05-16 2009-11-19 タカラバイオ株式会社 Method for production of cell mass containing cytokine-induced killer cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037668B (en) * 2007-03-01 2010-09-22 常州市第一人民医院 Lymphocyte cultivation liquid and methodfor culturing CIK cell
CN101063108A (en) * 2007-04-25 2007-10-31 哈尔滨医科大学 Preparation method for CIK cell with high proliferation and high cell cytotoxic activity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139413A1 (en) * 2008-05-16 2009-11-19 タカラバイオ株式会社 Method for production of cell mass containing cytokine-induced killer cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROAKI SAGAWA ET AL.: "Ko-CD3 Kotai to RetroNectin o Kumiawaseru Koto ni yoru LAK- Saibo Inyu Ryoho no Kairyo", 62ND THE JAPANESE CANCER ASSOCIATION SOKAI, 25 August 2003 (2003-08-25), pages 438, XP003011566 *
LEEMHUIS, T. ET AL.: "A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma", BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, vol. 11, no. 3, 2005, pages 181 - 187, XP025312500, DOI: doi:10.1016/j.bbmt.2004.11.019 *
MITSUKO IDENO ET AL.: "RetroNectin to Ko-CD3 Kotai o Kumiawaseta Atarashii T-Saibo Tairyo Baiyo Gijutsu, T-Saibo Kakudai Baiyo to Naive T-Saibo Shudan no Keisei", BIOTHERAPY, vol. 22, no. 5, September 2008 (2008-09-01), pages 297 - 302 *
REN, WEI. ET AL.: "Proliferation and Cytotoxicity of RetroNectin-Activated Cytokine- induced Killer Cells against Cisplatin- resistant Lung Carcinoma Cell", CHINESE JOURNAL OF BIOTECHNOLOGY, vol. 24, no. 8, 25 August 2008 (2008-08-25), pages 1373 - 1380 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289624A1 (en) * 2013-12-18 2016-10-06 Toyo Seikan Group Holdings, Ltd. Culture container, method for culturing lymphocytes, culture-container production method, and solid-phasing apparatus
US11884907B2 (en) * 2013-12-18 2024-01-30 Toyo Seikan Group Holdings, Ltd. Culture container, method for culturing lymphocytes, culture-container production method, and solid-phasing apparatus
US11524988B2 (en) 2016-09-19 2022-12-13 H. Lee Moffitt Cancer Center And Research Institute, Inc. Artificial antigen presenting cells for genetic engineering of immune cells
WO2018156735A1 (en) * 2017-02-22 2018-08-30 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bispecific antibody for cancer immunotherapy
JP7190022B2 (en) 2018-07-10 2022-12-14 イミュニティーバイオ インコーポレイテッド Method for producing CIK NKT cells from cord blood
US11931382B2 (en) 2018-07-10 2024-03-19 Immunitybio, Inc. Generating CIK NKT cells from cord blood
CN115651905A (en) * 2022-11-16 2023-01-31 南京鼓楼医院 Staged culture method for in-vitro amplification of human CIK cells and application thereof

Also Published As

Publication number Publication date
JPWO2011052638A1 (en) 2013-03-21
JP5097856B2 (en) 2012-12-12
CN102575231A (en) 2012-07-11
CN102575231B (en) 2013-09-11
HK1170533A1 (en) 2013-03-01

Similar Documents

Publication Publication Date Title
JP5097856B2 (en) Method for producing cytokine-induced killer cells
JP6995624B2 (en) Modified gamma delta T cells and their use
JP5792622B2 (en) Method for producing natural killer cells
JP5156382B2 (en) Method for producing T cell population
TWI421344B (en) The manufacturing method of lymph
US9670459B2 (en) Production method for cell populations
AU2003221073B2 (en) Process for producing cytotoxic lymphocyte
JP7018387B2 (en) CXCR6 transduced T cells for tumor targeted therapy
WO2009139413A1 (en) Method for production of cell mass containing cytokine-induced killer cell
JP2018531016A6 (en) CXCR6 transduced T cells for tumor targeted therapy
WO2011024791A1 (en) Method for producing t cell population under presence of retinoic acid
JP5911810B2 (en) Method for producing regulatory T cells
JP5485139B2 (en) Method for producing transgenic cells
TW202043465A (en) Cd28 t cell cultures, compositions, and methods of using thereof
JP2010099022A (en) Method for producing lymphocyte
JP2010063455A (en) Method for producing lymphocyte
JP2010094123A (en) Method for producing lymphocyte

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048443.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826770

Country of ref document: EP

Kind code of ref document: A1