JP5911810B2 - Method for producing regulatory T cells - Google Patents

Method for producing regulatory T cells Download PDF

Info

Publication number
JP5911810B2
JP5911810B2 JP2012552771A JP2012552771A JP5911810B2 JP 5911810 B2 JP5911810 B2 JP 5911810B2 JP 2012552771 A JP2012552771 A JP 2012552771A JP 2012552771 A JP2012552771 A JP 2012552771A JP 5911810 B2 JP5911810 B2 JP 5911810B2
Authority
JP
Japan
Prior art keywords
cells
positive
cell
antibody
cultured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012552771A
Other languages
Japanese (ja)
Other versions
JPWO2012096376A1 (en
Inventor
敬章 片山
敬章 片山
広文 吉岡
広文 吉岡
峰野 純一
純一 峰野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Bio Inc
Original Assignee
Takara Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc filed Critical Takara Bio Inc
Publication of JPWO2012096376A1 publication Critical patent/JPWO2012096376A1/en
Application granted granted Critical
Publication of JP5911810B2 publication Critical patent/JP5911810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0637Immunosuppressive T lymphocytes, e.g. regulatory T cells or Treg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46433Antigens related to auto-immune diseases; Preparations to induce self-tolerance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46434Antigens related to induction of tolerance to non-self
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/464839Allergens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/58Adhesion molecules, e.g. ICAM, VCAM, CD18 (ligand), CD11 (ligand), CD49 (ligand)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、医療分野において有用な、制御性T細胞を含む細胞集団を製造する方法に関する。   The present invention relates to a method for producing a cell population containing regulatory T cells useful in the medical field.

制御性T細胞(Treg:Regulatory T cell)は、異常あるいは過剰な免疫応答を抑制する機能を持ち、免疫寛容を担うT細胞と一般に定義づけられる。ヒトにおける制御性T細胞の減少ないし機能異常は、自己免疫疾患やアレルギーの発症原因となる。したがって、制御性T細胞の量的又は質的なコントロールは、自己免疫疾患やアレルギーの治療に有用であり、さらには、難治性移植片対宿主病(GVHD:Graft Versus Host Disease)の治療など、移植免疫分野における新たな細胞療法となることが期待されている。   Regulatory T cells (Treg: Regulatory T cells) are generally defined as T cells that have a function of suppressing abnormal or excessive immune responses and are responsible for immune tolerance. Decrease or dysfunction of regulatory T cells in humans causes autoimmune diseases and allergies. Therefore, quantitative or qualitative control of regulatory T cells is useful for the treatment of autoimmune diseases and allergies, and also for the treatment of refractory graft-versus-host disease (GVHD), etc. It is expected to become a new cell therapy in the field of transplant immunity.

この制御性T細胞は、内在性制御性T細胞(nTreg:Naturally Occurring Regulatory T cell)と誘導性制御性T細胞(iTreg:Inducible Regulatory T cell)に便宜的に大別される。内在性制御性T細胞は、胸腺において分化し、外部からの抗原感作とは関係なく自然産生されるものと定義される。一方、誘導性制御性T細胞は、人為的な寛容誘導モデルにおいて、外来抗原刺激に応じて末梢ナイーブT細胞から分化誘導されるものと定義される。これらの制御性T細胞はさらに、その細胞に発現するマーカーの種類に従い細分化されている。   The regulatory T cells are roughly classified into an endogenous regulatory T cell (nTreg: Natural Occurring Regulatory T cell) and an inducible regulatory T cell (iTreg: Inducible Regulatory T cell). Endogenous regulatory T cells are defined as those that differentiate in the thymus and are naturally produced independent of external antigen sensitization. On the other hand, inducible regulatory T cells are defined as those induced to differentiate from peripheral naive T cells in response to foreign antigen stimulation in an artificial tolerance induction model. These regulatory T cells are further subdivided according to the type of marker expressed in the cells.

内在性制御性T細胞群の一つであるCD4陽性(以下、「CD4」とも記される。)CD25陽性(以下、「CD25」とも記される。)制御性T細胞を生体より除去すると、各種の臓器特異的な自己免疫疾患が自然発症し、その際、CD4CD25制御性T細胞を移植すると、自己免疫疾患の発症が阻止されるため、内在性CD4CD25制御性T細胞は、末梢での免疫自己寛容の維持に重要な働きをしていると考えられている。その後、CD4CD25制御性T細胞の機能が詳細に解析され、自己免疫のみならず、外来抗原による炎症、アレルギー、移植による拒絶反応、感染免疫、腫瘍免疫等、ほとんどの免疫反応を抑制し得ることが明らかになってきた。また、現在、このCD4CD25制御性T細胞のマスター制御因子として、転写因子Foxp3が明らかにされている(例えば、非特許文献1)。CD4 positive (hereinafter also referred to as “CD4 + ”) CD25 positive (hereinafter also referred to as “CD25 + ”) regulatory T cells, one of the endogenous regulatory T cell groups, is removed from the living body. Then, various organ-specific autoimmune diseases spontaneously develop, and when CD4 + CD25 + regulatory T cells are transplanted, the onset of autoimmune diseases is prevented, so that endogenous CD4 + CD25 + regulatory properties are obtained. T cells are thought to play an important role in maintaining immune tolerance in the periphery. Later, the function of CD4 + CD25 + regulatory T cells was analyzed in detail, suppressing not only autoimmunity but also most immune responses such as inflammation due to foreign antigens, allergies, transplant rejection, infection immunity, tumor immunity, etc. It has become clear to get. At present, the transcription factor Foxp3 has been clarified as a master regulator of CD4 + CD25 + regulatory T cells (for example, Non-Patent Document 1).

患者の末梢血から制御性T細胞を拡大培養により製造する方法として、主として次の二つの方法が考えられる。一つは、末梢血由来のT細胞含有画分を拡大培養に供し、その培養過程において、あるいは培養完了後に制御性T細胞を選択する方法である。もう一つは、末梢血から予め分離された制御性T細胞を出発材料として拡大培養する方法である。   As a method for producing regulatory T cells from the peripheral blood of a patient by expansion culture, the following two methods are mainly conceivable. One is a method in which a T cell-containing fraction derived from peripheral blood is subjected to expansion culture, and regulatory T cells are selected during the culture process or after completion of the culture. The other is a method of expanding culture using regulatory T cells previously separated from peripheral blood as a starting material.

しかし、前者において、生体外で制御性T細胞は他のT細胞に比べて増殖能が乏しく、拡大培養された多種多様の細胞群からさらに存在比が減少した制御性T細胞を選別する作業が難しいという問題がある。また、制御性T細胞に発現しているFoxp3は細胞内分子であるので、その発現を確認するためには、細胞膜の透過処理を施して染色をする必要がある。よって、Foxp3の発現は生細胞を分離する際の指標とはできない。   However, in the former, regulatory T cells have poor proliferation ability compared with other T cells in vitro, and there is an operation of selecting regulatory T cells having a reduced abundance ratio from a wide variety of expanded cell groups. There is a problem that it is difficult. In addition, since Foxp3 expressed in regulatory T cells is an intracellular molecule, in order to confirm its expression, it is necessary to perform permeabilization of the cell membrane for staining. Therefore, the expression of Foxp3 cannot be used as an index when separating live cells.

後者においても、生体外で制御性T細胞は増殖能が乏しく、制御性T細胞を多く得る点が問題である(例えば、非特許文献2)。   Even in the latter case, regulatory T cells have a poor ability to proliferate in vitro, and there is a problem that many regulatory T cells can be obtained (for example, Non-Patent Document 2).

したがって、制御性T細胞を前述された様々な細胞療法に用いるために、少ない量の末梢血から制御性T細胞を効率よく拡大培養できる方法が望まれている。   Therefore, in order to use the regulatory T cells for the various cell therapies described above, a method is desired that can efficiently expand the regulatory T cells from a small amount of peripheral blood.

CD3活性化物質である抗CD3抗体を用いた制御性T細胞の拡大培養方法(非特許文献3)、ならびに抗CD3抗体及び抗CD28抗体を併用した制御性T細胞の拡大培養方法(非特許文献4)が報告されている。しかしながらこれらの方法は、Foxp3陽性の制御性T細胞の製造方法としては満足いくものではない。   Regulatory T cell expansion culture method using anti-CD3 antibody that is a CD3 activator (Non-patent Document 3), and regulatory T cell expansion culture method using anti-CD3 antibody and anti-CD28 antibody in combination (Non-patent Document 3) 4) has been reported. However, these methods are not satisfactory as a method for producing Foxp3-positive regulatory T cells.

ネイチャー イムノロジー(Nature Immunology)、第4巻、第330〜336頁(2003)Nature Immunology, Volume 4, Pages 330-336 (2003) アニュアル レビュー オブ イムノロジー(Annual Review of Immunology)、第22巻、第531〜562頁(2004)Annual Review of Immunology, Vol. 22, pp. 531-562 (2004) ジャーナル オブ エクスペリメンタル メディシン(Journal of Experimental Medicine)、第193巻、第1285〜1294頁(2001)Journal of Experimental Medicine, Vol. 193, pages 1285 to 1294 (2001), Journal of Experimental Medicine. ブラッド(Blood)、第104巻、第453〜461頁(2004)Blood, Vol. 104, pp. 453-461 (2004) ブラッド(Blood)、第108巻、第4260〜4267頁(2006)Blood 108, 4260-4267 (2006) イムノロジー(Immunology)、第121巻、第129〜139頁(2007)Immunology, Vol. 121, pp. 129-139 (2007) ヨーロピアン ジャーナル オブ イムノロジー(European Journal of Immunology)、第37巻、第2378〜2389頁(2007)European Journal of Immunology, Vol. 37, pp. 2378-2389 (2007) ジャーナル オブ イムノロジー(Journal of Immunology)、第178巻、第320〜329頁(2007)Journal of Immunology, Vol. 178, pp. 320-329 (2007)

本発明の目的は、制御性T細胞を含む細胞集団の製造方法、およびその方法により製造された細胞集団、さらにその細胞集団を含む医薬を提供することにある。   An object of the present invention is to provide a method for producing a cell population containing regulatory T cells, a cell population produced by the method, and a medicament containing the cell population.

本発明者らは、フィブロネクチンもしくはそのフラグメント又はそれらの混合物の存在下で、CD3活性化物質を作用させることにより、CD25陽性T細胞集団の細胞増殖が有意に上昇し、Foxp3陽性の制御性T細胞を含む細胞集団を製造できることを見出した。さらに、CD3活性化物質及びCD28リガンドを併用した制御性T細胞の拡大培養方法においても、フィブロネクチンもしくはそのフラグメント又はそれらの混合物を共存させることで、CD25陽性T細胞集団の細胞増殖が有意に上昇し、効率よくFoxp3陽性の制御性T細胞を含む細胞集団を製造できることを見出し、本発明を完成するにいたった。   The present inventors have significantly increased the cell proliferation of the CD25 positive T cell population by causing a CD3 activator to act in the presence of fibronectin or a fragment thereof or a mixture thereof, and Foxp3 positive regulatory T cells. It has been found that a cell population containing can be produced. Furthermore, also in the method for expanding regulatory T cells using a CD3 activator and a CD28 ligand together, the cell proliferation of the CD25 positive T cell population is significantly increased by coexisting fibronectin or a fragment thereof or a mixture thereof. The present inventors have found that a cell population containing Foxp3-positive regulatory T cells can be efficiently produced, and have completed the present invention.

すなわち本発明を概説すれば、本発明の第1の発明は、下記工程を包含することを特徴とする、制御性T細胞を含む細胞集団の製造方法に関する:
(1)T細胞を含有する細胞集団からCD25陽性T細胞集団を分離する工程、及び
(2)CD3活性化物質及びフィブロネクチンもしくはそのフラグメント又はそれらの混合物の存在下で、工程(1)で得られた細胞集団を生体外で培養する工程。
That is, when the present invention is outlined, the first invention of the present invention relates to a method for producing a cell population containing regulatory T cells, which comprises the following steps:
(1) separating a CD25 positive T cell population from a cell population containing T cells; and (2) obtained in step (1) in the presence of a CD3 activator and fibronectin or a fragment thereof or a mixture thereof. Culturing a cell population in vitro.

本発明の第1の発明の態様において、工程(1)で得られた細胞集団を生体外で培養する工程が、CD28リガンドの共存下で培養する工程を包含する方法も、本発明の制御性T細胞を含む細胞集団の製造方法に包含される。また、CD28リガンドが抗CD28抗体であってもよい。更に、本発明の第1の態様において、CD25陽性T細胞集団がCD4陽性CD25陽性T細胞集団であってもよく、CD3活性化物質が抗CD3抗体であってもよい。   In the first aspect of the present invention, the method of culturing the cell population obtained in step (1) in vitro includes the step of culturing in the presence of CD28 ligand. It is included in a method for producing a cell population containing T cells. Further, the CD28 ligand may be an anti-CD28 antibody. Furthermore, in the first aspect of the present invention, the CD25 positive T cell population may be a CD4 positive CD25 positive T cell population, and the CD3 activator may be an anti-CD3 antibody.

本発明の第2の発明は、本発明の第1の態様で製造された細胞集団に関する。   The second invention of the present invention relates to the cell population produced in the first aspect of the present invention.

本発明の第3の発明は、本発明の第1の態様で製造された細胞集団を含有してなる、免疫抑制剤に関する。   The third invention of the present invention relates to an immunosuppressive agent comprising the cell population produced in the first aspect of the present invention.

本発明の第1の発明の態様として、Foxp3陽性の制御性T細胞を含む細胞集団の製造方法が挙げられる。   As a first aspect of the present invention, there is a method for producing a cell population containing Foxp3-positive regulatory T cells.

本発明の第2の発明の態様として、本発明の第1の発明の態様で製造されたFoxp3陽性の制御性T細胞を含有する細胞集団に関する。   As a second aspect of the present invention, the present invention relates to a cell population containing Foxp3-positive regulatory T cells produced in the first aspect of the present invention.

本発明の第3の発明の態様として、本発明の第1の発明の態様で製造されたFoxp3陽性の制御性T細胞を含有する細胞集団を含有してなる、免疫抑制剤が挙げられる。   As an aspect of the third invention of the present invention, an immunosuppressive agent comprising a cell population containing Foxp3-positive regulatory T cells produced in the first aspect of the present invention can be mentioned.

本発明の方法を用いれば、生体外で制御性T細胞を含む細胞集団を効率よく拡大培養できる。当該方法により製造された制御性T細胞は免疫抑制剤として臓器移植における拒絶反応、アレルギー疾患、自己免疫疾患、移植片対宿主病(GVHD)等の予防・治療に有用である。   By using the method of the present invention, a cell population containing regulatory T cells can be efficiently expanded in vitro. Regulatory T cells produced by this method are useful as an immunosuppressant for the prevention and treatment of organ transplant rejection, allergic diseases, autoimmune diseases, graft-versus-host disease (GVHD) and the like.

培養細胞の細胞増殖倍率(以下図中においてFold expansion:拡大倍数で表示)を示す図である。It is a figure which shows the cell growth magnification | multiplying_factor (Fold expansion: In the figure below, it displays with an expansion factor in a figure) of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive and CD25 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows CD4 positive, CD25 positive, and Foxp3 positive cell number of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive and CD25 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows CD4 positive, CD25 positive, and Foxp3 positive cell number of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive and CD25 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows CD4 positive, CD25 positive, and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性細胞に対する増殖抑制活性を示す図である。It is a figure which shows the growth inhibitory activity with respect to CD4 positive cell of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows the CD4 positive and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive, CD25 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつCD62L陽性かつCCR7陽性細胞数を示す図である。It is a figure which shows the number of CD4 positive, CD25 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 培養細胞のCD4陽性細胞に対する増殖抑制活性を示す図である。It is a figure which shows the growth inhibitory activity with respect to CD4 positive cell of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive and CD25 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows CD4 positive, CD25 positive, and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞数を示す図である。It is a figure which shows the number of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 培養細胞のCD8陽性細胞に対する増殖抑制活性を示す図である。It is a figure which shows the growth inhibitory activity with respect to CD8 positive cell of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性かつCCR7陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive, Foxp3 positive, and CCR7 positive cell of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性かつCD27陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive, Foxp3 positive, and CD27 positive cell of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows the CD4 positive and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性かつCCR7陽性細胞数を示す図である。It is a figure which shows CD4 positive, Foxp3 positive, and CCR7 positive cell number of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性かつCD27陽性細胞数を示す図である。It is a figure which shows the number of CD4 positive, Foxp3 positive, and CD27 positive cells of a cultured cell. 培養細胞由来DNAのバイサルファイトPCR産物の電気泳動写真を示す図である。It is a figure which shows the electrophoresis photograph of the bisulfite PCR product of cultured cell origin DNA. 培養細胞の制御性T細胞特異的脱メチル化領域のDNAメチル化の頻度を示す図である。It is a figure which shows the frequency of DNA methylation of the regulatory T cell specific demethylation area | region of a cultured cell. 培養細胞の各クローンにおける制御性T細胞特異的脱メチル化領域のDNAメチル化度を示す図である。It is a figure which shows the DNA methylation degree of the regulatory T cell specific demethylation area | region in each clone of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows the CD4 positive and Foxp3 positive cell number of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive and CD25 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows CD4 positive, CD25 positive, and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞数を示す図である。It is a figure which shows the number of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 再刺激後の培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of the cultured cell after restimulation. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive and CD25 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCCR7陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive, CD25 positive, Foxp3 positive, and CCR7 positive cells of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows CD4 positive, CD25 positive, and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCCR7陽性細胞数を示す図である。It is a figure which shows the CD4 positive, CD25 positive, Foxp3 positive, and CCR7 positive cell number of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す図である。It is a figure which shows the ratio of the CD4 positive and CD25 positive and Foxp3 positive cell of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す図である。It is a figure which shows the ratio of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows CD4 positive, CD25 positive, and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞数を示す図である。It is a figure which shows the number of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive, and CCR7 positive cells of a cultured cell. 培養細胞の細胞増殖倍率の経時変化を示す図である。It is a figure which shows the time-dependent change of the cell growth rate of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性細胞数を示す図である。It is a figure which shows the CD4 positive and Foxp3 positive cell number of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性かつCCR7陽性細胞数を示す図である。It is a figure which shows CD4 positive, Foxp3 positive, and CCR7 positive cell number of a cultured cell. 培養細胞のCD4陽性かつFoxp3陽性かつCD27陽性細胞数を示す図である。It is a figure which shows the number of CD4 positive, Foxp3 positive, and CD27 positive cells of a cultured cell.

T細胞とは、Tリンパ球とも呼ばれ、免疫応答に関与するリンパ球のうち胸腺に由来する細胞を意味し、分化したT細胞及び未分化なT細胞を含む。T細胞としては、ヘルパーT細胞(Th1型、Th2型、Th9型、Th17型、Th22型、Tfh型)、制御性T細胞、細胞傷害性T細胞、ナイーブT細胞、メモリーT細胞、α鎖とβ鎖のTCRを発現するαβT細胞、γ鎖とδ鎖のTCRを発現するγδT細胞、NKT細胞などが知られている。   T cells are also called T lymphocytes, mean cells derived from the thymus among lymphocytes involved in immune responses, and include differentiated T cells and undifferentiated T cells. T cells include helper T cells (Th1, Th2, Th9, Th17, Th22, Tfh), regulatory T cells, cytotoxic T cells, naive T cells, memory T cells, α chain Known are αβ T cells that express TCR of β chain, γδ T cells that express TCR of γ chain and δ chain, NKT cells, and the like.

制御性T細胞とは、T細胞受容体を介する刺激を受けたときに、エフェクターT細胞の活性化(増殖、サイトカイン産生等)を阻害し得る能力(免疫抑制活性)を有するT細胞を意味する。制御性T細胞は、通常CD4CD25T細胞画分内に存在する。制御性T細胞自体は、T細胞受容体を介する刺激に対しては実質的な増殖反応を示さず、不応答性であり得る。CD4CD25制御性T細胞のマスター制御因子として、転写因子Foxp3が知られている(なお、ここで「+」とは細胞表面に当該分子を発現している(陽性である)ことを指す。以下同様)。Regulatory T cells mean T cells that have the ability (immunosuppressive activity) to inhibit the activation (proliferation, cytokine production, etc.) of effector T cells when stimulated via a T cell receptor. . Regulatory T cells are usually present in the CD4 + CD25 + T cell fraction. Regulatory T cells themselves do not show a substantial proliferative response to stimulation through T cell receptors and may be unresponsive. The transcription factor Foxp3 is known as a master regulator of CD4 + CD25 + regulatory T cells (where “+” indicates that the molecule is expressed on the cell surface (positive)) The same shall apply hereinafter.

拡大培養されたCD4CD25T細胞集団の中で、L−セレクチン(CD62L)及びCCR7が共に陽性である細胞が、制御性T細胞の中でも特に免疫抑制活性が強いこと、またCD45RACD4CD25T細胞(ナイーブ制御性T細胞)集団を拡大培養することによりCD62L及びCCR7が共に陽性である細胞の割合が増加することが報告されている[ブラッド、第108巻、第4260〜4267頁(2006)]。また、拡大培養されたCD4CD25T細胞集団において、CD27の発現はFoxp3の発現及び免疫抑制活性と相関することが報告されている[イムノロジー、第121巻、第129〜139頁(2007)]。さらに、制御性T細胞におけるFoxp3の安定的な発現には、Foxp3座にある“制御性T細胞特異的脱メチル化領域”(TSDR)が脱メチル化されていることが重要であることが報告されている[ヨーロピアン ジャーナル オブ イムノロジー、第37巻、第2378〜2389頁(2007)]。さらに、制御性T細胞をラパマイシン存在下に拡大培養を行うことにより、Foxp3とCD25を発現する細胞の割合が増加することが報告されている[ジャーナル オブ イムノロジー、第178巻、第320〜329頁(2007)]。Among the expanded cultured CD4 + CD25 + T cell population, cells positive for both L-selectin (CD62L) and CCR7 have a particularly strong immunosuppressive activity among regulatory T cells, and CD45RA + CD4 + It has been reported that the proportion of cells that are both positive for CD62L and CCR7 increases by expanding the CD25 + T cell (naive regulatory T cell) population [Blood, 108, 4260-4267. (2006)]. In addition, it has been reported that CD27 expression correlates with Foxp3 expression and immunosuppressive activity in an expanded cultured CD4 + CD25 + T cell population [Immology, Vol. 121, pp. 129-139 (2007)]. ]. Furthermore, it is reported that for stable expression of Foxp3 in regulatory T cells, it is important that the “regulatory T cell-specific demethylation region” (TSDR) in the Foxp3 locus is demethylated. [European Journal of Immunology, Vol. 37, pp. 2378-2389 (2007)]. Furthermore, it has been reported that the proportion of cells expressing Foxp3 and CD25 increases by expanding the regulatory T cells in the presence of rapamycin [Journal of Immunology, Vol. 178, pp. 320-329]. (2007)].

本発明において、「制御性T細胞を含む細胞集団の製造」とは、制御性T細胞の増殖(拡大培養)を含む概念を意味する。本発明により、特に免疫抑制活性の強い制御性T細胞を高い比率で含有する細胞集団を効率よく得ることができる。   In the present invention, “production of a cell population containing regulatory T cells” means a concept including proliferation (expansion culture) of regulatory T cells. According to the present invention, a cell population containing a high ratio of regulatory T cells having particularly strong immunosuppressive activity can be efficiently obtained.

本発明において、「フィブロネクチン」及びそのフラグメントは、天然から単離されたもの、人為的に作製されたもの、又は遺伝子工学的に調製された組換え体、すなわち非天然のもののいずれでもよい。フィブロネクチン及びそのフラグメントは、例えば、ルオスラーティ E.ら〔Ruoslahti E., et al.、ジャーナル オブ バイオロジカル ケミストリー(J. Biol. Chem.)、第256巻、第14号、第7277〜7281頁(1981)〕の開示に基づき、天然起源の物質から実質的に純粋な形態で製造することができる。また、フィブロネクチンフラグメントを調製するための情報であるフィブロネクチンをコードする核酸配列及びフィブロネクチンのアミノ酸配列については、NCBI RefSeq Accession No.NM_002026、NP_002017にそれぞれ開示されている。本明細書において、実質的に純粋なフィブロネクチン又はフィブロネクチンフラグメントとは、これらが天然においてフィブロネクチンと一緒に存在する他のタンパク質を本質的に含有していないことを意味する。上記のフィブロネクチン及びそのフラグメントは、それぞれ単独で、もしくは複数の種類のものを混合して本発明に使用することができる。   In the present invention, “fibronectin” and fragments thereof may be isolated from nature, artificially prepared, or recombinantly prepared by genetic engineering, that is, non-naturally occurring. Fibronectin and fragments thereof are described, for example, in Luoslati E. [Ruoslahti E. et al. , Et al. , Journal of Biological Chemistry (Vol. 256, No. 14, pp. 7277-7281 (1981)), manufactured in a substantially pure form from a naturally occurring substance. can do. For the nucleic acid sequence encoding fibronectin and the amino acid sequence of fibronectin, which are information for preparing a fibronectin fragment, NCBI RefSeq Accession No. NM_002026 and NP_002017, respectively. As used herein, substantially pure fibronectin or fibronectin fragment means that they are essentially free of other proteins that are naturally present with fibronectin. The above fibronectin and fragments thereof can be used in the present invention alone or in combination with a plurality of types.

フィブロネクチンのドメイン構造は7つに分けられ、そのアミノ酸配列中には3種類の類似の配列が含まれており、これら各配列の繰返しで全体が構成されている。3種類の類似の配列は、それぞれI型、II型及びIII型と呼ばれている。フィブロネクチン中には14個のIII型の配列が存在するが、そのうち、8番目、9番目、10番目(以下、それぞれIII−8、III−9及びIII−10と称する)は細胞結合ドメインに、また12番目、13番目及び14番目(以下、それぞれIII−12、III−13及びIII−14と称する)はヘパリン結合ドメインに含有されている。また、ヘパリン結合ドメインのC末端側にはIIICSと呼ばれる領域が存在する。IIICSには25残基のアミノ酸からなる、VLA−4に対して結合活性を有するCS−1と呼ばれる領域が存在する。本発明に使用できるフィブロネクチンフラグメントは、III−7、8、9、11、12、13又はCS−1のいずれかのドメインを含むフラグメントであればよく、更に複数のドメインが繰り返し連結されたフラグメントであってもよい。例えば、VLA−5へのリガンドを含む細胞接着ドメイン、ヘパリン結合ドメイン、VLA−4へのリガンドであるCS−1ドメインなどを含有するフラグメントが本発明に使用される。前記組換えフラグメントとしては、例えば、ジャーナル オブ バイオケミストリー(J. Biochem.)、第110巻、第284〜291頁(1991)に記載されたCH−271(配列表の配列番号1)、CH−296(配列表の配列番号2)、H−271(配列表の配列番号3)、H−296(配列表の配列番号4)、又はこれらの誘導体もしくは改変物が例示される。前記のCH−296は細胞接着ドメイン、ヘパリン結合ドメイン及びCS−1ドメインを有する組換えフィブロネクチンフラグメントであり、レトロネクチン(登録商標、タカラバイオ社製)の名称で市販されている。   The domain structure of fibronectin is divided into seven, and the amino acid sequence includes three types of similar sequences, and the whole is constituted by repetition of these sequences. Three similar sequences are called type I, type II and type III, respectively. There are 14 type III sequences in fibronectin, of which 8th, 9th and 10th (hereinafter referred to as III-8, III-9 and III-10, respectively) are cell binding domains, The 12th, 13th and 14th (hereinafter referred to as III-12, III-13 and III-14, respectively) are contained in the heparin binding domain. A region called IIICS exists on the C-terminal side of the heparin-binding domain. IIICS has a region called CS-1, which consists of 25 amino acids and has binding activity to VLA-4. The fibronectin fragment that can be used in the present invention may be a fragment containing any domain of III-7, 8, 9, 11, 12, 13 or CS-1, and is a fragment in which a plurality of domains are repeatedly linked. There may be. For example, a fragment containing a cell adhesion domain containing a ligand for VLA-5, a heparin binding domain, a CS-1 domain that is a ligand for VLA-4, and the like is used in the present invention. Examples of the recombinant fragment include CH-271 (SEQ ID NO: 1 in the Sequence Listing) described in Journal of Biochemistry, Vol. 110, pages 284 to 291 (1991), CH- Examples include 296 (SEQ ID NO: 2 in the sequence listing), H-271 (SEQ ID NO: 3 in the sequence listing), H-296 (SEQ ID NO: 4 in the sequence listing), or derivatives or modifications thereof. The aforementioned CH-296 is a recombinant fibronectin fragment having a cell adhesion domain, a heparin binding domain and a CS-1 domain, and is commercially available under the name of RetroNectin (registered trademark, manufactured by Takara Bio Inc.).

本発明において、「CD25陽性T細胞集団」とは、CD25が陽性であるT細胞集団を意味するが、例えば、CD4及びCD25が共に陽性であるCD4陽性CD25陽性T細胞集団もCD25陽性T細胞集団に含まれる。   In the present invention, the “CD25 positive T cell population” means a T cell population that is positive for CD25. For example, a CD4 positive CD25 positive T cell population that is positive for both CD4 and CD25 is a CD25 positive T cell population. include.

以下、本発明を具体的に説明する。
1.制御性T細胞を含む細胞集団の製造方法
本発明の方法による制御性T細胞を含む細胞集団の製造は、T細胞を含有する細胞集団からCD25T細胞集団を分離する第1工程、第1工程により得られたCD25T細胞集団を、CD3活性化物質及びフィブロネクチンもしくはそのフラグメント又はそれらの混合物の存在下で培養する第2工程、により実施される。
Hereinafter, the present invention will be specifically described.
1. Method for producing cell population containing regulatory T cells Production of a cell population containing regulatory T cells according to the method of the present invention comprises a first step of separating a CD25 + T cell population from a cell population containing T cells, The CD25 + T cell population obtained by the step is performed by a second step of culturing in the presence of a CD3 activator and fibronectin or a fragment thereof or a mixture thereof.

既に、抗CD3抗体及び抗CD28抗体による共刺激によって、CD8細胞よりもCD4細胞が優先的に拡大培養されること、さらに抗CD3抗体及びフィブロネクチンフラグメントであるCH−296による共刺激によって、CD4細胞よりもCD8細胞が優先的に拡大培養されることが報告されている[キャンサー ジーン セラピー(Cancer Gene Therapy)、第15巻、第508〜516頁(2008)]。Already, CD4 + cells were preferentially expanded over CD8 + cells by costimulation with anti-CD3 and anti-CD28 antibodies, and further CD4 by costimulation with CH-296, an anti-CD3 antibody and fibronectin fragment. It has been reported that CD8 + cells are preferentially expanded rather than + cells [Cancer Gene Therapy, Vol. 15, pp. 508-516 (2008)].

本発明者らは、CD25T細胞集団をCD3活性化物質及びフィブロネクチンもしくはそのフラグメント又はそれらの混合物の存在下で培養することにより、CD25T細胞集団の細胞増殖率が有意に上昇し、効率よくFoxp3陽性の制御性T細胞を含む細胞集団を製造できることを見出した。The present inventors have found that by culturing in the presence of the CD25 + T cell population CD3 activator and fibronectin or a fragment or a mixture thereof that, cell proliferation rate of the CD25 + T cell population is significantly increased efficiency It was found that a cell population containing well Foxp3 positive regulatory T cells can be produced.

第1工程において、「T細胞を含有する細胞集団」としては特に本発明を限定するものではないが、末梢血単核細胞(PBMC)、末梢リンパ球、臍帯血単核細胞などが例示される。また、T細胞を含有する血球系細胞由来の種々の細胞集団を本発明に使用できる。これらの細胞はIL−2などのサイトカインにより生体内(イン・ビボ)又は生体外(エクス・ビボ)で活性化されていても良い。これらの細胞は生体から採取されたもの、あるいは生体外での培養を経て得られたものをそのまま使用してもよく、凍結保存した後に使用してもよい。また、例えば生体から得られた細胞集団から種々の誘導操作又は分離操作を経て得られた細胞集団、例えば、PBMC等から分離されたCD25の細胞集団も使用することができる。更に、本発明の細胞集団の製造方法では、前記細胞を含有する材料、例えば、末梢血、臍帯血などの血液、又は血液から赤血球もしくは血漿などの成分を除去したもの、骨髄液などを使用することもできる。In the first step, the present invention is not particularly limited as a “cell population containing T cells”, but peripheral blood mononuclear cells (PBMC), peripheral lymphocytes, cord blood mononuclear cells and the like are exemplified. . In addition, various cell populations derived from blood cells containing T cells can be used in the present invention. These cells may be activated in vivo (in vivo) or ex vivo (ex vivo) by cytokines such as IL-2. As these cells, those collected from a living body or those obtained through in vitro culture may be used as they are, or may be used after being cryopreserved. In addition, for example, a cell population obtained from a cell population obtained from a living body through various induction operations or separation operations, for example, a CD25 + cell population separated from PBMC or the like can be used. Furthermore, in the method for producing a cell population of the present invention, a material containing the cells, for example, blood such as peripheral blood or umbilical cord blood, blood from which components such as red blood cells or plasma are removed, bone marrow fluid, or the like is used. You can also

T細胞を含有する細胞集団からCD25T細胞集団を分離する工程は、例えばフローサイトメーターを用いる方法、もしくは免疫磁気ビーズ法などの公知の方法を用いて実施することができる。フローサイトメーターを用いる方法では、蛍光標識した抗CD25抗体で染色することにより区分されるCD25細胞を選択的に回収することによってCD25T細胞集団を分離することができる。また、別のマーカー[例えば、glucocorticoid−induced tumor necrosis factor receptor(GITR)]を標的に区分されるCD25細胞を選択的に回収することによってCD25T細胞集団を分離することもできる。さらに、該工程において、蛍光標識した抗CD25抗体及び抗CD4抗体で共染色することにより区分されるCD25かつCD4細胞を選択的に回収することによってCD25CD4T細胞集団を分離することができる。The step of separating the CD25 + T cell population from the T cell-containing cell population can be performed using a known method such as a method using a flow cytometer or an immunomagnetic bead method. In the method using a flow cytometer, a CD25 + T cell population can be separated by selectively recovering CD25 + cells that are sorted by staining with a fluorescently labeled anti-CD25 antibody. Alternatively, the CD25 + T cell population can be separated by selectively recovering CD25 + cells that are targeted to another marker [eg, glucocorticoid-induced tumor necrosis factor receptor (GITR)]. Further, in this step, the CD25 + CD4 + T cell population is separated by selectively recovering CD25 + and CD4 + cells that are sorted by co-staining with fluorescently labeled anti-CD25 antibody and anti-CD4 antibody. Can do.

免疫磁気ビーズ法は、種々の抗体を結合した磁気ビーズと磁石を併用することにより、細胞の分離を行う方法である。CD25CD4T細胞を分離するためのキットとして、例えばDynabeads Regulatory CD4CD25 T Cell Kit(Invitrogen社製)、CD4CD25 Regulatory T Cell Isolation Kit(Miltenyi Biotec社製)などがあり、キットに添付の取扱説明書に従い、CD25CD4T細胞を分離することができる。The immunomagnetic bead method is a method of separating cells by using magnetic beads combined with various antibodies and a magnet together. Examples of kits for isolating CD25 + CD4 + T cells include Dynabeads Regulatory CD4 + CD25 + T Cell Kit (manufactured by Invitrogen), CD4 + CD25 + Regulatory T Cell Isolation Kit (Milten) CD25 + CD4 + T cells can be isolated according to the instruction manual attached to.

なお、T細胞を含有する細胞集団から、CD25CD4T細胞以外の細胞を除去することにより、CD25CD4T細胞を高含有する細胞集団を得る操作も、本発明における第1工程の一態様である。Incidentally, from a cell population containing a T cell, by removing cells other than CD25 + CD4 + T cell, the operation of obtaining a cell population having a high content of CD25 + CD4 + T cell also the first step in the present invention It is one mode.

以上に例示した方法により取得されるCD25CD4T細胞集団も、本発明の制御性T細胞を含む細胞集団の製造方法の出発材料として使用することができる。The CD25 + CD4 + T cell population obtained by the method exemplified above can also be used as a starting material for the method for producing a cell population containing regulatory T cells of the present invention.

第2工程では、前記第1工程により得られたCD25T細胞集団がCD3活性化物質及びフィブロネクチンもしくはそのフラグメント又はそれらの混合物の存在下で培養される。In the second step, the CD25 + T cell population obtained in the first step is cultured in the presence of a CD3 activator and fibronectin or a fragment thereof or a mixture thereof.

これら2つの工程からなる本発明によれば、生体外で制御性T細胞を含む細胞集団を製造することが可能である。更に、当該方法により得られる制御性T細胞は、免疫抑制剤として臓器移植における拒絶反応、アレルギー疾患、自己免疫疾患、移植片対宿主病(GVHD等の予防・治療に有用であり、細胞療法などへの利用に好適である。   According to the present invention comprising these two steps, a cell population containing regulatory T cells can be produced in vitro. Furthermore, the regulatory T cells obtained by this method are useful as an immunosuppressive agent for organ transplant rejection, allergic diseases, autoimmune diseases, graft-versus-host diseases (GVHD, etc., cell therapy, etc. It is suitable for use in.

本発明の方法において、第2工程は、通常、本発明の製造方法を特徴づける有効成分、すなわちCD3活性化物質及びフィブロネクチンもしくはそのフラグメント又はそれらの混合物の存在下に、リンパ球の培養に使用される一般的な成分を含む培地中で行なわれる。   In the method of the present invention, the second step is usually used for the culture of lymphocytes in the presence of the active ingredients characterizing the production method of the present invention, that is, a CD3 activator and fibronectin or a fragment thereof or a mixture thereof. It is carried out in a medium containing general components.

本発明の制御性T細胞を含む細胞集団の製造方法において使用される培地は前記の有効成分を含有すれば特に限定はなく、CD25T細胞集団の維持、生育に適した成分を混合して作製された公知の培地を使用することができ、例えば市販の培地やその改変物であってもよい。これらの培地はその本来の構成成分以外に適当なタンパク質、サイトカイン類、その他の成分を含んでいてもよい。好適には、本発明にはIL−2を含有する培地が使用される。IL−2の培地中の濃度としては、特に限定はないが、例えば、好適には0.1〜1×10IU/mL、より好適には1〜1×10IU/mL、さらに好適には10〜1×10IU/mLである。また、他のサイトカイン類(IL−7、IL−15、IL−21等)、レクチンなどのリンパ球刺激因子又は免疫抑制剤であるラパマイシンを添加することもできる。The medium used in the method for producing a cell population containing regulatory T cells of the present invention is not particularly limited as long as it contains the above-mentioned active ingredients. Components suitable for maintaining and growing the CD25 + T cell population are mixed. The produced well-known culture medium can be used, for example, a commercially available culture medium and its modification may be sufficient. These media may contain appropriate proteins, cytokines, and other components in addition to the original components. Preferably, a medium containing IL-2 is used in the present invention. The concentration of IL-2 in the medium is not particularly limited. For example, it is preferably 0.1 to 1 × 10 5 IU / mL, more preferably 1 to 1 × 10 4 IU / mL, and more preferably. Is 10 to 1 × 10 3 IU / mL. In addition, other cytokines (IL-7, IL-15, IL-21, etc.), lymphocyte stimulating factors such as lectins or rapamycin which is an immunosuppressive agent can be added.

有効成分として本発明に使用されるCD3活性化物質としては、T細胞受容体やCD3に結合活性を有する物質であれば特に限定されないが、例えば、抗CD3抗体、コンカナバリンA(ConA)、フィトヘマグルチニン(PHA)、アロMHC分子、人工抗原提示細胞や樹状細胞により提示される抗原などが例示される。好適には抗CD3モノクローナル抗体が本発明に使用され、例えば、OKT3[サイエンス(Science)、第206巻、第347〜349頁(1979)]が特に好適である。CD3リガンドの培地中の濃度は特に限定されないが、例えば、抗CD3モノクローナル抗体を使用する場合、0.001〜100μg/mL、特に0.01〜50μg/mLが好適である。   The CD3 activator used in the present invention as an active ingredient is not particularly limited as long as it has a T cell receptor or CD3 binding activity. For example, anti-CD3 antibody, concanavalin A (ConA), phytohemagglutinin Examples include (PHA), allo MHC molecules, antigens presented by artificial antigen-presenting cells and dendritic cells, and the like. Preferably, an anti-CD3 monoclonal antibody is used in the present invention, and for example, OKT3 [Science, 206, 347-349 (1979)] is particularly suitable. The concentration of CD3 ligand in the medium is not particularly limited. For example, when an anti-CD3 monoclonal antibody is used, 0.001 to 100 μg / mL, particularly 0.01 to 50 μg / mL is preferable.

また、有効成分として本発明に使用されるフィブロネクチンもしくはそのフラグメント又はそれらの混合物の濃度は、特に限定されないが、例えば、0.001〜500μg/mL、特に0.01〜100μg/mLが好適である。   Further, the concentration of fibronectin or a fragment thereof or a mixture thereof used in the present invention as an active ingredient is not particularly limited. For example, 0.001 to 500 μg / mL, particularly 0.01 to 100 μg / mL is preferable. .

さらに、本発明において、必要に応じて、培地にCD28リガンドを添加してもよい。本発明に使用されるCD28リガンドとしては、CD28に結合活性を有する物質であれば特に限定されないが、例えば抗CD28抗体が挙げられる。CD28リガンドの培地中の濃度は、特に限定されないが、例えば、抗CD28モノクローナル抗体を使用する場合、0.001〜100μg/mL、特に0.01〜20μg/mLが好適である。CD28リガンド存在下での培養は、本発明において培養工程の一部のみで実施してもよく、培養全体を前記成分の存在下で実施してもよい。   Furthermore, in the present invention, a CD28 ligand may be added to the medium as necessary. The CD28 ligand used in the present invention is not particularly limited as long as it is a substance having a binding activity to CD28, and examples thereof include an anti-CD28 antibody. The concentration of CD28 ligand in the medium is not particularly limited. For example, when an anti-CD28 monoclonal antibody is used, 0.001 to 100 μg / mL, particularly 0.01 to 20 μg / mL is preferable. In the present invention, the culture in the presence of CD28 ligand may be performed only in a part of the culture process, or the entire culture may be performed in the presence of the above components.

なお、これらの成分のうち、「CD3活性化物質」、「フィブロネクチンもしくはそのフラグメント又はそれらの混合物」及び「CD28リガンド」は、培地中に溶解して共存させる以外に、適切な固相、例えば、シャーレ、フラスコ、バッグなどの細胞培養用器材(開放系のもの又は閉鎖系のもののいずれも含む)、又はビーズ、メンブレン、スライドガラスなどの細胞培養用担体に固定化することにより固相化して使用してもよい。それらの固相の材質は細胞培養に使用可能なものであれば特に限定されるものではない。該成分を、例えば、前記器材に固相化する場合、培地を該器材に入れた際に、該成分を培地中に溶解して用いる場合の所望の濃度と同様の割合となるように、器材に入れる培地量に対して各成分の一定量を固相化するのが好適であるが、当該成分の固相化量は所望の効果が得られる限り、特に限定されるものではない。前記担体は、細胞培養時に細胞培養用器材中の培養液に浸漬して使用される。前記成分を前記担体に固相化する場合、該担体を培地に入れた際に、該成分を培地中に溶解して用いる場合の所望の濃度と同様の割合となるように、器材に入れる培地量に対して各成分の一定量を固相化するのが好適であるが、当該成分の固相化量は所望の効果が得られる限り、特に限定されるものではない。いずれの場合においても、前記成分の固相化は、公知の方法、例えば、国際公開第97/18318号パンフレット及び国際公開第00/09168号パンフレットに記載されたフィブロネクチンフラグメントの固相化方法に準じて行なうことができる。さらに、「CD3活性化物質」、「フィブロネクチンもしくはそのフラグメント又はそれらの混合物」及び「CD28リガンド」以外の有効成分を、細胞培養用器材又は細胞培養用担体に固相化してもよい。例えば、抗4−1BB抗体、抗OX40抗体、抗GITR抗体、CD80、CD86、4−1BBL、OX40Lなどが例示される。   Among these components, “CD3 activator”, “fibronectin or a fragment thereof or a mixture thereof” and “CD28 ligand” are not only dissolved and coexisting in a medium, but also an appropriate solid phase, for example, Cell culture equipment such as petri dishes, flasks, bags, etc. (including both open and closed systems), or immobilized on cell culture carriers such as beads, membranes, glass slides, etc. May be. The material of the solid phase is not particularly limited as long as it can be used for cell culture. For example, in the case where the component is solid-phased on the device, when the medium is put in the device, the device has a ratio similar to a desired concentration when the component is dissolved in the medium and used. It is preferable to solidify a certain amount of each component with respect to the amount of medium to be put in, but the amount of the solid phase of the component is not particularly limited as long as a desired effect is obtained. The carrier is used by immersing it in a culture solution in a cell culture equipment during cell culture. When the component is solid-phased on the carrier, when the carrier is placed in the medium, the medium is placed in the equipment so that the ratio is the same as the desired concentration when the component is dissolved in the medium. It is preferable to solid-phase a certain amount of each component with respect to the amount, but the amount of the solid-phased component is not particularly limited as long as a desired effect is obtained. In any case, immobilization of the components is performed according to a known method, for example, a fibronectin fragment immobilization method described in WO 97/18318 pamphlet and WO 00/09168 pamphlet. Can be done. Furthermore, an active ingredient other than “CD3 activator”, “fibronectin or a fragment thereof or a mixture thereof” and “CD28 ligand” may be immobilized on a cell culture device or a cell culture carrier. For example, anti-4-1BB antibody, anti-OX40 antibody, anti-GITR antibody, CD80, CD86, 4-1BBL, OX40L and the like are exemplified.

前記の種々の成分や、本発明の有効成分から選択されるものを固相化しておけば、本発明の方法により制御性T細胞を含む細胞集団を得る過程で該細胞集団と固相とを分離するのみで、有効成分等と該細胞集団を容易に分離することができ、該細胞集団への有効成分などの混入を防ぐことができる。   If the above-mentioned various components and those selected from the active ingredients of the present invention are solid-phased, the cell population and the solid phase are obtained in the process of obtaining a cell population containing regulatory T cells by the method of the present invention. The active ingredient and the cell population can be easily separated only by separation, and contamination of the active ingredient and the like into the cell population can be prevented.

本発明の方法における第2工程は、前記の有効成分の存在下でのCD25T細胞集団の培養に続いて実施される、有効成分を含有しない培地での培養を包含してもよい。この際には、「CD3活性化物質」、「フィブロネクチンもしくはそのフラグメント又はそれらの混合物」のいずれか、もしくはその両方を含有しない他は同じ組成の培地を使用してもよく、異なる組成の培地を使用してもよい。The second step in the method of the present invention may include culturing in a medium containing no active ingredient, which is carried out following the cultivation of the CD25 + T cell population in the presence of the active ingredient. In this case, a medium having the same composition may be used except that it does not contain “CD3 activator”, “fibronectin or a fragment thereof, or a mixture thereof”, or both. May be used.

本発明の方法において前記の有効成分の存在下での培養の期間は1日以上であればよく、好ましくは2日以上であり、また、前記期間は8日以内であればよく、好ましくは6日以内である。さらに、増殖倍率を上げるために、前記の有効成分を含有しない培地での培養の後もしくはその途中で、再度有効成分を含有する培地、もしくは有効成分を固相化した細胞培養用器材又は細胞培養用担体を用いて培養を行ってもよい。   In the method of the present invention, the culture period in the presence of the active ingredient may be 1 day or longer, preferably 2 days or longer, and the period may be within 8 days, preferably 6 Within days. Further, in order to increase the multiplication factor, the medium containing the active ingredient again, or the cell culture equipment or cell culture in which the active ingredient is solidified after or during the culture in the medium not containing the active ingredient Culture may be performed using a carrier for use.

本発明には血清又は血漿を含有しない培地を使用することもできるが、培地に血清又は血漿を添加してもよい。これらの培地中への添加量は特に限定はされないが、0超〜20容量%、好適には0超〜6容量%の含有量が例示され、また、培養段階に応じて使用する血清又は血漿の量を変更することができる。例えば、血清又は血漿濃度を段階的に減らして使用することもできる。なお、血清又は血漿の由来としては、自己(培養する細胞と由来が同じであることを意味する)又は非自己(培養する細胞と由来が異なることを意味する)のいずれでもよいが、安全性の観点から、自己由来のものが好適に使用される。   In the present invention, a medium containing no serum or plasma can be used, but serum or plasma may be added to the medium. The amount added to these media is not particularly limited, but examples include a content of more than 0 to 20% by volume, preferably more than 0 to 6% by volume, and serum or plasma used depending on the culture stage The amount of can be changed. For example, the serum or plasma concentration can be decreased in stages and used. The origin of serum or plasma may be either self (meaning that the origin is the same as the cell to be cultured) or non-self (meaning that the origin is different from the cell to be cultured). From this point of view, self-derived ones are preferably used.

本発明において使用される培養開始時の細胞数としては、特に限定はされないが、例えば、好適には10〜1×10cells/mL、より好適には10〜5×10cells/mL、更に好適には10〜1×10cells/mLが例示される。また、培養条件に特に限定はなく、細胞培養に通常使用される条件を使用することができる。例えば、37℃、5%COなどの条件で培養することができる。また、適当な時間間隔をおいて細胞培養液に新鮮な培地を加えて希釈する、培地を交換する、細胞培養用器材を交換するなどの操作を行うことができる。Although it does not specifically limit as a cell number at the time of the culture | cultivation start used in this invention, For example, Preferably it is 10 < 2 > -1 * 10 < 8 > cells / mL, More preferably, 10 < 3 > -5 * 10 < 7 > cells / mL. mL, more preferably 10 4 to 1 × 10 7 cells / mL are exemplified. Moreover, there is no limitation in particular in culture conditions, The conditions normally used for cell culture can be used. For example, it can be cultured in conditions such as 37 ℃, 5% CO 2. In addition, operations such as dilution by adding a fresh medium to the cell culture medium at an appropriate time interval, exchanging the medium, and exchanging the cell culture equipment can be performed.

本発明の製造方法において使用される細胞培養用器材として、特に限定されないが、例えば、シャーレ、フラスコ、バッグ、大型培養槽、バイオリアクターなどを使用することができる。なお、バッグとしては、細胞培養用COガス透過性バッグを使用することができる。また、工業的に大量の細胞集団を製造する場合には、大型培養槽を使用することができる。また、培養は開放系又は閉鎖系のいずれにおいても実施することができるが、得られる細胞集団の安全性の観点から、閉鎖系で培養を行うことが好ましい。Although it does not specifically limit as a cell culture equipment used in the manufacturing method of this invention, For example, a petri dish, a flask, a bag, a large culture tank, a bioreactor etc. can be used. As the bag, a CO 2 gas permeable bag for cell culture can be used. Moreover, when manufacturing a large cell population industrially, a large culture tank can be used. Moreover, although culture | cultivation can be implemented in any of an open system or a closed system, it is preferable to culture by a closed system from a viewpoint of the safety | security of the cell population obtained.

本発明において、有効成分存在下、非存在下での培養を合わせた総培養日数は、好適には5〜40日間であり、より好適には6〜35日間、更に好適には7〜30日間である。この範囲で、一般的な免疫療法に使用しうる細胞数を得ることができ、細胞増殖が良好に維持される期間を適宜選択すればよい。   In the present invention, the total number of culture days in the culture in the presence and absence of active ingredients is preferably 5 to 40 days, more preferably 6 to 35 days, and even more preferably 7 to 30 days. It is. Within this range, the number of cells that can be used for general immunotherapy can be obtained, and the period during which cell growth is maintained well may be selected as appropriate.

本発明の製造方法で得られる細胞集団は、CD4及びCD25が共に陽性であり、かつFoxp3陽性細胞の含有率が高い。さらに、CD4及びCD25が共に陽性であり、かつCD62L及びCCR7が共に陽性である細胞の含有率が高い。前述したように、CD4、CD25、CD62L及びCCR7が陽性の細胞は、免疫抑制活性の強い制御性T細胞であることが知られている。   The cell population obtained by the production method of the present invention is positive for both CD4 and CD25 and has a high content of Foxp3-positive cells. Furthermore, the content rate of cells in which both CD4 and CD25 are positive and both CD62L and CCR7 are positive is high. As described above, cells positive for CD4, CD25, CD62L and CCR7 are known to be regulatory T cells with strong immunosuppressive activity.

すなわち、下記の各実施例に示すように、本発明の製造方法により得られる細胞集団に高比率に含まれる細胞は、免疫抑制活性の強い制御性T細胞である。また、本発明の製造方法は、抗CD3抗体および抗CD28抗体のみを使用する従来法よりもさらに制御性T細胞の増殖が良好な点で優れた拡大培養である。   That is, as shown in each Example below, cells contained in a high ratio in the cell population obtained by the production method of the present invention are regulatory T cells with strong immunosuppressive activity. In addition, the production method of the present invention is an expanded culture that is superior to the conventional method using only anti-CD3 antibody and anti-CD28 antibody in that the proliferation of regulatory T cells is better.

本発明の制御性T細胞を含む細胞集団の製造方法により得られた細胞集団中には、通常、制御性T細胞以外の細胞も混在している。本発明の製造方法は、得られた細胞集団から制御性T細胞を分離する工程をさらに含んでもよい。すなわち、本発明において、制御性T細胞を含有する細胞集団中の制御性T細胞以外の細胞と制御性T細胞との分離操作を施すことにより、制御性T細胞が濃縮された細胞集団を調製し、使用することができる。制御性T細胞の分離は公知の方法に従って実施することができる。例えば、フローサイトメーターを用いて、蛍光標識した抗CD4抗体、抗CD25抗体、抗CD62L抗体及び抗CCR7抗体で共染色することにより区分されるCD4陽性かつCD25陽性かつCD62L陽性かつCCR7陽性細胞を選択的に回収することによって、免疫抑制活性が高い制御性T細胞を分離することができる。また、本発明の製造方法より得られた細胞集団から、制御性T細胞以外の細胞を除去することにより、制御性T細胞を高含有する細胞集団を得ることができる。また、本発明における制御性T細胞を高含有する細胞集団には、制御性T細胞のみの細胞集団も包含され得る。   In the cell population obtained by the method for producing a cell population containing regulatory T cells of the present invention, cells other than regulatory T cells are usually also present. The production method of the present invention may further include a step of separating regulatory T cells from the obtained cell population. That is, in the present invention, a cell population enriched with regulatory T cells is prepared by separating cells other than regulatory T cells from regulatory T cells in a cell population containing regulatory T cells. And can be used. Isolation of regulatory T cells can be performed according to a known method. For example, using a flow cytometer, select CD4-positive, CD25-positive, CD62L-positive, and CCR7-positive cells that are differentiated by co-staining with fluorescently labeled anti-CD4 antibody, anti-CD25 antibody, anti-CD62L antibody, and anti-CCR7 antibody. The regulatory T cells having a high immunosuppressive activity can be isolated by recovering the target. Further, by removing cells other than regulatory T cells from the cell population obtained by the production method of the present invention, a cell population containing a high amount of regulatory T cells can be obtained. In addition, the cell population containing a high amount of regulatory T cells in the present invention may include a cell population containing only regulatory T cells.

本発明によれば、上記の「制御性T細胞を含有する細胞集団の製造方法」を利用した、所望の遺伝子が導入された制御性T細胞を含有する細胞集団を製造する方法が提供される。当該方法は、前述した第1工程及び第2工程に加えて、遺伝子導入の工程を包含する。   According to the present invention, there is provided a method for producing a cell population containing regulatory T cells into which a desired gene has been introduced, utilizing the above-described “method for producing a cell population containing regulatory T cells”. . The method includes a gene introduction step in addition to the first step and the second step described above.

制御性T細胞を含有する細胞集団に所望の遺伝子を導入する遺伝子導入の工程は、第1工程の終了後に、第2工程と同時に、又は第2工程の終了後に実施することができる。前述した第1工程及び第2工程と該遺伝子導入工程を組み合わせることにより、制御性T細胞を含有する細胞集団への遺伝子導入効率が向上する。すなわち、本発明の方法により製造される細胞集団は所望の遺伝子が導入された制御性T細胞を高比率で含む細胞集団である。本発明は遺伝子治療用細胞の製造に特に有用である。   The step of gene introduction for introducing a desired gene into a cell population containing regulatory T cells can be performed after completion of the first step, simultaneously with the second step, or after completion of the second step. By combining the first and second steps and the gene introduction step described above, the efficiency of gene introduction into a cell population containing regulatory T cells is improved. That is, the cell population produced by the method of the present invention is a cell population containing a high percentage of regulatory T cells into which a desired gene has been introduced. The present invention is particularly useful for the production of cells for gene therapy.

本発明において制御性T細胞を含有する細胞集団に導入される所望の遺伝子は特に限定はなく、自己由来の遺伝子又は外来遺伝子から前記細胞に導入することが望まれる任意の遺伝子を選ぶことができる。このような遺伝子としては、例えば、タンパク質(例えば、酵素、サイトカイン類、レセプター類など)をコードするもの以外に、アンチセンス核酸、siRNA(small interfering RNA)又はリボザイムをコードするものが使用できる。また、遺伝子導入された細胞の選択を可能にする適当なマーカー遺伝子や遺伝子導入された細胞を選択的に除去するための自殺遺伝子を上記遺伝子と一緒に導入してもよい。すなわち、導入する所望の遺伝子の数に限定はなく、複数の遺伝子を導入することもできる。   In the present invention, the desired gene to be introduced into the cell population containing regulatory T cells is not particularly limited, and any gene desired to be introduced into the cell can be selected from a self-derived gene or a foreign gene. . As such a gene, for example, a gene encoding an antisense nucleic acid, siRNA (small interfering RNA) or ribozyme can be used in addition to a gene encoding a protein (for example, an enzyme, cytokines, receptors, etc.). In addition, an appropriate marker gene that enables selection of the gene-introduced cell and a suicide gene for selectively removing the gene-introduced cell may be introduced together with the gene. That is, the number of desired genes to be introduced is not limited, and a plurality of genes can be introduced.

導入される所望の遺伝子は天然より得られたものでも、又は遺伝子工学的に作製されたものでもよく、あるいは起源を異にするDNA分子がライゲーションなどの公知の手段によって結合されたものであってもよい。更に、目的に応じて天然の配列に変異が導入された配列を有するものであってもよい。   The desired gene to be introduced may have been obtained from nature, or may have been genetically engineered, or may be a DNA molecule of different origin bound by a known means such as ligation. Also good. Furthermore, it may have a sequence in which a mutation is introduced into a natural sequence depending on the purpose.

特に限定はされないが、本発明の一態様として、所望の抗原を認識するレセプターをコードする遺伝子の導入が例示される。当該遺伝子としては、標的細胞の表面抗原を認識するT細胞レセプター(TCR)をコードする遺伝子、又は標的細胞の表面抗原に対する抗体の抗原認識部位と、レセプター分子由来の膜貫通ドメイン及び細胞内ドメインを含むキメラレセプターをコードする遺伝子が例示される。この遺伝子が導入された制御性T細胞を含む細胞集団は、所望の抗原を認識する制御性T細胞を含有している細胞集団である。当該細胞集団は、レセプターをコードする遺伝子が導入されていない細胞集団と比較して、所望の抗原に対する特異性の高い細胞集団であり、所望の抗原の刺激を受けた際に当該抗原や当該抗原を提示する細胞に特異的に反応することができることから、免疫療法への利用に有用である。   Although not particularly limited, one embodiment of the present invention includes introduction of a gene encoding a receptor that recognizes a desired antigen. The gene includes a gene encoding a T cell receptor (TCR) that recognizes the surface antigen of the target cell, or an antigen recognition site of an antibody against the surface antigen of the target cell, a transmembrane domain and an intracellular domain derived from the receptor molecule. Examples include genes encoding chimeric receptors. The cell population containing regulatory T cells into which this gene has been introduced is a cell population containing regulatory T cells that recognize a desired antigen. The cell population is a cell population having a high specificity for a desired antigen as compared to a cell population into which a gene encoding a receptor has not been introduced. It is useful for use in immunotherapy because it can react specifically with cells presenting the.

所望の遺伝子は、例えば、適当なプロモーターの制御下に発現されるようにベクター又はプラスミドなどに挿入して使用することができる。また、効率のよい遺伝子の転写を達成するために、プロモーター又は転写開始部位と協同する他の調節要素、例えば、エンハンサー配列又はターミネーター配列がベクター内に存在していてもよい。また、相同組換えにより導入対象の制御性T細胞の染色体へ挿入することを目的として、例えば、該染色体における遺伝子の所望の標的挿入部位の両側にある塩基配列に各々相同性を有する塩基配列からなるフランキング配列の間に前記の遺伝子を配置してもよい。   The desired gene can be used by being inserted into a vector or a plasmid so as to be expressed under the control of an appropriate promoter, for example. In addition, in order to achieve efficient gene transcription, promoters or other regulatory elements that cooperate with the transcription initiation site, such as enhancer sequences or terminator sequences, may be present in the vector. In addition, for the purpose of inserting into the chromosome of the regulatory T cell to be introduced by homologous recombination, for example, from the base sequence having homology to the base sequences on both sides of the desired target insertion site of the gene in the chromosome The gene may be placed between flanking sequences.

本発明において、遺伝子導入工程における所望の遺伝子の導入手段に特に限定はなく、公知の遺伝子導入方法により適切なものを選択して使用することができる。前記の遺伝子導入方法としては、ウイルスベクターを使用する方法、該ベクターを使用しない方法のいずれも本発明にて使用できる。それらの方法の詳細については、すでに多くの文献が公表されている。   In the present invention, the means for introducing a desired gene in the gene introduction step is not particularly limited, and an appropriate one can be selected and used by a known gene introduction method. As the gene introduction method, any of a method using a viral vector and a method not using the vector can be used in the present invention. Much literature has already been published about the details of these methods.

前記ウイルスベクターに特に限定はなく、遺伝子導入方法に通常使用される公知のウイルスベクター、例えば、レトロウイルスベクター(レンチウイルスベクター、シュードタイプベクターを包含する)、アデノウイルスベクター、アデノ随伴ウイルスベクター、シミアンウイルスベクター、ワクシニアウイルスベクター、センダイウイルスベクターなどが使用できる。特に好適には、レトロウイルスベクター、アデノウイルスベクター又はレンチウイルスベクターが使用される。上記ウイルスベクターとしては、感染した細胞中で自己複製できないように複製能を欠損させたものが好適である。   The viral vector is not particularly limited, and is a known viral vector commonly used in gene transfer methods, such as retroviral vectors (including lentiviral vectors and pseudotype vectors), adenoviral vectors, adeno-associated viral vectors, and simian. Viral vectors, vaccinia virus vectors, Sendai virus vectors and the like can be used. Particularly preferably, retroviral vectors, adenoviral vectors or lentiviral vectors are used. As the above-mentioned virus vector, those lacking replication ability so that they cannot self-replicate in infected cells are suitable.

ウイルスベクターを使用しない遺伝子導入方法として、本発明を限定するものではないが、例えば、リポソーム、リガンド−ポリリジンなどの担体を使用する方法、リン酸カルシウム法、エレクトロポレーション法、パーティクルガン法などを使用することができる。この場合、プラスミドDNA、直鎖状DNA又はRNAに組み込まれた外来遺伝子が導入される。   Although the present invention is not limited as a gene transfer method without using a viral vector, for example, a method using a carrier such as a liposome or a ligand-polylysine, a calcium phosphate method, an electroporation method, a particle gun method or the like is used. be able to. In this case, a foreign gene incorporated into plasmid DNA, linear DNA or RNA is introduced.

レトロウイルスベクターならびにレンチウイルスベクターは、当該ベクターが導入される細胞の染色体DNA中に該ベクターに挿入されている外来遺伝子を安定に組み込むことができ、遺伝子治療等の目的に使用されている。当該ベクターは分裂、増殖中の細胞に感染しうることから、本発明の製造方法にて遺伝子導入を行うのに特に好適である。多数のレトロウイルスベクター、レンチウイルスベクターが文献等で発表されており、また、すでに市販されている。本発明にはこれらの公知のベクターを使用することができる。   Retroviral vectors and lentiviral vectors can stably incorporate a foreign gene inserted into the chromosomal DNA of a cell into which the vector is introduced, and are used for gene therapy and other purposes. Since the vector can infect cells that are dividing and proliferating, it is particularly suitable for gene transfer by the production method of the present invention. Many retrovirus vectors and lentivirus vectors have been published in the literature and are already commercially available. These known vectors can be used in the present invention.

また、これらのベクターは公知のパッケージング細胞株を使用することにより、該ベクターがパッケージングされたウイルス粒子として調製することができる。また、トランスフェクション効率の高い293細胞又は293T細胞を用いてレトロウイルス産生細胞を作製することもできる。   Moreover, these vectors can be prepared as virus particles in which the vector is packaged by using a known packaging cell line. In addition, retrovirus-producing cells can be prepared using 293 cells or 293T cells with high transfection efficiency.

前記のとおり、本発明にはウイルスのゲノムが由来するものとは異種のウイルス由来のエンベロープを有する、シュードタイプ(pseudotyped)パッケージングによって作製されたレトロウイルス、レンチウイルスも使用することができる。例えば、モロニーマウス白血病ウイルス(MoMLV)、テナガザル白血病ウイルス(GaLV)、水泡性口内炎ウイルス(VSV)又はネコ内在性ウイルス(feline endogenous virus)由来のエンベロープを有するシュードタイプレトロウイルスを使用することができる。更に、糖鎖修飾を受けたエンベロープやその他の膜タンパクをその表面に有するレトロウイルス、レンチウイルスも本発明に使用できる。   As described above, retroviruses and lentiviruses produced by pseudotype packaging having an envelope derived from a virus different from that from which the virus genome is derived can also be used in the present invention. For example, pseudotyped retroviruses with envelopes derived from Moloney murine leukemia virus (MoMLV), gibbon leukemia virus (GaLV), vesicular stomatitis virus (VSV) or feline endogenous virus can be used. Furthermore, retroviruses and lentiviruses having a sugar chain modified envelope or other membrane protein on their surface can also be used in the present invention.

レトロウイルスベクターを使用して遺伝子導入を行う場合、レトロウイルス結合活性を有する機能性物質を使用して遺伝子導入効率を向上させることができる。さらに、標的細胞結合活性を有する機能性物質を併用して標的細胞特異的な遺伝子導入を実施することもできる(例えば、国際公開第95/26200号パンフレット、国際公開第97/18318号パンフレット、国際公開第00/01836号パンフレット参照)。   When gene transfer is performed using a retrovirus vector, the gene transfer efficiency can be improved by using a functional substance having a retrovirus binding activity. Furthermore, a target cell-specific gene transfer can be carried out in combination with a functional substance having target cell binding activity (for example, International Publication No. 95/26200, International Publication No. 97/18318, International Publication No. (See Publication No. 00/01836 pamphlet).

以上説明したように、第1工程の終了後に、第2工程と同時に、又は第2工程の終了後に、遺伝子導入を行う本発明の方法により、制御性T細胞を含む細胞集団への遺伝子導入を効率よく行うことが可能となる。また、本発明の方法は、特別な設備、装置を必要とせず、また、多種のレトロウイルスベクター及び標的細胞について有効である。更に、当該方法は閉鎖系での利用に適していることから、遺伝子治療などの臨床用途で非常に有用である。   As described above, gene transfer into a cell population containing regulatory T cells can be achieved by the method of the present invention in which gene transfer is performed after the end of the first step, simultaneously with the second step, or after the end of the second step. It becomes possible to carry out efficiently. In addition, the method of the present invention does not require any special equipment or apparatus, and is effective for various retroviral vectors and target cells. Furthermore, since the method is suitable for use in a closed system, it is very useful in clinical applications such as gene therapy.

本発明の遺伝子が導入された制御性T細胞を含む細胞集団の製造方法は、遺伝子導入工程を第2工程の終了後に実施する場合、遺伝子導入工程で得られた遺伝子導入細胞を培養する工程をさらに包含してもよい。前記の培養工程は、第2工程と同様に実施することができる。   In the method for producing a cell population containing regulatory T cells into which the gene of the present invention has been introduced, the step of culturing the gene-transferred cells obtained in the gene transfer step when the gene transfer step is performed after the end of the second step. Further, it may be included. The culture step can be performed in the same manner as the second step.

本発明の遺伝子が導入された制御性T細胞を含む細胞集団の製造方法における総培養日数は、遺伝子導入を実施しないものと同程度とすればよい。   The total number of culture days in the method for producing a cell population containing regulatory T cells into which the gene of the present invention has been introduced may be the same as that in which no gene introduction is performed.

2.本発明の方法により製造される制御性T細胞を含む細胞集団を含有してなる医薬
本発明の方法により製造される細胞集団は、強い免疫抑制活性を有するので、何らかの原因により生体内で免疫反応が異常に亢進し望ましくない免疫反応が起こっている場合、あるいは望ましくない免疫反応が起こることが将来的に予測される場合等に、患者に該細胞集団を投与すること等によって、患者の体内において異常に亢進した望ましくない免疫反応を抑制、あるいは回避することが出来る。
2. Medicament comprising a cell population containing regulatory T cells produced by the method of the present invention The cell population produced by the method of the present invention has a strong immunosuppressive activity, so an immune reaction in vivo due to some cause In the patient's body, such as by administering the cell population to the patient when an undesired immune response is occurring abnormally or an undesirable immune response is occurring or when an undesirable immune response is predicted in the future. Abnormally enhanced undesirable immune reactions can be suppressed or avoided.

本発明は、上記方法により製造され得る細胞集団を含有してなる、免疫抑制剤を提供する。本発明の免疫抑制剤は、臓器移植における拒絶反応、自己免疫疾患、アレルギー疾患(花粉症、食品アレルギー、薬剤アレルギー、喘息、アトピー性皮膚炎、湿疹、食物過敏症、蕁麻疹、アレルギー性鼻炎、アレルギー性結膜炎)、移植片対宿主病(GVHD)等の予防・治療に有用である。   The present invention provides an immunosuppressive agent comprising a cell population that can be produced by the above method. The immunosuppressive agent of the present invention includes rejection in organ transplantation, autoimmune disease, allergic disease (hay fever, food allergy, drug allergy, asthma, atopic dermatitis, eczema, food sensitivity, hives, allergic rhinitis, Allergic conjunctivitis) and graft-versus-host disease (GVHD) are useful for prevention and treatment.

本発明の免疫抑制剤は、常套手段に従って、有効量の上記制御性T細胞を含有する細胞集団を医薬として許容される担体と混合するなどして、経口/非経口製剤として製造することが出来る。本発明の免疫抑制剤は、通常は、注射剤、懸濁剤、点滴剤等の非経口製剤として製造される。当該非経口製剤に含まれ得る担体としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D−ソルビトール、D−マンニトール、塩化ナトリウムなど)などの注射用の水性液を挙げることが出来る。本発明の免疫抑制剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤、酸化防止剤、免疫抑制剤(ラパマイシンなど)、抗体製剤、細胞製剤(制御性樹状細胞)などと配合してもよい。   The immunosuppressive agent of the present invention can be produced as an oral / parenteral preparation by mixing a cell population containing an effective amount of the regulatory T cells with a pharmaceutically acceptable carrier according to conventional means. . The immunosuppressive agent of the present invention is usually produced as a parenteral preparation such as an injection, a suspension, an infusion. Examples of carriers that can be included in the parenteral preparation include aqueous solutions for injection such as physiological saline, isotonic solutions containing glucose and other adjuvants (eg, D-sorbitol, D-mannitol, sodium chloride, etc.). A liquid can be mentioned. The immunosuppressant of the present invention includes, for example, a buffer (for example, phosphate buffer, sodium acetate buffer), a soothing agent (for example, benzalkonium chloride, procaine, etc.), a stabilizer (for example, human serum). Albumin, polyethylene glycol, etc.), preservatives, antioxidants, immunosuppressants (such as rapamycin), antibody preparations, cell preparations (regulatory dendritic cells) and the like.

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒト等の哺乳動物に対して投与することができる。   Since the preparation thus obtained is safe and has low toxicity, it can be administered to mammals such as humans.

本発明の制御性T細胞を含有する細胞集団の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、通常、成人の患者(体重60kgとして)においては、例えば非経口投与の場合、一日につき2.6×10細胞程度を上限とする有効量を投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。The dose of the cell population containing the regulatory T cells of the present invention varies depending on the administration subject, target organ, symptom, administration method, and the like, but usually in an adult patient (with a body weight of 60 kg), for example, parenterally In the case of administration, it is convenient to administer an effective amount up to about 2.6 × 10 9 cells per day. In the case of other animals, an amount converted per 60 kg can be administered.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.

実施例1 細胞培養用プレートを用いた制御性T細胞の培養法
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
フィブロネクチンフラグメント[レトロネクチン(登録商標)、タカラバイオ社製]を25μg/mL、及び抗CD3抗体(OKT3、ヤンセンファーマ社製)を5μg/mLとなるようにPBSに溶解し、細胞培養用96ウェル平面プレートに0.1mL/ウェルの量で加え、37℃で3.5時間放置した。また、対照として抗CD3抗体のみを5μg/mLとなるようにPBSに溶解し、細胞培養用96ウェル平面プレートに0.1mL/ウェルで加え、37℃で3.5時間放置した。放置後、それぞれの溶解液を取り除き、PBSを用い0.2mL/ウェルの量で各プレートを2回洗浄し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 1 Regulatory T Cell Culture Method Using Cell Culture Plate (1) Preparation of Fibronectin Fragment / Anti-CD3 Antibody Immobilized Plate and Anti-CD3 Antibody Immobilized Plate Fibronectin Fragment [RetroNectin (registered trademark), Takara Biotechnology] was dissolved in PBS to a concentration of 25 μg / mL, and anti-CD3 antibody (OKT3, manufactured by Janssen Pharma) to a concentration of 5 μg / mL, and the amount was 0.1 mL / well on a 96-well flat plate for cell culture. In addition, it was left at 37 ° C. for 3.5 hours. As a control, only the anti-CD3 antibody was dissolved in PBS so as to be 5 μg / mL, added to a 96-well flat plate for cell culture at 0.1 mL / well, and allowed to stand at 37 ° C. for 3.5 hours. After standing, each lysate was removed and each plate was washed twice with PBS at a volume of 0.2 mL / well to prepare fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate. .

(2)制御性T細胞の培養
インフォームドコンセントが得られた健常人から調製したヒト末梢血単核細胞(PBMC)よりDynabeads Regulatory CD4CD25 Т Cell Kit(インビトロジェン社製)を用いて、CD4陽性かつCD25陽性の制御性T細胞を多く含む細胞集団を得た。これらの細胞を4×10cells/mLとなるように1.5% 自己血漿、600IU/mL IL−2、0.2% ヒト血清アルブミン(HSA)、2.5μg/mL ファンギゾン(ブリストルマイヤーズ社製)を含むGT−T503培地(タカラバイオ社製)(これを培養用培地とする)に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2、バイオレジェンド社製)を終濃度1μg/mLとなるように添加する群と添加しない群を作製し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養2日目に上記の培養用培地を0.1mL加えた。培養4日目に細胞を回収し、0.6mLの培養用培地を追加して、細胞培養用48ウェルプレートに全量をまき直した。培養5日目に培養用培地を2.5mL加え、細胞培養用12ウェルプレートに全量をまき直した。培養7日目に細胞を回収し、細胞増殖倍率及びFoxp3陽性細胞率を測定した。
(2) Culture of regulatory T cells CD4 + CD25 + Т Cell Kit (manufactured by Invitrogen) from human peripheral blood mononuclear cells (PBMC) prepared from healthy individuals from whom informed consent was obtained. A cell population rich in positive and CD25 positive regulatory T cells was obtained. These cells were mixed with 1.5% autologous plasma, 600 IU / mL IL-2, 0.2% human serum albumin (HSA), 2.5 μg / mL fungizone (Bristol-Myers) to 4 × 10 5 cells / mL. The product was suspended in a GT-T503 medium (manufactured by Takara Bio Inc.) (this is used as a culture medium). Furthermore, a group in which an anti-CD28 antibody (CD28.2, manufactured by Biolegend) is added to the cell suspension to a final concentration of 1 μg / mL and a group in which the anti-CD28 antibody is not added are prepared, and a fibronectin fragment / anti-CD3 antibody solid phase is prepared. The plate was added to an immobilized plate or an anti-CD3 antibody-immobilized plate at 0.2 mL / well, and culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ). On the second day of culture, 0.1 mL of the above culture medium was added. Cells were collected on the 4th day of culture, 0.6 mL of culture medium was added, and the whole amount was re-wound into a 48-well plate for cell culture. On the fifth day of culture, 2.5 mL of the culture medium was added, and the entire amount was re-wound into a 12-well plate for cell culture. Cells were collected on the seventh day of culture, and the cell growth rate and Foxp3-positive cell rate were measured.

細胞増殖倍率を図1に示す。図1において、縦軸は細胞増殖倍率(以下各図においてFold expansion:拡大倍数で示す)を示す。実施例の各図において、「CD3」は抗CD3抗体固相化プレートで培養した細胞、「RNCD3」はフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞を示す。また、「CD28」は抗CD28抗体を添加した群を示し、「−」は抗CD28抗体の添加していない群を示す。図1より、抗CD3抗体固相化プレートで培養した細胞に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞の方が、高い細胞増殖倍率を示した。抗CD28抗体存在下においても、同様に抗CD3抗体固相化プレートで培養した細胞に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、高い細胞増殖倍率を示した。   The cell growth rate is shown in FIG. In FIG. 1, the vertical axis represents the cell growth rate (hereinafter referred to as “fold expansion” in each figure). In each figure of the Examples, “CD3” indicates a cell cultured on an anti-CD3 antibody-immobilized plate, and “RNCD3” indicates a cell cultured on a fibronectin fragment / anti-CD3 antibody-immobilized plate. “CD28” represents a group to which an anti-CD28 antibody was added, and “−” represents a group to which no anti-CD28 antibody was added. As shown in FIG. 1, the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed higher cell growth rate than the cells cultured on the anti-CD3 antibody-immobilized plate. Even in the presence of the anti-CD28 antibody, the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed higher cell growth rate than the cells cultured on the anti-CD3 antibody-immobilized plate.

制御性T細胞のマスター制御因子であるFoxp3を発現する培養細胞の割合を図2に示す。図2は、培養細胞にPE−Cy7標識抗ヒトCD4抗体(ベクトンディッキンソン社製)及びFITC標識抗ヒトCD25抗体(ベクトンディッキンソン社製)を添加して4℃で20分間反応させ染色後、PE anti―human FoxP3 Staining Set(イーバイオサイエンス社製)を用いてFoxP3陽性細胞率をMACSQuant(ミルテニーバイオテク社製)で測定した結果を示す。図2において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す。図2より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞の割合が高かった。   The ratio of cultured cells expressing Foxp3, which is a master regulator of regulatory T cells, is shown in FIG. FIG. 2 shows that PE-Cy7-labeled anti-human CD4 antibody (Becton Dickinson) and FITC-labeled anti-human CD25 antibody (Becton Dickinson) were added to the cultured cells, reacted at 4 ° C. for 20 minutes, stained, and then treated with PE anti. -The result of having measured FoxP3 positive cell rate by MACSQuant (made by Miltenyi Biotech) using human FoxP3 Staining Set (made by eBioscience) is shown. In FIG. 2, the vertical axis represents the ratio of CD4 positive, CD25 positive and Foxp3 positive cells. FIG. 2 shows that the proportion of CD4-positive, CD25-positive, and Foxp3-positive cells in the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared to the cell population cultured on the anti-CD3 antibody-immobilized plate. Was expensive.

Foxp3を発現する培養細胞の絶対数を図3に示す。図3において、縦軸は培養開始時の細胞数に図1の細胞増殖倍率と図2の陽性率を乗じた値を示す。図3より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方がCD4陽性かつCD25陽性かつFoxp3陽性細胞数が増加した。抗CD28抗体存在下においても、同様に抗CD3抗体固相化プレートで培養した条件に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 3, the vertical axis represents the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 1 and the positive rate in FIG. From FIG. 3, the number of CD4-positive, CD25-positive, and Foxp3-positive cells increased in the condition cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared to the condition cultured on the anti-CD3 antibody-immobilized plate. Similarly, in the presence of anti-CD28 antibody, conditions cultured on fibronectin fragment / anti-CD3 antibody-immobilized plate were more CD4-positive, CD25-positive, and Foxp3-positive than those cultured on anti-CD3 antibody-immobilized plate. The number of cells increased significantly.

実施例2 表面未処理プレートを用いた制御性T細胞の培養法
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例1−(1)と同様に、抗CD3抗体溶液、及び抗CD3抗体とレトロネクチンの混合溶液を調製し、表面未処理96ウェル平面プレートに0.1mL/ウェルで加え、37℃で4時間放置した。放置後、それぞれの溶解液をとり除き、PBSを用い0.2mL/ウェルの量で各プレートを2回洗浄し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 2 Regulatory T Cell Culture Method Using Surface Untreated Plate (1) Preparation of Fibronectin Fragment / Anti-CD3 Antibody Immobilized Plate and Anti-CD3 Antibody Immobilized Plate As in Example 1- (1) Then, an anti-CD3 antibody solution and a mixed solution of anti-CD3 antibody and retronectin were prepared, added to a surface-untreated 96-well flat plate at 0.1 mL / well, and left at 37 ° C. for 4 hours. After standing, each lysate is removed, and each plate is washed twice with PBS at a volume of 0.2 mL / well to prepare fibronectin fragment / anti-CD3 antibody immobilized plate and anti-CD3 antibody immobilized plate. did.

(2)制御性T細胞の培養
実施例1−(2)と同様にして、CD4陽性かつCD25陽性細胞を多く含む細胞集団を得た。これらの細胞を3.2×10cells/mLとなるように5% 自己血漿、600IU/mL IL−2、0.2% HSA、2.5μg/mL ファンギゾンを含むGT−T503培地(以下、これを培養用培地とする)に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養2日目に上記の培養用培地を0.1mL加えた。培養4日目に細胞を回収し、培養用培地を0.2mL加えて細胞培養用48ウェルプレートに全量をまき直した。培養7日目に細胞を回収し、4.0×10cells/mLとなるように培養用培地に懸濁し、細胞培養用24ウェルプレートに1mL/ウェルとなるようにまき直した。培養9日目に培養用培地を1mL加えまき直した。培養開始11日目に細胞を回収し、細胞増殖倍率及びFoxp3陽性細胞率を測定した。
(2) Culture of regulatory T cells In the same manner as in Example 1- (2), a cell population containing many CD4-positive and CD25-positive cells was obtained. These cells were mixed with GT-T503 medium containing 5% autologous plasma, 600 IU / mL IL-2, 0.2% HSA, 2.5 μg / mL fungizone (hereinafter referred to as 3.2 × 10 5 cells / mL). This was suspended in a culture medium). Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and 0. 5 was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate. The culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ) at 2 mL / well. On the second day of culture, 0.1 mL of the above culture medium was added. On the fourth day of culture, the cells were collected, 0.2 mL of culture medium was added, and the whole amount was re-wound in a 48-well plate for cell culture. On the 7th day of culture, the cells were collected, suspended in a culture medium so as to be 4.0 × 10 5 cells / mL, and re-spread so as to be 1 mL / well in a 24-well plate for cell culture. On the ninth day of culture, 1 mL of culture medium was added and re-wound. On the 11th day from the start of the culture, the cells were collected, and the cell growth rate and Foxp3-positive cell rate were measured.

細胞増殖倍率の経時的変化を図4に示す。図4において、横軸は培養開始からの日数、縦軸は細胞増殖倍率を示す。実施例の各図において、「CD3+CD28」は抗CD28抗体存在下に抗CD3抗体固相化表面未処理プレートで培養した細胞、「RNCD3+CD28」は抗CD28抗体存在下にフィブロネクチンフラグメント/抗CD3抗体固相化表面未処理プレートで培養した細胞を示す。図4より、表面未処理プレートに固相化した場合においても、抗CD3抗体固相化プレートで培養した条件に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、高い細胞増殖倍率を示した。   FIG. 4 shows changes with time in the cell growth rate. In FIG. 4, the horizontal axis represents the number of days from the start of culture, and the vertical axis represents the cell growth rate. In each figure of the Examples, “CD3 + CD28” is a cell cultured on an anti-CD3 antibody-immobilized surface-untreated plate in the presence of anti-CD28 antibody, and “RNCD3 + CD28” is a fibronectin fragment / anti-CD3 antibody solid phase in the presence of anti-CD28 antibody. The cells cultured on the non-treated surface untreated plate are shown. From FIG. 4, even when immobilized on a surface untreated plate, the conditions cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate are higher than those cultured on the anti-CD3 antibody immobilized plate. The cell growth rate was shown.

Foxp3を発現する培養細胞の割合を実施例1−(2)と同様の操作で測定した。その結果を図5に示す。図5において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す。図5より、表面未処理プレートで培養した場合においても、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞の割合が高かった。   The ratio of cultured cells expressing Foxp3 was measured in the same manner as in Example 1- (2). The result is shown in FIG. In FIG. 5, the vertical axis represents the ratio of CD4 positive, CD25 positive and Foxp3 positive cells. From FIG. 5, even when cultured on the surface untreated plate, the cell population cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate is more in comparison with the cell population cultured on the anti-CD3 antibody immobilized plate. The proportion of CD4 positive, CD25 positive and Foxp3 positive cells was high.

Foxp3を発現する培養細胞の絶対数を図6に示す。図6において、縦軸は培養開始時の細胞数に図4の細胞増殖倍率と図5の陽性率を乗じた値を示す。図6より、表面未処理プレートで培養した場合においても、抗CD3抗体固相化プレートで培養した細胞に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、CD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 6, the vertical axis represents the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 4 and the positive rate in FIG. FIG. 6 shows that even when cultured on a surface-untreated plate, cells cultured on a fibronectin fragment / anti-CD3 antibody-immobilized plate are more CD4-positive and CD25 than those cultured on an anti-CD3 antibody-immobilized plate. The number of positive and Foxp3-positive cells was significantly increased.

実施例3 培養細胞のCD4陽性細胞に対する増殖抑制活性の測定
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例2−(1)記載の操作に従い、表面未処理96ウェル平面プレートを用いてフィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 3 Measurement of growth inhibitory activity of cultured cells on CD4-positive cells (1) Preparation of fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate According to the procedure described in Example 2- (1), Fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate were prepared using a surface-untreated 96-well flat plate.

(2)制御性T細胞の培養
実施例1−(2)と同様にして、CD4陽性かつCD25陽性細胞を多く含む細胞集団を得た。これらの細胞を6×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養3日目に上記の培養用培地を0.1mL加えた。培養4日目に細胞を回収し、4×10cells/mLとなるように培養用培地に懸濁し、細胞培養用48ウェルプレートに0.5mL/ウェルとなるようにまき直した。培養5日目に細胞を回収し、培養用培地を2.5mL加えて細胞培養用12ウェルプレートに全量をまき直した。培養7日目に細胞を回収し、4.32×10cells/mLとなるように培養用培地に懸濁し、細胞培養用12ウェルプレートに5.0mL/ウェルとなるようにまき直した。培養開始10日目に細胞を回収し、細胞増殖倍率、Foxp3陽性細胞率及びCD4陽性細胞に対する増殖抑制活性を測定した。
(2) Culture of regulatory T cells In the same manner as in Example 1- (2), a cell population containing many CD4-positive and CD25-positive cells was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 6 × 10 5 cells / mL. Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and 0. 5 was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate. The culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ) at 2 mL / well. On the third day of culture, 0.1 mL of the above culture medium was added. On the fourth day of culture, the cells were collected, suspended in a culture medium so as to be 4 × 10 5 cells / mL, and re-spread so as to be 0.5 mL / well in a 48-well plate for cell culture. On the fifth day of culture, the cells were collected, 2.5 mL of culture medium was added, and the whole amount was re-wound in a 12-well plate for cell culture. On the 7th day of culture, the cells were collected, suspended in a culture medium so as to be 4.32 × 10 5 cells / mL, and re-spread so as to be 5.0 mL / well in a 12-well plate for cell culture. On the 10th day from the start of the culture, the cells were collected, and the cell growth rate, Foxp3-positive cell rate, and proliferation inhibitory activity against CD4-positive cells were measured.

細胞増殖倍率の経時的変化を図7に示す。図7において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。図7より、抗CD3抗体固相化プレートで培養した細胞に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、高い細胞増殖倍率を示した。   FIG. 7 shows changes with time in the cell growth rate. In FIG. 7, the horizontal axis indicates the number of days from the start of culture, and the vertical axis indicates the cell growth rate. As shown in FIG. 7, the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed higher cell growth rate than the cells cultured on the anti-CD3 antibody-immobilized plate.

Foxp3を発現する培養細胞の割合を実施例1−(2)と同様の操作で測定した。その結果を図8に示す。図8において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す。図8より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞の割合が高かった。   The ratio of cultured cells expressing Foxp3 was measured in the same manner as in Example 1- (2). The result is shown in FIG. In FIG. 8, the vertical axis represents the ratio of CD4 positive, CD25 positive and Foxp3 positive cells. FIG. 8 shows that the proportion of CD4-positive, CD25-positive, and Foxp3-positive cells in the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate is higher than that on the cell population cultured on the anti-CD3 antibody-immobilized plate. Was expensive.

Foxp3を発現する培養細胞の絶対数を図9に示す。図9において、縦軸は培養開始時の細胞数に図7の細胞増殖倍率と図8の陽性率を乗じた値を示す。図9より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 9, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 7 and the positive rate in FIG. FIG. 9 shows that the number of CD4-positive, CD25-positive, and Foxp3-positive cells is significantly higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate than on the condition cultured on the anti-CD3 antibody immobilized plate. Increased.

(3)CD4陽性細胞に対する増殖抑制活性の測定
本実施例(2)に使用した細胞と同じドナーのPBMCからCD4マイクロビーズ(ミルテニーバイオテク社製)を用いてCD4陽性細胞とCD4陰性細胞を得た。CD4陰性細胞は30GyのX線を照射後、1×10cells/mLとなるように5% 自己血漿、0.2% HSA、2.5μg/mL ファンギゾンを含むGT−T503培地(以下、これを抑制活性測定用培地とする)に懸濁した。CD4陽性細胞を終濃度2μMのCFSE(シグマアルドリッチ社製)を含む抑制活性測定培地で懸濁し、COインキュベーター(37℃、5%CO)で8分間処理し、抑制活性測定用培地で細胞を4回洗浄後、1×10cells/mLとなるように抑制活性測定用培地に懸濁した。これをレスポンダー細胞とする。X線照射したCD4陰性細胞とCFSE処理したレスポンダー細胞を1対1で混合(以下、Tresと記載)し、さらに終濃度200ng/mLとなるように抗CD3抗体(OKT3)を添加した。この混合細胞液を細胞培養用98ウェル丸底プレートに100μL添加し、さらに本実施例(2)で得られた培養細胞を抑制活性測定用培地で5×10cells/mLに調製したものを100μL添加し、COインキュベーター(37℃、5%CO)で3日間培養した。その後、細胞を回収しレスポンダー細胞のCFSEの蛍光強度をMACSQuantで測定した。CD4陽性細胞に対する増殖抑制活性を図10に示す。図10において、縦軸はCFSE全陽性細胞中のCFSE弱陽性細胞、つまりレスポンダー細胞中の分裂した細胞の割合を示す。陽性対照として、培養細胞を添加せずに抑制活性測定用培地を100μL添加したTresのみを培養したサンプル(図中「Positive」)と、陰性対照として、CFSE処理したレスポンダー細胞のみを培養するサンプル(図中「Negative」)を作製した。その結果、Tresのみのサンプル「Positive」に比べて、培養細胞を添加したサンプル(「CD3+CD28」、「RNCD3+CD28」)では、レスポンダー細胞の細胞増殖倍率が5%以下に抑制されていた。したがって、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、抗CD3抗体固相化プレートで培養した細胞と同様に、レスポンダー細胞の細胞増殖を抑制する細胞集団であることが明らかとなった。
(3) Measurement of growth inhibitory activity against CD4 positive cells CD4 positive cells and CD4 negative cells were obtained from PBMC of the same donor as the cells used in this Example (2) using CD4 microbeads (Miltenyi Biotech). It was. After irradiating 30 Gy X-rays to CD4 negative cells, GT-T503 medium (hereinafter referred to as this) containing 5% autologous plasma, 0.2% HSA, 2.5 μg / mL fungizone to 1 × 10 6 cells / mL. Was used as a medium for measuring inhibitory activity). CD4 positive cells are suspended in a suppressive activity measurement medium containing CFSE (manufactured by Sigma Aldrich) having a final concentration of 2 μM, treated with a CO 2 incubator (37 ° C., 5% CO 2 ) for 8 minutes, and the cells are cultured in the suppressive activity measurement medium After washing 4 times, the suspension was suspended in a medium for measuring inhibitory activity so as to be 1 × 10 6 cells / mL. This is the responder cell. X4-irradiated CD4 negative cells and CFSE-treated responder cells were mixed 1: 1 (hereinafter referred to as Tres), and anti-CD3 antibody (OKT3) was added to a final concentration of 200 ng / mL. 100 μL of this mixed cell solution was added to a 98-well round-bottom plate for cell culture, and the cultured cells obtained in this Example (2) were prepared to 5 × 10 5 cells / mL with a medium for measuring inhibitory activity. 100 μL was added and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 3 days. Thereafter, the cells were collected and the CFSE fluorescence intensity of the responder cells was measured with MACSQuant. The growth inhibitory activity against CD4 positive cells is shown in FIG. In FIG. 10, the vertical axis indicates the ratio of CFSE weakly positive cells in all CFSE positive cells, that is, the proportion of divided cells in responder cells. As a positive control, a sample obtained by culturing only Tres to which 100 μL of a suppressive activity measuring medium was added without adding cultured cells (“Positive” in the figure), and as a negative control, a sample culturing only responder cells treated with CFSE ( “Negative” in the figure was produced. As a result, the cell proliferation rate of the responder cells was suppressed to 5% or less in the samples to which the cultured cells were added (“CD3 + CD28”, “RNCD3 + CD28”), compared to the “Positive” sample containing only Tres. Therefore, it was clarified that the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate are a cell population that suppresses the cell proliferation of the responder cells, similar to the cells cultured on the anti-CD3 antibody-immobilized plate. It was.

実施例4 培養細胞のCD4陽性細胞に対する増殖抑制活性の測定
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例2−(1)記載の操作に従い、表面未処理96ウェル平面プレートを用いてフィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 4 Measurement of growth inhibitory activity of cultured cells on CD4-positive cells (1) Preparation of fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate According to the procedure described in Example 2- (1), Fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate were prepared using a surface-untreated 96-well flat plate.

(2)制御性T細胞の培養
実施例1−(2)と同様にして、CD4陽性かつCD25陽性細胞を多く含む細胞集団を得た。これらの細胞を4.05×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養1日目に上記の培養用培地を0.05mL加えた。培養4日目に細胞を回収し、2×10cells/mLとなるように培養用培地に懸濁し、細胞培養用48ウェルプレートに1.0mL/ウェルとなるようにまき直した。培養6日目に細胞を回収し、4×10cells/mLとなるように培養用培地に懸濁し、細胞培養用12ウェルプレートに2.0mL/ウェルとなるようにまき直した。培養8日目に細胞を回収し、培養用培地を1mL加えて細胞培養用12ウェルプレートに全量をまき直した。培養開始11日目に細胞を回収し、細胞増殖倍率、Foxp3陽性細胞率、CD62L陽性かつCCR7陽性細胞率及びCD4陽性細胞に対する増殖抑制活性を測定した。
(2) Culture of regulatory T cells In the same manner as in Example 1- (2), a cell population containing many CD4-positive and CD25-positive cells was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 4.05 × 10 5 cells / mL. Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and 0. 5 was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate. The culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ) at 2 mL / well. On the first day of culture, 0.05 mL of the above culture medium was added. On the 4th day of culture, the cells were collected, suspended in a culture medium so as to be 2 × 10 5 cells / mL, and re-spread so as to be 1.0 mL / well in a 48-well plate for cell culture. On the 6th day of culture, the cells were collected, suspended in a culture medium so as to be 4 × 10 5 cells / mL, and re-spread so as to be 2.0 mL / well in a 12-well plate for cell culture. On the 8th day of culture, cells were collected, 1 mL of culture medium was added, and the whole amount was re-wound in a 12-well plate for cell culture. On the 11th day from the start of the culture, the cells were collected, and the cell growth rate, Foxp3-positive cell rate, CD62L-positive and CCR7-positive cell rate, and growth inhibitory activity against CD4-positive cells were measured.

細胞増殖倍率の経時的変化を図11に示す。図11において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。図11より、抗CD3抗体固相化プレートで培養した条件に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、高い細胞増殖倍率を示した。   FIG. 11 shows changes with time in the cell growth rate. In FIG. 11, the horizontal axis indicates the number of days from the start of culture, and the vertical axis indicates the cell growth rate. From FIG. 11, the cell growth rate was higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate than on the condition cultured on the anti-CD3 antibody immobilized plate.

Foxp3を発現する培養細胞の割合を図12に示す。図12は、培養細胞にAPC−Cy7標識抗ヒトCD4抗体(ベクトンディッキンソン社製)を添加して4℃で20分間反応させ染色後、PE anti―human FoxP3 Staining Setを用いてFoxP3陽性細胞率をFACSCanto(ベクトンディッキンソン社製)で測定した結果を示す。図12において、縦軸はCD4陽性かつFoxp3陽性細胞の割合を示す。図12より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつFoxp3陽性細胞の割合が高かった。   The ratio of the cultured cells expressing Foxp3 is shown in FIG. FIG. 12 shows that APC-Cy7-labeled anti-human CD4 antibody (Becton Dickinson) was added to cultured cells, reacted at 4 ° C. for 20 minutes, stained, and then subjected to PE anti-human FoxP3 Staining Set to determine the FoxP3 positive cell rate. The result measured by FACSCanto (made by Becton Dickinson) is shown. In FIG. 12, the vertical axis represents the ratio of CD4 positive and Foxp3 positive cells. From FIG. 12, the proportion of CD4-positive and Foxp3-positive cells was higher in the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate than on the cell population cultured on the anti-CD3 antibody-immobilized plate. .

Foxp3を発現する培養細胞の絶対数を図13に示す。図13において、縦軸は培養開始時の細胞数に図11の細胞増殖倍率と図12の陽性率を乗じた値を示す。図13より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 13, the vertical axis represents the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 11 and the positive rate in FIG. From FIG. 13, the number of CD4-positive and Foxp3-positive cells was significantly increased in the condition cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared with the condition cultured on the anti-CD3 antibody-immobilized plate.

(3)CD62L陽性かつCCR7陽性細胞率の測定
CD62LとCCR7を発現する培養細胞の割合を図14に示す。図14は、培養細胞にAPC−Cy7標識抗ヒトCD4抗体、PE−Cy7標識抗ヒトCD62L抗体(ベクトンディッキンソン社製)、PE標識抗ヒトCD25抗体(ベクトンディッキンソン社製)及びFITC標識抗ヒトCCR7抗体(アールアンドディーシステムズ社製)を添加して4℃で20分間反応させ染色後、FACSCantoで測定した結果を示す。図14において、縦軸はCD4陽性かつCD25陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す。図14より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団は、CD4陽性かつCD25陽性かつCD62L陽性かつCCR7陽性細胞の割合が高かった。
(3) Measurement of CD62L-positive and CCR7-positive cell ratio The ratio of cultured cells expressing CD62L and CCR7 is shown in FIG. FIG. 14 shows APC-Cy7-labeled anti-human CD4 antibody, PE-Cy7-labeled anti-human CD62L antibody (Becton Dickinson), PE-labeled anti-human CD25 antibody (Becton Dickinson) and FITC-labeled anti-human CCR7 antibody. (R & D Systems Co., Ltd.) is added and reacted at 4 ° C. for 20 minutes. After staining, the results measured with FACSCanto are shown. In FIG. 14, the vertical axis represents the ratio of CD4 positive, CD25 positive, CD62L positive, and CCR7 positive cells. FIG. 14 shows that the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared with the cell population cultured on the anti-CD3 antibody-immobilized plate was CD4 positive, CD25 positive, CD62L positive, and CCR7 positive cells. The rate was high.

CD62LとCCR7を発現する培養細胞の絶対数を図15に示す。図15において、縦軸は培養開始時の細胞数に図11の細胞増殖倍率と図14の陽性率を乗じた値を示す。図15より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつCD62L陽性かつCCR7陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CD62L and CCR7 is shown in FIG. In FIG. 15, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 11 and the positive rate in FIG. 14. FIG. 15 shows that the number of CD4-positive, CD25-positive, CD62L-positive, and CCR7-positive cells is higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate than on the condition cultured on the anti-CD3 antibody-immobilized plate. Increased significantly.

(4)CD4陽性細胞に対する増殖抑制活性の測定
実施例3−(3)と同様の操作により、本実施例(2)で得られた細胞のレスポンダー細胞に対する増殖抑制活性をFACSCantoで測定した。CD4陽性細胞に対する増殖抑制活性を図16に示す。図16において、縦軸はCFSE全陽性細胞中のCFSE弱陽性細胞、つまりレスポンダー細胞中の分裂した細胞の割合を、横軸はレスポンダー細胞と培養細胞の混合比を示す。図16より、培養細胞を含まないサンプル「Tres」と比べて、培養細胞を添加したサンプル(「CD3+CD28」、又は「RNCD3+CD28」)では、培養細胞の混合比が上がるに従って、レスポンダー細胞の細胞増殖が抑制された。したがって、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、抗CD3抗体固相化プレートで培養した細胞と同様に、レスポンダー細胞の細胞増殖を抑制する細胞集団であることが明らかとなった。
(4) Measurement of growth inhibitory activity against CD4 positive cells
In the same manner as in Example 3- (3), the growth inhibitory activity of the cells obtained in this Example (2) on the responder cells was measured with FACSCanto. The growth inhibitory activity against CD4 positive cells is shown in FIG. In FIG. 16, the vertical axis indicates the ratio of CFSE weakly positive cells among all CFSE positive cells, that is, the proportion of divided cells in responder cells, and the horizontal axis indicates the mixing ratio of responder cells and cultured cells. From FIG. 16, in the sample added with the cultured cells (“CD3 + CD28” or “RNCD3 + CD28”), the cell proliferation of the responder cells increases as the mixed ratio of the cultured cells increases compared to the sample “Tres” that does not include the cultured cells. Suppressed. Therefore, it was clarified that the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate are a cell population that suppresses the cell proliferation of the responder cells, similar to the cells cultured on the anti-CD3 antibody-immobilized plate. It was.

実施例5 培養細胞のCD8陽性細胞に対する増殖抑制活性の測定
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例2−(1)記載の操作に従い、表面未処理96ウェル平面プレートを用いてフィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 5 Measurement of growth inhibitory activity of cultured cells on CD8 positive cells (1) Preparation of fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate According to the procedure described in Example 2- (1), Fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate were prepared using a surface-untreated 96-well flat plate.

(2)制御性T細胞の培養
インフォームドコンセントが得られた健常人から調製したPBMCよりCD4CD25CD45RARegulatory T Cell Isolation Kitを用いて、CD4陽性かつCD25陽性かつCD45RA陽性細胞を多く含む細胞集団を得た。これらの細胞を1.8×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養1日目に上記の培養用培地を0.1mL加えた。培養4日目に培養用培地を0.05mL加えた。培養5日目に細胞を回収し、3×10cells/mLとなるように培養用培地に懸濁し、細胞培養用48ウェルプレートに0.5mL/ウェルとなるようにまき直した。培養6日目に培養用培地を0.5mL加え、培養7日目に培養用培地を0.5mL加え、細胞培養用24ウェルプレートに全量をまき直した。培養8日目に細胞を回収し、8×10cells/mLとなるように培養用培地に懸濁し、細胞培養用24ウェルプレートに1.0mL/ウェルとなるようにまき直した。培養開始11日目に細胞を回収し、細胞増殖倍率、Foxp3陽性細胞率、CD62L陽性かつCCR7陽性細胞率及びCD8陽性細胞に対する増殖抑制活性を測定した。
(2) Culture of regulatory T cells Using CD4 + CD25 + CD45RA + Regulatory T Cell Isolation Kit from PBMCs prepared from healthy individuals with informed consent, CD4 positive, CD25 positive and CD45RA positive cells are included A cell population was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 1.8 × 10 5 cells / mL. Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and 0. 5 was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate. The culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ) at 2 mL / well. On the first day of culture, 0.1 mL of the above culture medium was added. On the fourth day of culture, 0.05 mL of culture medium was added. On the fifth day of culture, the cells were collected, suspended in a culture medium so as to be 3 × 10 5 cells / mL, and re-spread so as to be 0.5 mL / well in a 48-well plate for cell culture. On the 6th day of culture, 0.5 mL of the culture medium was added, and on the 7th day of culture, 0.5 mL of the culture medium was added, and the entire amount was re-wound into a 24-well plate for cell culture. On the 8th day of culture, the cells were collected, suspended in a culture medium so as to be 8 × 10 5 cells / mL, and re-spread so as to be 1.0 mL / well in a 24-well plate for cell culture. The cells were collected on the 11th day from the start of the culture, and the cell growth rate, Foxp3-positive cell rate, CD62L-positive and CCR7-positive cell rate, and growth inhibitory activity against CD8-positive cells were measured.

細胞増殖倍率の経時的変化を図17に示す。図17において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。図17より、抗CD3抗体固相化プレートで培養した条件に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、高い細胞増殖倍率を示した。   FIG. 17 shows changes with time in the cell growth rate. In FIG. 17, the horizontal axis indicates the number of days from the start of culture, and the vertical axis indicates the cell growth rate. From FIG. 17, the cell growth rate was higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate than on the condition cultured on the anti-CD3 antibody immobilized plate.

Foxp3を発現する培養細胞の割合を図18に示す。図18は、培養細胞にAPC−Cy7標識抗ヒトCD4抗体、APC標識抗ヒトCCR7抗体(アールアンドディーシステムズ社製)、PE−Cy7標識抗ヒトCD62L抗体及びFITC標識抗ヒトCD25抗体(ベクトンディッキンソン社製)を添加して4℃で20分間反応させ染色後、PE anti―human FoxP3 Staining Setを用いてFoxp3陽性細胞率をFACSCantoで測定した。図18において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す。図18より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞の割合が高かった。   The ratio of the cultured cells expressing Foxp3 is shown in FIG. FIG. 18 shows APC-Cy7-labeled anti-human CD4 antibody, APC-labeled anti-human CCR7 antibody (manufactured by R & D Systems), PE-Cy7-labeled anti-human CD62L antibody and FITC-labeled anti-human CD25 antibody (Becton Dickinson). And the reaction was carried out at 4 ° C. for 20 minutes, followed by staining, and the rate of Foxp3-positive cells was measured with FACSCanto using PE anti-human FoxP3 Staining Set. In FIG. 18, the vertical axis represents the ratio of CD4 positive, CD25 positive, and Foxp3 positive cells. FIG. 18 shows that the proportion of CD4-positive, CD25-positive, and Foxp3-positive cells in the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate is higher than that on the cell population cultured on the anti-CD3 antibody-immobilized plate. Was high.

図19において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す。図19より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合が高かった。   In FIG. 19, the vertical axis represents the ratio of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive and CCR7 positive cells. FIG. 19 shows that the cell population cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate is more CD4 positive, CD25 positive, Foxp3 positive and CD62L positive than the cell population cultured on the anti-CD3 antibody immobilized plate. And the ratio of CCR7 positive cells was high.

Foxp3を発現する培養細胞の絶対数を図20に示す。図20において、縦軸は培養開始時の細胞数に図17の細胞増殖倍率と図18の陽性率を乗じた値を示す。図20より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 20, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 17 and the positive rate in FIG. FIG. 20 shows that the number of CD4-positive, CD25-positive, and Foxp3-positive cells is significantly higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate than on the condition cultured on the anti-CD3 antibody-immobilized plate. Increased.

CD62LとCCR7を発現する培養細胞の絶対数を図21に示す。図21において、縦軸は培養開始時の細胞数に図17の細胞増殖倍率と図19の陽性率を乗じた値を示す。図21より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CD62L and CCR7 is shown in FIG. In FIG. 21, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 17 and the positive rate in FIG. FIG. 21 shows that the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate were more CD4-positive, CD25-positive, Foxp3-positive, CD62L-positive, and CCR7 than the conditions cultured on the anti-CD3 antibody-immobilized plate. There was a marked increase in the number of positive cells.

(3)CD8陽性細胞に対する増殖抑制活性の測定
本実施例(2)に使用した細胞と同じドナーのPBMCからCD8マイクロビーズ(ミルテニーバイオテク社製)を用いてCD8陽性細胞とCD8陰性細胞を得た。CD8陰性細胞、CD8陽性細胞をそれぞれ実施例3−(3)のCD4陰性細胞、CD4陽性細胞と同様の操作に供し、CD8陽性のレスポンダー細胞を含有する混合細胞液を得た。本実施例(2)で得られた培養細胞のレスポンダー細胞に対する増殖抑制活性をFACSCantoで測定した。CD8陽性細胞に対する増殖抑制活性を図22に示す。図22において、縦軸はCFSE全陽性細胞中のCFSE弱陽性細胞、つまりレスポンダー細胞中の分裂した細胞の割合を、横軸はレスポンダー細胞と培養細胞の混合比を示す。その結果、培養細胞を添加したサンプル(「CD3+CD28」、「RNCD3+CD28」)では、培養細胞の混合比が上がるに従って、レスポンダー細胞の細胞増殖が抑制された。したがって、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、抗CD3抗体固相化プレートで培養した細胞と同様に、レスポンダー細胞の細胞増殖を抑制する細胞集団であることが明らかとなった。
(3) Measurement of growth inhibitory activity against CD8 positive cells CD8 positive cells and CD8 negative cells were obtained from PBMC of the same donor as the cells used in this Example (2) using CD8 microbeads (Miltenyi Biotech). It was. CD8 negative cells and CD8 positive cells were subjected to the same operations as the CD4 negative cells and CD4 positive cells of Example 3- (3), respectively, to obtain a mixed cell solution containing CD8 positive responder cells. The growth inhibitory activity of the cultured cells obtained in this Example (2) against responder cells was measured with FACSCanto. The growth inhibitory activity against CD8 positive cells is shown in FIG. In FIG. 22, the vertical axis indicates the ratio of CFSE weakly positive cells among all CFSE positive cells, that is, the ratio of divided cells in the responder cells, and the horizontal axis indicates the mixing ratio of the responder cells and the cultured cells. As a result, in the samples to which the cultured cells were added (“CD3 + CD28”, “RNCD3 + CD28”), the cell proliferation of the responder cells was suppressed as the mixed ratio of the cultured cells increased. Therefore, it was clarified that the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate are a cell population that suppresses the cell proliferation of the responder cells, similar to the cells cultured on the anti-CD3 antibody-immobilized plate. It was.

実施例6 培養細胞のTSDRにおけるDNAメチル化度の測定
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例1−(1)と同様に、抗CD3抗体溶液、及び抗CD3抗体とレトロネクチンの混合溶液を調製し、表面未処理96ウェル平面プレートに0.1mL/ウェルの量で加え、4℃で一晩放置した。その後、それぞれのプレートを37℃で4時間放置後、溶解液をとり除き、PBSを用い0.2mL/ウェルの量で各プレートを2回洗浄し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 6 Measurement of DNA methylation degree in TSDR of cultured cells (1) Preparation of fibronectin fragment / anti-CD3 antibody immobilized plate and anti-CD3 antibody immobilized plate As in Example 1- (1), anti-CD3 An antibody solution and a mixed solution of anti-CD3 antibody and retronectin were prepared, added to a surface-untreated 96-well flat plate in an amount of 0.1 mL / well, and left overnight at 4 ° C. Then, after each plate was left at 37 ° C. for 4 hours, the lysate was removed, each plate was washed twice with PBS at a volume of 0.2 mL / well, and a fibronectin fragment / anti-CD3 antibody-immobilized plate and An anti-CD3 antibody-immobilized plate was prepared.

(2)制御性T細胞の培養
実施例5−(2)と同様にして、CD4陽性かつCD25陽性かつCD45RA陽性細胞を多く含む細胞集団を得た。これらの細胞を1.0×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養1日目に上記の培養用培地を0.05mL加えた。培養4日目に培地を0.05mL除き、培養用培地を0.1mL加えた。培養5日目に細胞を回収し、3.5×10cells/mLとなるように培養用培地に懸濁し、細胞培養用24ウェルプレートに1.0mL/ウェルとなるようにまき直した。培養7日目に培地を0.4mL除き、上記の培養用培地を0.4mL加えた。培養開始8日目に細胞を回収し、細胞増殖倍率を測定した。培養開始11日目に細胞を回収し、Foxp3陽性細胞率、CCR7とCD27陽性細胞率及びTSDRのDNAメチル化頻度を測定した。
(2) Culture of regulatory T cells In the same manner as in Example 5- (2), a cell population containing many CD4-positive, CD25-positive, and CD45RA-positive cells was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 1.0 × 10 5 cells / mL. Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and 0. 5 was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate. The culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ) at 2 mL / well. On the first day of culture, 0.05 mL of the above culture medium was added. On the fourth day of culture, 0.05 mL of the medium was removed, and 0.1 mL of the culture medium was added. On the fifth day of culture, the cells were collected, suspended in a culture medium so as to be 3.5 × 10 5 cells / mL, and re-spread so as to be 1.0 mL / well in a 24-well plate for cell culture. On the seventh day of culture, 0.4 mL of the medium was removed, and 0.4 mL of the above culture medium was added. On the 8th day from the start of the culture, the cells were collected and the cell growth rate was measured. On the 11th day from the start of the culture, the cells were collected, and the rate of Foxp3 positive cells, the rate of CCR7 and CD27 positive cells, and the frequency of DNA methylation of TSDR were measured.

細胞増殖倍率の経時的変化を図23に示す。図23において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。図23より、抗CD3抗体固相化プレートで培養した細胞に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、高い細胞増殖倍率を示した。   FIG. 23 shows changes with time in the cell growth rate. In FIG. 23, the horizontal axis indicates the number of days from the start of culture, and the vertical axis indicates the cell growth rate. As shown in FIG. 23, the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed higher cell growth rate than the cells cultured on the anti-CD3 antibody-immobilized plate.

Foxp3を発現する培養細胞の割合を図24に示す。図24は、培養細胞にAPC−Cy7標識抗ヒトCD4抗体、PE−Cy7標識抗ヒトCD27抗体(ベクトンディッキンソン社製)及びFITC標識抗ヒトCCR7抗体を添加して4℃で20分間反応させ染色後、PE anti―human FoxP3 Staining Setを用いてFoxP3陽性細胞率をFACSCantoで測定した。図24において、縦軸はCD4陽性かつFoxp3陽性細胞の割合を示す。図24より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつFoxp3陽性細胞の割合が高かった。   The ratio of the cultured cells expressing Foxp3 is shown in FIG. FIG. 24 shows APC-Cy7-labeled anti-human CD4 antibody, PE-Cy7-labeled anti-human CD27 antibody (manufactured by Becton Dickinson) and FITC-labeled anti-human CCR7 antibody added to the cultured cells, reacted at 4 ° C. for 20 minutes, and stained. The rate of FoxP3-positive cells was measured with FACSCanto using PE anti-human FoxP3 Staining Set. In FIG. 24, the vertical axis represents the ratio of CD4 positive and Foxp3 positive cells. From FIG. 24, the proportion of CD4-positive and Foxp3-positive cells was higher in the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate than on the cell population cultured on the anti-CD3 antibody-immobilized plate. .

図25において、縦軸はCD4陽性かつFoxp3陽性かつCCR7陽性細胞の割合を示す。図25より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつFoxp3陽性かCCR7陽性細胞の割合が高かった。   In FIG. 25, the vertical axis represents the ratio of CD4 positive, Foxp3 positive and CCR7 positive cells. FIG. 25 shows that the proportion of CD4-positive and Foxp3-positive or CCR7-positive cells in the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared to the cell population cultured on the anti-CD3 antibody-immobilized plate. Was high.

図26において、縦軸はCD4陽性かつFoxp3陽性かつCD27陽性細胞の割合を示す。図26より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつFoxp3陽性かCD27陽性細胞の割合が高かった。   In FIG. 26, the vertical axis represents the ratio of CD4 positive, Foxp3 positive and CD27 positive cells. FIG. 26 shows that the proportion of CD4-positive and Foxp3-positive or CD27-positive cells in the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared to the cell population cultured on the anti-CD3 antibody-immobilized plate. Was high.

Foxp3を発現する培養細胞の絶対数を図27に示す。図27において、縦軸は培養開始時の細胞数に図23の細胞増殖倍率と図24の陽性率を乗じた値を示す。図27より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells that express Foxp3 is shown in FIG. In FIG. 27, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 23 and the positive rate in FIG. From FIG. 27, the number of CD4-positive and Foxp3-positive cells was significantly increased in the condition cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared to the condition cultured on the anti-CD3 antibody-immobilized plate.

CCR7を発現する培養細胞の絶対数を図28に示す。図28において、縦軸は培養開始時の細胞数に図23の細胞増殖倍率と図25の陽性率を乗じた値を示す。図28より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつFoxp3陽性かつCCR7陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CCR7 is shown in FIG. In FIG. 28, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 23 and the positive rate in FIG. FIG. 28 shows that the number of CD4-positive, Foxp3-positive, and CCR7-positive cells is significantly higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate than on the condition cultured on the anti-CD3 antibody-immobilized plate. Increased.

CD27を発現する培養細胞の絶対数を図29に示す。図29において、縦軸は培養開始時の細胞数に図23の細胞増殖倍率と図26の陽性率を乗じた値を示す。図29より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつFoxp3陽性かつCD27陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CD27 is shown in FIG. In FIG. 29, the vertical axis indicates the value obtained by multiplying the number of cells at the start of the culture by the cell growth rate in FIG. 23 and the positive rate in FIG. FIG. 29 shows that the number of CD4-positive, Foxp3-positive, and CD27-positive cells is significantly higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate than on the condition cultured on the anti-CD3 antibody immobilized plate. Increased.

(3)TSDRのDNAメチル化度の測定
本実施例(2)より得られた細胞と、対照としてPBMCを抗CD3抗体固相化プレートで培養した細胞からNucleoSpin Tissue(タカラバイオ社製)を用いてDNAの抽出を行い、培養細胞1×10細胞から5.1−5.6μgのDNAを得た。次に、MethylEasy Xceed Rapid DNA Bisulphite Modification Kit(タカラバイオ社製)を用いて、前記DNAの2.0−2.2μgをバイサルファイト処理し、0.5−1.0μgのバイサルファイト処理後のDNAを得た。次に、前記DNAの20ngを使用し、バイサルファイト−PCRをTaKaRa EpiTaq HS (for bisufite−treated DNA)(タカラバイオ社製)を用いて行った。プライマーはフォワード側が5’−TGTTTGGGGGTAGAGGATTT−3’、リバース側が5’−TATCACCCCACCTAAACCAA−3’を用いた。PCR反応液は、50μL[10XEpiTaq PCR Buffer(Mg2+ free) 5μL、dNTP Mixture(各2.5mM) 6μL、25mM MgCl 5μL、TaKaRa EpiTaq HS(5U/mL) 0.25μL、各プライマー(10μM) 各1μL]で、PCR反応条件は、(98℃ 10秒)−(55℃ 30秒)−(72℃ 30秒)(40サイクル)、最後に(72℃ 7分)とし、TaKaRa PCR Thermal Cycler Dice(タカラバイオ社製)を用いてPCR反応を行った。反応後の反応液より2μLを用いてアガロース電気泳動を行った結果を図30に示す。図30〜32の各図において、「Tconv」はPBMCを抗CD3抗体固相化プレートで培養した細胞を示す。図30より、各サンプルのPCR産物の単一増幅及びサイズ(336bp)を確認した。次に、前記PCR産物を2μL使用し、T−ベクター pMD20(タカラバイオ社製)とDNA Ligation Kit <Mighty Mix>(タカラバイオ社製)を用いて、TAクローニングを行った。その後、上記Ligation液を5μL使用し、E.coli HST08 Premium Competent Cells(タカラバイオ社製)に42℃45秒間反応させ、形質転換を行った。SOC培地で37℃1時間培養後、X−gal(タカラバイオ社製)を塗布したアンピシリン入りLB培地プレートに接種し、37℃で一晩培養した。その後、白コロニーを各24クローンピックアップし、LB培地で37℃一晩培養後、グリセロールを終濃度17%になるように添加し、グリセロールストックを作製した。シークエンス反応は、M13−47プライマーを用いプレート単位塩基配列解析(タカラバイオ社)を委託し、塩基配列情報を得た。
(3) Measurement of DNA methylation degree of TSDR Using NucleoSpin Tissue (manufactured by Takara Bio Inc.) from cells obtained from this Example (2) and cells cultured as PBC on an anti-CD3 antibody-immobilized plate as a control. DNA was extracted to obtain 5.1-5.6 μg of DNA from 1 × 10 6 cultured cells. Next, by using Methyl Easy Xceed Rapid DNA Bisulfite Modification Kit (manufactured by Takara Bio Inc.), 2.0-2.2 μg of the DNA was bisulfite treated, and 0.5-1.0 μg of DNA after bisulfite treatment Got. Next, 20 ng of the DNA was used, and bisulfite-PCR was performed using TaKaRa EpiTaq HS (for bisulfite-treated DNA) (manufactured by Takara Bio Inc.). As the primer, 5′-TGTTTGGGGGTAGAGGATTTT-3 ′ on the forward side and 5′-TATCACCCCACCTAAAACCAA-3 ′ on the reverse side were used. PCR reaction solution was 50 μL [10X EpiTaq PCR Buffer (Mg2 + free) 5 μL, dNTP Mixture (2.5 mM each) 6 μL, 25 mM MgCl 2 5 μL, TaKaRa EpiTaq HS (5 U / mL) 1 μL each 10 μL, each primer 10 μL The PCR reaction conditions were (98 ° C. 10 seconds) − (55 ° C. 30 seconds) − (72 ° C. 30 seconds) (40 cycles), and finally (72 ° C. 7 minutes), and TaKaRa PCR Thermal Cycler Dice (Takara) PCR reaction was carried out using Biotech). FIG. 30 shows the results of agarose electrophoresis using 2 μL of the reaction solution after the reaction. 30 to 32, “Tconv” indicates a cell obtained by culturing PBMC on an anti-CD3 antibody-immobilized plate. From FIG. 30, the single amplification and size (336 bp) of the PCR product of each sample were confirmed. Next, 2 μL of the PCR product was used, and TA cloning was performed using T-vector pMD20 (manufactured by Takara Bio Inc.) and DNA Ligation Kit <Mighty Mix> (manufactured by Takara Bio Inc.). Thereafter, 5 μL of the above ligation solution was used. E. coli HST08 Premium Competent Cells (manufactured by Takara Bio Inc.) were reacted at 42 ° C. for 45 seconds for transformation. After culturing at 37 ° C. for 1 hour in an SOC medium, the LB medium plate containing ampicillin coated with X-gal (manufactured by Takara Bio Inc.) was inoculated and cultured at 37 ° C. overnight. Thereafter, 24 clones of white colonies were picked up and cultured overnight in LB medium at 37 ° C., and glycerol was added to a final concentration of 17% to prepare a glycerol stock. For the sequence reaction, base sequence information was obtained by entrusting plate unit base sequence analysis (Takara Bio Inc.) using M13-47 primer.

得られた塩基配列をQUMA(理化学研究所)ソフトウェアを用いて解析を行った。除外条件として、バイサルファイト変換効率の下限を95%、アライメントミスマッチの数の上限を15として行った。TSDRのDNAメチル化の頻度を図31に示す。図31において、横軸はTSDRのDNAメチル化部位を、縦軸はサンプル名を示す。図31より、通常のT細胞を培養した細胞に比べて、制御性T細胞を分離し培養した細胞ではどのDNAメチル化部位においてもメチル化されている頻度が低かった。   The obtained base sequence was analyzed using QUMA (RIKEN) software. As exclusion conditions, the lower limit of bisulfite conversion efficiency was 95%, and the upper limit of the number of alignment mismatches was 15. The frequency of DNA methylation of TSDR is shown in FIG. In FIG. 31, the horizontal axis represents the DNA methylation site of TSDR, and the vertical axis represents the sample name. From FIG. 31, the frequency of methylation at any DNA methylation site was lower in cells in which regulatory T cells were isolated and cultured than in cells in which normal T cells were cultured.

各クローンのDNAメチル化の結果を図32に示す。図32において、横軸はDNAのメチル化部位を、縦軸は各クローンを示し、黒丸はその部位が“メチル化”されていることを、白丸はその部位が“脱メチル化”されていることを示す。図32より、通常のT細胞を培養した細胞はほぼすべてのクローンが”メチル化”されていたのに対して、制御性T細胞を分離し培養した細胞では、DNAメチル化部位がすべて“脱メチル化”されているクローンが大多数を占めていた。したがって、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養して得られた細胞は、抗CD3抗体固相化プレートで培養して得られた細胞と同様に安定的にFoxp3を発現する制御性T細胞を多く含む細胞集団であることが明らかとなった。   The result of DNA methylation of each clone is shown in FIG. In FIG. 32, the horizontal axis indicates the DNA methylation site, the vertical axis indicates each clone, the black circle indicates that the site is “methylated”, and the white circle indicates that the site is “demethylated”. It shows that. As shown in FIG. 32, almost all clones in which normal T cells were cultured were “methylated”, whereas in cells in which regulatory T cells were isolated and cultured, all DNA methylation sites were “de-methylated”. The majority of the clones were “methylated”. Therefore, the cells obtained by culturing the fibronectin fragment / anti-CD3 antibody-immobilized plate can stably express Foxp3 similarly to the cells obtained by culturing the anti-CD3 antibody-immobilized plate. It became clear that the cell population was rich in cells.

実施例7 フィブロネクチンフラグメント/抗CD3抗体/抗CD28抗体の固相化プレートを用いた制御性T細胞の培養法
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及びフィブロネクチンフラグメント/抗CD3抗体/抗CD28抗体固相化プレートの調製
実施例1−(1)と同様に、抗CD3抗体溶液、及び抗CD3抗体とレトロネクチンの混合溶液を調製し、表面未処理96ウェル平面プレートに0.1mL/ウェルの量で加え、4℃で一晩放置した。フィブロネクチンフラグメント/抗CD3抗体/抗CD28抗体固相化プレートの調製のために、フィブロネクチンフラグメント(レトロネクチン)を25μg/mLもしくは5μg/mL、及び各々に抗CD3抗体を5μg/mLと抗CD28抗体(CD28.2)を5μg/mLとなるようにPBSに溶解し、表面未処理96ウェル平面プレートに0.1mL/ウェルの量で加え、4℃で一晩放置した。その後、それぞれのプレートを37℃で4時間放置後、溶解液をとり除き、PBSを用い0.2mL/ウェルの量で各プレートを2回洗浄し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート及びフィブロネクチンフラグメント/抗CD3抗体/抗CD28抗体固相化プレートを調製した。
Example 7 Method of culturing regulatory T cells using immobilized plate of fibronectin fragment / anti-CD3 antibody / anti-CD28 antibody (1) Fibronectin fragment / anti-CD3 antibody immobilized plate and fibronectin fragment / anti-CD3 antibody / anti-antibody Preparation of CD28 antibody-immobilized plate In the same manner as in Example 1- (1), an anti-CD3 antibody solution and a mixed solution of anti-CD3 antibody and retronectin were prepared, and 0.1 mL / well was added to a surface-untreated 96-well flat plate. And left at 4 ° C. overnight. For the preparation of fibronectin fragment / anti-CD3 antibody / anti-CD28 antibody-immobilized plate, fibronectin fragment (retronectin) was 25 μg / mL or 5 μg / mL, and anti-CD3 antibody 5 μg / mL and anti-CD28 antibody (CD28 2) was dissolved in PBS to 5 μg / mL, added to a surface-untreated 96-well flat plate in an amount of 0.1 mL / well, and allowed to stand at 4 ° C. overnight. Then, after each plate was left at 37 ° C. for 4 hours, the lysate was removed, each plate was washed twice with PBS at a volume of 0.2 mL / well, and a fibronectin fragment / anti-CD3 antibody-immobilized plate and A fibronectin fragment / anti-CD3 antibody / anti-CD28 antibody-immobilized plate was prepared.

(2)制御性T細胞の培養
実施例5−(2)と同様にして、CD4陽性かつCD25陽性かつCD45RA陽性細胞を多く含む細胞集団を得た。これらの細胞を0.85×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養するものには、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加した。細胞懸濁液をそれぞれのプレートに、0.1mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養1日目に上記の培養用培地を0.1mL加えた。培養4日目に培地を0.05mL除き、培養用培地を0.05mL加えた。培養5日目に細胞を回収し、培養用培地を0.2mL加えて、細胞培養用48ウェルプレートに全量をまき直した。培養6日目に培養用培地を0.5mL加え、細胞培養用24ウェルプレートに全量をまき直した。培養開始8日目に細胞を回収し、細胞増殖倍率を測定した。培養開始11日目に細胞を回収し、Foxp3陽性細胞率を測定した。
(2) Culture of regulatory T cells In the same manner as in Example 5- (2), a cell population containing many CD4-positive, CD25-positive, and CD45RA-positive cells was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 0.85 × 10 5 cells / mL. For those cultured on a fibronectin fragment / anti-CD3 antibody-immobilized plate, anti-CD28 antibody (CD28.2) was added to the cell suspension to a final concentration of 2 μg / mL. The cell suspension was added to each plate at 0.1 mL / well, and culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ). On the first day of culture, 0.1 mL of the above culture medium was added. On the fourth day of culture, 0.05 mL of the medium was removed, and 0.05 mL of the culture medium was added. On the fifth day of culture, cells were collected, 0.2 mL of culture medium was added, and the whole amount was re-wound in a 48-well plate for cell culture. On the sixth day of culture, 0.5 mL of the culture medium was added, and the entire amount was re-wound into a 24-well plate for cell culture. On the 8th day from the start of the culture, the cells were collected and the cell growth rate was measured. On the 11th day from the start of the culture, the cells were collected and the Foxp3-positive cell rate was measured.

細胞増殖倍率の経時的変化を図33に示す。図33において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。また、図33〜35の各図において、「RNhiCD3+CD28」は抗CD28抗体存在下に25μg/mLのフィブロネクチンフラグメントと抗CD3抗体を固相化したプレートで培養した細胞、「RNloCD3+CD28」は抗CD28抗体存在下に5μg/mLのフィブロネクチンフラグメントと抗CD3抗体を固相化したプレートで培養した細胞、「RNhiCD3CD28」は25μg/mLのフィブロネクチンフラグメントと抗CD3抗体と抗CD28抗体を固相化したプレートで培養した細胞、「RNloCD3CD28」は5μg/mLのフィブロネクチンフラグメントと抗CD3抗体と抗CD28抗体を固相化したプレートで培養した細胞を示す。図33より、フィブロネクチンフラグメントが低濃度(5μg/mL)で培養した条件は高濃度(25μg/mL)で培養した条件と同様に、高い細胞増殖倍率を示した。また、抗CD28抗体を固相化したプレートで培養した条件においても同様に、高い細胞増殖倍率を示した。   FIG. 33 shows changes with time in the cell growth rate. In FIG. 33, the horizontal axis represents the number of days from the start of culture, and the vertical axis represents the cell growth rate. In each of FIGS. 33 to 35, “RNhiCD3 + CD28” is a cell cultured on a plate on which 25 μg / mL of a fibronectin fragment and an anti-CD3 antibody are immobilized in the presence of an anti-CD28 antibody, and “RNloCD3 + CD28” is an anti-CD28 antibody. Below, cells cultured on a plate on which 5 μg / mL fibronectin fragment and anti-CD3 antibody were immobilized, “RNhiCD3CD28” was cultured on a plate on which 25 μg / mL fibronectin fragment, anti-CD3 antibody and anti-CD28 antibody were immobilized. “RNloCD3CD28” indicates a cell cultured on a plate on which 5 μg / mL fibronectin fragment, anti-CD3 antibody and anti-CD28 antibody are immobilized. From FIG. 33, the conditions under which the fibronectin fragment was cultured at a low concentration (5 μg / mL) showed a high cell growth rate, similar to the conditions cultured at a high concentration (25 μg / mL). Similarly, a high cell growth rate was exhibited even under conditions in which the anti-CD28 antibody was cultured on a solid-phased plate.

Foxp3を発現する培養細胞の割合を図34に示す。図34は、培養細胞にAPC−Cy7標識抗ヒトCD4抗体を添加して4℃で20分間反応させ染色後、PE anti―human FoxP3 Staining Setを用いてFoxp3陽性細胞率をFACSCantoで測定した。図34において、縦軸はCD4陽性かつFoxp3陽性細胞の割合を示す。図34より、いずれの条件で培養した細胞集団においても、CD4陽性かつFoxp3陽性細胞の割合が高かった。   The ratio of the cultured cells expressing Foxp3 is shown in FIG. In FIG. 34, APC-Cy7-labeled anti-human CD4 antibody was added to cultured cells, reacted at 4 ° C. for 20 minutes, stained, and then the rate of Foxp3-positive cells was measured with FACSCanto using PE anti-human FoxP3 Staining Set. In FIG. 34, the vertical axis represents the ratio of CD4 positive and Foxp3 positive cells. From FIG. 34, the ratio of CD4 positive and Foxp3 positive cells was high in the cell population cultured under any condition.

Foxp3を発現する培養細胞の絶対数を図35に示す。図35において、縦軸は培養開始時の細胞数に図33の細胞増殖倍率と図34の陽性率を乗じた値を示す。図35より、いずれの条件においても、CD4陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 35, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 33 and the positive rate in FIG. From FIG. 35, the number of CD4-positive and Foxp3-positive cells was remarkably increased under any condition.

実施例8 再刺激による制御性T細胞の培養法
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例6−(1)記載の操作に従い、表面未処理96ウェル平面プレートを用いてフィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 8 Regulatory T cell culture method by restimulation (1) Preparation of fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate According to the procedure described in Example 6- (1) A fibronectin fragment / anti-CD3 antibody-immobilized plate and an anti-CD3 antibody-immobilized plate were prepared using a treated 96-well flat plate.

(2)制御性T細胞の培養
実施例5−(2)と同様にして、CD4陽性かつCD25陽性かつCD45RA陽性細胞を多く含む細胞集団を得た。これらの細胞を1.5×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養1日目に上記の培養用培地を0.05mL加えた。培養4日目に培地を0.05mL除き、培養用培地を0.05mL加えた。培養5日目に細胞を回収し、4×10cells/mLとなるように培養用培地に懸濁し、表面未処理48ウェルプレートに0.5mL/ウェルとなるようにまき直した。培養6日目に細胞を回収し、培養用培地を0.5mL加え表面未処理24ウェルプレートに全量をまき直した。培養開始8日目に細胞を回収し、細胞増殖倍率を測定した。培養開始11日目に細胞を回収し、Foxp3陽性細胞率、CD62L陽性かつCCR7陽性細胞率を測定した。
(2) Culture of regulatory T cells In the same manner as in Example 5- (2), a cell population containing many CD4-positive, CD25-positive, and CD45RA-positive cells was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 1.5 × 10 5 cells / mL. Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and 0. 5 was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate. The culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ) at 2 mL / well. On the first day of culture, 0.05 mL of the above culture medium was added. On the fourth day of culture, 0.05 mL of the medium was removed, and 0.05 mL of the culture medium was added. On the fifth day of culture, the cells were collected, suspended in the culture medium so as to be 4 × 10 5 cells / mL, and re-spread so as to be 0.5 mL / well in a surface untreated 48-well plate. On the 6th day of culture, cells were collected, 0.5 mL of culture medium was added, and the whole amount was re-wound into a surface untreated 24-well plate. On the 8th day from the start of the culture, the cells were collected and the cell growth rate was measured. On the 11th day from the start of the culture, the cells were collected, and the Foxp3-positive cell rate, CD62L-positive and CCR7-positive cell rate were measured.

細胞増殖倍率の経時的変化を図36に示す。図36において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。図36より、抗CD3抗体固相化プレートで培養した条件に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、高い細胞増殖倍率を示した。   FIG. 36 shows changes with time in the cell growth rate. In FIG. 36, the horizontal axis indicates the number of days from the start of culture, and the vertical axis indicates the cell growth rate. From FIG. 36, the cell culture magnification was higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate than on the condition cultured on the anti-CD3 antibody immobilized plate.

Foxp3を発現する培養細胞の割合を実施例5−(2)と同様の操作で測定した。その結果を図37に示す。図37において、縦軸はCD4陽性かつFoxp3陽性細胞の割合を示す。図37より、抗CD3抗体固相化プレートで培養した細胞に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、CD4陽性かつCD25陽性かつFoxp3陽性細胞の割合が同程度かやや高かった。   The ratio of cultured cells expressing Foxp3 was measured in the same manner as in Example 5- (2). The result is shown in FIG. In FIG. 37, the vertical axis represents the ratio of CD4 positive and Foxp3 positive cells. From FIG. 37, compared to cells cultured on the anti-CD3 antibody-immobilized plate, the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate have the same proportion of CD4 positive, CD25 positive and Foxp3 positive cells. It was a little expensive.

図38において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す。図38より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団は、CD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合が同程度かやや高かった。   In FIG. 38, the vertical axis represents the ratio of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive and CCR7 positive cells. FIG. 38 shows that the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate is more CD4 positive, CD25 positive, Foxp3 positive, CD62L positive, and CCR7 than the cell population cultured on the anti-CD3 antibody immobilized plate. The percentage of positive cells was similar or slightly higher.

Foxp3を発現する培養細胞の絶対数を図39に示す。図39において、縦軸は培養開始時の細胞数に図36の細胞増殖倍率と図37の陽性率を乗じた値を示す。図39より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団は、CD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 39, the vertical axis represents the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 36 and the positive rate in FIG. From FIG. 39, the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate has a remarkable number of CD4-positive, CD25-positive and Foxp3-positive cells compared to the cell population cultured on the anti-CD3 antibody-immobilized plate. Increased.

CD62LとCCR7を発現する培養細胞の絶対数を図40に示す。図40において、縦軸は培養開始時の細胞数に図36の細胞増殖倍率と図38の陽性率を乗じた値を示す。図40より、抗CD3抗体固相化プレートで培養した細胞に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、CD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CD62L and CCR7 is shown in FIG. In FIG. 40, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 36 and the positive rate in FIG. As shown in FIG. 40, the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate were more CD4-positive, CD25-positive, Foxp3-positive, CD62L-positive, and CCR7-positive cells than the cells cultured on the anti-CD3 antibody-immobilized plate. The number increased significantly.

(3)再刺激培養による制御性T細胞の培養
本実施例(2)で調製した細胞を2.0×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、本実施例(1)で調製したフィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で再刺激培養を開始した。再刺激培養3日目に細胞を回収し、培養液と等量の培養用培地で懸濁し、表面未処理48ウェルプレートに全量をまき直した。再刺激培養4日目に培養用培地を0.2mL加え、再刺激培養5日目に培養用培地を0.5mL加えた。再刺激培養開始7日目に細胞を回収し、細胞増殖倍率、Foxp3陽性細胞率、CCR7陽性細胞率を測定した。
(3) Culture of regulatory T cells by restimulation culture The same composition as that described in Example 2- (2) so that the cells prepared in this Example (2) are 2.0 × 10 5 cells / mL. In the culture medium. Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and the fibronectin fragment / anti-CD3 antibody-immobilized plate prepared in this Example (1) It added to a 0.2 mL / well CD3 antibody immobilized plate, CO 2 incubator (37 ℃, 5% CO 2 ) was initiated restimulated cultured. On day 3 of the re-stimulation culture, the cells were collected and suspended in a culture medium equivalent to the culture solution, and the whole amount was reapplied to a surface untreated 48-well plate. On the 4th day of the re-stimulation culture, 0.2 mL of the culture medium was added, and on the 5th day of the re-stimulation culture, 0.5 mL of the culture medium was added. On day 7 after the start of restimulation culture, the cells were collected, and the cell growth rate, Foxp3-positive cell rate, and CCR7-positive cell rate were measured.

再刺激後の細胞増殖倍率の経時的変化を図41に示す。図41において、横軸は再刺激培養開始からの日数を、縦軸は細胞増殖倍率を示す。図41より、抗CD3抗体固相化プレートで培養した条件に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件は、高い細胞増殖倍率を示した。   FIG. 41 shows changes with time in the cell growth rate after restimulation. In FIG. 41, the horizontal axis indicates the number of days from the start of restimulation culture, and the vertical axis indicates the cell growth rate. From FIG. 41, compared with the conditions cultured on the anti-CD3 antibody-immobilized plate, the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed a higher cell growth rate.

細胞増殖倍率の経時的変化を図42に示す。図42において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。図42より、抗CD3抗体固相化プレートで培養した細胞に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、高い細胞増殖倍率を示した。   FIG. 42 shows changes with time in the cell growth rate. In FIG. 42, the horizontal axis indicates the number of days from the start of culture, and the vertical axis indicates the cell growth rate. From FIG. 42, the cells cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed higher cell growth rate than the cells cultured on the anti-CD3 antibody-immobilized plate.

Foxp3を発現する培養細胞の割合を図43に示す。図43は、培養細胞にAPC−Cy7標識抗ヒトCD4抗体、APC標識抗ヒトCCR7抗体及びFITC標識抗ヒトCD25抗体を添加して4℃で20分間反応させ染色後、PE anti―human FoxP3 Staining Setを用いてFoxp3陽性細胞率をFACSCantoで測定した。図43において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す。図43より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞の割合が同程度かやや高かった。   The proportion of cultured cells expressing Foxp3 is shown in FIG. FIG. 43 shows that after adding APC-Cy7-labeled anti-human CD4 antibody, APC-labeled anti-human CCR7 antibody and FITC-labeled anti-human CD25 antibody to cultured cells and reacting at 4 ° C. for 20 minutes, staining was performed, and then PE anti-human FoxP3 Staining Set Was used to measure the Foxp3-positive cell rate with FACSCanto. In FIG. 43, the vertical axis indicates the ratio of CD4 positive, CD25 positive, and Foxp3 positive cells. From FIG. 43, the proportion of CD4 positive, CD25 positive and Foxp3 positive cells in the cell population cultured on the fibronectin fragment / anti-CD3 antibody solid phase plate compared to the cell population cultured on the anti-CD3 antibody solid phase plate. Was comparable or slightly higher.

図44において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性かつCCR7陽性細胞の割合を示す。図44より、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団の方が、CD4陽性かつCD25陽性かつFoxp3陽性かつCCR7陽性細胞の割合が高かった。   In FIG. 44, the vertical axis represents the ratio of CD4 positive, CD25 positive, Foxp3 positive and CCR7 positive cells. From FIG. 44, the cell population cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate is more CD4 positive, CD25 positive, Foxp3 positive and CCR7 positive than the cell population cultured on the anti-CD3 antibody immobilized plate. The percentage of cells was high.

Foxp3を発現する培養細胞の絶対数を図45に示す。図45において、縦軸は培養開始時の細胞数に図42の細胞増殖倍率と図43の陽性率を乗じた値を示す。図45より、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 45, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 42 and the positive rate in FIG. FIG. 45 shows that the number of CD4-positive, CD25-positive, and Foxp3-positive cells is significantly higher in the condition cultured on the fibronectin fragment / anti-CD3 antibody immobilized plate than on the condition cultured on the anti-CD3 antibody immobilized plate. Increased.

CCR7を発現する培養細胞の絶対数を図46に示す。図46において、縦軸は培養開始時の細胞数に図42の細胞増殖倍率と図44の陽性率を乗じた値を示す。図46より、抗CD3抗体固相化プレートで培養した細胞に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞は、CD4陽性かつCD25陽性かつFoxp3陽性かつCCR7陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CCR7 is shown in FIG. In FIG. 46, the vertical axis represents the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 42 and the positive rate in FIG. FIG. 46 shows that the number of CD4-positive, CD25-positive, Foxp3-positive, and CCR7-positive cells is more marked in the cells cultured in the fibronectin fragment / anti-CD3 antibody-immobilized plate than in the cells cultured on the anti-CD3 antibody-immobilized plate. Increased to.

実施例9 ラパマイシン存在下での制御性T細胞の培養法
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例1−(1)と同様に、抗CD3抗体溶液、及び抗CD3抗体とレトロネクチンの混合溶液を調製し、それぞれ表面未処理96ウェル平面プレートに0.1mL/ウェルの量で加え、4℃で一晩放置した。その後、それぞれのプレートを37℃で2.5時間放置後、溶解液をとり除き、PBSを用い0.2mL/ウェルの量で各プレートを2回洗浄し、抗CD3抗体固相化プレート及びフィブロネクチンフラグメント/抗CD3抗体固相化プレートを調製した。
Example 9 Method of culturing regulatory T cells in the presence of rapamycin (1) Preparation of fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate In the same manner as in Example 1- (1), A CD3 antibody solution and a mixed solution of anti-CD3 antibody and retronectin were prepared, each added to a surface-untreated 96-well flat plate in an amount of 0.1 mL / well, and left at 4 ° C. overnight. Thereafter, each plate was allowed to stand at 37 ° C. for 2.5 hours, and then the lysate was removed, each plate was washed twice with PBS at a volume of 0.2 mL / well, and the anti-CD3 antibody-immobilized plate and fibronectin were washed. Fragment / anti-CD3 antibody immobilized plates were prepared.

(2)制御性T細胞の培養
実施例5−(2)と同様にして、CD4陽性かつCD25陽性かつCD45RA陽性細胞を多く含む細胞集団を得た。これらの細胞を0.6×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養1日目に上記の培養用培地を0.1mL加えた。培養4日目に培養用培地を0.05mL加え、培養5日目に培養用培地を0.05mL加えた。培養7日目に培地を0.1mL除き、培養用培地を0.1mL加えた。培養開始8日目に細胞を回収した。
(2) Culture of regulatory T cells In the same manner as in Example 5- (2), a cell population containing many CD4-positive, CD25-positive, and CD45RA-positive cells was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 0.6 × 10 5 cells / mL. Further, anti-CD28 antibody (CD28.2) was added to the cell suspension so as to have a final concentration of 2 μg / mL, and 0. 5 was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate. The culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ) at 2 mL / well. On the first day of culture, 0.1 mL of the above culture medium was added. On the fourth day of culture, 0.05 mL of the culture medium was added, and on the fifth day of culture, 0.05 mL of the culture medium was added. On day 7 of culture, 0.1 mL of the medium was removed, and 0.1 mL of culture medium was added. Cells were collected on the 8th day from the start of the culture.

(3)ラパマイシン添加による制御性T細胞の培養
本実施例(2)に調製した細胞を2.0×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。さらに、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、ラパマイシン(シグマアルドリッチ社製)を終濃度2nMとなるようにそれぞれに添加した。なお、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞液について、CD28抗体は添加するがラパマイシンは添加しない条件を設定した。本実施例(1)で調製したフィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)でラパマイシン添加培養を開始した。ラパマイシン添加培養3日目に、ラパマイシンを添加しない群は、細胞を回収し、2×10cells/mLとなるように培養用培地に懸濁し、表面未処理24ウェルプレートに1.0mL/ウェルとなるようにまき直した。ラパマイシンを添加した群は、培地を0.05mL除き、培養用培地を0.1mL加えた。ラパマイシン添加培養5日目に、ラパマイシンを添加しない群は、培養用培地を0.5mL加えた。ラパマイシンを添加した群は、細胞を回収し、4×10cells/mLとなるように2nM ラパマイシンを含む培養用培地に懸濁し、表面未処理48ウェルプレートに0.5mL/ウェルとなるようにまき直した。ラパマイシン添加培養開始7日目に細胞を回収し、細胞増殖倍率、Foxp3陽性細胞率、CD62L陽性かつCCR7陽性細胞率を測定した。
(3) Culture of regulatory T cells by addition of rapamycin The cells prepared in Example (2) have the same composition as that described in Example 2- (2) so as to be 2.0 × 10 5 cells / mL. It was suspended in the culture medium. Furthermore, anti-CD28 antibody (CD28.2) was added to the cell suspension to a final concentration of 2 μg / mL, and rapamycin (manufactured by Sigma Aldrich) was added to a final concentration of 2 nM. In addition, about the cell liquid culture | cultivated by the fibronectin fragment / anti-CD3 antibody solid-phase plate, the conditions which add CD28 antibody but not rapamycin were set. It was added to the fibronectin fragment / anti-CD3 antibody-immobilized plate or anti-CD3 antibody-immobilized plate prepared in this Example (1) at 0.2 mL / well, and a CO 2 incubator (37 ° C., 5% CO 2 ) To start the culture with rapamycin. On day 3 of the rapamycin-added culture, the group not added with rapamycin collected the cells, suspended them in the culture medium to 2 × 10 5 cells / mL, and added 1.0 mL / well to the surface untreated 24-well plate. It was re-rolled to become. In the group to which rapamycin was added, 0.05 mL of the medium was removed and 0.1 mL of the culture medium was added. On day 5 of rapamycin-added culture, 0.5 mL of culture medium was added to the group not added with rapamycin. In the group to which rapamycin was added, the cells were collected, suspended in a culture medium containing 2 nM rapamycin so as to be 4 × 10 5 cells / mL, and 0.5 mL / well in a surface-untreated 48-well plate. Re-rolled. On day 7 after the start of the culture with rapamycin, the cells were collected, and the cell growth rate, Foxp3-positive cell rate, CD62L-positive and CCR7-positive cell rate were measured.

細胞増殖倍率の経時的変化を図47に示す。図47において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を、矢印はラパマイシンを添加したタイミングを示す。また、図47〜51の各図において、「RNCD3+CD28」は抗CD28抗体存在下にフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞、「CD3+CD28+Rapa」は抗CD28抗体存在下にラパマイシンを添加し抗CD3抗体固相化プレートで培養した細胞、「RNCD3+CD28+Rapa」は抗CD28抗体存在下にラパマイシンを添加しフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞を示す。図47より、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件は、ラパマイシンを添加した条件に比べ高い細胞増殖倍率を示した。また、ラパマイシンを添加した条件間において、抗CD3抗体固相化プレートで培養した条件に比べてフィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、高い細胞増殖倍率を示した。   FIG. 47 shows changes with time in the cell growth rate. In FIG. 47, the horizontal axis indicates the number of days from the start of culture, the vertical axis indicates the cell growth rate, and the arrow indicates the timing at which rapamycin is added. 47 to 51, “RNCD3 + CD28” is a cell cultured on a fibronectin fragment / anti-CD3 antibody-immobilized plate in the presence of an anti-CD28 antibody, and “CD3 + CD28 + Rapa” is a rapamycin added in the presence of an anti-CD28 antibody. “RNCD3 + CD28 + Rapa” indicates a cell cultured on a fibronectin fragment / anti-CD3 antibody-immobilized plate with rapamycin added in the presence of the anti-CD28 antibody. As shown in FIG. 47, the conditions of culturing on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed a higher cell proliferation rate than the condition of adding rapamycin. In addition, among the conditions in which rapamycin was added, the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed a higher cell growth rate than the conditions cultured on the anti-CD3 antibody-immobilized plate.

Foxp3を発現する培養細胞の割合を実施例5−(2)と同様の操作で測定した。その結果を図48に示す。図48において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合を示す。図48より、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件は抗CD3抗体固相化プレートで培養し、かつラパマイシンを添加した条件よりCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合が高かった。また、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養し、かつラパマイシンを添加した条件ではCD4陽性かつCD25陽性かつFoxp3陽性細胞の割合がさらに高かった。この結果は、ラパマイシンを添加せずとも抗CD3抗体、抗CD28抗体、及びレトロネクチンで刺激すると、高純度の制御性T細胞を得ることができ、この条件にラパマイシンを添加することでさらに高純度の制御性T細胞が得ることができることを示している。   The ratio of cultured cells expressing Foxp3 was measured in the same manner as in Example 5- (2). The results are shown in FIG. In FIG. 48, the vertical axis represents the ratio of CD4 positive, CD25 positive and Foxp3 positive cells. From FIG. 48, the ratio of CD4 positive, CD25 positive, and Foxp3 positive cells was higher in the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate than on the condition where the culture was performed on the anti-CD3 antibody-immobilized plate and rapamycin was added. It was. Moreover, the ratio of CD4-positive, CD25-positive, and Foxp3-positive cells was even higher when cultured on a fibronectin fragment / anti-CD3 antibody-immobilized plate and added with rapamycin. This result shows that high-purity regulatory T cells can be obtained by stimulation with anti-CD3 antibody, anti-CD28 antibody and retronectin without addition of rapamycin, and by adding rapamycin to this condition, even higher purity can be obtained. It shows that regulatory T cells can be obtained.

図49において、縦軸はCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合を示す。図49より、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団は、ラパマイシンを添加した条件の細胞集団に比べCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合が高かった。ラパマイシンを添加した条件間において、抗CD3抗体固相化プレートで培養した細胞集団に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した細胞集団は、CD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞の割合が高かった。   In FIG. 49, the vertical axis represents the ratio of CD4 positive, CD25 positive, Foxp3 positive, CD62L positive and CCR7 positive cells. FIG. 49 shows that the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate has a higher proportion of CD4-positive, CD25-positive, Foxp3-positive, CD62L-positive, and CCR7-positive cells than the cell population to which rapamycin was added. It was. Compared to the cell population cultured on the anti-CD3 antibody-immobilized plate, the cell population cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate between the conditions added with rapamycin was CD4 positive, CD25 positive, Foxp3 positive and The proportion of CD62L positive and CCR7 positive cells was high.

Foxp3を発現する培養細胞の絶対数を図50に示す。図50において、縦軸は培養開始時の細胞数に図47の細胞増殖倍率と図48の陽性率を乗じた値を示す。図50より、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件は、ラパマイシンを添加した条件に比べCD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。ラパマイシンを添加した条件間では、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつFoxp3陽性細胞数が顕著に増加した。   The absolute number of cultured cells that express Foxp3 is shown in FIG. In FIG. 50, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 47 and the positive rate in FIG. From FIG. 50, the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate showed a marked increase in the number of CD4-positive, CD25-positive, and Foxp3-positive cells compared to the condition where rapamycin was added. Among the conditions where rapamycin was added, the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate were more CD4-positive, CD25-positive and Foxp3-positive cells than the conditions cultured on the anti-CD3 antibody-immobilized plate. The number increased significantly.

CD62LとCCR7を発現する培養細胞の絶対数を図51に示す。図51において、縦軸は培養開始時の細胞数に図47の細胞増殖倍率と図49の陽性率を乗じた値を示す。図51より、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件は、ラパマイシンを添加した条件に比べCD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞数が顕著に増加した。ラパマイシンを添加した条件間において、抗CD3抗体固相化プレートで培養した条件に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、CD4陽性かつCD25陽性かつFoxp3陽性かつCD62L陽性かつCCR7陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CD62L and CCR7 is shown in FIG. In FIG. 51, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate in FIG. 47 and the positive rate in FIG. As shown in FIG. 51, the number of CD4-positive, CD25-positive, Foxp3-positive, CD62L-positive, and CCR7-positive cells was significantly increased in the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate compared to the conditions in which rapamycin was added. Compared with the conditions cultured on the anti-CD3 antibody-immobilized plate, the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate were more CD4-positive, CD25-positive and Foxp3-positive between the conditions where rapamycin was added. The number of CD62L positive and CCR7 positive cells was remarkably increased.

実施例10 CD3/28ビーズとの比較
(1)フィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートの調製
実施例6−(1)記載の操作に従い、表面未処理96ウェル平面プレートを用いてフィブロネクチンフラグメント/抗CD3抗体固相化プレート及び抗CD3抗体固相化プレートを調製した。
Example 10 Comparison with CD3 / 28 beads (1) Preparation of fibronectin fragment / anti-CD3 antibody-immobilized plate and anti-CD3 antibody-immobilized plate According to the procedure described in Example 6- (1), surface untreated 96 wells A fibronectin fragment / anti-CD3 antibody-immobilized plate and an anti-CD3 antibody-immobilized plate were prepared using a flat plate.

(2)制御性T細胞の培養
実施例5−(2)と同様にして、CD4陽性かつCD25陽性かつCD45RA陽性細胞を多く含む細胞集団を得た。これらの細胞を1.0×10cells/mLとなるように実施例2−(2)記載のものと同組成の培養用培地に懸濁した。固相化プレートで培養する群は、上記細胞懸濁液に抗CD28抗体(CD28.2)を終濃度2μg/mLとなるように添加し、フィブロネクチンフラグメント/抗CD3抗体固相化プレート又は抗CD3抗体固相化プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。一方、増殖刺激ビーズで培養する群は、上記細胞懸濁液に洗浄後のDynabeads Human Treg Expander(インビトロジェン社製)(以下、CD3/28ビーズと記載)を細胞対CD3/28ビーズ比が1対4になるように添加し、表面未処理96ウェル平面プレートに0.2mL/ウェルとなるように加え、COインキュベーター(37℃、5%CO)で培養を開始した。培養1日目に上記の培養用培地を0.05mL加えた。培養4日目に培地を0.05mL除き、培養用培地を0.1mL加えた。培養5日目に細胞を回収し、3.5×10cells/mLとなるように培養用培地に懸濁し、細胞培養用24ウェルプレートに1.0mL/ウェルとなるようにまき直した。培養7日目に培地を0.4mL除き、培養用培地を0.4mL加えた。培養開始8日目に細胞を回収し、細胞増殖倍率を測定した。また、CD3/28ビーズで培養した群はマグネットでCD3/28ビーズを除き、細胞を回収し、8.7×10cells/mLとなるように培養用培地に懸濁し、細胞培養用12ウェルプレートに2.0mL/ウェルとなるようにまき直した。培養開始8日目に細胞を回収し、細胞増殖倍率を測定した。培養開始11日目に細胞を回収し、Foxp3陽性細胞率、CCR7陽性細胞率とCD27陽性細胞率を測定した。
(2) Culture of regulatory T cells In the same manner as in Example 5- (2), a cell population containing many CD4-positive, CD25-positive, and CD45RA-positive cells was obtained. These cells were suspended in a culture medium having the same composition as that described in Example 2- (2) so as to be 1.0 × 10 5 cells / mL. In the group cultured on a solid phased plate, an anti-CD28 antibody (CD28.2) was added to the cell suspension to a final concentration of 2 μg / mL, and a fibronectin fragment / anti-CD3 antibody solid phased plate or anti-CD3 was added. It added to a antibody immobilized plate in 0.2 mL / well, CO 2 incubator (37 ℃, 5% CO 2 ) and culturing was started. On the other hand, in the group cultured with growth stimulating beads, Dynabeads Human Treg Expander (manufactured by Invitrogen) (hereinafter referred to as CD3 / 28 beads) after washing into the cell suspension has a cell to CD3 / 28 bead ratio of 1 pair. 4 was added to a surface untreated 96-well flat plate at 0.2 mL / well, and culture was started in a CO 2 incubator (37 ° C., 5% CO 2 ). On the first day of culture, 0.05 mL of the above culture medium was added. On the fourth day of culture, 0.05 mL of the medium was removed, and 0.1 mL of the culture medium was added. On the fifth day of culture, the cells were collected, suspended in a culture medium so as to be 3.5 × 10 5 cells / mL, and re-spread so as to be 1.0 mL / well in a 24-well plate for cell culture. On day 7 of culture, 0.4 mL of the medium was removed, and 0.4 mL of culture medium was added. On the 8th day from the start of the culture, the cells were collected and the cell growth rate was measured. In the group cultured with CD3 / 28 beads, the CD3 / 28 beads were removed with a magnet, and the cells were collected, suspended in a culture medium so as to be 8.7 × 10 5 cells / mL, and 12 wells for cell culture. The plate was rewound to 2.0 mL / well. On the 8th day from the start of the culture, the cells were collected and the cell growth rate was measured. On the 11th day from the start of the culture, the cells were collected, and the Foxp3-positive cell rate, the CCR7-positive cell rate, and the CD27-positive cell rate were measured.

細胞増殖倍率の経時的変化を図52に示す。図52において、横軸は培養開始からの日数を、縦軸は細胞増殖倍率を示す。図52より、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件は、抗CD3抗体固相化プレートで培養した条件及びCD3/28ビーズで培養した条件よりも高い細胞増殖倍率を示した。   FIG. 52 shows changes with time in the cell growth rate. In FIG. 52, the horizontal axis represents the number of days from the start of culture, and the vertical axis represents the cell growth rate. As shown in FIG. 52, the conditions of culturing with the fibronectin fragment / anti-CD3 antibody-immobilized plate showed higher cell proliferation rate than the conditions of culturing with the anti-CD3 antibody-immobilized plate and the condition of culturing with CD3 / 28 beads.

Foxp3を発現する培養細胞の割合を実施例6−(2)と同様の操作で測定した。Foxp3を発現する培養細胞の絶対数を図53に示す。図53において、縦軸は培養開始時の細胞数に図52の細胞増殖倍率とFoxp3の陽性率を乗じた値を示す。フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、抗CD3抗体固相化プレートで培養した条件及びCD3/28ビーズで培養した条件よりも、CD4陽性かつFoxp3陽性細胞数が顕著に増加した。   The ratio of cultured cells expressing Foxp3 was measured in the same manner as in Example 6- (2). The absolute number of cultured cells expressing Foxp3 is shown in FIG. In FIG. 53, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate and the positive rate of Foxp3 in FIG. The number of CD4-positive and Foxp3-positive cells is more prominent when cultured on fibronectin fragment / anti-CD3 antibody-immobilized plate than when cultured on anti-CD3 antibody-immobilized plate and CD3 / 28 beads. Increased to.

CCR7を発現する培養細胞の絶対数を図54に示す。図54において、縦軸は培養開始時の細胞数に図52の細胞増殖倍率とCD4陽性かつFoxp3陽性かつCCR7陽性細胞の割合を乗じた値を示す。図54より、に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、抗CD3抗体固相化プレートで培養した条件、及びCD3/28ビーズで培養した条件よりもCD4陽性かつFoxp3陽性かつCCR7陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CCR7 is shown in FIG. In FIG. 54, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate and the ratio of CD4 positive, Foxp3 positive and CCR7 positive cells in FIG. From FIG. 54, compared with the conditions cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate, the conditions cultured on the anti-CD3 antibody-immobilized plate and the conditions cultured on CD3 / 28 beads were CD4. The number of positive, Foxp3-positive and CCR7-positive cells was significantly increased.

CD27を発現する培養細胞の絶対数を図55に示す。図55において、縦軸は培養開始時の細胞数に図52の細胞増殖倍率とCD4陽性かつFoxp3陽性かつCD27陽性細胞の割合を乗じた値を示す。図55より、に比べて、フィブロネクチンフラグメント/抗CD3抗体固相化プレートで培養した条件の方が、抗CD3抗体固相化プレートで培養した条件及びCD3/28ビーズで培養した条件よりもCD4陽性かつFoxp3陽性かつCD27陽性細胞数が顕著に増加した。   The absolute number of cultured cells expressing CD27 is shown in FIG. In FIG. 55, the vertical axis indicates the value obtained by multiplying the number of cells at the start of culture by the cell growth rate and the ratio of CD4 positive, Foxp3 positive and CD27 positive cells in FIG. As compared with FIG. 55, the condition cultured on the fibronectin fragment / anti-CD3 antibody-immobilized plate is more CD4 positive than the condition cultured on the anti-CD3 antibody-immobilized plate and the condition cultured on CD3 / 28 beads. And the number of Foxp3-positive and CD27-positive cells was remarkably increased.

以上、本発明の方法により、免疫抑制能の強い制御性T細胞を多く含む細胞集団を効率よく拡大培養できる方法が提供される。   As described above, the method of the present invention provides a method capable of efficiently expanding and culturing a cell population containing a large amount of regulatory T cells having strong immunosuppressive ability.

本発明の方法を用いれば、生体外で制御性T細胞を含む細胞集団を効率よく拡大培養できる。当該方法により製造された制御性T細胞は免疫抑制剤として臓器移植における拒絶反応、アレルギー疾患、自己免疫疾患、移植片対宿主病(GVHD)等の予防・治療に有用である。   By using the method of the present invention, a cell population containing regulatory T cells can be efficiently expanded in vitro. Regulatory T cells produced by this method are useful as an immunosuppressant for the prevention and treatment of organ transplant rejection, allergic diseases, autoimmune diseases, graft-versus-host disease (GVHD) and the like.

SEQ ID NO:1; Fibronectin fragment named CH-271.
SEQ ID NO:2; Fibronectin fragment named CH-296.
SEQ ID NO:3; Fibronectin fragment named H-271.
SEQ ID NO:4; Fibronectin fragment named H-296.
SEQ ID NO:5; TSDR forward primer.
SEQ ID NO:6; TSDR reverse primer.
SEQ ID NO: 1; Fibronectin fragment named CH-271.
SEQ ID NO: 2; Fibronectin fragment named CH-296.
SEQ ID NO: 3; Fibronectin fragment named H-271.
SEQ ID NO: 4; Fibronectin fragment named H-296.
SEQ ID NO: 5; TSDR forward primer.
SEQ ID NO: 6; TSDR reverse primer.

Claims (3)

下記工程を包含することを特徴とする、制御性T細胞を含む細胞集団の製造方法:
(1)T細胞を含有する細胞集団からCD4陽性CD25陽性T細胞集団を分離する工程、及び
(2)抗CD3抗体、抗CD28抗体及びフィブロネクチンもしくはそのフラグメント又はそれらの混合物の存在下で、工程(1)で得られた細胞集団を生体外で培養する工程。
A method for producing a cell population containing regulatory T cells, comprising the following steps:
(1) separating a CD4 positive CD25 positive T cell population from a T cell-containing cell population, and (2) in the presence of an anti-CD3 antibody, an anti-CD28 antibody and fibronectin or a fragment thereof or a mixture thereof ( A step of culturing the cell population obtained in 1) in vitro.
フィブロネクチンフラグメントが、VLA−5へのリガンドを含む細胞接着ドメイン、ヘパリン結合ドメイン、VLA−4へのリガンドであるCS−1ドメインを含有するフラグメントであることを特徴とする請求項1記載の方法。  The method according to claim 1, wherein the fibronectin fragment is a fragment containing a cell adhesion domain containing a ligand for VLA-5, a heparin binding domain, and a CS-1 domain which is a ligand for VLA-4. フィブロネクチンフラグメントが、配列表の配列番号1〜4のいずれかに記載のアミノ酸配列を有するフラグメントである請求項1又は2記載の方法。  The method according to claim 1 or 2, wherein the fibronectin fragment is a fragment having the amino acid sequence of any one of SEQ ID NOs: 1 to 4 in the sequence listing.
JP2012552771A 2011-01-14 2012-01-13 Method for producing regulatory T cells Active JP5911810B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011006330 2011-01-14
JP2011006330 2011-01-14
PCT/JP2012/050599 WO2012096376A1 (en) 2011-01-14 2012-01-13 Method for producing regulatory t cells

Publications (2)

Publication Number Publication Date
JPWO2012096376A1 JPWO2012096376A1 (en) 2014-06-09
JP5911810B2 true JP5911810B2 (en) 2016-04-27

Family

ID=46507267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012552771A Active JP5911810B2 (en) 2011-01-14 2012-01-13 Method for producing regulatory T cells

Country Status (2)

Country Link
JP (1) JP5911810B2 (en)
WO (1) WO2012096376A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092597B2 (en) 2014-01-14 2018-10-09 The University Of Hong Kong Human CD8+ regulatory T cells inhibit GVHD and preserve general immunity in humanized mice
JP7084304B2 (en) * 2015-10-28 2022-06-14 ライフ テクノロジーズ エーエス Methods of Selective Proliferation of Different T Cell Subpopulations by Altering Cell Surface Signals and Signal Ratios
CN112135901A (en) * 2018-03-01 2020-12-25 格雷戈里奥马拉尼翁医院生物医学研究基金会 Method for obtaining regulatory T cells derived from thymus tissue and use of said cells as a cellular immunotherapy for the dysregulation of the immune system
JP7083190B2 (en) * 2018-08-22 2022-06-10 国立大学法人大阪大学 Method for producing regulatory T cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280307A (en) * 2005-04-01 2006-10-19 Kyoto Univ Method for producing controllable t cell
JP2007538000A (en) * 2004-01-08 2007-12-27 リージエンツ・オブ・ザ・ユニバーシテイ・オブ・カリフオルニア Regulatory T cells suppress autoimmunity
JP2009521409A (en) * 2005-12-08 2009-06-04 ユニバーシティー オブ ルーイビル リサーチ ファンデーション,インコーポレーテッド Methods and compositions for proliferating regulatory T cells
JP2009195228A (en) * 2008-01-21 2009-09-03 Univ Of Tokyo Method for producing controllable t cell and apparatus for amplifying controllable t cell
WO2009139413A1 (en) * 2008-05-16 2009-11-19 タカラバイオ株式会社 Method for production of cell mass containing cytokine-induced killer cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538000A (en) * 2004-01-08 2007-12-27 リージエンツ・オブ・ザ・ユニバーシテイ・オブ・カリフオルニア Regulatory T cells suppress autoimmunity
JP2006280307A (en) * 2005-04-01 2006-10-19 Kyoto Univ Method for producing controllable t cell
JP2009521409A (en) * 2005-12-08 2009-06-04 ユニバーシティー オブ ルーイビル リサーチ ファンデーション,インコーポレーテッド Methods and compositions for proliferating regulatory T cells
JP2009195228A (en) * 2008-01-21 2009-09-03 Univ Of Tokyo Method for producing controllable t cell and apparatus for amplifying controllable t cell
WO2009139413A1 (en) * 2008-05-16 2009-11-19 タカラバイオ株式会社 Method for production of cell mass containing cytokine-induced killer cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012018448; SENGUPTA S. et al.: 'Short hairpin RNA-mediated fibronectin knockdown delays tumor growth in a mouse glioma model.' Neoplasia Vol.12, No.10, 2010, p.837-847 *

Also Published As

Publication number Publication date
JPWO2012096376A1 (en) 2014-06-09
WO2012096376A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP7216045B2 (en) Central memory T cells for adoptive T cell therapy
US9670459B2 (en) Production method for cell populations
JP5156382B2 (en) Method for producing T cell population
JP4929174B2 (en) Method for producing lymphocytes
JP5097856B2 (en) Method for producing cytokine-induced killer cells
EP3324984A1 (en) T cells for expression of chimeric antigen receptors and other receptors
Shimasaki et al. Natural killer cell reprogramming with chimeric immune receptors
KR100786054B1 (en) Process for producing cytotoxic lymphocyte
WO2009139413A1 (en) Method for production of cell mass containing cytokine-induced killer cell
WO2011024791A1 (en) Method for producing t cell population under presence of retinoic acid
JP5911810B2 (en) Method for producing regulatory T cells
WO2022059780A1 (en) Method for producing regenerated t cells via ips cells
KR102030364B1 (en) Artificial antigen presentation cell derived from HLA deficient cell lines by using multiplex CRISPR-Cas9 system, and use thereof
JP7179986B2 (en) Method for culturing cord blood-derived natural killer cells using transformed T cells
WO2020164166A1 (en) General-purpose car-t cell, and preparation method therefor and use thereof
JP5485139B2 (en) Method for producing transgenic cells
CN117157391A (en) Cell bank composed of iPS cells for introducing T cell receptor genes
JPWO2008143255A1 (en) Method for producing cell population
US20240132841A1 (en) Large scale car-t immune cell manufacturing method utilizing lentiviral vector transfection
JP2010099022A (en) Method for producing lymphocyte
JP2010094123A (en) Method for producing lymphocyte
MX2008004225A (en) Method for production of t cell population
JP2010063455A (en) Method for producing lymphocyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R150 Certificate of patent or registration of utility model

Ref document number: 5911810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250