WO2011052601A1 - Ionic organic compound, production method therefor, and carbon nanotube dispersant comprising said ionic organic compound - Google Patents

Ionic organic compound, production method therefor, and carbon nanotube dispersant comprising said ionic organic compound Download PDF

Info

Publication number
WO2011052601A1
WO2011052601A1 PCT/JP2010/068987 JP2010068987W WO2011052601A1 WO 2011052601 A1 WO2011052601 A1 WO 2011052601A1 JP 2010068987 W JP2010068987 W JP 2010068987W WO 2011052601 A1 WO2011052601 A1 WO 2011052601A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic compound
ionic organic
compound
acid group
Prior art date
Application number
PCT/JP2010/068987
Other languages
French (fr)
Japanese (ja)
Inventor
勝 吉田
春美 大山
洋子 松澤
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2011538439A priority Critical patent/JP5435595B2/en
Publication of WO2011052601A1 publication Critical patent/WO2011052601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/38Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to an ionic organic compound useful as a carbon nanotube dispersant and a production method thereof, and also relates to a carbon nanotube dispersion using the compound as a dispersant.
  • Carbon nanotubes have recently attracted attention as a new nanotechnology material (Non-patent Document 1).
  • Single-walled carbon nanotubes (SWCNTs) are expected to be applied to various fields due to their simple structure and unique physicochemical properties represented by metallic and semiconductor properties.
  • SWCNTs single-walled carbon nanotubes
  • Non-patent Document 2 a method of generating a functional group that promotes solubility in a solvent at the CNT surface or terminal by sonicating CNT in an acidic solution
  • Non-patent Document 3 a method of generating a functional group that promotes solubility in a solvent at the CNT surface or terminal by sonicating CNT in an acidic solution
  • a dispersant an ionic amphiphilic compound, a compound having an aromatic functional group, a naturally-derived polymer, a synthetic polymer, and the like have been reported (Patent Document 1, Non-Patent Document 3).
  • chemical functional group generation still requires changes in the physical properties of CNTs, and even when dispersants are used, high-power ultrasonic irradiation using special equipment is often necessary. Many challenges remain.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for easily and rapidly producing a solution in which CNTs are stably dispersed in a solvent.
  • CNTs can be easily and effectively added to an aqueous solution by using an ionic organic compound having an ammonium-type cation moiety at both ends of the molecule as a solubilizer.
  • the inventors have found that they can be dispersed, and have completed the present invention.
  • R 1 , R 2 and R 3 are hydrogen or an alkyl group, A is a linking site having one or more aromatic rings, or a linking site consisting of a cyclohexane ring, X is an anion, n is nX is ⁇ 2 It is a number that becomes a valence.
  • X is a halogen atom (F, Cl, Br, I), tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), bis (trifluoromethanesulfonyl) Amide (TFSA), thioisocyanate (SCN), nitrate group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3 ), bicarbonate group (HCO)
  • the dispersant of the present invention is used, an aqueous dispersion in which CNTs are simply and efficiently dispersed can be easily provided. Furthermore, the dispersion is useful for the development of new composite materials (CNT-containing films, CNT-containing paints, etc.) using CNT as an elemental raw material.
  • FIG. 1 shows the multilayer CNT dispersion liquid of Example 23 (using the compound of formula (12) as a dispersant).
  • FIG. 2 shows the SWCNT dispersion of Example 24 (using the compound of formula (12) as a dispersant).
  • FIG. 3 is a diagram showing a UV-Vis-NIR spectrum of the SWCNT dispersion of Example 24 (using the compound of formula (12) as a dispersant in heavy water).
  • FIG. 4 is a diagram showing a UV-Vis-NIR spectrum of the SWCNT dispersion of Example 25 (using the compound of formula (12) as a dispersant).
  • a compound represented by the following general formula (A1) is exemplified.
  • the amine moiety represented by R 1 R 2 R 3 N is ethyldimethylamine, n-propyldimethylamine, n-butyldimethylamine, n-hexyldimethylamine, n-octyldimethylamine, n-decyldimethyl
  • a functional group derived from amine, n-dodecyldimethylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, and X is a halogen ion (F, Cl, Br, I), bis (trifluoromethanesulfonyl) amide group (TFSA) , Tetrafluoroborate group (BF 4 ), hexafluorophosphate group (PF 6 ), thiocyanate (SCN),
  • the ionic organic compound of the present invention represented by the above general formula (I) is a substituted (A) compound having a 4- (chloromethyl) benzamide group at both ends represented by the above general formula (II). Obtained by a quaternization reaction of an aromatic diamide compound or a cyclohexanediamide compound which may have a group with an amine represented by the above general formula (III), followed by an anion exchange reaction. It is done.
  • the amines those selected from amines having 1 to 12 carbon atoms in the substituent on the nitrogen atom are preferable.
  • the condensation reaction solvent is preferably a polar organic solvent such as dimethylformamide or acetonitrile, but is not limited thereto.
  • the reaction time is preferably 12 to 48 hours.
  • the reaction temperature is preferably about 50 to 80 ° C., particularly about 80 ° C. Although it is desirable to use water as a solvent for the anion exchange reaction, the solvent is not limited thereto.
  • the reaction time is preferably about 5 minutes to 1 hour.
  • the reaction temperature is preferably about 80-100 ° C.
  • aromatic diamide compounds having 4- (chloromethyl) benzamide groups at both ends include, for example, 4,4′-bis [(4-chloromethyl) benzamide] benzanilide, and 1,3- Bis ⁇ (4-chloromethyl) benzamide ⁇ benzene.
  • aromatic diamide compound having a 4- (chloromethyl) benzamide group at both ends and having a substituent include 4,4′-bis [(4-chloromethyl) benzamide] -3, 3 ′.
  • Examples of the substituent on the nitrogen atom of (B) amines include alkyl groups having about 1 to 12 carbon atoms such as methyl, ethyl, propyl, butyl, hexyl, octyl, decyl, and dodecyl groups, and phenethyl groups. It is done. Specific examples of such amine compounds include, for example, ethyldimethylamine, n-propyldimethylamine, n-butyldimethylamine, n-hexyldimethylamine, n-octyldimethylamine, n-decyldimethylamine, n-dodecyldimethyl.
  • Amine trimethylamine, triethylamine, tripropylamine, tributylamine, (R)-(+)-N, N-dimethyl-1-phenylethylamine, (S)-( ⁇ )-N, N-dimethyl-1-phenylethylamine Is mentioned.
  • the ionic organic compound represented by the general formula (I) obtained by the above method has excellent properties as a CNT dispersing agent, and after the compound is heated and dissolved in neutral water, it is mixed with CNT.
  • a CNT dispersion can be obtained by ultrasonic irradiation.
  • ionic quaternized nitrogen atoms are responsible for water solubility, aromatic rings, hydrocarbon sites (hydrophobic interactions), and cation / anion charge (electrostatic interaction).
  • Etc. are considered to be responsible for intermolecular interactions with CNTs and to break up the aggregation of CNTs to obtain a dispersion.
  • Dehydrated methylene chloride and N, N-dimethylformamide were purchased from Kanto Chemical.
  • Triethylamine was purchased from Wako Pure Chemical Industries.
  • the lithium bis (trifluoromethanesulfonyl) imide used was purchased from Kishida Chemical.
  • Example 2 Synthesis of 4,4′-bis [(4-chloromethyl) benzamido] benzanilide and Synthesis of Compound (A2) by Its Quaternary Amination
  • 4,4′-diaminobenzanilide was used instead of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above.
  • the title compound represented by the formula (4) was obtained. Yield 96%.
  • the product was a compound that was hardly soluble in the solvent.
  • Example 1 4,4′-bis [(4-chloromethyl) benzamide] benzanilide was used instead of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl.
  • An ionic organic compound represented by the following formula (5) was obtained in the same manner as in Example 1 except that it was used. Yield 59%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 3 an ionic organic compound represented by the following formula (6) was obtained in the same manner as in Example 2 except that n-octyldimethylamine was used instead of n-hexyldimethylamine. . Yield 73%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 4 In the above Example 2, an ionic organic compound represented by the following formula (7) was obtained in the same manner as in Example 2 except that ethyldimethylamine was used instead of n-hexyldimethylamine. Yield 69%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 5 Synthesis of 2,7-bis [(4-chloromethyl) benzamido] fluorene and synthesis of compound (A3) by its quaternary amination
  • 2,7-diaminofluorene was used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above
  • the following formula The title compound represented by (8) was obtained. Yield 99%.
  • the structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 1 instead of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl, 2,7-bis [(4-chloromethyl) synthesized by the above reaction was used.
  • Benzamide] An ionic organic compound represented by the following (9) was obtained in the same manner as in Example 1 except that n-butyldimethylamine was used instead of fluorene and n-hexyldimethylamine. Yield 84%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 6 an ionic organic compound represented by the following (10) was obtained in the same manner as in Example 5 except that n-ethyldimethylamine was used instead of n-butyldimethylamine. Yield 92%.
  • Example 7 Synthesis of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethylbiphenyl and synthesis of compound (A4) by quaternary amination thereof.
  • o-toluidine was used instead of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above, the following formula (11)
  • the title compound represented by was obtained. Yield 98%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 8 In the above Example 7, an ionic organic compound represented by the following (13) was obtained in the same manner as in Example 7 except that n-ethyldimethylamine was used instead of n-butyldimethylamine. Yield 89%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 9 Synthesis of (4,4′-bis [(4-chloromethyl) benzamide] -3,3 ′, 5,5′-tetramethylbiphenyl and its quaternary amination to synthesize compound (A5) )
  • Example 1 except that 3,3 ′, 5,5′-tetramethylbenzidine was used instead of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above.
  • the title compound represented by the following formula (14) was obtained. Yield 97%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • the 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl was replaced with 4,4′-bis [(4-chloromethyl) synthesized by the above reaction.
  • Benzamide] -3,3 ′, 5,5′-tetramethylbiphenyl was used in the same manner as in Example 1 to obtain an ionic organic compound represented by the following (15).
  • Example 10 Synthesis of 4,4′-bis [ ⁇ (4-chloromethyl) benzamido ⁇ phenyl] methane and Synthesis of Compound (A6) by Its Quaternary Amination
  • bis (4-aminophenyl) methane was used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above.
  • the title compound represented by the formula (16) was obtained. Yield 98%.
  • the structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 1 instead of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl, 4,4′-bis [ ⁇ (4 An ionic organic compound represented by the following (17) was obtained in the same manner as in Example 1 except that -chloromethyl) benzamido ⁇ phenyl] methane was used.
  • Example 11 Synthesis of 1,3-bis ⁇ (4-chloromethyl) benzamide ⁇ benzene and Synthesis of Compound (A7) by Its Quaternary Amination
  • Example 1 is the same as Example 1 except that 1,3-diaminobenzene (m-phenylenediamine) is used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above.
  • 1,3-diaminobenzene m-phenylenediamine
  • 4,4′-diamino-3,3′-dimethoxybiphenyl o-dianisidine
  • Example 1 instead of 4,4′-bis [(4-chloromethyl) benzamido] -3,3′-dimethoxybiphenyl, 1,3-bis ⁇ (4-chloromethyl) synthesized by the above reaction was used.
  • Example 12 An ionic organic compound represented by the following (20) was obtained in the same manner as in Example 11 except that n-butyldimethylamine was used in place of n-hexyldimethylamine. Yield 59%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 13 an ionic organic compound represented by the following (21) was obtained in the same manner as in Example 11 except that ethyldimethylamine was used instead of n-hexyldimethylamine. Yield 55%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 14 (Synthesis of trans-1,4-bis [(4-chloromethyl) benzamido] cyclohexane and synthesis of compound (A8) by its quaternary amination)
  • trans-1,4-diaminocyclohexane was used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above
  • the title compound represented by the formula (22) was obtained. Yield 90%.
  • the structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 15 an ionic organic compound represented by the following (24) was obtained in the same manner as in Example 12 except that n-butyldimethylamine was used instead of n-hexyldimethylamine. Yield 80%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 16 In Example 14, except that ethyldimethylamine was used in place of n-hexyldimethylamine, an ionic organic compound represented by the following (25) was obtained in the same manner as Example 12. Yield 82%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 17 an ionic organic compound represented by the following (26) was obtained in the same manner as in Example 12 except that n-octyldimethylamine was used instead of n-hexyldimethylamine. Yield 81%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 18 In the above Example 14, an ionic organic compound represented by the following (27) was obtained in the same manner as in Example 12 except that n-decyldimethylamine was used instead of n-hexyldimethylamine. Yield 65%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 19 an ionic organic compound represented by the following (28) was obtained in the same manner as in Example 12 except that n-dodecyldimethylamine was used instead of n-hexyldimethylamine. Yield 63%. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 20 (Anion Exchange Reaction) The ionic compound (150 mg) represented by the formula (3) obtained in Example 1 was dissolved in water (20 mL) at 100 ° C., and 0.4 M concentration of lithium bis (trifluoromethanesulfonyl) amide was added to the solution. When an aqueous solution (7.6 mL) of (Li-TFSA) was added, a precipitate of the compound represented by the following formula (29) was quantitatively generated. The structure was confirmed from the proton NMR spectrum of the obtained compound. The structure was confirmed from the proton NMR spectrum of the obtained compound.
  • Example 21 In Example 20 above, the ionic compound represented by Formula (5) was used instead of Formula (3) in the same manner as Example 20 except that the compound represented by Formula (30) below was used. A precipitate formed quantitatively.
  • Example 22 In Example 20 above, the ionic compound represented by Formula (23) was used instead of Formula (3) in the same manner as Example 20 except that the compound represented by Formula (31) below was used. A precipitate formed quantitatively.
  • Example 23 (Preparation of multi-walled carbon nanotube dispersion using ionic organic compound) 30 mg of the ionic organic compound (12) obtained in Example 7 above was mixed with 3 mL of deionized pure water in a sample tube and heated to obtain a uniform solution. This solution is mixed with 1 mg of multi-walled carbon nanotubes produced by the arc discharge method, and is irradiated with ultrasonic waves for 30 minutes using a cleaning ultrasonic irradiation device (130 W, 35 kHz), thereby obtaining a black carbon nanotube uniformly dispersed aqueous solution. No precipitation occurred. The result is shown in FIG.
  • (A) is before ultrasonic irradiation, and (b) is after ultrasonic irradiation.
  • the compounds (3), (5), (6), (7), (9), (10), (13), (15), (17), (19), (20), ( 21), (26) to (28) were used to prepare a multi-walled carbon nanotube uniformly dispersed aqueous solution.
  • the concentration range of the ionic organic compound for preparing the CNT dispersion is about 1 to 20 g / L, and preferably about 5 to 10 g / L.
  • the content of multi-walled carbon nanotubes that can be dispersed was 1 to 3 g / L.
  • Example 24 (Preparation of a single-walled carbon nanotube (SWCNT) dispersion using an ionic organic compound)
  • 30 mg of the ionic organic compound (12) obtained in Example 7 was mixed with 3 mL of deionized pure water in a sample tube and heated to obtain a uniform solution.
  • This solution was mixed with 1 mg of single-walled carbon nanotubes produced by the High-pressure carbon monoxide (HiPco) method, and irradiated with ultrasonic waves for 30 minutes using a cleaning ultrasonic irradiation device (130 W, 35 kHz).
  • HiPco High-pressure carbon monoxide
  • a single-walled carbon nanotube uniformly dispersed aqueous solution was obtained, and no precipitation occurred. The result is shown in FIG.
  • (A) is before ultrasonic irradiation, and (b) is after ultrasonic irradiation. Furthermore, by using heavy water as a solvent, a similar SWCNT solution was obtained, and after centrifuging the solution for a total of 2 hours (4000 rpm), an isolated dispersion state was confirmed from the UV-vis-NIR spectrum (FIG. 3). ). Similarly, using the compounds (3), (5), (6), (7), (9), (15), and (17), a SWCNT homogeneously dispersed aqueous solution could be prepared.
  • the concentration range of the ionic organic compound for preparing the SWCNT dispersion is about 1 to 20 g / L, and preferably about 5 to 10 g / L. The content of SWCNT that can be dispersed was 1 to 3 g / L.
  • Example 25 (Preparation of a single-walled carbon nanotube (SWCNT) dispersion using an ionic organic compound) 10 mg of the ionic organic compound (12) obtained in Example 7 was mixed with 20 mL of deionized pure water in a sample tube, and sonicated (90 W, 42 kHz) using an ultrasonic cleaning device BRANSONIC 2. And a homogeneous solution was obtained. This solution is mixed with 7 mg of single-walled carbon nanotubes produced by the High-pressure carbon monoxide (HiPco) method, put into a 50 mL wide-mouth bottle, and using an ultrasonic homogenizer BRANSON Advanced Digital Sonifire 250D (20 W, 19.9 kHz).
  • HiPco High-pressure carbon monoxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided are a novel ionic organic compound represented by general formula (I), which is effective as a carbon nanotube dispersant, and a method for producing said compound by means of simple processes. (In the formula, R1, R2, and R3 represent hydrogen or an alkyl group, A represents a linking moiety having one or more aromatic rings or a linking moiety comprising a cyclohexane ring, X represents an anion, and n is a number such that nX has a valence of -2.) The abovementioned compound is obtained by quaternizing (A) a cyclohexanediamide compound or an aromatic diamide compound having a (chloromethyl)benzamide group at both terminals and (B) an amine. The ionic organic compound thus obtained, as a CNT dispersant, can disperse, in an isolated manner, multi-layer or single-layer carbon nanotubes in water.

Description

イオン性有機化合物及びその製法、並びに該イオン性有機化合物からなるカーボンナノチューブ分散剤Ionic organic compound and process for producing the same, and carbon nanotube dispersant comprising the ionic organic compound
 本発明は、カーボンナノチューブ分散剤として有用なイオン性有機化合物及びその製法に関し、また、当該化合物を分散剤として用いたカーボンナノチューブ分散液に関するものである。 The present invention relates to an ionic organic compound useful as a carbon nanotube dispersant and a production method thereof, and also relates to a carbon nanotube dispersion using the compound as a dispersant.
 カーボンナノチューブ(CNT)は、ナノテクノロジーの新素材として近年注目を集めている(非特許文献1)。特に、単層カーボンナノチューブ(SWCNT)は、シンプルな構造と、金属的物性と半導体物性に代表される特異な物理化学的性質により、種々の分野への応用が期待されている。
 しかしながら、CNT自身の高いvan der Waals相互作用による会合(バンドル化)のために、CNTの溶媒への可溶化・分散化は極めて困難であり、材料開発・応用の大きな妨げとなっている。
Carbon nanotubes (CNT) have recently attracted attention as a new nanotechnology material (Non-patent Document 1). In particular, single-walled carbon nanotubes (SWCNTs) are expected to be applied to various fields due to their simple structure and unique physicochemical properties represented by metallic and semiconductor properties.
However, due to the association (bundling) of CNT itself due to the high van der Waals interaction, it is extremely difficult to solubilize and disperse CNT in a solvent, which greatly hinders material development and application.
 これまでに、CNTの溶媒への分散化の方法について化学的・物理的に種々の検討がなされている。例えば、酸性溶液中でCNTを超音波処理することによって、CNT表面や末端に溶媒への溶解性を促進する官能基を生成させる手法(非特許文献2)や、分散剤を混合することで溶媒への分散を促す手法がある。このような分散剤としては、イオン性の両親媒性化合物、芳香族官能基を有する化合物、天然由来高分子、合成高分子などが報告されている(特許文献1、非特許文献3)。
 しかしながら、化学的な官能基生成では、CNTの物性の変化が避けられないこと、また分散剤を用いる場合でも、特殊な装置を用いた高出力超音波照射が必要な場合が多いことなど、依然多くの課題が残されている。
So far, various investigations have been made chemically and physically on the method of dispersing CNTs in a solvent. For example, a method of generating a functional group that promotes solubility in a solvent at the CNT surface or terminal by sonicating CNT in an acidic solution (Non-patent Document 2), or a solvent by mixing a dispersant. There is a method to promote dispersion. As such a dispersant, an ionic amphiphilic compound, a compound having an aromatic functional group, a naturally-derived polymer, a synthetic polymer, and the like have been reported (Patent Document 1, Non-Patent Document 3).
However, chemical functional group generation still requires changes in the physical properties of CNTs, and even when dispersants are used, high-power ultrasonic irradiation using special equipment is often necessary. Many challenges remain.
特開2004-2850号公報(公開日 平成16年1月8日)Japanese Patent Laid-Open No. 2004-2850 (Publication date: January 8, 2004)
 上記のとおり、CNT分散液を製造する方法については、様々な研究がなされているものの、CNTの性質を変えずに、しかも簡便かつ効果的にCNTの分散が可能な分散剤の開発は充分とはいえない。
 本発明は、上記問題点に鑑みなされたものであって、CNTが溶媒中に安定に分散した溶液を簡便かつ迅速に製造する手法を提供することにある。
As described above, although various studies have been conducted on the method for producing a CNT dispersion, it has been sufficiently developed a dispersant that can easily and effectively disperse CNT without changing the properties of CNT. I can't say that.
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for easily and rapidly producing a solution in which CNTs are stably dispersed in a solvent.
 本発明者らは、上記課題に鑑み鋭意検討した結果、分子の両末端にアンモニウム型のカチオン部位を有するイオン性有機化合物を可溶化剤として用いることによって、CNTを水溶液中に簡便で効果的に分散出来ることを独自に見出し、本発明を完成させるに至った。 As a result of intensive studies in view of the above problems, the present inventors have found that CNTs can be easily and effectively added to an aqueous solution by using an ionic organic compound having an ammonium-type cation moiety at both ends of the molecule as a solubilizer. The inventors have found that they can be dispersed, and have completed the present invention.
 すなわち、この出願によれば、以下の発明が提供される。
(1)下記一般式(I)で表されるイオン性有機化合物。
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、Rは水素もしくはアルキル基、Aは芳香環を1個以上有する連結部位、又はシクロヘキサン環からなる連結部位、Xはアニオンを表し、nはnXが-2価となる数である。)
(2)前記一般式(I)において、Xがハロゲン原子(F、Cl、Br、I)、テトラフルオロホウ酸基(BF)、ヘキサフルオロリン酸(PF)、ビス(トリフルオロメタンスルホニル)アミド(TFSA)、チオイソシアネート(SCN)、硝酸基(NO)、硫酸基(SO)、チオ硫酸基(S)、炭酸基(CO)、炭酸水素基(HCO)、リン酸基、亜リン酸基、次亜リン酸基、各ハロゲン酸化合物酸基(AO、AO、AO、AO:A=Cl、Br、I)、トリス(トリフルオロメチルスルホニル)炭素酸基、トリフルオロメチルスルホン酸基、ジシアンアミド基、酢酸基(CHCOO)、ハロゲン化酢酸基((CA3-n)COO、A=F、Cl、Br、I;n=1、2、3)、テトラフェニルホウ酸基(BPh)及びその誘導体(B(Aryl):Aryl=置換フェニル基)からえらばれた少なくとも1種であることを特徴とする、(1)に記載のイオン性有機化合物。
(3)(A)下記一般式(II)で表される、両末端に(クロロメチル)ベンズアミド基を有する化合物と、(B)下記一般式(III)で表されるアミン類を4級化反応させることを特徴とする、(1)に記載のイオン性有機化合物の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式中、Aは芳香環を1個以上有する連結部位、又はシクロヘキサン環からなる連結部位を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、Rは水素もしくはアルキル基を表す。)
(4)4級化反応をジメチルホルムアミドもしくはアセトニトリル中で、50~80℃で行うことを特徴とする、(3)に記載のイオン性化合物の製造方法。
(5)さらに、得られたイオン性化合物のアニオンをアニオン交換反応により他のアニオンに置換することを特徴とする、(3)又は(4)に記載のイオン性化合物の製造方法。
(6)(1)に記載されたイオン性有機化合物からなるCNT分散剤。
(7)(6)に記載のCNT分散剤を含むCNT分散液。
That is, according to this application, the following invention is provided.
(1) An ionic organic compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 , R 2 and R 3 are hydrogen or an alkyl group, A is a linking site having one or more aromatic rings, or a linking site consisting of a cyclohexane ring, X is an anion, n is nX is −2 It is a number that becomes a valence.)
(2) In the general formula (I), X is a halogen atom (F, Cl, Br, I), tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), bis (trifluoromethanesulfonyl) Amide (TFSA), thioisocyanate (SCN), nitrate group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3 ), bicarbonate group (HCO 3 ), Phosphoric acid group, phosphorous acid group, hypophosphorous acid group, each halogen acid compound acid group (AO 4 , AO 3 , AO 2 , AO: A = Cl, Br, I), tris (trifluoromethylsulfonyl) carbon Acid group, trifluoromethylsulfonic acid group, dicyanamide group, acetic acid group (CH 3 COO), halogenated acetic acid group ((CA n H 3-n ) COO, A = F, Cl, Br, I; n = 1, 2, 3), Te Rafeniruhou acid (BPh 4) and its derivative (B (Aryl) 4: Aryl = substituted phenyl group), characterized in that at least one member selected from ionic organic compound according to (1).
(3) (A) Quaternizing a compound represented by the following general formula (II) having (chloromethyl) benzamide groups at both ends and (B) an amine represented by the following general formula (III) The method for producing an ionic organic compound according to (1), wherein the reaction is performed.
Figure JPOXMLDOC01-appb-C000005
(In the formula, A represents a linking site having one or more aromatic rings or a linking site consisting of a cyclohexane ring.)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 , R 2 and R 3 represent hydrogen or an alkyl group.)
(4) The method for producing an ionic compound according to (3), wherein the quaternization reaction is carried out in dimethylformamide or acetonitrile at 50 to 80 ° C.
(5) The method for producing an ionic compound according to (3) or (4), further comprising substituting the anion of the obtained ionic compound with another anion by an anion exchange reaction.
(6) A CNT dispersant comprising the ionic organic compound described in (1).
(7) A CNT dispersion containing the CNT dispersant described in (6).
 本発明の分散剤を用いれば、CNTを簡便かつ効率的に分散した水性分散液を容易に提供することができる。さらに、その分散液は、CNTを要素原料とする新規な複合材料(CNT含有膜、CNT含有塗料など)の開発に有用である。 If the dispersant of the present invention is used, an aqueous dispersion in which CNTs are simply and efficiently dispersed can be easily provided. Furthermore, the dispersion is useful for the development of new composite materials (CNT-containing films, CNT-containing paints, etc.) using CNT as an elemental raw material.
図1は実施例23の多層CNT分散液(分散剤として式(12)の化合物を使用)を示す図である。FIG. 1 shows the multilayer CNT dispersion liquid of Example 23 (using the compound of formula (12) as a dispersant). 図2は実施例24のSWCNT分散液(分散剤として式(12)の化合物を使用)を示す図である。FIG. 2 shows the SWCNT dispersion of Example 24 (using the compound of formula (12) as a dispersant). 図3は実施例24のSWCNT分散液(重水中、分散剤として式(12)の化合物を使用)のUV-Vis-NIRスペクトルを示す図である。FIG. 3 is a diagram showing a UV-Vis-NIR spectrum of the SWCNT dispersion of Example 24 (using the compound of formula (12) as a dispersant in heavy water). 図4は実施例25のSWCNT分散液(分散剤として式(12)の化合物を使用)のUV-Vis-NIRスペクトルを示す図である。FIG. 4 is a diagram showing a UV-Vis-NIR spectrum of the SWCNT dispersion of Example 25 (using the compound of formula (12) as a dispersant).
 次に、実施例により本発明を実施するための最良の形態を説明するが、本発明はこれらの例により何ら限定されるものではない。本発明の技術思想の範囲内での変更及び他の態様又は実施例はすべて本発明に含まれる。 Next, the best mode for carrying out the present invention will be described by way of examples, but the present invention is not limited to these examples. All modifications and other embodiments or examples within the scope of the technical idea of the present invention are included in the present invention.
 上記した一般式(I)で表される、好ましいイオン性有機化合物としては、つぎの一般式(A1)で表される化合物が例として挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式中、RNで表わされるアミン部位は、エチルジメチルアミン、n-プロピルジメチルアミン、n-ブチルジメチルアミン、n-ヘキシルジメチルアミン、n-オクチルジメチルアミン、n-デシルジメチルアミン、n-ドデシルジメチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン由来の官能基であり、Xはハロゲンイオン(F, Cl, Br, I)、ビス(トリフルオロメタンスルホニル)アミド基(TFSA)、テトラフルオロホウ酸基(BF)、ヘキサフルオロリン酸基(PF)、チオシアネート(SCN)、硝酸基(NO)、硫酸基(SO)、チオ硫酸基(S)、炭酸基(CO)、炭酸水素基(HCO)、リン酸基、亜リン酸基、次亜リン酸基、各ハロゲン酸化物酸基(XO,XO,XO,XO: X=Cl,Br,I)、トリス(トリフルオロメチルスルホニル)炭素酸基、トリフルオロメチルスルホン酸基、ジシアンアミド基、酢酸基(CHCOO)、ハロゲン化酢酸基((CX3-n)COO, X=F,Cl,Br,I;n=1,2,3)、テトラフェニルホウ酸基(BPh)およびその誘導体(B(Aryl):Aryl=置換フェニル基)から選ばれた少なくとも1種を示す。)
As a preferable ionic organic compound represented by the above general formula (I), a compound represented by the following general formula (A1) is exemplified.
Figure JPOXMLDOC01-appb-C000007
(In the formula, the amine moiety represented by R 1 R 2 R 3 N is ethyldimethylamine, n-propyldimethylamine, n-butyldimethylamine, n-hexyldimethylamine, n-octyldimethylamine, n-decyldimethyl) A functional group derived from amine, n-dodecyldimethylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, and X is a halogen ion (F, Cl, Br, I), bis (trifluoromethanesulfonyl) amide group (TFSA) , Tetrafluoroborate group (BF 4 ), hexafluorophosphate group (PF 6 ), thiocyanate (SCN), nitrate group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3), bicarbonate radical (HCO 3), phosphoric acid group, phosphorous acid group, hypophosphorous acid group, each halogen Oxide groups (XO 4, XO 3, XO 2, XO: X = Cl, Br, I), tris (trifluoromethylsulfonyl) carbon group, trifluoromethyl sulfonic acid, dicyanamide group, acetate group (CH 3 COO), halogenated acetic acid group ((CX n H 3-n ) COO, X = F, Cl, Br, I; n = 1, 2, 3), tetraphenylboric acid group (BPh 4 ) and derivatives thereof (At least one selected from B (Aryl) 4 : Aryl = substituted phenyl group) is shown.)
 以下に、他の代表的化合物例(A2-A8)も示す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Other typical compound examples (A2-A8) are also shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記した一般式(I)で表される本発明のイオン性有機化合物は、(A)上記した一般式(II)で表される、両末端に4-(クロロメチル)ベンズアミド基を有する、置換基を有していてもよい芳香族ジアミド化合物、又はシクロヘキサンジアミド化合物と、(B)上記した一般式(III)で表されるアミン類との4級化反応、およびそれに続くアニオン交換反応により得られる。当該アミン類としては、窒素原子上の置換基の炭素数が1~12のアミン類から選択されたものが好適である。縮合反応溶媒は、ジメチルホルムアミドやアセトニトリル等の極性有機溶媒を使用することが望ましいが、これに限定されるものではない。また、反応時間は12から48時間が好ましい。反応温度は50~80℃程度、特に80℃程度とすることが好ましい。アニオン交換反応の溶媒は、水を使用することが望ましいが、これに限定されるものではない。また、反応時間は5分から1時間程度が好ましい。反応温度は80-100℃程度とすることが好ましい。 The ionic organic compound of the present invention represented by the above general formula (I) is a substituted (A) compound having a 4- (chloromethyl) benzamide group at both ends represented by the above general formula (II). Obtained by a quaternization reaction of an aromatic diamide compound or a cyclohexanediamide compound which may have a group with an amine represented by the above general formula (III), followed by an anion exchange reaction. It is done. As the amines, those selected from amines having 1 to 12 carbon atoms in the substituent on the nitrogen atom are preferable. The condensation reaction solvent is preferably a polar organic solvent such as dimethylformamide or acetonitrile, but is not limited thereto. The reaction time is preferably 12 to 48 hours. The reaction temperature is preferably about 50 to 80 ° C., particularly about 80 ° C. Although it is desirable to use water as a solvent for the anion exchange reaction, the solvent is not limited thereto. The reaction time is preferably about 5 minutes to 1 hour. The reaction temperature is preferably about 80-100 ° C.
 (A)両末端に、4-(クロロメチル)ベンズアミド基を有する芳香族ジアミド化合物の具体例としては、例えば4,4’-ビス[(4-クロロメチル)ベンズアミド]ベンズアニリド、および1,3-ビス{(4-クロロメチル)ベンズアミド}ベンゼンが挙げられる。両末端に、4-(クロロメチル)ベンズアミド基を有し、置換基を有する芳香族ジアミド化合物の具体例としては、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニル、2,7-ビス[(4-クロロメチル)ベンズアミド]フルオレン、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメチルビフェニル、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’、5、5’-テトラメチルビフェニル、4,4’-ビス[{(4-クロロメチル)ベンズアミド}フェニル]メタンが挙げられる。また、シクロヘキサンジアミド化合物の具体例としては、trans-1,4-ビス[(4-クロロメチル)ベンズアミド]シクロヘキサンが挙げられる。 (A) Specific examples of aromatic diamide compounds having 4- (chloromethyl) benzamide groups at both ends include, for example, 4,4′-bis [(4-chloromethyl) benzamide] benzanilide, and 1,3- Bis {(4-chloromethyl) benzamide} benzene. Specific examples of the aromatic diamide compound having a 4- (chloromethyl) benzamide group at both ends and having a substituent include 4,4′-bis [(4-chloromethyl) benzamide] -3, 3 ′. -Dimethoxybiphenyl, 2,7-bis [(4-chloromethyl) benzamido] fluorene, 4,4'-bis [(4-chloromethyl) benzamido] -3,3'-dimethylbiphenyl, 4,4'-bis [(4-Chloromethyl) benzamide] -3,3 ′, 5,5′-tetramethylbiphenyl, 4,4′-bis [{(4-chloromethyl) benzamido} phenyl] methane. A specific example of the cyclohexanediamide compound is trans-1,4-bis [(4-chloromethyl) benzamide] cyclohexane.
 また、(B)アミン類の窒素原子上の置換基としては、メチル、エチル、プロピル、ブチル、ヘキシル、オクチル、デシル、ドデシル基等の炭素数1~12程度のアルキル基や、フェネチル基が挙げられる。このようなアミン化合物の具体例としては、例えばエチルジメチルアミン、n-プロピルジメチルアミン、n-ブチルジメチルアミン、n-ヘキシルジメチルアミン、n-オクチルジメチルアミン、n-デシルジメチルアミン、n-ドデシルジメチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、(R)-(+)-N,N―ジメチル-1-フェニルエチルアミン、(S)-(-)-N,N―ジメチル-1-フェニルエチルアミンが挙げられる。 Examples of the substituent on the nitrogen atom of (B) amines include alkyl groups having about 1 to 12 carbon atoms such as methyl, ethyl, propyl, butyl, hexyl, octyl, decyl, and dodecyl groups, and phenethyl groups. It is done. Specific examples of such amine compounds include, for example, ethyldimethylamine, n-propyldimethylamine, n-butyldimethylamine, n-hexyldimethylamine, n-octyldimethylamine, n-decyldimethylamine, n-dodecyldimethyl. Amine, trimethylamine, triethylamine, tripropylamine, tributylamine, (R)-(+)-N, N-dimethyl-1-phenylethylamine, (S)-(−)-N, N-dimethyl-1-phenylethylamine Is mentioned.
 上記方法で得られた一般式(I)で表されるイオン性有機化合物は、CNT分散剤として優れた性状を有し、該化合物を中性の水に加熱溶解させた後、CNTと混合し超音波照射することでCNT分散液が得られる。これらの化合物において、イオン性の4級化された窒素原子が水への溶解性を担い、芳香環や炭化水素部位(疎水相互作用)、カチオン部・アニオン部の相互電荷(静電相互作用)等が、CNTとの分子間相互作用を担い、CNTの凝集を解いて、分散液が得られると考えられる。 The ionic organic compound represented by the general formula (I) obtained by the above method has excellent properties as a CNT dispersing agent, and after the compound is heated and dissolved in neutral water, it is mixed with CNT. A CNT dispersion can be obtained by ultrasonic irradiation. In these compounds, ionic quaternized nitrogen atoms are responsible for water solubility, aromatic rings, hydrocarbon sites (hydrophobic interactions), and cation / anion charge (electrostatic interaction). Etc. are considered to be responsible for intermolecular interactions with CNTs and to break up the aggregation of CNTs to obtain a dispersion.
 以下、実施例により本発明を具体的に説明するが、以下の具体例は本発明を限定するものではない。
 以下の実施例において、有機イオン性化合物を製造する原料となる4-(クロロメチル)ベンゾイルクロリド、4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)、4,4’-ジアミノベンズアニリド、ビス(4-アミノフェニル)メタン、2,7-ジアミノフルオレン、o―トルイジン、3,3’,5,5’-テトラメチルベンジジン、m-フェニレンジアミン、trans-1,4-ジアミノシクロヘキサン、エチルジメチルアミン、n-プロピルジメチルアミン、n-ブチルジメチルアミン、n-ヘキシルジメチルアミン、n-オクチルジメチルアミン、n-デシルジメチルアミン、n-ドデシルジメチルアミン、アセトニトリルは東京化成工業から購入したものを用いた。脱水塩化メチレン、N,N-ジメチルホルムアミドは関東化学から購入したものを用いた。トリエチルアミンは和光純薬工業から購入したものを用いた。リチウムビス(トリフルオロメタンスルホニル)イミドは、キシダ化学から購入したものを用いた。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the following specific examples do not limit this invention.
In the following examples, 4- (chloromethyl) benzoyl chloride, 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine), 4,4′-, which is a raw material for producing an organic ionic compound Diaminobenzanilide, bis (4-aminophenyl) methane, 2,7-diaminofluorene, o-toluidine, 3,3 ′, 5,5′-tetramethylbenzidine, m-phenylenediamine, trans-1,4-diamino Cyclohexane, ethyldimethylamine, n-propyldimethylamine, n-butyldimethylamine, n-hexyldimethylamine, n-octyldimethylamine, n-decyldimethylamine, n-dodecyldimethylamine, and acetonitrile were purchased from Tokyo Chemical Industry. Things were used. Dehydrated methylene chloride and N, N-dimethylformamide were purchased from Kanto Chemical. Triethylamine was purchased from Wako Pure Chemical Industries. The lithium bis (trifluoromethanesulfonyl) imide used was purchased from Kishida Chemical.
(実施例1)(4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルの合成及びその4級アミノ化による化合物(A1)の合成)
 4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)(2.44g、10.0 mmol)とトリエチルアミン(2.23 g、22.0 mmol)を脱水塩化メチレン(90 mL)に溶かした。そこに、4-クロロメチルベンゾイルクロリド(3.78 g、20.0 mmol)の脱水塩化メチレン(60 mL)溶液を攪拌しながら1時間かけて加えた。その後、4時間、加熱還流させた後、室温で13時間攪拌した。沈殿物をろ別して、下記の式(2)で表される表題化合物を黄色粉末として得た。収量4.69g、収率85%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ3.97(s,6H),4.86(s,4H),7.33(dd,J=2Hz,8Hz,2H),7.39(d,J=2Hz,2H),7.60(d,J=8Hz,4H),7.90(d,J=8Hz,2H),7.99(d,J=8Hz,4H),9.53(s,2H).
Figure JPOXMLDOC01-appb-C000015
 上記反応で得られた4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニル(0.55g、1.0mmol)とn-ヘキシルジメチルアミン(0.39g、3.0mmol)をジメチルホルムアミド(40mL)中、80℃で48時間加熱攪拌した。室温まで冷却後に、反応液を多量のアセトンに加えることにより生じた沈殿をろ別することで、下記の式(3)で表されるイオン性有機化合物を収率92%で得た。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.90(t,J=6.7Hz,6H),1.33(br,12H),1.80(br,4H),3.00(s,12H),3.26-3.30(m,4H),3.97(s,6H),4.63(s,4H),7.34-7.40(m,4H),7.72(d,J=8.2Hz,4H),7.85(d,J=8.2Hz,2H),8.12(d,J=8.2Hz,4H),9.67(s,2H).
Figure JPOXMLDOC01-appb-C000016
Example 1 Synthesis of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl and Synthesis of Compound (A1) by Quaternary Amination
4,4′-Diamino-3,3′-dimethoxybiphenyl (o-dianisidine) (2.44 g, 10.0 mmol) and triethylamine (2.23 g, 22.0 mmol) were dried with methylene chloride (90 mL). Dissolved in. To this, a solution of 4-chloromethylbenzoyl chloride (3.78 g, 20.0 mmol) in dehydrated methylene chloride (60 mL) was added over 1 hour with stirring. Thereafter, the mixture was heated to reflux for 4 hours and then stirred at room temperature for 13 hours. The precipitate was filtered off to obtain the title compound represented by the following formula (2) as a yellow powder. Yield 4.69 g, 85% yield. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 3.97 (s, 6H), 4.86 (s, 4H), 7.33 (dd, J = 2Hz, 8Hz, 2H), 7.39 (d, J = 2Hz, 2H ), 7.60 (d, J = 8Hz, 4H), 7.90 (d, J = 8Hz, 2H), 7.99 (d, J = 8Hz, 4H), 9.53 (s, 2H).
Figure JPOXMLDOC01-appb-C000015
4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl (0.55 g, 1.0 mmol) and n-hexyldimethylamine (0.39 g, 3 0.0 mmol) was heated and stirred in dimethylformamide (40 mL) at 80 ° C. for 48 hours. After cooling to room temperature, the ionic organic compound represented by the following formula (3) was obtained in a yield of 92% by filtering the precipitate produced by adding the reaction solution to a large amount of acetone. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.90 (t, J = 6.7 Hz, 6H), 1.33 (br, 12H), 1.80 (br, 4H), 3.00 (s, 12H), 3.26-3.30 (m, 4H), 3.97 (s, 6H), 4.63 (s, 4H), 7.34-7.40 (m, 4H), 7.72 (d, J = 8.2Hz, 4H), 7.85 (d, J = 8.2Hz, 2H), 8.12 (d, J = 8.2Hz, 4H), 9.67 (s, 2H).
Figure JPOXMLDOC01-appb-C000016
(実施例2)(4,4’-ビス[(4-クロロメチル)ベンズアミド]ベンズアニリドの合成及びその4級アミノ化による化合物(A2)の合成)
 上記実施例1における4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)に代えて、4,4’-ジアミノベンズアニリドを使用した以外は、実施例1と同様にして下記の式(4)で表わされる表題化合物を得た。収率96%。生成物は溶媒に溶けにくい化合物であった。
Figure JPOXMLDOC01-appb-C000017
 上記実施例1において、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルに代えて、4,4’-ビス[(4-クロロメチル)ベンズアミド]ベンズアニリドを使用した以外は、実施例1と同様にして下記の式(5)で表されるイオン性有機化合物を得た。収率59%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.88-0.92(m,6H),1.33(s,12H),1.81(br,4H),2.99(s,12H),3.26(s,4H),4.86(s,4H),7.70-7.76(m,4H),7.78(s,4H),8.00(q,J=9.0Hz,4H),8.13(t,J=8.5Hz,4H),10.23(s,1H),10.42(s,1H),10.70(s,1H).
Figure JPOXMLDOC01-appb-C000018
Example 2 Synthesis of 4,4′-bis [(4-chloromethyl) benzamido] benzanilide and Synthesis of Compound (A2) by Its Quaternary Amination
In the same manner as in Example 1 except that 4,4′-diaminobenzanilide was used instead of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above, The title compound represented by the formula (4) was obtained. Yield 96%. The product was a compound that was hardly soluble in the solvent.
Figure JPOXMLDOC01-appb-C000017
In Example 1 above, 4,4′-bis [(4-chloromethyl) benzamide] benzanilide was used instead of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl. An ionic organic compound represented by the following formula (5) was obtained in the same manner as in Example 1 except that it was used. Yield 59%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.88-0.92 (m, 6H), 1.33 (s, 12H), 1.81 (br, 4H), 2.99 (s, 12H), 3.26 (s, 4H) , 4.86 (s, 4H), 7.70-7.76 (m, 4H), 7.78 (s, 4H), 8.00 (q, J = 9.0Hz, 4H), 8.13 (t, J = 8.5Hz, 4H), 10.23 ( s, 1H), 10.42 (s, 1H), 10.70 (s, 1H).
Figure JPOXMLDOC01-appb-C000018
(実施例3)
 上記実施例2において、n-ヘキシルジメチルアミンに代えて、n-オクチルジメチルアミンを使用した以外は、実施例2と同様にして下記の式(6)で表されるイオン性有機化合物を得た。収率73%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.86-0.88(m,6H),1.28-1.32(m,20H),1.81(br,4H),2.99(s,12H),3.26(br,4H),4.61-4.62(m,4H),7.70-7.78(m,8H),8.00(q,J=8.5Hz,4H),8.13(t,J=8.5Hz,4H),10.23(s,1H),10.41(s,1H),10.70(s,1H).
Figure JPOXMLDOC01-appb-C000019
(Example 3)
In the above Example 2, an ionic organic compound represented by the following formula (6) was obtained in the same manner as in Example 2 except that n-octyldimethylamine was used instead of n-hexyldimethylamine. . Yield 73%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.86-0.88 (m, 6H), 1.28-1.32 (m, 20H), 1.81 (br, 4H), 2.99 (s, 12H), 3.26 (br, 4H), 4.61-4.62 (m, 4H), 7.70-7.78 (m, 8H), 8.00 (q, J = 8.5Hz, 4H), 8.13 (t, J = 8.5Hz, 4H), 10.23 (s, 1H ), 10.41 (s, 1H), 10.70 (s, 1H).
Figure JPOXMLDOC01-appb-C000019
(実施例4)
 上記実施例2において、n-ヘキシルジメチルアミンに代えて、エチルジメチルアミンを使用した以外は、実施例2と同様にして下記の式(7)で表されるイオン性有機化合物を得た。収率69%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ1.36(t,J=7.2Hz,6H),2.97(s,12H),3.35(t,J=7.3Hz,4H),4.61(s,4H),7.71-7.78(m,8H),8.00(q,J=9.1Hz,4H),8.13(t,J=8.6Hz,4H),10.23(s,1H),10.42(s,1H),10.71(s,1H).
Figure JPOXMLDOC01-appb-C000020
Example 4
In the above Example 2, an ionic organic compound represented by the following formula (7) was obtained in the same manner as in Example 2 except that ethyldimethylamine was used instead of n-hexyldimethylamine. Yield 69%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 1.36 (t, J = 7.2 Hz, 6 H), 2.97 (s, 12 H), 3.35 (t, J = 7.3 Hz, 4 H), 4.61 (s, 4 H ), 7.71-7.78 (m, 8H), 8.00 (q, J = 9.1Hz, 4H), 8.13 (t, J = 8.6Hz, 4H), 10.23 (s, 1H), 10.42 (s, 1H), 10.71 (s, 1H).
Figure JPOXMLDOC01-appb-C000020
(実施例5)(2,7-ビス[(4-クロロメチル)ベンズアミド]フルオレンの合成及びその4級アミノ化による化合物(A3)の合成)
 上記実施例1における4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)に代えて、2,7-ジアミノフルオレンを使用した以外は、実施例1と同様にして下記の式(8)で表わされる表題化合物を得た。収率99%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ3.96(s,2H),4.86(s,4H),7.61(d,J=8Hz,4H),7.73-7.82(m,4H),7.97(d,J=8Hz,4H),8.07(s,2H),10.34(s,2H).
Figure JPOXMLDOC01-appb-C000021
 上記実施例1において、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルに代えて、上記反応で合成した2,7-ビス[(4-クロロメチル)ベンズアミド]フルオレン、n-ヘキシルジメチルアミンに代えて、n―ブチルジメチルアミンをそれぞれ使用した以外は、実施例1と同様にして、下記の(9)で表わされるイオン性有機化合物を得た。収率84%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ1.34(qt,J=7.4Hz,4H),1.81(br,4H),3.01(s,12H),3.28(br,4H),3.97(s,2H),4.64(s,4H),7.72-7.77(m,4H),7.80-7.85(m,4H),8.14(d,J=8.3Hz,6H),10.53(s,2H).
Figure JPOXMLDOC01-appb-C000022
Example 5 (Synthesis of 2,7-bis [(4-chloromethyl) benzamido] fluorene and synthesis of compound (A3) by its quaternary amination)
In the same manner as in Example 1 except that 2,7-diaminofluorene was used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above, the following formula The title compound represented by (8) was obtained. Yield 99%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 3.96 (s, 2H), 4.86 (s, 4H), 7.61 (d, J = 8Hz, 4H), 7.73-7.82 (m, 4H), 7.97 ( d, J = 8Hz, 4H), 8.07 (s, 2H), 10.34 (s, 2H).
Figure JPOXMLDOC01-appb-C000021
In Example 1, instead of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl, 2,7-bis [(4-chloromethyl) synthesized by the above reaction was used. Benzamide] An ionic organic compound represented by the following (9) was obtained in the same manner as in Example 1 except that n-butyldimethylamine was used instead of fluorene and n-hexyldimethylamine. Yield 84%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 1.34 (qt, J = 7.4 Hz, 4H), 1.81 (br, 4H), 3.01 (s, 12H), 3.28 (br, 4H), 3.97 (s , 2H), 4.64 (s, 4H), 7.72-7.77 (m, 4H), 7.80-7.85 (m, 4H), 8.14 (d, J = 8.3Hz, 6H), 10.53 (s, 2H).
Figure JPOXMLDOC01-appb-C000022
(実施例6)
 上記実施例5において、n―ブチルジメチルアミンに代えて、n―エチルジメチルアミンを使用した以外は、実施例5と同様にして、下記の(10)で表わされるイオン性有機化合物を得た。収率92%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ1.37(t,J=7.2Hz,6H),2.98(s,12H),3.38-3.42(m,4H),3.97(s,2H),4.62(s,4H),7.72-7.85(m,8H),8.14(d,J=8.5Hz,6H),10.52(s,2H).
Figure JPOXMLDOC01-appb-C000023
(Example 6)
In the above Example 5, an ionic organic compound represented by the following (10) was obtained in the same manner as in Example 5 except that n-ethyldimethylamine was used instead of n-butyldimethylamine. Yield 92%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 1.37 (t, J = 7.2 Hz, 6H), 2.98 (s, 12H), 3.38-3.42 (m, 4H), 3.97 (s, 2H), 4.62 (s, 4H), 7.72-7.85 (m, 8H), 8.14 (d, J = 8.5Hz, 6H), 10.52 (s, 2H).
Figure JPOXMLDOC01-appb-C000023
(実施例7)(4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメチルビフェニルの合成及びその4級アミノ化による化合物(A4)の合成)
 上記実施例1における4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)に代えて、o―トルイジンを使用した以外は、実施例1と同様にして下記の式(11)で表わされる表題化合物を得た。収率98%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ2.33(s,6H),4.86(s,4H),7.46(d,J=8.2Hz,2H),7.53-7.62(m,8H),8.01(d,J=8.2Hz,4H),9.94(s,2H).
Figure JPOXMLDOC01-appb-C000024
 上記実施例1において、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルに代えて、上記反応で合成した4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメチルビフェニル、n-ヘキシルジメチルアミンに代えて、n-ブチルジメチルアミンをそれぞれ使用した以外は、実施例1と同様にして、下記の(12)で表わされるイオン性有機化合物を得た。収率57%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.97(t,J=7.1Hz,6H),1.34(qt,J=7.1Hz,4H),1.80(br,4H),2.33(s,6H),3.00(s,12H),3.27(br,4H),4.63(s,4H),7.44(d,J=8.3Hz,2H),7.56(d,J=9.1Hz,2H),7.63(s,2H),7.73(d,J=8.3Hz,4H),8.15(d,J=8.1Hz,
4H),10.12(s,H).
Figure JPOXMLDOC01-appb-C000025
Example 7 (Synthesis of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethylbiphenyl and synthesis of compound (A4) by quaternary amination thereof)
In the same manner as in Example 1 except that o-toluidine was used instead of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above, the following formula (11) The title compound represented by was obtained. Yield 98%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 2.33 (s, 6H), 4.86 (s, 4H), 7.46 (d, J = 8.2Hz, 2H), 7.53-7.62 (m, 8H), 8.01 (d, J = 8.2Hz, 4H), 9.94 (s, 2H).
Figure JPOXMLDOC01-appb-C000024
In Example 1, the 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl was replaced with 4,4′-bis [(4-chloromethyl) synthesized by the above reaction. ) Benzamide] -3, 3′-dimethylbiphenyl, an ion represented by the following (12) in the same manner as in Example 1 except that n-butyldimethylamine was used instead of n-hexyldimethylamine. An organic compound was obtained. Yield 57%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.97 (t, J = 7.1 Hz, 6H), 1.34 (qt, J = 7.1 Hz, 4H), 1.80 (br, 4H), 2.33 (s, 6H ), 3.00 (s, 12H), 3.27 (br, 4H), 4.63 (s, 4H), 7.44 (d, J = 8.3Hz, 2H), 7.56 (d, J = 9.1Hz, 2H), 7.63 (s , 2H), 7.73 (d, J = 8.3Hz, 4H), 8.15 (d, J = 8.1Hz,
4H), 10.12 (s, H).
Figure JPOXMLDOC01-appb-C000025
(実施例8)
 上記実施例7において、n―ブチルジメチルアミンに代えて、n―エチルジメチルアミンを使用した以外は、実施例7と同様にして、下記の(13)で表わされるイオン性有機化合物を得た。収率89%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ1.37(t,J=7.1Hz,6H),2.33(s,6H),2.98(s,12),3.38-3.43(m,4H),4.63(s,4H),7.44(d,J=8.3Hz,2H),7.56(d,=8.3Hz,2H),7.63(s,2H),7.74(d,J=8.3Hz,4H),8.15(d,J=8.2Hz,4H),10.14(s,2H).
Figure JPOXMLDOC01-appb-C000026
(Example 8)
In the above Example 7, an ionic organic compound represented by the following (13) was obtained in the same manner as in Example 7 except that n-ethyldimethylamine was used instead of n-butyldimethylamine. Yield 89%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 1.37 (t, J = 7.1 Hz, 6H), 2.33 (s, 6H), 2.98 (s, 12), 3.38-3.43 (m, 4H), 4.63 (s, 4H), 7.44 (d, J = 8.3Hz, 2H), 7.56 (d, = 8.3Hz, 2H), 7.63 (s, 2H), 7.74 (d, J = 8.3Hz, 4H), 8.15 ( d, J = 8.2Hz, 4H), 10.14 (s, 2H).
Figure JPOXMLDOC01-appb-C000026
(実施例9)(4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’,5,5’-テトラメチルビフェニルの合成及びその4級アミノ化による化合物(A5)の合成)
 上記実施例1における4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)に代えて、3,3’,5,5’-テトラメチルベンジジンを使用した以外は、実施例1と同様にして下記の式(14)で表わされる表題化合物を得た。収率97%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ2.26(s,12H),4.86(s,4H),7.46(s,4H),7.61(d,J=8Hz,4H),8.02(d,J=8Hz,4H),9.84(s,2H).
Figure JPOXMLDOC01-appb-C000027
 上記実施例1において、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルに代えて、上記反応で合成した4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’,5,5’-テトラメチルビフェニルを使用した以外は、実施例1と同様にして、下記の(15)で表わされるイオン性有機化合物を得た。収率62%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.90(t,J=6.9Hz,6H),1.33(br,12H),1.81(br,4H),2.27(s,12H),3.01(s,12H),3.27(br,4H),4.63(s,4H),7.47(s,4H),7.73(d,J=8.1Hz,4H),8.17(d,J=8.2Hz,4H),10.02(s,2H).
Figure JPOXMLDOC01-appb-C000028
Example 9 Synthesis of (4,4′-bis [(4-chloromethyl) benzamide] -3,3 ′, 5,5′-tetramethylbiphenyl and its quaternary amination to synthesize compound (A5) )
Example 1 except that 3,3 ′, 5,5′-tetramethylbenzidine was used instead of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above. In the same manner as described above, the title compound represented by the following formula (14) was obtained. Yield 97%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 2.26 (s, 12H), 4.86 (s, 4H), 7.46 (s, 4H), 7.61 (d, J = 8Hz, 4H), 8.02 (d, J = 8Hz, 4H), 9.84 (s, 2H).
Figure JPOXMLDOC01-appb-C000027
In Example 1, the 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl was replaced with 4,4′-bis [(4-chloromethyl) synthesized by the above reaction. ) Benzamide] -3,3 ′, 5,5′-tetramethylbiphenyl was used in the same manner as in Example 1 to obtain an ionic organic compound represented by the following (15). Yield 62%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.90 (t, J = 6.9 Hz, 6H), 1.33 (br, 12H), 1.81 (br, 4H), 2.27 (s, 12H), 3.01 (s , 12H), 3.27 (br, 4H), 4.63 (s, 4H), 7.47 (s, 4H), 7.73 (d, J = 8.1Hz, 4H), 8.17 (d, J = 8.2Hz, 4H), 10.02 (s, 2H).
Figure JPOXMLDOC01-appb-C000028
(実施例10)(4,4’-ビス[{(4-クロロメチル)ベンズアミド}フェニル]メタンの合成及びその4級アミノ化による化合物(A6)の合成)
 上記実施例1における4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)に代えて、ビス(4-アミノフェニル)メタンを使用した以外は、実施例1と同様にして下記の式(16)で表わされる表題化合物を得た。収率98%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ3.90(s,2H),4.84(s,4H),7.20(d,J=8Hz,4H),7.58(d,J=8Hz,4H),7.68(d,J=8Hz,4H),7.94(d,J=8Hz,4H),10.21(s,2H).
Figure JPOXMLDOC01-appb-C000029
 上記実施例1において、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルに代えて、上記実施例10で合成した4,4’-ビス[{(4-クロロメチル)ベンズアミド}フェニル]メタンを使用した以外は、実施例1と同様にして、下記の(17)で表わされるイオン性有機化合物を得た。収率80%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.89(t,J=6.5Hz,6H),1.31(br,12H),1.80(br,4H),2.98(s,12H),3.25-3.30(m,4H),3.90(s,2H),4.61(s,4H),7.22(d,J=8.5Hz,4H),7.69-7.73(m,8H),8.09(d,J=8.1Hz,4H),10.39(s,2H).
Figure JPOXMLDOC01-appb-C000030
Example 10 Synthesis of 4,4′-bis [{(4-chloromethyl) benzamido} phenyl] methane and Synthesis of Compound (A6) by Its Quaternary Amination
In the same manner as in Example 1 except that bis (4-aminophenyl) methane was used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above, The title compound represented by the formula (16) was obtained. Yield 98%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 3.90 (s, 2H), 4.84 (s, 4H), 7.20 (d, J = 8Hz, 4H), 7.58 (d, J = 8Hz, 4H), 7.68 (d, J = 8Hz, 4H), 7.94 (d, J = 8Hz, 4H), 10.21 (s, 2H).
Figure JPOXMLDOC01-appb-C000029
In Example 1, instead of 4,4′-bis [(4-chloromethyl) benzamide] -3,3′-dimethoxybiphenyl, 4,4′-bis [{(4 An ionic organic compound represented by the following (17) was obtained in the same manner as in Example 1 except that -chloromethyl) benzamido} phenyl] methane was used. Yield 80%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.89 (t, J = 6.5 Hz, 6H), 1.31 (br, 12H), 1.80 (br, 4H), 2.98 (s, 12H), 3.25-3.30 (m, 4H), 3.90 (s, 2H), 4.61 (s, 4H), 7.22 (d, J = 8.5Hz, 4H), 7.69-7.73 (m, 8H), 8.09 (d, J = 8.1Hz, 4H), 10.39 (s, 2H).
Figure JPOXMLDOC01-appb-C000030
(実施例11)(1,3-ビス{(4-クロロメチル)ベンズアミド}ベンゼンの合成及びその4級アミノ化による化合物(A7)の合成)
 上記実施例1における4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)に代えて、1,3-ジアミノベンゼン(m-フェニレンジアミン)を使用した以外は、実施例1と同様にして下記の式(18)で表わされる表題化合物を得た。収率98%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ4.85(s,4H),7.29-7.35(m,1H),7.48-7.52(m,2H),7.59(d,J=8.3Hz,4H),7.98(d,J=8.3Hz,4H),8.32(s,1H),10.33(s,2H).
Figure JPOXMLDOC01-appb-C000031
 上記実施例1において、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルに代えて、上記反応で合成した1,3-ビス{(4-クロロメチル)ベンズアミド}ベンゼンを使用し反応溶媒としてアセトニトリルを用いた以外は、実施例1と同様にして、下記の(19)で表わされるイオン性有機化合物を得た。収率50%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.87-0.92(m,6H),1.32(s,12H),1.80(br,4H),3.00(s,12H),3.27(s,4H),4.63(s,4H),7.34(t,J=7.8Hz,1H),7.52-7.55(m,2H),7.72(d,J=8.3Hz,4H),8.12(d,J=8.3Hz,4H),8.40(s,1H),10.50(s,2H).
Figure JPOXMLDOC01-appb-C000032
Example 11 Synthesis of 1,3-bis {(4-chloromethyl) benzamide} benzene and Synthesis of Compound (A7) by Its Quaternary Amination
Example 1 is the same as Example 1 except that 1,3-diaminobenzene (m-phenylenediamine) is used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above. Similarly, the title compound represented by the following formula (18) was obtained. Yield 98%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 4.85 (s, 4H), 7.29-7.35 (m, 1H), 7.48-7.52 (m, 2H), 7.59 (d, J = 8.3Hz, 4H) , 7.98 (d, J = 8.3Hz, 4H), 8.32 (s, 1H), 10.33 (s, 2H).
Figure JPOXMLDOC01-appb-C000031
In Example 1, instead of 4,4′-bis [(4-chloromethyl) benzamido] -3,3′-dimethoxybiphenyl, 1,3-bis {(4-chloromethyl) synthesized by the above reaction was used. An ionic organic compound represented by the following (19) was obtained in the same manner as in Example 1 except that benzamide} benzene was used and acetonitrile was used as a reaction solvent. Yield 50%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.87-0.92 (m, 6H), 1.32 (s, 12H), 1.80 (br, 4H), 3.00 (s, 12H), 3.27 (s, 4H) , 4.63 (s, 4H), 7.34 (t, J = 7.8Hz, 1H), 7.52-7.55 (m, 2H), 7.72 (d, J = 8.3Hz, 4H), 8.12 (d, J = 8.3Hz, 4H), 8.40 (s, 1H), 10.50 (s, 2H).
Figure JPOXMLDOC01-appb-C000032
(実施例12)
 上記実施例11において、n-ヘキシルジメチルアミンに代えて、n―ブチルジメチルアミンを使用した以外は、実施例11と同様にして、下記の(20)で表わされるイオン性有機化合物を得た。収率59%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.97(t,J=7.2Hz,6H),1.34(qt,J=7.4Hz,4H),1.80(br,4H),3.00(s,12H),3.27(br,4H),4.63(s,4H),7.31-7.37(m,1H),7.51-7.54(m,2H),7.72(d,J=8.3Hz,4H),8.12(d,J=8.3Hz,4H),8.41(s,1H),10.49(s,2H).
Figure JPOXMLDOC01-appb-C000033
(Example 12)
An ionic organic compound represented by the following (20) was obtained in the same manner as in Example 11 except that n-butyldimethylamine was used in place of n-hexyldimethylamine. Yield 59%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.97 (t, J = 7.2 Hz, 6H), 1.34 (qt, J = 7.4 Hz, 4H), 1.80 (br, 4H), 3.00 (s, 12H ), 3.27 (br, 4H), 4.63 (s, 4H), 7.31-7.37 (m, 1H), 7.51-7.54 (m, 2H), 7.72 (d, J = 8.3Hz, 4H), 8.12 (d, J = 8.3Hz, 4H), 8.41 (s, 1H), 10.49 (s, 2H).
Figure JPOXMLDOC01-appb-C000033
(実施例13)
 上記実施例11において、n-ヘキシルジメチルアミンに代えて、エチルジメチルアミンを使用した以外は、実施例11と同様にして、下記の(21)で表わされるイオン性有機化合物を得た。収率55%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ1.36(t,J=7.1Hz,6H),2.98(s,12H),3.35-3.43(m,4H),4.63(s,4H),7.34(t,J=8.5Hz,1H),7.52-7.55(m,2H),7.73(d,J=8.3Hz,4H),8.12(d,J=8.2Hz,4H),8.41(s,1H),10.51(s,2H).
Figure JPOXMLDOC01-appb-C000034
(Example 13)
In the above Example 11, an ionic organic compound represented by the following (21) was obtained in the same manner as in Example 11 except that ethyldimethylamine was used instead of n-hexyldimethylamine. Yield 55%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 1.36 (t, J = 7.1 Hz, 6H), 2.98 (s, 12H), 3.35-3.43 (m, 4H), 4.63 (s, 4H), 7.34 (t, J = 8.5Hz, 1H), 7.52-7.55 (m, 2H), 7.73 (d, J = 8.3Hz, 4H), 8.12 (d, J = 8.2Hz, 4H), 8.41 (s, 1H) , 10.51 (s, 2H).
Figure JPOXMLDOC01-appb-C000034
(実施例14)(trans-1、4-ビス[(4-クロロメチル)ベンズアミド]シクロヘキサンの合成及びその4級アミノ化による化合物(A8)の合成)
 上記実施例1における4,4’-ジアミノ-3,3’-ジメトキシビフェニル(o―ジアニシジン)に代えて、trans-1,4-ジアミノシクロヘキサンを使用した以外は、実施例1と同様にして下記の式(22)で表わされる表題化合物を得た。収率90%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。1H-NMR(300MHz,DMSO-d6)δ1.43-1.49(m,4H),1.89-1.91(m,4H),3.77(br,2H),4.81(s,4H),7.51(d,J=8.2Hz,4H),7.84(d,J=8.2Hz,4H),8.29(d,J=7.8Hz,2H).
Figure JPOXMLDOC01-appb-C000035
 上記実施例1において、4,4’-ビス[(4-クロロメチル)ベンズアミド]-3、3’-ジメトキシビフェニルに代えて、上記反応で合成したtrans-1、4-ビス[(4-クロロメチル)ベンズアミド]シクロヘキサンを使用した以外は、実施例1と同様にして、下記の(23)で表わされるイオン性有機化合物を得た。収率61%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.86-0.91(m,6H),1.31(br,12H),1.47-1.53(m,4H),1.78(br,4H),1.89-1.91(m,4H),2.96(s,12H),3.23-3.28(m,4H),3.81(br,2H),4.58(s,4H),7.63(d,J=8.2Hz,4H),7.99(d,J=8.2Hz,4H),8.48(d,J=7.9Hz,2H).
Figure JPOXMLDOC01-appb-C000036
Example 14 (Synthesis of trans-1,4-bis [(4-chloromethyl) benzamido] cyclohexane and synthesis of compound (A8) by its quaternary amination)
In the same manner as in Example 1 except that trans-1,4-diaminocyclohexane was used in place of 4,4′-diamino-3,3′-dimethoxybiphenyl (o-dianisidine) in Example 1 above, The title compound represented by the formula (22) was obtained. Yield 90%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 1.43-1.49 (m, 4H), 1.89-1.91 (m, 4H), 3.77 (br, 2H), 4.81 (s, 4H), 7.51 (d, J = 8.2Hz, 4H), 7.84 (d, J = 8.2Hz, 4H), 8.29 (d, J = 7.8Hz, 2H).
Figure JPOXMLDOC01-appb-C000035
Instead of 4,4′-bis [(4-chloromethyl) benzamido] -3,3′-dimethoxybiphenyl in Example 1, trans-1,4-bis [(4-chloro Methyl) benzamide] An ionic organic compound represented by the following (23) was obtained in the same manner as in Example 1 except that cyclohexane was used. Yield 61%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.86-0.91 (m, 6H), 1.31 (br, 12H), 1.47-1.53 (m, 4H), 1.78 (br, 4H), 1.89-1.91 ( m, 4H), 2.96 (s, 12H), 3.23-3.28 (m, 4H), 3.81 (br, 2H), 4.58 (s, 4H), 7.63 (d, J = 8.2Hz, 4H), 7.99 (d , J = 8.2Hz, 4H), 8.48 (d, J = 7.9Hz, 2H).
Figure JPOXMLDOC01-appb-C000036
(実施例15)
 上記実施例14において、n-ヘキシルジメチルアミンに代えて、n―ブチルジメチルアミンを使用した以外は、実施例12と同様にして、下記の(24)で表わされるイオン性有機化合物を得た。収率80%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.95(t,J=7.2Hz,6H),1.31(qt,J=7.5Hz,4H),1.47-1.53(m,4H),1.75-1.80(m,4H),1.89-1.91(m,4H),2.97(s,12H),3.23-3.39(m,4H),3.80(br,2H),4.59(s,4H),7.64(d,J=8.3Hz,4H),7.99(d,J=8.3Hz,4H),8.49(d,J=7.9Hz,2H).
Figure JPOXMLDOC01-appb-C000037
(Example 15)
In the above Example 14, an ionic organic compound represented by the following (24) was obtained in the same manner as in Example 12 except that n-butyldimethylamine was used instead of n-hexyldimethylamine. Yield 80%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.95 (t, J = 7.2 Hz, 6H), 1.31 (qt, J = 7.5 Hz, 4H), 1.47-1.53 (m, 4H), 1.75-1.80 (m, 4H), 1.89-1.91 (m, 4H), 2.97 (s, 12H), 3.23-3.39 (m, 4H), 3.80 (br, 2H), 4.59 (s, 4H), 7.64 (d, J = 8.3Hz, 4H), 7.99 (d, J = 8.3Hz, 4H), 8.49 (d, J = 7.9Hz, 2H).
Figure JPOXMLDOC01-appb-C000037
(実施例16)
 上記実施例14において、n-ヘキシルジメチルアミンに代えて、エチルジメチルアミンを使用した以外は、実施例12と同様にして、下記の(25)で表わされるイオン性有機化合物を得た。収率82%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300 MHz,DMSO-d6)δ1.34(t,J=7.1Hz,6H),1.47-1.54(m,4H),1.89-1.91(m,4H),2.94(s,12H),3.37(br,4H),3.80(br,2H),4.58(s,4H),7.64(d,J=8.2Hz,4H),7.99(d,J=8.3Hz,4H),8.49(d,J=7.9Hz,2H).
Figure JPOXMLDOC01-appb-C000038
(Example 16)
In Example 14, except that ethyldimethylamine was used in place of n-hexyldimethylamine, an ionic organic compound represented by the following (25) was obtained in the same manner as Example 12. Yield 82%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 1.34 (t, J = 7.1 Hz, 6H), 1.47-1.54 (m, 4H), 1.89-1.91 (m, 4H), 2.94 (s, 12H ), 3.37 (br, 4H), 3.80 (br, 2H), 4.58 (s, 4H), 7.64 (d, J = 8.2Hz, 4H), 7.99 (d, J = 8.3Hz, 4H), 8.49 (d , J = 7.9Hz, 2H).
Figure JPOXMLDOC01-appb-C000038
(実施例17)
 上記実施例14において、n-ヘキシルジメチルアミンに代えて、n-オクチルジメチルアミンを使用した以外は、実施例12と同様にして、下記の(26)で表わされるイオン性有機化合物を得た。収率81%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.85-0.89(m,6H),1.27-1.30(m,20H),1.47-1.53(m,4H),1.78(br,4H),1.89-1.91(m,4H),2.96(s,12H),3.22-3.28(m,4H),3.81(br,2H),4.58(s,4H),7.63(d,J=8.2Hz,4H),7.99(d,J=8.2Hz,4H),8.48(d,J=7.9Hz,2H).
Figure JPOXMLDOC01-appb-C000039
(Example 17)
In the above Example 14, an ionic organic compound represented by the following (26) was obtained in the same manner as in Example 12 except that n-octyldimethylamine was used instead of n-hexyldimethylamine. Yield 81%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.85-0.89 (m, 6H), 1.27-1.30 (m, 20H), 1.47-1.53 (m, 4H), 1.78 (br, 4H), 1.89- 1.91 (m, 4H), 2.96 (s, 12H), 3.22-3.28 (m, 4H), 3.81 (br, 2H), 4.58 (s, 4H), 7.63 (d, J = 8.2Hz, 4H), 7.99 (d, J = 8.2Hz, 4H), 8.48 (d, J = 7.9Hz, 2H).
Figure JPOXMLDOC01-appb-C000039
(実施例18)
 上記実施例14において、n-ヘキシルジメチルアミンに代えて、n-デシルジメチルアミンを使用した以外は、実施例12と同様にして、下記の(27)で表わされるイオン性有機化合物を得た。収率65%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.84-0.88(m,6H),1.26(br,28H),1.47-1.53(m,4H),1.78(br,4H),1.89-1.91(m,4H),2.96(s,12H),3.22-3.28(m,4H),3.81(br,2H),4.58(s,4H),7.63(d,J=8.3Hz,4H),7.99(d,J=8.2Hz,4H),8.48(d,J=8.0Hz,2H).
Figure JPOXMLDOC01-appb-C000040
(Example 18)
In the above Example 14, an ionic organic compound represented by the following (27) was obtained in the same manner as in Example 12 except that n-decyldimethylamine was used instead of n-hexyldimethylamine. Yield 65%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.84-0.88 (m, 6H), 1.26 (br, 28H), 1.47-1.53 (m, 4H), 1.78 (br, 4H), 1.89-1.91 ( m, 4H), 2.96 (s, 12H), 3.22-3.28 (m, 4H), 3.81 (br, 2H), 4.58 (s, 4H), 7.63 (d, J = 8.3Hz, 4H), 7.99 (d , J = 8.2Hz, 4H), 8.48 (d, J = 8.0Hz, 2H).
Figure JPOXMLDOC01-appb-C000040
(実施例19)
 上記実施例14において、n-ヘキシルジメチルアミンに代えて、n-ドデシルジメチルアミンを使用した以外は、実施例12と同様にして、下記の(28)で表わされるイオン性有機化合物を得た。収率63%。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.83-0.88(m,6H),1.25(br,36H),1.47-1.53(m,4H),1.78(br,4H),1.89-1.91(m,4H),2.96(s,12H),3.22-3.27(m,4H),3.81(br,2H),4.58(s,4H),7.63(d,J=8.3Hz,4H),7.99(d,J=8.3Hz,4H),8.48(d,J=7.9Hz,2H).
Figure JPOXMLDOC01-appb-C000041
(Example 19)
In the above Example 14, an ionic organic compound represented by the following (28) was obtained in the same manner as in Example 12 except that n-dodecyldimethylamine was used instead of n-hexyldimethylamine. Yield 63%. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.83-0.88 (m, 6H), 1.25 (br, 36H), 1.47-1.53 (m, 4H), 1.78 (br, 4H), 1.89-1.91 ( m, 4H), 2.96 (s, 12H), 3.22-3.27 (m, 4H), 3.81 (br, 2H), 4.58 (s, 4H), 7.63 (d, J = 8.3Hz, 4H), 7.99 (d , J = 8.3Hz, 4H), 8.48 (d, J = 7.9Hz, 2H).
Figure JPOXMLDOC01-appb-C000041
(実施例20)(アニオン交換反応)
 上記実施例1で得られた式(3)で表されるイオン性化合物(150mg)を100℃で水(20 mL)に溶かし、その溶液に0.4M濃度のリチウムビス(トリフルオロメタンスルホニル)アミド(Li-TFSA)水溶液(7.6mL)を加えると、下記の式(29)で表される化合物の沈殿物が定量的に生じた。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。得られた化合物のプロトンNMRスペクトルから、その構造を確認した。H-NMR(300MHz,DMSO-d6)δ0.86(t,J=6.7Hz,6H),1.29(br,12H),1.77(br,4H),2.95(s,12H),3.22-3.29(m,4H),3.93(s,6H),4.55(s,4H),7.31-7.36(m,4H),7.67(d,J=8.2Hz,4H),7.82(d,J=8.2Hz,2H),8.08(d,J=8.3Hz,4H),9.59(s,2H).
Figure JPOXMLDOC01-appb-C000042
Example 20 (Anion Exchange Reaction)
The ionic compound (150 mg) represented by the formula (3) obtained in Example 1 was dissolved in water (20 mL) at 100 ° C., and 0.4 M concentration of lithium bis (trifluoromethanesulfonyl) amide was added to the solution. When an aqueous solution (7.6 mL) of (Li-TFSA) was added, a precipitate of the compound represented by the following formula (29) was quantitatively generated. The structure was confirmed from the proton NMR spectrum of the obtained compound. The structure was confirmed from the proton NMR spectrum of the obtained compound. 1 H-NMR (300 MHz, DMSO-d 6 ) δ 0.86 (t, J = 6.7 Hz, 6H), 1.29 (br, 12H), 1.77 (br, 4H), 2.95 (s, 12H), 3.22-3.29 (m, 4H), 3.93 (s, 6H), 4.55 (s, 4H), 7.31-7.36 (m, 4H), 7.67 (d, J = 8.2Hz, 4H), 7.82 (d, J = 8.2Hz, 2H), 8.08 (d, J = 8.3Hz, 4H), 9.59 (s, 2H).
Figure JPOXMLDOC01-appb-C000042
(実施例21)
 上記実施例20で、式(3)の代わりに、式(5)で表わされるイオン性化合物を用いた以外は、実施例20と同様にして、下記の式(30)で表される化合物の沈殿物が定量的に生じた。
Figure JPOXMLDOC01-appb-C000043
(Example 21)
In Example 20 above, the ionic compound represented by Formula (5) was used instead of Formula (3) in the same manner as Example 20 except that the compound represented by Formula (30) below was used. A precipitate formed quantitatively.
Figure JPOXMLDOC01-appb-C000043
(実施例22)
 上記実施例20で、式(3)の代わりに、式(23)で表わされるイオン性化合物を用いた以外は、実施例20と同様にして、下記の式(31)で表される化合物の沈殿物が定量的に生じた。
Figure JPOXMLDOC01-appb-C000044
(Example 22)
In Example 20 above, the ionic compound represented by Formula (23) was used instead of Formula (3) in the same manner as Example 20 except that the compound represented by Formula (31) below was used. A precipitate formed quantitatively.
Figure JPOXMLDOC01-appb-C000044
(実施例23)(イオン性有機化合物を用いた多層カーボンナノチューブ分散溶液の作成)
 上記実施例7で得られるイオン性有機化合物(12)30mgを、サンプル管中で脱イオン処理後の純水3mLと混合し、加熱して均一な溶液を得た。この溶液にアーク放電法により作製された多層カーボンナノチューブ1mgを混合し、洗浄用超音波照射装置(130W,35kHz)を用いて30分超音波照射することにより、黒色のカーボンナノチューブ均一分散水溶液となり、沈殿は生じなかった。この結果を図1に示す。(a)は超音波照射前で、(b)は超音波照射後である。
 同様にして、化合物(3)、(5)、(6)、(7)、(9)、(10)、(13)、(15)、(17)、(19)、(20)、(21)、(26)~(28)を用いて、多層カーボンナノチューブ均一分散水溶液を調製することができた。
 CNT分散液を調製するためのイオン性有機化合物の濃度範囲は、1g~20g/L程度であり、好適には5~10g/L程度である。また、分散できる多層カーボンナノチューブの含有量は、1~3g/Lであった。
(Example 23) (Preparation of multi-walled carbon nanotube dispersion using ionic organic compound)
30 mg of the ionic organic compound (12) obtained in Example 7 above was mixed with 3 mL of deionized pure water in a sample tube and heated to obtain a uniform solution. This solution is mixed with 1 mg of multi-walled carbon nanotubes produced by the arc discharge method, and is irradiated with ultrasonic waves for 30 minutes using a cleaning ultrasonic irradiation device (130 W, 35 kHz), thereby obtaining a black carbon nanotube uniformly dispersed aqueous solution. No precipitation occurred. The result is shown in FIG. (A) is before ultrasonic irradiation, and (b) is after ultrasonic irradiation.
Similarly, the compounds (3), (5), (6), (7), (9), (10), (13), (15), (17), (19), (20), ( 21), (26) to (28) were used to prepare a multi-walled carbon nanotube uniformly dispersed aqueous solution.
The concentration range of the ionic organic compound for preparing the CNT dispersion is about 1 to 20 g / L, and preferably about 5 to 10 g / L. The content of multi-walled carbon nanotubes that can be dispersed was 1 to 3 g / L.
(実施例24)(イオン性有機化合物を用いた単層カーボンナノチューブ(SWCNT)分散溶液の作成)
 実施例7で得られるイオン性有機化合物(12)30mgを、サンプル管中で脱イオン処理後の純水3mLと混合し、加熱して均一な溶液を得た。この溶液にHigh-pressure carbon monoxide(HiPco)法により作製された単層カーボンナノチューブ1mgを混合し、洗浄用超音波照射装置(130W,35kHz)を用いて30分超音波照射することにより、黒色の単層カーボンナノチューブ均一分散水溶液となり、沈殿は生じなかった。この結果を図2に示す。(a)は超音波照射前で、(b)は超音波照射後である。さらに溶媒に重水を用いることで、同様のSWCNT溶液が得られ、その溶液を計2時間遠心分離(4000rpm)した後、そのUV-vis-NIRスペクトルより、孤立分散状態が確認された(図3)。
 同様にして、化合物(3)、(5)、(6)、(7)、(9)、(15)、(17)を用いて、SWCNT均一分散水溶液を調製することができた。
 SWCNT分散液を調製するためのイオン性有機化合物の濃度範囲は、1g~20g/L程度であり、好適には5~10g/L程度である。また、分散できるSWCNTの含有量は、1~3g/Lであった。
(Example 24) (Preparation of a single-walled carbon nanotube (SWCNT) dispersion using an ionic organic compound)
30 mg of the ionic organic compound (12) obtained in Example 7 was mixed with 3 mL of deionized pure water in a sample tube and heated to obtain a uniform solution. This solution was mixed with 1 mg of single-walled carbon nanotubes produced by the High-pressure carbon monoxide (HiPco) method, and irradiated with ultrasonic waves for 30 minutes using a cleaning ultrasonic irradiation device (130 W, 35 kHz). A single-walled carbon nanotube uniformly dispersed aqueous solution was obtained, and no precipitation occurred. The result is shown in FIG. (A) is before ultrasonic irradiation, and (b) is after ultrasonic irradiation. Furthermore, by using heavy water as a solvent, a similar SWCNT solution was obtained, and after centrifuging the solution for a total of 2 hours (4000 rpm), an isolated dispersion state was confirmed from the UV-vis-NIR spectrum (FIG. 3). ).
Similarly, using the compounds (3), (5), (6), (7), (9), (15), and (17), a SWCNT homogeneously dispersed aqueous solution could be prepared.
The concentration range of the ionic organic compound for preparing the SWCNT dispersion is about 1 to 20 g / L, and preferably about 5 to 10 g / L. The content of SWCNT that can be dispersed was 1 to 3 g / L.
(実施例25)(イオン性有機化合物を用いた単層カーボンナノチューブ(SWCNT)分散溶液の作成)
 実施例7で得られるイオン性有機化合物(12)10mgを、サンプル管中で脱イオン処理後の純水20mLと混合し、超音波洗浄装置BRANSONIC 2を用いて超音波処理(90W,42kHz)して均一な溶液を得た。この溶液にHigh-pressure carbon monoxide(HiPco)法により作製された単層カーボンナノチューブ7mgを混合し、50mLの広口瓶に入れ、超音波ホモジナイザーBRANSON Advanced Digital Sonifire 250D(20W,19.9kHz)を用いて4時間超音波照射することにより、黒色の単層カーボンナノチューブ均一分散水溶液となった。その溶液を冷却遠心機eppendorf Cetrifuge 5417R(アングルローター:FA45-24-11)を用いて計15時間遠心分離(16400rpm、28500xg)した後、そのUV-vis-NIRスペクトル(SHIMADZU UV-3150)測定により良好な分散状態が確認された(図4)。
(Example 25) (Preparation of a single-walled carbon nanotube (SWCNT) dispersion using an ionic organic compound)
10 mg of the ionic organic compound (12) obtained in Example 7 was mixed with 20 mL of deionized pure water in a sample tube, and sonicated (90 W, 42 kHz) using an ultrasonic cleaning device BRANSONIC 2. And a homogeneous solution was obtained. This solution is mixed with 7 mg of single-walled carbon nanotubes produced by the High-pressure carbon monoxide (HiPco) method, put into a 50 mL wide-mouth bottle, and using an ultrasonic homogenizer BRANSON Advanced Digital Sonifire 250D (20 W, 19.9 kHz). By irradiating with ultrasonic waves for 4 hours, a black single-walled carbon nanotube uniformly dispersed aqueous solution was obtained. The solution was centrifuged for 15 hours (16400 rpm, 28500 × g) using a refrigerated centrifuge eppendorf Cetrifuge 5417R (angle rotor: FA45-24-11), and then measured by UV-vis-NIR spectrum (SHIMADZU UV-3150). A good dispersion state was confirmed (FIG. 4).

Claims (7)

  1.  下記一般式(I)で表されるイオン性有機化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、Rは水素もしくはアルキル基、Aは芳香環を1個以上有する連結部位、又はシクロヘキサン環からなる連結部位、Xはアニオンを表し、nはnXが-2価となる数である。)
    An ionic organic compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 , R 2 and R 3 are hydrogen or an alkyl group, A is a linking site having one or more aromatic rings, or a linking site consisting of a cyclohexane ring, X is an anion, n is nX is −2 It is a number that becomes a valence.)
  2.  前記一般式(I)において、Xがハロゲン原子(F、Cl、Br、I)、テトラフルオロホウ酸基(BF)、ヘキサフルオロリン酸(PF)、ビス(トリフルオロメタンスルホニル)アミド(TFSA)、チオイソシアネート(SCN)、硝酸基(NO)、硫酸基(SO)、チオ硫酸基(S)、炭酸基(CO)、炭酸水素基(HCO)、リン酸基、亜リン酸基、次亜リン酸基、各ハロゲン酸化合物酸基(AO、AO、AO、AO:A=Cl、Br、I)、トリス(トリフルオロメチルスルホニル)炭素酸基、トリフルオロメチルスルホン酸基、ジシアンアミド基、酢酸基(CHCOO)、ハロゲン化酢酸基((CA3-n)COO、A=F、Cl、Br、I;n=1、2、3)、テトラフェニルホウ酸基(BPh)及びその誘導体(B(Aryl):Aryl=置換フェニル基)からえらばれた少なくとも1種であることを特徴とする、請求項1に記載のイオン性有機化合物。 In the general formula (I), X represents a halogen atom (F, Cl, Br, I), a tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), bis (trifluoromethanesulfonyl) amide (TFSA). ), Thioisocyanate (SCN), nitrate group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3 ), bicarbonate group (HCO 3 ), phosphate group , Phosphorous acid group, hypophosphorous acid group, each halogen acid compound acid group (AO 4 , AO 3 , AO 2 , AO: A = Cl, Br, I), tris (trifluoromethylsulfonyl) carbon acid group, Trifluoromethylsulfonic acid group, dicyanamide group, acetic acid group (CH 3 COO), halogenated acetic acid group ((CA n H 3-n ) COO, A = F, Cl, Br, I; n = 1, 2, 3 ), Tetraph Niruhou acid (BPh 4) and its derivative (B (Aryl) 4: Aryl = substituted phenyl group), characterized in that at least one member selected from ionic organic compound according to claim 1.
  3.  (A)下記一般式(II)で表される、両末端に(クロロメチル)ベンズアミド基を有する化合物と、(B)下記一般式(III)で表されるアミン類を4級化反応させることを特徴とする、請求項1に記載のイオン性有機化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは芳香環を1個以上有する連結部位、又はシクロヘキサン環からなる連結部位を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、R、Rは水素もしくはアルキル基を表す。)
    (A) A quaternization reaction of a compound represented by the following general formula (II) having (chloromethyl) benzamide groups at both ends and (B) an amine represented by the following general formula (III) The method for producing an ionic organic compound according to claim 1, wherein:
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A represents a linking site having one or more aromatic rings or a linking site consisting of a cyclohexane ring.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 , R 2 and R 3 represent hydrogen or an alkyl group.)
  4.  4級化反応を、ジメチルホルムアミドもしくはアセトニトリル中で、50~80℃で行うことを特徴とする、請求項3に記載のイオン性有機化合物の製造方法。 The method for producing an ionic organic compound according to claim 3, wherein the quaternization reaction is carried out in dimethylformamide or acetonitrile at 50 to 80 ° C.
  5.  さらに、得られたイオン性化合物のアニオンをアニオン交換反応により他のアニオンに置換することを特徴とする、請求項3又は4に記載のイオン性有機化合物の製造方法。 Furthermore, the anion of the obtained ionic compound is substituted with another anion by anion exchange reaction, The method for producing an ionic organic compound according to claim 3 or 4.
  6.  請求項1に記載のイオン性有機化合物からなるCNT分散剤。 A CNT dispersant comprising the ionic organic compound according to claim 1.
  7.  請求項6に記載のCNT分散剤を含むCNT分散液。 A CNT dispersion containing the CNT dispersant according to claim 6.
PCT/JP2010/068987 2009-10-26 2010-10-26 Ionic organic compound, production method therefor, and carbon nanotube dispersant comprising said ionic organic compound WO2011052601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538439A JP5435595B2 (en) 2009-10-26 2010-10-26 Ionic organic compound and process for producing the same, and carbon nanotube dispersant comprising the ionic organic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-245063 2009-10-26
JP2009245063 2009-10-26

Publications (1)

Publication Number Publication Date
WO2011052601A1 true WO2011052601A1 (en) 2011-05-05

Family

ID=43922026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068987 WO2011052601A1 (en) 2009-10-26 2010-10-26 Ionic organic compound, production method therefor, and carbon nanotube dispersant comprising said ionic organic compound

Country Status (2)

Country Link
JP (1) JP5435595B2 (en)
WO (1) WO2011052601A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245116A (en) * 2012-05-23 2013-12-09 Osaka Gas Co Ltd Graphene sheet aqueous dispersion, method for producing the same, and graphene-containing structure
US8729307B2 (en) 2009-10-26 2014-05-20 National Institute Of Advanced Industrial Science And Technology Photoresponsive ionic organic compound, method of producing the same, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound
CN110354754A (en) * 2019-07-10 2019-10-22 齐齐哈尔大学 Amide bond quaternary cationics with different the morphology of the aggregate
CN115385815A (en) * 2022-09-22 2022-11-25 东北石油大学 Diphenylamino hindered phenol antioxidant, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161696A (en) * 2002-11-14 2004-06-10 Ajinomoto Co Inc Fluorine-containing calixarene compound and application thereof
JP2007099611A (en) * 2005-10-05 2007-04-19 Samsung Electronics Co Ltd Dispersant for carbon nanotube and composition containing the same
JP2008248224A (en) * 2007-03-06 2008-10-16 National Institute Of Advanced Industrial & Technology Ionic organic compound and manufacturing method thereof as well as hydrogelling agent comprising the ionic organic compound and hydrogel
WO2009008486A1 (en) * 2007-07-10 2009-01-15 Japan Science And Technology Agency Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
WO2010027067A1 (en) * 2008-09-08 2010-03-11 独立行政法人産業技術総合研究所 Ionic organic compound, production method thereof, hydrogelling agent composed of the ionic organic compound, hydrogel containing same, methanol gelling agent, methanol gel containing same, and carbon nanotube dispersant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004039483A1 (en) * 2002-10-30 2006-02-23 味の素株式会社 Dispersant or solubilizer containing calixarene compound
US8729307B2 (en) * 2009-10-26 2014-05-20 National Institute Of Advanced Industrial Science And Technology Photoresponsive ionic organic compound, method of producing the same, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161696A (en) * 2002-11-14 2004-06-10 Ajinomoto Co Inc Fluorine-containing calixarene compound and application thereof
JP2007099611A (en) * 2005-10-05 2007-04-19 Samsung Electronics Co Ltd Dispersant for carbon nanotube and composition containing the same
JP2008248224A (en) * 2007-03-06 2008-10-16 National Institute Of Advanced Industrial & Technology Ionic organic compound and manufacturing method thereof as well as hydrogelling agent comprising the ionic organic compound and hydrogel
WO2009008486A1 (en) * 2007-07-10 2009-01-15 Japan Science And Technology Agency Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
WO2010027067A1 (en) * 2008-09-08 2010-03-11 独立行政法人産業技術総合研究所 Ionic organic compound, production method thereof, hydrogelling agent composed of the ionic organic compound, hydrogel containing same, methanol gelling agent, methanol gel containing same, and carbon nanotube dispersant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729307B2 (en) 2009-10-26 2014-05-20 National Institute Of Advanced Industrial Science And Technology Photoresponsive ionic organic compound, method of producing the same, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound
JP2013245116A (en) * 2012-05-23 2013-12-09 Osaka Gas Co Ltd Graphene sheet aqueous dispersion, method for producing the same, and graphene-containing structure
CN110354754A (en) * 2019-07-10 2019-10-22 齐齐哈尔大学 Amide bond quaternary cationics with different the morphology of the aggregate
CN115385815A (en) * 2022-09-22 2022-11-25 东北石油大学 Diphenylamino hindered phenol antioxidant, and preparation method and application thereof

Also Published As

Publication number Publication date
JP5435595B2 (en) 2014-03-05
JPWO2011052601A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Zhu et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets
McDaniel et al. Well-dispersed nanocomposites using covalently modified, multilayer, 2D titanium carbide (MXene) and in-situ “Click” polymerization
Maity et al. Interface engineering of ionic liquid integrated graphene in poly (vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties
Mekki et al. Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts
Gu et al. Synthesis of polydopamine‐coated graphene–polymer nanocomposites via RAFT polymerization
CA3189208A1 (en) Methods for synthesis of graphene derivatives and functional materials from asphaltenes, graphene derivatives, 2d materials and applications of use
EP2960205A1 (en) Stable aqueous graphene suspension and its use in producing graphene polymer nanocomposites
KR101337867B1 (en) Carbon nano material-polymer composite and method for producing the same
JP5435595B2 (en) Ionic organic compound and process for producing the same, and carbon nanotube dispersant comprising the ionic organic compound
Abd et al. Addition of some primary and secondary amines to graphene oxide, and studying their effect on increasing its electrical properties
Martinez-Rubi et al. Tailored SWCNT functionalization optimized for compatibility with epoxy matrices
AU2019356795B2 (en) Dispersible edge functionalised graphene platelets
Li et al. Nanoscale ionic graphene material with liquid-like behavior in the absence of solvent
Han et al. Click coupled stitched graphene sheets and their polymer nanocomposites with enhanced photothermal and mechanical properties
EP3538481B1 (en) Adducts of pyrrole derivatives to carbon allotropes
Khaki et al. Synthesis and identification of new thermostable polyamides containing xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles
WO2011052604A1 (en) Photoresponsive ionic organic compound, production method therefor, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound
JP5757517B2 (en) Ionic organic compound and process for producing the same, hydrogelator comprising the ionic organic compound, hydrogel containing the same, methanol gelator, methanol gel containing the same, and carbon nanotube dispersant
Cui et al. Polyamine-functionalized perylene bisimide for dispersion of graphene in water with high effectiveness and little impact on electrical conductivity
KR101939874B1 (en) Solvent-based and water-based carbon nanotube inks with removable additives
Ahmadi et al. From Parkinson's chemotropic agent l-dopa to thermally resistive carbonaceous nanocomposite of a new catechol-grafted poly (amide-imide)
JP6755015B2 (en) Ionic compounds and photoresponsive nanocarbon material dispersants
JP6958814B2 (en) Dimming material, dimming film and dimming laminate
Khazaei et al. Functionalization of single-walled carbon nanotubes with 4-benzo-9-crown-3 ether
Far et al. Production, characterization, and application of a novel chitosan-g-maleic anhydride and modified graphene oxide nanocomposite, supported methane sulfonic acid, for efficient synthesis of 1-(benzothiazolylamino) methyl-2-naphtols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538439

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826733

Country of ref document: EP

Kind code of ref document: A1