WO2011052378A1 - Developing member for electrophotography device and method for producing said developing member - Google Patents

Developing member for electrophotography device and method for producing said developing member Download PDF

Info

Publication number
WO2011052378A1
WO2011052378A1 PCT/JP2010/067938 JP2010067938W WO2011052378A1 WO 2011052378 A1 WO2011052378 A1 WO 2011052378A1 JP 2010067938 W JP2010067938 W JP 2010067938W WO 2011052378 A1 WO2011052378 A1 WO 2011052378A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pattern
electrode
developing member
roll
Prior art date
Application number
PCT/JP2010/067938
Other languages
French (fr)
Japanese (ja)
Inventor
浩介 峰松
明彦 加地
康行 早崎
直樹 片山
真吾 仲市
洋介 林
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to JP2011538337A priority Critical patent/JP5290428B2/en
Publication of WO2011052378A1 publication Critical patent/WO2011052378A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0806Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
    • G03G15/0818Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by the structure of the donor member, e.g. surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/06Developing structures, details
    • G03G2215/0634Developing device
    • G03G2215/0636Specific type of dry developer device
    • G03G2215/0651Electrodes in donor member surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/08Details of powder developing device not concerning the development directly
    • G03G2215/0855Materials and manufacturing of the developing device
    • G03G2215/0858Donor member
    • G03G2215/0861Particular composition or materials

Definitions

  • the present invention relates to a developing member for electrophotographic equipment and a method for producing the same.
  • a latent image is formed on a latent image carrier such as a photosensitive drum, and toner is attached to the latent image and developed to be visualized as a toner image. Then, the toner image is transferred to a recording medium such as paper to form an image.
  • a latent image carrier such as a photosensitive drum
  • a developing roll has been widely used as a developing member for developing a latent image.
  • typical developing methods using a developing roll for example, the following are known. That is, the toner layer forming blade is pressed against the surface of the developing roll, and the toner is charged by friction. The charged toner layer is conveyed to a position facing the surface of the latent image carrier by the rotation of the developing roll, and develops the latent image on the latent image carrier.
  • a contact type in which the latent image carrier and the developing roll are in contact and a non-contact type in which the latent image carrier and the developing roll are not in contact are known.
  • Patent Document 1 a voltage is applied to the electrode formed on the surface of the developing roll, and the toner is hopped on the surface of the roll by the electric field formed thereby, and the toner is rotated by rotating the developing roll.
  • Patent Document 1 an electrode shaft is press-fitted into a shaft hole provided in an acrylic resin cylinder as an insulator, and a groove is formed on the surface of the cylinder by cutting, followed by electroless plating.
  • a developing roll in which a surface electrode is formed by turning an outer peripheral surface of a roll subjected to electrolytic plating to remove an unnecessary conductive film.
  • the conventionally known developing member with an electrode uses a metal as an electrode material, the toner can be charged with a relatively low voltage.
  • the resin is used as the roll main material, the roll hardness is high and hard.
  • the toner is easily stressed due to contact with a peripheral member such as a toner layer forming blade or a latent image carrier, and the toner is likely to deteriorate.
  • a peripheral member such as a toner layer forming blade or a latent image carrier
  • the present invention has been made in view of the above circumstances, and the problem to be solved by the present invention is an electrophotography that can alleviate toner stress and can charge toner at a relatively low voltage.
  • the object is to provide a developing member for an apparatus and a method for producing the developing member.
  • a developing member for an electrophotographic apparatus comprises the following layer structure (1) or (2): (1) Layer structure including at least one rubber elastic layer and an insulating layer laminated on the surface of the rubber elastic layer (2) Layer structure including an insulating layer having rubber elasticity Surface of the above layer structure And a pattern electrode having a pattern layer made of a polymer coating and an electrode layer made of a metal material formed on the surface of the pattern layer.
  • the electrode layer is preferably formed by metal plating.
  • a catalyst metal is present in the pattern layer or on the surface of the pattern layer.
  • the catalyst metal is preferably supported on a carrier.
  • the thickness of the electrode layer is preferably in the range of 50 nm to 10 ⁇ m.
  • the pattern shape of the pattern layer is preferably formed by laser processing.
  • the insulating layers of the layer structures (1) and (2) have laser reflectivity.
  • the insulating layers of the layer structures (1) and (2) preferably have a thickness capable of suppressing the lower layer from being laser processed as compared with the insulating layer.
  • the surface of the pattern electrode is preferably covered with a coating.
  • the method for producing a developing member for an electrophotographic apparatus includes a step of forming the following layer structure (1) or (2), (1) Layer structure including at least one rubber elastic layer and an insulating layer laminated on the surface of the rubber elastic layer (2) Layer structure including an insulating layer having rubber elasticity Surface of the above layer structure And a step of forming a pattern layer made of a polymer coating film and a step of forming an electrode layer made of a metal material on the surface of the pattern layer.
  • the electrode layer by metal plating.
  • the polymer contained in the polymer coating film containing the catalyst metal is preferably a water-soluble polymer.
  • the developing member for an electrophotographic apparatus includes a pattern layer made of a polymer coating on the surface of the layer structure (1) or (2) having rubber elasticity and a metal material formed on the surface of the pattern layer. And a patterned electrode having an electrode layer. Therefore, the member becomes flexible, and it becomes possible to alleviate toner stress due to contact with peripheral members such as a toner layer forming blade and a latent image carrier. As a result, image defects due to fogging, filming, and the like can be suppressed when incorporated in an electrophotographic apparatus. Further, since the electrode layer of the pattern electrode is made of a metal material, the surface resistance of the pattern electrode is lowered. Therefore, the toner can be charged by generating a minute electric field by applying a relatively low voltage. Therefore, it can contribute to power saving and speeding up of the electrophotographic apparatus.
  • the electrode layer is formed by metal plating, the electrode layer is relatively thin and has a low surface resistance. For this reason, it is easy to reduce the influence of the electrode layer on the toner stress, and it is easy to ensure the toner charging property at a low voltage.
  • the electrode layer can be formed by metal plating. At this time, when the catalytic metal is supported on the carrier, the adhesion between the pattern layer and the electrode layer is improved. Therefore, reliability and durability can be improved.
  • the thickness of the electrode layer is in the range of 50 nm to 10 ⁇ m, the continuity of the electrode layer is easily maintained, and the influence of the electrode layer on the toner stress is easily reduced.
  • the pattern shape of the pattern layer is formed by laser processing, it is easy to prevent a short circuit between patterns, and the operation reliability is excellent.
  • the layer structures (1) and (2) have laser reflectivity
  • the layer structures (1) and (2) Protected almost without laser processing. Therefore, it can suppress that the surface of layer structure (1), (2) is roughened by an etching.
  • the insulating layers of the layer structures (1) and (2) have a thickness capable of suppressing laser processing
  • the layer structure It is possible to suppress the laser processing of 1) and (2). Therefore, it can suppress that the surface of layer structure (1), (2) is roughened by an etching.
  • the surface of the pattern electrode is covered with a film
  • the following advantages are obtained. That is, when a film is formed on the surface of the pattern electrode, it is easy to select a film material that easily promotes frictional charging of the toner toward the normal charging polarity. Therefore, as compared with the case where the toner and the pattern electrode are in direct contact with each other, it becomes easier to stabilize the toner charging, and it is easy to contribute to the improvement in image quality. Moreover, since the pattern electrode is less likely to be worn, it is easy to maintain the electrode shape over a long period of time. Therefore, it is excellent in durability.
  • a pattern layer comprising a polymer coating film is formed on the surface of the formed layer structure (1) or (2) having rubber elasticity, and the pattern layer is formed.
  • An electrode layer made of a metal material is formed on the surface.
  • the electrode layer is formed by metal plating, a relatively thin electrode layer having a low surface resistance can be formed. Therefore, it is possible to obtain a developing member for an electrophotographic apparatus that easily reduces the influence of the electrode layer on the toner stress and easily secures the toner charging property at a low voltage.
  • the polymer contained in the polymer coating film containing the catalyst metal is a water-soluble polymer
  • the plating developability during metal plating is excellent. Therefore, the productivity of the developing member for electrophotographic equipment can be improved.
  • a developing member for an electrophotographic apparatus having an electrode layer having excellent adhesion can be obtained. This is considered to be because, during metal plating, the surface of the polymer coating film is slightly dissolved by the moisture in the plating bath, and more of the catalyst metal is exposed and the metal plating is easily deposited.
  • FIG. 6 is a view showing a modification of the developing member for electrophotographic equipment in FIG. 2.
  • FIG. 4 is a view showing a modification of the developing member for electrophotographic equipment in FIG. 3.
  • 6 is a photograph showing the surface of a roll body after laser processing when manufacturing a developing roll according to Example 2.
  • FIG. 6 is a photograph showing the surface of a roll body after the plating treatment at the time of manufacturing a developing roll according to Example 2.
  • the present developing member for an electrophotographic apparatus according to the present embodiment
  • the present manufacturing method a manufacturing method thereof
  • Main developing member is a member used for transporting a developer (also referred to as toner) of an electrophotographic apparatus that forms an image such as a copying machine, a printer, or a facsimile that employs an electrophotographic system.
  • FIG. 1 is a diagram schematically showing an example of a schematic configuration of the developing member.
  • the developing member 10 has at least a specific layer structure (1) 12 or a specific layer structure (2) 14 and a pattern electrode 16. Yes.
  • the shape of the developing member is not particularly limited.
  • the developing member may be formed in, for example, a roll shape (developing roll), a belt shape (developing belt), or the like.
  • the developing method can be selected in consideration of the developing method of the electrophotographic apparatus in which the developing member is incorporated.
  • the specific layer structure and the pattern electrode can be formed on the outer periphery of the shaft body.
  • the specific layer structure and the pattern electrode can be formed on the surface of the belt-like base material mainly composed of various resins, rubber, and the like.
  • the pattern electrode may be formed in the surface of the said specific layer structure formed in the belt shape, without using a belt-shaped base material.
  • the developing member has a roll shape (when the developing member is applied to the developing roll) will be described as an example.
  • the pattern electrode 16 is displayed in a simplified manner, and the stacked state as shown in FIG. 1 is not shown.
  • FIG. 2 is a diagram schematically showing an example of a cross section of the developing member having the layer structure (1).
  • the developing member 10 has an outer shape formed in a roll shape.
  • the developing member 10 includes a layer structure (1) 12 on the outer periphery of the shaft body 18 and has a pattern electrode 16 on the surface of the layer structure (1) 12.
  • the shaft body 18 can be made of any material as long as it has conductivity. Specifically, a metal core made of a metal such as iron, stainless steel, and aluminum, a plastic shaft that has been made conductive by being plated, and the like can be exemplified.
  • the shaft body 18 may be a solid body or a hollow body. If necessary, an adhesive, a primer, or the like may be applied to the surface of the shaft body 18. The adhesive, primer, etc. may be made conductive as necessary.
  • the layer structure (1) 12 includes a rubber elastic layer 12a and an insulating layer 12b laminated on the surface of the rubber elastic layer 12a.
  • the rubber elastic layer 12a may be composed of one layer or may be composed of two or more layers. Preferably, from the viewpoint of miniaturization and the like, the rubber elastic layer 12a may be composed of one layer.
  • the rubber elastic layer 12a may be a solid layer or a foamed layer.
  • Examples of the main material constituting the rubber elastic layer 12a include a rubber elastic material, a mixture of a rubber elastic material and a resin material, and the like.
  • the rubber elastic material examples include silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber. These may be contained alone or in combination of two or more. Among these, preferably, silicone rubber or the like can be suitably used from the viewpoints of set resistance, setability, and the like.
  • the resin material examples include urethane resin, urethane silicone resin, urethane fluororesin, acrylic resin, acrylic silicone resin, acrylic fluororesin, polyamide resin, polyester resin, alkyd resin, PVDF, polyimide resin, polyamideimide resin, and the like.
  • urethane resin examples include urethane resin, urethane silicone resin, urethane fluororesin, acrylic resin, acrylic silicone resin, acrylic fluororesin, polyamide resin, polyester resin, alkyd resin, PVDF, polyimide resin, polyamideimide resin, and the like.
  • acrylic resin acrylic silicone resin
  • acrylic fluororesin polyamide resin
  • polyester resin polyester resin
  • alkyd resin polyimide resin
  • polyamideimide resin polyamideimide resin
  • the rubber elastic layer 12a includes one or two kinds of various additives such as a conductive agent (electronic conductive agent, ionic conductive agent), a cross-linking agent, a cross-linking accelerator, a softening agent (oil), and a foaming agent as required. You may contain above.
  • the rubber elastic layer 12a can be appropriately selected from conductive and non-conductive in consideration of a method for generating an electric field in the pattern electrode 16 and the like.
  • the rubber elastic layer 12a may be conductive or non-conductive. In this case, it is preferably non-conductive from the viewpoint of manufacturing cost and the like.
  • the rubber elastic layer 12a needs to have conductivity.
  • the thickness of the rubber elastic layer 12a can be determined in consideration of the flexibility required for the developing member 10, the assembly space of the developing member 10, and the like.
  • the lower limit of the thickness of the rubber elastic layer 12a (when the rubber elastic layer 12a is composed of a plurality of layers, the total thickness, hereinafter omitted) is preferably 0.2 mm or more from the viewpoint of ensuring sufficient flexibility. Preferably, it is 0.5 mm or more.
  • the upper limit of the thickness of the rubber elastic layer 12a is preferably 6 mm or less, more preferably 4 mm or less, from the viewpoint of roll runout accuracy and the like.
  • the insulating layer 12b has an insulating property because the pattern electrode 16 is formed on the surface thereof.
  • the insulating layer 12b may be composed of one layer or may be composed of two or more layers.
  • the insulating layer 12b may be composed of one layer.
  • the insulating layer 12b preferably has laser reflectivity so that laser processing is substantially reflected and laser processing becomes difficult.
  • the insulating layer 12b has laser reflectivity, the laser beam reaching the surface of the insulating layer 12b is substantially reflected when the pattern shape of the pattern electrode 16 is formed by laser processing. Therefore, only the upper layer portion of the insulating layer 12b can be selectively laser processed, and the layer structure (1) 12 is protected with almost no laser processing. Therefore, the layer structure (1) 12 easily develops rubber elasticity.
  • substantially the same effect as described above can be obtained by setting the thickness of the insulating layer 12b to a thickness capable of suppressing laser processing.
  • the optimum range of the thickness of the insulating layer 12b may be selected according to the wavelength of the laser beam, the irradiation intensity, and the like.
  • the insulating layer 12b does not necessarily have rubber elasticity. However, it is preferable that the insulating layer 12b has rubber elasticity because the flexibility of the developing member 10 is improved and the toner stress is easily relieved.
  • the main material constituting the insulating layer 12b for example, a rubber elastic material, a resin material, or a mixture thereof can be exemplified. In the case of imparting laser reflectivity, these various materials may contain a laser reflective material.
  • Examples of the rubber elastic material include silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber. These may be contained alone or in combination of two or more.
  • the resin material examples include engineering plastics such as urethane resin, urethane silicone resin, urethane fluororesin, acrylic resin, acrylic silicone resin, acrylic fluororesin, polyamide resin, polyester resin, alkyd resin, PVDF, and polyimide resin. Etc. can be illustrated. These may be contained alone or in combination of two or more.
  • the laser reflecting material varies depending on the wavelength of the laser beam used for laser processing, and examples thereof include white materials such as titanium oxide, zinc oxide, barium sulfate, silica, calcium carbonate, and white natural rubber. can do. These may be contained alone or in combination of two or more. Moreover, you may use white rubber single-piece
  • these laser reflecting materials are used with respect to 100 parts by mass of various polymer components of the main material constituting the insulating layer 12b from the viewpoint of improving the reflection efficiency of the laser light. It is preferably in the range of 5 to 200 parts by mass. More preferably, it is in the range of 5 to 100 parts by mass.
  • the insulating layer 12b may contain one or more kinds of various additives such as a crosslinking agent, a coupling agent, and a leveling agent as necessary.
  • the thickness of the insulating layer 12b can be determined in consideration of coating formability, laser reflectivity, and the like.
  • the lower limit of the thickness of the insulating layer 12b is preferably 0.003 mm or more, more preferably 0.003 mm or more from the viewpoint of ensuring sufficient laser reflectivity and leak resistance. It is good that it is 005 mm or more. Further, when the thickness of the insulating layer 12b is set to a thickness capable of suppressing laser processing, the lower limit of the thickness of the insulating layer 12b is preferably from the viewpoint of securing a sufficient layer thickness, leak resistance, etc. 0.01 mm or more, more preferably 0.05 mm or more.
  • the upper limit of the thickness of the insulating layer 12b is preferably 1 mm or less, and more preferably 0.5 mm or less from the viewpoint of preventing the generation of an electric field.
  • FIG. 3 is a diagram schematically showing an example of a cross section of the developing member having the layer structure (2).
  • the developing member 10 has a layer structure (2) 14 on the outer periphery of a shaft body 18, and has a pattern electrode 16 on the surface of the layer structure (2) 14.
  • the layer structure (2) 14 is greatly different from the layer structure (1) 12 shown in FIG. 2 in that it does not have the rubber elastic layer 12a. That is, in the layer structure (2) 14, the insulating layer 14b has rubber elasticity in addition to insulating properties, and also serves as a rubber elastic layer. Therefore, in the layer structure (2) 14, the rubber elastic layer 12a can be omitted, and the layer structure can be simplified. Therefore, it is possible to contribute to downsizing of the developing member 10 (thinning in the roll shape, thinning in the belt shape) and improvement in dimensional accuracy such as runout accuracy.
  • the insulating layer 14b may be composed of one layer or may be composed of two or more layers. Preferably, from the viewpoint of productivity, manufacturing cost, etc., the insulating layer 14b may be composed of one layer.
  • the insulating layer 14b preferably has laser reflectivity so as to substantially reflect the laser beam and make laser processing difficult. Moreover, the thickness of the insulating layer 14b may be set to a thickness capable of suppressing laser processing. These reasons are as described in the layer structure (1) 12.
  • Examples of the main material constituting the insulating layer 14b include a rubber elastic material and a mixture of a rubber elastic material and a resin material. In the case of imparting laser reflectivity, these various materials may contain a laser reflective material.
  • the rubber elastic material, the resin material, the laser reflecting material, the ratio thereof, and the like are as described in the layer structure (1) 12.
  • the thickness of the insulating layer 14b can be determined in consideration of coating formability, rubber elasticity, laser reflectivity, and the like.
  • the lower limit of the thickness of the insulating layer 14b is preferably 0.003 mm or more, more preferably 0.003 mm or more, from the viewpoint of ensuring sufficient laser reflectivity and leak resistance. It is good that it is 005 mm or more. Further, when the thickness of the insulating layer 14b is set to a thickness capable of suppressing laser processing, the lower limit of the thickness of the insulating layer 14b is preferably from the viewpoint of securing a sufficient layer thickness, leak resistance, etc. 0.01 mm or more, more preferably 0.05 mm or more.
  • the upper limit of the thickness of the insulating layer 14b is preferably 1 mm or less, and more preferably 0.5 mm or less from the viewpoint of preventing the generation of an electric field.
  • the pattern shape of the pattern electrode 16 formed on the surface of the layer structure (1) 12 or the layer structure (2) 14 described above is various in consideration of the developing method of the electrophotographic apparatus in which the developing member 10 is incorporated.
  • the pattern can be selected. Specific examples of the pattern shape include a line and space shape.
  • a developing method of an electrophotographic apparatus is a method in which toner is transported to the developing region by moving the surface of the developing member while reciprocating the toner on the electrode by hopping (Japanese Patent Laid-Open No. 2007-133387).
  • a pattern electrode having a line and space shape or the like can be suitably selected.
  • the line width and space width may be selected in an optimum range in consideration of the average particle diameter of the toner to be used, toner hopping activity, and the like.
  • the line width is preferably in the range of 2 to 30 times the average toner particle diameter, more preferably 3 to 20 times the average toner particle diameter.
  • the space width is preferably in the range of 2 to 30 times the average toner particle diameter, more preferably 3 to 20 times the average toner particle diameter.
  • FIG. 4 is a diagram schematically showing an example of a roll-shaped developing member having a line-and-space pattern electrode (two-electrode type).
  • the pattern electrode 16 is composed of a plurality of line-shaped electrodes 16a and 16b which are arranged in the roll circumferential direction at a predetermined interval and which are long in the roll longitudinal direction.
  • Each odd-numbered line-shaped electrode 16a is connected to a common electrode 20a formed at one end of the roll.
  • the common electrode 20a is connected to the conductive first shaft body 18a.
  • the even-numbered line-shaped electrodes 16b are connected to a common electrode 20b formed at the other end of the roll.
  • the common electrode 20b is connected to the conductive second shaft body 18b.
  • the first shaft body 18a and the second shaft body 18b are insulated by the layer structure material inside the developing member 10.
  • a pulse voltage (plus in FIG. 5) can be applied to each odd-numbered line-shaped electrode 16a via the first shaft 18a and the common electrode 20a. it can.
  • a pulse voltage (minus in FIG. 5) different from the above can be applied to each even-numbered line-shaped electrode 16b via the second shaft body 18b and the common electrode 20b.
  • the common electrodes 20a and 20b are used. However, the odd-numbered line-shaped electrodes 16a (16b) and the first (second) shaft body 18a (18b) are used without using the common electrodes. May be electrically connected to each other by, for example, a cap-shaped conductive member provided at the end.
  • FIG. 6 is a diagram schematically showing an example of a roll-shaped developing member having another pattern electrode (one-electrode type) having a line-and-space shape.
  • the pattern electrode 16 is composed of a plurality of line-shaped electrodes 16c arranged in the roll circumferential direction at a predetermined interval and long in the roll longitudinal direction. Each line-like electrode 16c is connected to a common electrode 20c formed at both ends of the roll. A conductive member (not shown) is connected to the common electrode 20c, and a pulse voltage can be applied through the conductive member.
  • the shaft body 18 has conductivity and penetrates through the roll. A pulse voltage different from the above can be applied to the shaft body 18.
  • the rubber elastic layer 12a provided on the outer periphery of the shaft body 18 has conductivity.
  • a pulse voltage (plus in FIG. 7) is applied to each line electrode 16c via the common electrode 20c, while the shaft body 18 is different from the above.
  • a pulse voltage (minus in FIG. 7) is applied, the generated electric field B2 reciprocates between each line electrode 16c and the surface of the insulating layer 12b between each line electrode 16b (flare). ) Can be performed by the toner 17.
  • the insulating layer 12 and the insulating layer 14b are preferably white, and the pattern electrode 16 is preferably black. In this case, defects on the pattern electrode 16 can be easily found, and thus the reliability of the developing member 10 can be improved.
  • the pattern electrode 16 includes a pattern layer 16P made of a polymer coating film and an electrode layer 16E made of a metal material formed on the surface of the pattern layer 16P.
  • FIG. 1 illustrates the case where the electrode layer 16E is formed only on the top surface of the surface of the pattern layer 16P, it may be formed on the side surface of the surface of the pattern layer 16P. .
  • the pattern layer 16P is formed of a polymer coating film. Therefore, the flexibility due to the elasticity of the polymer makes it difficult for the toner to be stressed and also easily follows the elastic deformation of the lower layer. Further, since the electrode layer 16E is made of a metal material, it has a low resistivity. That is, it can be said that the pattern electrode 16 of the present application achieves functional separation by providing the pattern layer 16P and the electrode layer 16E with functions of elasticity and conductivity, respectively.
  • Examples of the polymer material mainly constituting the pattern layer 16P include various rubbers (including elastomers) such as silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber, urethane resin, urethane silicone resin, and urethane fluororesin.
  • examples include acrylic resins, acrylic silicone resins, acrylic fluororesins, polyamide resins such as N-methoxymethylated nylon, polyester resins, alkyd resins, engineering plastics such as PVDF, polyimide resins, and various conductive polymers. . These may be contained alone or in combination of two or more. Among these, a water-soluble polymer material having a good plating solution impregnation property is more preferable from the viewpoint of excellent plating expression.
  • a laser absorber can be exemplified.
  • the pattern shape of the pattern layer 16P that forms the pattern of the pattern electrode 16 can be easily formed by laser processing.
  • the pattern shape of the pattern layer 16P is formed by laser processing, it is easy to prevent a short circuit between patterns, which is advantageous in terms of operation reliability.
  • the spot trace of a laser beam may be observed in a wave shape on the edge portion of the pattern layer 16P or the groove surface between the pattern layers 16P (the lower layer surface of the pattern layer 16P). That is, in normal laser processing, dot-shaped laser light oscillated at a certain frequency is often emitted in a continuous manner, and a wave pattern is likely to occur when a dot-shaped contour remains. However, the wave pattern may be difficult to see by narrowing the dot interval. Observation and confirmation of this trace is one of the promising methods for investigating the use of laser processing.
  • the laser absorbing material varies depending on the wavelength of the laser beam used for laser processing, and examples thereof include black materials such as carbon black. These may be contained alone or in combination of two or more.
  • a conductive agent can be exemplified.
  • the electrode layer 16E bears electrical conductivity. Therefore, the pattern layer 16P does not necessarily have conductivity, and the addition of a conductive agent is optional. However, when a conductive agent is added, conductivity can be secured even in the pattern layer 16P, and the resistance of the entire pattern electrode 16 can be reduced. Therefore, it becomes easy to ensure toner chargeability at a low voltage.
  • a laser absorbing material and a conductive agent are not included separately, but a laser absorbing conductive agent can also be included.
  • the conductive agent examples include carbon fine particles (carbon black, carbon nanotube, fullerene, peapod, etc.), ionic conductive agents (quaternary ammonium salt, borate, surfactant, metal ion, polyethylene oxide, etc.), conductive Examples thereof include polymers and metal fine particles. These may be contained alone or in combination of two or more.
  • a catalyst metal can be exemplified.
  • the electrode layer 16E can be suitably formed by metal plating.
  • the catalyst metal may be present on the surface (top surface, top surface, side surface, etc.) of the pattern layer 16P.
  • the electrode layer 16E can be suitably formed by metal plating as in the case where the catalyst metal is present in the pattern layer 16P.
  • Examples of the catalyst metal include palladium, platinum, silver and the like. Of these, palladium is preferable from the viewpoint of catalytic activity, versatility, and the like.
  • the catalyst metal may be supported on a carrier such as carbon black, carbon nanotube, titanium oxide, or silica. This is because the adhesion between the pattern layer 16P and the electrode layer 16E is improved, and the reliability and durability can be improved.
  • a carrier such as carbon black, carbon nanotube, titanium oxide, or silica.
  • the catalyst metal is supported on a white material such as titanium oxide or silica, it is used in combination with a black material such as carbon black. Whether the catalyst is supported on the carrier can be investigated by observation with a transmission electron microscope or the like.
  • the pattern layer 16P may contain one or more kinds of various additives such as a crosslinking agent, a coupling agent, and a leveling agent as necessary.
  • the lower limit of the thickness of the pattern layer 16P is preferably 0.0001 mm or more, more preferably 0.001 mm or more, and still more preferably 0.005 mm or more from the viewpoint of productivity (coating property, polishing resistance) and the like. Good to be.
  • the upper limit of the thickness of the pattern electrode 16 is preferably 0.08 mm or less, more preferably 0.05 mm or less, and still more preferably 0.03 mm or less from the viewpoint of productivity (laser processability), flexibility, and the like. Good to have.
  • the electrode layer 16P of the pattern electrode 16 can be more preferably formed by metal plating. This is because the electrode layer 16P is relatively thin and has a low surface resistance, so that it is easy to reduce the influence of the electrode layer 16P on the toner stress, and it is easy to ensure toner chargeability at a low voltage.
  • the metal plating may be electrolytic metal plating or electroless metal plating. It can be determined by the presence or absence of conductivity of the pattern layer 16P as the lower layer. Preferably, from the viewpoints of uniformity, adhesion, and the like, the metal plating is preferably electroless metal plating.
  • Examples of the metal material constituting the electrode layer 16E include nickel, copper, silver, palladium, gold and the like. Of these metal materials, copper, nickel, and the like are preferable from the viewpoints of cost, versatility, reactivity, and the like.
  • the electrode layer 16E may be composed of one layer or two or more layers. When the electrode layer 16E is composed of two or more layers, each layer may be composed of the same kind of metal material or different kinds of metal materials. It may be configured.
  • the lower limit of the thickness of the electrode layer 16E is preferably 30 nm or more, more preferably 50 nm or more, and still more preferably 100 nm or more from the viewpoints of continuity of the plating film, low surface resistance, and the like.
  • the upper limit of the thickness of the electrode layer 16E is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 5 ⁇ m or less from the viewpoints of productivity, flexibility, and the like.
  • the volume resistivity of the electrode layer 16E is preferably 1 ⁇ 10 2 ⁇ ⁇ cm or less, more preferably 1 ⁇ 10 1 ⁇ ⁇ cm or less, more preferably 1 ⁇ from the viewpoint of ensuring the function as an electrode. It should be adjusted to 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the electrode layer 16E is not necessarily formed by laser processing. For example, even if the electrode layer 16E is formed by screen printing on the surface of the pattern layer 16P using a conductive material, for example. good. Alternatively, the electrode layer 16E may be drawn by inkjet or the like using a solution-like conductive material.
  • the developing member 10 basically has the above-described configuration. 8 shows a modified example of the developing member in FIG. 2, and FIG. 9 shows a modified example of the developing member in FIG. As shown in these drawings, in the developing member 10, a film 22 may be formed on the surface of the pattern electrode 16 and / or the layer structure (1) 12 and the layer structure (2) 14.
  • the coating 22 When the coating 22 is formed, it is easy to select a coating material that easily promotes frictional charging of the toner toward the normal charging polarity side. Therefore, as compared with the case where the toner and the pattern electrode 16 are in direct contact with each other, it becomes easier to stabilize the toner charging and contribute to the improvement of the image quality. Further, since the pattern electrode 16 is hardly worn, the electrode shape can be easily maintained over a long period of time, and the durability can be improved.
  • the coating film 22 may be a single layer or may be composed of two or more layers.
  • the coating 22 is preferably elastic from the viewpoint of easily relieving toner stress.
  • Examples of the main material constituting the coating film 22 include a rubber elastic material, a resin material, or a mixture thereof.
  • Examples of the rubber elastic material include silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber. These may be contained alone or in combination of two or more.
  • the resin material examples include engineering plastics such as urethane resin, urethane silicone resin, urethane fluororesin, acrylic resin, acrylic silicone resin, acrylic fluororesin, polyamide resin, polyester resin, alkyd resin, PVDF, and polyimide resin. And various photo-curable resins such as ultraviolet curable resins. These may be contained alone or in combination of two or more.
  • an acrylic resin, an acrylic silicone resin, an acrylic fluororesin, PVDF, or the like can be preferably used from the viewpoint of toner charging stability and the like.
  • engineering plastics such as urethane resin, urethane silicone resin, urethane fluororesin, polyimide resin, and polyamideimide resin can be preferably used.
  • the coating film 22 may contain one or more kinds of various additives such as a crosslinking agent, a coupling agent, a leveling agent, and a toner charge control agent, if necessary.
  • the lower limit of the thickness of the coating 22 (when the coating 22 is composed of a plurality of layers, the total thickness, hereinafter omitted) is preferably 0.001 mm or more, more preferably 0.005 mm or more from the viewpoint of wear resistance and the like. Good to be.
  • the upper limit of the thickness of the coating film 22 is preferably 0.05 mm or less, more preferably 0.03 mm or less, and further preferably 0.02 mm or less, from the viewpoint of suppressing the hindrance to generation of an electric field.
  • the developing member 10 has the above-described structure.
  • the roll hardness of the developing member 10 having the above-described structure is Asker C hardness (load 1 kg), preferably 95 degrees or less, more preferably, from the viewpoint of excellent flexibility and ease of toner stress. It is 90 degrees or less, more preferably 85 degrees or less.
  • the roll hardness of the member measured in a state where the pattern electrode 16 is formed, and when the film 22 has the film 22, the film 22 is formed. This is the roll hardness of the member measured in the state.
  • This manufacturing method is a suitable method for manufacturing the above-described developing member.
  • This manufacturing method basically includes the following first step, second step, and third step. Hereinafter, each step will be described.
  • the first step is a step of forming the layer structure (1) or (2) described above.
  • the layer structure (1) can be formed as follows, for example. That is, for example, first, the rubber elastic layer forming material is formed into a rubber elastic layer having a predetermined shape and a predetermined thickness by using a molding method, an extrusion method, a grinding process, or the like. Preferably, from the viewpoint of easily improving the laser processing accuracy at the time of forming the pattern electrode, a mold forming method that can easily obtain a smooth surface may be used.
  • the shaft body is coaxially installed in the hollow portion of a roll-shaped roll molding die to form a rubber elastic layer. After injecting the material, it may be cured by heating and demolding. At this time, if the mold surface is mirror-finished, a rubber elastic layer having a smooth surface can be obtained.
  • the insulating layer forming material is applied to the surface of the rubber elastic layer by using various coating methods such as roll coating, spray coating, and dipping, and dried (cured or crosslinked). Etc., an insulating layer is formed. Under the present circumstances, the smoothness of the surface of the insulating layer laminated
  • the layer structure (2) can be formed, for example, in the same manner as the formation of the insulating layer in the layer structure (1) described above.
  • the second step is a step of forming a pattern layer made of a polymer coating film on the entire surface of the layer structure formed above.
  • the pattern layer forming material is solidly applied to the pattern electrode forming region on the surface of the layer structure so as to have a predetermined thickness. What is necessary is just to apply by coating and to dry (harden or crosslink).
  • Pattern layer forming material a polymer material mainly constituting the pattern layer, a catalyst metal (a carrier carrying the catalyst metal), a crosslinking agent added as necessary, a conductive agent, etc. are added.
  • Pattern layer forming material ⁇ 1> in which an agent is dispersed and mixed in at least an organic solvent, a polymer material mainly constituting the pattern layer, and additives such as a cross-linking agent and a conductive agent that are added as necessary.
  • the pattern layer forming material ⁇ 2> dispersed and mixed in at least an organic solvent can be used.
  • a coating film is formed from the pattern layer forming material ⁇ 1>, a portion other than the portion to be left as a pattern electrode is sequentially irradiated with laser light, the coating film of the portion irradiated with the laser light is burned off, and the pattern layer is What is necessary is just to form.
  • the surface of the coating film may be subjected to polishing, blasting, or the like, if necessary, before laser processing or after laser processing and before formation of an electrode layer described later.
  • the coating film surface is polished, the catalyst metal contained in the pattern layer forming material ⁇ 1> is likely to be exposed. Therefore, it is advantageous when the electrode layer is subsequently formed by electroless metal plating.
  • a coating film is formed with the pattern layer forming material ⁇ 2>, a catalytic metal is applied to the surface of the coating film, and the coating film with the catalytic metal is laser processed in the same manner as described above.
  • a pattern layer may be formed.
  • the layer structures (1) and (2) have laser reflectivity, the layer structures (1) and (2) are protected without being laser processed at the time of forming the pattern layer. The Therefore, it becomes easy to obtain a developing member that easily exhibits rubber elasticity.
  • the layer structures (1) and (2) are lasers when the pattern layer is formed. Processing can be suppressed. Therefore, the rubber elasticity of the layer structures (1) and (2) is hardly impaired, and a developing member that easily exhibits rubber elasticity can be easily obtained.
  • the laser beam used above can be selected in consideration of the type of polymer coating film, the pattern pitch, and the like.
  • Examples of the laser light used include Nd-YAG laser, excimer laser, carbon dioxide laser, YVO 4 laser, and the like.
  • the third step is a step of forming an electrode layer made of a metal material on the surface of the pattern layer.
  • Metal plating can be suitably used for forming the electrode layer. That is, for example, when the pattern layer is formed using the pattern layer forming material ⁇ 1> in the second step, the catalyst is exposed on the top surface and the side surface of the surface of the pattern layer. Thereafter, the electrode layer can be formed by performing metal plating (electrolytic metal plating, electroless metal plating) on the surface of the pattern layer in accordance with the presence or absence of conductivity of the pattern layer. Thereby, metal plating is made on the top surface and the side surface of the surface of the pattern layer.
  • metal plating electrolytic metal plating, electroless metal plating
  • the catalyst metal applied to the surface (top surface) of the pattern layer is used to remove the pattern layer from the surface. If electrolytic metal plating is performed, an electrode layer can be formed. Thereby, metal plating is made on the top surface of the surface of the pattern layer.
  • the electrode layer may be formed by screen printing on the surface of the pattern layer using a conductive material, or by drawing with an ink jet using a solution-like conductive material. May be.
  • the manufacturing method basically includes the first step, the second step, and the third step. Further, as the fourth step, after the formation of the pattern electrode, the surface of the pattern electrode and the layer structure is formed. You may have the process of forming a film.
  • a film forming material is applied to the surface of the formed pattern electrode and layer structure so as to have a predetermined thickness. It may be processed and dried (cured or crosslinked).
  • a developing roll for an electrophotographic apparatus having a layer structure (1) (rubber elastic layer + insulating layer), a pattern electrode, and a coating in this order on the outer periphery of the shaft.
  • the outer periphery of the shaft body has a layer structure (2) (insulating layer having rubber elasticity), a pattern electrode, a development roll for an electrophotographic apparatus having a coating in order, and the outer periphery of the shaft body has a layer structure (2) (rubber elasticity).
  • Each of the pattern electrodes is a one-electrode type, and has a pattern layer and an electrode layer formed on the surface of the pattern layer. Also, two types of methods were used for forming the pattern electrodes (details will be described later).
  • a cylindrical shaft body (1) made of iron having an outer diameter of 8 mm and a length of 267 mm and having a surface plated with Ni was prepared.
  • a cylindrical shaft body (2) made of iron having an outer diameter of 15 mm and a length of 267 mm and having a surface plated with Ni was prepared.
  • Rubber structure (1) rubber elastic layer forming material A kneader containing 100 parts by mass of conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-20A / B”) and 20 parts by mass of a conductive agent (manufactured by Denki Kagaku Kogyo Co., Ltd., “Electrified Acetylene Black”).
  • the rubber elastic layer-forming material ⁇ 1> having a layer structure (1) was prepared by kneading with 1.
  • the rubber elastic layer-forming material ⁇ 2> having a layer structure (1) was prepared by kneading with the above.
  • the rubber elastic layer-forming material ⁇ 3> having a layer structure (1) was prepared by kneading with the above.
  • an insulating layer forming material ⁇ 2> having a layer structure (2) was prepared.
  • the insulating layer forming material ⁇ 4> having the layer structure (2) was prepared by kneading with the above.
  • An insulating layer forming material ⁇ 5> having a layer structure (2) was prepared by kneading conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-40A / B”) with a kneader.
  • the catalyst was immersed in a 10% by mass hydrochloric acid aqueous solution at 25 ° C. for 10 minutes to activate the palladium catalyst. Subsequently, Pd carrying carbon was obtained by filtering, washing with water, and drying.
  • urethane resin Nippon Polyurethane Co., Ltd., “Nipporan 5196”
  • a crosslinking agent Nippon Polyurethane Co., Ltd., “Coronate L”
  • carbon black Cancarb, “Thermax” N990 ”
  • plating material As a plating material ⁇ 1> for forming the electrode layer, an electroless nickel plating solution (Okuno Pharmaceutical Co., Ltd., “Top Nicolon F153”) was prepared.
  • the prepared insulating layer forming material (all of Examples 1 to 3, 23, and 24 using the insulating layer forming material ⁇ 1>) is applied to the surface of the rubber elastic layer to a predetermined thickness.
  • 1 layer of insulating layer (thickness: 0.02 mm, appearance color: white) having laser reflectivity along the outer peripheral surface of the rubber elastic layer by drying and heat treatment at 150 ° C. for 30 minutes. Laminated.
  • the layer structure (1) was formed on the outer periphery of the shaft body (1).
  • the prepared pattern layer forming material (the pattern layer forming material ⁇ 1> in any of Examples 1 to 3 is used on the entire surface of the layer structure (1), and Example 23 is used. Uses a pattern layer forming material ⁇ 3>, and Example 24 uses a pattern layer forming material ⁇ 4>.
  • the layer structure is dried and heat-treated at 150 ° C. for 30 minutes. A layer of a resin coating (thickness: 0.01 mm, appearance color: black) containing metal Pd was formed along the outer peripheral surface of 1).
  • the coating film in Examples 1 to 3 is a urethane resin coating film
  • the coating film in Example 23 is an N-methoxymethylated nylon resin coating film
  • the coating film in Example 24 is made of polyacrylic acid and melamine. It is a resin coating film containing.
  • the resin coating film is laser processed using a laser processing apparatus (“MD-S9900” manufactured by Keyence Co., Ltd.), whereby a pattern layer (1) Electrode type).
  • MD-S9900 manufactured by Keyence Co., Ltd.
  • a pattern layer (1) Electrode type
  • FIG. 10 the roll body surface photograph after the laser processing at the time of manufacture of the image development roll which concerns on Example 2 is shown. According to FIG. 10, it can be seen that the trace of the laser beam focus remains in a wave shape on the surface of the layer structure after laser processing.
  • the part other than the laser processed part is the pattern layer surface (the surface of the urethane resin coating film containing metal Pd).
  • the line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm.
  • the laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
  • the roll body on which the pattern layer was formed was immersed in the plating material ⁇ 1> at 90 ° C. for 10 minutes to form an electrode layer made of an electroless nickel plating layer on the surface (top surface and side surface) of the pattern layer. .
  • the thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 ⁇ m.
  • the pattern electrode which has the pattern layer which consists of a resin coating film containing Pd, and the electrode layer which consists of the electroless plating formed in the surface of this pattern layer was formed.
  • FIG. 11 the roll body surface photograph after the plating process at the time of manufacture of the image development roll which concerns on Example 2 is shown. According to FIG. 11, it can be seen that an electrode layer made of electroless plating is selectively formed on a portion other than the laser processed portion, that is, on the pattern layer surface in FIG.
  • the above-prepared film forming material (all of Examples 1 to 3, 23, and 24 use the film forming material ⁇ 1>) on the surface of the roll body on which the pattern electrode is formed. ) With a predetermined thickness, followed by drying and heat treatment at 150 ° C. for 30 minutes to form one layer of a coating (thickness: 0.01 mm) along the surface of the roll body on which the pattern electrode was formed. .
  • Example 4 uses insulating layer forming material ⁇ 2>
  • Example 5 uses insulating layer forming material ⁇ 3>
  • Example 6 uses insulating layer forming material ⁇ 4>
  • Example 7 uses insulating layer forming material ⁇ 5>.
  • the mold was capped and heated at 180 ° C. for 5 minutes, and then cooled and demolded.
  • one insulating layer (thickness: 0.5 mm, appearance color: white) having rubber elasticity and laser reflectivity was laminated along the outer peripheral surface of the shaft body (2).
  • the layer structure (2) was formed on the outer periphery of the shaft body (2).
  • the prepared pattern layer forming material (all of Examples 4 to 7 using the pattern layer forming material ⁇ 1>) is applied to the entire surface of the layer structure (2).
  • the urethane resin coating film containing metal Pd (thickness: 0.01 mm, appearance color: along the outer peripheral surface of the layer structure (2) is dried and heat-treated at 150 ° C. for 30 minutes. A black layer was formed.
  • the urethane resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line and space pattern layer (as shown in FIG. 6) ( 1 electrode type) was formed.
  • MD-S9900 manufactured by Keyence Corporation
  • the line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm.
  • the laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
  • the roll body on which the pattern layer was formed was immersed in the plating material ⁇ 1> at 90 ° C. for 10 minutes to form an electrode layer composed of an electroless nickel plating layer on the surface (top surface and side surface) of the pattern layer.
  • the thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 ⁇ m.
  • the roll-coating method is used to apply the prepared film-forming material (all of Examples 4 to 7 using the film-forming material ⁇ 1>) to the surface of the roll body on which the pattern electrode is formed.
  • the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
  • Example 12 uses rubber elastic layer forming material ⁇ 1>
  • Example 13 uses rubber elastic layer forming material ⁇ 2>
  • Example 14 uses rubber elastic layer forming material ⁇ 3>. This was heated at 180 ° C. for 5 minutes, then cooled and demolded. Thereby, one rubber elastic layer (thickness: 4 mm) was formed along the outer peripheral surface of the shaft body (1).
  • the layer structure (1) was formed on the outer periphery of the shaft body (1).
  • the prepared pattern layer forming material (all of Examples 12 to 14 using the pattern layer forming material ⁇ 2>) is applied to the entire surface of the layer structure (1).
  • One layer of urethane resin coating (thickness: 0.01 mm, appearance color: black) is applied along the outer peripheral surface of the layer structure (1) by coating with thickness and then heat-treating at 150 ° C. for 30 minutes. Formed.
  • the roll body having the urethane resin coating surface is immersed in an alkaline degreasing agent (Okuno Seiyaku Kogyo Co., Ltd., “A Screen 850”) at 40 ° C. for 5 minutes, Etching treatment was performed.
  • an aminocarboxylic acid surfactant Okuno Pharmaceutical Co., Ltd., “Condizer SP”
  • the roll body was immersed in tin-palladium colloid (Okuno Pharmaceutical Co., Ltd., “OPC-80 Catalyst”) at 25 ° C. for 10 minutes to obtain the urethane resin coating surface.
  • the catalyst was adsorbed.
  • the roll body was immersed in a 10% by mass hydrochloric acid aqueous solution at 25 ° C. for 10 minutes to activate the palladium catalyst on the urethane resin coating surface.
  • the urethane resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line and space pattern layer (as shown in FIG. 6) ( 1 electrode type) was formed.
  • MD-S9900 manufactured by Keyence Corporation
  • the line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm.
  • the laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
  • the roll body on which the pattern layer was formed was immersed in the plating material ⁇ 1> at 90 ° C. for 10 minutes to form an electrode layer made of an electroless nickel plating layer on the surface (top surface) of the pattern layer.
  • the thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 ⁇ m.
  • the roll-coating method is used to apply the prepared film-forming material (all of Examples 12 to 14 using the film-forming material ⁇ 1>) to the surface of the roll body on which the pattern electrode is formed.
  • the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
  • Example 2 Developing roll according to Examples 15 to 18 (layer structure (2) + pattern electrode + coating) An adhesive was applied to the outer peripheral surface of the shaft body (2). Thereafter, the shaft body (2) is coaxially set in the hollow portion of the cylindrical mold, and the insulating layer forming material (implemented above) is formed in the gap between the cylindrical mold and the shaft body (2).
  • Example 4 uses insulating layer forming material ⁇ 2>
  • Example 5 uses insulating layer forming material ⁇ 3>
  • Example 6 uses insulating layer forming material ⁇ 4>
  • Example 7 uses insulating layer forming material ⁇ 5>.
  • the mold was capped and heated at 180 ° C. for 5 minutes, and then cooled and demolded.
  • one insulating layer (thickness: 0.5 mm, appearance color: white) having rubber elasticity and laser reflectivity was laminated along the outer peripheral surface of the shaft body (2).
  • the layer structure (2) was formed on the outer periphery of the shaft body (2).
  • the prepared pattern layer forming material (all of Examples 4 to 7 using the pattern layer forming material ⁇ 1>) is applied to the entire surface of the layer structure (2).
  • the urethane resin coating film containing metal Pd (thickness: 0.01 mm, appearance color: along the outer peripheral surface of the layer structure (2) is dried and heat-treated at 150 ° C. for 30 minutes. A black layer was formed.
  • the urethane resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line and space pattern layer (as shown in FIG. 6) ( 1 electrode type) was formed.
  • MD-S9900 manufactured by Keyence Corporation
  • the line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm.
  • the laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
  • the roll body on which the pattern layer was formed was immersed in the plating material ⁇ 1> at 90 ° C. for 10 minutes to form an electrode layer composed of an electroless nickel plating layer on the surface (top surface and side surface) of the pattern layer.
  • the thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 ⁇ m.
  • the roll-coating method is used to apply the prepared film-forming material (all of Examples 4 to 7 using the film-forming material ⁇ 1>) to the surface of the roll body on which the pattern electrode is formed.
  • the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
  • grooves having a line width of 0.1 mm and a space width of 0.1 mm were formed on the surface of the insulating layer by cutting.
  • electroless nickel plating with the plating material ⁇ 1> was applied to the roll surface that had been subjected to groove cutting, and then the unnecessary plating film was removed by turning the outer periphery of the roll.
  • a line-and-space pattern electrode (one-electrode type) as shown in FIG. 6 was formed.
  • the line width of the formed pattern electrode is 0.1 mm, and the space width is 0.1 mm.
  • the layer structure (1) was formed on the outer periphery of the shaft body (1).
  • the conductive agent-containing resin coating film-forming material prepared above (all of Reference Examples 1 to 3 are conductive agent-containing resin coating film-forming materials ⁇ 1> is coated at a predetermined thickness, and then dried and heat-treated at 150 ° C. for 30 minutes, whereby an acrylic resin coating film having a conductivity (thickness: along the outer peripheral surface of the layer structure (1)). One layer of 0.01 mm, appearance color: black) was formed.
  • the acrylic resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line-and-space pattern electrode (as shown in FIG. 6) ( 1 electrode type) was formed.
  • MD-S9900 manufactured by Keyence Corporation
  • the line width of the formed pattern electrode is 0.1 mm, and the space width is 0.1 mm.
  • the laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
  • the prepared film forming material (all of Reference Examples 1 to 3 use the film forming material ⁇ 1>) is applied to the surface of the roll body on which the pattern electrode is formed. After coating with the thickness, the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
  • Example 4 uses insulating layer forming material ⁇ 2>
  • Reference Example 5 uses insulating layer forming material ⁇ 3>
  • Reference Example 6 uses insulating layer forming material ⁇ 4>
  • Reference Example 7 uses insulating layer forming material ⁇ 5>.
  • the mold was capped and heated at 180 ° C. for 5 minutes, and then cooled and demolded.
  • one insulating layer (thickness: 0.5 mm, appearance color: white) having rubber elasticity and laser reflectivity was laminated along the outer peripheral surface of the shaft body (2).
  • the layer structure (2) was formed on the outer periphery of the shaft body (2).
  • the conductive agent-containing resin coating film-forming material prepared above (all of Reference Examples 4 to 7 are conductive agent-containing resin coating film-forming materials ⁇ 1> is coated at a predetermined thickness, and then dried and heat-treated at 150 ° C. for 30 minutes, whereby an acrylic resin coating film having a conductivity (thickness: along the outer peripheral surface of the layer structure (2)). One layer of 0.01 mm, appearance color: black) was formed.
  • the acrylic resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line-and-space pattern electrode (as shown in FIG. 6) ( 1 electrode type) was formed.
  • MD-S9900 manufactured by Keyence Corporation
  • the line width of the formed pattern electrode is 0.1 mm, and the space width is 0.1 mm.
  • the laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
  • the prepared film forming material (all of Reference Examples 4 to 7 using the film forming material ⁇ 1>) is applied to the surface of the roll body on which the pattern electrode is formed. After coating with the thickness, the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
  • Each developing roll is incorporated into a bench testing machine that simulates a peripheral member of a developing roll of a commercially available actual machine (manufactured by Canon Inc., “Laser Shot LBP-2510”), and an environment of high temperature and high humidity (32 ° C., 85% RH).
  • the durable toner is collected and replaced with the toner of the actual machine ("Laser Shot LBP-2510" manufactured by Canon Inc.), and the white image is The image was printed, the toner on the surface of the photosensitive drum was transferred to a tape, and the density was measured using a Macbeth densitometer.
  • the Macbeth density is less than 0.11, the fogging phenomenon (toner adhesion to the white background on the surface of the photosensitive drum) hardly occurs, and the Macbeth density is 0.11 or more and less than 0.20.
  • the Macbeth density is 0.11 or more and less than 0.20.
  • the bench test machine is an evaluation machine used to promote toner deterioration. Further, it has been confirmed that a toner hopping phenomenon occurs when an AC voltage for generating a traveling wave electric field is applied to the developing roll according to the embodiment.
  • the thickness of the insulating layer is 0.5 mm or less, it is advantageous that it does not hinder the generation of an electric field. ⁇ , and when the thickness of the insulating layer is more than 1 mm, the electric field generation was hindered and X was marked as extremely disadvantageous.
  • the surface resistance of the pattern electrode and the evaluation of the thickness of the insulating layer are both ⁇ , if the toner chargeability is excellent, ⁇ , if either of them is ⁇ , if either of them is ⁇ X and comprehensive evaluation.
  • plating development When forming an electrode layer made of electroless plating on the surface of the pattern layer, it is excellent in plating development when electroless plating precipitates quickly after being immersed in the plating material without polishing the pattern layer surface ⁇ , if it takes some time after being immersed in the plating material, but the deposition of electroless plating occurs. The case where no precipitation of plating occurred was evaluated as x because there was no plating expression.
  • Platinum adhesion A grid-like scratch is made on the surface of the electrode layer made of electroless plating formed on the surface of the pattern layer, and an adhesive tape (made by Terraoka Co., Ltd., polyester film tape “631S”) is applied, and 90 ° peeling (JIS) When measured in accordance with K5400), the case where no plating adheres to the adhesive tape is excellent in plating adhesion, and the case where a part of the plating adheres to the adhesive tape is considered as good plating adhesion, ⁇ , The case where the plating adhered to the entire surface of the adhesive tape was evaluated as x because the plating adhesion was poor.
  • an adhesive tape made by Terraoka Co., Ltd., polyester film tape “631S”
  • JIS 90 ° peeling
  • Tables 1 to 7 summarize the layer structure of each developing roll, the materials used, the evaluation results, and the like.
  • Tables 1 to 7 show the following. That is, in the developing rolls according to Comparative Examples 1 to 3, the insulating layer between the shaft body and the pattern electrode is made of resin. Furthermore, a pattern electrode made of electroless nickel plating is formed in a cutting groove formed in an insulating layer made of resin. For this reason, the resistivity of the pattern electrode can be lowered, which is advantageous for toner chargeability at a relatively low voltage, but the hardness of the roll is high and hard. Therefore, it can be seen that the contact with the peripheral member such as the toner layer forming blade and the photosensitive drum tends to apply stress to the toner, the toner is deteriorated, and image defects such as fog are likely to occur.
  • the developing rolls according to Reference Examples 1 to 11 have a layer structure (1) or a layer structure (2) having rubber elasticity, and a pattern made of a conductive agent-containing resin coating film on the surface of these layer structures.
  • An electrode is formed. Therefore, the roll has a low hardness and is flexible, so that toner stress due to contact with peripheral members such as a toner layer forming blade and a photosensitive drum can be alleviated, and image defects such as fogging can be suppressed.
  • the resistivity of the pattern electrode is relatively high, it can be said that it is disadvantageous in charging the toner by applying a low voltage. That is, it is necessary to apply a high voltage, and it can be said that there is room for improvement in order to save power and increase the speed of the electrophotographic apparatus.
  • the developing rolls according to Examples 1 to 24 have a layer structure (1) or a layer structure (2) having rubber elasticity.
  • a pattern electrode having a pattern layer made of a film and an electrode layer made of an electroless plating layer formed on the surface of the pattern layer is provided.
  • the hardness of the roll is low and flexible, toner stress due to contact with peripheral members such as a toner layer forming blade and a photosensitive drum can be alleviated, and image defects such as fog can be suppressed.
  • the electrode layer of the pattern electrode is made of a metal material, the surface resistance of the pattern electrode is low, and it can be seen that the toner can be charged by generating a minute electric field by applying a relatively low voltage. Therefore, it can be said that the developing roll according to the present invention can contribute to power saving and speeding up of the electrophotographic apparatus.
  • the present invention is applied to the developing roll.
  • the present invention can also be applied to a developing belt or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

Provided is a developing member for electrophotography devices wherein it is possible to relieve toner stress, and to charge the toner at a relatively low voltage. The developing member for electrophotography devices is provided with: layer structure (1) having at least one or more rubber-elasticity layers, and an insulating layer laminated on the surface of the rubber-elasticity layer; or layer structure (2) having a rubber-elasticity insulating layer. The surface of the abovementioned layer structures is provided with a pattern electrode having a pattern layer which comprises a polymer coating film, and an electrode layer which is formed on the surface of the pattern layer, and comprises a metal material. Preferably, the electrode layer is formed by means of metal plating.

Description

電子写真機器用現像部材およびその製造方法Developing member for electrophotographic apparatus and method for producing the same
 本発明は、電子写真機器用現像部材およびその製造方法に関するものである。 The present invention relates to a developing member for electrophotographic equipment and a method for producing the same.
 近年、電子写真方式を採用する複写機、プリンタ、ファクシミリ等の電子写真機器が広く使用されている。 In recent years, electrophotographic devices such as copiers, printers, facsimiles and the like that employ an electrophotographic method have been widely used.
 これら電子写真機器では、一般に、感光ドラム等の潜像担持体に潜像を形成し、この潜像にトナーを付着させて現像してトナー像として可視化する。そして、このトナー像を用紙等の記録媒体に転写することで画像が形成される。 In these electrophotographic apparatuses, generally, a latent image is formed on a latent image carrier such as a photosensitive drum, and toner is attached to the latent image and developed to be visualized as a toner image. Then, the toner image is transferred to a recording medium such as paper to form an image.
 このような電子写真機器において、潜像を現像する現像部材としては、従来、現像ロールが広く用いられている。現像ロールを用いた代表的な現像方法としては、例えば、以下のものが知られている。すなわち、現像ロール表面にトナー層形成用ブレードを押しつけ、摩擦によりトナーを帯電させる。帯電されたトナー層は、現像ロールの回転によって潜像担持体の表面に対向する位置まで搬送され、潜像担持体上の潜像を現像する。現像方式には、潜像担持体と現像ロールとが接触する接触型と、潜像担持体と現像ロールとが接触しない非接触型とが知られている。 In such an electrophotographic apparatus, a developing roll has been widely used as a developing member for developing a latent image. As typical developing methods using a developing roll, for example, the following are known. That is, the toner layer forming blade is pressed against the surface of the developing roll, and the toner is charged by friction. The charged toner layer is conveyed to a position facing the surface of the latent image carrier by the rotation of the developing roll, and develops the latent image on the latent image carrier. As a developing method, a contact type in which the latent image carrier and the developing roll are in contact and a non-contact type in which the latent image carrier and the developing roll are not in contact are known.
 最近では、特許文献1に記載されるように、現像ロール表面に形成した電極に電圧を印加し、これにより形成された電界によってトナーをロール表面上でホッピングさせつつ、現像ロールを回転させてトナーを現像領域まで搬送し、潜像担持体上の潜像を現像する技術も提案されている。 Recently, as described in Patent Document 1, a voltage is applied to the electrode formed on the surface of the developing roll, and the toner is hopped on the surface of the roll by the electric field formed thereby, and the toner is rotated by rotating the developing roll. Has also been proposed for developing the latent image on the latent image carrier by transporting the toner to the developing area.
 上記特許文献1には、絶縁体であるアクリル樹脂の筒体に設けた軸穴に電極軸を圧入し、この筒体の表面に溝部を切削にて形成した後、無電解めっきを施し、無電解めっきを施したロール周面を旋削して不要な導体膜を取り除くことにより表面電極を形成した現像ロールが開示されている。 In Patent Document 1, an electrode shaft is press-fitted into a shaft hole provided in an acrylic resin cylinder as an insulator, and a groove is formed on the surface of the cylinder by cutting, followed by electroless plating. There is disclosed a developing roll in which a surface electrode is formed by turning an outer peripheral surface of a roll subjected to electrolytic plating to remove an unnecessary conductive film.
特開2007-133387号公報JP 2007-133387 A
 しかしながら、従来知られる電極付き現像部材は、以下のような問題があった。 However, conventionally known developing members with electrodes have the following problems.
 すなわち、従来知られる電極付き現像部材は、電極材料として金属を用いているので、比較的低電圧でトナーを帯電させることができる。しかしながら、ロール主材料として樹脂を用いているので、ロール硬度が高く硬質である。 That is, since the conventionally known developing member with an electrode uses a metal as an electrode material, the toner can be charged with a relatively low voltage. However, since the resin is used as the roll main material, the roll hardness is high and hard.
 そのため、トナー層形成用ブレードや潜像担持体等の周辺部材との接触により、トナーにストレスがかかりやすく、トナーが劣化しやすいといった問題があった。トナーが劣化すると、カブリやフィルミングなどが発生し、画像不具合が生じやすくなる。 Therefore, there is a problem that the toner is easily stressed due to contact with a peripheral member such as a toner layer forming blade or a latent image carrier, and the toner is likely to deteriorate. When the toner deteriorates, fogging and filming occur, and image defects are likely to occur.
 この従来技術に対し、ロール硬度を低下させるために、ロール主材料としてゴム弾性体を用いるともに、電極材料として樹脂に導電剤を添加した導電剤含有樹脂を用いることが考えられる。しかしながら、電極材料として導電剤含有樹脂等を用いると、電気抵抗が高くなり、比較的高電圧を印加しなければ、微小電界を発生させることができず、トナーの帯電性が悪くなるといった問題が懸念される。高電圧の印加は、電子写真機器の省電力化や高速化の妨げとなる。 In contrast to this conventional technique, it is conceivable to use a rubber elastic body as a roll main material and a conductive agent-containing resin obtained by adding a conductive agent to a resin as an electrode material in order to reduce roll hardness. However, when a conductive agent-containing resin or the like is used as an electrode material, there is a problem that the electrical resistance increases, and if a relatively high voltage is not applied, a minute electric field cannot be generated and the chargeability of the toner is deteriorated. Concerned. Application of a high voltage hinders power saving and speeding up of the electrophotographic apparatus.
 本発明は、上記事情に鑑みてなされたもので、本発明が解決しようとする課題は、トナーストレスを緩和することができ、かつ、比較的低電圧でトナーを帯電させることが可能な電子写真機器用現像部材、また、当該現像部材の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and the problem to be solved by the present invention is an electrophotography that can alleviate toner stress and can charge toner at a relatively low voltage. The object is to provide a developing member for an apparatus and a method for producing the developing member.
 上記課題を解決するため、本発明に係る電子写真機器用現像部材は、以下の層構造(1)または(2)を備え、
 (1)少なくとも1層以上のゴム弾性層と、このゴム弾性層の表面に積層された絶縁層とを備えた層構造
 (2)ゴム弾性を有する絶縁層を備えた層構造
 上記層構造の表面に、高分子塗膜よりなるパターン層と上記パターン層の表面に形成された金属材料よりなる電極層とを有するパターン電極を備えることを要旨とする。
In order to solve the above problems, a developing member for an electrophotographic apparatus according to the present invention comprises the following layer structure (1) or (2):
(1) Layer structure including at least one rubber elastic layer and an insulating layer laminated on the surface of the rubber elastic layer (2) Layer structure including an insulating layer having rubber elasticity Surface of the above layer structure And a pattern electrode having a pattern layer made of a polymer coating and an electrode layer made of a metal material formed on the surface of the pattern layer.
 ここで、上記電極層は、金属めっきより形成されていることが好ましい。 Here, the electrode layer is preferably formed by metal plating.
 また、上記パターン層中または上記パターン層表面には、触媒金属が存在することが好ましい。この際、上記触媒金属は、担体に担持されていることが好ましい。 Further, it is preferable that a catalyst metal is present in the pattern layer or on the surface of the pattern layer. At this time, the catalyst metal is preferably supported on a carrier.
 また、上記電極層の厚みは、50nm~10μmの範囲内にあることが好ましい。 The thickness of the electrode layer is preferably in the range of 50 nm to 10 μm.
 また、上記パターン層のパターン形状は、レーザー加工により形成されていることが好ましい。 The pattern shape of the pattern layer is preferably formed by laser processing.
 また、上記層構造(1)、(2)の絶縁層は、レーザー反射性を有していることが好ましい。あるいは、上記層構造(1)、(2)の絶縁層は、当該絶縁層よりも下層がレーザー加工されるのを抑制可能な厚みを有していると良い。 Moreover, it is preferable that the insulating layers of the layer structures (1) and (2) have laser reflectivity. Alternatively, the insulating layers of the layer structures (1) and (2) preferably have a thickness capable of suppressing the lower layer from being laser processed as compared with the insulating layer.
 また、上記パターン電極の表面は、被膜により覆われていることが好ましい。 The surface of the pattern electrode is preferably covered with a coating.
 本発明に係る電子写真機器用現像部材の製造方法は、以下の層構造(1)または(2)を形成する工程と、
 (1)少なくとも1層以上のゴム弾性層と、このゴム弾性層の表面に積層された絶縁層とを備えた層構造
 (2)ゴム弾性を有する絶縁層を備えた層構造
 上記層構造の表面に、高分子塗膜よりなるパターン層を形成する工程と、上記パターン層の表面に金属材料よりなる電極層を形成する工程とを有することを要旨とする。
The method for producing a developing member for an electrophotographic apparatus according to the present invention includes a step of forming the following layer structure (1) or (2),
(1) Layer structure including at least one rubber elastic layer and an insulating layer laminated on the surface of the rubber elastic layer (2) Layer structure including an insulating layer having rubber elasticity Surface of the above layer structure And a step of forming a pattern layer made of a polymer coating film and a step of forming an electrode layer made of a metal material on the surface of the pattern layer.
 ここで、上記製造方法では、金属めっきにより電極層を形成することが好ましい。 Here, in the above manufacturing method, it is preferable to form the electrode layer by metal plating.
 また、上記製造方法では、触媒金属を含有する高分子塗膜よりなるパターン層、または、表面に触媒金属が付与された高分子塗膜よりなるパターン層を形成することが好ましい。 In the above production method, it is preferable to form a pattern layer made of a polymer coating film containing a catalyst metal or a pattern layer made of a polymer coating film provided with a catalyst metal on the surface.
 また、上記触媒金属を含有する高分子塗膜に含まれる高分子は、水溶性高分子であることが好ましい。 Further, the polymer contained in the polymer coating film containing the catalyst metal is preferably a water-soluble polymer.
 本発明に係る電子写真機器用現像部材は、ゴム弾性を有する層構造(1)または(2)の表面に、高分子塗膜よりなるパターン層とこのパターン層の表面に形成された金属材料よりなる電極層とを有するパターン電極を備えている。そのため、当該部材が柔軟になり、トナー層形成用ブレードや潜像担持体等、周辺部材との接触によるトナーストレスを従来よりも緩和することが可能になる。その結果、電子写真機器に組み込んだ際に、カブリ、フィルミングなどによる画像不具合を抑制することができる。また、パターン電極の電極層が金属材料よりなるので、パターン電極の表面抵抗が低くなる。そのため、比較的低電圧の印加により微小電界を発生させてトナーを帯電させることができる。したがって、電子写真機器の省電力化や高速化等に寄与することができる。 The developing member for an electrophotographic apparatus according to the present invention includes a pattern layer made of a polymer coating on the surface of the layer structure (1) or (2) having rubber elasticity and a metal material formed on the surface of the pattern layer. And a patterned electrode having an electrode layer. Therefore, the member becomes flexible, and it becomes possible to alleviate toner stress due to contact with peripheral members such as a toner layer forming blade and a latent image carrier. As a result, image defects due to fogging, filming, and the like can be suppressed when incorporated in an electrophotographic apparatus. Further, since the electrode layer of the pattern electrode is made of a metal material, the surface resistance of the pattern electrode is lowered. Therefore, the toner can be charged by generating a minute electric field by applying a relatively low voltage. Therefore, it can contribute to power saving and speeding up of the electrophotographic apparatus.
 ここで、上記電極層が金属めっきより形成されている場合には、電極層が比較的薄くて低表面抵抗となる。そのため、電極層によるトナーストレスへの影響を少なくしやすくなるうえ、低電圧でのトナー帯電性を確保しやすくなる。 Here, when the electrode layer is formed by metal plating, the electrode layer is relatively thin and has a low surface resistance. For this reason, it is easy to reduce the influence of the electrode layer on the toner stress, and it is easy to ensure the toner charging property at a low voltage.
 また、上記パターン層中または上記パターン層表面に触媒金属が存在する場合には、電極層を金属めっきにより形成することができる。この際、上記触媒金属が担体に担持されている場合には、パターン層と電極層との密着性が向上する。そのため、信頼性、耐久性を向上させることができる。 In addition, when a catalytic metal is present in the pattern layer or on the surface of the pattern layer, the electrode layer can be formed by metal plating. At this time, when the catalytic metal is supported on the carrier, the adhesion between the pattern layer and the electrode layer is improved. Therefore, reliability and durability can be improved.
 また、上記電極層の厚みが50nm~10μmの範囲内にある場合には、電極層の連続性を保ちやすく、電極層によるトナーストレスへの影響も少なくしやすくなる。 Further, when the thickness of the electrode layer is in the range of 50 nm to 10 μm, the continuity of the electrode layer is easily maintained, and the influence of the electrode layer on the toner stress is easily reduced.
 また、上記パターン層のパターン形状がレーザー加工により形成されている場合には、パターン間の短絡等を防止しやすく、動作信頼性等に優れる。 In addition, when the pattern shape of the pattern layer is formed by laser processing, it is easy to prevent a short circuit between patterns, and the operation reliability is excellent.
 また、上記層構造(1)、(2)の絶縁層が、レーザー反射性を有する場合には、パターン電極のパターン形状をレーザー加工により形成する際に、層構造(1)、(2)がほとんどレーザー加工されずに保護される。そのため、層構造(1)、(2)の表面がエッチングにより粗面化されるのを抑制することができる。 In addition, when the insulating layers of the layer structures (1) and (2) have laser reflectivity, when the pattern shape of the pattern electrode is formed by laser processing, the layer structures (1) and (2) Protected almost without laser processing. Therefore, it can suppress that the surface of layer structure (1), (2) is roughened by an etching.
 また、上記層構造(1)、(2)の絶縁層が、レーザー加工されるのを抑制可能な厚みを有する場合には、パターン電極のパターン形状をレーザー加工により形成する際に、層構造(1)、(2)がレーザー加工されるのを抑制することができる。そのため、層構造(1)、(2)の表面がエッチングにより粗面化されるのを抑制することができる。 In addition, when the insulating layers of the layer structures (1) and (2) have a thickness capable of suppressing laser processing, when the pattern shape of the pattern electrode is formed by laser processing, the layer structure ( It is possible to suppress the laser processing of 1) and (2). Therefore, it can suppress that the surface of layer structure (1), (2) is roughened by an etching.
 また、上記パターン電極の表面が被膜により覆われている場合には、次の利点がある。すなわち、パターン電極の表面に被膜を形成した場合には、トナーの正規帯電極性側への摩擦帯電を促しやすい被膜材料を選択しやすくなる。そのため、トナーとパターン電極とが直接接する場合に比較して、トナー帯電を安定させやすくなり、高画質化に寄与しやすくなる。また、パターン電極が摩耗し難くなるので、電極形状を長期に亘って維持しやすい。そのため、耐久性にも優れる。 Further, when the surface of the pattern electrode is covered with a film, the following advantages are obtained. That is, when a film is formed on the surface of the pattern electrode, it is easy to select a film material that easily promotes frictional charging of the toner toward the normal charging polarity. Therefore, as compared with the case where the toner and the pattern electrode are in direct contact with each other, it becomes easier to stabilize the toner charging, and it is easy to contribute to the improvement in image quality. Moreover, since the pattern electrode is less likely to be worn, it is easy to maintain the electrode shape over a long period of time. Therefore, it is excellent in durability.
 本発明に係る電子写真機器用現像部材の製造方法では、形成した上記ゴム弾性を有する層構造(1)または(2)の表面に、高分子塗膜よりなるパターン層を形成し、上記パターン層の表面に金属材料よりなる電極層を形成する。 In the method for producing a developing member for an electrophotographic apparatus according to the present invention, a pattern layer comprising a polymer coating film is formed on the surface of the formed layer structure (1) or (2) having rubber elasticity, and the pattern layer is formed. An electrode layer made of a metal material is formed on the surface.
 そのため、トナーストレスを緩和可能な柔軟性を有し、かつ、比較的低電圧でトナーを帯電させることが可能な、上述の電子写真機器用現像部材を得ることができる。 Therefore, it is possible to obtain the above-described developing member for an electrophotographic apparatus that has the flexibility to relieve the toner stress and can charge the toner at a relatively low voltage.
 ここで、上記製造方法において、金属めっきにより電極層を形成する場合には、比較的薄くて低表面抵抗の電極層を形成することができる。そのため、電極層によるトナーストレスへの影響を少なくしやすく、低電圧でのトナー帯電性を確保しやすい電子写真機器用現像部材が得られる。 Here, in the above manufacturing method, when the electrode layer is formed by metal plating, a relatively thin electrode layer having a low surface resistance can be formed. Therefore, it is possible to obtain a developing member for an electrophotographic apparatus that easily reduces the influence of the electrode layer on the toner stress and easily secures the toner charging property at a low voltage.
 また、上記製造方法において、触媒金属を含有する高分子塗膜よりなるパターン層を形成する場合には、金属めっきにより電極層を形成する際に、パターン層の表面(頂面)だけでなく、側面にも電極層を形成することができる。一方、表面(頂面)に触媒金属が付与された高分子塗膜よりなるパターン層を形成する場合には、金属めっきにより電極層を形成する際に、パターン層表面(頂面)にだけ選択的に電極層を形成することができる。そのため、電極パターンの狭ピッチ化を図るうえで有利である。 In the above production method, when forming a pattern layer made of a polymer coating film containing a catalyst metal, when forming an electrode layer by metal plating, not only the surface (top surface) of the pattern layer, An electrode layer can also be formed on the side surface. On the other hand, when forming a pattern layer consisting of a polymer coating with a catalytic metal on the surface (top surface), select only the pattern layer surface (top surface) when forming an electrode layer by metal plating. Thus, an electrode layer can be formed. Therefore, it is advantageous for reducing the pitch of the electrode pattern.
 また、上記触媒金属を含有する高分子塗膜に含まれる高分子が水溶性高分子である場合には、金属めっき時のめっき発現性に優れる。そのため、電子写真機器用現像部材の生産性を向上させることができる。また、密着力に優れた電極層を有する電子写真機器用現像部材が得られる。これは、金属めっき時に、めっき浴中の水分によって高分子塗膜の表面がわずかに溶解し、触媒金属がより多く露出して金属めっきが析出しやすくなるためであると考えられる。 Moreover, when the polymer contained in the polymer coating film containing the catalyst metal is a water-soluble polymer, the plating developability during metal plating is excellent. Therefore, the productivity of the developing member for electrophotographic equipment can be improved. In addition, a developing member for an electrophotographic apparatus having an electrode layer having excellent adhesion can be obtained. This is considered to be because, during metal plating, the surface of the polymer coating film is slightly dissolved by the moisture in the plating bath, and more of the catalyst metal is exposed and the metal plating is easily deposited.
本実施形態に係る電子写真機器用現像部材の概略構成の一例を模式的に示した図である。It is the figure which showed typically an example of schematic structure of the developing member for electrophotographic apparatuses which concerns on this embodiment. 層構造(1)を有する電子写真機器用現像部材の断面の一例を模式的に示した図である。It is the figure which showed typically an example of the cross section of the developing member for electrophotographic apparatuses which has a layer structure (1). 層構造(2)を有する電子写真機器用現像部材の断面の一例を模式的に示した図である。It is the figure which showed typically an example of the cross section of the developing member for electrophotographic apparatuses which has a layer structure (2). ラインアンドスペース形状のパターン電極(2電極型)を有するロール形状の電子写真機器用現像部材の一例を模式的に示した図である。It is the figure which showed typically an example of the developing member for electrophotographic apparatuses of a roll shape which has a pattern electrode (2 electrode type) of a line and space shape. 図4に示した電子写真機器用現像部材への交流電圧印加方法の一例を模式的に示した図である。It is the figure which showed typically an example of the alternating voltage application method to the developing member for electrophotographic equipment shown in FIG. ラインアンドスペース形状の他のパターン電極(1電極型)を有するロール形状の電子写真機器用現像部材の一例を模式的に示した図である。It is the figure which showed typically an example of the developing member for electrophotographic apparatuses of the roll shape which has another pattern electrode (1 electrode type) of a line and space shape. 図6に示した電子写真機器用現像部材への交流電圧印加方法の一例を模式的に示した図である。It is the figure which showed typically an example of the alternating voltage application method to the developing member for electrophotographic equipment shown in FIG. 図2の電子写真機器用現像部材の変形例を示した図である。FIG. 6 is a view showing a modification of the developing member for electrophotographic equipment in FIG. 2. 図3の電子写真機器用現像部材の変形例を示した図である。FIG. 4 is a view showing a modification of the developing member for electrophotographic equipment in FIG. 3. 実施例2に係る現像ロールの製造時におけるレーザー加工後のロール体表面を示した写真である。6 is a photograph showing the surface of a roll body after laser processing when manufacturing a developing roll according to Example 2. FIG. 実施例2に係る現像ロールの製造時におけるめっき処理後のロール体表面を示した写真である。6 is a photograph showing the surface of a roll body after the plating treatment at the time of manufacturing a developing roll according to Example 2. FIG.
 以下、本実施形態に係る電子写真機器用現像部材(以下、「本現像部材」ということがある。)、および、その製造方法(以下、「本製造方法」ということがある。)について説明する。 Hereinafter, a developing member for an electrophotographic apparatus according to the present embodiment (hereinafter sometimes referred to as “the present developing member”) and a manufacturing method thereof (hereinafter also referred to as “the present manufacturing method”) will be described. .
1.本現像部材
 本現像部材は、電子写真方式を採用する複写機、プリンタ、ファクシミリ等の画像を形成する電子写真機器の現像剤(トナーともいう。)搬送に用いられる部材である。
1. Main developing member The main developing member is a member used for transporting a developer (also referred to as toner) of an electrophotographic apparatus that forms an image such as a copying machine, a printer, or a facsimile that employs an electrophotographic system.
 図1は、本現像部材の概略構成の一例を模式的に示した図である。図1(a)または(b)に示すように、本現像部材10は、特定の層構造(1)12、または、特定の層構造(2)14と、パターン電極16とを少なくとも有している。 FIG. 1 is a diagram schematically showing an example of a schematic configuration of the developing member. As shown in FIG. 1A or FIG. 1B, the developing member 10 has at least a specific layer structure (1) 12 or a specific layer structure (2) 14 and a pattern electrode 16. Yes.
 本現像部材の形状は、特に限定されるものではない。本現像部材は、例えば、ロール形状(現像ロール)、ベルト形状(現像ベルト)等に形成されていても良い。本現像部材が組み込まれる電子写真機器の現像方式等を考慮して選択することが可能である。 The shape of the developing member is not particularly limited. The developing member may be formed in, for example, a roll shape (developing roll), a belt shape (developing belt), or the like. The developing method can be selected in consideration of the developing method of the electrophotographic apparatus in which the developing member is incorporated.
 本現像部材の形状としてロール形状を選択した場合には、例えば、軸体の外周に上記特定の層構造およびパターン電極を形成することができる。一方、本現像部材の形状としてベルト形状を選択した場合には、各種樹脂やゴム等を主材料とするベルト状基材の表面に上記特定の層構造およびパターン電極を形成することができる。また、ベルト状基材を用いず、ベルト状に形成された上記特定の層構造の表面にパターン電極が形成されていても良い。 When the roll shape is selected as the shape of the developing member, for example, the specific layer structure and the pattern electrode can be formed on the outer periphery of the shaft body. On the other hand, when the belt shape is selected as the shape of the developing member, the specific layer structure and the pattern electrode can be formed on the surface of the belt-like base material mainly composed of various resins, rubber, and the like. Moreover, the pattern electrode may be formed in the surface of the said specific layer structure formed in the belt shape, without using a belt-shaped base material.
 以下では、本現像部材がロール形状である場合(本現像部材を現像ロールに適用した場合)を例に用いて説明を行う。なお、図2以降において、パターン電極16は、簡略化されて表示されており、図1に示すような積層状態は示されていない。 Hereinafter, the case where the developing member has a roll shape (when the developing member is applied to the developing roll) will be described as an example. In FIG. 2 and subsequent figures, the pattern electrode 16 is displayed in a simplified manner, and the stacked state as shown in FIG. 1 is not shown.
  図2は、層構造(1)を有する現像部材の断面の一例を模式的に示した図である。図2に示すように、本現像部材10は、外形がロール形状に形成されている。本現像部材10は、軸体18の外周に層構造(1)12を備え、この層構造(1)12の表面にパターン電極16を有している。 FIG. 2 is a diagram schematically showing an example of a cross section of the developing member having the layer structure (1). As shown in FIG. 2, the developing member 10 has an outer shape formed in a roll shape. The developing member 10 includes a layer structure (1) 12 on the outer periphery of the shaft body 18 and has a pattern electrode 16 on the surface of the layer structure (1) 12.
 軸体18は、導電性を有しておれば、何れの材質のものでも使用し得る。具体的には、鉄、ステンレス、アルミニウムなどの金属よりなる芯金、めっき等が施されて導電化されたプラスチック軸などを例示することができる。軸体18は、中実体、中空体の何れであっても良い。また必要に応じ、軸体18の表面には、接着剤、プライマーなどが塗布されていても良い。上記接着剤、プライマーなどは、必要に応じて導電化されていても良い。 The shaft body 18 can be made of any material as long as it has conductivity. Specifically, a metal core made of a metal such as iron, stainless steel, and aluminum, a plastic shaft that has been made conductive by being plated, and the like can be exemplified. The shaft body 18 may be a solid body or a hollow body. If necessary, an adhesive, a primer, or the like may be applied to the surface of the shaft body 18. The adhesive, primer, etc. may be made conductive as necessary.
 図2に示すように、層構造(1)12は、ゴム弾性層12aと、ゴム弾性層12aの表面に積層された絶縁層12bとを備えている。 2, the layer structure (1) 12 includes a rubber elastic layer 12a and an insulating layer 12b laminated on the surface of the rubber elastic layer 12a.
 ゴム弾性層12aは、1層から構成されていても良いし、2層以上から構成されていても良い。好ましくは、小型化等の観点から、ゴム弾性層12aは、1層から構成されていると良い。また、ゴム弾性層12aは、ソリッド層であっても良いし、発泡層であっても良い。 The rubber elastic layer 12a may be composed of one layer or may be composed of two or more layers. Preferably, from the viewpoint of miniaturization and the like, the rubber elastic layer 12a may be composed of one layer. The rubber elastic layer 12a may be a solid layer or a foamed layer.
 ゴム弾性層12aを構成する主材料としては、例えば、ゴム弾性材料、ゴム弾性材料と樹脂材料との混合物などを例示することができる。 Examples of the main material constituting the rubber elastic layer 12a include a rubber elastic material, a mixture of a rubber elastic material and a resin material, and the like.
 上記ゴム弾性材料としては、例えば、シリコーンゴム、EPDM、NBR、ヒドリンゴム、BR、IR、ウレタンゴムなどを例示することができる。これらは1種または2種以上含まれていても良い。これらのうち、好ましくは、耐ヘタリ性、セット性等の観点から、シリコーンゴムなどを好適に用いることができる。 Examples of the rubber elastic material include silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber. These may be contained alone or in combination of two or more. Among these, preferably, silicone rubber or the like can be suitably used from the viewpoints of set resistance, setability, and the like.
 また、上記樹脂材料としては、例えば、ウレタン樹脂、ウレタンシリコーン樹脂、ウレタンフッ素樹脂、アクリル樹脂、アクリルシリコーン樹脂、アクリルフッ素樹脂、ポリアミド樹脂、ポリエステル樹脂、アルキド樹脂、PVDF、ポリイミド樹脂、ポリアミドイミド樹脂等のエンジニアリングプラスチックなどを例示することができる。これらは1種または2種以上含まれていても良い。 Examples of the resin material include urethane resin, urethane silicone resin, urethane fluororesin, acrylic resin, acrylic silicone resin, acrylic fluororesin, polyamide resin, polyester resin, alkyd resin, PVDF, polyimide resin, polyamideimide resin, and the like. Examples of such engineering plastics can be given. These may be contained alone or in combination of two or more.
 ゴム弾性層12aは、必要に応じて、導電剤(電子導電剤、イオン導電剤)、架橋剤、架橋促進剤、軟化剤(オイル)、発泡剤等の各種の添加剤を1種または2種以上含有していても良い。 The rubber elastic layer 12a includes one or two kinds of various additives such as a conductive agent (electronic conductive agent, ionic conductive agent), a cross-linking agent, a cross-linking accelerator, a softening agent (oil), and a foaming agent as required. You may contain above.
 なお、本現像部材10において、ゴム弾性層12aは、パターン電極16に電界を発生させる方式等を考慮して、導電性、非導電性を適宜選択し得る。例えば、パターン電極16の隣り合ったライン状電極16a、16bに別々の電圧を印加し、隣り合ったライン状電極16a、16b間で電界を発生させたい場合(図2、後述の図4、図5等も参照)には、ゴム弾性層12aは、導電性を有していても良いし、非導電性であっても良い。製造コスト等の観点から、この場合には、好ましくは、非導電性であると良い。 In the developing member 10, the rubber elastic layer 12a can be appropriately selected from conductive and non-conductive in consideration of a method for generating an electric field in the pattern electrode 16 and the like. For example, when different voltages are applied to the adjacent line electrodes 16a and 16b of the pattern electrode 16 to generate an electric field between the adjacent line electrodes 16a and 16b (FIG. 2, FIG. 4 and FIG. For example, the rubber elastic layer 12a may be conductive or non-conductive. In this case, it is preferably non-conductive from the viewpoint of manufacturing cost and the like.
 また例えば、パターン電極16の隣り合ったライン状電極16c全てに同じ電圧を印加し、ライン状電極16cとゴム弾性層12aとの間で電界を発生させたい場合(後述の図6、図7等も参照)には、ゴム弾性層12aは、導電性を有している必要がある。 Further, for example, when the same voltage is applied to all the adjacent line electrodes 16c of the pattern electrode 16 to generate an electric field between the line electrode 16c and the rubber elastic layer 12a (FIGS. 6 and 7 described later). In addition, the rubber elastic layer 12a needs to have conductivity.
 ゴム弾性層12aの厚みは、本現像部材10に必要な柔軟性、本現像部材10の組み付けスペース等を考慮して決定することができる。 The thickness of the rubber elastic layer 12a can be determined in consideration of the flexibility required for the developing member 10, the assembly space of the developing member 10, and the like.
 ゴム弾性層12aの厚み(ゴム弾性層12aが複数層からなる場合は全体の厚み、以下省略)の下限は、十分な柔軟性を確保する等の観点から、好ましくは、0.2mm以上、より好ましくは、0.5mm以上であると良い。一方、ゴム弾性層12aの厚みの上限は、ロール振れ精度等の観点から、好ましくは、6mm以下、より好ましくは、4mm以下であると良い。 The lower limit of the thickness of the rubber elastic layer 12a (when the rubber elastic layer 12a is composed of a plurality of layers, the total thickness, hereinafter omitted) is preferably 0.2 mm or more from the viewpoint of ensuring sufficient flexibility. Preferably, it is 0.5 mm or more. On the other hand, the upper limit of the thickness of the rubber elastic layer 12a is preferably 6 mm or less, more preferably 4 mm or less, from the viewpoint of roll runout accuracy and the like.
 一方、上記絶縁層12bは、その表面にパターン電極16が形成されるため、絶縁性を有している。層構造(1)12において、絶縁層12bは、1層から構成されていても良いし、2層以上から構成されていても良い。好ましくは、生産性、製造コスト等の観点から、絶縁層12bは、1層から構成されていると良い。 On the other hand, the insulating layer 12b has an insulating property because the pattern electrode 16 is formed on the surface thereof. In the layer structure (1) 12, the insulating layer 12b may be composed of one layer or may be composed of two or more layers. Preferably, from the viewpoint of productivity, manufacturing cost, etc., the insulating layer 12b may be composed of one layer.
 上記絶縁層12bは、絶縁性以外にも、レーザー光を実質的に反射してレーザー加工が困難となるように、レーザー反射性を有していると良い。 In addition to the insulating property, the insulating layer 12b preferably has laser reflectivity so that laser processing is substantially reflected and laser processing becomes difficult.
 絶縁層12bがレーザー反射性を有しておれば、パターン電極16のパターン形状をレーザー加工により形成する際に、絶縁層12bの表面に達したレーザー光は、実質的に反射される。そのため、絶縁層12bよりも上層部分だけを選択的にレーザー加工することができ、層構造(1)12がほとんどレーザー加工されずに保護される。それ故、層構造(1)12がゴム弾性を発現しやすくなる。 If the insulating layer 12b has laser reflectivity, the laser beam reaching the surface of the insulating layer 12b is substantially reflected when the pattern shape of the pattern electrode 16 is formed by laser processing. Therefore, only the upper layer portion of the insulating layer 12b can be selectively laser processed, and the layer structure (1) 12 is protected with almost no laser processing. Therefore, the layer structure (1) 12 easily develops rubber elasticity.
 また、上記とほぼ同様の効果は、絶縁層12bの厚みを、レーザー加工されるのを抑制可能な厚みとすることでも得ることができる。この場合、絶縁層12bの厚みは、レーザー光の波長、照射強度等に応じて、最適な範囲を選択すれば良い。 Further, substantially the same effect as described above can be obtained by setting the thickness of the insulating layer 12b to a thickness capable of suppressing laser processing. In this case, the optimum range of the thickness of the insulating layer 12b may be selected according to the wavelength of the laser beam, the irradiation intensity, and the like.
 層構造(1)12は、ゴム弾性層12aを有しているので、絶縁層12bは、必ずしもゴム弾性を有している必要はない。もっとも、絶縁層12bが、ゴム弾性を有している場合には、当該現像部材10の柔軟性が向上し、トナーストレスを緩和しやすくなるため好ましい。 Since the layer structure (1) 12 includes the rubber elastic layer 12a, the insulating layer 12b does not necessarily have rubber elasticity. However, it is preferable that the insulating layer 12b has rubber elasticity because the flexibility of the developing member 10 is improved and the toner stress is easily relieved.
 絶縁層12bを構成する主材料としては、例えば、ゴム弾性材料、樹脂材料、あるいは、これらの混合物などを例示することができる。レーザー反射性を付与する場合には、これらの各種材料にレーザー反射材料を含有させるなどすると良い。 As the main material constituting the insulating layer 12b, for example, a rubber elastic material, a resin material, or a mixture thereof can be exemplified. In the case of imparting laser reflectivity, these various materials may contain a laser reflective material.
 上記ゴム弾性材料としては、例えば、シリコーンゴム、EPDM、NBR、ヒドリンゴム、BR、IR、ウレタンゴムなどを例示することができる。これらは1種または2種以上含まれていても良い。 Examples of the rubber elastic material include silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber. These may be contained alone or in combination of two or more.
 また、上記樹脂材料としては、例えば、ウレタン樹脂、ウレタンシリコーン樹脂、ウレタンフッ素樹脂、アクリル樹脂、アクリルシリコーン樹脂、アクリルフッ素樹脂、ポリアミド樹脂、ポリエステル樹脂、アルキド樹脂、PVDF、ポリイミド系樹脂等のエンジニアリングプラスチックなどを例示することができる。これらは1種または2種以上含まれていても良い。 Examples of the resin material include engineering plastics such as urethane resin, urethane silicone resin, urethane fluororesin, acrylic resin, acrylic silicone resin, acrylic fluororesin, polyamide resin, polyester resin, alkyd resin, PVDF, and polyimide resin. Etc. can be illustrated. These may be contained alone or in combination of two or more.
 また、上記レーザー反射材料は、レーザー加工に用いられるレーザー光の波長等によっても異なるが、例えば、酸化チタン、酸化亜鉛、硫酸バリウム、シリカ、炭酸カルシウム、白色天然ゴム等の白色系材料などを例示することができる。これらは1種または2種以上含まれていても良い。また、上記ゴム弾性材料として、レーザー反射材料である白色天然ゴム等の白色ゴム単体を用いても良い。 Further, the laser reflecting material varies depending on the wavelength of the laser beam used for laser processing, and examples thereof include white materials such as titanium oxide, zinc oxide, barium sulfate, silica, calcium carbonate, and white natural rubber. can do. These may be contained alone or in combination of two or more. Moreover, you may use white rubber single-piece | units, such as white natural rubber which is a laser reflective material, as said rubber elastic material.
 なお、絶縁層12bにレーザー反射性を付与する場合、これらレーザー反射材料は、レーザー光の反射効率を良好にする観点から、絶縁層12bを構成する主材料の各種ポリマ成分100質量部に対して、5~200質量部の範囲内とすることが好ましい。より好ましくは、5~100質量部の範囲内であると良い。 In addition, when providing the laser reflectivity to the insulating layer 12b, these laser reflecting materials are used with respect to 100 parts by mass of various polymer components of the main material constituting the insulating layer 12b from the viewpoint of improving the reflection efficiency of the laser light. It is preferably in the range of 5 to 200 parts by mass. More preferably, it is in the range of 5 to 100 parts by mass.
 上記絶縁層12bは、必要に応じて、架橋剤、カップリング剤、レベリング剤等の各種の添加剤を1種または2種以上含有していても良い。 The insulating layer 12b may contain one or more kinds of various additives such as a crosslinking agent, a coupling agent, and a leveling agent as necessary.
 絶縁層12bの厚みは、塗工形成性、レーザー反射性等を考慮して決定することができる。 The thickness of the insulating layer 12b can be determined in consideration of coating formability, laser reflectivity, and the like.
 絶縁層12bがレーザー反射性を有する場合、絶縁層12bの厚みの下限は、十分なレーザー反射性の確保、耐リーク性等の観点から、好ましくは、0.003mm以上、より好ましくは、0.005mm以上であると良い。また、絶縁層12bの厚みを、レーザー加工されるのを抑制可能な厚みとする場合、絶縁層12bの厚みの下限は、十分な層厚の確保、耐リーク性等の観点から、好ましくは、0.01mm以上、より好ましくは、0.05mm以上であると良い。 When the insulating layer 12b has laser reflectivity, the lower limit of the thickness of the insulating layer 12b is preferably 0.003 mm or more, more preferably 0.003 mm or more from the viewpoint of ensuring sufficient laser reflectivity and leak resistance. It is good that it is 005 mm or more. Further, when the thickness of the insulating layer 12b is set to a thickness capable of suppressing laser processing, the lower limit of the thickness of the insulating layer 12b is preferably from the viewpoint of securing a sufficient layer thickness, leak resistance, etc. 0.01 mm or more, more preferably 0.05 mm or more.
 一方、絶縁層12bの厚みの上限は、電界発生の妨げとならないようにする等の観点から、好ましくは、1mm以下、より好ましくは、0.5mm以下であると良い。 On the other hand, the upper limit of the thickness of the insulating layer 12b is preferably 1 mm or less, and more preferably 0.5 mm or less from the viewpoint of preventing the generation of an electric field.
 以上においては、本現像部材が層構造(1)を有する場合について説明した。本現像部材は、上記層構造(1)に代えて以下に説明する層構造(2)を有していても良い。図3は、層構造(2)を有する現像部材の断面の一例を模式的に示した図である。 In the above description, the case where the developing member has the layer structure (1) has been described. The developing member may have a layer structure (2) described below instead of the layer structure (1). FIG. 3 is a diagram schematically showing an example of a cross section of the developing member having the layer structure (2).
 図3に示すように、本現像部材10は、軸体18の外周に層構造(2)14を備え、この層構造(2)14の表面にパターン電極16を有している。 As shown in FIG. 3, the developing member 10 has a layer structure (2) 14 on the outer periphery of a shaft body 18, and has a pattern electrode 16 on the surface of the layer structure (2) 14.
 層構造(2)14は、図2に示した層構造(1)12と比較して、ゴム弾性層12aを有していない点で大きく異なっている。すなわち、層構造(2)14は、絶縁層14bが、絶縁性以外に、ゴム弾性を有しており、ゴム弾性層としての役割も兼ねている。そのため、層構造(2)14では、ゴム弾性層12aを省略し、層構造の簡略化を図ることができる。したがって、本現像部材10の小型化(ロール形状の場合は細径化、ベルト形状の場合は薄肉化)、振れ精度等の寸法精度向上などに寄与することができる。 The layer structure (2) 14 is greatly different from the layer structure (1) 12 shown in FIG. 2 in that it does not have the rubber elastic layer 12a. That is, in the layer structure (2) 14, the insulating layer 14b has rubber elasticity in addition to insulating properties, and also serves as a rubber elastic layer. Therefore, in the layer structure (2) 14, the rubber elastic layer 12a can be omitted, and the layer structure can be simplified. Therefore, it is possible to contribute to downsizing of the developing member 10 (thinning in the roll shape, thinning in the belt shape) and improvement in dimensional accuracy such as runout accuracy.
 層構造(2)14において、絶縁層14bは、1層から構成されていても良いし、2層以上から構成されていても良い。好ましくは、生産性、製造コスト等の観点から、絶縁層14bは、1層から構成されていると良い。 In the layer structure (2) 14, the insulating layer 14b may be composed of one layer or may be composed of two or more layers. Preferably, from the viewpoint of productivity, manufacturing cost, etc., the insulating layer 14b may be composed of one layer.
 上記絶縁層14bは、絶縁性、ゴム弾性以外にも、レーザー光を実質的に反射してレーザー加工が困難となるように、レーザー反射性を有していると良い。また、絶縁層14bの厚みが、レーザー加工されるのを抑制可能な厚みとされていても良い。なお、これらの理由については、層構造(1)12で説明した通りである。 In addition to the insulating property and rubber elasticity, the insulating layer 14b preferably has laser reflectivity so as to substantially reflect the laser beam and make laser processing difficult. Moreover, the thickness of the insulating layer 14b may be set to a thickness capable of suppressing laser processing. These reasons are as described in the layer structure (1) 12.
 絶縁層14bを構成する主材料としては、例えば、ゴム弾性材料、ゴム弾性材料と樹脂材料との混合物などを例示することができる。レーザー反射性を付与する場合には、これらの各種材料にレーザー反射材料を含有させるなどすると良い。なお、上記ゴム弾性材料、樹脂材料、レーザー反射材料、これらの割合等は、層構造(1)12で説明した通りである。 Examples of the main material constituting the insulating layer 14b include a rubber elastic material and a mixture of a rubber elastic material and a resin material. In the case of imparting laser reflectivity, these various materials may contain a laser reflective material. The rubber elastic material, the resin material, the laser reflecting material, the ratio thereof, and the like are as described in the layer structure (1) 12.
 絶縁層14bの厚みは、塗工形成性、ゴム弾性、レーザー反射性等を考慮して決定することができる。 The thickness of the insulating layer 14b can be determined in consideration of coating formability, rubber elasticity, laser reflectivity, and the like.
 絶縁層14bがレーザー反射性を有する場合、絶縁層14bの厚みの下限は、十分なレーザー反射性の確保、耐リーク性等の観点から、好ましくは、0.003mm以上、より好ましくは、0.005mm以上であると良い。また、絶縁層14bの厚みを、レーザー加工されるのを抑制可能な厚みとする場合、絶縁層14bの厚みの下限は、十分な層厚の確保、耐リーク性等の観点から、好ましくは、0.01mm以上、より好ましくは、0.05mm以上であると良い。 When the insulating layer 14b has laser reflectivity, the lower limit of the thickness of the insulating layer 14b is preferably 0.003 mm or more, more preferably 0.003 mm or more, from the viewpoint of ensuring sufficient laser reflectivity and leak resistance. It is good that it is 005 mm or more. Further, when the thickness of the insulating layer 14b is set to a thickness capable of suppressing laser processing, the lower limit of the thickness of the insulating layer 14b is preferably from the viewpoint of securing a sufficient layer thickness, leak resistance, etc. 0.01 mm or more, more preferably 0.05 mm or more.
 一方、絶縁層14bの厚みの上限は、電界発生の妨げとならないようにする等の観点から、好ましくは、1mm以下、より好ましくは、0.5mm以下であると良い。 On the other hand, the upper limit of the thickness of the insulating layer 14b is preferably 1 mm or less, and more preferably 0.5 mm or less from the viewpoint of preventing the generation of an electric field.
 上述した層構造(1)12、または、層構造(2)14の表面に形成されるパターン電極16のパターン形状は、本現像部材10が組み込まれる電子写真機器の現像方式等を考慮して各種のパターンを選択し得る。上記パターン形状としては、具体的には、ラインアンドスペース形状などが挙げられる。 The pattern shape of the pattern electrode 16 formed on the surface of the layer structure (1) 12 or the layer structure (2) 14 described above is various in consideration of the developing method of the electrophotographic apparatus in which the developing member 10 is incorporated. The pattern can be selected. Specific examples of the pattern shape include a line and space shape.
 より具体的には、例えば、電子写真機器の現像方式が、トナーをホッピングによって電極上で往復移動させながら、当該現像部材の表面移動によって現像領域にトナーを搬送する方式等(特開2007-133387号公報に開示される方式等)である場合には、ラインアンドスペース形状等のパターン電極を好適に選択し得る。 More specifically, for example, a developing method of an electrophotographic apparatus is a method in which toner is transported to the developing region by moving the surface of the developing member while reciprocating the toner on the electrode by hopping (Japanese Patent Laid-Open No. 2007-133387). In the case of the method disclosed in Japanese Patent Publication No. Gazette, a pattern electrode having a line and space shape or the like can be suitably selected.
 なお、ライン幅、スペース幅は、使用するトナーの平均粒径、トナーのホッピング活性等を考慮して最適な範囲を選択すれば良い。ライン幅は、好ましくは、トナー平均粒径の2~30倍、より好ましくは、トナー平均粒径の3~20倍の範囲内にあると良い。スペース幅は、好ましくは、トナー平均粒径の2~30倍、より好ましくは、トナー平均粒径の3~20倍の範囲内にあると良い。 It should be noted that the line width and space width may be selected in an optimum range in consideration of the average particle diameter of the toner to be used, toner hopping activity, and the like. The line width is preferably in the range of 2 to 30 times the average toner particle diameter, more preferably 3 to 20 times the average toner particle diameter. The space width is preferably in the range of 2 to 30 times the average toner particle diameter, more preferably 3 to 20 times the average toner particle diameter.
 図4は、ラインアンドスペース形状のパターン電極(2電極型)を有するロール形状の現像部材の一例を模式的に示した図である。 FIG. 4 is a diagram schematically showing an example of a roll-shaped developing member having a line-and-space pattern electrode (two-electrode type).
 図4において、パターン電極16は、ロール周方向に所定の間隔で並べられた、ロール長手方向に長い複数のライン状電極16a、16bより構成されている。奇数番目の各ライン状電極16aは、ロール一端部に形成された共通電極20aに接続されている。この共通電極20aは、導電性の第1軸体18aに接続されている。一方、偶数番目の各ライン状電極16bは、ロール他端部に形成された共通電極20bに接続されている。この共通電極20bは、導電性の第2軸体18bに接続されている。なお、第1軸体18aと第2軸体18bとは、現像部材10の内部で層構造材料により絶縁されている。 In FIG. 4, the pattern electrode 16 is composed of a plurality of line-shaped electrodes 16a and 16b which are arranged in the roll circumferential direction at a predetermined interval and which are long in the roll longitudinal direction. Each odd-numbered line-shaped electrode 16a is connected to a common electrode 20a formed at one end of the roll. The common electrode 20a is connected to the conductive first shaft body 18a. On the other hand, the even-numbered line-shaped electrodes 16b are connected to a common electrode 20b formed at the other end of the roll. The common electrode 20b is connected to the conductive second shaft body 18b. The first shaft body 18a and the second shaft body 18b are insulated by the layer structure material inside the developing member 10.
 現像部材10によれば、図5に示すように、第1軸体18a、共通電極20aを介して、奇数番目の各ライン状電極16aにパルス電圧(図5では、プラス)を印加することができる。一方、第2軸体18b、共通電極20bを介して、偶数番目の各ライン状電極16bに上記とは異なるパルス電圧(図5では、マイナス)を印加することができる。このように、パターン電極16に所定のパルス電圧を印加すれば、発生した電界B1により、奇数番目の各ライン状電極16aと偶数番目の各ライン状電極16bとの間を往復するような運動(フレア)をトナー17に行わせることができる。 According to the developing member 10, as shown in FIG. 5, a pulse voltage (plus in FIG. 5) can be applied to each odd-numbered line-shaped electrode 16a via the first shaft 18a and the common electrode 20a. it can. On the other hand, a pulse voltage (minus in FIG. 5) different from the above can be applied to each even-numbered line-shaped electrode 16b via the second shaft body 18b and the common electrode 20b. Thus, when a predetermined pulse voltage is applied to the pattern electrode 16, the generated electric field B1 reciprocates between the odd-numbered line-shaped electrodes 16a and the even-numbered line-shaped electrodes 16b ( Flare) can be performed by the toner 17.
 なお、図4では、共通電極20a、20bを用いたが、共通電極を用いることなく、奇数(偶数)番目の各ライン状電極16a(16b)と第1(第2)軸体18a(18b)とを、例えば、端部に設けたキャップ状の導電性部材等によりそれぞれ電気的に接続しても良い。 In FIG. 4, the common electrodes 20a and 20b are used. However, the odd-numbered line-shaped electrodes 16a (16b) and the first (second) shaft body 18a (18b) are used without using the common electrodes. May be electrically connected to each other by, for example, a cap-shaped conductive member provided at the end.
 図6は、ラインアンドスペース形状の他のパターン電極(1電極型)を有するロール形状の現像部材の一例を模式的に示した図である。 FIG. 6 is a diagram schematically showing an example of a roll-shaped developing member having another pattern electrode (one-electrode type) having a line-and-space shape.
 図6において、パターン電極16は、ロール周方向に所定の間隔で並べられた、ロール長手方向に長い複数のライン状電極16cより構成されている。各ライン状電極16cは、ロール両端部に形成された共通電極20cに接続されている。共通電極20cには、図示しない導電性部材が接続されており、当該導電性部材を介して、パルス電圧を印加可能とされている。また、軸体18は、導電性を有しており、ロール内を貫いている。この軸体18には、上記とは異なるパルス電圧を印加可能とされている。軸体18の外周に設けられたゴム弾性層12aは、導電性を有している。 In FIG. 6, the pattern electrode 16 is composed of a plurality of line-shaped electrodes 16c arranged in the roll circumferential direction at a predetermined interval and long in the roll longitudinal direction. Each line-like electrode 16c is connected to a common electrode 20c formed at both ends of the roll. A conductive member (not shown) is connected to the common electrode 20c, and a pulse voltage can be applied through the conductive member. The shaft body 18 has conductivity and penetrates through the roll. A pulse voltage different from the above can be applied to the shaft body 18. The rubber elastic layer 12a provided on the outer periphery of the shaft body 18 has conductivity.
 現像部材10によれば、図7に示すように、共通電極20cを介して、各ライン状電極16cにパルス電圧(図7では、プラス)を印加し、一方、軸体18に上記とは異なるパルス電圧(図7では、マイナス)を印加すれば、発生した電界B2により、各ライン状電極16cと各ライン状電極16bの間にある絶縁層12b表面との間を往復するような運動(フレア)をトナー17に行わせることができる。 According to the developing member 10, as shown in FIG. 7, a pulse voltage (plus in FIG. 7) is applied to each line electrode 16c via the common electrode 20c, while the shaft body 18 is different from the above. When a pulse voltage (minus in FIG. 7) is applied, the generated electric field B2 reciprocates between each line electrode 16c and the surface of the insulating layer 12b between each line electrode 16b (flare). ) Can be performed by the toner 17.
 上述した層構造(1)12、層構造(2)14において、絶縁層12、絶縁層14bは、白色系であることが好ましく、パターン電極16は黒色系であることが好ましい。この場合には、パターン電極16上の欠陥を発見しやすくなるため、当該現像部材10の信頼性を向上させることができるからである。 In the layer structure (1) 12 and the layer structure (2) 14 described above, the insulating layer 12 and the insulating layer 14b are preferably white, and the pattern electrode 16 is preferably black. In this case, defects on the pattern electrode 16 can be easily found, and thus the reliability of the developing member 10 can be improved.
 ここで、パターン電極16は、図1に示すように、高分子塗膜よりなるパターン層16Pと、パターン層16Pの表面に形成された金属材料よりなる電極層16Eとを有している。図1では、電極層16Eは、パターン層16Pの表面のうち、頂面にだけ形成されている場合を例示しているが、パターン層16Pの表面のうち、側面にも形成されていても良い。 Here, as shown in FIG. 1, the pattern electrode 16 includes a pattern layer 16P made of a polymer coating film and an electrode layer 16E made of a metal material formed on the surface of the pattern layer 16P. Although FIG. 1 illustrates the case where the electrode layer 16E is formed only on the top surface of the surface of the pattern layer 16P, it may be formed on the side surface of the surface of the pattern layer 16P. .
 パターン層16Pは、高分子塗膜より形成されている。そのため、高分子の弾性による柔軟性により、トナーにストレスを与え難く、かつ、下層の弾性変形にも追従しやすい。また、電極層16Eは、金属材料よりなるので低抵抗率となる。つまり、本願のパターン電極16は、弾性、導通性の機能をそれぞれパターン層16P、電極層16Eに持たせることで機能分離を図っていると言える。 The pattern layer 16P is formed of a polymer coating film. Therefore, the flexibility due to the elasticity of the polymer makes it difficult for the toner to be stressed and also easily follows the elastic deformation of the lower layer. Further, since the electrode layer 16E is made of a metal material, it has a low resistivity. That is, it can be said that the pattern electrode 16 of the present application achieves functional separation by providing the pattern layer 16P and the electrode layer 16E with functions of elasticity and conductivity, respectively.
 パターン層16Pを主に構成する高分子材料としては、例えば、シリコーンゴム、EPDM、NBR、ヒドリンゴム、BR、IR、ウレタンゴム等の各種ゴム(エラストマー含む)、ウレタン樹脂、ウレタンシリコーン樹脂、ウレタンフッ素樹脂、アクリル樹脂、アクリルシリコーン樹脂、アクリルフッ素樹脂、N-メトキシメチル化ナイロン等のポリアミド樹脂、ポリエステル樹脂、アルキド樹脂、PVDF、ポリイミド系樹脂等のエンジニアリングプラスチック、各種導電性ポリマーなどを例示することができる。これらは1種または2種以上含まれていても良い。中でもめっき発現性に優れる観点から、めっき液の含浸性が良い水溶性高分子材料がより好ましい。 Examples of the polymer material mainly constituting the pattern layer 16P include various rubbers (including elastomers) such as silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber, urethane resin, urethane silicone resin, and urethane fluororesin. Examples include acrylic resins, acrylic silicone resins, acrylic fluororesins, polyamide resins such as N-methoxymethylated nylon, polyester resins, alkyd resins, engineering plastics such as PVDF, polyimide resins, and various conductive polymers. . These may be contained alone or in combination of two or more. Among these, a water-soluble polymer material having a good plating solution impregnation property is more preferable from the viewpoint of excellent plating expression.
 パターン層16Pを構成しうる他の副材料として、例えば、レーザー吸収材を例示することができる。レーザー吸収材を含む場合には、パターン電極16のパターンを形作っているパターン層16Pのパターン形状をレーザー加工により簡易に形成することができる。パターン層16Pのパターン形状がレーザー加工により形成されている場合には、パターン間の短絡等を防止しやすく、動作信頼性上でも有利である。 As another auxiliary material that can constitute the pattern layer 16P, for example, a laser absorber can be exemplified. When the laser absorbing material is included, the pattern shape of the pattern layer 16P that forms the pattern of the pattern electrode 16 can be easily formed by laser processing. When the pattern shape of the pattern layer 16P is formed by laser processing, it is easy to prevent a short circuit between patterns, which is advantageous in terms of operation reliability.
 なお、レーザー加工を用いると、パターン層16Pのエッジ部分やパターン層16P間の溝表面(パターン層16Pの下層表面)にレーザー光のスポット跡が波状に観察されることがある。すなわち、通常レーザー加工では、ある周波数で発振されているドット形状のレーザー光を、連続して重ねて打ち出すことが多くあり、波模様はドット形状の輪郭が残ったときに発生しやすい。但し、ドットの間隔を狭くしていくことで、波模様が見え難くなることもある。この痕跡を観察・確認することは、レーザー加工を用いたことを調査する有力な方法の1つである。 In addition, when laser processing is used, the spot trace of a laser beam may be observed in a wave shape on the edge portion of the pattern layer 16P or the groove surface between the pattern layers 16P (the lower layer surface of the pattern layer 16P). That is, in normal laser processing, dot-shaped laser light oscillated at a certain frequency is often emitted in a continuous manner, and a wave pattern is likely to occur when a dot-shaped contour remains. However, the wave pattern may be difficult to see by narrowing the dot interval. Observation and confirmation of this trace is one of the promising methods for investigating the use of laser processing.
 上記レーザー吸収材は、レーザー加工に用いられるレーザー光の波長等によっても異なるが、例えば、カーボンブラック等の黒色系材料などを例示することができる。これらは1種または2種以上含まれていても良い。 The laser absorbing material varies depending on the wavelength of the laser beam used for laser processing, and examples thereof include black materials such as carbon black. These may be contained alone or in combination of two or more.
 また、パターン層16Pを構成しうる他の副材料として、例えば、導電剤を例示することができる。本願において、パターン電極16は、電極層16Eが導通性を担う。そのため、必ずしもパターン層16Pが導通性を有する必要がなく、導電剤の添加は任意である。もっとも、導電剤を添加した場合には、パターン層16Pにおいても導通性を確保することができ、パターン電極16全体として低抵抗化を図ることができる。そのため、低電圧でのトナー帯電性を確保しやすくなる。なお、レーザー吸収材、導電剤を別個に含有させるのではなく、レーザー吸収性の導電剤を含有させることもできる。 Further, as another auxiliary material that can constitute the pattern layer 16P, for example, a conductive agent can be exemplified. In this application, as for the pattern electrode 16, the electrode layer 16E bears electrical conductivity. Therefore, the pattern layer 16P does not necessarily have conductivity, and the addition of a conductive agent is optional. However, when a conductive agent is added, conductivity can be secured even in the pattern layer 16P, and the resistance of the entire pattern electrode 16 can be reduced. Therefore, it becomes easy to ensure toner chargeability at a low voltage. In addition, a laser absorbing material and a conductive agent are not included separately, but a laser absorbing conductive agent can also be included.
 上記導電剤としては、例えば、炭素微粒子(カーボンブラック、カーボンナノチューブ、フラーレン、ピーポッド等)、イオン導電剤(第四級アンモニウム塩、ホウ酸塩、界面活性剤、金属イオン、ポリエチレンオキサイド等)、導電ポリマー、金属微粒子などを例示することができる。これらは1種または2種以上含まれていても良い。 Examples of the conductive agent include carbon fine particles (carbon black, carbon nanotube, fullerene, peapod, etc.), ionic conductive agents (quaternary ammonium salt, borate, surfactant, metal ion, polyethylene oxide, etc.), conductive Examples thereof include polymers and metal fine particles. These may be contained alone or in combination of two or more.
 また、パターン層16Pを構成しうる他の副材料として、例えば、触媒金属を例示することができる。パターン層16P中に触媒金属が存在する場合には、電極層16Eを金属めっきにより好適に形成することができる。 Further, as another auxiliary material that can constitute the pattern layer 16P, for example, a catalyst metal can be exemplified. When the catalytic metal is present in the pattern layer 16P, the electrode layer 16E can be suitably formed by metal plating.
 また、上記触媒金属は、パターン層16Pの表面(頂面、頂面および側面など)に存在していても良い。この場合にもパターン層16P中に触媒金属が存在する場合と同様に、電極層16Eを金属めっきにより好適に形成することができる。 Further, the catalyst metal may be present on the surface (top surface, top surface, side surface, etc.) of the pattern layer 16P. Also in this case, the electrode layer 16E can be suitably formed by metal plating as in the case where the catalyst metal is present in the pattern layer 16P.
 上記触媒金属としては、例えば、パラジウム、白金、銀などを例示することができる。これらのうち、好ましくは、触媒活性、汎用性等の観点から、パラジウムであると良い。 Examples of the catalyst metal include palladium, platinum, silver and the like. Of these, palladium is preferable from the viewpoint of catalytic activity, versatility, and the like.
 この際、上記触媒金属は、例えば、カーボンブラック、カーボンナノチューブ、酸化チタン、シリカ等の担体に担持されていると良い。パターン層16Pと電極層16Eとの密着性が向上し、信頼性、耐久性を向上させることができるからである。但し、酸化チタン、シリカ等の白色材料に上記触媒金属を担持させる場合は、カーボンブラック等の黒色材料と併用して使用することになる。なお、触媒が担体に担持されているかは、透過型電子顕微鏡観察等により調査することができる。 At this time, the catalyst metal may be supported on a carrier such as carbon black, carbon nanotube, titanium oxide, or silica. This is because the adhesion between the pattern layer 16P and the electrode layer 16E is improved, and the reliability and durability can be improved. However, when the catalyst metal is supported on a white material such as titanium oxide or silica, it is used in combination with a black material such as carbon black. Whether the catalyst is supported on the carrier can be investigated by observation with a transmission electron microscope or the like.
 パターン層16Pは、必要に応じて、架橋剤、カップリング剤、レベリング剤等の各種の添加剤を1種または2種以上含有していても良い。 The pattern layer 16P may contain one or more kinds of various additives such as a crosslinking agent, a coupling agent, and a leveling agent as necessary.
 上記パターン層16Pの厚みの下限は、生産性(コーティング性、耐研磨性)等の観点から、好ましくは、0.0001mm以上、より好ましくは、0.001mm以上、さらに好ましくは、0.005mm以上であると良い。パターン電極16の厚みの上限は、生産性(レーザー加工性)、柔軟性等の観点から、好ましくは、0.08mm以下、より好ましくは、0.05mm以下、さらに好ましくは、0.03mm以下であると良い。 The lower limit of the thickness of the pattern layer 16P is preferably 0.0001 mm or more, more preferably 0.001 mm or more, and still more preferably 0.005 mm or more from the viewpoint of productivity (coating property, polishing resistance) and the like. Good to be. The upper limit of the thickness of the pattern electrode 16 is preferably 0.08 mm or less, more preferably 0.05 mm or less, and still more preferably 0.03 mm or less from the viewpoint of productivity (laser processability), flexibility, and the like. Good to have.
 次に、パターン電極16の電極層16Pは、金属めっきより好適に形成することができる。電極層16Pが比較的薄くて低表面抵抗となるため、電極層16Pによるトナーストレスへの影響を少なくしやすくなるうえ、低電圧でのトナー帯電性を確保しやすくなる利点があるからである。 Next, the electrode layer 16P of the pattern electrode 16 can be more preferably formed by metal plating. This is because the electrode layer 16P is relatively thin and has a low surface resistance, so that it is easy to reduce the influence of the electrode layer 16P on the toner stress, and it is easy to ensure toner chargeability at a low voltage.
 上記金属めっきは、電解金属めっき、無電解金属めっきの何れでも良い。下層となるパターン層16Pの導電性の有無によって決定することができる。好ましくは、均一性、密着性等の観点から、上記金属めっきは、無電解金属めっきであると良い。 The metal plating may be electrolytic metal plating or electroless metal plating. It can be determined by the presence or absence of conductivity of the pattern layer 16P as the lower layer. Preferably, from the viewpoints of uniformity, adhesion, and the like, the metal plating is preferably electroless metal plating.
 電極層16Eを構成する金属材料としては、例えば、ニッケル、銅、銀、パラジウム、金等を例示することができる。これら金属材料のうち、コスト、汎用性、反応性等の観点から、好ましくは、銅、ニッケル等であると良い。 Examples of the metal material constituting the electrode layer 16E include nickel, copper, silver, palladium, gold and the like. Of these metal materials, copper, nickel, and the like are preferable from the viewpoints of cost, versatility, reactivity, and the like.
 なお、電極層16Eは、1層または2層以上から構成されていても良く、2層以上からなる場合、各層は、同種の金属材料から構成されていても良いし、異なる種類の金属材料から構成されていても良い。 The electrode layer 16E may be composed of one layer or two or more layers. When the electrode layer 16E is composed of two or more layers, each layer may be composed of the same kind of metal material or different kinds of metal materials. It may be configured.
 上記電極層16Eの厚みの下限は、めっき膜の連続性、低表面抵抗等の観点から、好ましくは、30nm以上、より好ましくは、50nm以上、さらに好ましくは、100nm以上であると良い。電極層16Eの厚みの上限は、生産性、柔軟性等の観点から、好ましくは、20μm以下、より好ましくは、10μm以下、さらに好ましくは、5μm以下であると良い。 The lower limit of the thickness of the electrode layer 16E is preferably 30 nm or more, more preferably 50 nm or more, and still more preferably 100 nm or more from the viewpoints of continuity of the plating film, low surface resistance, and the like. The upper limit of the thickness of the electrode layer 16E is preferably 20 μm or less, more preferably 10 μm or less, and further preferably 5 μm or less from the viewpoints of productivity, flexibility, and the like.
 電極層16Eの体積抵抗率は、電極としての機能確保などの観点から、好ましくは、1×10Ω・cm以下、より好ましくは、1×10Ω・cm以下、さらに好ましくは、1×10-4Ω・cm以下に調整されていると良い。 The volume resistivity of the electrode layer 16E is preferably 1 × 10 2 Ω · cm or less, more preferably 1 × 10 1 Ω · cm or less, more preferably 1 × from the viewpoint of ensuring the function as an electrode. It should be adjusted to 10 −4 Ω · cm or less.
 なお、電極層16Eは、必ずしもレーザー加工により形成されている必要はなく、例えば、導電性材料を用いて、パターン層16Pの表面上にスクリーン印刷する等して電極層16Eが形成されていても良い。また、溶液状の導電性材料を用いて、インクジェット等により電極層16Eを描画しても良い。 The electrode layer 16E is not necessarily formed by laser processing. For example, even if the electrode layer 16E is formed by screen printing on the surface of the pattern layer 16P using a conductive material, for example. good. Alternatively, the electrode layer 16E may be drawn by inkjet or the like using a solution-like conductive material.
 本現像部材10は、基本的には、上述した構成を有している。図8に、図2の現像部材の変形例を、図9に、図3の現像部材の変形例を示す。これらの図に示すように、本現像部材10は、パターン電極16および/または層構造(1)12・層構造(2)14の表面に、被膜22が形成されていても良い。 The developing member 10 basically has the above-described configuration. 8 shows a modified example of the developing member in FIG. 2, and FIG. 9 shows a modified example of the developing member in FIG. As shown in these drawings, in the developing member 10, a film 22 may be formed on the surface of the pattern electrode 16 and / or the layer structure (1) 12 and the layer structure (2) 14.
 上記被膜22を形成した場合には、トナーの正規帯電極性側への摩擦帯電を促しやすい被膜材料を選択しやすくなる。そのため、トナーとパターン電極16とが直接接する場合に比較して、トナー帯電を安定させやすくなり、高画質化に寄与しやすくなる。また、パターン電極16が摩耗し難くなるので、電極形状を長期に亘って維持しやすくなり、耐久性を向上させることができる。 When the coating 22 is formed, it is easy to select a coating material that easily promotes frictional charging of the toner toward the normal charging polarity side. Therefore, as compared with the case where the toner and the pattern electrode 16 are in direct contact with each other, it becomes easier to stabilize the toner charging and contribute to the improvement of the image quality. Further, since the pattern electrode 16 is hardly worn, the electrode shape can be easily maintained over a long period of time, and the durability can be improved.
 図8、図9に示すように、被膜22は1層であっても良いし、2層以上から構成することもできる。また、被膜22は、好ましくは、トナーストレスを緩和しやすい観点から、弾性を有していると良い。 As shown in FIGS. 8 and 9, the coating film 22 may be a single layer or may be composed of two or more layers. The coating 22 is preferably elastic from the viewpoint of easily relieving toner stress.
 被膜22を構成する主材料としては、例えば、ゴム弾性材料、樹脂材料、あるいは、これらの混合物などを例示することができる。 Examples of the main material constituting the coating film 22 include a rubber elastic material, a resin material, or a mixture thereof.
 上記ゴム弾性材料としては、例えば、シリコーンゴム、EPDM、NBR、ヒドリンゴム、BR、IR、ウレタンゴムなどを例示することができる。これらは1種または2種以上含まれていても良い。 Examples of the rubber elastic material include silicone rubber, EPDM, NBR, hydrin rubber, BR, IR, and urethane rubber. These may be contained alone or in combination of two or more.
 また、上記樹脂材料としては、例えば、ウレタン樹脂、ウレタンシリコーン樹脂、ウレタンフッ素樹脂、アクリル樹脂、アクリルシリコーン樹脂、アクリルフッ素樹脂、ポリアミド樹脂、ポリエステル樹脂、アルキド樹脂、PVDF、ポリイミド系樹脂等のエンジニアリングプラスチック、紫外線硬化型樹脂などの各種の光硬化型樹脂などを例示することができる。これらは1種または2種以上含まれていても良い。 Examples of the resin material include engineering plastics such as urethane resin, urethane silicone resin, urethane fluororesin, acrylic resin, acrylic silicone resin, acrylic fluororesin, polyamide resin, polyester resin, alkyd resin, PVDF, and polyimide resin. And various photo-curable resins such as ultraviolet curable resins. These may be contained alone or in combination of two or more.
 被膜22を構成する主材料としては、トナー帯電の安定性などの観点から、好ましくは、アクリル樹脂、アクリルシリコーン樹脂、アクリルフッ素樹脂、PVDFなどを好適に用いることができる。また、耐磨耗性などの観点から、好ましくは、ウレタン樹脂、ウレタンシリコーン樹脂、ウレタンフッ素樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等のエンジニアリングプラスチックなどを好適に用いることができる。 As the main material constituting the coating film 22, an acrylic resin, an acrylic silicone resin, an acrylic fluororesin, PVDF, or the like can be preferably used from the viewpoint of toner charging stability and the like. Further, from the viewpoint of wear resistance, engineering plastics such as urethane resin, urethane silicone resin, urethane fluororesin, polyimide resin, and polyamideimide resin can be preferably used.
 被膜22は、必要に応じて、架橋剤、カップリング剤、レベリング剤、トナー帯電制御剤等の各種の添加剤を1種または2種以上含有していても良い。 The coating film 22 may contain one or more kinds of various additives such as a crosslinking agent, a coupling agent, a leveling agent, and a toner charge control agent, if necessary.
 被膜22の厚み(被膜22が複数層からなる場合は全体の厚み、以下省略)の下限は、耐磨耗性等の観点から、好ましくは、0.001mm以上、より好ましくは、0.005mm以上であると良い。一方、被膜22の厚みの上限は、電界発生の妨げ抑制等の観点から、好ましくは、0.05mm以下、より好ましくは、0.03mm以下、さらに好ましくは、0.02mm以下であると良い。 The lower limit of the thickness of the coating 22 (when the coating 22 is composed of a plurality of layers, the total thickness, hereinafter omitted) is preferably 0.001 mm or more, more preferably 0.005 mm or more from the viewpoint of wear resistance and the like. Good to be. On the other hand, the upper limit of the thickness of the coating film 22 is preferably 0.05 mm or less, more preferably 0.03 mm or less, and further preferably 0.02 mm or less, from the viewpoint of suppressing the hindrance to generation of an electric field.
 本現像部材10は、上述した構造を有している。上述した構造を有する本現像部材10のロール硬度は、柔軟性に優れ、トナーストレスを緩和しやすくなる等の観点から、AskerC硬度(荷重1kg)で、好ましくは、95度以下、より好ましくは、90度以下、さらに好ましくは、85度以下であると良い。なお、上記ロール硬度は、被膜22を有さない場合は、パターン電極16までが形成された状態で測定される当該部材のロール硬度、被膜22を有する場合には、被膜22までが形成された状態で測定される当該部材のロール硬度ということになる。 The developing member 10 has the above-described structure. The roll hardness of the developing member 10 having the above-described structure is Asker C hardness (load 1 kg), preferably 95 degrees or less, more preferably, from the viewpoint of excellent flexibility and ease of toner stress. It is 90 degrees or less, more preferably 85 degrees or less. In addition, when the roll hardness does not have the film 22, the roll hardness of the member measured in a state where the pattern electrode 16 is formed, and when the film 22 has the film 22, the film 22 is formed. This is the roll hardness of the member measured in the state.
2.本製造方法
 本製造方法は、上述した本現像部材を製造するのに好適な方法である。本製造方法は、基本的に、以下の第1工程、第2工程、第3工程を有している。以下、各工程について説明する。
2. This Manufacturing Method This manufacturing method is a suitable method for manufacturing the above-described developing member. This manufacturing method basically includes the following first step, second step, and third step. Hereinafter, each step will be described.
(第1工程)
 第1工程は、上述した層構造(1)または(2)を形成する工程である。
(First step)
The first step is a step of forming the layer structure (1) or (2) described above.
 層構造(1)は、例えば、次のように形成することができる。すなわち、例えば、先ず、型成形法、押出成形法、研削加工等を用いて、ゴム弾性層形成材料を所定形状、所定厚みのゴム弾性層とする。好ましくは、パターン電極形成時のレーザー加工精度を向上させやすい等の観点から、平滑な表面を得やすい型成形法を用いると良い。 The layer structure (1) can be formed as follows, for example. That is, for example, first, the rubber elastic layer forming material is formed into a rubber elastic layer having a predetermined shape and a predetermined thickness by using a molding method, an extrusion method, a grinding process, or the like. Preferably, from the viewpoint of easily improving the laser processing accuracy at the time of forming the pattern electrode, a mold forming method that can easily obtain a smooth surface may be used.
 型成形法を用いて、軸体の外周に層構造(1)を形成するには、例えば、ロール形状のロール成形用金型の中空部に軸体を同軸的に設置し、ゴム弾性層形成材料を注入した後、加熱硬化させて脱型する等すれば良い。この際、型面を鏡面加工しておけば、平滑な表面を有するゴム弾性層が得られる。 In order to form the layer structure (1) on the outer periphery of the shaft body by using the mold forming method, for example, the shaft body is coaxially installed in the hollow portion of a roll-shaped roll molding die to form a rubber elastic layer. After injecting the material, it may be cured by heating and demolding. At this time, if the mold surface is mirror-finished, a rubber elastic layer having a smooth surface can be obtained.
 ゴム弾性層を形成した後、ロールコート法、スプレーコート法、ディッピング法等の各種の塗工法を用いて、ゴム弾性層の表面に絶縁層形成材料を塗工し、乾燥(硬化または架橋)させる等して、絶縁層を形成する。この際、ゴム弾性層表面が平滑であるほど、その上に積層される絶縁層表面の平滑性も向上する。このようにして、層構造(1)を形成することができる。 After forming the rubber elastic layer, the insulating layer forming material is applied to the surface of the rubber elastic layer by using various coating methods such as roll coating, spray coating, and dipping, and dried (cured or crosslinked). Etc., an insulating layer is formed. Under the present circumstances, the smoothness of the surface of the insulating layer laminated | stacked on it improves, so that the rubber elastic layer surface is smooth. In this way, the layer structure (1) can be formed.
 一方、層構造(2)は、例えば、上述した層構造(1)における絶縁層の形成と同様にして形成することができる。 On the other hand, the layer structure (2) can be formed, for example, in the same manner as the formation of the insulating layer in the layer structure (1) described above.
 なお、ゴム弾性層、絶縁層を複数層から構成したい場合には、上記に準ずる操作を複数回行えば良い。 In addition, what is necessary is just to perform the operation | movement according to the above in multiple times, when you want to comprise a rubber elastic layer and an insulating layer from multiple layers.
(第2工程)
 第2工程は、上記形成した層構造の表面一面に、高分子塗膜よりなるパターン層を形成する工程である。
(Second step)
The second step is a step of forming a pattern layer made of a polymer coating film on the entire surface of the layer structure formed above.
 具体的には、例えば、ロールコート法、スプレーコート法、ディッピング法等の各種の塗工法を用いて、層構造表面のパターン電極形成領域に、パターン層形成材料を所定の厚みとなるようにベタ塗りで塗工し、乾燥(硬化または架橋)させる等すれば良い。 Specifically, for example, using various coating methods such as a roll coating method, a spray coating method, and a dipping method, the pattern layer forming material is solidly applied to the pattern electrode forming region on the surface of the layer structure so as to have a predetermined thickness. What is necessary is just to apply by coating and to dry (harden or crosslink).
 この際、パターン層形成材料としては、パターン層を主に構成する高分子材料と、触媒金属(触媒金属を担持させた担体)と、必要に応じて添加される架橋剤、導電剤等の添加剤とを少なくとも有機溶剤に分散混合させたパターン層形成材料<1>や、パターン層を主に構成する高分子材料と、必要に応じて添加される架橋剤、導電剤等の添加剤とを少なくとも有機溶剤に分散混合させたパターン層形成材料<2>などを用いることができる。 At this time, as the pattern layer forming material, a polymer material mainly constituting the pattern layer, a catalyst metal (a carrier carrying the catalyst metal), a crosslinking agent added as necessary, a conductive agent, etc. are added. Pattern layer forming material <1> in which an agent is dispersed and mixed in at least an organic solvent, a polymer material mainly constituting the pattern layer, and additives such as a cross-linking agent and a conductive agent that are added as necessary. The pattern layer forming material <2> dispersed and mixed in at least an organic solvent can be used.
 パターン層形成材料<1>により塗膜を形成した場合には、パターン電極として残す部分以外の箇所にレーザー光を順次照射し、レーザー光が照射された部分の塗膜を焼失させ、パターン層を形成すれば良い。 When a coating film is formed from the pattern layer forming material <1>, a portion other than the portion to be left as a pattern electrode is sequentially irradiated with laser light, the coating film of the portion irradiated with the laser light is burned off, and the pattern layer is What is necessary is just to form.
 なお、レーザー加工の前、またはレーザー加工後と後述の電極層の形成前の間に、必要に応じて、塗膜表面を研磨、ブラスト処理等を行っても良い。塗膜表面を研磨した場合には、パターン層形成材料<1>中に含まれている触媒金属が露出しやすくなる。そのため、その後に電極層を無電解金属めっきにより形成する場合に有利となる。 It should be noted that the surface of the coating film may be subjected to polishing, blasting, or the like, if necessary, before laser processing or after laser processing and before formation of an electrode layer described later. When the coating film surface is polished, the catalyst metal contained in the pattern layer forming material <1> is likely to be exposed. Therefore, it is advantageous when the electrode layer is subsequently formed by electroless metal plating.
 一方、パターン層形成材料<2>により塗膜を形成した場合には、当該塗膜の表面に触媒金属を付与し、当該触媒金属付きの塗膜を上記と同様にしてレーザー加工することにより、パターン層を形成すれば良い。 On the other hand, when a coating film is formed with the pattern layer forming material <2>, a catalytic metal is applied to the surface of the coating film, and the coating film with the catalytic metal is laser processed in the same manner as described above. A pattern layer may be formed.
 上記において、層構造(1)、(2)の絶縁層が、レーザー反射性を有する場合には、パターン層の形成時に、層構造(1)、(2)がほとんどレーザー加工されずに保護される。そのため、ゴム弾性を発現しやすい現像部材を得やすくなる。 In the above, when the insulating layers of the layer structures (1) and (2) have laser reflectivity, the layer structures (1) and (2) are protected without being laser processed at the time of forming the pattern layer. The Therefore, it becomes easy to obtain a developing member that easily exhibits rubber elasticity.
 また、上記層構造(1)、(2)の絶縁層が、レーザー加工されるのを抑制可能な厚みを有する場合には、パターン層の形成時に、層構造(1)、(2)がレーザー加工されるのを抑制することができる。そのため、層構造(1)、(2)のゴム弾性が損なわれ難く、ゴム弾性を発現しやすい現像部材を得やすくなる。 Further, when the insulating layers of the layer structures (1) and (2) have a thickness capable of suppressing laser processing, the layer structures (1) and (2) are lasers when the pattern layer is formed. Processing can be suppressed. Therefore, the rubber elasticity of the layer structures (1) and (2) is hardly impaired, and a developing member that easily exhibits rubber elasticity can be easily obtained.
 上記にて用いるレーザー光は、高分子塗膜の種類、パターンのピッチ等を考慮して選択することができる。用いるレーザー光としては、例えば、Nd-YAGレーザー、エキシマレーザー、炭酸ガスレーザー、YVOレーザーなどを例示することができる。 The laser beam used above can be selected in consideration of the type of polymer coating film, the pattern pitch, and the like. Examples of the laser light used include Nd-YAG laser, excimer laser, carbon dioxide laser, YVO 4 laser, and the like.
(第3工程)
 第3工程は、パターン層の表面に金属材料よりなる電極層を形成する工程である。
(Third step)
The third step is a step of forming an electrode layer made of a metal material on the surface of the pattern layer.
 上記電極層の形成には、金属めっきを好適に用いることができる。すなわち、例えば、第2工程において、パターン層形成材料<1>を用いてパターン層を形成した場合、パターン層の表面のうち、頂面および側面に触媒が露出することになる。その後、パターン層の導電性の有無に合わせてパターン層の表面に金属めっき(電解金属めっき、無電解金属めっき)を行えば、電極層を形成することができる。これにより、パターン層の表面のうち、頂面および側面に金属めっきがなされる。 Metal plating can be suitably used for forming the electrode layer. That is, for example, when the pattern layer is formed using the pattern layer forming material <1> in the second step, the catalyst is exposed on the top surface and the side surface of the surface of the pattern layer. Thereafter, the electrode layer can be formed by performing metal plating (electrolytic metal plating, electroless metal plating) on the surface of the pattern layer in accordance with the presence or absence of conductivity of the pattern layer. Thereby, metal plating is made on the top surface and the side surface of the surface of the pattern layer.
 また、例えば、第2工程において、パターン層形成材料<2>を用いてパターン層を形成した場合、パターン層の表面(頂面)に付与された触媒金属を利用してパターン層の表面に無電解金属めっきを行えば、電極層を形成することができる。これにより、パターン層の表面のうち、頂面に金属めっきがなされる。 In addition, for example, when the pattern layer is formed using the pattern layer forming material <2> in the second step, the catalyst metal applied to the surface (top surface) of the pattern layer is used to remove the pattern layer from the surface. If electrolytic metal plating is performed, an electrode layer can be formed. Thereby, metal plating is made on the top surface of the surface of the pattern layer.
 電極層は、他にも、導電性材料を用いて、パターン層の表面上にスクリーン印刷する等して形成したり、溶液状の導電性材料を用いてインクジェット等により描画して形成したりしても良い。 In addition, the electrode layer may be formed by screen printing on the surface of the pattern layer using a conductive material, or by drawing with an ink jet using a solution-like conductive material. May be.
 本製造方法は、基本的に、上記第1工程、第2工程、第3工程を有しているが、さらに、第4工程として、上記パターン電極を形成後、このパターン電極および層構造の表面に被膜を形成する工程を有していても良い。 The manufacturing method basically includes the first step, the second step, and the third step. Further, as the fourth step, after the formation of the pattern electrode, the surface of the pattern electrode and the layer structure is formed. You may have the process of forming a film.
 具体的には、例えば、ロールコート法、スプレーコート法、ディッピング法等の各種の塗工法を用いて、形成したパターン電極および層構造の表面に、被膜形成材料を所定の厚みとなるように塗工し、乾燥(硬化または架橋)させる等すれば良い。 Specifically, for example, by using various coating methods such as a roll coating method, a spray coating method, and a dipping method, a film forming material is applied to the surface of the formed pattern electrode and layer structure so as to have a predetermined thickness. It may be processed and dried (cured or crosslinked).
 以下、実施例を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail using examples.
 本実施例では、実施例に係る電子写真機器用現像部材として、軸体の外周に、層構造(1)(ゴム弾性層+絶縁層)、パターン電極、被膜を順に有する電子写真機器用現像ロール、軸体の外周に、層構造(2)(ゴム弾性を有する絶縁層)、パターン電極、被膜を順に有する電子写真機器用現像ロール、軸体の外周に、層構造(2)(ゴム弾性を有する絶縁層)、パターン電極を順に有する電子写真機器用現像ロールを作製した。
 なお、パターン電極は、いずれも1電極型であり、パターン層とパターン層の表面に形成された電極層とを有している。また、パターン電極の形成には2種類の方法を用いた(詳しくは後述する。)。
In this embodiment, as a developing member for an electrophotographic apparatus according to the embodiment, a developing roll for an electrophotographic apparatus having a layer structure (1) (rubber elastic layer + insulating layer), a pattern electrode, and a coating in this order on the outer periphery of the shaft. The outer periphery of the shaft body has a layer structure (2) (insulating layer having rubber elasticity), a pattern electrode, a development roll for an electrophotographic apparatus having a coating in order, and the outer periphery of the shaft body has a layer structure (2) (rubber elasticity). A developing roll for an electrophotographic apparatus having an insulating layer) and a pattern electrode in this order.
Each of the pattern electrodes is a one-electrode type, and has a pattern layer and an electrode layer formed on the surface of the pattern layer. Also, two types of methods were used for forming the pattern electrodes (details will be described later).
1.実施例に係る現像ロール構成材料の準備
(軸体)
 外径8mm、長さ267mmの鉄製で、表面にNiめっきが施されている円柱状の軸体(1)を準備した。また、外径15mm、長さ267mmの鉄製で、表面にNiめっきが施されている円柱状の軸体(2)を準備した。
1. Preparation of developing roll constituent material according to embodiment (shaft body)
A cylindrical shaft body (1) made of iron having an outer diameter of 8 mm and a length of 267 mm and having a surface plated with Ni was prepared. A cylindrical shaft body (2) made of iron having an outer diameter of 15 mm and a length of 267 mm and having a surface plated with Ni was prepared.
(層構造(1)のゴム弾性層形成材料)
 導電性シリコーンゴム(信越化学工業(株)製、「KE-1950-20A/B」)100質量部と導電剤(電気化学工業(株)製、「電化アセチレンブラック」)20質量部とをニーダーで混練することにより、層構造(1)のゴム弾性層形成材料<1>を調製した。
(Rubber structure (1) rubber elastic layer forming material)
A kneader containing 100 parts by mass of conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-20A / B”) and 20 parts by mass of a conductive agent (manufactured by Denki Kagaku Kogyo Co., Ltd., “Electrified Acetylene Black”). The rubber elastic layer-forming material <1> having a layer structure (1) was prepared by kneading with 1.
 導電性シリコーンゴム(信越化学工業(株)製、「KE-1950-40A/B」)100質量部と導電剤(電気化学工業(株)製、「電化アセチレンブラック」)20質量部とをニーダーで混練することにより、層構造(1)のゴム弾性層形成材料<2>を調製した。 A kneader containing 100 parts by mass of conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-40A / B”) and 20 parts by mass of a conductive agent (manufactured by Denki Kagaku Kogyo Co., Ltd., “Electrified Acetylene Black”). The rubber elastic layer-forming material <2> having a layer structure (1) was prepared by kneading with the above.
 導電性シリコーンゴム(信越化学工業(株)製、「KE-1950-70A/B」)100質量部と導電剤(電気化学工業(株)製、「電化アセチレンブラック」)20質量部とをニーダーで混練することにより、層構造(1)のゴム弾性層形成材料<3>を調製した。 A kneader containing 100 parts by mass of conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-70A / B”) and 20 parts by mass of a conductive agent (manufactured by Denki Kagaku Kogyo Co., Ltd., “Electrified Acetylene Black”). The rubber elastic layer-forming material <3> having a layer structure (1) was prepared by kneading with the above.
(層構造(1)および層構造(2)の絶縁層形成材料)
 アクリル樹脂(根上工業(株)製、「パラクロンW-248E」)100質量部と、架橋剤(日本ポリウレタン(株)製、「コロネートL」)10質量部と、レーザー反射材料(石原産業(株)製、「CR50」)10質量部とを、有機溶剤(MEK)に溶解することにより、層構造(1)の絶縁層形成材料<1>を調製した。
(Insulating layer forming material of layer structure (1) and layer structure (2))
100 parts by mass of an acrylic resin (Negami Kogyo Co., Ltd., “Paracron W-248E”), 10 parts by mass of a crosslinking agent (Nihon Polyurethane Co., Ltd., “Coronate L”), and a laser reflective material (Ishihara Sangyo Co., Ltd.) ), "CR50") 10 parts by mass was dissolved in an organic solvent (MEK) to prepare an insulating layer forming material <1> having a layer structure (1).
 導電性シリコーンゴム(信越化学工業(株)製、「KE-1950-20A/B」)100質量部と、レーザー反射材料(石原産業(株)製、「CR50」)10質量部とを、ニーダーで混練することにより、層構造(2)の絶縁層形成材料<2>を調製した。 100 parts by weight of conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-20A / B”) and 10 parts by weight of a laser reflective material (manufactured by Ishihara Sangyo Co., Ltd., “CR50”) By kneading, an insulating layer forming material <2> having a layer structure (2) was prepared.
 導電性シリコーンゴム(信越化学工業(株)製、「KE-1950-40A/B」)100質量部と、レーザー反射材料(石原産業(株)製、「CR50」)10質量部とを、ニーダーで混練することにより、層構造(2)の絶縁層形成材料<3>を調製した。 100 parts by weight of conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-40A / B”) and 10 parts by weight of a laser reflective material (manufactured by Ishihara Sangyo Co., Ltd., “CR50”) The material for forming an insulating layer <3> having a layer structure (2) was prepared by kneading with the above.
 導電性シリコーンゴム(信越化学工業(株)製、「KE-1950-70A/B」)100質量部と、レーザー反射材料(石原産業(株)製、「CR50」)10質量部とを、ニーダーで混練することにより、層構造(2)の絶縁層形成材料<4>を調製した。 100 parts by weight of conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-70A / B”) and 10 parts by weight of a laser reflecting material (manufactured by Ishihara Sangyo Co., Ltd., “CR50”) The insulating layer forming material <4> having the layer structure (2) was prepared by kneading with the above.
 導電性シリコーンゴム(信越化学工業(株)製、「KE-1950-40A/B」)を、ニーダーで混練することにより、層構造(2)の絶縁層形成材料<5>を調製した。 An insulating layer forming material <5> having a layer structure (2) was prepared by kneading conductive silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., “KE-1950-40A / B”) with a kneader.
(パターン層形成材料)
 先ず、カーボンブラック(キャンカーブ社製、「サーマックスN990」)30gを、60質量%硝酸水溶液に50℃×10分間浸漬し、エッチング処理を行った。ろ過、水洗後、アミノカルボン酸系界面活性剤(奥野製薬工業(株)製、「コンディライザーSP」)に50℃×10分間浸漬し、表面調整を行った。次いで、ろ過、水洗後、スズ-パラジウムコロイド(奥野製薬工業(株)製、「OPC-80キャタリスト」)に25℃×10分間浸漬し、触媒吸着を行った。ろ過、水洗後10質量%の塩酸水溶液に25℃×10分間浸漬し、パラジウム触媒活性化を行った。次いで、ろ過、水洗、乾燥することにより、Pd担持カーボンを得た。
(Pattern layer forming material)
First, 30 g of carbon black (manufactured by Cancarb, “Thermax N990”) was immersed in a 60% by mass nitric acid aqueous solution at 50 ° C. for 10 minutes to carry out an etching treatment. After filtration and washing with water, the surface was adjusted by immersing in an aminocarboxylic acid surfactant (Okuno Pharmaceutical Co., Ltd., “Condizer SP”) at 50 ° C. for 10 minutes. Next, after filtration and washing with water, the catalyst was adsorbed by immersing it in tin-palladium colloid ("OPC-80 Catalyst" manufactured by Okuno Pharmaceutical Co., Ltd.) at 25 ° C for 10 minutes. After filtration and washing with water, the catalyst was immersed in a 10% by mass hydrochloric acid aqueous solution at 25 ° C. for 10 minutes to activate the palladium catalyst. Subsequently, Pd carrying carbon was obtained by filtering, washing with water, and drying.
 次に、ウレタン樹脂(日本ポリウレタン株式会社製、「ニッポラン5196」)100質量部と、架橋剤(日本ポリウレタン(株)製、「コロネートL」)20質量部と、Pd担持カーボン100質量部とを、有機溶剤(MEK)に分散混合した。これにより、パターン電極のパターン層の形成に用いるパターン層形成材料<1>を調製した。 Next, 100 parts by mass of a urethane resin (manufactured by Nippon Polyurethane Co., Ltd., “Nipporan 5196”), 20 parts by mass of a crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., “Coronate L”), and 100 parts by mass of Pd-supported carbon And dispersed in an organic solvent (MEK). This prepared pattern layer forming material <1> used for formation of the pattern layer of a pattern electrode.
 ウレタン樹脂(日本ポリウレタン株式会社製、「ニッポラン5196」)100質量部と、架橋剤(日本ポリウレタン(株)製、「コロネートL」)20質量部と、カーボンブラック(キャンカーブ社製、「サーマックスN990」)20質量とを、有機溶剤(MEK)に分散混合することにより、パターン電極のパターン層の形成に用いるパターン層形成材料<2>を調製した。 100 parts by mass of urethane resin (Nippon Polyurethane Co., Ltd., “Nipporan 5196”), 20 parts by mass of a crosslinking agent (Nippon Polyurethane Co., Ltd., “Coronate L”), carbon black (Cancarb, “Thermax” N990 ") 20 mass was dispersed and mixed in an organic solvent (MEK) to prepare a pattern layer forming material <2> used for forming the pattern layer of the pattern electrode.
 水溶性N-メトキシメチル化ナイロン(帝国化学(株)製、「トレジンEF30T」100質量部と、クエン酸2質量部と、Pd担持カーボン100質量部とを、メタノール/水混合溶液に分散混合することにより、パターン電極のパターン層の形成に用いるパターン層形成材料<3>を調製した。 100 parts by mass of water-soluble N-methoxymethylated nylon (manufactured by Teikoku Chemical Co., Ltd., “Tresin EF30T”, 2 parts by mass of citric acid, and 100 parts by mass of Pd-supported carbon are dispersed and mixed in a methanol / water mixed solution. Thus, a pattern layer forming material <3> used for forming the pattern layer of the pattern electrode was prepared.
 ポリアクリル酸(日本触媒(株)製、「アクアリックHL-415」100質量部と、メラミン(三和ケミカル(株)製、「ニカラックMS-21」)10質量部と、Pd担持カーボン100質量部とを、メタノール/水混合溶液に分散混合することにより、パターン電極のパターン層の形成に用いるパターン層形成材料<4>を調製した。 100 parts by mass of polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd., “Aquaric HL-415”, 10 parts by mass of melamine (manufactured by Sanwa Chemical Co., Ltd., “Nicarac MS-21”), and 100 masses of Pd-supported carbon Part was dispersed and mixed in a methanol / water mixed solution to prepare a pattern layer forming material <4> used for forming the pattern layer of the pattern electrode.
(めっき材料)
 電極層を形成するめっき材料<1>として、無電解ニッケルめっき液(奥野製薬工業(株)製、「トップニコロンF153」)を準備した。
(Plating material)
As a plating material <1> for forming the electrode layer, an electroless nickel plating solution (Okuno Pharmaceutical Co., Ltd., “Top Nicolon F153”) was prepared.
(被膜形成材料)
 アクリル樹脂(根上工業(株)製、「パラクロンW-248E」)100質量部と、架橋剤(日本ポリウレタン(株)製、「コロネートL」)10質量部とを、有機溶剤(MEK)に溶解することにより、被膜形成に用いる被膜形成材料<1>を調製した。
(Film forming material)
100 parts by mass of acrylic resin (Negami Kogyo Co., Ltd., “Paracron W-248E”) and 10 parts by mass of a crosslinking agent (Nihon Polyurethane Co., Ltd., “Coronate L”) are dissolved in an organic solvent (MEK). Thus, a film forming material <1> used for film formation was prepared.
2.実施例に係る現像ロールの作製
 以上準備したロール構成材料を用い、以下の手順により、実施例1~11に係る現像ロール、実施例12~22に係る現像ロールを作製した。
2. Production of Developing Roll According to Examples Using the roll constituent materials prepared as described above, developing rolls according to Examples 1 to 11 and developing rolls according to Examples 12 to 22 were produced according to the following procedure.
2.1 パターン電極のパターン層中に金属Pdを含有する現像ロール
2.1.1 実施例1~3、23、24に係る現像ロール(層構造(1)+パターン電極+被膜)
 軸体(1)の外周面に接着剤を塗布した。その後、円筒状金型の中空部に、上記軸体(1)を同軸にセットし、円筒状金型と軸体(1)との間の空隙部に、上記調製したゴム弾性層形成材料(実施例1、23、24はゴム弾性層形成材料<1>、実施例2はゴム弾性層形成材料<2>、実施例3はゴム弾性層形成材料<3>をそれぞれ使用)を注入し、金型に蓋をして、これを180℃で5分間加熱した後、冷却、脱型した。これにより、軸体(1)の外周面に沿って、ゴム弾性層(厚み:4mm)を1層形成した。
2.1 Developing Roll Containing Metal Pd in Pattern Layer of Pattern Electrode 2.1.1 Developing Roll According to Examples 1 to 3, 23, and 24 (Layer Structure (1) + Pattern Electrode + Coating)
An adhesive was applied to the outer peripheral surface of the shaft body (1). Thereafter, the shaft body (1) is coaxially set in the hollow portion of the cylindrical mold, and the rubber elastic layer forming material (prepared above) is formed in the gap between the cylindrical mold and the shaft body (1). Examples 1, 23 and 24 were injected with rubber elastic layer forming material <1>, Example 2 was used with rubber elastic layer forming material <2>, and Example 3 was used with rubber elastic layer forming material <3>. The mold was covered and heated at 180 ° C. for 5 minutes, and then cooled and removed from the mold. Thereby, one rubber elastic layer (thickness: 4 mm) was formed along the outer peripheral surface of the shaft body (1).
 次いで、ロールコート法を用いて、上記ゴム弾性層の表面に上記調製した絶縁層形成材料(実施例1~3、23、24の何れも絶縁層形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、ゴム弾性層の外周面に沿って、レーザー反射性を有する絶縁層(厚み:0.02mm、外観色:白色)を1層積層した。以上により、軸体(1)の外周に、層構造(1)を形成した。 Next, using the roll coat method, the prepared insulating layer forming material (all of Examples 1 to 3, 23, and 24 using the insulating layer forming material <1>) is applied to the surface of the rubber elastic layer to a predetermined thickness. 1 layer of insulating layer (thickness: 0.02 mm, appearance color: white) having laser reflectivity along the outer peripheral surface of the rubber elastic layer by drying and heat treatment at 150 ° C. for 30 minutes. Laminated. Thus, the layer structure (1) was formed on the outer periphery of the shaft body (1).
 次に、ロールコート法を用いて、上記層構造(1)の表面一面に、上記調製したパターン層形成材料(実施例1~3の何れもパターン層形成材料<1>を使用、実施例23はパターン層形成材料<3>を使用、実施例24はパターン層形成材料<4>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、層構造(1)の外周面に沿って、金属Pdを含有する樹脂塗膜(厚み:0.01mm、外観色:黒色)を1層形成した。なお、実施例1~3における塗膜はウレタン樹脂塗膜であり、実施例23における塗膜はN-メトキシメチル化ナイロン樹脂塗膜であり、実施例24における塗膜はポリアクリル酸とメラミンとを含む樹脂塗膜である。 Next, using the roll coating method, the prepared pattern layer forming material (the pattern layer forming material <1> in any of Examples 1 to 3 is used on the entire surface of the layer structure (1), and Example 23 is used. Uses a pattern layer forming material <3>, and Example 24 uses a pattern layer forming material <4>. After coating with a predetermined thickness, the layer structure is dried and heat-treated at 150 ° C. for 30 minutes. A layer of a resin coating (thickness: 0.01 mm, appearance color: black) containing metal Pd was formed along the outer peripheral surface of 1). The coating film in Examples 1 to 3 is a urethane resin coating film, the coating film in Example 23 is an N-methoxymethylated nylon resin coating film, and the coating film in Example 24 is made of polyacrylic acid and melamine. It is a resin coating film containing.
 次に、レーザー加工装置((株)キーエンス製、「MD-S9900」)を用いて、上記樹脂塗膜をレーザー加工することにより、図6に示したようなラインアンドスペース形状のパターン層(1電極型)を形成した。図10に、実施例2に係る現像ロールの製造時におけるレーザー加工後のロール体表面写真を示す。図10によれば、レーザー加工後の層構造表面にレーザー光焦点の痕跡が波状に残っていることが分かる。なお、図10中、レーザー加工部分以外の部分は、パターン層表面(金属Pdを含有するウレタン樹脂塗膜の表面)である。 Next, the resin coating film is laser processed using a laser processing apparatus (“MD-S9900” manufactured by Keyence Co., Ltd.), whereby a pattern layer (1) Electrode type). In FIG. 10, the roll body surface photograph after the laser processing at the time of manufacture of the image development roll which concerns on Example 2 is shown. According to FIG. 10, it can be seen that the trace of the laser beam focus remains in a wave shape on the surface of the layer structure after laser processing. In FIG. 10, the part other than the laser processed part is the pattern layer surface (the surface of the urethane resin coating film containing metal Pd).
 なお、形成したパターン層のライン幅は、0.1mm、スペース幅は、0.1mmである。また、上記レーザー加工の条件は、レーザーの種類:Nd-YAGレーザー、出力:21A、周波数:27kHz、照射スピード:1800mm/秒とした。 The line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm. The laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
 次に、上記パターン層を形成したロール体を上記めっき材料<1>に90℃×10分間浸漬し、パターン層の表面(頂面および側面)に無電解ニッケルめっき層よりなる電極層を形成した。形成した電極層の厚み(パターン層の頂面と電極層の頂面との距離)は3μmであった。これにより、Pdを含有する樹脂塗膜よりなるパターン層とこのパターン層の表面に形成された無電解めっきよりなる電極層とを有するパターン電極を形成した。図11に、実施例2に係る現像ロールの製造時におけるめっき処理後のロール体表面写真を示す。図11によれば、レーザー加工部分以外の部分、すなわち、図10におけるパターン層表面に、選択的に無電解めっきよりなる電極層が形成されていることが分かる。 Next, the roll body on which the pattern layer was formed was immersed in the plating material <1> at 90 ° C. for 10 minutes to form an electrode layer made of an electroless nickel plating layer on the surface (top surface and side surface) of the pattern layer. . The thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 μm. Thereby, the pattern electrode which has the pattern layer which consists of a resin coating film containing Pd, and the electrode layer which consists of the electroless plating formed in the surface of this pattern layer was formed. In FIG. 11, the roll body surface photograph after the plating process at the time of manufacture of the image development roll which concerns on Example 2 is shown. According to FIG. 11, it can be seen that an electrode layer made of electroless plating is selectively formed on a portion other than the laser processed portion, that is, on the pattern layer surface in FIG.
 次に、ロールコート法を用いて、上記パターン電極が形成されたロール体の表面に、上記調製した被膜形成材料(実施例1~3、23、24の何れも被膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、パターン電極が形成されたロール体の表面に沿って、被膜(厚み:0.01mm)を1層形成した。 Next, using the roll coating method, the above-prepared film forming material (all of Examples 1 to 3, 23, and 24 use the film forming material <1>) on the surface of the roll body on which the pattern electrode is formed. ) With a predetermined thickness, followed by drying and heat treatment at 150 ° C. for 30 minutes to form one layer of a coating (thickness: 0.01 mm) along the surface of the roll body on which the pattern electrode was formed. .
 以上により、実施例1~3、23、24に係る現像ロールを作製した。 Thus, developing rolls according to Examples 1 to 3, 23, and 24 were produced.
2.1.2 実施例4~7に係る現像ロール(層構造(2)+パターン電極+被膜)
 軸体(2)の外周面に接着剤を塗布した。その後、円筒状金型の中空部に、上記軸体(2)を同軸にセットし、円筒状金型と軸体(2)との間の空隙部に、上記調製した絶縁層形成材料(実施例4は絶縁層形成材料<2>、実施例5は絶縁層形成材料<3>、実施例6は絶縁層形成材料<4>、実施例7は絶縁層形成材料<5>をそれぞれ使用)を注入し、金型に蓋をして、これを180℃で5分間加熱した後、冷却、脱型した。これにより、軸体(2)の外周面に沿って、ゴム弾性およびレーザー反射性を有する絶縁層(厚み:0.5mm、外観色:白色)を1層積層した。以上により、軸体(2)の外周に、層構造(2)を形成した。
2.1.2 Developing roll according to Examples 4 to 7 (layer structure (2) + pattern electrode + coating)
An adhesive was applied to the outer peripheral surface of the shaft body (2). Thereafter, the shaft body (2) is coaxially set in the hollow portion of the cylindrical mold, and the insulating layer forming material (implemented above) is formed in the gap between the cylindrical mold and the shaft body (2). Example 4 uses insulating layer forming material <2>, Example 5 uses insulating layer forming material <3>, Example 6 uses insulating layer forming material <4>, and Example 7 uses insulating layer forming material <5>. The mold was capped and heated at 180 ° C. for 5 minutes, and then cooled and demolded. Thereby, one insulating layer (thickness: 0.5 mm, appearance color: white) having rubber elasticity and laser reflectivity was laminated along the outer peripheral surface of the shaft body (2). Thus, the layer structure (2) was formed on the outer periphery of the shaft body (2).
 次に、ロールコート法を用いて、上記層構造(2)の表面一面に、上記調製したパターン層形成材料(実施例4~7の何れもパターン層形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、層構造(2)の外周面に沿って、金属Pdを含有するウレタン樹脂塗膜(厚み:0.01mm、外観色:黒色)を1層形成した。 Next, using the roll coating method, the prepared pattern layer forming material (all of Examples 4 to 7 using the pattern layer forming material <1>) is applied to the entire surface of the layer structure (2). After coating with the thickness, the urethane resin coating film containing metal Pd (thickness: 0.01 mm, appearance color: along the outer peripheral surface of the layer structure (2) is dried and heat-treated at 150 ° C. for 30 minutes. A black layer was formed.
 次に、レーザー加工装置((株)キーエンス製、「MD-S9900」)を用いて、上記ウレタン樹脂塗膜をレーザー加工することにより、図6に示したようなラインアンドスペース形状のパターン層(1電極型)を形成した。 Next, the urethane resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line and space pattern layer (as shown in FIG. 6) ( 1 electrode type) was formed.
 なお、形成したパターン層のライン幅は、0.1mm、スペース幅は、0.1mmである。また、上記レーザー加工の条件は、レーザーの種類:Nd-YAGレーザー、出力:21A、周波数:27kHz、照射スピード:1800mm/秒とした。 The line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm. The laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
 次に、上記パターン層を形成したロール体を上記めっき材料<1>に90℃×10分間浸漬し、パターン層の表面(頂面および側面)に無電解ニッケルめっき層からなる電極層を形成した。形成した電極層の厚み(パターン層の頂面と電極層の頂面との距離)は3μmであった。これにより、Pdを含有するウレタン樹脂塗膜よりなるパターン層とパターン層の表面に形成された無電解めっきよりなる電極層とを有するパターン電極を形成した。 Next, the roll body on which the pattern layer was formed was immersed in the plating material <1> at 90 ° C. for 10 minutes to form an electrode layer composed of an electroless nickel plating layer on the surface (top surface and side surface) of the pattern layer. . The thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 μm. Thereby, the pattern electrode which has the pattern layer which consists of a urethane resin coating film containing Pd, and the electrode layer which consists of the electroless plating formed in the surface of the pattern layer was formed.
 次に、ロールコート法を用いて、上記パターン電極が形成されたロール体の表面に、上記調製した被膜形成材料(実施例4~7の何れも被膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、パターン電極が形成されたロール体の表面に沿って、被膜(厚み:0.01mm)を1層形成した。 Next, the roll-coating method is used to apply the prepared film-forming material (all of Examples 4 to 7 using the film-forming material <1>) to the surface of the roll body on which the pattern electrode is formed. After coating with the thickness, the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
 以上により、実施例4~7に係る現像ロールを作製した。 Thus, developing rolls according to Examples 4 to 7 were produced.
2.1.3 実施例8~11に係る現像ロール(層構造(2)+パターン電極)
 実施例4~7に係る現像ロールの作製において、被膜を形成しなかった点以外は同様にして、実施例8~11(実施例4~7の構成に順に対応)に係る現像ロールを作製した。
2.1.3 Developing roll according to Examples 8 to 11 (layer structure (2) + pattern electrode)
Development rolls according to Examples 8 to 11 (corresponding to the configurations of Examples 4 to 7 in order) were produced in the same manner except that no film was formed in the production of development rolls according to Examples 4 to 7. .
2.2 パターン電極のパターン層表面に金属Pdが存在する現像ロール
2.2.1 実施例12~14に係る現像ロール(層構造(1)+パターン電極+被膜)
 軸体(1)の外周面に接着剤を塗布した。その後、円筒状金型の中空部に、上記軸体(1)を同軸にセットし、円筒状金型と軸体(1)との間の空隙部に、上記調製したゴム弾性層形成材料(実施例12はゴム弾性層形成材料<1>、実施例13はゴム弾性層形成材料<2>、実施例14はゴム弾性層形成材料<3>をそれぞれ使用)を注入し、金型に蓋をして、これを180℃で5分間加熱した後、冷却、脱型した。これにより、軸体(1)の外周面に沿って、ゴム弾性層(厚み:4mm)を1層形成した。
2.2 Developing roll in which metal Pd is present on the pattern layer surface of the pattern electrode 2.2.1 Developing roll according to Examples 12 to 14 (layer structure (1) + pattern electrode + film)
An adhesive was applied to the outer peripheral surface of the shaft body (1). Thereafter, the shaft body (1) is coaxially set in the hollow portion of the cylindrical mold, and the rubber elastic layer forming material (prepared above) is formed in the gap between the cylindrical mold and the shaft body (1). Example 12 uses rubber elastic layer forming material <1>, Example 13 uses rubber elastic layer forming material <2>, and Example 14 uses rubber elastic layer forming material <3>. This was heated at 180 ° C. for 5 minutes, then cooled and demolded. Thereby, one rubber elastic layer (thickness: 4 mm) was formed along the outer peripheral surface of the shaft body (1).
 次いで、ロールコート法を用いて、上記ゴム弾性層の表面に上記調製した絶縁層形成材料(実施例12~14の何れも絶縁層形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、ゴム弾性層の外周面に沿って、レーザー反射性を有する絶縁層(厚み:0.02mm、外観色:白色)を1層積層した。以上により、軸体(1)の外周に、層構造(1)を形成した。 Next, after coating the surface of the rubber elastic layer with the prepared insulating layer forming material (all of the examples 12 to 14 using the insulating layer forming material <1>) with a predetermined thickness by using a roll coating method. By drying and heat-treating at 150 ° C. for 30 minutes, one insulating layer (thickness: 0.02 mm, appearance color: white) having laser reflectivity was laminated along the outer peripheral surface of the rubber elastic layer. Thus, the layer structure (1) was formed on the outer periphery of the shaft body (1).
 次に、ロールコート法を用いて、上記層構造(1)の表面一面に、上記調製したパターン層形成材料(実施例12~14の何れもパターン層形成材料<2>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、層構造(1)の外周面に沿って、ウレタン樹脂塗膜(厚み:0.01mm、外観色:黒色)を1層形成した。 Next, using the roll coating method, the prepared pattern layer forming material (all of Examples 12 to 14 using the pattern layer forming material <2>) is applied to the entire surface of the layer structure (1). One layer of urethane resin coating (thickness: 0.01 mm, appearance color: black) is applied along the outer peripheral surface of the layer structure (1) by coating with thickness and then heat-treating at 150 ° C. for 30 minutes. Formed.
 次に、上記ウレタン樹脂塗膜表面を有するロール体を、アルカリ脱脂剤(奥野製薬工業(株)製、「エースクリーン850」)に40℃×5分間浸漬し、ウレタン樹脂塗膜の表面脱脂およびエッチング処理を行った。次いで、ウレタン樹脂塗膜表面を水洗した後、ロール体をアミノカルボン酸系界面活性剤(奥野製薬工業(株)製、「コンディライザーSP」)に50℃×10分間浸漬し、ウレタン樹脂塗膜表面調整を行った。次いで、ウレタン樹脂塗膜表面を水洗した後、ロール体をスズ-パラジウムコロイド(奥野製薬工業(株)製、「OPC-80キャタリスト」)に25℃×10分間浸漬し、ウレタン樹脂塗膜表面に触媒吸着を行った。次いで、ウレタン樹脂塗膜表面を水洗した後、ロール体を10質量%の塩酸水溶液に25℃×10分間浸漬し、ウレタン樹脂塗膜表面についてパラジウム触媒の活性化を行った。 Next, the roll body having the urethane resin coating surface is immersed in an alkaline degreasing agent (Okuno Seiyaku Kogyo Co., Ltd., “A Screen 850”) at 40 ° C. for 5 minutes, Etching treatment was performed. Next, after washing the urethane resin coating surface with water, the roll body was immersed in an aminocarboxylic acid surfactant (Okuno Pharmaceutical Co., Ltd., “Condizer SP”) at 50 ° C. for 10 minutes, and then the urethane resin coating film. Surface adjustment was performed. Next, after washing the urethane resin coating surface with water, the roll body was immersed in tin-palladium colloid (Okuno Pharmaceutical Co., Ltd., “OPC-80 Catalyst”) at 25 ° C. for 10 minutes to obtain the urethane resin coating surface. The catalyst was adsorbed. Next, after washing the urethane resin coating surface with water, the roll body was immersed in a 10% by mass hydrochloric acid aqueous solution at 25 ° C. for 10 minutes to activate the palladium catalyst on the urethane resin coating surface.
 次に、レーザー加工装置((株)キーエンス製、「MD-S9900」)を用いて、上記ウレタン樹脂塗膜をレーザー加工することにより、図6に示したようなラインアンドスペース形状のパターン層(1電極型)を形成した。 Next, the urethane resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line and space pattern layer (as shown in FIG. 6) ( 1 electrode type) was formed.
 なお、形成したパターン層のライン幅は、0.1mm、スペース幅は、0.1mmである。また、上記レーザー加工の条件は、レーザーの種類:Nd-YAGレーザー、出力:21A、周波数:27kHz、照射スピード:1800mm/秒とした。 The line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm. The laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
 次に、上記パターン層を形成したロール体を上記めっき材料<1>に90℃×10分間浸漬し、パターン層の表面(頂面)に無電解ニッケルめっき層よりなる電極層を形成した。形成した電極層の厚み(パターン層の頂面と電極層の頂面との距離)は3μmであった。これにより、表面に金属Pdが存在するウレタン樹脂塗膜よりなるパターン層とこのパターン層の表面に形成された無電解めっきよりなる電極層とを有するパターン電極を形成した。 Next, the roll body on which the pattern layer was formed was immersed in the plating material <1> at 90 ° C. for 10 minutes to form an electrode layer made of an electroless nickel plating layer on the surface (top surface) of the pattern layer. The thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 μm. Thereby, the pattern electrode which has the pattern layer which consists of a urethane resin coating film in which the metal Pd exists in the surface, and the electrode layer which consists of the electroless plating formed in the surface of this pattern layer was formed.
 次に、ロールコート法を用いて、上記パターン電極が形成されたロール体の表面に、上記調製した被膜形成材料(実施例12~14の何れも被膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、パターン電極が形成されたロール体の表面に沿って、被膜(厚み:0.01mm)を1層形成した。 Next, the roll-coating method is used to apply the prepared film-forming material (all of Examples 12 to 14 using the film-forming material <1>) to the surface of the roll body on which the pattern electrode is formed. After coating with the thickness, the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
 以上により、実施例12~14に係る現像ロールを作製した。 Thus, developing rolls according to Examples 12 to 14 were produced.
2.2.2 実施例15~18に係る現像ロール(層構造(2)+パターン電極+被膜)
 軸体(2)の外周面に接着剤を塗布した。その後、円筒状金型の中空部に、上記軸体(2)を同軸にセットし、円筒状金型と軸体(2)との間の空隙部に、上記調製した絶縁層形成材料(実施例4は絶縁層形成材料<2>、実施例5は絶縁層形成材料<3>、実施例6は絶縁層形成材料<4>、実施例7は絶縁層形成材料<5>をそれぞれ使用)を注入し、金型に蓋をして、これを180℃で5分間加熱した後、冷却、脱型した。これにより、軸体(2)の外周面に沿って、ゴム弾性およびレーザー反射性を有する絶縁層(厚み:0.5mm、外観色:白色)を1層積層した。以上により、軸体(2)の外周に、層構造(2)を形成した。
2.2.2 Developing roll according to Examples 15 to 18 (layer structure (2) + pattern electrode + coating)
An adhesive was applied to the outer peripheral surface of the shaft body (2). Thereafter, the shaft body (2) is coaxially set in the hollow portion of the cylindrical mold, and the insulating layer forming material (implemented above) is formed in the gap between the cylindrical mold and the shaft body (2). Example 4 uses insulating layer forming material <2>, Example 5 uses insulating layer forming material <3>, Example 6 uses insulating layer forming material <4>, and Example 7 uses insulating layer forming material <5>. The mold was capped and heated at 180 ° C. for 5 minutes, and then cooled and demolded. Thereby, one insulating layer (thickness: 0.5 mm, appearance color: white) having rubber elasticity and laser reflectivity was laminated along the outer peripheral surface of the shaft body (2). Thus, the layer structure (2) was formed on the outer periphery of the shaft body (2).
 次に、ロールコート法を用いて、上記層構造(2)の表面一面に、上記調製したパターン層形成材料(実施例4~7の何れもパターン層形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、層構造(2)の外周面に沿って、金属Pdを含有するウレタン樹脂塗膜(厚み:0.01mm、外観色:黒色)を1層形成した。 Next, using the roll coating method, the prepared pattern layer forming material (all of Examples 4 to 7 using the pattern layer forming material <1>) is applied to the entire surface of the layer structure (2). After coating with the thickness, the urethane resin coating film containing metal Pd (thickness: 0.01 mm, appearance color: along the outer peripheral surface of the layer structure (2) is dried and heat-treated at 150 ° C. for 30 minutes. A black layer was formed.
 次に、レーザー加工装置((株)キーエンス製、「MD-S9900」)を用いて、上記ウレタン樹脂塗膜をレーザー加工することにより、図6に示したようなラインアンドスペース形状のパターン層(1電極型)を形成した。 Next, the urethane resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line and space pattern layer (as shown in FIG. 6) ( 1 electrode type) was formed.
 なお、形成したパターン層のライン幅は、0.1mm、スペース幅は、0.1mmである。また、上記レーザー加工の条件は、レーザーの種類:Nd-YAGレーザー、出力:21A、周波数:27kHz、照射スピード:1800mm/秒とした。 The line width of the formed pattern layer is 0.1 mm, and the space width is 0.1 mm. The laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
 次に、上記パターン層を形成したロール体を上記めっき材料<1>に90℃×10分間浸漬し、パターン層の表面(頂面および側面)に無電解ニッケルめっき層からなる電極層を形成した。形成した電極層の厚み(パターン層の頂面と電極層の頂面との距離)は3μmであった。これにより、Pdを含有するウレタン樹脂塗膜よりなるパターン層とパターン層の表面に形成された無電解めっきよりなる電極層とを有するパターン電極を形成した。 Next, the roll body on which the pattern layer was formed was immersed in the plating material <1> at 90 ° C. for 10 minutes to form an electrode layer composed of an electroless nickel plating layer on the surface (top surface and side surface) of the pattern layer. . The thickness of the formed electrode layer (distance between the top surface of the pattern layer and the top surface of the electrode layer) was 3 μm. Thereby, the pattern electrode which has the pattern layer which consists of a urethane resin coating film containing Pd, and the electrode layer which consists of the electroless plating formed in the surface of the pattern layer was formed.
 次に、ロールコート法を用いて、上記パターン電極が形成されたロール体の表面に、上記調製した被膜形成材料(実施例4~7の何れも被膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、パターン電極が形成されたロール体の表面に沿って、被膜(厚み:0.01mm)を1層形成した。 Next, the roll-coating method is used to apply the prepared film-forming material (all of Examples 4 to 7 using the film-forming material <1>) to the surface of the roll body on which the pattern electrode is formed. After coating with the thickness, the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
 以上により、実施例15~18に係る現像ロールを作製した。 Thus, developing rolls according to Examples 15 to 18 were produced.
2.2.3 実施例19~22に係る現像ロール(層構造(2)+パターン電極)
 実施例15~18に係る現像ロールの作製において、被膜を形成しなかった点以外は同様にして、実施例19~22(実施例15~18の構成に順に対応)に係る現像ロールを作製した。
2.2.3 Developing roll according to Examples 19 to 22 (layer structure (2) + pattern electrode)
Development rolls according to Examples 19 to 22 (corresponding to the configurations of Examples 15 to 18 in order) were produced in the same manner except that no film was formed in the production of development rolls according to Examples 15 to 18. .
3.比較例に係る現像ロールの作製
3.1 比較例1に係る現像ロール
 軸体(1)の外周面に接着剤を塗布した。その後、円筒状金型の中空部に、上記軸体(1)を同軸にセットし、円筒状金型と軸体(1)との間の空隙部に、比較用絶縁層形成材料[アクリル樹脂(住友化学(株)製、「スミペックスGL35」)]を注入し、金型に蓋をして、これを180℃で5分間加熱した後、冷却、脱型した。これにより、軸体(1)の外周面に沿って、アクリル樹脂製の絶縁層(厚み:4mm)を1層形成した。
3. Production of Development Roll According to Comparative Example 3.1 Development Roll According to Comparative Example 1 An adhesive was applied to the outer peripheral surface of the shaft body (1). Thereafter, the shaft body (1) is coaxially set in the hollow portion of the cylindrical mold, and a comparative insulating layer forming material [acrylic resin is formed in the gap between the cylindrical mold and the shaft body (1). (Sumitomo Chemical Co., Ltd., “SUMIPEX GL35”) was injected, the mold was capped, and this was heated at 180 ° C. for 5 minutes, then cooled and demolded. Thereby, one insulating layer (thickness: 4 mm) made of acrylic resin was formed along the outer peripheral surface of the shaft body (1).
 次いで、上記絶縁層の表面に、ライン幅0.1mm、スペース幅0.1mmの溝を切削で形成した。次いで、溝切削を行ったロール表面に、上記めっき材料<1>による無電解ニッケルめっきを施し、その後、ロール外周を旋削することで不要なめっき膜を取り除いた。これにより、図6に示したようなラインアンドスペース形状のパターン電極(1電極型)を形成した。形成したパターン電極のライン幅は、0.1mm、スペース幅は、0.1mmである。 Next, grooves having a line width of 0.1 mm and a space width of 0.1 mm were formed on the surface of the insulating layer by cutting. Next, electroless nickel plating with the plating material <1> was applied to the roll surface that had been subjected to groove cutting, and then the unnecessary plating film was removed by turning the outer periphery of the roll. As a result, a line-and-space pattern electrode (one-electrode type) as shown in FIG. 6 was formed. The line width of the formed pattern electrode is 0.1 mm, and the space width is 0.1 mm.
 次いで、ロールコート法を用いて、上記パターン電極が形成されたロール体の表面に、上記調製した被膜形成材料(実施例で使用した被膜形成材料<1>)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、パターン電極が形成されたロール体の表面に沿って、被膜(厚み:0.01mm)を1層形成した。 Next, after coating the prepared film forming material (film forming material <1> used in Examples) with a predetermined thickness on the surface of the roll body on which the pattern electrode is formed using a roll coating method, One layer of a coating (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
 これにより、比較例1に係る現像ロールを作製した。 Thereby, a developing roll according to Comparative Example 1 was produced.
3.2 比較例2に係る現像ロール
 比較例1に係る現像ロールの作製において、軸体(1)に代えて軸体(2)を用いた点以外は同様にして、比較例2に係る現像ロールを作製した。
3.2 Developing Roll According to Comparative Example 2 In the production of the developing roll according to Comparative Example 1, the developing according to Comparative Example 2 was similarly performed except that the shaft body (2) was used instead of the shaft body (1). A roll was produced.
3.3 比較例3に係る現像ロール
 比較例1に係る現像ロールの作製において、被膜を形成しなかった点以外は同様にして、比較例3に係る現像ロールを作製した。
3.3 Developing Roll According to Comparative Example 3 In the production of the developing roll according to Comparative Example 1, a developing roll according to Comparative Example 3 was produced in the same manner except that no film was formed.
4.参考例に係る現像ロールの作製
 参考例に係る現像ロールの作製に先立ち、アクリル樹脂(根上工業(株)製、「パラクロンW-248E」)100質量部と、架橋剤(日本ポリウレタン(株)製、「コロネートL」)10質量部と、導電剤(ライオン(株)製、「ケッチェンブラックEC-600JD」)20質量部とを、有機溶剤(MEK)に溶解することにより、パターン電極の形成に用いる導電剤含有樹脂塗膜形成材料<1>を調製した。
4). Preparation of Development Roll According to Reference Example Prior to preparation of the development roll according to Reference Example, 100 parts by mass of acrylic resin (manufactured by Negami Kogyo Co., Ltd., “Paraklon W-248E”) and a crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd.) , “Coronate L”) and 20 parts by mass of a conductive agent (“Ketjen Black EC-600JD” manufactured by Lion Corporation) were dissolved in an organic solvent (MEK) to form a pattern electrode. A conductive agent-containing resin coating film forming material <1> used in the above was prepared.
4.1 参考例1~3に係る現像ロール(層構造(1)+パターン電極+被膜)
 軸体(1)の外周面に接着剤を塗布した。その後、円筒状金型の中空部に、上記軸体(1)を同軸にセットし、円筒状金型と軸体(1)との間の空隙部に、上記調製したゴム弾性層形成材料(参考例1はゴム弾性層形成材料<1>、参考例2はゴム弾性層形成材料<2>、参考例3はゴム弾性層形成材料<3>をそれぞれ使用)を注入し、金型に蓋をして、これを180℃で5分間加熱した後、冷却、脱型した。これにより、軸体(1)の外周面に沿って、ゴム弾性層(厚み:4mm)を1層形成した。
4.1 Development Roll According to Reference Examples 1 to 3 (Layer Structure (1) + Pattern Electrode + Coating)
An adhesive was applied to the outer peripheral surface of the shaft body (1). Thereafter, the shaft body (1) is coaxially set in the hollow portion of the cylindrical mold, and the rubber elastic layer forming material (prepared above) is formed in the gap between the cylindrical mold and the shaft body (1). Reference Example 1 uses rubber elastic layer forming material <1>, Reference Example 2 uses rubber elastic layer forming material <2>, and Reference Example 3 uses rubber elastic layer forming material <3>. This was heated at 180 ° C. for 5 minutes, then cooled and demolded. Thereby, one rubber elastic layer (thickness: 4 mm) was formed along the outer peripheral surface of the shaft body (1).
 次いで、ロールコート法を用いて、上記ゴム弾性層の表面に上記調製した絶縁層形成材料(参考例1~3の何れも絶縁層形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、ゴム弾性層の外周面に沿って、レーザー反射性を有する絶縁層(厚み:0.02mm、外観色:白色)を1層積層した。以上により、軸体(1)の外周に、層構造(1)を形成した。 Then, after coating the surface of the rubber elastic layer by the roll coating method with the prepared insulating layer forming material (all of Reference Examples 1 to 3 use the insulating layer forming material <1>) with a predetermined thickness. By drying and heat-treating at 150 ° C. for 30 minutes, one insulating layer (thickness: 0.02 mm, appearance color: white) having laser reflectivity was laminated along the outer peripheral surface of the rubber elastic layer. Thus, the layer structure (1) was formed on the outer periphery of the shaft body (1).
 次に、ロールコート法を用いて、上記層構造(1)の表面一面に、上記調製した導電剤含有樹脂塗膜形成材料(参考例1~3の何れも導電剤含有樹脂塗膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、層構造(1)の外周面に沿って、導電性を有するアクリル樹脂塗膜(厚み:0.01mm、外観色:黒色)を1層形成した。 Next, using the roll coating method, the conductive agent-containing resin coating film-forming material prepared above (all of Reference Examples 1 to 3 are conductive agent-containing resin coating film-forming materials < 1> is coated at a predetermined thickness, and then dried and heat-treated at 150 ° C. for 30 minutes, whereby an acrylic resin coating film having a conductivity (thickness: along the outer peripheral surface of the layer structure (1)). One layer of 0.01 mm, appearance color: black) was formed.
 次に、レーザー加工装置((株)キーエンス製、「MD-S9900」)を用いて、上記アクリル樹脂塗膜をレーザー加工することにより、図6に示したようなラインアンドスペース形状のパターン電極(1電極型)を形成した。 Next, the acrylic resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line-and-space pattern electrode (as shown in FIG. 6) ( 1 electrode type) was formed.
 なお、形成したパターン電極のライン幅は、0.1mm、スペース幅は、0.1mmである。また、上記レーザー加工の条件は、レーザーの種類:Nd-YAGレーザー、出力:21A、周波数:27kHz、照射スピード:1800mm/秒とした。 The line width of the formed pattern electrode is 0.1 mm, and the space width is 0.1 mm. The laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
 次に、ロールコート法を用いて、上記パターン電極が形成されたロール体の表面に、上記調製した被膜形成材料(参考例1~3の何れも被膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、パターン電極が形成されたロール体の表面に沿って、被膜(厚み:0.01mm)を1層形成した。 Next, using the roll coating method, the prepared film forming material (all of Reference Examples 1 to 3 use the film forming material <1>) is applied to the surface of the roll body on which the pattern electrode is formed. After coating with the thickness, the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
 以上により、参考例1~3に係る現像ロールを作製した。 Thus, developing rolls according to Reference Examples 1 to 3 were produced.
4.2 参考例4~7に係る現像ロール(層構造(2)+パターン電極+被膜)
 軸体(2)の外周面に接着剤を塗布した。その後、円筒状金型の中空部に、上記軸体(2)を同軸にセットし、円筒状金型と軸体(2)との間の空隙部に、上記調製した絶縁層形成材料(参考例4は絶縁層形成材料<2>、参考例5は絶縁層形成材料<3>、参考例6は絶縁層形成材料<4>、参考例7は絶縁層形成材料<5>をそれぞれ使用)を注入し、金型に蓋をして、これを180℃で5分間加熱した後、冷却、脱型した。これにより、軸体(2)の外周面に沿って、ゴム弾性およびレーザー反射性を有する絶縁層(厚み:0.5mm、外観色:白色)を1層積層した。以上により、軸体(2)の外周に、層構造(2)を形成した。
4.2 Developing roll according to Reference Examples 4 to 7 (layer structure (2) + pattern electrode + film)
An adhesive was applied to the outer peripheral surface of the shaft body (2). Thereafter, the shaft body (2) is coaxially set in the hollow portion of the cylindrical mold, and the insulating layer forming material (reference) is prepared in the gap between the cylindrical mold and the shaft body (2). Example 4 uses insulating layer forming material <2>, Reference Example 5 uses insulating layer forming material <3>, Reference Example 6 uses insulating layer forming material <4>, and Reference Example 7 uses insulating layer forming material <5>. The mold was capped and heated at 180 ° C. for 5 minutes, and then cooled and demolded. Thereby, one insulating layer (thickness: 0.5 mm, appearance color: white) having rubber elasticity and laser reflectivity was laminated along the outer peripheral surface of the shaft body (2). Thus, the layer structure (2) was formed on the outer periphery of the shaft body (2).
 次に、ロールコート法を用いて、上記層構造(2)の表面一面に、上記調製した導電剤含有樹脂塗膜形成材料(参考例4~7の何れも導電剤含有樹脂塗膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、層構造(2)の外周面に沿って、導電性を有するアクリル樹脂塗膜(厚み:0.01mm、外観色:黒色)を1層形成した。 Next, using the roll coating method, the conductive agent-containing resin coating film-forming material prepared above (all of Reference Examples 4 to 7 are conductive agent-containing resin coating film-forming materials < 1> is coated at a predetermined thickness, and then dried and heat-treated at 150 ° C. for 30 minutes, whereby an acrylic resin coating film having a conductivity (thickness: along the outer peripheral surface of the layer structure (2)). One layer of 0.01 mm, appearance color: black) was formed.
 次に、レーザー加工装置((株)キーエンス製、「MD-S9900」)を用いて、上記アクリル樹脂塗膜をレーザー加工することにより、図6に示したようなラインアンドスペース形状のパターン電極(1電極型)を形成した。 Next, the acrylic resin coating film was subjected to laser processing using a laser processing apparatus (“MD-S9900” manufactured by Keyence Corporation), whereby a line-and-space pattern electrode (as shown in FIG. 6) ( 1 electrode type) was formed.
 なお、形成したパターン電極のライン幅は、0.1mm、スペース幅は、0.1mmである。また、上記レーザー加工の条件は、レーザーの種類:Nd-YAGレーザー、出力:21A、周波数:27kHz、照射スピード:1800mm/秒とした。 The line width of the formed pattern electrode is 0.1 mm, and the space width is 0.1 mm. The laser processing conditions were as follows: laser type: Nd-YAG laser, output: 21 A, frequency: 27 kHz, irradiation speed: 1800 mm / sec.
 次に、ロールコート法を用いて、上記パターン電極が形成されたロール体の表面に、上記調製した被膜形成材料(参考例4~7の何れも被膜形成材料<1>を使用)を所定の厚みでコーティングした後、乾燥および150℃で30分加熱処理することにより、パターン電極が形成されたロール体の表面に沿って、被膜(厚み:0.01mm)を1層形成した。 Next, using the roll coating method, the prepared film forming material (all of Reference Examples 4 to 7 using the film forming material <1>) is applied to the surface of the roll body on which the pattern electrode is formed. After coating with the thickness, the coating film (thickness: 0.01 mm) was formed along the surface of the roll body on which the pattern electrode was formed by drying and heat treatment at 150 ° C. for 30 minutes.
 以上により、参考例4~7に係る現像ロールを作製した。 Thus, developing rolls according to Reference Examples 4 to 7 were produced.
4.3 参考例8~11に係る現像ロール(層構造(2)+パターン電極)
 参考例4~7に係る現像ロールの作製において、被膜を形成しなかった点以外は同様にして、参考例8~11(参考例4~7の構成に順に対応)に係る現像ロールを作製した。
4.3 Developing roll according to Reference Examples 8 to 11 (layer structure (2) + pattern electrode)
In the production of the developing rolls according to Reference Examples 4 to 7, the developing rolls according to Reference Examples 8 to 11 (corresponding to the configurations of Reference Examples 4 to 7 in order) were produced in the same manner except that no film was formed. .
5.評価
(硬度測定)
 実施例、比較例および参考例に係る現像ロールを作製した後、各ロール表面のAskerC硬度(荷重1kg)を測定した。なお、上記硬度は、ロール全体の硬度を測定していることになる。
5. Evaluation (hardness measurement)
After producing the developing roll which concerns on an Example, a comparative example, and a reference example, AskerC hardness (1 kg of loads) of each roll surface was measured. In addition, the said hardness has measured the hardness of the whole roll.
(接触ばらつき)
 各現像ロールの外周面に平面視1cm当たりの質量が0.25gの平板ガラスを載置し、その平板ガラスに、その平板ガラスの上方から軸体に向かって、軸方向の長さ1cm当たり0.15Nの荷重をかけた。そして、この平板ガラスに接触した部分の接触面積比を電子顕微鏡(400倍)で見て評価した。その結果、その接触面積比が80%以上のものをばらついていないとして○ 、接触面積比が50%以下のものをばらつきがあるとして×、接触面積比が50%を越え80%未満のものをほぼばらついていないとして△と評価した。
(Contact variation)
A flat glass having a mass of 0.25 g per 1 cm 2 in plan view is placed on the outer peripheral surface of each developing roll, and the flat glass has an axial length per 1 cm from above the flat glass toward the shaft body. A load of 0.15 N was applied. And the contact area ratio of the part which contacted this flat glass was evaluated by seeing with an electron microscope (400 times). As a result, if the contact area ratio does not vary 80% or more, ○, if the contact area ratio is 50% or less, ×, if the contact area ratio exceeds 50% and less than 80% It was evaluated as Δ because there was almost no variation.
(画像のカブリ)
 各現像ロールを、市販の実機(キヤノン(株)製、「レーザーショット LBP-2510」)の現像ロール周辺部材を模したベンチ試験機に組み込み、高温高湿(32℃、85%RH)の環境下で、30000枚相当のベンチ耐久(30時間空回転)を行った後、耐久トナーを回収し、実機(キヤノン(株)製、「レーザーショット LBP-2510」)のトナーと入れ替え、白画像を画出しし、感光ドラム表面上のトナーをテープに転写し、その濃度をマクベス濃度計を用いて測定した。その結果、マクベス濃度が0.11未満のものはカブリ現象(上記感光ドラム表面の白地部へのトナー付着)がほとんど発生していないとして◎ 、マクベス濃度が0.11以上0.20未満のものは少しカブリ現象が発生したとして○ 、マクベス濃度が0.20以上のものは明確なカブリ現象が発生したとして×と評価した。
(Image fogging)
Each developing roll is incorporated into a bench testing machine that simulates a peripheral member of a developing roll of a commercially available actual machine (manufactured by Canon Inc., “Laser Shot LBP-2510”), and an environment of high temperature and high humidity (32 ° C., 85% RH). Below, after performing bench durability equivalent to 30,000 sheets (30 hours idling), the durable toner is collected and replaced with the toner of the actual machine ("Laser Shot LBP-2510" manufactured by Canon Inc.), and the white image is The image was printed, the toner on the surface of the photosensitive drum was transferred to a tape, and the density was measured using a Macbeth densitometer. As a result, when the Macbeth density is less than 0.11, the fogging phenomenon (toner adhesion to the white background on the surface of the photosensitive drum) hardly occurs, and the Macbeth density is 0.11 or more and less than 0.20. Was evaluated as “◯” when a slight fog phenomenon occurred, and “X” when a Macbeth concentration of 0.20 or more was observed as a clear fog phenomenon.
 なお、上記ベンチ試験機は、トナー劣化を促進するために用いる評価機である。また、実施例に係る現像ロールに進行波電界を発生させるための交流電圧を印加したときには、トナーのホッピング現象が生じることが確認されている。 The bench test machine is an evaluation machine used to promote toner deterioration. Further, it has been confirmed that a toner hopping phenomenon occurs when an AC voltage for generating a traveling wave electric field is applied to the developing roll according to the embodiment.
(低電圧印加によるトナー帯電性)
・パターン電極の表面抵抗
 パターン電極の表面抵抗率が1×10(Ω/□)が以下の場合、導通性に優れ、低電圧印加によるトナー帯電性に優れるとして○、パターン電極の表面抵抗率が1×10~1×10(Ω/□)の範囲内にある場合、導通性が十分でなく、低電圧印加によるトナー帯電に不利であるとして△、パターン電極の表面抵抗率が1×10(Ω/□)以上の場合、導通性が悪く、トナー帯電に高電圧印加が必要になるとして×とした。
・絶縁層の厚み
 絶縁層の厚みが0.5mm以下である場合、電界発生の妨げにならず有利であるとして○、絶縁層の厚みが0.5mm超1mm以下である場合、電界発生の妨げになる場合があり不利であるとして△、絶縁層の厚みが1mm超である場合、電界発生の妨げになり極めて不利であるとして×とした。
 上記のパターン電極の表面抵抗と絶縁層の厚みの評価が両方とも○の場合を、トナー帯電性に優れるとして○、いずれか一方でも△となる場合を△、いずれか一方でも×となる場合を×と総合評価した。
(Toner charging by applying low voltage)
・ Surface resistance of the pattern electrode When the surface resistivity of the pattern electrode is 1 × 10 0 (Ω / □) is as follows, it indicates that the conductivity is excellent, and the toner chargeability by applying a low voltage is good. Is in the range of 1 × 10 0 to 1 × 10 3 (Ω / □), the electrical conductivity is not sufficient, and it is disadvantageous for toner charging by applying a low voltage, and the surface resistivity of the pattern electrode is 1. In the case of × 10 3 (Ω / □) or more, the conductivity was poor, and a high voltage application was required for charging the toner, and × was assigned.
-Thickness of the insulating layer ○ If the thickness of the insulating layer is 0.5 mm or less, it is advantageous that it does not hinder the generation of an electric field. △, and when the thickness of the insulating layer is more than 1 mm, the electric field generation was hindered and X was marked as extremely disadvantageous.
When the surface resistance of the pattern electrode and the evaluation of the thickness of the insulating layer are both ◯, if the toner chargeability is excellent, ◯, if either of them is △, if either of them is × X and comprehensive evaluation.
(めっき発現性)
 パターン層の表面に無電解めっきよりなる電極層を形成するにあたり、パターン層表面を研磨することなく、めっき材料に浸漬させた後、速やかに無電解めっきの析出が生じる場合をめっき発現性に優れるとして○、めっき材料に浸漬させた後、ある程度時間がかかるが無電解めっきの析出が生じる場合を、めっき発現性はあるとして△、めっき材料に浸漬させた後、いくら時間をかけても無電解めっきの析出が生じない場合を、めっき発現性がないとして×と評価した。
(Plating development)
When forming an electrode layer made of electroless plating on the surface of the pattern layer, it is excellent in plating development when electroless plating precipitates quickly after being immersed in the plating material without polishing the pattern layer surface ○, if it takes some time after being immersed in the plating material, but the deposition of electroless plating occurs. The case where no precipitation of plating occurred was evaluated as x because there was no plating expression.
(めっき密着力)
 パターン層の表面に形成された無電解めっきよりなる電極層表面に碁盤目状の傷を入れ、粘着テープ(テラオカ(株)製、ポリエステルフィルムテープ「631S」)を貼り付け、90°剥離(JIS K5400に準拠して測定)したときに、粘着テープにめっきが全く付着しない場合をめっき密着力に優れるとして○、粘着テープにめっきが一部付着した場合をめっき密着力が良好であるとして△、粘着テープにめっきが全面付着した場合をめっき密着力に劣るとして×と評価した。
(Plating adhesion)
A grid-like scratch is made on the surface of the electrode layer made of electroless plating formed on the surface of the pattern layer, and an adhesive tape (made by Terraoka Co., Ltd., polyester film tape “631S”) is applied, and 90 ° peeling (JIS) When measured in accordance with K5400), the case where no plating adheres to the adhesive tape is excellent in plating adhesion, and the case where a part of the plating adheres to the adhesive tape is considered as good plating adhesion, Δ, The case where the plating adhered to the entire surface of the adhesive tape was evaluated as x because the plating adhesion was poor.
 表1~7に、各現像ロールの層構成、用いた材料、評価結果等をまとめて示す。 Tables 1 to 7 summarize the layer structure of each developing roll, the materials used, the evaluation results, and the like.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1~7から以下のことが分かる。すなわち、比較例1~3に係る現像ロールは、軸体とパターン電極との間にある絶縁層が樹脂よりなる。さらに、樹脂よりなる絶縁層に形成された切削溝内に無電解ニッケルめっきよりなるパターン電極が形成されている。そのため、パターン電極の抵抗率を低くすることができ、比較的低電圧でのトナー帯電性に有利であるものの、ロールの硬度が高く硬質である。それ故、トナー層形成用ブレードや感光ドラム等の周辺部材との接触により、トナーにストレスがかかりやすく、トナーが劣化し、カブリ等の画像不具合が発生しやすいことが分かる。 Tables 1 to 7 show the following. That is, in the developing rolls according to Comparative Examples 1 to 3, the insulating layer between the shaft body and the pattern electrode is made of resin. Furthermore, a pattern electrode made of electroless nickel plating is formed in a cutting groove formed in an insulating layer made of resin. For this reason, the resistivity of the pattern electrode can be lowered, which is advantageous for toner chargeability at a relatively low voltage, but the hardness of the roll is high and hard. Therefore, it can be seen that the contact with the peripheral member such as the toner layer forming blade and the photosensitive drum tends to apply stress to the toner, the toner is deteriorated, and image defects such as fog are likely to occur.
 また、参考例1~11に係る現像ロールは、ゴム弾性を有する層構造(1)または層構造(2)を有しており、これら層構造の表面に、導電剤含有樹脂塗膜よりなるパターン電極が形成されている。そのため、ロールの硬度が低く、柔軟になり、トナー層形成用ブレードや感光ドラム等の周辺部材との接触によるトナーストレスを緩和でき、カブリ等の画像不具合を抑制可能である。しかしながら、パターン電極の抵抗率が相対的に高いため、低電圧印加によりトナーを帯電させる上で不利であると言える。すなわち、高電圧の印加が必要になり、電子写真機器の省電力化や高速化を図る上で改善の余地があると言える。 The developing rolls according to Reference Examples 1 to 11 have a layer structure (1) or a layer structure (2) having rubber elasticity, and a pattern made of a conductive agent-containing resin coating film on the surface of these layer structures. An electrode is formed. Therefore, the roll has a low hardness and is flexible, so that toner stress due to contact with peripheral members such as a toner layer forming blade and a photosensitive drum can be alleviated, and image defects such as fogging can be suppressed. However, since the resistivity of the pattern electrode is relatively high, it can be said that it is disadvantageous in charging the toner by applying a low voltage. That is, it is necessary to apply a high voltage, and it can be said that there is room for improvement in order to save power and increase the speed of the electrophotographic apparatus.
 これに対して、実施例1~24に係る現像ロールは、ゴム弾性を有する層構造(1)または層構造(2)を有しており、これら層構造の表面に、樹脂等の高分子塗膜よりなるパターン層とこのパターン層の表面に形成された無電解めっき層よりなる電極層とを有するパターン電極を有している。 On the other hand, the developing rolls according to Examples 1 to 24 have a layer structure (1) or a layer structure (2) having rubber elasticity. A pattern electrode having a pattern layer made of a film and an electrode layer made of an electroless plating layer formed on the surface of the pattern layer is provided.
 そのため、ロールの硬度が低く、柔軟になり、トナー層形成用ブレードや感光ドラム等の周辺部材との接触によるトナーストレスを緩和でき、カブリ等の画像不具合を抑制可能であることが分かる。また、パターン電極の電極層が金属材料よりなるので、パターン電極の表面抵抗が低くなり、比較的低電圧の印加により微小電界を発生させてトナーを帯電させることが可能であることが分かる。それ故、本発明に係る現像ロールによれば、電子写真機器の省電力化や高速化等に寄与することができると言える。 Therefore, it can be seen that the hardness of the roll is low and flexible, toner stress due to contact with peripheral members such as a toner layer forming blade and a photosensitive drum can be alleviated, and image defects such as fog can be suppressed. Further, since the electrode layer of the pattern electrode is made of a metal material, the surface resistance of the pattern electrode is low, and it can be seen that the toner can be charged by generating a minute electric field by applying a relatively low voltage. Therefore, it can be said that the developing roll according to the present invention can contribute to power saving and speeding up of the electrophotographic apparatus.
 以上、本発明の実施形態、実施例について説明したが、本発明は上記実施形態、実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の改変が可能なものである。 The embodiments and examples of the present invention have been described above, but the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention. is there.
 上記実施例では、本発明を現像ロールに適用した場合について示したが、本発明は現像ベルト等にも適用可能なものである。 In the above embodiment, the present invention is applied to the developing roll. However, the present invention can also be applied to a developing belt or the like.

Claims (13)

  1.  以下の層構造(1)または(2)を備えるとともに、
     (1)少なくとも1層以上のゴム弾性層と、このゴム弾性層の表面に積層された絶縁層とを備えた層構造
     (2)ゴム弾性を有する絶縁層を備えた層構造
     前記層構造の表面に、
     高分子塗膜よりなるパターン層と前記パターン層の表面に形成された金属材料よりなる電極層とを有するパターン電極を備えることを特徴とする電子写真機器用現像部材。
    While comprising the following layer structure (1) or (2),
    (1) Layer structure including at least one rubber elastic layer and an insulating layer laminated on the surface of the rubber elastic layer (2) Layer structure including an insulating layer having rubber elasticity The surface of the layer structure In addition,
    An electrophotographic apparatus developing member comprising a pattern electrode having a pattern layer made of a polymer coating and an electrode layer made of a metal material formed on the surface of the pattern layer.
  2.  前記電極層は、金属めっきより形成されていることを特徴とする請求項1に記載の電子写真機器用現像部材。 2. The developing member for an electrophotographic apparatus according to claim 1, wherein the electrode layer is formed by metal plating.
  3.  前記パターン層中または前記パターン層表面に触媒金属が存在することを特徴とする請求項1または2に記載の電子写真機器用現像部材。 3. The developing member for an electrophotographic apparatus according to claim 1, wherein a catalytic metal is present in the pattern layer or on the surface of the pattern layer.
  4.  前記触媒金属は、担体に担持されていることを特徴とする請求項3に記載の電子写真機器用現像部材。 4. The developing member for an electrophotographic apparatus according to claim 3, wherein the catalytic metal is supported on a carrier.
  5.  前記電極層の厚みは、50nm~10μmの範囲内にあることを特徴とする請求項1から4のいずれか1項に記載の電子写真機器用現像部材。 5. The developing member for an electrophotographic apparatus according to claim 1, wherein the thickness of the electrode layer is in the range of 50 nm to 10 μm.
  6.  前記パターン層のパターン形状は、レーザー加工により形成されていることを特徴とする請求項1から5のいずれか1項に記載の電子写真機器用現像部材。 The developing member for an electrophotographic apparatus according to any one of claims 1 to 5, wherein the pattern shape of the pattern layer is formed by laser processing.
  7.  前記層構造(1)、(2)の絶縁層は、レーザー反射性を有することを特徴とする請求項1から6のいずれか1項に記載の電子写真機器用現像部材。 The developing member for an electrophotographic apparatus according to any one of claims 1 to 6, wherein the insulating layers of the layer structures (1) and (2) have laser reflectivity.
  8.  前記層構造(1)、(2)の絶縁層は、当該絶縁層よりも下層がレーザー加工されるのを抑制可能な厚みを有することを特徴とする請求項1から7のいずれか1項に記載の電子写真機器用現像部材。 The insulating layer of the layer structure (1) or (2) has a thickness capable of suppressing lower layer laser processing from the insulating layer, according to any one of claims 1 to 7. The developing member for electrophotographic equipment as described.
  9.  前記パターン電極の表面は、被膜により覆われていることを特徴とする請求項1から8のいずれか1項に記載の電子写真機器用現像部材。 9. The developing member for an electrophotographic apparatus according to claim 1, wherein the surface of the pattern electrode is covered with a coating film.
  10.  以下の層構造(1)または(2)を形成する工程と、
     (1)少なくとも1層以上のゴム弾性層と、このゴム弾性層の表面に積層された絶縁層とを備えた層構造
     (2)ゴム弾性を有する絶縁層を備えた層構造
     前記層構造の表面に、高分子塗膜よりなるパターン層を形成する工程と、
     前記パターン層の表面に金属材料よりなる電極層を形成する工程と、
    を有することを特徴とする電子写真機器用現像部材の製造方法。
    Forming the following layer structure (1) or (2);
    (1) Layer structure including at least one rubber elastic layer and an insulating layer laminated on the surface of the rubber elastic layer (2) Layer structure including an insulating layer having rubber elasticity The surface of the layer structure And a step of forming a pattern layer comprising a polymer coating film,
    Forming an electrode layer made of a metal material on the surface of the pattern layer;
    A method for producing a developing member for an electrophotographic apparatus, comprising:
  11.  金属めっきにより電極層を形成することを特徴とする請求項10に記載の電子写真機器用現像部材の製造方法。 The method for producing a developing member for an electrophotographic apparatus according to claim 10, wherein the electrode layer is formed by metal plating.
  12.  触媒金属を含有する高分子塗膜よりなるパターン層、または、表面に触媒金属が付与された高分子塗膜よりなるパターン層を形成することを特徴とする請求項10または11に記載の電子写真機器用現像部材の製造方法。 12. The electrophotography according to claim 10, wherein a pattern layer made of a polymer coating film containing a catalyst metal or a pattern layer made of a polymer coating film provided with a catalyst metal on the surface thereof is formed. A method for producing a developing member for equipment.
  13.  前記触媒金属を含有する高分子塗膜に含まれる高分子は、水溶性高分子であることを特徴とする請求項12に記載の電子写真機器用現像部材の製造方法。 13. The method for producing a developing member for an electrophotographic apparatus according to claim 12, wherein the polymer contained in the polymer coating film containing the catalyst metal is a water-soluble polymer.
PCT/JP2010/067938 2009-10-30 2010-10-13 Developing member for electrophotography device and method for producing said developing member WO2011052378A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538337A JP5290428B2 (en) 2009-10-30 2010-10-13 Developing member for electrophotographic apparatus and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249708 2009-10-30
JP2009-249708 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052378A1 true WO2011052378A1 (en) 2011-05-05

Family

ID=43921804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067938 WO2011052378A1 (en) 2009-10-30 2010-10-13 Developing member for electrophotography device and method for producing said developing member

Country Status (2)

Country Link
JP (1) JP5290428B2 (en)
WO (1) WO2011052378A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210406A (en) * 2012-03-30 2013-10-10 Tokai Rubber Ind Ltd Heating member
WO2018123415A1 (en) * 2016-12-27 2018-07-05 住友理工株式会社 Method for producing heating member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519617A (en) * 1991-07-09 1993-01-29 Ricoh Co Ltd Image forming device
JP2003084566A (en) * 2001-09-12 2003-03-19 Ricoh Co Ltd Electrostatic conveyance device
JP2004271624A (en) * 2003-03-05 2004-09-30 Sharp Corp Development apparatus and image forming apparatus
JP2005062809A (en) * 2003-07-31 2005-03-10 Ricoh Co Ltd Toner transfer device, developing device, process unit, image forming device, toner transfer method, and image forming method
JP2008145758A (en) * 2006-12-11 2008-06-26 Ricoh Co Ltd Image forming apparatus
JP2009109863A (en) * 2007-10-31 2009-05-21 Ricoh Co Ltd Image developing unit, process unit, and image forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519617A (en) * 1991-07-09 1993-01-29 Ricoh Co Ltd Image forming device
JP2003084566A (en) * 2001-09-12 2003-03-19 Ricoh Co Ltd Electrostatic conveyance device
JP2004271624A (en) * 2003-03-05 2004-09-30 Sharp Corp Development apparatus and image forming apparatus
JP2005062809A (en) * 2003-07-31 2005-03-10 Ricoh Co Ltd Toner transfer device, developing device, process unit, image forming device, toner transfer method, and image forming method
JP2008145758A (en) * 2006-12-11 2008-06-26 Ricoh Co Ltd Image forming apparatus
JP2009109863A (en) * 2007-10-31 2009-05-21 Ricoh Co Ltd Image developing unit, process unit, and image forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210406A (en) * 2012-03-30 2013-10-10 Tokai Rubber Ind Ltd Heating member
WO2018123415A1 (en) * 2016-12-27 2018-07-05 住友理工株式会社 Method for producing heating member

Also Published As

Publication number Publication date
JP5290428B2 (en) 2013-09-18
JPWO2011052378A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US9541854B2 (en) Electroconductive member for electrophotography, process cartridge, and electrophotographic apparatus
US9547250B2 (en) Electroconductive member for electrophotography, process cartridge and electrophotographic apparatus
JP5085030B2 (en) Developing roll and its production method
US9182700B2 (en) Cleaning member for image forming apparatus, charging device, unit for image forming apparatus, process cartridge, image forming apparatus
US9291969B2 (en) Base for fixing belt, fixing belt, fixing device, and image forming apparatus
JP2002357949A (en) Developing roll
JP5290428B2 (en) Developing member for electrophotographic apparatus and method for producing the same
JP6769062B2 (en) Charging member, charging device, process cartridge, and image forming device
JP2006243374A (en) Office automation apparatus roll
JP2007218993A (en) Roughening roll for electrophotographic device, and its manufacturing method
JP5143622B2 (en) Developing member for electrophotographic apparatus and method for producing the same
US20190310580A1 (en) Cleaning member and image forming apparatus
JP4613641B2 (en) Charging roll manufacturing method
JP2008158437A (en) Charging roll
JP2007225708A (en) Conductive roll, method of manufacturing same, charging roll, transfer roll, cleaning roll, and image forming apparatus
JP2022077928A (en) Image forming apparatus
JPH07152222A (en) Electrifying member and electrifying device
JP2021157041A (en) Cleaning body, cleaning device, charging device, assembly, and image forming device
JP4282530B2 (en) Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, and image forming apparatus
JP2006065059A (en) Conductive member
JP2011180364A (en) Method for manufacturing developer carrier, developer carrier, developing device, and image forming apparatus
JP7429787B2 (en) Conductive roll, image forming device, and conductive roll inspection method
JP2018146612A (en) Charing device and image forming apparatus
US11474444B2 (en) Intermediate transfer belt and image forming apparatus
JP2007108319A (en) Charging roller for electrophotography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538337

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826512

Country of ref document: EP

Kind code of ref document: A1