WO2011051614A2 - Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée - Google Patents

Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée Download PDF

Info

Publication number
WO2011051614A2
WO2011051614A2 PCT/FR2010/052290 FR2010052290W WO2011051614A2 WO 2011051614 A2 WO2011051614 A2 WO 2011051614A2 FR 2010052290 W FR2010052290 W FR 2010052290W WO 2011051614 A2 WO2011051614 A2 WO 2011051614A2
Authority
WO
WIPO (PCT)
Prior art keywords
stream
downstream
heat exchanger
cracked gas
liquid
Prior art date
Application number
PCT/FR2010/052290
Other languages
English (en)
Other versions
WO2011051614A3 (fr
Inventor
Jean-Paul Laugier
Yvon Simon
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/503,697 priority Critical patent/US10767924B2/en
Priority to AU2010311203A priority patent/AU2010311203B2/en
Application filed by Technip France filed Critical Technip France
Priority to EA201200637A priority patent/EA023180B1/ru
Priority to RS20190646A priority patent/RS58775B1/sr
Priority to CA2778841A priority patent/CA2778841C/fr
Priority to CN201080055212.XA priority patent/CN104246400B/zh
Priority to ES10793276T priority patent/ES2730888T3/es
Priority to MX2012004807A priority patent/MX355365B/es
Priority to EP10793276.6A priority patent/EP2494295B1/fr
Priority to BR112012009851-9A priority patent/BR112012009851B1/pt
Priority to PL10793276T priority patent/PL2494295T3/pl
Priority to UAA201206303A priority patent/UA107944C2/ru
Publication of WO2011051614A2 publication Critical patent/WO2011051614A2/fr
Priority to TNP2012000181A priority patent/TN2012000181A1/fr
Priority to MA34815A priority patent/MA33699B1/fr
Publication of WO2011051614A3 publication Critical patent/WO2011051614A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/062Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • C10G70/04Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D23/14Clutch-actuating sleeves or bearings; Actuating members directly connected to clutch-actuating sleeves or bearings
    • F16D2023/141Clutch-actuating sleeves or bearings; Actuating members directly connected to clutch-actuating sleeves or bearings characterised by using a fork; Details of forks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • a method of fractionating a cracked gas stream to obtain an ethylene-rich cut and a fuel stream, and associated plant is a method of fractionating a cracked gas stream to obtain an ethylene-rich cut and a fuel stream, and associated plant.
  • the present invention relates to a process for fractionating a cracked gas stream from a hydrocarbon pyrolysis plant to obtain a rich ethylene cut and a fuel stream low in C 2 + hydrocarbons, the process comprising the steps following:
  • downstream cooling and partial condensation of the downstream stream of cracked gas in at least one downstream heat exchanger to a third temperature below the second temperature
  • the cracked gas comes from a hydrocarbon pyrolysis plant such as a steam cracking furnace.
  • the gas introduced into the pyrolysis plant advantageously has at least 70% ethane, in combination with propane, butane, naphtha, and / or gas oil.
  • the process of the aforementioned type is intended to treat the cracked gas to obtain a section of ethylene having an ethylene content greater than 99.95 mol%, recovering more than 99.5 mol% of the ethylene contained in the cracked gas.
  • This process is intended to be implemented to treat very large volumes of cracked gas, for example greater than 50 tons, especially greater than 100 tons per hour.
  • the cracked gas stream is placed in heat exchange relationship successively with propylene circulating in a first external refrigeration cycle, then with ethylene circulating in a second external refrigeration cycle.
  • the ethylene refrigeration cycle usually consists of three temperature levels, with a first heat exchanger to about - 50 ° C, a second heat exchanger to about -75 ° C and a third heat exchanger to about - 100 ⁇ C.
  • the partially condensed cracked gas is introduced into a separator to evacuate the formed liquid.
  • the collected liquids which are generally rich in C 2 + hydrocarbons, are sent to a treatment unit comprising at least one fractionation column.
  • the fractionation column produces the stream containing ethylene recovered by the cryogenic process.
  • An object of the invention is therefore to obtain, with a lower investment (by eliminating a thermal level delivered by a refrigeration cycle), a fractionation process which always allows the recovery of an ethylene-rich stream, with a rate of very high recovery, while presenting improved energy performance.
  • the object of the invention is a process of the aforementioned type, characterized in that the method comprises the following steps:
  • the method according to the invention may comprise one or more of the following characteristics, taken separately or according to any combination (s) technically possible (s):
  • the thermal power necessary for cooling the intermediate stream of cracked gas towards the second temperature is supplied in the intermediate heat exchanger by heat exchange with the high pressure fuel stream, by heat exchange with the partially expanded fuel stream and by heat exchange. with the expanded fuel stream, without heat exchange with an external refrigerant circulating in a refrigeration cycle;
  • the process comprises recovering the downstream liquid and reheating it through the downstream heat exchanger, and the intermediate heat exchanger;
  • downstream liquid is subcooled in the downstream heat exchanger before it is reheated in the downstream heat exchanger and then in the intermediate heat exchanger;
  • At least a fraction of an intermediate liquid recovered in the intermediate cooling stage is reheated in the downstream heat exchanger and in the intermediate heat exchanger;
  • the fraction of the intermediate liquid recovered at the intermediate cooling step is subcooled in the downstream heat exchanger before being reintroduced into the downstream heat exchanger and then into the intermediate heat exchanger;
  • At least one of the at least one fraction of the intermediate liquid and the downstream liquid evaporates as it passes through the downstream heat exchanger and into the intermediate heat exchanger to form a recirculating gas stream; recirculation being mixed with the raw cracked gas stream, before the passage of the raw cracked gas stream in at least one compressor;
  • the treatment step comprises introducing at least one stream formed from the upstream liquid, the intermediate liquid and / or the downstream liquid into a fractionation column and producing a rich stream in the fractionation column; ethylene for forming the ethylene-rich fraction;
  • the upstream liquid and the intermediate liquid are introduced into the fractionation column;
  • the overhead stream from the fractionation column is conveyed to the upstream heat exchanger and preferably to an upstream heat exchanger, before being mixed with the crude cracked gas;
  • the first dynamic expansion device and the second dynamic expansion device each comprise at least one dynamic expansion turbine, advantageously each comprising between two and three dynamic expansion turbines;
  • the molar content of hydrogen in the high-pressure fuel stream is greater than 75%
  • the first temperature is less than -63 ° C.
  • the second temperature is less than - ⁇ ' ⁇
  • the third temperature is less than -120 ° C.
  • the invention also relates to a plant for fractionating a stream of cracked gas from a hydrocarbon pyrolysis plant to obtain a rich ethylene cut and a fuel stream low in C 2 + hydrocarbons. installation comprising:
  • upstream cooling and partial condensation means of a raw cracked gas stream comprising at least partial heat exchange means with a first external refrigeration cycle and means for separating an upstream liquid comprising at least one balloon upstream to form an intermediate stream of cracked gas pre-cooled to a first temperature;
  • Intermediate cooling means and partial condensation of the intermediate stream of cracked gas comprising at least one intermediate heat exchanger and means for separating an intermediate liquid comprising at least one intermediate separation tank to form a downstream stream of cooled cracked gas at a second temperature lower than the first temperature;
  • Downstream cooling means and partial condensation of the downstream stream of cracked gas comprising at least one downstream heat exchanger for cooling the current downstream of cracked gas to a third temperature below the second temperature;
  • downstream separator and means for introducing the downstream stream of cracked gas coming from the downstream heat exchanger into the downstream separator
  • recovery means at the top of the downstream separator, of a gaseous high-pressure fuel stream low in C 2 + hydrocarbons and recovery means, at the bottom of the downstream separator, of a downstream liquid rich in hydrocarbons; C 2 + ;
  • means for expanding the heated high pressure fuel stream comprising at least a first dynamic expansion device to form a partially expanded fuel stream
  • means for compressing the heated expanded fuel stream comprising at least one compressor coupled to at least one expansion turbine of the first dynamic expansion device and / or the second dynamic expansion device to form the fuel stream that is low in C-hydrocarbons 2 + .
  • the single figure is a functional block diagram of a first fractionation installation according to the invention, for the implementation of a first method according to the invention.
  • the same reference designates a current flowing in a pipe and the pipe that carries this current.
  • the percentages are molar percentages and the pressures are in relative bars.
  • a first steam cracking unit 10 according to the invention is shown in FIG. 1
  • This unit 10 is intended to form a cut 12 rich in ethylene and a stream 14 of fuel gas poor in C 2 + hydrocarbons, from a load 16.
  • Unit 10 includes a hydrocarbon pyrolysis facility 18 having a steam cracking furnace for producing a raw cracked gas stream. It further comprises a plant 22 for fractionating the raw treated gas to form the fuel gas stream 14 and the ethylene-rich section 12.
  • the filler 16 is advantageously formed of at least 70 mol% of ethane, in combination with propane, butane, naphtha and / or gas oil.
  • the steam-cracking furnace 18 is adapted to circulate the charge 16 to heat it to a temperature above 800 ° C. This causes thermal cracking of the hydrocarbon molecules contained in the charge 16 to form the crude cracked gas stream 20.
  • the fractionation plant 22 comprises successively a set 24 of cooling and compression, and an upstream assembly 26, a downstream assembly 28 and an intermediate assembly 30 for cooling and separating the cracked gas.
  • the installation 22 further comprises a set 32 for treating the liquids formed in the sets 26 to 30, and a set 34 for relaxing and reheating the fuel gas.
  • the compression assembly 24 comprises a cooling step and a primary compressor 36 and a secondary compressor 38, the secondary compressor being disposed downstream of the primary compressor 36.
  • the upstream assembly 26 for cooling and separation comprises a first upstream separator tank 40, an upstream heat exchanger 42, an ethylene refrigeration cycle 44, and a second upstream separator tank 46.
  • the ethylene cycle 44 comprises two cycle heat exchangers 48A, 48B in which ethylene circulates.
  • the ethylene inlet temperature is below -45 ° C, advantageously between -45 ° and -60 ° C in the exchanger 48A, and is less than -65 ° C and in particular between -65 ° and - 80 ° C in the exchanger 48B.
  • the heat exchangers 48A and 48B may be integrated in the upstream heat exchanger 42.
  • the intermediate cooling and separation assembly 28 comprises, from upstream to downstream, a first intermediate heat exchanger 50, a first intermediate separator tank 52, then a second intermediate heat exchanger 54, and a second intermediate separator tank 56.
  • the downstream cooling and separation unit 30 comprises a downstream heat exchanger 58 and a downstream separator tank 60 for producing the fuel gas stream.
  • the liquid treatment unit 32 comprises a fractionating column 62, a reboiling heat exchanger 64, and a bottom-of-column pump 66.
  • the expansion and reheat assembly 34 comprises a first dynamic expansion device 68, a second dynamic expansion device 70, the devices 68, 70 each having at least one dynamic expansion turbine 68A, 70A.
  • the expansion and reheat assembly 34 further comprises a heating heat exchanger 72, a first compression apparatus 74 and a second compression apparatus 75, the apparatuses 74 and 75 each having at least one compressor 74A and 75A, which are each coupled to a respective expansion turbine 68A, 70A of the first dynamic expansion device 68 and the second dynamic expansion device 70.
  • the heating heat exchanger 72 cools a refrigerant circulating in a cycle 78 of propylene refrigeration.
  • the propylene cycle 78 comprises a foot heat exchanger 80 placed downstream of the bottom-of-column pump 66.
  • the exchanger 80 can be integrated in the exchanger 42.
  • a first method according to the invention, implemented in unit 10 to treat the cracked gas stream from the steam cracking of a load 16, will now be described.
  • the feed 16 containing predominantly ethane is introduced into the steam cracking furnace 18 to be heated to a temperature above 800 ° C and undergo thermal cracking.
  • a crude cracked gas stream 20 is withdrawn from furnace 18 at a temperature above 800 ° C. and at a pressure above 1 bar.
  • This stream 20 is then cooled and introduced into the primary compressor 36 to be compressed at a pressure greater than 10 bar substantially lower than the pressure in the fractionation column 62, then in the secondary compressor 38 to be compressed at a pressure greater than 30 bars.
  • the compressed compressed gas stream 90 from the secondary compressor 38 is then separated into a first reboil fraction 92 and a second fraction 94.
  • the reboiling fraction 92 is introduced into the heat exchanger 64 of the bottom of the column to be cooled and partially condensed.
  • the second fraction 94 is passed through a first flow control valve 96, before being mixed with the reboiling fraction 92 from the exchanger 64 to form a partially condensed cracked gas stream 98.
  • the cracked gas stream 90 can advantageously circulate, partially or entirely, through the reheat heat exchanger 72 before separation into the streams 92 and 96, in order to cool in the exchanger 72.
  • the partially condensed cracked gas stream 98 contains at least 15 mol% of liquid. It has a temperature below -30 ° C.
  • the stream 98 is introduced into the first upstream separator tank 40 to form a first upstream liquid 100 and an upstream stream of cracked gas 102.
  • the first upstream liquid 100 is taken from the bottom of the first separator tank 40 and is introduced at a lower level N1 of the fractionation column 62 after passage and expansion in a second flow control valve 104.
  • the pressure in the fractionation column 62 is advantageously between 10 bars and 14 bars.
  • the upstream stream 102 is then separated into a first gas stream 106 of cracked gas and a second gaseous stream 108 of cracked gas.
  • the ratio of the molar flow rate of the first stream 106 to the molar flow rate of the upstream stream 102 is greater than 8%.
  • the first stream 106 is cooled to a temperature below -63 ° C. and in particular substantially between -63 ° C. and -78 ° in the upstream heat exchanger 42.
  • the second gas stream 108 is introduced successively into the first cycle heat exchanger 48A to be cooled to a temperature below -43 ° by heat exchange with the ethylene circulating in cycle 44. Then, it is introduced into the second 48B cycle heat exchanger to be cooled to a temperature below -63 ⁇ , and in particular between - 63 ° C and - 78 ' ⁇ .
  • the streams 106 and 108 are mixed and form a partially condensed upstream stream 10 of cracked gas which is introduced into the second upstream separator tank 46.
  • the molar content of liquid in the upstream stream of partially condensed cracked gas 1 10 is between 30% and 60%.
  • the stream 1 10 separates into a second upstream liquid 1 12 and a first intermediate gas stream 1 14 of cracked gas cooled to a first temperature below -63 ' ⁇ .
  • the second upstream liquid 1 12 is recovered at the bottom of the second upstream separator tank 46. It forms the stream 1 13 after passage and expansion in a third flow control valve 1 16 and is introduced at a level N 2 of the fractionation column 62 located above level N1.
  • the first intermediate stream 1 14 of cracked gas is introduced into the first intermediate heat exchanger 50 to be cooled to a temperature below -85 ° C and form an intermediate stream 1 18 partially condensed cracked gas.
  • Stream 1 18 has a temperature below -85 ° C, and a liquid content of between 8 mol% and 30 mol%.
  • the stream 1 18 is then introduced into the first intermediate separator tank 52 to form a first intermediate liquid 120 and a second intermediate gas stream 122 of cracked gas.
  • the first intermediate liquid 120 is recovered at the bottom of the flask 52. It forms the stream 121, after passage and expansion through a fourth flow control valve 124, before being introduced at a third level N3 of the fractionation column 62 , located above the N2 level.
  • the streams 1 13 and 121 can be combined before feeding the fractionation column 62.
  • the second intermediate gas stream 122 is then introduced into the second intermediate heat exchanger 54 to be cooled to a second temperature below -105 ° C and between - 105 ° C and - 120 ° C.
  • the second intermediate stream 126 partially condensed is introduced into the second intermediate separator tank 56 to be separated into a second intermediate liquid 128 and a downstream stream of cracked gas 130.
  • a first fraction 132 of the second intermediate liquid 128 is introduced at a level N4 of the fractionation column 62 located above the level N3, after passage and expansion in a fifth valve 134 flow control.
  • a second fraction 136 of recirculation of the second intermediate liquid 128 is sub-cooled in the downstream heat exchanger 58, as will be seen below.
  • the downstream stream of cracked gas 130 is then introduced into the downstream heat exchanger 58 to be cooled and form a downstream stream 140 of partially condensed cracked gas.
  • the temperature of the current 140, at the outlet of the exchanger thermal downstream 58 is less than - ⁇ 25 ° and is in particular between - 125 ⁇ and - 140 ° C.
  • the stream 140 is then introduced into the downstream separator tank 60 to be separated into a downstream liquid 142 and a high pressure fuel gas stream 144 to be expanded.
  • the fuel gas stream 144 comprises more than 75 mol% hydrogen and less than 0.5 mol% C 2 + hydrocarbons.
  • the stream 144 is introduced a first time in the downstream heat exchanger 58 for heating by counter-current heat exchange with the downstream stream 130 of cooled cracked gas, then in the second intermediate heat exchanger 54 to heat up against the current in particular the second intermediate stream 122 of cracked gas, up to a temperature greater than -110.degree.
  • the high pressure fuel gas stream 146 heated to a temperature above -85 ° C is then introduced into a dynamic expansion turbine 68A of the first dynamic expansion device 68 to be expanded to a pressure of less than 12 bar and form a stream 148 of intermediate pressure fuel gas.
  • the temperature of stream 148 is below -115 ° C.
  • the stream 148 is then introduced again in the downstream heat exchanger 58, in the second intermediate heat exchanger 54, then in the first intermediate heat exchanger 50 to heat successively by heat exchange respectively with the current 130, the current 122 and the current 1 14, as previously described.
  • This passage of the current 148 through the exchangers 50, 54, 58 is effected between a turbine 68A of the first apparatus 68 and a turbine 70A of the second apparatus 70.
  • the stream 150 of heated fuel gas at intermediate pressure is then introduced into a dynamic expansion turbine 70A of the second dynamic expansion device 70 to be expanded at a pressure below 4 bar and form a fuel gas stream 152 at low pressure cooled. .
  • the temperature of the stream 152 is then less than -1 15 ° C, and its pressure is less than 4 bar.
  • the stream 152 is then introduced successively into the downstream heat exchanger 58, into the second intermediate heat exchanger 54, then into the first heat exchanger 50 to be heated against the current respectively of the current 130, the current 122, and the current 14 as described above.
  • the stream of heated low pressure gas 154 from the first intermediate heat exchanger 50 is then successively introduced into the upstream heat exchanger 42 to be placed in heat exchange relation with the first gas stream 106 issuing from the first gas stream of cracked gas. 102, then in the heating heat exchanger 72.
  • the stream 154 is heated by heat exchange with the refrigerant fluid 156 to the propylene circulating in the refrigeration cycle 78.
  • the stream 160 of fuel gas heated at low pressure from the exchanger 72 thus has a pressure close to atmospheric pressure.
  • the stream 160 is then successively introduced into the compressor 75A of the second compression apparatus 75, then into the compressor 74A of the downstream compression apparatus 74 to form the fuel stream 14 for supplying the network of the installation.
  • the pressure of the stream 14 is greater than 5 bars.
  • the ethylene content in the high pressure fuel gas 144, as in the fuel gas 14 is less than 0.5 mol%.
  • the ethylene recovery rate in the facility is greater than 99.5%.
  • the fuel stream 14 advantageously comprises more than 99% of the methane contained in the raw cracked gas stream 20.
  • the downstream liquid 142 comprises more than 25 mol% of C 2 + hydrocarbons. It is introduced into the downstream heat exchanger 58 to be sub-cooled to a temperature below -120 ° C.
  • the liquids 136, 142 are mixed and introduced successively into the heat exchangers 58, 54, 50, 42 and 72 to heat up and evaporate by heat exchange with the respective currents flowing in these heat exchangers. exchangers.
  • the gaseous stream 162 is reintroduced into the crude cracked gas stream 20, in the primary compressor 36.
  • the liquids 136 and 142 are introduced separately into the heat exchangers 58, 54, 50, 42, 72 for reheat, before being reintroduced into the raw cracked gas stream 20.
  • the fractionation column 62 produces a methane-rich overhead stream 164 and an ethylene-rich foot stream 166.
  • the overhead stream 164 is introduced, after reheating in the upstream heat exchanger 42, and after reheating in the reheat heat exchanger 72, in the raw cracked gas stream 20 between the primary compressor 36 and the secondary compressor 38.
  • the foot stream 166 from the fractionation column 62 is pumped by the pump 66, before being introduced into the recovery heat exchanger 80 (which can be integrated in the exchanger 72). It is then reheated in contact with the propylene forming the refrigerant fluid of the cycle 78. After passing through the exchanger 80, the ethylene-rich section 12 is formed. This cup 12 comprises more than 99.5 mol% of the ethylene contained in the raw cracked gas stream 20.
  • the intermediate stream of cracked gas 1 14 which is cooled to a temperature below -63 ° C. by the refrigeration provided by the ethylene cycle 44 is then cooled to a temperature below -90. ° C exclusively by heat exchange with the fuel gas stream 144 at high pressure, with the partially expanded fuel gas stream 148 and with the expanded fuel gas stream 152, and by the reheating of the liquids 142, 136 from the balloons 56, 60, in the heat exchangers 50, 54 and 58.
  • the appropriate use of the expansion potential and the high heat capacity of the high pressure fuel gas 144 formed at the outlet of the downstream flask 60 greatly reduces the energy consumption of the process. It is thus possible to reduce the specific refrigeration power by at least 30 kWh per ton of ethylene produced per hour compared with a unit known from the state of the art, while maintaining an ethane recovery rate. greater than 99.5% and producing a cut 12 rich in ethylene.
  • each dynamic expansion device 68 comprises a plurality of dynamic expansion turbines, for example from 2 to 3 dynamic expansion turbines.
  • an additional compressor is placed downstream of the compressors 76A, 76B to compress the fuel gas 14 at a higher pressure.
  • the processing unit comprises a plurality of fractionation columns as described for example in EP 1 215 459. It will be noted, as shown in the single FIGURE, that the entire high-pressure fuel stream 144 is heated successively in the downstream heat exchanger, and in the intermediate heat exchangers 50, 54 before being introduced entirely into the first dynamic relaxation device 68.
  • all of the partially expanded fuel stream 148 issuing from the first dynamic expansion device 68 is successively passed through the downstream exchanger 58 and into the intermediate exchangers 50, 54, before being introduced entirely into the second Dynamic expansion 70.
  • the entire expanded fuel stream 152 from the second dynamic expansion device 70 is then introduced into the downstream heat exchanger 58 and into the intermediate heat exchangers 50, 54.
  • flasks 40, 46 and 52, 56 and 60 are simple separator flasks, and not distillation columns. Thus, these balloons are devoid of trays or packing
  • the fractionation column 62 is a stripper type column. Thus, the methane-rich overhead stream 164 from column 62 is totally returned to the raw cracked gas 20, without a fraction of this stream 164 being condensed to reflux at column 62.
  • the thermal power required for cooling the downstream stream of cracked gas 130 to the third temperature is supplied in the downstream heat exchanger 58 by heat exchange with the high-pressure fuel stream 144, by heat exchange with the fuel flow partially. expanded, and by heat exchange with the expanded fuel stream 152, without heat exchange with an external refrigerant circulating in a refrigeration cycle, and in particular without heat exchange with the refrigerant circulating in the refrigeration cycle 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée. Ce procédé comporte l'introduction d'un courant (140) de gaz craqué aval issu d'un échangeur thermique aval (58) dans un séparateur aval (60) et la récupération, en tête du séparateur aval (60), d'un courant (144) gazeux de combustible à haute pression. Le procédé comporte le passage du courant (144) de combustible à travers l'échangeur aval (58) et un échangeur intermédiaire (50, 54) pour former un courant (146) combustible haute pression réchauffé, la détente du courant (146) de combustible haute pression réchauffé dans au moins un premier appareil (68) de détente dynamique et le passage du courant (148) de combustible partiellement détendu issu de l'échangeur intermédiaire (50, 54) dans un deuxième appareil de détente dynamique (70) pour former un courant (152) de combustible détendu. Le courant (152) de combustible détendu issu du deuxième appareil de détente dynamique (70) est réchauffé dans l'échangeur thermique aval (58) et dans l'échangeur thermique intermédiaire (50, 54).

Description

Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée.
La présente invention concerne un procédé de fractionnement d'un courant de gaz craqué issu d'une installation de pyrolyse d'hydrocarbures pour obtenir une coupe riche en éthylène et un courant de combustible pauvre en hydrocarbures en C2 +, le procédé comprenant les étapes suivantes :
- refroidissement amont et condensation partielle d'un courant de gaz craqué brut par échange thermique au moins partiel avec un fluide réfrigérant circulant dans un premier cycle de réfrigération externe et séparation d'un liquide amont dans au moins un ballon amont pour former un courant intermédiaire de gaz craqué pré-refroidi à une première température ;
- refroidissement intermédiaire et condensation partielle du courant intermédiaire de gaz craqué dans au moins un échangeur thermique intermédiaire et séparation d'un liquide intermédiaire dans au moins un ballon de séparation intermédiaire pour former un courant aval de gaz craqué refroidi à une deuxième température inférieure à la première température ;
- refroidissement aval et condensation partielle du courant aval de gaz craqué dans au moins un échangeur thermique aval jusqu'à une troisième température inférieure à la deuxième température ;
- introduction du courant aval de gaz craqué partiellement condensé issu de l'échangeur thermique aval dans un séparateur aval ;
- récupération, en tête du séparateur aval, d'un courant gazeux de combustible à haute pression, pauvre en hydrocarbures en C2 +, et récupération, en pied du séparateur aval, d'un liquide aval, riche en hydrocarbures en C2 + ;
- passage du courant de combustible haute pression à travers l'échangeur aval et l'échangeur intermédiaire pour former un courant de combustible haute pression réchauffé ;
- détente du courant de combustible haute pression réchauffé dans au moins un premier appareil de détente dynamique pour obtenir un courant de combustible partiellement détendu;
- réchauffage du courant de combustible partiellement détendu à travers l'échangeur aval et l'échangeur intermédiaire ;
- traitement d'au moins un liquide obtenu lors des étapes de refroidissement amont, de refroidissement intermédiaire et de refroidissement aval pour former la coupe riche en éthylène. Le gaz craqué est issu d'une installation de pyrolyse d'hydrocarbures tel qu'un four de vapocraquage. Le gaz introduit dans l'installation de pyrolyse présente avantageusement au moins 70% d'éthane, en association avec du propane, du butane, du naphta, du et/ou du gasoil.
Le procédé du type précité est destiné à traiter le gaz craqué pour obtenir une coupe d'éthylène présentant une teneur en éthylène supérieure à 99,95 % en moles, en récupérant plus de 99,5 % en moles de l'éthylène contenu dans le gaz craqué.
Un procédé du type précité qui permet d'obtenir de telles performances est décrit par exemple dans EP 1 215 459.
Ce procédé est destiné à être mis en œuvre pour traiter de très grands volumes de gaz craqué, par exemple supérieur à 50 tonnes, notamment supérieur à 100 tonnes par heure.
Pour garantir à la fois une très grande pureté du courant d'éthylène produit et un taux de récupération d'éthylène maximal, il est nécessaire de refroidir le gaz traité jusqu'à des températures inférieures à - 100 'C et notamment inférieures à - 120°C.
A cet effet, le courant de gaz craqué est mis en relation d'échange thermique successivement avec du propylène circulant dans un premier cycle de réfrigération externe, puis avec de l'éthylène circulant dans un deuxième cycle de réfrigération externe.
Le cycle de réfrigération à l'éthylène comprend généralement trois niveaux thermiques, avec un premier échangeur thermique à environ - 50 °C, un deuxième échangeur thermique à environ -75°C et un troisième échangeur thermique à environ - 100 <C.
Après chaque échange thermique, le gaz craqué partiellement condensé est introduit dans un séparateur pour évacuer le liquide formé.
Les liquides recueillis, qui sont généralement riches en hydrocarbures en C2 +, sont envoyés vers une unité de traitement comportant au moins une colonne de fractionnement. La colonne de fractionnement produit le courant contenant l'éthylène récupéré par le procédé cryogénique.
Compte tenu de l'utilisation de deux cycles de réfrigération et d'un cycle à base d'éthylène à trois niveaux thermiques, la consommation énergétique du procédé peut encore être améliorée.
Un but de l'invention est donc d'obtenir, avec un investissement inférieur (par suppression d'un niveau thermique délivré par un cycle de réfrigération), un procédé de fractionnement qui permette toujours de récupérer un courant riche en éthylène, avec un taux de récupération très élevé, tout en présentant des performances énergétiques améliorées. A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que caractérisé en ce que le procédé comprend les étapes suivantes :
- passage du courant de combustible partiellement détendu issu de l'échangeur intermédiaire dans un deuxième appareil de détente dynamique pour former un courant de combustible détendu ;
- réchauffage du courant de combustible détendu issu du deuxième appareil de détente dynamique dans l'échangeur thermique aval et dans l'échangeur thermique intermédiaire ;
- compression du courant de combustible détendu réchauffé dans au moins un compresseur accouplé à au moins une turbine de détente du premier appareil de détente dynamique ou/et du deuxième appareil de détente dynamique pour former le courant de combustible pauvre en hydrocarbures en C2 +.
Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :
- la puissance thermique nécessaire au refroidissement du courant intermédiaire de gaz craqué vers la deuxième température est fournie dans l'échangeur thermique intermédiaire par échange thermique avec le courant de combustible haute pression, par échange thermique avec le courant de combustible partiellement détendu et par échange thermique avec le courant de combustible détendu, sans échange thermique avec un fluide réfrigérant externe circulant dans un cycle de réfrigération ;
- le procédé comprend la récupération du liquide aval et son réchauffage à travers l'échangeur thermique aval, et l'échangeur thermique intermédiaire ;
- le liquide aval est sous-refroidi dans l'échangeur thermique aval avant son réchauffage dans l'échangeur thermique aval, puis dans l'échangeur thermique intermédiaire ;
- au moins une fraction d'un liquide intermédiaire récupéré à l'étape de refroidissement intermédiaire est réchauffée dans l'échangeur thermique aval et dans l'échangeur thermique intermédiaire ;
- la fraction du liquide intermédiaire récupéré à l'étape de refroidissement intermédiaire est sous-refroidie dans l'échangeur thermique aval avant d'être réintroduite dans l'échangeur thermique aval, puis dans l'échangeur thermique intermédiaire ;
- au moins un parmi la au moins une fraction du liquide intermédiaire et le liquide aval s'évapore lors de son passage dans l'échangeur thermique aval et dans l'échangeur thermique intermédiaire pour former un courant gazeux de recirculation, le courant de recirculation étant mélangé au courant de gaz craqué brut, avant le passage du courant de gaz craqué brut dans au moins un compresseur ;
- l'étape de traitement comprend l'introduction d'au moins un courant formé à partir du liquide amont, du liquide intermédiaire et/ou du liquide aval dans une colonne de fractionnement et la production dans la colonne de fractionnement d'un courant riche en éthylène destiné à former la coupe riche en éthylène ;
- à l'étape de traitement, le liquide amont et le liquide intermédiaire sont introduits dans la colonne de fractionnement ;
- le courant de tête issu de la colonne de fractionnement est convoyé vers l'échangeur thermique amont et avantageusement vers un échangeur amont de réchauffage, avant d'être mélangé au gaz craqué brut ;
- le premier appareil de détente dynamique et le deuxième appareil de détente dynamique comprennent chacun au moins une turbine de détente dynamique, avantageusement comprennent chacun entre deux et trois turbines de détente dynamique ;
- la teneur molaire en hydrogène dans le courant de combustible haute pression est supérieure à 75% ; et
- la première température est inférieure à - 63 ° C, la deuxième température est inférieure à - δδ'Ό, et la troisième température est inférieure à - 120°C.
L'invention a également pour objet une installation de fractionnement d'un courant de gaz craqué issu d'une installation de pyrolyse d'hydrocarbures pour obtenir une coupe riche en éthylène et un courant de combustible pauvre en hydrocarbures en C2 +, l'installation comprenant :
- des moyens amont de refroidissement et de condensation partielle d'un courant de gaz craqué brut comportant des moyens d'échange thermique au moins partiel avec un premier cycle de réfrigération externe et des moyens de séparation d'un liquide amont comportant au moins un ballon amont pour former un courant intermédiaire de gaz craqué pré-refroidi à une première température ;
- des moyens intermédiaire de refroidissement et de condensation partielle du courant intermédiaire de gaz craqué comportant au moins un échangeur thermique intermédiaire et des moyens de séparation d'un liquide intermédiaire comportant au moins un ballon de séparation intermédiaire pour former un courant aval de gaz craqué refroidi à une deuxième température inférieure à la première température ;
- des moyens de refroidissement aval et de condensation partielle du courant aval de gaz craqué comportant au moins un échangeur thermique aval pour refroidir le courant aval de gaz craqué jusqu'à une troisième température inférieure à la deuxième température ;
- un séparateur aval et des moyens d'introduction du courant aval de gaz craqué issu de l'échangeur thermique aval dans le séparateur aval ;
- des moyens de récupération, en tête du séparateur aval, d'un courant gazeux de combustible à haute pression pauvre en hydrocarbures en C2+ et des moyens de récupération, en pied du séparateur aval, d'un liquide aval riche en hydrocarbures en C2 + ;
- des moyens de passage du courant de combustible haute pression à travers l'échangeur aval et l'échangeur intermédiaire pour former un courant combustible haute pression réchauffé ;
- des moyens de détente du courant de combustible haute pression réchauffé comportant au moins un premier appareil de détente dynamique pour former un courant de combustible partiellement détendu ;
- des moyens de réchauffage du courant de combustible partiellement détendu à travers l'échangeur aval et l'échangeur intermédiaire ;
- des moyens de traitement d'au moins un liquide obtenu à partir des moyens de refroidissement amont, des moyens de refroidissement intermédiaire et des moyens de refroidissement aval pour former la coupe riche en éthylène ;
caractérisée en ce que l'installation comprend :
- un deuxième appareil de détente dynamique et des moyens de passage du courant de combustible partiellement détendu issu de l'échangeur intermédiaire dans le deuxième appareil de détente dynamique pour former un courant de combustible détendu ;
- des moyens de réchauffage du courant de combustible détendu issu du deuxième appareil de détente dynamique dans l'échangeur thermique aval et dans l'échangeur thermique intermédiaire ; et
- des moyens de compression du courant de combustible détendu réchauffé comportant au moins un compresseur accouplé à au moins une turbine de détente du premier appareil de détente dynamique ou/et du deuxième appareil de détente dynamique pour former le courant de combustible pauvre en hydrocarbures en C2 +.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- la figure unique est un schéma synoptique fonctionnel d'une première installation de fractionnement selon l'invention, destinée à la mise en œuvre d'un premier procédé selon l'invention. Dans tout ce qui suit, une même référence désigne un courant circulant dans une conduite et la conduite qui transporte ce courant. Par ailleurs, sauf indication contraire, les pourcentages sont des pourcentages molaires et les pressions s'entendent en bars relatifs.
Une première unité 10 de vapocraquage selon l'invention est représentée sur la figure 1 .
Cette unité 10 est destinée à former une coupe 12 riche en éthylène et un courant 14 de gaz combustible pauvre en hydrocarbures en C2 +, à partir d'une charge 16.
L'unité 10 comprend une installation 18 de pyrolyse d'hydrocarbures comportant un four de vapocraquage destiné à produire un courant 20 de gaz craqué brut. Elle comporte en outre une installation 22 de fractionnement du gaz traité brut pour former le courant de gaz de combustible 14 et la coupe riche en éthylène 12.
La charge 16 est avantageusement formée d'au moins 70% en moles d'éthane, en association avec du propane, du butane, du naphta et/ou du gasoil.
Le four de vapocraquage 18 est propre à faire circuler la charge 16 pour la chauffer à une température supérieure à 800 'C. Ceci provoque le craquage thermique des molécules d'hydrocarbures contenues dans la charge 16 afin de former le courant de gaz craqué brut 20.
L'installation de fractionnement 22 comporte successivement un ensemble 24 de refroidissement et de compression, et un ensemble amont 26, un ensemble aval 28 et un ensemble intermédiaire 30 de refroidissement et de séparation du gaz craqué.
L'installation 22 comporte en outre un ensemble 32 de traitement des liquides formés dans les ensembles 26 à 30, et un ensemble 34 de détente et de réchauffage du gaz combustible.
L'ensemble de compression 24 comporte une étape de refroidissement et un compresseur primaire 36 et un compresseur secondaire 38, le compresseur secondaire étant disposé en aval du compresseur primaire 36.
L'ensemble amont 26 de refroidissement et de séparation comporte un premier ballon séparateur amont 40, un échangeur thermique amont 42, un cycle de réfrigération 44 à l'éthylène, et un deuxième ballon séparateur amont 46.
Le cycle à l'éthylène 44 comporte deux échangeurs thermiques de cycle 48A, 48B dans lequel circule de l'éthylène. La température d'entrée de l'éthylène est inférieure à - 45 °C, avantageusement comprise entre - 45^ et - 60°C dans l'échangeur 48A, et est inférieure à -65 'C et comprise notamment entre - 65^ et - 80 °C dans l'échangeur 48B. Les échangeurs 48A et 48B peuvent être intégrés dans l'échangeur thermique amont 42. L'ensemble intermédiaire 28 de refroidissement et de séparation comporte, d'amont en aval, un premier échangeur thermique intermédiaire 50, un premier ballon séparateur intermédiaire 52, puis un deuxième échangeur thermique intermédiaire 54, et un deuxième ballon séparateur intermédiaire 56.
L'ensemble aval 30 de refroidissement et de séparation comprend un échangeur thermique aval 58, et un ballon séparateur aval 60 destiné à produire le courant de gaz combustible.
L'ensemble 32 de traitement des liquides comporte une colonne de fractionnement 62, un échangeur thermique de rebouillage 64, et une pompe 66 de fond de colonne.
L'ensemble 34 de détente et de réchauffage comprend un premier appareil de détente dynamique 68, un deuxième appareil de détente dynamique 70, les appareils 68, 70 présentant chacun au moins une turbine de détente dynamique 68A, 70A.
L'ensemble 34 de détente et de réchauffage comporte en outre un échangeur thermique 72 de réchauffage, un premier appareil 74 de compression et un deuxième appareil 75 de compression, les appareils 74 et 75 présentant chacun au moins un compresseur 74A et 75A, qui sont chacun accouplés à une turbine de détente 68A, 70A respective du premier appareil de détente dynamique 68 et du deuxième appareil de détente dynamique 70.
L'échangeur thermique de réchauffage 72 refroidit un fluide réfrigérant circulant dans un cycle 78 de réfrigération au propylène. Le cycle au propylène 78 comporte un échangeur thermique de pied 80 placé en aval de la pompe 66 de fond de colonne. L'échangeur 80 peut être intégré dans l'échangeur 42.
Un premier procédé selon l'invention, mis en œuvre dans l'unité 10 pour traiter le courant de gaz craqué issu du vapocraquage d'une charge 16, va maintenant être décrit.
Initialement, la charge 16 contenant majoritairement de l'éthane est introduite dans le four de vapocraquage 18 pour être chauffée à une température supérieure à 800 °C et subir un craquage thermique.
Un courant de gaz craqué brut 20 est extrait du four 18 à une température supérieure à 800 'Ό et à une pression supérieure à 1 bars.
Ce courant 20 est ensuite refroidi et introduit dans le compresseur primaire 36 pour être comprimé à une pression supérieure à 10 bars sensiblement inférieure à la pression dans la colonne de fractionnement 62, puis dans le compresseur secondaire 38 pour être comprimé à une pression supérieure à 30 bars.
Le courant de gaz craqué 90 comprimé issu du compresseur secondaire 38 est ensuite séparé en une première fraction de rebouillage 92 et en une deuxième fraction 94. La fraction de rebouillage 92 est introduite dans l'échangeur thermique 64 de fond de colonne pour y être refroidie et partiellement condensée. La deuxième fraction 94 est passée à travers une première vanne 96 de contrôle de débit, avant d'être mélangée avec la fraction 92 de rebouillage issue de l'échangeur 64 pour former un courant de gaz craqué 98 partiellement condensé.
Dans une variante du procédé, le courant de gaz craqué 90 peut avantageusement circuler, partiellement ou en totalité, au travers de l'échangeur thermique de réchauffage 72 avant la séparation en les flux 92 et 96, afin de refroidir dans l'échangeur 72.
Le rapport molaire de la première fraction de rebouillage 92 à la deuxième fraction
94 est compris entre 5% et 20%. Le courant de gaz craqué 98 partiellement condensé contient au moins 15% molaires de liquide. Il présente une température inférieure à -30 °C.
Puis, le courant 98 est introduit dans le premier ballon séparateur amont 40 pour former un premier liquide amont 100 et un courant amont de gaz craqué 102.
Le premier liquide amont 100 est prélevé dans le fond du premier ballon séparateur 40 et est introduit à un niveau inférieur N1 de la colonne de fractionnement 62, après passage et détente dans une deuxième vanne 104 de contrôle de débit.
La pression dans la colonne de fractionnement 62 est avantageusement comprise entre 10 bars et 14 bars.
Le courant amont 102 est ensuite séparé en un premier flux gazeux 106 de gaz craqué et en deuxième flux gazeux 108 de gaz craqué. Le rapport du débit molaire du premier flux 106 au débit molaire du courant amont 102 est supérieur à 8%.
Le premier flux 106 est refroidi jusqu'à une température inférieure à - 63 °C et notamment sensiblement comprise entre - 63 °C et - 78^ dans l'échangeur thermique amont 42.
Le deuxième flux gazeux 108 est introduit successivement dans le premier échangeur thermique de cycle 48A pour être refroidi jusqu'à une température inférieure à - 43 ^ par échange thermique avec l'éthylène circulant dans le cycle 44. Puis, il est introduit dans le deuxième échangeur thermique de cycle 48B pour être refroidi jusqu'à une température inférieure à - 63 ^, et notamment comprise entre - 63 °C et - 78 'Ό.
Après refroidissement, les flux 106 et 108, sont mélangés et forment un courant amont 1 10 partiellement condensé de gaz craqué qui est introduit dans le deuxième ballon séparateur amont 46.
La teneur molaire en liquide dans le courant amont de gaz craqué partiellement condensé 1 10 est comprise entre 30% et 60%. Dans le deuxième ballon séparateur amont 46, le courant 1 10 se sépare en un deuxième liquide amont 1 12 et en un premier courant gazeux intermédiaire 1 14 de gaz craqué refroidi à une première température inférieure à -63 'Ό.
Le deuxième liquide amont 1 12 est récupéré au fond du deuxième ballon séparateur amont 46. Il forme le courant 1 13 après passage et détente dans une troisième vanne 1 16 de contrôle de débit et est introduit à un niveau N2 de la colonne de fractionnement 62 située au dessus du niveau N1 .
Le premier courant intermédiaire 1 14 de gaz craqué est introduit dans le premier échangeur thermique intermédiaire 50 pour y être refroidi à une température inférieure à - 85 °C et former un courant intermédiaire 1 18 partiellement condensé de gaz craqué. Le courant 1 18 présente une température inférieure à - 85 °C, et une teneur en liquide comprise entre 8% en moles et 30% en moles.
Le courant 1 18 est ensuite introduit dans le premier ballon séparateur intermédiaire 52 pour former un premier liquide intermédiaire 120 et un deuxième courant gazeux intermédiaire 122 de gaz craqué.
Le premier liquide intermédiaire 120 est récupéré au fond du ballon 52. Il forme le courant 121 , après passage et détente à travers une quatrième vanne 124 de contrôle de débit, avant d'être introduit à un troisième niveau N3 de la colonne de fractionnement 62, situé au-dessus du niveau N2.
Dans une variante du procédé, les courants 1 13 et 121 peuvent être combinés avant d'alimenter la colonne de fractionnement 62.
Le deuxième courant gazeux intermédiaire 122 est ensuite introduit dans le deuxième échangeur thermique intermédiaire 54 pour y être refroidi à une deuxième température inférieure à -105°C et comprise entre - 105°C et - 120°C.
A la sortie du deuxième échangeur thermique intermédiaire 54, le deuxième courant intermédiaire 126 partiellement condensé est introduit dans le deuxième ballon séparateur intermédiaire 56 pour y être séparé en un deuxième liquide intermédiaire 128 et en un courant aval de gaz craqué 130.
Une première fraction 132 du deuxième liquide intermédiaire 128 est introduite à un niveau N4 de la colonne de fractionnement 62 situé au-dessus du niveau N3, après passage et détente dans une cinquième vanne 134 de contrôle de débit. Une deuxième fraction 136 de recirculation du deuxième liquide intermédiaire 128 est sous-refroidie dans l'échangeur thermique aval 58, comme on le verra plus bas.
Le courant aval de gaz craqué 130 est ensuite introduit dans l'échangeur thermique aval 58 pour y être refroidi et former un courant aval 140 de gaz craqué partiellement condensé. La température du courant 140, à la sortie de l'échangeur thermique aval 58 est inférieure à -λ 25° et est notamment comprise entre - 125^ et - 140°C.
Le courant 140 est ensuite introduit dans le ballon séparateur aval 60 pour y être séparé en un liquide aval 142 et en un courant de gaz combustible 144 à haute pression destiné à être détendu. Le courant de gaz de combustible 144 comporte plus de 75% en moles d'hydrogène et moins de 0.5% en moles d'hydrocarbures en C2 +.
Le courant 144 est introduit une première fois dans l'échangeur thermique aval 58 pour se réchauffer par échange thermique à contre-courant avec le courant aval 130 de gaz craqué refroidi, puis dans le deuxième échangeur thermique intermédiaire 54 pour se réchauffer à contre-courant notamment du deuxième courant 122 intermédiaire de gaz craqué, jusqu'à une température supérieure à - 1 10 °C.
Il est ensuite introduit dans le premier échangeur thermique aval 50 pour y être réchauffé par échange thermique avec le premier courant intermédiaire de gaz craqué 1 14 jusqu'à une température supérieure à - 85 °C.
Le courant de gaz combustible à haute pression 146 réchauffé à une température supérieure à -85 °C est ensuite introduit dans une turbine de détente dynamique 68A du premier appareil de détente dynamique 68 pour être détendu jusqu'à une pression inférieure à 12 bars et former un courant 148 de gaz combustible à pression intermédiaire.
La température du courant 148 est inférieure à -1 15°C. Le courant 148 est alors introduit à nouveau dans l'échangeur thermique aval 58, dans le deuxième échangeur thermique intermédiaire 54, puis dans le premier échangeur thermique intermédiaire 50 pour se réchauffer successivement par échange thermique respectivement avec le courant 130, le courant 122 et le courant 1 14, comme décrit précédemment. Ce passage du courant 148 à travers les échangeurs 50, 54, 58 s'effectue entre une turbine 68A du premier appareil 68 et une turbine 70A du deuxième appareil 70.
Le courant 150 de gaz combustible réchauffé à pression intermédiaire est ensuite introduit dans une turbine 70A de détente dynamique du deuxième appareil 70 de détente dynamique pour y être détendu à une pression inférieure à 4 bars et former un courant de gaz combustible 152 à basse pression refroidi.
La température du courant 152 est alors inférieure à -1 15°C, et sa pression est inférieure à 4 bars.
Le courant 152 est ensuite introduit successivement dans l'échangeur thermique aval 58, dans le deuxième échangeur thermique intermédiaire 54, puis dans le premier échangeur thermique 50 pour y être réchauffé à contre-courant respectivement du courant 130, du courant 122, et du courant 1 14 comme décrit plus haut. Le courant de gaz combustible 154 basse pression réchauffé issu du premier échangeur thermique intermédiaire 50 est ensuite introduit successivement dans l'échangeur thermique amont 42 pour être placé en relation d'échange thermique avec le premier flux gazeux 106 issu du premier courant gazeux de gaz craqué 102, puis dans l'échangeur thermique de réchauffage 72.
Dans l'échangeur thermique de réchauffage 72, le courant 154 se réchauffe par échange thermique avec le fluide réfrigérant 156 au propylène circulant dans le cycle de réfrigération 78.
Le courant 160 de gaz combustible réchauffé à basse pression issu de l'échangeur 72 présente ainsi une pression proche de la pression atmosphérique.
Le courant 160 est ensuite introduit successivement dans le compresseur 75A du deuxième appareil de compression 75, puis dans le compresseur 74A de l'appareil de compression aval 74 pour former le courant de combustible 14 destiné à alimenter le réseau de l'installation. La pression du courant 14 est supérieure à 5 bars.
La teneur en éthylène dans le gaz combustible 144 haute pression, comme dans le gaz combustible 14 est inférieure à 0,5% molaires. Le taux de récupération d'éthylène dans l'installation est supérieur à 99,5%.
Le courant de combustible 14 comprend avantageusement plus de 99% du méthane contenu dans le courant de gaz craqué brut 20.
Le liquide aval 142 comporte plus de 25% en moles d'hydrocarbures en C2 +. Il est introduit dans l'échangeur thermique aval 58 pour y être sous-refroidi jusqu'à une température inférieure à -120°C.
Après leur passage dans l'échangeur 58, les liquides 136, 142 sont mélangés et sont introduits successivement dans les échangeurs thermiques 58, 54, 50, 42 et 72 pour se réchauffer et s'évaporer par échange thermique avec les courants respectifs circulant dans ces échangeurs.
Ils forment alors un courant gazeux 162 de recyclage réchauffé qui présente une température supérieure à 10°C. Le courant gazeux 162 est réintroduit dans le courant de gaz craqué brut 20, dans le compresseur primaire 36. Dans une variante du procédé, les liquides 136 et 142 sont introduits séparément dans les échangeurs thermiques 58,54, 50, 42, 72 pour se réchauffer, avant d'être réintroduits dans le courant de gaz craqué brut 20.
La colonne de fractionnement 62 produit un courant de tête 164 riche en méthane et un courant de pied 166 riche en éthylène.
Le courant de tête 164 est introduit, après réchauffage dans l'échangeur thermique amont 42, puis après réchauffage dans l'échangeur thermique de réchauffage 72, dans le courant de gaz craqué brut 20, entre le compresseur primaire 36 et le compresseur secondaire 38.
Le courant de pied 166 issu de la colonne de fractionnement 62 est pompé par la pompe 66, avant d'être introduit dans l'échangeur thermique de récupération 80 (qui peut être intégré dans l'échangeur 72). Il est alors réchauffé au contact du propylène formant le fluide réfrigérant du cycle 78. Après passage dans l'échangeur 80, la coupe 12 riche en éthylène est formée. Cette coupe 12 comporte plus de 99,5% en moles de l'éthylène contenu dans le courant de gaz craqué brut 20.
Selon l'invention, le courant intermédiaire de gaz craqué 1 14 qui est refroidi à une température inférieure à - 63 °C grâce à la réfrigération fournie par le cycle à l'éthylène 44 est ensuite refroidi jusqu'à une température inférieure à - 90 °C exclusivement par échange thermique avec le courant de gaz combustible 144 à haute pression, avec le courant de gaz combustible partiellement détendu 148 et avec le courant de gaz combustible détendu 152, et par le réchauffage des liquides 142, 136 issus des ballons 56, 60, dans les échangeurs thermiques 50, 54 et 58.
Il n'est donc pas nécessaire de prévoir un cycle de réfrigération à l'éthylène 44 comportant un niveau thermique à -l OO 'C (usuellement entre -95^ et -102°C), entre le ballon amont 46 et le ballon aval 60. Ceci diminue la consommation énergétique du procédé et l'investissement nécessaire pour sa mise en œuvre.
Ainsi, l'utilisation adéquate du potentiel de détente et de la capacité calorifique élevée du gaz combustible haute pression 144 formé à la sortie du ballon aval 60, en raison de sa richesse en hydrogène, permet de diminuer grandement la consommation énergétique du procédé. Il est ainsi possible de diminuer d'au moins 30 KWh par tonne d'éthylène produit par heure la puissance spécifique de réfrigération par rapport à une unité connue de l'état de la technique, et ce en conservant un taux de récupération d'éthane supérieur à 99,5 % et en produisant une coupe 12 riche en éthylène.
Ce résultat est obtenu en diminuant l'investissement nécessaire pour l'installation, puisqu'il n'est plus nécessaire de prévoir un compresseur spécifique et un échangeur thermique spécifique pour un niveau thermique à -l OO 'C dans le cycle à l'éthylène 44.
Dans une variante, chaque appareil de détente dynamique 68 comprend une pluralité de turbines de détente dynamique, par exemple de 2 à 3 turbines de détente dynamique. Dans une autre variante, un compresseur additionnel est placé en aval des compresseurs 76A, 76B pour comprimer à une pression plus élevée le gaz combustible 14.
Dans d'autres variantes, l'unité de traitement comprend une pluralité de colonnes de fractionnement comme décrit par exemple dans EP 1 215 459. On notera, comme cela est représenté sur la Figure unique, que la totalité du courant de combustible haute pression 144 est réchauffée successivement dans l'échangeur thermique aval, et dans les échangeurs thermiques intermédiaires 50, 54 avant d'être introduite en totalité dans le premier appareil de détente dynamique 68.
De même, la totalité du courant de combustible partiellement détendu 148 issue du premier appareil de détente dynamique 68 est passée successivement dans l'échangeur aval 58 et dans les échangeurs intermédiaires 50, 54, avant d'être introduite en totalité dans le deuxième appareil de détente dynamique 70. La totalité du courant de combustible détendu 152 issu du deuxième appareil de détente dynamique 70 est ensuite introduite dans l'échangeur thermique aval 58 et dans les échangeurs thermiques intermédiaires 50, 54.
Ainsi, la récupération de frigories est maximale pour permettre le refroidissement du gaz.
On notera en outre que les ballons 40, 46 et 52, 56 et 60 sont de simples ballons séparateurs, et non des colonnes de distillation. Ainsi, ces ballons sont dépourvus de plateaux ou de garnissage
La colonne de fractionnement 62 est une colonne de type stripper. Ainsi, le courant de tête 164 riche en méthane issu de la colonne 62 est totalement renvoyé dans le gaz craqué brut 20, sans qu'une fraction de ce courant 164 ne soit condensée pour être envoyée en reflux dans la colonne 62.
Par ailleurs, la puissance thermique nécessaire au refroidissement du courant aval de gaz craqué 130 vers la troisième température est fournie dans l'échangeur thermique aval 58 par échange thermique avec le courant de combustible haute pression 144, par échange thermique avec le courant de combustible partiellement détendu, et par échange thermique avec le courant de combustible détendu 152, sans échange thermique avec un fluide réfrigérant externe circulant dans un cycle de réfrigération, et notamment sans échange thermique avec le fluide réfrigérant circulant dans le cycle de réfrigération 44.
Comme on l'a vu plus haut, il n'est donc pas nécessaire de munir le cycle 44 d'un étage de réfrigération à une température de l'ordre de -100°C, et notamment comprise entre - 85°C et - 102 <€.

Claims

REVENDICATIONS
1 .- Procédé de fractionnement d'un courant (20) de gaz craqué issu d'une installation (18) de pyrolyse d'hydrocarbures pour obtenir une coupe (12) riche en éthylène et un courant (14) de combustible pauvre en hydrocarbures en C2 +, le procédé comprenant les étapes suivantes :
- refroidissement amont et condensation partielle d'un courant de gaz craqué brut (20) par échange thermique au moins partiel avec un fluide réfrigérant circulant dans un premier cycle (44) de réfrigération externe et séparation d'un liquide amont (1 12) dans au moins un ballon amont (46) pour former un courant intermédiaire (1 14) de gaz craqué pré- refroidi à une première température ;
- refroidissement intermédiaire et condensation partielle du courant intermédiaire de gaz craqué (1 14) dans au moins un échangeur thermique (50, 54) intermédiaire et séparation d'un liquide intermédiaire (120, 128) dans au moins un ballon de séparation intermédiaire (52, 56) pour former un courant aval (130) de gaz craqué refroidi à une deuxième température inférieure à la première température ;
- refroidissement aval et condensation partielle du courant aval de gaz craqué (130) dans au moins un échangeur thermique aval (58) jusqu'à une troisième température inférieure à la deuxième température ;
- introduction du courant aval (140) de gaz craqué partiellement condensé issu de l'échangeur thermique aval (58) dans un séparateur aval (60) ;
- récupération, en tête du séparateur aval (60), d'un courant (144) gazeux de combustible à haute pression, pauvre en hydrocarbures en C2 +, et récupération, en pied du séparateur aval, d'un liquide aval (142), riche en hydrocarbures en C2 + ;
- passage du courant (144) de combustible haute pression à travers l'échangeur aval (58) et l'échangeur intermédiaire (50, 54) pour former un courant (146) de combustible haute pression réchauffé ;
- détente du courant (146) de combustible haute pression réchauffé dans au moins un premier appareil (68) de détente dynamique pour obtenir un courant (148) de combustible partiellement détendu;
- réchauffage du courant (148) de combustible partiellement détendu à travers l'échangeur aval (58) et l'échangeur intermédiaire (50, 54) ;
- traitement d'au moins un liquide (1 12, 120, 128) obtenu lors des étapes de refroidissement amont, de refroidissement intermédiaire et de refroidissement aval pour former la coupe riche en éthylène (12) ;
caractérisé en ce que le procédé comprend les étapes suivantes : - passage du courant (148) de combustible partiellement détendu issu de l'échangeur intermédiaire (50, 54) dans un deuxième appareil de détente dynamique (70) pour former un courant (152) de combustible détendu ;
- réchauffage du courant (152) de combustible détendu issu du deuxième appareil de détente dynamique (70) dans l'échangeur thermique aval (58) et dans l'échangeur thermique intermédiaire (50, 54) ;
- compression du courant (160) de combustible détendu réchauffé dans au moins un compresseur (76A, 76B) accouplé à au moins une turbine de détente (68A, 70A) du premier appareil de détente dynamique ou/et du deuxième appareil de détente dynamique pour former le courant (14) de combustible pauvre en hydrocarbures en C2 +.
2. - Procédé selon la revendication 1 , caractérisé en ce que la puissance thermique nécessaire au refroidissement du courant intermédiaire de gaz craqué (1 14) vers la deuxième température est fournie dans l'échangeur thermique intermédiaire (50, 54) par échange thermique avec le courant (144) de combustible haute pression, par échange thermique avec le courant (148) de combustible partiellement détendu et par échange thermique avec le courant (152) de combustible détendu, sans échange thermique avec un fluide réfrigérant externe circulant dans un cycle de réfrigération.
3. - Procédé selon la revendication 2, caractérisé en ce que la puissance thermique nécessaire au refroidissement du courant aval de gaz craqué (130) jusqu'à la troisième température est fournie dans l'échangeur thermique aval (58) par échange thermique avec le courant (144) de combustible à haute pression, par échange thermique avec le courant (148) de combustible partiellement détendu et par échange thermique avec le courant (152) de combustible détendu, sans échange thermique avec un fluide réfrigérant externe circulant dans un cycle de réfrigération.
4.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend la récupération du liquide aval (142) et son réchauffage à travers l'échangeur thermique aval (58), et l'échangeur thermique intermédiaire (50, 54),
le liquide aval étant sous-refroidi dans l'échangeur thermique aval (58) avant son réchauffage dans l'échangeur thermique aval (58), puis dans l'échangeur thermique intermédiaire (50, 54).
5.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la totalité du courant de combustible haute pression réchauffé (146) issu de l'échangeur intermédiaire (50, 54) est introduite dans le premier appareil de détente dynamique (68), la totalité du courant de combustible partiellement détendu réchauffé (150) issu de l'échangeur intermédiaire (50, 54) étant introduite dans le deuxième appareil de détente dynamique (70).
6. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une fraction (136) d'un liquide intermédiaire (128) récupéré à l'étape de refroidissement intermédiaire est réchauffée dans l'échangeur thermique aval (58) et dans l'échangeur thermique intermédiaire (50, 54).
7. - Procédé selon la revendication 6, caractérisé en ce que la fraction (136) du liquide intermédiaire (128) récupéré à l'étape de refroidissement intermédiaire est sous- refroidie dans l'échangeur thermique aval (58) avant d'être réintroduite dans l'échangeur thermique aval (58), puis dans l'échangeur thermique intermédiaire (50, 54).
8.- Procédé selon l'une quelconque des revendications 4 à 7, caractérisé en ce qu'au moins un parmi la au moins une fraction (136) du liquide intermédiaire (128) et le liquide aval (142) s'évapore lors de son passage dans l'échangeur thermique aval (58) et dans l'échangeur thermique intermédiaire (50, 54) pour former un courant gazeux (162) de recirculation, le courant de recirculation (162) étant mélangé au courant de gaz craqué brut (20), avant le passage du courant de gaz craqué brut (20) dans au moins un compresseur (38).
9. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de traitement comprend l'introduction d'au moins un courant (1 12, 120, 132) formé à partir du liquide amont (1 12), du liquide intermédiaire (120, 128) et/ou du liquide aval (142) dans une colonne (62) de fractionnement et la production dans la colonne de fractionnement (62) d'un courant (166) riche en éthylène destiné à former la coupe (12) riche en éthylène.
10. - Procédé selon la revendication 9, caractérisé en ce qu'à l'étape de traitement, le liquide amont (1 12) et le liquide intermédiaire (120) sont introduits dans la colonne de fractionnement (62).
1 1 . - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant de tête (164) issu de la colonne de fractionnement (62) est convoyé en totalité vers l'échangeur thermique amont (42) et avantageusement vers un échangeur amont de réchauffage (72), avant d'être mélangé au gaz craqué brut (20), sans qu'une fraction de ce courant (164) ne soit condensée pour être envoyée en reflux dans la colonne de fractionnement (62).
12. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier appareil de détente dynamique (68) et le deuxième appareil de détente dynamique (70) comprennent chacun au moins une turbine (68A, 70A) de détente dynamique, avantageusement comprennent chacun entre deux et trois turbines de détente dynamique.
13. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur molaire en hydrogène dans le courant (144) de combustible haute pression est supérieure à 75%.
14. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la première température est inférieure à - 63° C, en ce que la deuxième température est inférieure à - 85 °C, et en ce que la troisième température est inférieure à - 120°C.
15. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier cycle de réfrigération est dépourvu de niveau thermique entre - 95<€ et - 102 <€ entre le ballon amont (46) et le ballon aval (60).
16. - Installation (22) de fractionnement d'un courant (20) de gaz craqué issu d'une installation (18) de pyrolyse d'hydrocarbures pour obtenir une coupe (12) riche en éthylène et un courant (14) de combustible pauvre en hydrocarbures en C2 +, l'installation (22) comprenant :
- des moyens amont de refroidissement et de condensation partielle d'un courant de gaz craqué brut (20) comportant des moyens (48A, 48B) d'échange thermique au moins partiel avec un premier cycle (44) de réfrigération externe et des moyens de séparation d'un liquide amont (1 12) comportant au moins un ballon amont (46) pour former un courant intermédiaire (1 14) de gaz craqué pré-refroidi à une première température ;
- des moyens intermédiaire de refroidissement et de condensation partielle du courant intermédiaire de gaz craqué (1 14) comportant au moins un échangeur thermique (50, 54) intermédiaire et des moyens de séparation d'un liquide intermédiaire (120, 128) comportant au moins un ballon de séparation intermédiaire (52, 56) pour former un courant aval (130) de gaz craqué refroidi à une deuxième température inférieure à la première température ;
- des moyens de refroidissement aval et de condensation partielle du courant aval de gaz craqué (130) comportant au moins un échangeur thermique aval (58) pour refroidir le courant aval de gaz craqué (130) jusqu'à une troisième température inférieure à la deuxième température ;
- un séparateur aval (60) et des moyens d'introduction du courant aval (140) de gaz craqué issu de l'échangeur thermique aval (58) dans le séparateur aval (60) ;
- des moyens de récupération, en tête du séparateur aval (60), d'un courant (144) gazeux de combustible à haute pression pauvre en hydrocarbures en C2+ et des moyens de récupération, en pied du séparateur aval (60), d'un liquide aval (142) riche en hydrocarbures en C2 + ; - des moyens de passage du courant (144) de combustible haute pression à travers l'échangeur aval (58) et l'échangeur intermédiaire (50, 54) pour former un courant (146) combustible haute pression réchauffé ;
- des moyens de détente du courant (146) de combustible haute pression réchauffé comportant au moins un premier appareil (68) de détente dynamique pour former un courant (148) de combustible partiellement détendu ;
- des moyens de réchauffage du courant (148) de combustible partiellement détendu à travers l'échangeur aval (58) et l'échangeur intermédiaire (50, 54) ;
- des moyens de traitement d'au moins un liquide (1 12, 120, 128) obtenu à partir des moyens de refroidissement amont, des moyens de refroidissement intermédiaire et des moyens de refroidissement aval pour former la coupe riche en éthylène (12) ;
caractérisée en ce que l'installation (22) comprend :
- un deuxième appareil de détente dynamique (70) et des moyens de passage du courant (148) de combustible partiellement détendu issu de l'échangeur intermédiaire (50, 54) dans le deuxième appareil de détente dynamique (70) pour former un courant (152) de combustible détendu ;
- des moyens de réchauffage du courant (152) de combustible détendu issu du deuxième appareil de détente dynamique (70) dans l'échangeur thermique aval (58) et dans l'échangeur thermique intermédiaire (50, 54) ;
- des moyens de compression du courant (160) de combustible détendu réchauffé comportant au moins un compresseur (76A, 76B) accouplé à au moins une turbine de détente (68A, 70A) du premier appareil de détente dynamique ou/et du deuxième appareil de détente dynamique pour former le courant (14) de combustible pauvre en hydrocarbures en C2 +.
PCT/FR2010/052290 2009-10-27 2010-10-26 Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée WO2011051614A2 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP10793276.6A EP2494295B1 (fr) 2009-10-27 2010-10-26 Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée
MX2012004807A MX355365B (es) 2009-10-27 2010-10-26 Procedimiento de fraccionamiento de corriente de gas craqueado para obtener corte rico en etileno y una corriente de combustible, e instalacion asociada.
EA201200637A EA023180B1 (ru) 2009-10-27 2010-10-26 Способ фракционирования потока крекинг-газа для получения фракции, богатой этиленом, и потока топлива и установка для его осуществления
AU2010311203A AU2010311203B2 (en) 2009-10-27 2010-10-26 Method for fractionating a cracked gas flow in order to obtain an ethylene-rich cut and a fuel flow, and associated facility
CA2778841A CA2778841C (fr) 2009-10-27 2010-10-26 Procede de fractionnement d'un courant de gaz craque pour obtenir une coupe riche en ethylene et un courant de combustible, et installation associee
CN201080055212.XA CN104246400B (zh) 2009-10-27 2010-10-26 用于分馏裂化气流以获取富乙烯馏分和燃料流的分馏方法以及相关的设备
BR112012009851-9A BR112012009851B1 (pt) 2009-10-27 2010-10-26 processo e instalação de fracionamento de uma corrente de gás craqueado procedente de uma instalação de pirólise de hidrocarbonetos
US13/503,697 US10767924B2 (en) 2009-10-27 2010-10-26 Method for fractionating a stream of cracked gas to obtain an ethylene-rich cut and a stream of fuel, and related installation
RS20190646A RS58775B1 (sr) 2009-10-27 2010-10-26 Postupak za frakcionisanje struje krekovanog gasa radi dobijanja etilenom bogate frakcije i struje goriva, i povezano postrojenje
ES10793276T ES2730888T3 (es) 2009-10-27 2010-10-26 Procedimiento para fraccionar una corriente de gas craqueado para obtener un corte rico en etileno y una corriente de combustible e instalación asociada
PL10793276T PL2494295T3 (pl) 2009-10-27 2010-10-26 Sposób frakcjonowania strumienia krakowego gazu dla uzyskania frakcji bogatej w etylen i strumienia paliwa, oraz powiązana instalacja
UAA201206303A UA107944C2 (en) 2009-10-27 2010-10-26 Method of fractioning the cracked gas flow to obtain fraction, enriched with ethylene, and the fuel flow, and the installation therefor
TNP2012000181A TN2012000181A1 (fr) 2009-10-27 2012-04-20 Procede de fractionnement d'un courant de gaz craque pour obtenir une coupe riche en ethylene et un courant de combustible, et installation associe
MA34815A MA33699B1 (fr) 2009-10-27 2012-04-27 Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957537 2009-10-27
FR0957537A FR2951815B1 (fr) 2009-10-27 2009-10-27 Procede de fractionnement d'un courant de gaz craque pour obtenir une coupe riche en ethylene et un courant de combustible, et installation associee.

Publications (2)

Publication Number Publication Date
WO2011051614A2 true WO2011051614A2 (fr) 2011-05-05
WO2011051614A3 WO2011051614A3 (fr) 2013-02-07

Family

ID=42341397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052290 WO2011051614A2 (fr) 2009-10-27 2010-10-26 Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée

Country Status (19)

Country Link
US (1) US10767924B2 (fr)
EP (1) EP2494295B1 (fr)
CN (1) CN104246400B (fr)
AU (1) AU2010311203B2 (fr)
BR (1) BR112012009851B1 (fr)
CA (1) CA2778841C (fr)
CO (1) CO6531503A2 (fr)
EA (1) EA023180B1 (fr)
ES (1) ES2730888T3 (fr)
FR (1) FR2951815B1 (fr)
MA (1) MA33699B1 (fr)
MX (1) MX355365B (fr)
MY (1) MY173955A (fr)
PL (1) PL2494295T3 (fr)
PT (1) PT2494295T (fr)
RS (1) RS58775B1 (fr)
TN (1) TN2012000181A1 (fr)
UA (1) UA107944C2 (fr)
WO (1) WO2011051614A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012150A1 (fr) * 2013-10-23 2015-04-24 Technip France Procede de fractionnement d'un courant de gaz craque, mettant en oeuvre un courant de recycle intermediaire, et installation associee
US10513477B2 (en) 2014-12-30 2019-12-24 Technip France Method for improving propylene recovery from fluid catalytic cracker unit
US10619919B2 (en) 2010-12-27 2020-04-14 Technip France Method for producing a methane-rich stream and a C2+ hydrocarbon-rich stream, and associated equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007408B1 (fr) * 2013-06-25 2015-07-31 Technip France Procede de recuperation d'un courant d'ethylene a partir d'un courant de charge riche en monoxyde de carbone, et installation associee
FR3066491B1 (fr) * 2017-05-18 2019-07-12 Technip France Procede de recuperation d'un courant d'hydrocarbures en c2+ dans un gaz residuel de raffinerie et installation associee

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215459A2 (fr) 2000-12-07 2002-06-19 Technip-Coflexip Procédé et installation pour la récupération et la purification de l'éthylène produit par pyrolyse d'hydrocarbures

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1915218B2 (de) * 1969-03-25 1973-03-29 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum verfluessigen von erdgas
US4496381A (en) * 1983-02-01 1985-01-29 Stone & Webster Engineering Corp. Apparatus and method for recovering light hydrocarbons from hydrogen containing gases
US4629484A (en) * 1983-08-31 1986-12-16 C F Braun & Co. Process for separating hydrogen and methane from an ethylene rich stream
DE3445995A1 (de) * 1984-12-17 1986-06-19 Linde Ag Verfahren zur gewinnung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)- oder von c(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen
US4714487A (en) * 1986-05-23 1987-12-22 Air Products And Chemicals, Inc. Process for recovery and purification of C3 -C4+ hydrocarbons using segregated phase separation and dephlegmation
US4900347A (en) * 1989-04-05 1990-02-13 Mobil Corporation Cryogenic separation of gaseous mixtures
FR2668583B1 (fr) * 1990-10-26 1997-06-20 Air Liquide Procede de liquefaction d'un gaz et installation de refrigeration.
US5421167A (en) * 1994-04-01 1995-06-06 The M. W. Kellogg Company Enhanced olefin recovery method
US5960643A (en) * 1996-12-31 1999-10-05 Exxon Chemical Patents Inc. Production of ethylene using high temperature demethanization
US5768913A (en) * 1997-04-16 1998-06-23 Stone & Webster Engineering Corp. Process based mixed refrigerants for ethylene plants
FR2829401B1 (fr) * 2001-09-13 2003-12-19 Technip Cie Procede et installation de fractionnement de gaz de la pyrolyse d'hydrocarbures
JP2009502915A (ja) * 2005-07-28 2009-01-29 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 自己熱分解反応装置流出物からエチレンを回収する方法
FR2924205B1 (fr) * 2007-11-23 2013-08-16 Air Liquide Dispositif et procede de refrigeration cryogenique

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215459A2 (fr) 2000-12-07 2002-06-19 Technip-Coflexip Procédé et installation pour la récupération et la purification de l'éthylène produit par pyrolyse d'hydrocarbures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619919B2 (en) 2010-12-27 2020-04-14 Technip France Method for producing a methane-rich stream and a C2+ hydrocarbon-rich stream, and associated equipment
FR3012150A1 (fr) * 2013-10-23 2015-04-24 Technip France Procede de fractionnement d'un courant de gaz craque, mettant en oeuvre un courant de recycle intermediaire, et installation associee
WO2015059233A1 (fr) 2013-10-23 2015-04-30 Technip France Procédé de fractionnement d'un courant de gaz craqué, mettant en oeuvre un courant de recycle intermédiaire, et installation associée
CN105829506A (zh) * 2013-10-23 2016-08-03 泰克尼普法国公司 使用中间再循环流分馏裂化气体流的方法及相关设备
US20160258676A1 (en) * 2013-10-23 2016-09-08 Technip France Method for fractionating a stream of cracked gas, using an intermediate recirculation current, and related plant
EA032739B1 (ru) * 2013-10-23 2019-07-31 Текнип Франс Способ фракционирования потока крекинг-газа с использованием промежуточного рециркуляционного потока и установка для его осуществления
US10458701B2 (en) 2013-10-23 2019-10-29 Technip France Method for fractionating a stream of cracked gas, using an intermediate recirculation current, and related plant
US10513477B2 (en) 2014-12-30 2019-12-24 Technip France Method for improving propylene recovery from fluid catalytic cracker unit

Also Published As

Publication number Publication date
BR112012009851B1 (pt) 2020-11-10
EA023180B1 (ru) 2016-05-31
CO6531503A2 (es) 2012-09-28
ES2730888T3 (es) 2019-11-13
EP2494295A2 (fr) 2012-09-05
UA107944C2 (en) 2015-03-10
MY173955A (en) 2020-02-28
FR2951815A1 (fr) 2011-04-29
TN2012000181A1 (fr) 2013-12-12
AU2010311203A1 (en) 2012-05-31
MX355365B (es) 2018-04-17
US20120266630A1 (en) 2012-10-25
BR112012009851A2 (pt) 2016-08-30
MA33699B1 (fr) 2012-10-01
RS58775B1 (sr) 2019-06-28
FR2951815B1 (fr) 2012-09-07
CA2778841A1 (fr) 2011-05-05
CN104246400B (zh) 2017-05-10
PT2494295T (pt) 2019-06-05
PL2494295T3 (pl) 2019-09-30
CN104246400A (zh) 2014-12-24
AU2010311203B2 (en) 2016-05-19
WO2011051614A3 (fr) 2013-02-07
EP2494295B1 (fr) 2019-02-27
CA2778841C (fr) 2017-11-28
EA201200637A1 (ru) 2012-10-30
US10767924B2 (en) 2020-09-08
MX2012004807A (es) 2012-09-07

Similar Documents

Publication Publication Date Title
EP1454104B1 (fr) Procede et installation de separation d&#39;un melange gazeux contenant du methane par distillation
EP1639062B1 (fr) Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel.
EP1352203B1 (fr) Procede de refrigeration de gaz liquefie et installation mettant en oeuvre celui-ci
EP1828697B1 (fr) Procede et installation de production de gaz naturel traite , d &#39; une coupe riche en hydrocarbures en c3 + et courant riche en ethane
EP1425544B1 (fr) Procede et installation de fractionnement de gaz issus de la pyrolyse d&#39;hydrocarbures
EP3625196B1 (fr) Procédé de récupération d&#39;un courant d&#39;hydrocarbures en c2+ dans un gaz résiduel de raffinerie et installation associée
JP2010202875A (ja) 等圧開放冷凍天然ガス液回収による窒素除去
CA2756632C (fr) Procede de traitement d&#39;un gaz naturel de charge pour obtenir un gaz naturel traite et une coupe d&#39;hydrocarbures en c5+, et installation associee
EP2553055B1 (fr) Procédé de traitement d&#39;un courant de gaz craqué issu d&#39;une installation de pyrolyse d&#39;hydrocarbures et installation associée
EP2494295B1 (fr) Procédé de fractionnement d&#39;un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée
AU2014265950A1 (en) Methods for separating hydrocarbon gases
EP3350119B1 (fr) Procédé et appareil de production d&#39;un mélange de monoxyde de carbone et d&#39;hydrogène
CA2823900C (fr) Procede de production d&#39;une coupe riche en hydrocarbures c3+ et d&#39;un courant riche en methane et ethane
EP3060629B1 (fr) Procédé de fractionnement d&#39;un courant de gaz craqué, mettant en oeuvre un courant de recycle intermédiaire, et installation associée
CA3119860A1 (fr) Procede de traitement d&#39;un flux de gaz d&#39;alimentation et installation associee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010793276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2778841

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/004807

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12069769

Country of ref document: CO

Ref document number: 3776/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010311203

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: A201206303

Country of ref document: UA

Ref document number: 201200637

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2010311203

Country of ref document: AU

Date of ref document: 20101026

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13503697

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012009851

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012009851

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120426