WO2011050645A1 - 无线设备天线的实现方法以及无线设备 - Google Patents

无线设备天线的实现方法以及无线设备 Download PDF

Info

Publication number
WO2011050645A1
WO2011050645A1 PCT/CN2010/075851 CN2010075851W WO2011050645A1 WO 2011050645 A1 WO2011050645 A1 WO 2011050645A1 CN 2010075851 W CN2010075851 W CN 2010075851W WO 2011050645 A1 WO2011050645 A1 WO 2011050645A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
network device
antenna
radio frequency
frequency
Prior art date
Application number
PCT/CN2010/075851
Other languages
English (en)
French (fr)
Inventor
兰尧
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to EP10826008.4A priority Critical patent/EP2487751B1/en
Publication of WO2011050645A1 publication Critical patent/WO2011050645A1/zh
Priority to US13/459,737 priority patent/US9093743B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method for implementing a wireless device antenna and a wireless device. Background technique
  • the data card can include a Universal Serial Bus (USB) interface.
  • USB Universal Serial Bus
  • the antenna is an essential part of the data card, and the data card receives and transmits wireless signals through the antenna.
  • Existing data cards use antennas in the form of monopoles, inverted-F antennas (IFA), and planar inverted-F antennas (PIFAs). These antennas are either mounted on a data card as a stand-alone unit or printed on the motherboard of the data card to radiate RF signals or receive RF signals from external devices.
  • the inventors have found that at least the following problems exist in the prior art: Since the size of the data card is getting smaller and smaller, the antenna provided on the data card still needs independent antenna elements, and the space utilization rate of the data card Room for improvement.
  • the embodiments of the present invention provide a method for implementing a wireless device antenna and a wireless device, so as to solve the problem that the space utilization rate of the wireless device such as a data card is independent in the prior art. Question.
  • An embodiment of the present invention provides a method for implementing a wireless device antenna, including:
  • the wireless device is divided into a first part and a second part in electrical performance.
  • the two parts are electrically connected only by a radio frequency signal feed line as an antenna feed line and a frequency selective network device, wherein the first part includes at least a radio frequency chip, and the second part includes a connecting device for connecting a network device, and a portion of the wireless device, in addition to the radio frequency signal feeder and the frequency selective network device, after the wireless device is connected to the network device and is common to the network device, the frequency selection
  • the network device has a high impedance in a working frequency band of the wireless device, and has a low impedance at a clock frequency of the digital signal on the data line and a direct current;
  • a second portion of the wireless device is used as an antenna of the wireless device.
  • an embodiment of the present invention provides a wireless device, including: a first part and a second part, and a radio frequency signal feeder and a frequency selective network device electrically connecting the first part and the second part, where the frequency selective network device is The wireless device has a high impedance in the operating frequency band, and the clock frequency of the digital signal on the data line and the direct current is low impedance, the first portion includes at least a radio frequency chip, and the second portion includes a connection device for connecting the network device.
  • the wireless device on the wireless device except for the radio frequency signal feeder and the frequency selective network device, the part of the wireless device that is connected to the network device after the wireless device is connected to the network device, and the frequency selective network device works on the wireless device a high impedance in the frequency band, a low impedance at the clock frequency of the digital signal on the data line and a direct current; and a power line and a data line on the second portion passing through the frequency selective network device and the first portion
  • the power line and the data line are correspondingly connected, and the radio frequency signal is fed from the first part to the second part through the radio frequency signal feeder; the wireless A second portion of the device is used as an antenna for the wireless device.
  • the wireless device since the radio frequency signal feeder and the frequency selective network device are electrically connected only between the first portion and the second portion of the wireless device, the wireless device operates between the first portion and the second portion of the wireless device.
  • the frequency band exhibits high impedance and achieves the effect of disconnection of the RF signal in the working frequency band.
  • the second part is equivalent to the metal body isolated from the first part.
  • FIG. 1 is a flow chart of an embodiment of a method for implementing a wireless device antenna according to the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a wireless device according to the present invention.
  • FIG. 1 is a flowchart of an embodiment of a method for implementing a wireless device antenna according to the present invention. As shown in FIG. 1 , the method in this embodiment may include:
  • Step 101 Divide the wireless device into a first part and a second part in electrical performance.
  • the first part includes at least a radio frequency chip
  • the second part includes a connection device for connecting the network device
  • the radio device is connected to the network device in addition to the radio frequency signal feeder and the frequency selection network device
  • the frequency selective network device has a high impedance in the operating band of the wireless device, and the clock frequency of the digital signal on the data line and the direct current are low impedance.
  • co-metal with the network device means co-located with a bulk metal within the network device.
  • the wireless device is a data card as an example.
  • the embodiment is not limited to a data card.
  • the wireless device in this embodiment may also be a wireless network card or other wireless device.
  • the RF signal feeder and the frequency selective network device which are antenna feeders, can be used to divide the data card into two parts, namely the first part and the second part. Since the frequency selective network device has a high impedance in the working band of the data card, the clock frequency of the digital signal on the data line and the direct current are low impedance, so the first part and the second part of the data card are for the data card operating band. That is, the operating frequency of the RF signal is disconnected, and is turned on for the clock frequency of the low frequency digital signal and the DC signal of the power supply, so that the first part and the second part of the RF signal on the data card are disconnected.
  • Step 102 Apply the frequency selection network device, and connect the power line and the data line on the second part to the power line and the data line respectively on the first part, and the RF signal passes through the RF signal feeder. The first part feeds into the second part.
  • the data card is used as an example.
  • the first part may include a radio frequency chip, where the radio frequency chip may include any radio frequency module of the data card, a baseband, and the like, and the data line may include the data line D+ and the data line D.
  • the power cord may include a power positive line and a power ground, wherein the power ground is co-located with the second portion, the power ground on the first portion and the metal portion of the first portion; the power ground on the second portion Coexisting with the metal part of the second part. Therefore, in this embodiment, the frequency selective network device may be four for respectively using the data line D+, the data line D-, the power positive line, and the power ground line on the second part and the data line on the first part.
  • the second part of the data card may further comprise a connection device, such as a USB connector, through which the data card can be connected to the network device, the USB connector also including a metal that is metal-metal to the network device. section.
  • a connection device such as a USB connector
  • the first part and the second part of the data card are radio frequency disconnected, the first part and the second part of the data card are not except the above-mentioned frequency selective network device and the radio frequency signal feeder. Any other metal connection.
  • Step 103 Use a second part of the wireless device as an antenna of the wireless device.
  • the data card of the embodiment can be connected to the network device through the connection device when used, for example, by connecting the network device through the USB connector on the second portion.
  • the second part of the data card can be used as the antenna of the data card to receive and transmit signals.
  • the working frequency of the antenna is 700MHz ⁇ 3GHz, that is, the working frequency of the data card can be within 700MHz ⁇ 3GHz.
  • the frequency selective network device has the characteristics of high frequency and high frequency resistance, when the RF signal passes The RF signal feeder is fed from the first part to the second part via antenna matching. Since the frequency selective network device blocks the passage of the high frequency signal, the RF signal to be transmitted is not short-circuited by the data line and the power line.
  • the second part of the data card and the metal ground of the network device to which the data card is connected can be used as an antenna to transmit the RF signal, and at the same time, due to the principle of reciprocity of the antenna, the second part and the
  • the metal ground of the network device connected to the data card can also receive the wireless signal from the space as an antenna; since the clock frequency of the digital signal transmitted on the data line and the power signal transmitted on the power line are both low frequency or direct current signals, the frequency selection is performed.
  • the network device can allow the digital signal and the power signal to pass, so that for the low frequency signal or the direct current signal, the data card still forms a path, thereby ensuring the normal operation of the data card.
  • the operating frequency of the data card in this embodiment is not limited to the above frequency range. Those skilled in the art can adjust the operating frequency as needed.
  • the network device described in this embodiment may include any communication device such as a notebook computer, a desktop computer, a gateway, and the like that requires wireless Internet access services.
  • the frequency selective network device can be either a single inductor or a frequency selective network composed of an inductor, a capacitor, a magnetic bead or a common mode inductor. It can be understood by those skilled in the art that the frequency selective network device can be any device having a high frequency characteristic of passing low frequency resistance, and is not limited to the above four types.
  • the first part and the second part of the wireless device are only electrically connected by the RF signal feeder and the frequency selective network device, the first part and the second part of the wireless device are disconnected from the RF, so when the RF signal passes through the RF signal feeder from the first
  • the second part of the wireless device can transmit the radio frequency signal as an antenna of the wireless device, and the second part can also receive the wireless signal from the space as the antenna due to the reciprocity principle of the antenna.
  • a separate antenna component is no longer needed on the device, and only a small space is reserved on the wireless device motherboard, thereby improving the space efficiency of the wireless device.
  • the method may further include: using a metal ground and the second part of the network device connected by the wireless device as an antenna of the wireless device .
  • the present embodiment connects the wireless device to the network device.
  • the second part can be shared with the metal in the network device. Therefore, in this embodiment, in addition to the second part of the wireless device, the metal ground in the network device can also be used as an antenna.
  • the antenna area becomes very large, so that resonant radiant energy can be formed at multiple frequency points to form an ultra-wideband antenna that supports a wide operating bandwidth.
  • An embodiment of the wireless device of the present invention may include: a first portion and a second portion, and a radio frequency signal feed line and a frequency selective network device electrically connecting the first portion and the second portion, the frequency selective network device being within a working band of the wireless device High impedance, low impedance at the clock frequency of the digital signal on the data line and DC, the first portion includes at least a radio frequency chip, and the second portion includes a connection device for connecting a network device and the wireless device And a portion of the frequency selective network device that is fused to the network device after the network device is connected, in addition to the RF signal feeder and the frequency selective network device, the high frequency impedance of the frequency selective network device in the operating band of the wireless device, The clock frequency of the digital signal on the data line and the DC signal are low impedance; the power line and the data line on the second portion are connected to the power line and the data line on the first part through the frequency selective network device, and the radio frequency Transmitting a signal from the first portion to the second portion through the
  • the first part and the second part of the wireless device are electrically connected only by the RF signal feeder and the frequency selective network device, the first part and the second part of the wireless device are disconnected from the radio frequency. Therefore, when the radio frequency signal passes through the radio frequency After the signal feeder is fed from the first part to the second part, the second part of the wireless device can be radiated as the antenna of the wireless device, and the second part can also receive the wireless signal from the space as the antenna due to the reciprocity principle of the antenna. A separate antenna component is no longer needed on the wireless device, and only a small space is reserved on the wireless device motherboard, thereby improving the space utilization efficiency of the wireless device.
  • the metal ground of the network device and the second portion are collectively used as an antenna of the wireless device. Since the network device is generally larger than the wireless device, such as a data card, and the metal portion thereof has almost the same area as the network device, the second part can be connected to the network device after the wireless device is connected to the network device. The ground is shared with the metal in the network device. Therefore, in this embodiment, in addition to the second part of the wireless device, the network can be set. The metal ground in the standby is also used as an antenna. At this time, the antenna area becomes very large, so that resonant radiant energy can be formed at a plurality of frequency points, thereby forming an ultra-wideband antenna, which supports a wide operating bandwidth.
  • the following embodiment is described by taking a wireless device as a data card as an example.
  • the present embodiment is not limited to a data card.
  • the wireless device in this embodiment may also be a wireless network card or other wireless device.
  • the wireless device such as the data card of this embodiment may include: a first part 11, a second part 12, and four frequency selective network devices 13.
  • the first portion 11 may include a radio frequency chip of the data card, such as a baseband and a radio frequency component
  • the second portion 12 may include the data card in addition to the first portion 11 and the frequency selective network device and the radio frequency signal feeder, after being connected to the network device and the network
  • the equipment has a total of metal parts.
  • the data lines in the data card may include a data line D+14 and a data line D-15, and the power line may include a power positive line 16 and a power ground line 17.
  • the four frequency selective network devices 13 respectively connect the data line D+ 14, the data line D-15, the power positive line 16 and the power ground line 17 with the data lines and the power lines on the first portion 11.
  • the radio frequency signal is transmitted through the antenna matching 20 through the antenna matching 20 from the first portion 11 to the second portion 12 for transmission.
  • the second portion 12 can also be used as an antenna to receive the wireless signal from the space.
  • the second portion of the data card may further include a USB connector 19 through which the data card can connect to the network device.
  • the first part 11 and the second part 12 of the data card have no other metal connections.
  • the second portion 12 of the data card and the metal device of the network device can be used as the antenna of the data card to receive and transmit the radio frequency signal transmitted on the RF signal feeder 18. .
  • the working frequency band of the antenna is 700 MHz to 3 GHz, that is, the operating frequency of the RF signal feeder can be within 700 MHz to 3 GHz, since the frequency selective network device 13 has the characteristics of low frequency resistance and high frequency. Therefore, when the RF signal passes through the RF signal feeder 18 via the antenna match 20 When the first portion 11 is fed into the second portion 12, since the frequency selective network device 13 blocks the passage of the high frequency signal, the RF signal transmitted on the RF signal feed line 18 is not caused by the data line D+14, the data line D-15, and the power source positive electrode. The line 16 and the power ground line 17 are short-circuited.
  • the second part of the data card and the network device connected to the data card can transmit the RF signal as an antenna, and due to the principle of reciprocity of the antenna,
  • the second part can also receive the wireless signal from the space as an antenna; the clock frequency of the digital signal transmitted on the data line D+14 and the data line D-15, and the power line, that is, the power positive line 16 and the power ground line 17
  • the frequency of the transmitted power signal is low frequency or DC signal, so the frequency selective network device 13 can allow the digital signal and the power signal to pass, so that for the low frequency signal or the direct current signal, the data card still forms a path, thereby ensuring the data.
  • the card works fine.
  • the operating frequency of the data card in this embodiment is not limited to the above frequency range. Those skilled in the art can adjust the operating frequency as needed.
  • the network device described in this embodiment may include any communication device such as a notebook computer, a desktop computer, a gateway, and the like that requires wireless Internet access services.
  • the frequency selective network device can be either a single inductor or a frequency selective network composed of an inductor, a capacitor, a magnetic bead or a common mode inductor. It will be understood by those skilled in the art that the frequency selective network or device may be any device or network having a low frequency blocking high frequency characteristic, and is not limited to the above four.
  • the network device is generally larger than the data card, and the metal portion thereof has almost the same area as the network device, in this embodiment, after the data card is connected to the network device, the second portion It can be co-located with the metal in the network device. Therefore, in this embodiment, in addition to using the second portion of the data card as an antenna, the metal portion of the network device can be used as an antenna, and the antenna area becomes very large.
  • resonant radiant energy can be formed at a plurality of frequency points to form an ultra-wideband antenna, which supports a wide operating bandwidth; at this time, a separate antenna component is no longer needed on the data card, and only needs to be used for the data card motherboard. Reserve a small space to increase the space of the data card Use efficiency.

Description

无线设备天线的实现方法以及无线设备 本申请要求于 2009 年 10 月 30 日提交中国专利局、 申请号为 200910207792.9、 发明名称为"无线设备天线处理方法以及无线设备"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域, 尤其涉及一种无线设备天线的实现方法以及 无线设备。 背景技术
随着无线通信技术的不断发展, 数据卡, 也即无线上网卡, 作为一种无线 通信设备得到了广泛应用。 数据卡可以包括通用串行总线 ( Universal Serial Bus, USB )接口, 通过将该 USB连接器连接便携机、 台式电脑、 网关等设备的 USB 连接器, 使便携机、 台式电脑、 网关等设备可以通过该数据卡实现无线上网。
天线是数据卡的必要组成部分, 数据卡通过天线接收和发送无线信号。 现 有的数据卡广泛采用单极子、 倒 F天线(IFA )、 平面倒 F天线(PIFA )等形式 的天线。 这些天线或者作为一个独立单元安装在数据卡上, 或者印制在数据卡 的主板上, 从而向外辐射射频信号或者接收外部设备发送来的射频信号。
在实现本发明的过程中, 发明人发现现有技术至少存在如下问题: 由于数 据卡的尺寸越来越小, 设置在数据卡上的天线的仍需要独立的天线元件, 数据 卡的空间利用率有待提高。
发明内容
本发明实施例提供一种无线设备天线的实现方法以及无线设备, 以解决现 有技术中由于数据卡等无线设备的天线独立存在, 所带来的空间利用率不够高 问题。
本发明实施例提供一种无线设备天线的实现方法, 包括:
将无线设备在电性能上分为第一部分和第二部分, 两部分之间仅由作为天 线馈线的射频信号馈线和选频网络器件作为电连接, 其中第一部分至少包括射 频芯片, 第二部分包括用于连接网络设备的连接器件以及所述无线设备上除射 频信号馈线和选频网络器件之外 , 在所述无线设备连接网络设备后与所述网络 设备共金属地的部分, 所述选频网络器件在所述无线设备工作频带内呈高阻 抗, 在所述数据线上数字信号的时钟频率和直流时呈低阻抗;
应用所述选频网络器件 , 将所述第二部分上的电源线和数据线与所述第一 部分上的电源线和数据线对应连接, 射频信号通过所述射频信号馈线从所述第 一部分馈入所述第二部分;
将所述无线设备的第二部分作为所述无线设备的天线。
相应地, 本发明实施例提供一种无线设备, 包括: 第一部分和第二部分, 以及电连接所述第一部分和第二部分的射频信号馈线和选频网络器件, 所述选 频网络器件在无线设备工作频带内呈高阻抗, 在所述数据线上数字信号的时钟 频率和直流时呈低阻抗, 所述第一部分至少包括射频芯片, 所述第二部分包括 用于连接网络设备的连接器件以及所述无线设备上除射频信号馈线和选频网络 器件之外 , 在所述无线设备连接网络设备后与所述网络设备共金属地的部分 , 所述选频网络器件在所述无线设备工作频带内呈高阻抗, 在所述数据线上数字 信号的时钟频率和直流时呈低阻抗; 所述第二部分上的电源线和数据线通过所 述选频网络器件与所述第一部分上的电源线和数据线对应连接, 射频信号通过 所述射频信号馈线从所述第一部分馈入第二部分; 所述无线设备的第二部分用 于作为所述无线设备的天线。 本发明上述实施例中, 由于无线设备的第一部分和第二部分之间仅由射频 信号馈线和选频网络器件电连接, 从而使得无线设备的第一部分和第二部分之 间在无线设备的工作频段呈现高阻抗 , 达到工作频段上射频信号断路的效果, 第二部分等效为孤立于第一部分之外的金属体, 当射频信号通过所述射频信号 馈线从第一部分馈入第二部分, 无线设备的第二部分即可作为无线设备的天线 接收或发射信号, 无线设备上不再需要一个独立的天线元件, 只需要在无线设 备上预留极小的空间 , 从而提高了无线设备的空间使用效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例中所需要使 用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些 实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可 以根据这些附图获得其他的附图。
图 1为本发明无线设备天线的实现方法的一个实施例流程图;
图 2为本发明无线设备一个实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明无线设备天线的实现方法一个实施例的流程图, 如图 1所示, 本实施例的方法, 可以包括:
步驟 101、 将无线设备在电性能上分为第一部分和第二部分。 第一部分至少包括射频芯片 , 第二部分包括用于连接网络设备的连接器件 以及所述无线设备上除射频信号馈线和选频网络器件之外、 在连接网络设备后 与所述网络设备共金属地的部分, 选频网络器件在无线设备工作频带内呈高阻 抗, 在所述数据线上数字信号的时钟频率和直流时呈低阻抗。 这里, "与所述 网络设备共金属地" 的意思是与所述网络设备内的大块金属共地。
本实施例以无线设备是数据卡为例进行说明, 但是本实施例并不仅限于数 据卡 , 本实施例的无线设备也可以为无线网卡等其它无线设备。
本实施例可以采用作为天线馈线的射频信号馈线以及选频网络器件将数据 卡在电性能上分为两个部分, 即第一部分和第二部分。 由于选频网络器件在数 据卡工作频带内呈高阻抗, 在所述数据线上数字信号的时钟频率和直流时呈低 阻抗, 因此, 数据卡上的第一部分和第二部分对于数据卡工作频带, 即射频信 号的工作频率来说是断开的 , 对于低频数字信号的时钟频率和电源直流信号来 说是导通的, 从而使得数据卡上的第一部分和第二部分射频信号断路。
步驟 102、 应用所述选频网络器件, 将所述第二部分上的电源线和数据线分 别与所述第一部分上的电源线和数据线对应连接, 射频信号通过所述射频信号 馈线从所述第一部分馈入所述第二部分。
具体来说, 以数据卡为例, 第一部分可以包括射频芯片, 该射频芯片可以 包括数据卡的射频模块、 基带等任何可能需要的功能模块, 该数据线可以包括 数据线 D+和数据线 D -, 电源线可以包括电源正极线和电源地线, 其中电源地线 是与第二部分共地的, 第一部分上的电源地线和第一部分的金属地共地; 第二 部分上的电源地线和第二部分的金属地共地。 因此, 在本实施例中, 该选频网 络器件可以为 4个, 分别用于将第二部分上的数据线 D+、 数据线 D -、 电源正极 线以及电源地线与第一部分上的数据线 D+、 数据线 D -、 电源正极线以及电源地 线对应连接。 射频信号通过射频信号馈线从第一部分馈入第二部分, 从而可以 接收和发送信号。 在本实施例中, 该数据卡的第二部分还可以包括连接器件, 例如 USB连接器, 数据卡可以通过该 USB连接器连接网络设备, 该 USB连接 器也包括与网络设备共金属地的金属部分。
在本实施例中, 为了使数据卡上的第一部分与第二部分是射频断路的, 除 了上面提到的选频网络器件以及射频信号馈线之外, 数据卡的第一部分和第二 部分, 没有其它任何金属连接。
步驟 103、 将所述无线设备的第二部分作为所述无线设备的天线。
具体来说, 由于本实施例的数据卡具有上述结构, 因此本实施例的数据卡 在使用时, 可以通过连接器件连接到网络设备中, 例如通过第二部分上的 USB 连接器连接到网络设备中, 即可将数据卡的第二部分作为数据卡的天线来接收 和发送信号。
殳在实际应用中, 天线的工作频段为 700MHz〜3GHz, 也即数据卡的工作 频率可以在 700MHz〜3GHz之内, 由于选频网络器件具有通低频阻高频的特性, 因此, 当射频信号通过射频信号馈线经天线匹配从第一部分馈入第二部分, 由 于选频网络器件阻止高频信号通过, 不会使要发射的射频信号因数据线和电源 线导致短路。 相对于第一部分来说, 数据卡上的第二部分以及该数据卡连接的 网络设备的金属地即可作为天线对此射频信号进行发射, 同时由于天线的互易 性原理, 第二部分以及该数据卡连接的网络设备的金属地也可作为天线接收来 自空间的无线信号; 由于数据线上传输的数字信号的时钟频率和电源线上传输 的电源信号均为低频或者直流信号 , 因此该选频网络器件可以允许数字信号和 电源信号通过, 从而对于低频信号或者直流信号来说, 数据卡内依然形成通路, 从而可以保证数据卡的正常工作。 需要说明的是, 本实施例中的数据卡的工作频率不限于上述频率范围内。 本领域技术人员根据需要, 可以将该工作频率进行调整。
本实施例中所述的网络设备可以包括笔记本电脑、 台式电脑、 网关等任意 需要使用无线上网业务的通信设备上。
在本实施例中, 选频网络器件既可以为单独的电感, 也可以由电感、 电容、 磁珠或共模电感组成选频网络。 本领域技术人员可以理解的是, 该选频网络器 件可以为具有通低频阻高频特性的任一器件, 而不限于上述四种。
由于无线设备的第一部分和第二部分之间仅由射频信号馈线和选频网络器 件电连接, 从而使得无线设备的第一部分和第二部分射频断路, 因此, 当射频 信号通过射频信号馈线从第一部分馈入第二部分时, 无线设备的第二部分即可 作为无线设备的天线发射此射频信号, 同时由于天线的互易性原理, 第二部分 也可作为天线接收来自空间的无线信号, 无线设备上不再需要一个独立的天线 元件, 只需要为此在无线设备主板上预留极小的空间, 从而可以提高无线设备 的空间使用效率。
在本发明无线设备天线的实现方法另一个实施例中, 进一步地, 该方法还 可以包括: 将被所述无线设备连接的网络设备的金属地和所述第二部分作为所 述无线设备的天线。
在本实施例中, 由于网络设备一般来说比无线设备(例如数据卡) 大, 而 且, 其金属地部分几乎与该网络设备具有相同的面积, 因此, 本实施例在将无 线设备连接网络设备后, 第二部分即可与网络设备内的金属共地, 因此, 本实 施例除了可以将无线设备上的第二部分作为天线外 , 还可以将网络设备内的金 属地也作为天线, 此时天线面积会变得非常大, 从而可以在多个频率点形成谐 振辐射能量, 进而形成一个超宽带天线, 支持较宽的工作带宽。 本发明无线设备一个实施例可以包括: 第一部分和第二部分, 以及电连接 所述第一部分和第二部分的射频信号馈线和选频网络器件, 所述选频网络器件 在无线设备工作频带内呈高阻抗, 在所述数据线上数字信号的时钟频率和直流 时呈低阻抗, 所述第一部分至少包括射频芯片, 所述第二部分包括用于连接网 络设备的连接器件以及所述无线设备上除射频信号馈线和选频网络器件之外、 在连接网络设备后与所述网络设备共金属地的部分, 所述选频网络器件在所述 无线设备工作频带内呈高阻抗 , 在所述数据线上数字信号的时钟频率和直流时 呈低阻抗; 所述第二部分上的电源线和数据线通过所述选频网络器件与所述第 一部分上的电源线和数据线对应连接, 射频信号通过所述射频信号馈线从所述 第一部分馈入第二部分; 所述无线设备的第二部分用于作为所述无线设备的天 线。
本实施例中, 由于无线设备第一部分和第二部分之间仅由射频信号馈线和 选频网络器件电连接, 从而使得无线设备的第一部分和第二部分射频断路, 因 此, 当射频信号通过射频信号馈线从第一部分馈入第二部分后, 无线设备的第 二部分即可作为无线设备的天线进行辐射, 同时由于天线的互易性原理, 第二 部分也可作为天线接收来自空间的无线信号, 无线设备上不再需要一个独立的 天线元件, 只需要为此在无线设备主板上预留极小的空间, 从而可以提高无线 设备的空间使用效率。
本发明无线设备另一个实施例中, 所述网络设备的金属地与所述第二部分 共同作为所述无线设备的天线。 由于网络设备一般来说比无线设备, 例如数据 卡大, 而且, 其金属地部分几乎与该网络设备具有相同的面积, 因此, 本实施 例在将无线设备连接网络设备后, 第二部分即可与网络设备内的金属共地, 因 此, 本实施例除了可以将无线设备上的第二部分作为天线外, 还可以将网络设 备内的金属地也作为天线, 此时天线面积会变得非常大, 从而可以在多个频率 点形成谐振辐射能量, 进而形成一个超宽带天线, 支持较宽的工作带宽。
下面一个实施例以无线设备是数据卡为例进行说明 , 但是本实施例并不仅 限于数据卡, 本实施例的无线设备也可以为无线网卡等其它无线设备。
图 2为本发明无线设备一个实施例的结构示意图, 如图 2所示, 本实施例 的无线设备如数据卡可以包括: 第一部分 11、 第二部分 12以及 4个选频网络器 件 13。 第一部分 11可以包括数据卡的射频芯片, 例如基带和射频组件, 第二部 分 12可以包括数据卡上除第一部分 11以及选频网络器件和射频信号馈线之外、 在与网络设备连接后与网络设备共金属地部分。 该数据卡中的数据线可以包括 数据线 D+14和数据线 D-15 , 电源线可以包括电源正极线 16和电源地线 17。 4 个选频网络器件 13分别将数据线 D+ 14、 数据线 D- 15、 电源正极线 16以及电 源地线 17与第一部分 11上的数据线和电源线对应连接。 射频信号通过射频信 号馈线 18通过天线匹配 20从第一部分 11上馈入第二部分 12进行发射, 同时 由于天线的互易性原理, 也可通过第二部分 12作为天线接收来自空间的无线信 号。 在本实施例中, 该数据卡的第二部分还可以包括 USB连接器 19, 数据卡可 以通过该 USB连接器 19连接网络设备。 除此之外, 数据卡的第一部分 11和第 二部分 12, 没有其它任何金属连接。
本实施例的数据卡在使用时通过 USB连接器连接网络设备后, 可以将数据 卡的第二部分 12以及网络设备金属地作为数据卡的天线来接收和发送射频信号 馈线 18上传输的射频信号。
具体地, 支设在实际应用中, 天线的工作频段为 700MHz〜3GHz, 也即射频 信号馈线的工作频率可以在 700MHz〜3GHz之内, 由于选频网络器件 13具有通 低频阻高频的特性, 因此, 当射频信号通过射频信号馈线 18经天线匹配 20从 第一部分 11馈入第二部分 12时, 由于选频网络器件 13阻止高频信号通过, 不 会使射频信号馈线 18上传输的射频信号被数据线 D+14、 数据线 D-15、 电源正 极线 16和电源地线 17短路, 相对第一部分来说, 数据卡上的第二部分以及该 数据卡连接的网络设备即可作为天线对此射频信号进行发射, 并由于天线的互 易性原理, 第二部分也可作为天线接收来自空间的无线信号; 由于数据线 D+14 和数据线 D-15上传输的数字信号的时钟频率, 以及电源线, 即电源正极线 16 和电源地线 17上传输的电源信号的频率均为低频或者直流信号, 因此该选频网 络器件 13可以允许数字信号和电源信号通过, 从而对于低频信号或者直流信号 来说, 数据卡内依然形成通路, 从而可以保证数据卡的正常工作。
需要说明的是, 本实施例中的数据卡的工作频率不限于上述频率范围内。 本领域技术人员根据需要, 可以将该工作频率进行调整。
本实施例中所述的网络设备可以包括笔记本电脑、 台式电脑、 网关等任意 需要使用无线上网业务的通信设备上。
在本实施例中, 选频网络器件既可以为单独的电感, 也可以由电感、 电容、 磁珠或共模电感组成选频网络。 本领域技术人员可以理解的是, 该选频网络或 者器件可以为具有通低频阻高频特性的任一器件或网络, 而不限于上述四种。
在本实施例中, 由于网络设备一般来说比数据卡大, 而且, 其金属地部分 几乎与该网络设备具有相同的面积, 因此, 本实施例在将数据卡连接网络设备 后, 第二部分即可与网络设备内的金属共地, 因此, 本实施例除了将数据卡上 的第二部分作为天线外, 还可以将网络设备内的金属地部分作为天线, 则天线 面积会变得非常大, 从而可以在多个频率点形成谐振辐射能量, 进而形成一个 超宽带天线, 支持较宽的工作带宽; 此时, 数据卡上不再需要一个独立的天线 元件, 只需要为此在数据卡主板上预留极小空间, 从而可以提高数据卡的空间 使用效率。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其进行 限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普通技术人 员应当理解: 其依然可以对本发明的技术方案进行修改或者等同替换, 而这些 修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的范围。

Claims

权 利 要求
1、 一种无线设备天线的实现方法, 其特征在于, 包括:
将无线设备在电性能上分为第一部分和第二部分, 两部分之间仅由作为天 线馈线的射频信号馈线和选频网络器件作为电连接, 其中第一部分至少包括射 频芯片, 第二部分包括用于连接网络设备的连接器件以及所述无线设备上除射 频信号馈线和选频网络器件之外、 在所述无线设备连接网络设备后与所述网络 设备共金属地的部分, 所述选频网络器件在所述无线设备工作频带内呈高阻 抗, 在所述数据线上数字信号的时钟频率和直流时呈低阻抗;
应用所述选频网络器件 , 将所述第二部分上的电源线和数据线分别与所述 第一部分上的电源线和数据线对应连接, 射频信号通过所述射频信号馈线从所 述第一部分馈入所述第二部分;
将所述无线设备的第二部分作为所述无线设备的天线接收和发送信号。
2、根据权利要求 1所述的无线设备天线的实现方法, 其特征在于, 还包括: 将与所述无线设备连接的网络设备的金属地作为所述无线设备的天线接收 和发送信号。
3、 如权利要求 1或 2所述的无线设备天线的实现方法, 其特征在于, 所述 第一部分包括无线设备的射频芯片。
4、 如权利要求 1或 2所述的无线设备天线的实现方法, 其特征在于, 所述 连接器件为 USB连接器。
5、 如权利要求 1或 2所述的无线设备天线的实现方法, 其特征在于, 所述 选频网络器件包括下列器件的至少一个: 电感、 电容、 磁珠和共模电感。
6、 一种无线设备, 其特征在于, 包括: 第一部分和第二部分, 以及电连接 所述第一部分和第二部分的射频信号馈线和选频网络器件, 所述选频网络器件 在无线设备工作频带内呈高阻抗, 在所述数据线上数字信号的时钟频率和直流 时呈低阻抗, 所述第一部分至少包括射频芯片, 所述第二部分包括用于连接网 络设备的连接器件以及所述无线设备上除射频信号馈线和选频网络器件之外 , 在所述无线设备连接网络设备后与所述网络设备共金属地的部分, 所述选频网 络器件在所述无线设备工作频带内呈高阻抗, 在所述数据线上数字信号的时钟 频率和直流时呈低阻抗; 所述第二部分上的电源线和数据线通过所述选频网络 器件与所述第一部分上的电源线和数据线对应连接, 射频信号通过所述射频信 号馈线从所述第一部分馈入第二部分; 所述无线设备的第二部分用于作为所述 无线设备的天线。
7、 根据权利要求 6所述的无线设备, 其特征在于, 所述网络设备的金属地 与所述第二部分共同作为所述无线设备的天线。
8、 如权利要求 6或 7所述的无线设备, 其特征在于, 所述无线设备为数据 卡。
9、 如权利要求 8所述的无线设备天线的实现方法, 其特征在于, 所述第一 部分包括无线设备的射频芯片。
10、 如权利要求 8 所述的无线设备天线的实现方法, 其特征在于, 所述连 接器件为 USB连接器。
11、如权利要求 8所述的无线设备天线的实现方法, 其特征在于, 所述选频 网络器件包括下列器件的至少一个: 电感、 电容、 磁珠和共模电感。
PCT/CN2010/075851 2009-10-30 2010-08-10 无线设备天线的实现方法以及无线设备 WO2011050645A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10826008.4A EP2487751B1 (en) 2009-10-30 2010-08-10 Method for implementing wireless equipment antenna and wireless equipment
US13/459,737 US9093743B2 (en) 2009-10-30 2012-04-30 Method for implementing wireless equipment antenna and wireless equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102077929A CN101697378B (zh) 2009-10-30 2009-10-30 无线设备天线处理方法以及无线设备
CN200910207792.9 2009-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/459,737 Continuation US9093743B2 (en) 2009-10-30 2012-04-30 Method for implementing wireless equipment antenna and wireless equipment

Publications (1)

Publication Number Publication Date
WO2011050645A1 true WO2011050645A1 (zh) 2011-05-05

Family

ID=42142469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075851 WO2011050645A1 (zh) 2009-10-30 2010-08-10 无线设备天线的实现方法以及无线设备

Country Status (4)

Country Link
US (1) US9093743B2 (zh)
EP (1) EP2487751B1 (zh)
CN (1) CN101697378B (zh)
WO (1) WO2011050645A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697378B (zh) 2009-10-30 2012-11-21 华为终端有限公司 无线设备天线处理方法以及无线设备
CN102158246B (zh) * 2011-01-27 2013-11-06 华为终端有限公司 无线终端
TWI617087B (zh) * 2013-06-03 2018-03-01 群邁通訊股份有限公司 天線結構及應用該天線結構之無線通信裝置
CN105161821B (zh) * 2015-08-12 2018-09-14 宇龙计算机通信科技(深圳)有限公司 组合天线系统及移动终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2929831Y (zh) * 2006-07-18 2007-08-01 北京飞天诚信科技有限公司 一种基于usb协议的信息安全设备
KR20090004461U (ko) * 2007-11-07 2009-05-12 김현경 이동식 저장장치와 알에프 칩을 이용한 카드
CN201315073Y (zh) * 2008-12-12 2009-09-23 深圳华为通信技术有限公司 一种数据卡
CN101540433A (zh) * 2009-05-08 2009-09-23 深圳华为通信技术有限公司 一种无线终端的天线设计方法及数据卡单板
CN101697378A (zh) * 2009-10-30 2010-04-21 深圳华为通信技术有限公司 无线设备天线处理方法以及无线设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337666B1 (en) * 2000-09-05 2002-01-08 Rangestar Wireless, Inc. Planar sleeve dipole antenna
US6545643B1 (en) * 2000-09-08 2003-04-08 3Com Corporation Extendable planar diversity antenna
US6816121B1 (en) * 2003-06-18 2004-11-09 Benq Corporation Motorized rotatable wireless antenna
US7025275B2 (en) * 2004-01-27 2006-04-11 Micro-Star Int'l Co. Ltd. External connecting electronic apparatus
SE528088C2 (sv) * 2004-09-13 2006-08-29 Amc Centurion Ab Antennanordning och bärbar radiokommunikationsanordning innefattande sådan antennanordning
FR2887898B1 (fr) 2005-07-04 2009-06-05 Vossloh Cogifer Sa Coeur de croisement a pointe mobile pour voie ferree
TWM312790U (en) * 2006-11-07 2007-05-21 Lite On Technology Corp Electronic device having dipole antenna
EP1926223B1 (en) * 2006-11-21 2018-02-28 Sony Corporation Communication system and communication apparatus
US7764236B2 (en) * 2007-01-04 2010-07-27 Apple Inc. Broadband antenna for handheld devices
TWI366947B (en) * 2007-07-30 2012-06-21 Htc Corp Headset antenna and connector thereof
US8354966B2 (en) * 2007-12-11 2013-01-15 Option Peripheral telecommunications device having movable cover with integrated antenna
TWI380503B (en) * 2008-09-10 2012-12-21 Arcadyan Technology Corp Antenna module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2929831Y (zh) * 2006-07-18 2007-08-01 北京飞天诚信科技有限公司 一种基于usb协议的信息安全设备
KR20090004461U (ko) * 2007-11-07 2009-05-12 김현경 이동식 저장장치와 알에프 칩을 이용한 카드
CN201315073Y (zh) * 2008-12-12 2009-09-23 深圳华为通信技术有限公司 一种数据卡
CN101540433A (zh) * 2009-05-08 2009-09-23 深圳华为通信技术有限公司 一种无线终端的天线设计方法及数据卡单板
CN101697378A (zh) * 2009-10-30 2010-04-21 深圳华为通信技术有限公司 无线设备天线处理方法以及无线设备

Also Published As

Publication number Publication date
EP2487751A1 (en) 2012-08-15
CN101697378A (zh) 2010-04-21
EP2487751B1 (en) 2020-12-09
US9093743B2 (en) 2015-07-28
CN101697378B (zh) 2012-11-21
US20120212390A1 (en) 2012-08-23
EP2487751A4 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2020173298A1 (zh) 一种天线模块、天线装置以及终端设备
WO2022142824A1 (zh) 天线系统及电子设备
TWI356528B (zh)
US20100123631A1 (en) Multi-band Antenna for a Wireless Communication Device
CN104795630A (zh) 双频wifi全向天线
CN103579755B (zh) 天线和用于形成天线的方法
WO2011116575A1 (zh) 一种无线设备
CN102820523B (zh) 多频天线
US20090322617A1 (en) Thin antenna and an electronic device having the thin antenna
JP2005269630A (ja) ケーブルアンテナ構造
CN107834206B (zh) 一种天线及移动终端
WO2011050645A1 (zh) 无线设备天线的实现方法以及无线设备
CN102340049B (zh) 宽带天线
WO2014161331A1 (zh) 一种终端设备的天线装置
CN211045724U (zh) 一种天线及移动终端
CN108400430A (zh) 一种天线装置及终端
CN103579762B (zh) 多频天线
CN207098055U (zh) 印制槽隙倒f天线及蓝牙通讯装置
WO2021232658A1 (zh) 一种天线组件和无线接入设备
CN203553369U (zh) 开关分体式射频天线
TWI323529B (en) Antenna with couple feeding
TWI381583B (zh) 寬頻天線及具有寬頻天線之電子裝置
TWI487190B (zh) 應用於lte/wwan之耦合饋入式u型平面單極天線
TWI515973B (zh) 應用於wwan/lte之多頻帶單極天線
TWI542075B (zh) 應用於lte/wwan八波段等寬度平面帶線之天線裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010826008

Country of ref document: EP