WO2011050585A1 - 并联液相色谱泵 - Google Patents

并联液相色谱泵 Download PDF

Info

Publication number
WO2011050585A1
WO2011050585A1 PCT/CN2010/001723 CN2010001723W WO2011050585A1 WO 2011050585 A1 WO2011050585 A1 WO 2011050585A1 CN 2010001723 W CN2010001723 W CN 2010001723W WO 2011050585 A1 WO2011050585 A1 WO 2011050585A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
curve
liquid chromatography
pump
plunger
Prior art date
Application number
PCT/CN2010/001723
Other languages
English (en)
French (fr)
Inventor
陆振宇
Original Assignee
北京普析通用仪器有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京普析通用仪器有限责任公司 filed Critical 北京普析通用仪器有限责任公司
Publication of WO2011050585A1 publication Critical patent/WO2011050585A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/042Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being cams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection

Definitions

  • the present invention relates to a parallel liquid chromatography pump for a liquid chromatograph. Background technique
  • the liquid chromatography pump is one of the important components of the liquid chromatograph, and its performance directly affects the stability, repeatability and analytical accuracy of the analysis.
  • the liquid chromatography pumps currently used in liquid chromatography mainly have
  • the 180° single cam parallel liquid chromatography pump includes a cam 5 1 mounted on the camshaft 50, two sets of reciprocating liquid supply mechanisms symmetrically mounted around the circle of the cam 5 1 and two pump heads 55.
  • the reciprocating liquid feeding mechanism comprises a plunger push rod 53 supported on a casing (not shown) of the liquid chromatograph by a bearing (not shown), and a column fixedly connected at the end of the plunger push rod 53
  • the plug 59 is fixedly coupled to the plug at the other end of the plunger push rod 53 and to the follower wheel 52 mounted in the plug.
  • the other end of the plunger 59 extends into the pump chamber 56 of the pump head 55, and a sealing member 54 is disposed between the plunger push rod 53 and the pump head 55.
  • the pump head 55 is provided with a liquid inlet hole 57 and a liquid discharge hole 58 which are respectively connected to the pump chamber 56.
  • a check valve (not shown) is installed in each of the liquid inlet hole 57 and the liquid discharge hole 58.
  • the cam 51 is provided with a cam curve on the outer circumference of its base circle, and the follower wheel 52 is in contact with the cam curve of the cam 5 1 .
  • the driving mechanism drives the cam 51 to rotate
  • the follower wheel 52 rolls along the cam curve of the cam 51, thereby converting the rotational motion of the cam 51 into the reciprocating motion of the plunger push rod 53 and the plunger 59, so that the pump of the pump head 55
  • the pressure in the chamber 56 alternates, and at the same time, under the action of two check valves in the inlet and outlet holes, the plunger 59 is extracted from the inlet hole 57 by a certain amount of liquid every time it reciprocates, and
  • the drain hole 58 discharges a certain amount of liquid to complete its liquid supply function.
  • the 180° single cam parallel liquid chromatography pump has two sets of reciprocating liquid feeding mechanisms arranged symmetrically on both sides of the cam 51, so that other structures used in conjunction with the same, such as a liquid inlet mechanism communicating with the inlet holes, The liquid discharge mechanism connected with the liquid discharge hole, the analysis structure, the communication pipes and the like are scattered in the spatial layout, and the industrial design is difficult; and the liquid carrying portion occupies a large volume, resulting in a liquid
  • the phase chromatographic pump is bulky and requires a large accommodation space.
  • Figure 2 shows a 120° single-cam parallel liquid chromatography pump.
  • the structure is basically the same as that of a 180° single cam parallel LC pump. Only one set of reciprocating liquid feeding mechanism and one pump head 55 are added.
  • the 120° single cam parallel liquid chromatography pump has three sets of reciprocating liquid feeding mechanism and three pump heads 55. The three sets of reciprocating liquid feeding mechanisms are radially evenly distributed around the outer circumference of the cam 51, and the angle between the adjacent two sets of reciprocating liquid feeding mechanisms is 120°.
  • the reciprocating liquid supply mechanism is the same as the reciprocating liquid supply mechanism in Fig. 1, and will not be described again.
  • the 180° dual cam liquid chromatography pump includes a cam shaft 50, a main cam 51 1 and a sub cam 512 mounted at both ends of the cam shaft 50, and two sets of parallel reciprocating liquid feeding mechanisms and two Pump head 55.
  • the reciprocating liquid supply mechanism cooperates with the main cam 51 1 and the sub cam 512, respectively.
  • the reciprocating liquid feeding mechanism is the same as the reciprocating liquid feeding machine in the 180° single cam parallel liquid chromatography pump shown in Fig. 1, and will not be described again.
  • the 180° dual cam liquid chromatography pump can be designed in parallel or in series depending on the design requirements.
  • the difference between the main cam 51 1 and the sub cam 512 is 180°, and when one of the reciprocating liquid supply mechanisms supplies liquid to the plunger, the other set of reciprocating liquid supply mechanism When the plunger is aspirating, the two sets of reciprocating liquid supply mechanisms are alternately operated to ensure continuous supply of the liquid chromatography pump.
  • the 180° dual cam tandem LC pump there is also a certain phase difference between the main cam 51 1 and the sub cam 512.
  • the cam curve mainly includes a rising curve, a falling curve, and a transition curve.
  • the rising curve of the circumferential cam adopts the Archimedes spiral line, which can ensure the linear motion of the column plug, which can ensure the liquid inlet pump has a smooth inlet pressure.
  • the pressure of the pump from 0 to high pressure or ultra-high pressure is subject to a process in which the liquid is compressed as pressure changes, and compression factor compensation is required. Therefore, in order to ensure minimum system pulsation, the cam curve needs to be corrected.
  • the two cam curves of the two cams must be strictly precise and strictly corresponding, so when the cam curve of one of the cams is corrected At the same time, the cam curve of the other cam must be corrected accordingly; and since there is a phase difference between the main and sub cams, the curve to be corrected includes not only the Archimedes spiral as the rising curve, but also Including the descending curve and the transition curve, the number of cam curves formed on each cam can be as many as a dozen or more, and the types are also very complicated, and there are acceleration curves, deceleration curves, etc., so the 180° double cam liquid phase of the conventional structure
  • the cam processing in the chromatographic pump is difficult, and it is difficult to ensure the design accuracy requirement, which results in poor liquid pressure stability. At the same time, it is difficult to ensure the strict correspondence of the correction curves of the two cams, so that the defects of poor pressure stability are eliminated.
  • the correction of the cam curve is also difficult to achieve the desired
  • the sealing member 54 disposed between the plunger 59 and the pump head 55 can ensure that the plunger 59 can Relative to the movement of the pump head 55, it is necessary to ensure that the liquid in the pump chamber does not leak, and it is a dynamic sealing element.
  • the service life of the sealing member 54 is directly related to the stroke and operating frequency of the plunger 59.
  • the flow rate of the liquid chromatography pump is limited by the cam lift design. If you want to increase the flow rate, you have to increase the plunger stroke or increase the frequency of the plunger reciprocating motion, which will bring the life of the sealing component.
  • the invention solves the technical problem that the cam design of the prior liquid chromatography pump is difficult, the cam structure is complicated, the processing is difficult, and the liquid pressure stability is poor.
  • the parallel liquid chromatography pump of the present invention comprises a cam having a cam shaft, a pump head, at least two sets of reciprocating liquid supply mechanisms, and a cam drive mechanism for driving the cam to rotate.
  • a pump chamber, a liquid inlet hole and a liquid discharge hole communicating with the pump chamber are disposed in the pump head.
  • Each set of reciprocating liquid supply mechanism includes a plunger push rod, a plunger fixedly coupled to one end of the plunger push rod and coaxial therewith, and a follower wheel rotatably mounted on the other end of the plunger push rod, the column
  • the other end of the plug extends into the pump chamber of the pump head to cooperate with it.
  • the follower wheel cooperates with a cam curve of the cam.
  • the cam is an end face cam having a cam curve disposed on the other end face opposite to the end face having the cam shaft.
  • the cam curve package converts the rotational motion of the cam into a uniform linear motion of the plunger A rising curve of motion and a falling curve that causes the plunger to return to its original position.
  • Displacement represents the diameter of the plunger, ⁇ represents the number of plungers, and ⁇ is an integer between 2-10.
  • the at least two sets of reciprocating liquid supply mechanisms are disposed on a side of the cam having a cam curve and are evenly arranged in the circumferential direction, and their center lines are all parallel to the center line of the cam shaft.
  • the follower wheel has a truncated cone shape, and the circumferential length of any two cross sections of the follower wheel is equal to the ratio of the circumference of the cam curve of the corresponding position.
  • the curve unit further includes a transition curve connecting the rising curve and the falling curve. Both ends of the rising curve in the cam curve are respectively provided with trimming curves.
  • a smooth transition line is provided at the junction of two adjacent curves in the cam curve.
  • the rising curve is an equal pitch spiral; the falling curve is an equal pitch spiral.
  • the number of the pump heads is one, and there are pump chambers of the same number and independent of each other as the reciprocating liquid supply mechanism, and each pump chamber is connected with an inlet hole and a drain hole. At least two of the at least two recirculating feed mechanisms respectively extend into respective pump chambers within the pump head for operation.
  • each set of reciprocating liquid supply mechanism may be provided with a separate pump head, each pump head is provided with a pump chamber that cooperates with the plunger, and each pump chamber is connected with an inlet hole and a drain hole.
  • such a multi-pump head structure is generally less used due to the required high installation precision, large volume, troublesome arrangement, and the like.
  • a plug is fixedly connected to the end of the plunger push rod in the reciprocating liquid feeding mechanism, and the plug package
  • Two oppositely disposed pins are included, the middle of which is a recess for receiving the follower wheel. Both ends of the central shaft of the follower wheel are rotatably supported inside the two of the pins, respectively.
  • the advantages and positive effects of the parallel liquid chromatography pump of the present invention are:
  • the cam is an end face cam, that is, the cam curve is disposed on the other end surface opposite to the end surface having the cam shaft Therefore, at least two plunger push rods of at least two sets of reciprocating liquid feeding mechanisms can be arranged in parallel with each other and disposed on the same side of the cam, so that the connecting pipes in the parallel liquid chromatography pump are concentrated in space layout. , greatly reducing the difficulty of industrial design; at the same time greatly reducing the volume of the parallel liquid chromatography pump.
  • the curve which involves less parameters, so the design is greatly simplified, not only greatly reduces the design difficulty of the cam, but also reduces many factors affecting the liquid pressure; meanwhile, since the cam curve is simple in the present invention, the cam processing is convenient and easy. Design accuracy is easily achieved, ensuring that liquid pressure stability is as high as expected at design time.
  • the liquid chromatography pump of the present invention has only one cam, and when the cam curve of the cam is corrected, it is not necessary to consider how to correspond to other cam curves as in the prior art, so trimming is easy; and since the cam in the present invention The number of curves is small and the type is simple, which makes the dressing difficulty of the cam curve further reduced. Therefore, the present invention can effectively improve the liquid pressure stability by trimming the cam curve.
  • Figure 1 is a schematic view showing the structure of a conventional 180° single cam parallel liquid chromatography pump
  • FIG. 2 is a schematic structural view of a conventional 120° single cam parallel liquid chromatography pump
  • Figure 3 is a schematic view showing the structure of a conventional 180° double cam liquid chromatography pump
  • Figure 4 is a perspective view of a cam structure for use in a four-chamber parallel liquid chromatography pump embodiment of the parallel liquid chromatography pump of the present invention
  • Figure 5 is a schematic view showing the structure of an embodiment of a four-chamber parallel liquid chromatography pump in the parallel liquid chromatography pump of the present invention
  • FIG. 6 is a schematic structural view of a follower wheel of an embodiment of a four-chamber parallel liquid chromatography pump in a parallel liquid chromatography pump of the present invention
  • Figure 7 is a schematic view showing the mounting wheel shown in Figure 6 mounted on the plunger push rod;
  • Figure 8 is a perspective view of a cam structure for use in a three-chamber parallel liquid chromatography pump embodiment of the parallel liquid chromatography pump of the present invention.
  • the cam 61 in the parallel liquid chromatography pump of the present invention is an end face cam having a cam curve disposed on the other end face opposite to the end face having the cam shaft 60.
  • the cam curve includes a rising curve capable of converting the rotational motion of the cam 61 into a linear motion of the plunger 69, a descending curve for returning the plunger 69 to the home position, and a transition curve connecting the rising curve and the falling curve, adjacent to each other.
  • a smooth transition line (not shown) is provided at the junction of the two curves.
  • a trimming curve (not shown) may be provided at both ends of the rising curve.
  • the rising curve is preferably an equal pitch spiral, and of course other curves capable of converting the rotational motion of the cam 61 into a linear motion of the plunger 69 at a constant speed.
  • the falling curve can be an equal pitch spiral, or other types of curves.
  • the transition curve can be a circular arc with a lead of zero.
  • the cam shown in Fig. 4 is suitable for the four-chamber parallel liquid chromatography pump embodiment
  • the angle corresponding to the falling curve 612 is _30°
  • the angle corresponding to the transition curve 613 is 240. °. That is, in the range of 0°-90° in the circumferential direction of the cam, the corresponding rising curve 61 1, 90°-120° corresponds to the falling curve 612, 12 (the corresponding transition curve 613 in the range of ⁇ °-360°.
  • the angle corresponding to the falling curve 612 is not limited to 30°, and the angle corresponding to the falling curve 612 is feasible in the range of 30°-270°, and the angle corresponding to the falling curve 612 is 270°.
  • the cam curve has only the rising curve 61 1 and the falling curve 612, there is no transition curve 613.
  • the angle corresponding to the falling curve 612 is usually 30. In the range of °-55°, the angle corresponding to the transition curve 613 is in the range of 215°-240°, and the angle between the angle corresponding to the falling curve 612 and the angle corresponding to the transition curve 613 is 270°.
  • the embodiment of the four-chamber parallel liquid chromatography pump in the parallel liquid chromatography pump of the present invention comprises a cam 61 as shown in FIG. 4, a pump head 65, and four sets of mutually parallel reciprocating liquid feeding.
  • the cam 61 has a cam shaft 60, and four sets of reciprocating liquid supply mechanisms are disposed on the side of the cam having the cam curve, and are arranged in the circumferential direction, and their center lines are parallel to the center line of the cam shaft 60.
  • the pump head 65 is provided with four independent pump chambers, and each pump chamber is connected with an inlet hole and a drain hole. A check valve is installed in each of the inlet hole and the drain hole.
  • the four plungers of the four sets of reciprocating liquid supply mechanisms respectively extend into the four pump chambers to work together.
  • the four-chamber parallel liquid chromatography pump means that there is only one cam in the pump, and the cam has only one rising curve, one falling curve and one transition curve, and the three curves are arranged in the range of the cam end face 360'; the pump head of the pump There are four independent pump chambers, and four pump chambers continuously discharge liquid to the downstream mechanism of the liquid chromatograph; the pump has four sets of reciprocating liquid feeding mechanisms.
  • the main features of the four-chamber parallel liquid chromatography pump are: Under the premise of setting the displacement per revolution, the lift of the reciprocating liquid feeding mechanism can be reduced by 4 Double, thus greatly improving the service life of the pump.
  • the present invention can also be designed in the form of a plurality of pump heads having the same number as the reciprocating liquid supply mechanism, and each pump head is provided with a pump chamber, an inlet hole and a drain hole.
  • Each set of reciprocating liquid supply mechanism includes a plug push rod 63, a plunger 69 and a follower wheel 62.
  • the follower wheel 62 has a truncated cone shape with a cone angle of ⁇ .
  • a center shaft 621 is provided at a central position of the follower wheel 62.
  • the follower wheel 62 is in contact with the cam curve of the cam 61.
  • One end of the plunger push rod 63 is fixedly coupled to a plunger 69 coaxial therewith, and the other end is fixedly connected with a plug.
  • the other end of the plunger push rod 63 extends into the pump chamber of the pump head 65.
  • a sealing member (not shown) is disposed between the plunger push rod 63 and the pump head 65. The sealing member and its mounting can be used now. The same technology, not repeated here.
  • the plug at the other end of the plunger pusher 63 of the present embodiment includes two oppositely disposed pins 631, and the middle of the two pins 631 is a recess for receiving the follower wheel 62. Both ends of the center shaft 621 of the follower wheel 62 are rotatably supported inside the two pins 631, respectively.
  • a is the taper angle of the tapered follower wheel 62; that is, the central axis of the follower wheel 62
  • the 621 is not vertically mounted on the two pins 631, but is inclined by an angle ⁇ , and the purpose thereof is to ensure that the circumferential length of any cross section of the follower wheel 62 and the circumferential ratio of the cam curve of the corresponding position are constant, and the constant may be It is a positive integer or a decimal; further, when the truncated cone follower wheel 62 rolls on the cam 61, no misalignment such as twisting occurs.
  • the circumferential length of the cone bottom circle 622 of the follower wheel 62 and the circumference ratio of the inner circumference 617 of the cam 61 are 0.3
  • the circumferential length of the cone top circle 623 of the follower wheel 62 and the circumference ratio of the outer circumference 618 of the cam 61 are also 0.3.
  • the two sides of the groove formed between the two pins 631 are parallel to each other, and the angle ⁇ between the bottom surface and the side surface of the groove can be designed to be 90° - ⁇ /2, so that the plug and the follower wheel can be made.
  • 62 This part of the structure is more compact, which is advantageous for reducing the volume of the pump and is beneficial for ensuring the matching precision of the follower wheel 62 and the cam 61. If the end of the plunger push rod 63 is not provided with a plug, the follower wheel 62 can be rotatably mounted at the end of the plunger push rod 63 in other manners, as long as the follower wheel 62 can be repeatedly operated in cooperation with the cam curve of the cam 61. .
  • the cam shown in Fig. 8 is suitable for the three-chamber parallel liquid chromatography pump embodiment.
  • the angle of the falling curve 612 is 40°
  • the angle of the transition curve 613 is 200°. That is, in the range of 0°-120° in the circumferential direction of the cam, the corresponding rising curve is 61.
  • the corresponding falling curve in the range of 120°-160° is 612
  • the corresponding transition curve 613 is in the range of 160°-360°.
  • the angle corresponding to the falling curve 612 is not limited to 40°, and the angle corresponding to the falling curve 612 is feasible in the range of 40°-240°, when the falling curve 612 is When the corresponding angle is 240°, the cam curve has only the rising curve 61 1 and the falling curve 612 without the transition curve 613.
  • the angle corresponding to the falling curve 612 is generally in the range of 40°-60°, and the angle corresponding to the transition curve 613 is in the range of 200°-180°. It is ensured that the sum of the angle corresponding to the falling curve 612 and the angle corresponding to the transition curve 613 is 240°.
  • the angle corresponding to the rising curve of the cam curve may be a theoretical value according to the specific situation (120° in FIG. 8).
  • the angle corresponding to the curve adjacent to the rising curve is correspondingly delayed or advanced by ⁇ -5° in advance of 1 ° -5 ° or lag ⁇ -5 °.
  • the angle advance or lag corresponding to the rising curve corresponds to the setting of the trimming curve at both ends of the rising curve, that is, the angle of advance or the angle of the lag corresponding to the angle corresponding to the rising curve corresponds to the angle occupied by the trimming curve.
  • the three-chamber parallel liquid chromatography pump can be constructed by the cam shown in Fig. 8, three sets of reciprocating liquid supply mechanisms, and a pump head 55 having three independent pump chambers and a cam driving mechanism for driving the cam rotation.
  • the three-chamber parallel liquid chromatography pump structure is different from the four-chamber parallel liquid chromatography pump structure shown in FIG. 5 only in that it has three sets of reciprocating liquid feeding mechanisms, and the rising curve of the cam curve has an elevation angle of 120°.
  • the pump head has 3 independent pump chambers, and the rest of the same parts will not be described again.
  • the reciprocating liquid feeding mechanism is not limited to 4 sets, and the number thereof is 2 sets, 3 sets, 6 sets, 8 sets, and 10 sets are all feasible; but the number of the reciprocating liquid feeding mechanism and the cam are
  • the following is a comparison of the design of the parallel liquid chromatography pump of the present invention with several existing types of liquid chromatography pumps.
  • the design of the plunger stroke in the embodiment of the four-chamber parallel liquid chromatography pump of the present invention is as shown in FIG. 5, in the embodiment of the four-chamber parallel liquid chromatography pump of the present invention, the rising curve of the cam curve
  • the rising angle that is, the angle corresponding to the rising curve is 90°
  • the falling angle of the falling curve the angle corresponding to the falling curve
  • the angle corresponding to the falling curve is 30°
  • the angle corresponding to the transition curve is 240°
  • the lift of the rising curve and the falling of the falling curve The lead is the same and the lead of the transition curve is zero.
  • the stepping motor drives the cam 61 to rotate, and the four plunger push rods 63 are sequentially pushed by the truncated cone follower wheel 63 to drive the corresponding plunger 69 to reciprocate the hook speed linear motion. Since the rising angle of the rising curve is 90°, there is always a plunger 69 reciprocating at a constant speed in the course of one rotation of the cam 61, thereby completing a continuous accurate supply of the mobile phase required for the system.
  • the service life of the sealing element between the plunger pump heads is directly related to the stroke and operating frequency of the plunger.
  • the stroke of the plunger in the parallel liquid chromatography pump of the present invention is small, and the service life of the parallel liquid chromatography pump can be increased several times.
  • the parallel liquid chromatography pump of the present invention has an absolute advantage over the conventional types of parallel liquid chromatography pumps in terms of service life.
  • At least two plunger push rods of at least two sets of reciprocating liquid feeding mechanisms can be arranged in parallel with each other and disposed on the same side of the cam, so that the liquid chromatography pump is connected in parallel.
  • the connecting pipes and the like are concentrated in the spatial layout, so that the multi-chamber of the liquid chromatography pump is parallelly integrated into a limited space, which not only reduces the volume of the chromatographic pump, but also greatly reduces the design difficulty of the cam. Increases fluid pressure stability.

Description

并联液相色谱泵 技术领域 本发明涉及一种用于液相色谱仪的并联液相色谱泵。 背景技术
液相色谱泵是液相色谱仪的重要组成部件之一,其性能直接影响分析 的稳定性、重复性和分析精度。 目前用于液相色谱仪的液相色谱泵主要有
180°单凸轮并联液相色谱泵、 120°单凸轮并联液相色谱泵和 180°双凸轮液 相色谱泵。
如图 1 所示, 180°单凸轮并联液相色谱泵包括一个安装在凸轮轴 50 上的凸轮 5 1、对称安装在凸轮 5 1圆周围的两套往复送液机构和两个泵头 55。 其中往复送液机构包括由轴承 (图中未示出) 支撑在液相色谱仪的 壳体(图中未示出)上的柱塞推杆 53、 固定连接在柱塞推杆 53—端的柱 塞 59、固定连接在柱塞推杆 53另一端的插头以及转动安装在插头内的随 动轮 52。 柱塞 59的另一端伸入泵头 55的泵室 56内, 柱塞推杆 53与泵 头 55之间设有密封元件 54。泵头 55上设有分别与泵室 56连通的进液孔 57和排液孔 58, 进液孔 57和排液孔 58内各自安装有单向阀 (图中未示 出) 。 凸轮 51上在其基圆外圆周上设有凸轮曲线, 随动轮 52与凸轮 5 1 的凸轮曲线接触配合。当驱动机构带动凸轮 51转动时,随动轮 52沿着凸 轮 51的凸轮曲线滚动, 从而将凸轮 5 1的转动运动转化为柱塞推杆 53及 柱塞 59的往复运动, 使泵头 55的泵室 56内的压强大小交替变化, 同时 在进、 排液孔内的两个单向阀的作用下, 就实现了柱塞 59每往复一次就 从进液孔 57抽取一定量的液体,并从排液孔 58排出一定量的液体,完成 其送液功能。
该种 180°单凸轮并联液相色谱泵, 由于两套往复送液机构对称布置 在凸轮 5 1的两侧, 这样就使得与之配套使用的其他结构, 如与进液孔连 通的进液机构、与排液孔连通的排液机构以及分析结构、各连通管路等在 空间布局上比较分散, 工业设计困难; 而且载液部分所占体积大, 导致液 相色谱泵整体体积大, 需要很大的容置空间。
图 2所示的是 120°单凸轮并联液相色谱泵, 其结构与 180°单凸轮并 联液相色谱泵结构基本相同,仅仅多了一套往复送液机构和一 泵头 55。 该 120°单凸轮并联液相色谱泵中共有 3套往复送液机构和 3个泵头 55。 3 套往复送液机构在凸轮 51的外圆周围呈放射状均匀分布, 相邻两套往复 送液机构之间的夹角为 120°。 往复送液机构与图 1 中的往复送液机构相 同, 不再赘述。
该种 120°单凸轮并联液相色谱泵中, 3套往复送液机构相互间隔 120° 均匀布置在凸轮 51外圆周围, 与上述 180°单凸轮并联液相色谱泵结构一 样存在各连通管路等在空间布局上分散,工业设计困难、整机体积大等一 系列缺陷。
针对上述并联液相色谱泵的缺陷, 出现了一种 180°双凸轮液相色谱 泵, 也是目前普遍使用的液相色谱泵。 如图 3所示, 180°双凸轮液相色谱 泵包括一根凸轮轴 50、 安装在该凸轮轴 50两端的主凸轮 51 1 和副凸轮 512 , 以及两套平行的往复送液机构和两个泵头 55。往复送液机构分别与 主凸轮 51 1和副凸轮 512配合工作。 其中的往复送液机构与图 1所示的 180°单凸轮并联液相色谱泵中的往复送液机相同, 不再赘述。根据设计需 要可以将该种 180°双凸轮液相色谱泵设计成并联式的或者串联式的。 在 180°双凸轮并联液相色谱泵中, 主凸轮 51 1与副凸轮 512的相差为 180°, 当其中一套往复送液机构中的柱塞供液时,另一套往复送液机构中的柱塞 吸液时, 两套往复送液机构如此交替工作, 确保了液相色谱泵连续供液。 在 180°双凸轮串联液相色谱泵中, 主凸轮 51 1与副凸轮 512之间也具有 一定的相差。
该种 180°双凸轮液相色谱泵中, 两个泵头 55布置在凸轮的同一侧, 两套往复送液机构平行布置,在一定程度上改善了前述两种液相色谱泵体 积大、 管路等机构设计困难的情况。但由于主、 副凸轮均是圆周凸轮(即 凸轮曲线设置于凸轮的圆周外围上), 两套往复送液机构由主、副凸轮分 别驱动, 这就要求主、副凸轮的凸轮曲线必须达到足够高的精度, 才能保 证两套往复送液机构按设计要求严格精确地交替动作。对其中一个圆周凸 轮而言, 其凸轮曲线主要包括上升曲线、 下降曲线和过渡曲线等。
从理论上说, 圆周凸轮的上升曲线采用阿基米德螺旋线,能够保证柱 塞做匀速直线运动, 即能保证液相色谱泵得到平稳的进液压力。但是在实 际运用中泵的压力从 0到高压或者超高压是要经历一个过程的,液体在这 个过程中会随着压力变化而被压缩, 因而需要进行压缩系数补偿。因此为 了保证最小的系统脉动, 就需要对凸轮曲线进行修正。另外, 随动轮直径 方向与凸轮圆周切线方向之间、加工刀具的直径方向与凸轮圆周切线方向 之间都会存在一个压力角,压力角的大小取决于凸轮采用的基园、上升曲 线的导程的大小以及随动轮和刀具的直径大小。压力角的产生会使理论设 计曲线和加工所获得的曲线以及凸轮推动随动轮时所获得的运动曲线产 生偏差,这同样会导致压力波动。减小压力波动也需要通过曲线的修正来 实现。 但对于该传统的 180°双凸轮液相色谱泵来说, 由于具有两个凸轮, 两个凸轮的两条凸轮曲线又必须保持严格精确、严格对应,所以当对其中 一个凸轮的凸轮曲线进行修正时,必须同吋对另一个凸轮的凸轮曲线进行 相适应的修正; 而且由于主、副凸轮之间存在相差, 所以需要被修正的曲 线不但包括作为上升曲线的阿基米德螺旋线,而且还包括下降曲线和过渡 曲线,这样形成于每个凸轮上的凸轮曲线数量可多达十几条,种类也非常 复杂, 有加速曲线、 减速曲线等, 所以, 该传统结构的 180°双凸轮液相 色谱泵中的凸轮加工难度大,很难保证设计精度要求, 由此导致液体压力 稳定性差; 同时因为很难保证两个凸轮的修正曲线的严格对应性,所以为 消除压力稳定性差的缺陷而进行的凸轮曲线修正也很难达到预期的效果。
在上述三种结构的凸轮液相色谱泵中, 由于柱塞 59 相对于泵头 55 是运动的, 所以要求设置在柱塞 59与泵头 55之间的密封元件 54既能保 证柱塞 59能够相对于泵头 55运动,又要保证泵室内的液体不泄漏,属动 密封元件。密封元件 54的使用寿命与柱塞 59的行程和动作频率直接相关。 液相色谱泵的流量是受到凸轮升程设计限制的,若想增加流量就得增加柱 塞行程或者提高柱塞往复运动的频率,这会给密封元件的使用寿命带来不 利影响;而为了提高密封元件的使用寿命,往往只能减小柱塞行程或者降 低柱塞往复运动的频率,这又会影响理想的设计流量, 降低了凸轮泵的应 用范围,正所谓鱼和熊掌不可兼得。所以怎样既能保证密封元件的密封性 能, 又能延长其使用寿命, 继而延长两个凸轮泵的使用寿命, 是业界亟待 解决的技术问题。
综上所述, 现有的凸轮液相色谱泵具有如下缺陷:
1. 凸轮设计难度大;
2. 凸轮结构复杂, 加工困难, 达不到设计精度要求, 由此导致液 体压力的稳定性差,而压力稳定与否将直接影响基线的稳定和分析结果的 重现性;
3. 连通管路等在空间布局上分散, 工业设计困难;
4. 并联液相色谱泵的体积大;
5. 密封元件的使用寿命短, 继而导致凸轮液相色谱泵的使用寿命短。 鉴于上述现有技术存在的缺陷,本设计人提出一种液相色谱泵, 能够 避免上述各种缺陷, 使其更具有实用性。
发明内容
本发明要解决现有液相色谱泵中凸轮设计难度大, 凸轮结构复杂、加 工困难, 并且液体压力稳定性差的技术问题。
为解决上述技术问题, 本发明采用如下技术方案:
本发明的并联液相色谱泵, 包括具有凸轮轴的凸轮、泵头、至少两套 往复送液机构以及用于驱动所述凸轮转动的凸轮驱动机构。所述泵头内设 有泵室、与该泵室连通的进液孔和排液孔。所述每套往复送液机构包括柱 塞推杆、固定连接在该柱塞推杆一端并与其同轴的柱塞、转动地安装在所 述柱塞推杆另一端的随动轮,所述柱塞的另一端伸入所述泵头的泵室内与 之配合工作。所述随动轮与所述凸轮的凸轮曲线接触配合工作。其中所述 凸轮是端面凸轮,其凸轮曲线设置在与具有凸轮轴的端面相反的另一端面 上。所述凸轮曲线包能将所述凸轮的转动运动转换成所述柱塞匀速直线运 动的一条上升曲线和使所述柱塞回复原位的一条下降曲线。所述上升曲线 和所述下降曲线的导程相同, 均为 r= 4ν/ηπϋ2 , 所述上升曲线的升角 θ=3607η, 其中 V表示所述凸轮转动一周的所述并联液相色谱泵排量, D 表示所述柱塞的直径, η表示柱塞的数量, η为 2-10之间的整数。 所述至 少两套往复送液机构布置在所述凸轮的具有凸轮曲线的一侧,并且在圆周 方向均匀布置,他们的中心线均平行于所述凸轮轴的中心线。所述随动轮 为圆锥台形,该随动轮的任意两个横截面的圆周长与相对应位置的凸轮曲 线的周长的比值相等。
所述曲线单元还包括连接所述上升曲线和所述下降曲线的过渡曲线。 所述凸轮曲线中的上升曲线的两端部分别设有修整曲线。
所述凸轮曲线中相邻的两条曲线的连接处设有圆滑过渡线。
所述上升曲线为等螺距螺旋线; 所述下降曲线是等螺距螺旋线。
所述往复送液机构的数量为 3套; 所述上升曲线的升角 θ=120°, 所 述下降曲线对应的角度为 240°。
所述往复送液机构的数量为 3套; 所述上升曲线的升角 θ=90°, 所述 下降曲线对应的角度为 40°-60°。
所述往复送液机构的数量为 4套; 所述上升曲线的升角 θ=90°, 所述 下降曲线对应的角度为 270°。
所述往复送液机构的数量为 4套; 所述上升曲线的升角 θ=90°, 所述 下降曲线对应的角度为 30°-55°。
所述泵头的数量为一个,其内设有与往复送液机构数量相同并相互独 立的泵室,每个泵室连通有一个进液孔和一个排液孔。所述的至少两个往 复送液机构中的至少两个柱塞分别伸入所述泵头内的相应的泵室内,与之 配合工作。当然本发明中,也可以为每套往复送液机构配备一个独立的泵 头,每个泵头设有与柱塞配合工作的泵室,每个泵室连通有一个进孔和一 个排液孔。但这种多泵头结构由于要求的安装精度高, 所占体积大, 布置 麻烦等原因, 一般较少使用。
所述往复送液机构中的柱塞推杆端部固定连接有一个插头,该插头包 括两个相对布置的插脚,两个插脚中间为用于容纳所述随动轮的凹槽。所 述随动轮的中心轴的两端分别转动地支撑在两个所述插脚内侧。所述随动 轮的中心轴与所述柱塞推杆的中心线之间的夹角 β = 90°-α/2, α是所述圆 锥台形随动轮的圆锥角。
其中,形成于所述两个插脚之间的凹槽的两个侧面相互平行, 凹槽的 底面与所述凹槽的的侧面之间的夹角 γ = 90°-α/2。
由上述技术方案可知,本发明的并联液相色谱泵的优点和积极效果在 于: 本发明中, 由于其中的凸轮是端面凸轮, 即凸轮曲线设置在与具有凸 轮轴的端面相反的另一端面上,所以至少两套往复送液机构中的至少两个 柱塞推杆可以互相平行布置,并设置在凸轮的同一侧面,故并联液相色谱 泵中的各连通管路等在空间布局上比较集中, 大幅度降低了工业设计难 度; 同时大大减小了并联液相色谱泵的体积。
另外,端面凸轮的凸轮曲线中的上升曲线可以根据凸轮转动一周的排 量v、 柱塞的直径 D及柱塞的数量 η, 仅仅利用导程公式: r= 4v/mcD2和 上升曲线的升角公式: θ=3607η即可完成凸轮上升曲线的设计,所以本发 明的并联液相色谱泵中, 凸轮曲线的上升曲线是一条导程为 r= 4V/mrD2, 升角为 θ=3607η的曲线, 其中涉及的参数少, 因而设计大为简化, 不但 大大降低了凸轮的设计难度,而且减少了影响液体压力的诸多因素; 同时 由于本发明中凸轮曲线简单, 故凸轮加工方便、容易, 轻易地就能达到设 计精度, 从而保证了的液体压力稳定性能够达到设计时所预期的水平。
同时,本发明的液相色谱泵只有一个凸轮, 当对该凸轮的凸轮曲线进 行修正时,不必像现有技术那样考虑怎样与其他凸轮曲线对应,所以修整 很容易; 并且由于本发明中的凸轮曲线数量少、类型简单, 这使得凸轮曲 线的修整难度进一步降低,所以本发明能够方便地通过修整凸轮曲线方式 有效提高液体压力稳定性。
通过以下参照附图对优选实施例的说明, 本发明的上述以及其它目的、 特征和优点将更加明显。 附图说明
图 1是现有的 180°单凸轮并联液相色谱泵结构示意图;
图 2是现有的 120°单凸轮并联液相色谱泵结构示意图;
图 3是现有的 180°双凸轮液相色谱泵结构示意图;
图 4 是本发明的并联液相色谱泵中用于四室并联液相色谱泵实施例 中的凸轮结构的立体图;
图 5 是本发明的并联液相色谱泵中四室并联液相色谱泵实施例的结 构示意图;
图 6 是本发明的并联液相色谱泵中四室并联液相色谱泵实施例的随 动轮的结构示意图;
图 7表示图 6所示的随动轮在柱塞推杆上安装的示意图;
图 8 是本发明的并联液相色谱泵中用于三室并联液相色谱泵实施例 中的凸轮结构的立体图。 具体实施方式 下面将参照附图详细描述本发明的具体实施例。应当注意,这里描述 的实施例只用于举例说明, 并不用于限制本发明。
如图 4、 图 8所示, 本发明的并联液相色谱泵中的凸轮 61是端面凸 轮, 其凸轮曲线设置在与具有凸轮轴 60的端面相反的另一端面上。 凸轮 曲线包括一条能将凸轮 61的转动运动转换成柱塞 69匀速直线运动的上升 曲线、 一条使柱塞 69回复原位的下降曲线和一条连接上升曲线和下降曲 线的过渡曲线,在相邻的两条曲线连接处设有圆滑过渡线(图中未示出)。 为了提高液体压力稳定性,可以在上升曲线的两端部设置修整曲线(图中 未示出) 。
上升曲线的导程为 r= 4v/imD2, 上升曲线的升角 θ=3607η, 其中 ν表 示凸轮 61转动一周的排量, D表示柱塞 69的直径, η表示柱塞 69的数 量, 为 2-10之间的整数。 上升曲线优选为等螺距螺旋线, 当然也可以是 其他的能够将凸轮 61的转动运动转换成柱塞 69匀速直线运动的曲线。 下降曲线的导程必须与上升曲线的导程相同, 即下降曲线的导程 Γ=
4ν/ηπϋ2, 下降曲线可以是等螺距螺旋线, 也可以是其他类型曲线。 过渡 曲线可以是圆弧线, 导程为零。
图 4所示的凸轮适用于四室并联液相色谱泵实施例,其上升曲线 61 1 的升角 θ=90°, 下降曲线 612对应的角度为 _30°, 过渡曲线 613对应的角 度为 240°。 即在凸轮圆周方向 0°-90°范围内对应上升曲线 61 1, 90°-120° 范围内对应下降曲线 612, 12(ί°-360°范围内对应过渡曲线 613。 当然在上 升曲线 61 1的升角 Θ为 90°情况下, 下降曲线 612对应的角度不限于 30°, 下降曲线 612对应的角度在 30°-270°范围内均是可行的, 当下降曲线 612 对应的角度为 270°时, 凸轮曲线便只具有上升曲线 61 1和下降曲线 612, 而没有过渡曲线 613。 实际设计使用时, 上升曲线 61 1的升角 Θ为 90°情 况下, 通常下降曲线 612对应的角度在 30°-55°范围内, 过渡曲线 613对 应的角度在 215°-240°范围内, 并保证下降曲线 612对应的角度与过渡曲 线 613对应的角度之和为 270°。
如图 5所示,本发明的并联液相色谱泵中的四室并联液相色谱泵实施 例, 包括一个如图 4所示的凸轮 61、 一个泵头 65、 4套互相平行的往复 送液机构以及用于驱动凸轮转动的凸轮驱动机构(图中未示出), 如步进 电机等。 其中凸轮 61具有一个凸轮轴 60, 4套往复送液机构布置在凸轮 的具有凸轮曲线的一侧,并且在圆周方向均勾布置,他们的中心线均平行 于凸轮轴 60的中心线。
泵头 65内设有 4个相互独立的泵室, 每个泵室连通有一个进液孔和 一个排液孔。进液孔和排液孔内各自安装有一个单向阀。 4套往复送液机 构中的 4个柱塞分别伸入 4个泵室内,与之配合工作。四室并联液相色谱 泵指的是该泵中只有一个凸轮,该凸轮上只有一条升曲线、一条降曲线和 一条过渡曲线, 该三条曲线布置在凸轮端面 360' 范围内; 该泵的泵头具 有 4个相互独立的泵室, 4个泵室依次连续排出液体到液相色谱仪的下游 机构中; 该泵中具有 4 套往复送液机构。 该四室并联液相色谱泵主要的 特点是: 在每转排量设定的前提下, 可以将往复送液机构的升程减小 4 倍, 从而大幅度提高了泵的使用寿命。
本实施例的四室并联液相色谱泵中只设计有一个泵头,这一方面可以 减少并联液相色谱泵的体积;另一方面使得本发明的安装非常方便,益于 保证安装精度,而良好的安装精度同样利于改善液体压力稳定性。当然本 发明中也可以设计成与往复送液机构数量相同的多个泵头形式,每个泵头 内设置一个泵室、 一个进液孔和一个排液孔。
每套往复送液机构包括一个塞推杆 63、一个柱塞 69和一个随动轮 62。 随动轮 62呈圆锥台形, 圆锥角为 α。 在随动轮 62中央位置设有中心 轴 621。 该随动轮 62与凸轮 61的凸轮曲线接触配合。
柱塞推杆 63的一端固定连接有与其同轴的柱塞 69,另一端固定连接 有插头。 柱塞推杆 63的另一端伸入到泵头 65的泵室内, 在柱塞推杆 63 与泵头 65之间设有密封元件 (图中未示出) , 密封元件及其安装可以与 现有技术相同, 这里不再赘述。
如图 6、 图 7所示, 本实施例中的柱塞推杆 63另一端的插头包括两 个相对布置的插脚 631,两个插脚 631中间为用于容纳随动轮 62的凹槽。 随动轮 62的中心轴 621的两端分别可转动地支撑在两个插脚 631内侧。 随动轮 62的中心轴 621与柱塞推杆 63的中心线之间的夹角 β = 90°-α/2, a是锥形随动轮 62的圆锥角;也就是说随动轮 62的中心轴 621并非垂直 安装于两个插脚 631上, 而是倾斜一角度 β, 其目的在于保证随动轮 62 的任一横截面的圆周长与相对应位置的凸轮曲线的周长比是常数,该常数 可以是正整数, 也可以是小数; 进一步说, 当圆锥台形随动轮 62在凸轮 61上滚动时不会发生扭转等错位现象。 例如, 随动轮 62的锥底圆 622的 圆周长与凸轮 61内圈 617的周长比为 0.3, 随动轮 62的锥顶圆 623的圆 周长与凸轮 61外圈 618的周长比也是 0.3。
另外,形成于两个插脚 631之间的凹槽的两个侧面相互平行, 凹槽底 面与侧面之间的夹角 γ的角度可以设计为 90°-α/2, 这样可以使插头及随 动轮 62这部分结构更加紧凑, 利于减小泵的体积, 并有益于保证随动轮 62与凸轮 61的配合精度。 如果柱塞推杆 63端部不设置插头,随动轮 62也可以其他方式转动安 装在柱塞推杆 63端部, 只要能保证随动轮 62能够重复地与凸轮 61的凸 轮曲线接触配合工作即可。
图 8所示的凸轮适用于三室并联液相色谱泵实施例,其上升曲线 61 1 的升角 θ=120°, 下降曲线 612对应的角度为 40° , 过渡曲线 613对应的角 度为 200°。即在凸轮圆周方向 0°-120°范围内对应上升曲线 61 1, 120°-160° 范围内对应下降曲线 612, 160°-360°范围内对应过渡曲线 613。 当然在上 升曲线 61 1的升角 Θ为 120°情况下,下降曲线 612对应的角度不限于 40°, 下降曲线 612对应的角度在 40°-240°范围内均是可行的, 当下降曲线 612 对应的角度为 240°时, 凸轮曲线便只具有上升曲线 61 1和下降曲线 612, 而没有过渡曲线 613。 实际设计使用时, 上升曲线 61 1 的升角 Θ为 120° 情况下, 通常下降曲线 612对应的角度在 40°-60°范围内, 过渡曲线 613 对应的角度在 200°-180°范围内, 并保证下降曲线 612对应的角度与过渡 曲线 613对应的角度之和为 240°。
上述无论是图 4所示的凸轮中,还是图 8所示的凸轮中, 为了减小液 体压力波动,可根据具体情况在凸轮曲线的上升曲线对应的角度为理论值 (图 8中为 120°, 图 4中为 90° )前提下, 提前 1 °-5°或滞后 Γ-5°, 与该上 升曲线相邻的曲线所对应的角度相应地滞后或提前 Γ-5°。 上升曲线对应 的角度提前或滞后与在上升曲线两端部设置修整曲线是对应的,也就是在 上升曲线对应的角度基础上提前的角度或滞后的角度对应于修整曲线所 占的角度。
由图 8所示的凸轮、 3套往复送液机构及一个具有 3个独立泵室的泵 头 55以及用于驱动凸轮转动的凸轮驱动机构可共同组成三室并联液相色 谱泵。该三室并联液相色谱泵结构与图 5所示的四室并联液相色谱泵结构 不同之处仅在于:其具有 3套往复送液机构,其凸轮曲线中的上升曲线的 升角为 120°, 其泵头具有 3个独立泵室, 其余相同部分不再赘述。
本发明的并联液相色谱泵中, 往复送液机构不限于 4套, 其数量为 2 套、 3套、 6套、 8套、 10套均是可行的; 但往复送液机构的数量与凸轮 曲线中的上升曲线的升角要满足关系式: θ=3607η,'以保证供液的连续性。 下面对照说明本发明的并联液相色谱泵与现有的几种类型的液相色 谱泵设计上的比较。
一、 流量一定时, 各种类型的液相色谱泵的柱塞行程的比较
假设每分钟液体流量 v=lml/min,柱塞直径 D=3.175mm, 凸轮转速为
20转 /min, 求几种泵的柱塞行程。
按设计给定条件,
单个柱塞横截面面积 =3.14159*(3.175/2)2=7.917(mm)2 推论 1 泵每转总排量 =lml/min/20转 / πώι=50μ1/转 推论 2 所有柱塞每转总行程 =50μ1/转 /7.917(mm)2=6.315284mm/转 ......推论 3
(一) 本发明中的四室并联液相色谱泵实施例中的柱塞行程的设计计算 如图 5所示,本发明的四室并联液相色谱泵实施例中, 凸轮曲线中上 升曲线的升角, 即上升曲线所对应的角度为 90°, 下降曲线的降角, 下降 曲线所对应的角度为 30°, 过渡曲线对应的角度为 240°, 上升曲线的升程 和下降曲线的降程的导程相同,过渡曲线的导程为零。四室并联液相色谱 泵工作时,步进电机带动凸轮 61旋转,通过圆锥台形随动轮 62依次推动 4个柱塞推杆 63带动相应的柱塞 69往复勾速直线运动。因为上升曲线的 升角为 90°, 所以在凸轮 61转动一周的过程中, 每时每刻都总有一个柱 塞 69往复匀速直线运动, 从而完成对系统所需流动相的连续精确供给。
根据推论 1、 推论 2、 推论 3,
得: 每个柱塞每转的行程 =6.315284mm/转 /4=1.579 mm/转.…结论 1.1
(二) 本发明中的三室并联液相色谱泵实施例中的柱塞行程的设计计算 根据推论 1、 推论 2、 推论 3,
得: 每个柱塞每转的行程 =6.315284mm/转 /3=2.105 mm/转.…结论 1.2
(三) 180°单凸轮并联液相色谱泵 (图 1 ) 的柱塞行程的设计计算
根据推论 1、 推论 2、 推论 3,
得:每个柱塞每转的行程 =6.315284mm/转 /2=3.1576 mm/转….结论 1.3
(四) 120°单凸轮并联液相色谱泵 (图 2 ) 的柱塞行程的设计计算 根据推论 1、 推论 2、 推论 3,
得: 每个柱塞每转的行程 =6.315284mm/转 /3=2.1051mm/转
......结论 1.4
(五) 180°双凸轮液相色谱泵 (图 3 ) 的柱塞行程的设计计算
( 1 ) 180°双凸轮并联液相色谱泵的柱塞行程
根据推论 1、 推论 2、 推论 3,
得:每个柱塞每转的行程 =6.315284mm/转 /2=3.1576 mm/转.…结论 1.5
( 2 ) 180°双凸轮串联液相色谱泵的柱塞行程
根据推论 1、 推论 2、 推论 3,
得: 每个柱塞每转的行程 =6.315284mm/转 /l=6.315284 mm/转
……结论 1.6 小结:
根据结论 1.1、 结论 1.2、 结论 1.3、 结论 1.4、 结论 1.5、 结论 1.6, 不难看出,在流量一定时,本发明中的四室并联液相色谱泵实施例的单个 柱塞每转的行程会明显小于各传统类型的液相色谱泵中单个柱塞每转的 行程。
正如前面所述:柱塞泵头之间的密封元件的使用寿命与柱塞的行程和 动作频率直接相关。在排量相同时,本发明的并联液相色谱泵中的柱塞的 行程小, 可数倍提高并联液相色谱泵的使用寿命。换句话说: 本发明的并 联液相色谱泵在使用寿命上与各种传统类型的并联液相色谱泵相比,将占 有绝对的优势。
二、 柱塞行程一定时, 各种类型的液相色谱泵的流量设计的比较
假设单个柱塞每转的行程 s=3.1576mm/转, 柱塞直径 D=3.175mm, 凸轮转速为 20转 /min, 求几种液相色谱泵的流量。
按设计给定条件,
柱塞横截面积 =3.14159*(3.175/2)2=7.917(mm)2 推论 2.1 每个柱塞每转的流量 =3.1576 *7.917=25μ1/转 推论 2.2 每个柱塞每分钟的流量 =20转 /min *25μ1/转 =5ml/min 推论 2.3 (一) 本发明的三室并联液相色谱泵实施例每分钟流量的设计计算 根据推论 2.1、 推论 2.2、 推论 2.3,
得: 三室并联液相色谱泵每分钟的流量 =3*5ml/min=15ml/min
结论 2.1
(二) 本发明的四室并联液相色谱泵实施例每分钟流量的设计计算
根据推论 2.1、 推论 2.2、 推论 2.3,
得: 四室并联液相色谱泵每分钟的流量 =4*5ml/min=20ml/min
结论 2.2
(三) 180°单凸轮并联液相色谱泵 (图 1 ) 流量的设计计算
根据推论 2.1、 推论 2.2、 推论 2.3,
得: 180°单凸轮并联液相色谱泵每分钟的流量 =2*5ml/min=10 ml/min 结论 2.3
(四) 120°单凸轮并联液相色谱泵 (图 2 ) 流量的设计计算
根据推论 2.1、 推论 2.2、 推论 2.3,
得: 120°单凸轮并联液相色谱泵每分钟的流量 =3*5ml/min=15ml/min 结论 2.4
(五) 180°双凸轮液相色谱泵 (图 3 ) 流量的设计计算
( 1 ) 180°双凸轮并联液相色谱泵的流量
根据推论 2.1、 推论 2.2、 推论 2.3,
得:双凸轮并联泵 20转 /min流量 =2*5ml/min=10ml/min 结论 2.5
( 2 ) 180°双凸轮串联液相色谱泵的流量
根据推论 2.1、 推论 2.2、 推论 2.3,
得:双凸轮串联泵 20转 /min流量 =1 *5ml/min=5ml/min 结论 2.6 小结:
根据结论 2.1、 结论 2.2、 结论 2.3、 结论 2.4、 结论 2.5、 结论 2.6, 不难看出,在柱塞行程一定时,本发明的并联液相色谱泵的供液量会明显 大于各传统类型的并联液相色谱泵,这种在供液量上绝对的优势,会带给 液相色谱应用领域更广大的想象空间。 工业实用性
综上所述,本发明的并联液相色谱泵,至少两套往复送液机构中的至 少两个柱塞推杆可以互相平行布置,并设置在凸轮的同一侧面,故并联液 相色谱泵中的各连通管路等在空间布局上比较集中,使液相色谱泵的多室 并联集成到一个有限的空间,不仅减小了色谱泵的体积,更主要的是大幅 度降低了凸轮的设计难度, 提高了液体压力稳定性。
通过以上较佳具体实施例的详述, 是希望能更加清楚描述本发明的特征 与精神,而并非以上述所披露的较佳具体实施例来对本发明的范围加以限制。 相反地, 其目的是希望能于本发明的保护范围内涵盖各种改变及具有等同性 的安排。 因此, 本发明的保护范围应该根据上述的说明作最宽广的解释, 以 致使其涵盖所有可能的改变以及具有等同性的安排。

Claims

^ 利 安 豕
1. 一种并联液相色谱泵, 包括具有凸轮轴 (60) 的凸轮 (61) 、 泵 头 (65) 、 至少两套往复送液机构以及用于驱动所述凸轮 (61) 转动的 凸轮驱动机构, 所述泵头 (65) 内设有泵室、 与该泵室连通的进液孔和 排液孔, 所述每套往复送液机构包括柱塞推杆 (63) 、 固定连接在该柱 塞推杆 (63) —端并与其同轴的柱塞 (69) 、 转动地安装在所述柱塞推 杆 (63) 另一端的随动轮 (62) , 所述柱塞 (69) 的另一端伸入所述泵 头 (65) 的泵室内与之配合工作, 所述随动轮 (62) 与所述凸轮 (61) 的凸轮曲线接触配合工作, 其特征在于: 所述凸轮 (61) 是端面凸轮, 其凸轮曲线设置在与具有凸轮轴 (60) 的端面相反的另一端面上, 所述 凸轮曲线包括能将所述凸轮 (61) 的转动运动转换成所述柱塞 (69) 匀 速直线运动的一条上升曲线和使所述柱塞 (69) 回复原位的一条下降曲 线, 所述上升曲线和所述下降曲线的导程相同, 均为 r=4V/mrD2, 所述上 升曲线的升角 θ=3607η, 其中 V表示所述凸轮 (61) 转动一周所述并联 液相色谱泵的排量, D表示所述柱塞(69) 的直径, η表示柱塞(69) 的 数量, η为 2-10之间的整数; 所述至少两套往复送液机构布置在所述凸 轮的具有凸轮曲线的一侧, 并且在圆周方向均匀布置, 他们的中心线均 平行于所述凸轮轴 (60) 的中心线; 所述随动轮 (62) 为圆锥台形, 该 随动轮 (62) 的任意两个横截面的圆周长与相对应位置的凸轮曲线的周 长的比值相等。
2. 如权利要求 1所述的并联液相色谱泵, 其特征在于: 所述曲线单 元还包括连接所述上升曲线和所述下降曲线的过渡曲线。
3. 如权利要求 1所述的并联液相色谱泵, 其特征在于: 所述凸轮曲 线中的上升曲线的两端部分别设有修整曲线。
4. 如权利要求 3所述的并联液相色谱泵, 其特征在于: 所述凸轮曲 线中相邻的两条曲线的连接处设有圆滑过渡线。
5. 如权利要求 1所述的并联液相色谱泵, 其特征在于: 所述上升曲 线为等螺距螺旋线; 所述下降曲线是等螺距螺旋线。
6. 如权利要求 1所述的并联液相色谱泵, 其特征在于: 所述往复送 液机构的数量为 3套; 所述上升曲线的升角 θ=120, 所述下降曲线对应 的角度为 240°。
7. 如权利要求 2所述的并联液相色谱泵, 其特征在于: 所述往复送 液机构的数量为 3套; 所述上升曲线的升角 θ=90°, 所述下降曲线对应的 角度为 40°-60°。
8. 如权利要求 1所述的并联液相色谱泵, 其特征在于: 所述往复送 液机构的数量为 4套; 所述上升曲线的升角 θ=90°, 所述下降曲线对应的 角度为 270°。
9. 如权利要求 2所述的并联液相色谱泵, 其特征在于: 所述往复送 液机构的数量为 4套; 所述上升曲线的升角 Θ=9Ό°, 所述下降曲线对应的 角度为 30°-55°。
10. 如权利要求 1 所述的并联液相色谱泵, 其特征在于: 所述泵头 ( 65 ) 的数量为一个, 其内设有与往复送液机构数量相同并相互独立的泵 室, 每个泵室连通有一个进液孔和一个排液孔; 所述的至少两个往复送 液机构中的至少两个柱塞 (69 ) 分别伸入所述泵头 (65 ) 内的相应的泵 室内, 与之配合工作。
1 1 . 如权利要求 1 所述的并联液相色谱泵, 其特征在于: 所述往复 送液机构中的柱塞推杆 (63 ) 端部固定连接有一个插头, 该插头包括两 个相对布置的插脚 (631 ) , 两个插脚 (631 ) 中间为用于容纳所述随动 轮 (62 ) 的凹槽, 所述随动轮 (62 ) 的中心轴的两端分别转动地支撑在 两个所述插脚 (631 ) 内侧, 所述随动轮 (62 ) 的中心轴 (621 ) 与所述 柱塞推杆(63 ) 的中心线之间的夹角 β = 90°-α/2, α是所述圆锥台形随动 轮 (62 ) 的圆锥角。
12. 如权利要求 1 1所述的并联液相色谱泵, 其特征在于: 形成于所 述两个插脚(631 )之间的凹槽的两个侧面相互平行, 凹槽的底面与所述 凹槽的的侧面之间的夹角 γ = 90°-α/2。
PCT/CN2010/001723 2009-10-30 2010-10-29 并联液相色谱泵 WO2011050585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910209048.2 2009-10-30
CN 200910209048 CN102052275B (zh) 2009-10-30 2009-10-30 并联液相色谱泵

Publications (1)

Publication Number Publication Date
WO2011050585A1 true WO2011050585A1 (zh) 2011-05-05

Family

ID=43921280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001723 WO2011050585A1 (zh) 2009-10-30 2010-10-29 并联液相色谱泵

Country Status (2)

Country Link
CN (1) CN102052275B (zh)
WO (1) WO2011050585A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105756898A (zh) * 2016-04-28 2016-07-13 上海肇民动力科技有限公司 真空泵
WO2017123656A3 (en) * 2016-01-11 2017-10-05 National Oilwell Varco, L.P. Direct drive pump assemblies
US11035348B2 (en) 2018-08-28 2021-06-15 National Oilwell Varco, L.P. Reciprocating pumps having a pivoting arm

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047823B (zh) * 2014-06-12 2016-06-29 陕西科技大学 一种圆柱凸轮驱动的多缸双向柱塞泵
JP6082722B2 (ja) 2014-10-14 2017-02-15 株式会社タクミナ 往復動ポンプ
US10480547B2 (en) 2017-11-30 2019-11-19 Umbra Cuscinetti, Incorporated Electro-mechanical actuation system for a piston-driven fluid pump
CN110469479A (zh) * 2019-08-21 2019-11-19 中山致安化工科技有限公司 泵用传动装置以及输送泵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397881A (ja) * 1986-10-14 1988-04-28 Yokogawa Electric Corp 送液装置
US6079313A (en) * 1996-08-28 2000-06-27 Fia Solutions, Inc. Pulseless, reversible precision piston-array pump
US20050084386A1 (en) * 2002-03-18 2005-04-21 Kiyotoshi Mori Gradient liquid feed pump system, and liquid chromatograph
CN1673735A (zh) * 2004-03-25 2005-09-28 株式会社岛津制作所 液相色谱仪用送液泵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO316653B1 (no) * 2000-09-15 2004-03-22 Nat Oilwell Norway As Anordning ved stempelmaskin og fremgangsmate til bruk ved styring av stemplene
CN1385608A (zh) * 2002-06-24 2002-12-18 胡松海 高压柱塞式水泵清洗机平面凸轮
US7299740B2 (en) * 2004-09-13 2007-11-27 Haldex Brake Corporation Reciprocating axial displacement device
DE102004048711B4 (de) * 2004-10-06 2006-09-14 Siemens Ag Radialkolbenpumpe mit Rollenstößel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397881A (ja) * 1986-10-14 1988-04-28 Yokogawa Electric Corp 送液装置
US6079313A (en) * 1996-08-28 2000-06-27 Fia Solutions, Inc. Pulseless, reversible precision piston-array pump
US20050084386A1 (en) * 2002-03-18 2005-04-21 Kiyotoshi Mori Gradient liquid feed pump system, and liquid chromatograph
CN1673735A (zh) * 2004-03-25 2005-09-28 株式会社岛津制作所 液相色谱仪用送液泵

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123656A3 (en) * 2016-01-11 2017-10-05 National Oilwell Varco, L.P. Direct drive pump assemblies
EA034444B1 (ru) * 2016-01-11 2020-02-07 Нэшнл Ойлвэл Варко, Л.П. Насосные агрегаты с прямым приводом
US11105322B2 (en) 2016-01-11 2021-08-31 National Oilwell Varco, L.P. Direct drive pump assemblies
CN105756898A (zh) * 2016-04-28 2016-07-13 上海肇民动力科技有限公司 真空泵
US11035348B2 (en) 2018-08-28 2021-06-15 National Oilwell Varco, L.P. Reciprocating pumps having a pivoting arm

Also Published As

Publication number Publication date
CN102052275A (zh) 2011-05-11
CN102052275B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011050585A1 (zh) 并联液相色谱泵
CN1238717C (zh) 低脉动高精度双柱塞高效液相色谱泵
CN216008789U (zh) 单级柱塞泵及应用其的计量泵
CN109931240A (zh) 柱塞式流体压缩机
US3597114A (en) Pump assembly with uniform or programmed discharge
WO2011050586A1 (zh) 串并联液相色谱泵
CN104047823B (zh) 一种圆柱凸轮驱动的多缸双向柱塞泵
WO2013120401A1 (zh) 柱塞泵以及带有该柱塞泵的水净化装置
CN219681337U (zh) 一种低扰动脉冲泵
CN106289461A (zh) 一种双腔活塞式气体流量标准器
CN101876304A (zh) 一种波纹管计量泵
CN206299526U (zh) 一种可调节排量的盘式轴向柱塞泵
WO2011116633A1 (zh) 液路分配阀及安装有该液路分配阀的液相色谱泵
CN105443366A (zh) 一种双作用抽油泵
CN220337059U (zh) 一种新型液体切换阀
CN116626273B (zh) 一种水处理离子交换树脂分离度测试装置
CN207728503U (zh) 一种多路柱泵塞驱动装置
CN215566416U (zh) 一种计量泵的斜槽传动式柱塞行程调节机构
CN220118252U (zh) 多头柱塞泵
CN218325115U (zh) 一种新型的槽阀式柱塞计量泵
CN215762180U (zh) 一种陶瓷精密小型定量泵
CN219317124U (zh) 往复式流量泵
CN216691365U (zh) 一种计量泵
CN201650640U (zh) 可调节单缸排出流量的多缸往复泵
CN217029194U (zh) 一种四柱塞计量泵用凸轮驱动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10825949

Country of ref document: EP

Kind code of ref document: A1