WO2011050573A1 - 一种具有多程辐射炉管的乙烯裂解炉 - Google Patents

一种具有多程辐射炉管的乙烯裂解炉 Download PDF

Info

Publication number
WO2011050573A1
WO2011050573A1 PCT/CN2010/001703 CN2010001703W WO2011050573A1 WO 2011050573 A1 WO2011050573 A1 WO 2011050573A1 CN 2010001703 W CN2010001703 W CN 2010001703W WO 2011050573 A1 WO2011050573 A1 WO 2011050573A1
Authority
WO
WIPO (PCT)
Prior art keywords
pass
furnace
radiant
tube
furnace tube
Prior art date
Application number
PCT/CN2010/001703
Other languages
English (en)
French (fr)
Other versions
WO2011050573A8 (zh
Inventor
何细藕
李昌力
张兆斌
刘敬坤
袁慕军
周丛
郭玉萍
赵永华
申海女
Original Assignee
中国石油化工股份有限公司
中国石化工程建设公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石化工程建设公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US13/504,117 priority Critical patent/US8900522B2/en
Priority to KR1020127013306A priority patent/KR101831341B1/ko
Priority to RU2012120306/04A priority patent/RU2552417C2/ru
Publication of WO2011050573A1 publication Critical patent/WO2011050573A1/zh
Publication of WO2011050573A8 publication Critical patent/WO2011050573A8/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the invention belongs to the field of petrochemical industry, and particularly relates to a radiant furnace tube structure in an ethylene cracking furnace used in petrochemical production. Background technique
  • the ethylene cracking technology used in petrochemical ethylene plants is mainly in the United States.
  • Figure 1A shows a typical ethylene cracking furnace 10 comprising a radiant zone 11, a convection zone 13, a flue 12 disposed between the radiant zone 11 and the convection zone 13.
  • a radiant furnace tube 14 is disposed which is disposed in the longitudinal direction of the radiation zone 11 in the central plane P of the radiation zone.
  • a bottom burner 15 and/or a side wall burner 16 for heating are also provided in the radiation zone 11.
  • the ethylene cracking furnace 10 further includes components such as a quenching boiler 17, a high pressure steam drum 18, and an induced draft fan 19.
  • 4 ⁇ 6 steps ( ⁇ 60m) branches In order to adapt a radiant furnace tube with better cracking gas raw materials to liquid raw materials, to achieve proper operation cycle and better material adaptability, most companies currently use 4 ⁇ 6 steps ( ⁇ 60m) branches.
  • the residence time is controlled at 0.4 ⁇ 1.0 s.
  • the first pass or the first two passes adopt the small diameter furnace tube, and the Wo" uses the large specific surface area to achieve the purpose of rapid temperature rise.
  • the larger diameter furnace tube is adopted to reduce the influence on the coking sensitivity.
  • the four-pass medium-selective radiant section furnace tubes used are 4-2-1-1, 2-2-1-1, 1-1-1-1, 2-1-1-1, etc. .
  • the space arrangement of the furnace tubes generally used in the prior art is to sequentially arrange the tubes of the respective furnaces in the flow direction of the fluid. At the same time, the furnace tubes are connected by ordinary elbow joints.
  • Figure 1B shows a typical arrangement of a multi-pass radiant furnace tube in a prior art ethylene cracking furnace.
  • the multi-pass radiant furnace tube 30 is a four-pass radiant furnace tube, along the flow of the fluid.
  • the direction (from left to right in the figure) includes a first pass furnace tube 1, a second pass furnace tube, a third pass furnace tube 3 and a fourth pass furnace tube 4, respectively, wherein the first pass furnace tube is branched Y-shaped furnace tube with diameter.
  • the four-pass furnace tubes are also spatially arranged in sequence, that is, the second-pass furnace tubes 2 are arranged to be spatially adjacent to the first-pass furnace tubes 1, and the third-pass furnace tubes 3 are arranged to be spatially adjacent to the second-stage furnace tubes.
  • each process tube is spatially adjacent to the one or two-pass furnace tubes that are continuous therewith.
  • the respective furnace tubes are connected by a common elbow connection member 35. It can also be seen from Figure 1B that all of the furnace tubes and elbow connectors are arranged in the same plane, i.e. in the central plane P of the radiation zone.
  • the various furnace tubes are spatially arranged in sequence. Since the fluid flows sequentially in the multi-pass radiant furnace tube, the temperature of the tube wall of each radiant furnace tube is gradually increased, that is, the wall temperature of the first, second, third, and fourth-pass furnace tubes is gradually increased in order. Therefore, this causes uneven temperature distribution in the radiation region. At the same time, there is a certain amount of radiative heat transfer between the high-temperature pipe process, that is, the third-pass furnace pipe and the fourth-pass furnace pipe, which also has a certain negative effect on lowering the pipe wall temperature and prolonging the operation cycle.
  • the object of the present invention is to solve the defects of the prior art, and propose an ethylene cracking furnace having a multi-pass radiant furnace tube, wherein the special arrangement structure of the radiant furnace tube can improve the heating condition of the furnace tube, so that the heating of the furnace tube is more uniform.
  • the present invention is also directed to an ethylene cracking furnace having a multi-pass radiant furnace tube capable of improving the mechanical properties of the radiant furnace tube, increasing the on-line rate of the cracking furnace, reducing operating costs, and extending the service life of the furnace tube and The operating cycle of the cracking furnace.
  • an ethylene cracking furnace having a multi-pass radiant furnace tube comprising at least one radiant zone.
  • a bottom burner and/or a side wall burner are disposed in the radiation zone, and at least one set of multi-pass radiant furnace tubes disposed along the longitudinal direction of the radiation zone.
  • the multi-pass radiant furnace tube is a four-way to ten-way radiant furnace tube.
  • at least one of the radiant furnace tubes in the multi-pass radiant furnace tube is disposed adjacent to a one-way radiant furnace tube that is not continuous with it. It is easy to understand that for the first pass furnace, the continuous furnace tube is the second pass furnace tube, and for the second pass furnace tube, the continuous furnace tube is the first pass and the third pass furnace. Tube; and so on.
  • At least one of the furnace tubes By arranging at least one of the furnace tubes to be spatially adjacent to a continuous one-way furnace tube, at least one of the furnace tubes can be spatially adjacent to a one-way furnace tube whose temperature is not close thereto. Thereby, the temperature uniformity in the radiation region can be effectively improved. This can help to reduce the surface temperature of the furnace tube, and achieve the purpose of prolonging the service life of the radiant furnace tube and the operating cycle of the cracking furnace.
  • the last two passes of the multi-pass radiant tube are arranged to be spatially non-adjacent to each other. Since the temperature of the last two tubes is the highest among all the tubes, this arrangement can effectively reduce the thermal radiation between the high temperature tubes, further reducing the surface temperature of the tubes, thus extending the furnace. The purpose of the service life of the tube and the operating cycle of the cracking furnace.
  • the first pass tube and the last pass tube are respectively disposed on the outermost sides of the multi-pass radiant tube.
  • at least one of the first pass tube and the last pass tube may be disposed not on the outermost sides of the multi-pass radiant tube but in the middle.
  • each of the tubes in the multi-pass radiant furnace tube is connected by a bent pipe joint. Since the wall temperatures of the various tubes in the multi-pass radiant tube are different, thermal stress is generated due to the difference in thermal expansion between the adjacent two-stage furnaces.
  • at least one of the elbow connectors at the lower portion of the radiant region is a modular connector consisting of a symmetrical return bend and an S-shaped elbow disposed at each end of the symmetrical return bend.
  • the tubes in the center plane of the radiant zone are arranged so as not to be spatially adjacent, and an equal number of S-shaped bends are provided on both sides of the center plane (these S-bends pass
  • the symmetrical return bends are connected to each other, so that the temperature in the radiation zone is more uniform. At the same time, the deformation due to thermal stress can be absorbed more uniformly.
  • the top projections of the S-bends may be parallel to each other, or the top view projection of at least one of the S-bends may be non-parallel to the plan view of the other S-bends due to structural requirements.
  • the top projections of all of the symmetric return bends can also be arranged to be parallel to each other. This is very advantageous for obtaining a very compact structure.
  • the combined connecting member consisting of the s-shaped elbow and the symmetric returning elbow between the connecting furnace tubes under the radiation zone constitutes a continuous and symmetrical closed curve in its side view.
  • the figure (this side will be described in detail below with reference to the side views of Figs. 32 to 35), wherein the symmetric return bend can be various types of symmetric return bends.
  • the first pass tube can be used as a branch reducer.
  • the branch reducer can be used for both the first pass tube and the second pass tube.
  • Each process tube is separated or partially staggered by a high temperature furnace tube and a low temperature furnace tube, which can reduce the influence of heat radiation between the high temperature tube rows, so that the furnace tube with low wall temperature can absorb the furnace tube with high wall temperature. Radiant heat is beneficial to reduce the surface temperature of the high temperature furnace tube, to achieve the purpose of prolonging the operating cycle of the cracking furnace and prolonging the service life of the radiant furnace tube;
  • the bottom of the furnace tube adopts the combined connecting piece instead of the conventional elbow to directly connect, which can effectively improve the mechanical performance of the radiant furnace tube, and is beneficial to absorb the thermal stress caused by the temperature difference between the adjacent two-way furnace tubes, and prevent the furnace tube from being thermally stressed.
  • the induced bending avoids local overheating caused by bending of the furnace tube, thereby achieving the purpose of prolonging the operating cycle of the cracking furnace and prolonging the service life of the radiant furnace tube.
  • 1A is a layout view of an ethylene cracking furnace according to the prior art
  • Figure 1B shows a typical four-pass radiant furnace tube structure in accordance with the prior art
  • Figures 2 to 9 respectively show eight embodiments of a four-pass radiant furnace tube structure for an ethylene cracking furnace in accordance with the present invention
  • 10 to 31 respectively show twenty-two embodiments of a six-pass radiant furnace tube structure for an ethylene cracking furnace according to the present invention
  • Figures 32 through 35 show four embodiments in accordance with another aspect of the invention in which the elbow connectors between the various furnace tubes are connected in a side view to form a continuous curved pattern.
  • the combined connecting members between the connecting furnace tubes under the radiation region constitute a side view in the side view thereof.
  • the continuous curved pattern that is, the side view of the combined connector in these figures is substantially similar to the side view of the combined connector of Figs. 32 to 35 (the lower portion of the side view in Figs. 32 to 35).
  • the present invention relates to improvements in radiant tubes in the radiant zone of an ethylene cracking furnace.
  • Other structures in the ethylene cracking furnace, such as convection zones, quench boilers, etc., are well known in the art.
  • the quenching boiler suitable for the present invention mainly adopts a double-tube quenching boiler (a linear quenching boiler, a U-type quenching boiler, a first-stage quenching boiler, etc.), and can also adopt a conventional type, a bathtub type, a rapid quenching, etc. boiler.
  • the radiant furnace tube of the present invention is mainly suitable for cracking gas raw materials, but it is also possible to cleave liquid raw materials, which can be used for new cracking furnaces or for expansion and transformation of cracking furnaces. These are well known to those skilled in the art, and thus the related description is omitted here.
  • Four-way radiant furnace tube structure is mainly suitable for cracking gas raw materials, but it is also possible to cleave liquid raw materials, which can be used for new cracking furnaces or for expansion and transformation of cracking furnaces.
  • FIG. 2 shows a first embodiment of a four-pass radiant furnace tube structure in accordance with the present invention which may be used, for example, in the ethylene cracking furnace 10 of FIG.
  • the furnace tubes are sequentially divided into four passes along the flow direction of the fluid, that is, the first pass furnace pipe 1, the second pass furnace pipe 2, the third pass furnace pipe 3, and the fourth pass furnace pipe 4.
  • the first pass of the furnace tube 1, that is, the inlet pipe is a Y-shaped branch reducer tube known in the prior art
  • the last pass of the furnace tube that is, the fourth pass of the furnace tube is an outlet pipe.
  • the various furnace tubes are connected by elbow connectors 21-23.
  • the connecting piece between the process tube and the second process tube is marked as a connecting member 21, and the connecting member between the second-pass furnace tube and the third-pass furnace tube is marked as a connecting member 22, which will be connected to the third-stage furnace.
  • the connection between the tube and the fourth pass tube is labeled as a connector 23. And so on.
  • the wall temperatures in the first pass furnace tube 1, the second pass furnace tube 2, the third pass furnace tube 3, and the fourth pass furnace tube 4 are defined as Tl, ⁇ 2, ⁇ 3, and ⁇ 4, respectively. It is easy to understand that as the cracking reaction proceeds, the temperature of the tubes in each direction in the flow direction will gradually increase. Therefore, ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4.
  • the first pass tube 1 and the fourth pass tube 4 are respectively disposed on the outermost sides of the four pass radiant tube.
  • the second pass furnace tube 2 and the third pass furnace tube 3 are spatially arranged such that the third pass furnace tube 3 is in the first pass furnace tube 1 and the second pass furnace tube 2 Meanwhile, the second pass furnace tube 2 is between the third pass furnace tube 3 and the fourth pass furnace tube 4.
  • the third-pass furnace tube 3 having the temperature of ⁇ 3 is spatially adjacent to the first-pass furnace tube 1 having the temperature T1 and the second-pass furnace tube 2 having the temperature of ⁇ 2, and the first temperature having the temperature of ⁇ 4
  • the four-way furnace tube 4 is spatially isolated.
  • the temperatures of the respective portions in the radiation region 11 are T1, ⁇ 3, ⁇ 2, and ⁇ 4, respectively. Since ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3 ⁇ ⁇ 4, this arrangement can advantageously reduce temperature non-uniformity in the radiation region.
  • the third pass furnace tube 3 and the fourth pass furnace tube 4 are separated by the second pass furnace tube 2, it is possible to accept the third pass furnace tube 3 from the higher temperature and the fourth highest temperature range.
  • the heat radiation of the furnace tubes 4 reduces their tube wall temperatures. Therefore, the arrangement according to the present invention can further reduce the surface temperature of the furnace tube and prolong the service life of the radiant furnace tube, thereby prolonging the operating cycle of the pulverizing furnace.
  • the elbow connecting member 21 is provided as a combined connecting member composed of a symmetric return bend 41 and S-shaped bends 42, 43 respectively provided at both ends of the symmetric return bend 41. .
  • the thermal stress generated by the difference in thermal expansion of the adjacent two-way furnace tubes can be absorbed by the combined connecting member, thereby avoiding the bending of the furnace tube due to thermal stress, further extending the service life and cracking of the radiant furnace tube. The operating cycle of the furnace.
  • the elbow connector 22 connecting the second-stage furnace tube 2 and the third-stage furnace tube 3 above the radiation area still adopts an ordinary elbow connection piece. Or symmetrically return to the bend.
  • the elbow connector 22 can also employ a modular connector of a symmetrical return bend and an S-bend as described above, which is still within the scope of the present invention.
  • all the tubes in the multi-pass radiant tube and the connecting members therebetween are disposed in the center plane P of the radiation zone. This will result in a temperature unevenness in the radiation zone due to the large difference in temperature of the farther away furnace tubes in the radiant zone.
  • all four-pass furnace tubes are still arranged in the central plane P of the radiation zone.
  • the first S-bend 42 of the modular connector 21 connected to the rear end (i.e., the lower end) of the first-pass furnace tube 1 starts to radiate from its front end (in the center plane P).
  • the rear portion of the zone (above the center plane P in the figure) extends and is connected at its rear end to one end of a symmetric return bend 41 in the modular connector 21.
  • the symmetrical return bend 41 obliquely passes from the rear of the radiant zone through the center plane P to the front of the radiant zone (below the center plane P in the figure), and at the other end to the second S shape in the modular connector 21
  • the elbows 43 are connected.
  • the top view projection of the second S-bend 43 extends parallel to the plan view of the first S-bend 42 toward the center plane P, and at its rear end (within the center plane P) and the second leg furnace tube 2 The front end (ie the lower end) is connected.
  • the second pass furnace tube 2 is connected to the third pass furnace tube 3 through a connecting member 22 in the center plane P.
  • the third-pass furnace tube 3, the combined connecting member 23 and the fourth-pass furnace tube 4 are also arranged in such a manner that the plan views of the respective S-shaped bent tubes are parallel to each other.
  • two S-shaped elbows are arranged at the front and the rear of the radiation zone 11, respectively. This arrangement realizes that the spatial non-adjacent of the adjacent two-way furnace tubes enables the temperature in the radiation zone 11 to be more uniform, and at the same time more uniformly absorbs the deformation caused by the thermal stress, thereby further reducing the surface of the furnace tube. Temperature, extending the life of the radiant tube and the operating cycle of the cracking furnace.
  • the structure of the four-way radiant furnace tube is very compact, which is advantageous for a large cracking furnace.
  • Figure 3 shows a second embodiment of a four-pass radiant furnace tube structure in accordance with the present invention.
  • the connection of the last two passes of the furnace tube that is, the third pass furnace tube 3 and the fourth pass furnace tube 4 is connected.
  • the piece 23 is not a modular connector as shown in Fig. 2, but merely a symmetrical return bend.
  • the connector is also in the central face P of the radiation zone. This arrangement is simpler in construction than the first embodiment, which is simple to manufacture, lower in cost, and can be applied to cracking furnaces with special requirements.
  • FIG. 4 and 5 show third and fourth embodiments of a four-pass radiant furnace tube structure in accordance with the present invention, respectively.
  • the third and fourth embodiments are substantially the same as the first and second embodiments, respectively, and are only the Y-shaped furnace tubes in which the first-stage furnace tube 1 is not a branch-reducing diameter, but an ordinary non-branch-reducing furnace tube. This is suitable for specific processes and cracking furnaces.
  • FIG. 6 shows a fifth embodiment of a four-pass radiant furnace tube structure in accordance with the present invention.
  • This fifth embodiment is substantially the same as the first embodiment.
  • the first pass furnace tube that is, the inlet pipe 1
  • the fourth pass furnace pipe that is, the outlet pipe 4
  • the first pass furnace tube 1 is still disposed at the outermost side of the furnace pipe
  • the fourth pass furnace pipe that is, the outlet pipe 4 is not disposed on the opposite outer side, but is disposed to be spatially adjacent to The first pass of the furnace tube 1.
  • each of the furnace tubes is sequentially disposed in the space of the first pass furnace tube 1, the fourth pass furnace tube 4, the second pass furnace tube 2, and the third pass furnace tube 3.
  • the temperature distribution of the tubes in each section of the radiation zone is T1, ⁇ 4, ⁇ 2, and ⁇ 3.
  • this arrangement can also achieve the same effect as the first embodiment.
  • the fourth-stage furnace tube 4 having the highest temperature is disposed between the two furnace tubes having the lowest temperature, that is, between the first-pass furnace tube 2 and the second-pass furnace tube 3, this arrangement can greatly reduce the temperature unevenness. Sex.
  • Figure 10 shows a first embodiment of a six-pass radiant furnace tube structure in accordance with the present invention which may be used, for example, in an ethylene cracking furnace 10 as shown in Figure 1.
  • the furnace tubes are sequentially divided into a first pass furnace tube 1, a second pass furnace tube 2, a third pass furnace tube 3, a fourth pass furnace tube 4, a fifth pass furnace tube 5, and along the flow direction of the fluid.
  • the first pass tube 1 that is, the inlet tube is a ⁇ -shaped branch-reducing furnace tube known in the prior art
  • the sixth-stage furnace tube 6 is an outlet tube.
  • the various furnace tubes are connected by elbow connectors 21-25.
  • the wall of the first pass furnace tube 1, the second pass furnace tube 2, the third pass furnace tube 3, the fourth pass furnace tube 4, the fifth pass furnace tube 5 and the sixth pass furnace tube 6 The temperatures are defined as Tl, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6, respectively. It is easy to understand that as the cracking reaction proceeds, the temperature of the tubes in each step is gradually increased in the flow direction. Therefore, ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 5 ⁇ 6.
  • the furnace tubes of each process are sequentially arranged in the space to be the first pass furnace tube 1, the fourth pass furnace tube 4, the fifth pass furnace tube 5, the second pass furnace tube 2, and the third pass furnace tube 3. And the sixth process of the furnace tube 6.
  • the temperature distribution of the tubes in each section of the radiation zone is T1, ⁇ 4, ⁇ 5, ⁇ 2, ⁇ 3, and ⁇ 6, respectively.
  • this arrangement can advantageously reduce temperature non-uniformity in the radiation region.
  • the arrangement according to the present invention can further reduce the surface temperature of the furnace tube and prolong the service life of the radiant furnace tube, thereby prolonging the operating cycle of the cracking furnace.
  • the elbow connectors 21, 23 and 25 below the radiant section are combined connectors, i.e., they are provided by symmetrical return bends 41 and respectively It is composed of S-shaped elbows 42, 43 at both ends of the symmetrical return bend pipe.
  • the thermal stress between the two consecutive tubes can be absorbed by the combined connecting member, thereby avoiding the bending and local overheating of the tube due to thermal stress, further extending the service life of the radiant tube and The operating cycle of the cracking furnace.
  • the elbow connectors 22 and 24 above the radiant zone still employ a common elbow connector.
  • the elbow connectors 22 and 24 can also employ a modular connector of a symmetric return bend and a S-bend as described above, which is still within the scope of the present invention.
  • the first S-bend 42 of the connecting member 21 extends from its front end (in the center plane )) connected to the first-pass furnace tube 1 toward the rear of the radiant area (above the center plane ⁇ in the figure), and Its rear end is connected to one end of a symmetric return bend 41 in the modular connector 21.
  • the symmetrical return bend 41 is obliquely passed from the rear of the radiant zone through the connecting piece 21 of the center face to the front of the radiant zone (below the center face ⁇ in the figure), and at the other end and the modular connector 21
  • the second S-shaped elbows 43 are connected.
  • the top view projection of the second S-bend 43 extends parallel to the plan view of the first S-bend 42 toward the center plane P, and at its rear end (within the center plane P) and the second leg furnace tube 2 The front end (ie the lower end) is connected.
  • the second pass furnace tube 2 is connected to the third pass furnace tube 3 via a connecting member 22 in the center plane P.
  • the third to six-pass furnace tubes and the connections between them are also arranged in the same manner, wherein the top projections of the individual S-bends are parallel to each other.
  • three S-shaped elbows are respectively arranged at the front and the rear of the radiation zone 11.
  • This arrangement enables the temperature in the radiation zone 11 to be more uniform, and at the same time more uniformly absorbs deformation due to thermal stress, thereby further reducing the surface temperature of the furnace tube, extending the service life of the radiant furnace tube and the operating cycle of the cracking furnace. .
  • the structure of such a six-pass radiant furnace tube is very compact, which is advantageous for a large cracking furnace.
  • Figure 11 shows a second embodiment of a six-pass radiant furnace tube structure in accordance with the present invention.
  • This second embodiment is basically the same as the first embodiment except that the first-stage furnace tube 1 does not employ a Y-shaped furnace tube having a branch-reducing diameter, but an ordinary non-branch-reducing furnace tube.
  • Figure 12 shows a third embodiment of a six-pass radiant furnace tube structure in accordance with the present invention.
  • the connecting member 25 connecting the last two passes of the furnace tubes that is, the fifth pass furnace tube 5 and the sixth pass furnace tube 6, is not a combined joint member as shown in Fig. 10, but only adopts a symmetrical back. Bent pipe.
  • the connector 25 is also in the center plane P of the radiation zone.
  • the structure of this arrangement is simpler than that of the first embodiment, and it is simple to manufacture and lower in cost, and can be applied to cracking furnaces with special requirements.
  • the fourth embodiment of the six-pass radiant furnace tube structure according to the present invention shown in Fig. 13 is substantially the same as the third embodiment, except that the first-pass furnace tube 1 does not employ a branch-reduced Y-shaped furnace tube, but Ordinary non-branch variable diameter furnace tube.
  • Figure 14 shows a fifth embodiment of a six-pass radiant furnace tube structure in accordance with the present invention.
  • This fifth embodiment is substantially the same as the first embodiment.
  • the first pass tube that is, the inlet pipe 1
  • the sixth-pass furnace tube that is, the outlet pipe 6
  • the furnace tubes of each process are sequentially arranged in the space to be the first pass furnace tube 1, the sixth pass furnace tube 6, the third pass furnace tube 3, the second pass furnace tube 2, the fifth pass furnace tube 5 and the fourth pass furnace tube. 4.
  • the temperature distribution of the tubes in each section of the radiation zone is T1, ⁇ 6, ⁇ 3, ⁇ 2, ⁇ 5, and ⁇ 4, respectively.
  • the first pass furnace tube 1, the third pass furnace tube 3 and the sixth pass furnace tube 6 are at the rear of the radiation zone
  • the second pass furnace tube 2 the fourth pass furnace tube 4 and the fifth pass furnace tube 5 are at Front of the radiation zone.
  • T1 ⁇ ⁇ 2 ⁇ ⁇ 3 ⁇ ⁇ 4 ⁇ ⁇ 5 ⁇ ⁇ 6 and the spatial configuration of the furnace tube this arrangement can also achieve the same effect as the first embodiment, and the structure is also very compact.
  • the sixth-stage furnace tube 6 having the highest temperature is disposed adjacent to the first-stage furnace tube 1 having the lowest temperature, it is advantageous to further reduce the unevenness in the radiation region.
  • FIG. 15 to 17 show sixth to eighth embodiments of a six-pass radiant furnace tube structure in accordance with the present invention.
  • the changes from the fifth embodiment are the same as those of the second to fourth embodiments as compared with the first embodiment, and are easily understood by those skilled in the art after referring to the drawings, and therefore will not be performed here. A detailed description.
  • FIG 18 shows a ninth embodiment of a six-pass radiant furnace tube structure in accordance with the present invention.
  • each process tube is spatially arranged in a first step, a sixth pass, a second pass, a second pass, a third pass, a fifth pass, and a fifth pass.
  • the fourth pass furnace tube 4 That is, the spatial positions of the second pass furnace tube 2 and the third pass furnace tube 3 are interchanged as compared with the fifth embodiment.
  • the furnace tube 6 having the highest temperature in the irradiation zone is adjacent to the two furnace tubes 1, 2 of the lowest temperature, which greatly reduces the temperature non-uniformity.
  • the top projection of the first S-bend 42 of the last connector 25 is not parallel to the top view projection of the other S-bends.
  • FIG 22 shows a thirteenth embodiment of a six-pass radiant furnace tube structure in accordance with the present invention.
  • each process tube is spatially arranged in a first step, a second pass, a second pass, a third pass, a sixth pass, a fourth pass, and a fourth pass.
  • the fifth pass furnace tube 5 is a common elbow joint, together with the other two connecting members 22, 24, they are all irradiated
  • the center of the area is inside P.
  • the design of the four-way furnace tube of the third to sixth is similar to the structure shown in FIG. This design is relatively easy to implement in terms of structure.
  • the fourteenth embodiment of the six-pass radiant furnace tube structure according to the present invention shown in Fig. 23 differs from the thirteenth embodiment shown in Fig. 22 only in that the first-pass furnace tube 1 is a conventional furnace which does not branch and reduce the diameter. tube.
  • the fifteenth embodiment of the six-pass radiant furnace tube structure according to the present invention shown in Fig. 24 differs from the thirteenth embodiment shown in Fig. 22 only in that the design of the third to sixth four-pass furnace tubes is similar.
  • the structure shown in FIG. 24 is similar.
  • the sixteenth embodiment of the six-pass radiant furnace tube structure according to the present invention shown in Fig. 25 differs from the fifteenth embodiment shown in Fig. 24 only in that the first-pass furnace tube 1 is a conventional furnace which does not branch and reduce the diameter. tube.
  • FIG. 26 shows a seventeenth embodiment of a six-pass radiant furnace tube structure in accordance with the present invention.
  • each process tube is spatially arranged in the first step of the furnace tube 1, the third process of the furnace tube 3, the second process of the furnace tube 2, the sixth process of the furnace tube 6, the fourth process of the furnace tube 4 And the fifth pass furnace tube 5.
  • the three connectors 21, 23 and 25 below the radiation zone are combined connectors. Due to the structural design, the top projection of the second S-shaped elbow 43 in the connecting member 23 connecting the third-pass furnace tube 3 and the fourth-pass furnace tube 4 is not parallel to the plan view projection of the other S-shaped elbows.
  • the structure as shown in the figure is the same as the foregoing structure, and the technical effect of lowering the surface temperature of the furnace tube, extending the service life of the radiant furnace tube, and the operating cycle of the cracking furnace can be achieved.
  • the eighteenth embodiment of the six-pass radiant furnace tube structure according to the present invention shown in Fig. 27 differs from the seventeenth embodiment shown in Fig. 26 only in that the first-stage furnace tube 1 is a conventional furnace which does not branch and reduce the diameter. tube.
  • the nineteenth embodiment of the six-pass radiant furnace tube structure according to the present invention shown in Fig. 28 differs from the seventeenth embodiment shown in Fig. 26 only in that the last two passes, that is, the fifth-pass furnace tubes 5 and sixth are connected.
  • the connecting piece 25 of the furnace tube 6 is a symmetric return bend disposed in the center plane P.
  • the twentieth embodiment of the six-pass radiant furnace tube structure according to the present invention shown in Fig. 29 differs from the nineteenth embodiment shown in Fig. 28 only in that the first-pass furnace tube 1 is a conventional furnace which does not branch and reduce the diameter. tube.
  • Figure 30 shows a twenty-first embodiment of a six-pass radiant furnace tube structure in accordance with the present invention.
  • both the first pass furnace tube 1 and the second pass furnace tube 2 are designed with a branched reduced Y-shaped tube.
  • the furnace tubes of each process are sequentially arranged in the space to be the first pass furnace tube 1, the second pass furnace tube 2, the third pass furnace tube 3, the fifth pass furnace tube 5, the fourth pass furnace tube 4 and the sixth pass furnace tube. 6.
  • the first to third three-way furnace tubes are arranged similarly to the first to third-pass furnace tubes shown in FIG. 10, and the third to sixth four-pass furnace tubes are provided.
  • the arrangement is similar to that shown in Figure 2.
  • the top projections of all the S-bends are parallel to each other, and the top projections of all the symmetrical return bends are also arranged parallel to each other.
  • Figure 31 shows a twenty-second embodiment of a six-pass radiant furnace tube structure in accordance with the present invention. It differs from the twenty-first embodiment in that the arrangement of the third to sixth four-pass furnace tubes is similar to that shown in Fig. 3.
  • Figure 32 shows a four-pass radiant furnace tube structure in which the various furnace tubes are substantially constructed as shown in Figure 4. This is a combination of two sets of furnace tubes to form a 2-2-2-2 type structure.
  • the connecting piece between the connecting tubes of the tubes below the radiant area still uses a combined connecting piece of the symmetrical return bend pipe and the S-shaped bend pipe.
  • these modular connectors 21, 23 appear to form a closed smooth curved shape from their side views. This arrangement allows the connector to more effectively absorb the thermal stresses generated in the radiation zone.
  • the two connecting members 22 above the radiation area that is, the conventional ordinary elbow connectors are no longer on the center plane P of the radiation area, but are respectively obliquely intersected with the center plane P and mutually Mirrored symmetrically on a plane. This arrangement makes it more reasonable to hang the radiant tube in the mechanical structure.
  • each of the tubes in the first pass of the furnace tube is a Y-shaped branch reducer, wherein each of the tubes is basically as shown in Fig. 2.
  • the structure, and a combination of two sets of furnace tubes, constitutes a 4-2-2-2 type structure.
  • Fig. 34 shows a six-pass radiant furnace tube structure in which the respective furnace tubes are basically constructed as shown in Fig. 10. It is a combination of two sets of furnace tubes to form a 4-2-2-2-2-2 type structure. However, the plan view of the S-bend is perpendicular to the center plane P.
  • Figure 35 shows a six-pass radiant furnace tube structure in which the various furnace tubes are basically Figure 11 shows the structure. It is a combination of two sets of furnace tubes to form a 2-2-2-2-2-2 type structure.
  • first-pass furnace tubes 1 are disposed at the outermost side of the entire multi-pass radiant furnace tube in the above embodiment, it is easy to understand that the first-pass furnace tube 1 can also be like the last-stage furnace. Tube 4 or 6 is placed in the middle of the multi-pass radiant tube.
  • the present invention has been described above by taking a four-pass furnace tube structure and a six-pass furnace tube structure as an example. However, it will be readily understood that the disclosed structure can be applied to radiant tubes of eight passes, ten passes, or even more. This is readily available to those skilled in the art after reading the present invention.
  • all of the tubes may be a combination of two sets of tubes, i.e., a 2-2-2-2 type structure.
  • a 4-2-2-2 type of structure may also be used, or a combination of multiple sets of tubes.
  • the present invention has been described above by taking one or two sets of radiant furnace tubes in one cracking furnace as an example, it can be understood that more sets of radiant furnace tubes can be disposed in one cracking furnace. It all depends on the needs of the specific situation.
  • a cracking furnace a plurality of sets of radiant furnace tubes in the above embodiments are usually arranged, one arrangement may be arranged in order, and the other arrangement is arranged in an outlet tube collection manner (this arrangement is suitable for the last one tube arrangement) At the outermost side, this is usually arranged in a mirror symmetrical manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

一种具有多程辐射炉管的乙烯裂解炉 技术领域
本发明属于石油化工领域, 具体涉及一种在石油化工生产中使用 的乙烯裂解炉中的辐射炉管结构。 背景技术
石油化工乙烯装置中所采用的乙烯裂解技术主要为美国
LUMMUS公司、 Stone& Webster公司、 Kellog & Braun Root公司, 欧 洲的德国 Linde公司、 TeChnip(KTI) 公司以及中国石化所开发的 CBL 裂解炉。
图 1A显示了一种典型的乙烯裂解炉 10, 其包括辐射区 11、 对流 区 13、 设置在辐射区 11和对流区 13之间的烟道 12。 在辐射区 11内 设置了辐射炉管 14, 其沿辐射区 11 的纵向布置在辐射区的中心面 P 内。在辐射区 11内还设置了用于加热的底部燃烧器 15和 /或侧壁燃烧 器 16。 此外, 乙烯裂解炉 10还包括急冷锅炉 17、 高压汽包 18和引 风机 19 等部件。 为使一种对裂解气体原料较好的辐射炉管也适应液 体原料, 实现维持适当的运转周期和具有较好的原料适应性, 目前大 多数公司均采用 4〜6程 (〜60m ) 分枝变径或不分枝变径中等选择 性炉管, 将停留时间控制在 0.4〜1.0 s。 第一程或前两程采用小直径 炉管, 禾 I」用它比表面积大的特点达到快速升温的目的, 第二程以后采 用较大直径的炉管以降低对结焦敏感性的影响。 所采用的四程中等选 择性辐射段炉管有 4-2-1-1型、 2-2-1-1型、 1-1-1-1、 2-1-1-1型等炉管。
对于辐射炉管 14来说,现有技术中所普遍采用的炉管的空间排布 方式均为沿流体的流向将各程炉管程按顺序地排列。 同时, 各程炉管 之间采用普通的弯头连接件相连。
图 1B显示了现有技术的乙烯裂解炉中的多程辐射炉管的典型布 置。 如图 1B所示, 该多程辐射炉管 30为四程辐射炉管, 沿流体的流 向 (在该图中为从左至右) 分别包括第一程炉管 1、 第二程炉管 、 第三程炉管 3和第四程炉管 4, 其中第一程炉管为分支变径的 Y形炉 管。 这四程炉管在空间上也按顺序地布置, 即第二程炉管 2布置成在 空间上邻近第一程炉管 1, 第三程炉管 3布置成在空间上邻近第二程 炉管 2和第四程炉管 4, 依此类推。 也就是说, 各程炉管在空间上均 和与之相连续的那一程或两程炉管相邻。 另外, 各程炉管之间采用普 通的弯头连接件 35相连。 从图 1B中还可以看到, 所有的炉管以及弯 头连接件均布置在同一平面内, 即辐射区的中心面 P内。
在这种典型布置中, 各程炉管在空间上按顺序地布置。 由于流体 在该多程辐射炉管内顺序地流动, 因此各程辐射炉管的管壁温度逐渐 提高, 即第一、 二、 三、 四程炉管的管壁温度按顺序逐渐提高。 因此, 这就造成了辐射区内的温度分布不均匀。 同时, 高温管程即第三程炉 管和第四程炉管之间存在一定的辐射传热, 这对降低管壁温度、 延长 运行周期来说也带来了一定的负面效果。
另外, 现有技术的多程炉管中的各管程之间采用普通的弯头结构 连接, 这不利于吸收各程炉管之间的热膨胀, 长期运行容易引起炉管 弯曲, 降低炉管使用寿命, 造成运行周期縮短。 发明内容
本发明的目的是针对现有技术的缺陷, 提出一种具有多程辐射炉 管的乙烯裂解炉, 其辐射炉管的特殊排布结构能够改善炉管的受热状 况, 使得炉管的受热更加均匀。 此外, 本发明还旨在提供一种具有多 程辐射炉管的乙烯裂解炉, 其能够改善辐射炉管的机械性能, 提高裂 解炉的在线率, 减少操作费用, 以及延长炉管的使用寿命和裂解炉的 运行周期。
根据本发明提出了一种具有多程辐射炉管的乙烯裂解炉, 包括至 少一个辐射区。在辐射区内设置有底部燃烧器和 /或侧壁燃烧器, 以及 沿辐射区的纵向布置的至少一组多程辐射炉管。 其中, 该多程辐射炉 管为四程至十程辐射炉管。 而且, 该多程辐射炉管中的至少一程辐射 炉管设置成在空间上与不和其连续的一程辐射炉管相邻。 容易理解,对于第一程炉管来说,和其连续的炉管是第二程炉管, 而对于第二程炉管来说, 和其连续的炉管是第一程和第三程炉管; 以 此类推。 通过使得至少有一程炉管设置成在空间上与不和其连续的一 程炉管相邻, 就能够使得至少有一程炉管与温度并不与其相近的一程 炉管在空间上相邻, 从而能够有效地改善辐射区内的温度均勾性。 这 样就能够有利于降低炉管表面温度, 达到延长辐射炉管的使用寿命和 裂解炉的运行周期的目的。
根据本发明的一个实施例, 多程辐射炉管中的最后两程炉管设置 成在空间上彼此不相邻。 由于最后两程炉管的温度是所有各程炉管中 最高的, 因此这种设置能够有效地降低高温炉管之间的热辐射影响, 进一步降低了炉管的表面温度, 从而达到延长辐射炉管的使用寿命和 裂解炉的运行周期的目的。
根据本发明的一个实施例, 第一程炉管和最后一程炉管分别设置 在多程辐射炉管的最外两侧。 作为另选, 也可将第一程炉管和最后一 程炉管中的至少一个不设置在多程辐射炉管的最外两侧, 而是设置在 中间。
根据本发明的一个实施例, 所述多程辐射炉管中的各炉管之间通 过弯管连接件相连。 由于多程辐射炉管中的各程炉管的壁温不同, 因 此相邻两程炉热膨胀不同而产生热应力。 在一个例子中, 至少一个位 于辐射区下部的弯管连接件为由对称回弯管和分别设置在该对称回 弯管的两端处的 S形弯管组成的组合式连接件。 通过这种设置, 就能 够由 s形弯管和对称回弯管组成的组合式连接件来吸收因受热而导致 的两恻燃烧不均匀而造成的热应力, 因此可以防止炉管由于各种因素 所产生的热应力引起的弯曲。 这样就可以有效地改善辐射炉管的机械 性能, 避免由于炉管弯曲而造成的局部过热, 从而达到延长裂解炉运 行周期和延长辐射炉管使用寿命的目的。
在一个例子中, 在所述辐射区的中心面内的炉管布置成在空间上 不相临, 且在中心面的两侧分别设置了数量相等的 S形弯管 (这些 S 形弯管通过对称回弯管相连接), 从而使得辐射区内的温度更加均匀, 同时也能够更加均匀地吸收因热应力而产生的变形。 其中, 这些 S形 弯管的俯视投影可以彼此平行, 或者因结构上的需要而其中的至少一 个 S形弯管的俯视投影与其它的 S形弯管的俯视投影不平行。所有的 对称回弯管的俯视投影也可以设置成均彼此平行。 这对于得到非常紧 凑的结构是十分有利的。
在上述所有实施例中, 处于辐射区下方的连接各程炉管之间的由 s形弯管和对称回弯管组成的组合式连接件在其侧视图中构成了一个 连续且对称的封闭曲线图形 (关于这一部分将参照图 32至 35的侧视 图在下文中详细介绍), 其中的对称回弯管可以是各种型式的对称回 弯管。
另外, 不采用组合式连接件形式的其它普通弯管连接件设置在辐 射区的中心面内。 这些设置均有利于结构的紧凑。 根据具体工艺的需 要, 第一程炉管可以采用分支变径管。 或者, 第一程炉管以及第二程 炉管均可采用分支变径管。
与现有技术相比, 本发明的有益效果是:
( 1 ) 各程炉管采用高温炉管与低温炉管间隔或部分交错排列形 式, 可以降低高温管排之间的热辐射影响, 使壁温低的炉管能够吸收 壁温高的炉管的辐射热, 有利于降低高温炉管的表面温度, 达到延长 裂解炉的运行周期和延长辐射炉管使用寿命的目的;
(2)炉管底部采用组合式连接件代替常规弯头直接连接,可以有 效改善辐射炉管机械性能, 有利于吸收由于相邻两程炉管温度差造成 的热应力, 防止炉管由于热应力引起的弯曲, 避免由于炉管弯曲造成 的局部过热, 从而达到延长裂解炉运行周期和延长辐射炉管使用寿命 的目的。 附图说明
图 1A为根据现有技术的乙烯裂解炉的布置图;
图 1B显示了根据现有技术的典型四程辐射炉管结构;
图 2到 9分别显示了根据本发明的用于乙烯裂解炉的四程辐射炉 管结构的八个实施例; 图 10到 31分别显示了根据本发明的用于乙烯裂解炉的六程辐射 炉管结构的二十二个实施例;
图 32到 35显示了根据本发明的另一方面的四个实施例, 其中连 接各程炉管之间的弯管连接件在其侧视图中构成了一个连续的曲线 图形。
在各幅图中, 相同的附图标记显示相同的部件或结构。
需要说明的是, 尽管在图 2到 31 中未提供相应的侧视图, 然而 在这些图中, 处于辐射区下方的连接各程炉管之间的组合式连接件在 其侧视图中均构成一个连续的曲线图形, 也就是说, 这些图中的组合 式连接件的侧视图实际上与图 32 到 35 中的组合式连接件的侧视图 (图 32到 35中侧视图的下方部分) 类似。 具体实施方式
下面将参照附图来对本发明进行详细的介绍。 需要说明的是, 本 发明涉及的是对乙烯裂解炉的辐射区内的辐射炉管的改进。 乙烯裂解 炉中的其它结构如对流区、 急冷锅炉等均属于在现有技术中公知的内 容。 例如, 适用于本发明的急冷锅炉主要采用双套管式急冷锅炉 (线 性急冷锅炉、 U 型急冷锅炉、 二级急冷锅炉的第一级等), 也可采用 传统式、 浴缸式、 快速急冷等锅炉。 另外, 本发明的辐射炉管主要适 合于裂解气体原料, 但也可以裂解液体原料, 可用于新建裂解炉或对 裂解炉进行扩能改造。 这些都是本领域的技术人员所熟知的, 因此相 关的介绍在此略去。 四程辐射炉管结构
图 2显示了根据本发明的四程辐射炉管结构的第一实施例, 其例 如可用于图 1所示的乙烯裂解炉 10中。 如图 2所示, 炉管沿着流体 的流动方向依次分成四程, 即第一程炉管 1、 第二程炉管 2、 第三程 炉管 3和第四程炉管 4。 其中, 第一程炉管 1即入口管为现有技术中 已知的 Y形分支变径炉管, 最后一程炉管即第四程炉管为出口管。各 程炉管通过弯管连接件 21-23连接起来。 在本说明书中, 将连接第一 程炉管和第二程炉管之间的连接件标为连接件 21,将连接第二程炉管 和第三程炉管之间的连接件标为连接件 22,将连接第三程炉管和第四 程炉管之间的连接件标为连接件 23。 以此类推。
为方便说明, 将第一程炉管 1、第二程炉管 2、第三程炉管 3和第 四程炉管 4中的管壁温度分别定义为 Tl、 Τ2、 Τ3和 Τ4。 容易理解, 随着裂解反应的进行,按流向顺序各程炉管的温度将逐步提高。因此, Τ1 <Τ2<Τ3<Τ4。
如图所示, 第一程炉管 1和第四程炉管 4分别设置在该四程辐射 炉管的最外两侧。 然而, 根据本发明的该实施例, 第二程炉管 2和第 三程炉管 3在空间上布置成使得第三程炉管 3处于第一程炉管 1和第 二程炉管 2之间, 而第二程炉管 2处于第三程炉管 3和第四程炉管 4 之间。通过这种布置, 具有 Τ3温度的第三程炉管 3与具有 T1温度的 第一程炉管 1和具有 Τ2温度的第二程炉管 2在空间上相邻, 而与具 有 Τ4温度的第四程炉管 4在空间上隔离开。 也就是说, 辐射区 11内 的各部分温度依次为 Tl、 Τ3、 Τ2和 Τ4。 由于 Τ1 <Τ2<Τ3<Τ4, 因 此这种布置就能够有利地降低辐射区内的温度不均匀性。 同时, 由于 第三程炉管 3和第四程炉管 4之间通过第二程炉管 2间隔开, 因此就 能够接受来自温度较高的第三程炉管 3和温度最高的第四程炉管 4的 热辐射来降低它们的管壁温度。 因此, 根据本发明的这种设置能够进 一步地降低炉管的表面温度, 延长辐射炉管的使用寿命, 从而延长裂 解炉的运行周期。
另外, 由于多程辐射炉管中的各程炉管的壁温不同, 因此相邻两 程炉热膨胀不同而产生热应力, 从而对炉管的使用寿命带来不利影 响。 为避免这一缺点, 在本发明中将弯管连接件 21 设置成组合式连 接件, 其由对称回弯管 41和分别设置在对称回弯管 41的两端的 S形 弯管 42,43组成。 这样, 由相邻两程炉管的热膨胀不同而产生热应力 可通过组合式连接件而被吸收, 从而避免了炉管因热应力而引起的弯 曲, 进一步地延长辐射炉管的使用寿命和裂解炉的运行周期。
需要说明的是, 在本实施例中, 处于辐射区上方的连接第二程炉 管 2和第三程炉管 3的弯管连接件 22仍采用的是普通的弯头连接件 或对称回弯管。 然而, 本领域的技术人员容易理解, 该弯管连接件 22 也可以采用如上所述的对称回弯管和 S形弯管的组合式连接件, 这显 然仍属于本发明的范围内。
如上所述, 在现有技术中, 多程辐射炉管中的所有炉管和它们之 间的连接件均布置在辐射区的中心面 P内。 这将由于在辐射区内的离 得较远的炉管的温度相差较大, 使得辐射区内存在着温度不均匀。 根 据本发明, 在该实施例中, 所有四程炉管仍都布置成处于辐射区的中 心面 P内。 然而如图 2所示, 与第一程炉管 1的后端 (即下端) 相连 的组合式连接件 21中的第一 S形弯管 42从其前端 (处于中心面 P内) 开始向着辐射区的后部 (图中中心面 P的上方) 延伸, 并在其后端处 与组合式连接件 21 中的对称回弯管 41 的一端相连。 对称回弯管 41 从辐射区的后部斜穿过中心面 P而到达辐射区的前部 (图中中心面 P 的下方), 并在另一端与组合式连接件 21中的第二 S形弯管 43相连。 该第二 S形弯管 43的俯视投影平行于第一 S形弯管 42的俯视投影地 朝向中心面 P延伸, 并且在其后端 (处于中心面 P内)处与第二程炉 管 2的前端 (即下端) 相连。 第二程炉管 2通过处于中心面 P内的连 接件 22与第三程炉管 3相连。 第三程炉管 3、 组合式连接件 23以及 第四程炉管 4同样以这种方式布置, 其中各个 S形弯管的俯视投影均 相互间平行。 这样, 在辐射区 11 的前部和后部分别都布置了两个 S 形弯管。 这种布置实现了相邻两程炉管在空间上的不相邻能够使得辐 射区 11内的温度更加均匀,同时能够更加均匀地吸收因热应力而产生 的变形, 从而进一步降低炉管的表面温度, 延长辐射炉管的使用寿命 和裂解炉的运行周期。
从图中可以看到, 这种四程辐射炉管的结构非常紧凑, 这对于大 型裂解炉来说是有利的。
下面将介绍根据本发明的四程辐射炉管结构的其它实施例。 为节 约篇幅起见, 在下文中将仅描述那些与上面已经介绍的实施例中不同 的特征或部分及其功能, 而相同的特征或部分及其功能不再赘述。
图 3显示了根据本发明的四程辐射炉管结构的第二实施例。 在该 实施例中, 连接最后两程炉管即第三程炉管 3和第四程炉管 4的连接 件 23并不是如图 2所示的组合式连接件, 而仅仅是采用了对称回弯 管。 这样, 该连接件也处于辐射区的中心面 P内。 这种设置在结构上 相比于第一实施例更简单一些, 其制造简单、 成本更低, 可以适用于 一些特殊要求的裂解炉。
图 4和 5分别显示了根据本发明的四程辐射炉管结构的第三和第 四实施例。 该第三、 四实施例分别与第一、 二实施例基本上相同, 仅 仅是第一程炉管 1不是分支变径的 Y形炉管,而是普通的不分支变径 炉管。 这对于特定的工艺和裂解炉来说是合适的。
图 6显示了根据本发明的四程辐射炉管结构的第五实施例。 该第 五实施例与第一实施例大致相同。 然而, 尽管第一程炉管即入口管 1 仍设置在炉管的最外侧, 但第四程炉管即出口管 4并没有设置在相对 的另一外侧, 而是设置成在空间上紧邻于第一程炉管 1。如图 6所示, 各程炉管在空间上依次设置成第一程炉管 1、 第四程炉管 4、 第二程 炉管 2和第三程炉管 3。 这样, 辐射区内各程炉管的温度分布依次为 Tl、 Τ4、 Τ2和 Τ3。 考虑到 Τ1 <Τ2<Τ3<Τ4, 因此这种布置同样能 够实现和第一实施例相同的效果。 另外, 由于温度最高的第四程炉管 4设置在温度最低的两个炉管即第一程炉管 2和第二程炉管 3之间, 因此这种设置能够极大地减小温度不均匀性。
图 7到 9分别显示了根据本发明的四程辐射炉管结构的第六至八 实施例。 它们相比于第五实施例的变化与第二至四实施例相比于第一 实施例的变化相同, 是本领域的技术人员在参考附图后容易理解的, 因此这里不再对其进行详细描述。 六程辐射炉管结构
图 10显示了根据本发明的六程辐射炉管结构的第一实施例,其例 如可用于如图 1所示的乙烯裂解炉 10中。 如图所示, 炉管沿着流体 的流动方向依次分成第一程炉管 1、 第二程炉管 2、 第三程炉管 3、 第 四程炉管 4、 第五程炉管 5和第六程炉管 6。 其中, 第一程炉管 1即 入口管为现有技术中已知的 Υ形分支变径炉管,第六程炉管 6为出口 管。 各程炉管通过弯管连接件 21-25连接起来。 为方便说明, 将第一程炉管 1、 第二程炉管 2、 第三程炉管 3、 第 四程炉管 4、 第五程炉管 5和第六程炉管 6中的管壁温度分别定义为 Tl、 Τ2、 Τ3、 Τ4、 Τ5和 Τ6。 容易理解, 随着裂解反应的进行, 按流 向顺序各程炉管的温度逐步提高。因此, Τ1 <Τ2<Τ3<Τ4<Τ5<Τ6。
如图 10所示, 各程炉管在空间上依次设置成第一程炉管 1、第四 程炉管 4、 第五程炉管 5、 第二程炉管 2、 第三程炉管 3和第六程炉管 6。 这样, 辐射区内各程炉管的温度分布依次为 Tl、 Τ4、 Τ5、 Τ2、 Τ3 和 Τ6。考虑到 Τ1 <Τ2<Τ3 <Τ4<Τ5<Τ6, 因此, 这种布置就能够有 利地降低辐射区内的温度不均匀性。 同时, 由于第五程炉管 5和第六 程炉管 6之间通过第二程炉管 2和第三程炉管 3而间隔开, 因此就能 够接受来自最高的第六程炉管 6和温度次高的第五程炉管 5之间的热 辐射来降低它们的管壁温度。 因此, 根据本发明的这种设置能够进一 步地降低炉管的表面温度, 延长辐射炉管的使用寿命, 从而延长裂解 炉的运行周期。
如同图 2所示的四程炉管结构的第一实施例一样, 处于辐射区下 方的弯管连接件 21、 23和 25均为组合式连接件, 即其由对称回弯管 41和分别设置在对称回弯管两端的 S形弯管 42,43组成。 这样, 相连 续的两程炉管之间的热应力可通过组合式连接件而被吸收, 从而避免 了炉管因热应力而引起的弯曲和局部过热, 进一步地延长辐射炉管的 使用寿命和裂解炉的运行周期。
同样, 在本实施例中, 处于辐射区上方的弯管连接件 22和 24仍 采用的是普通的弯头连接件。 然而, 本领域的技术人员容易理解, 该 弯管连接件 22和 24也可以采用如上所述的对称回弯管和 S形弯管的 组合式连接件, 这仍属于本发明的范围内。
在该实施例中,所有六程炉管都设置成处于辐射区的中心面 Ρ上。 连接件 21的第一 S形弯管 42从其与第一程炉管 1相连的前端(处于 中心面 Ρ内) 开始向着辐射区的后部 (图中中心面 Ρ的上方) 延伸, 并在其后端处与组合式连接件 21中的对称回弯管 41的一端相连。 对 称回弯管 41从辐射区的后部斜穿过中心面 Ρ的连接件 21而到达辐射 区的前部 (图中中心面 Ρ的下方), 并在另一端与组合式连接件 21中 的第二 S形弯管 43相连。该第二 S形弯管 43的俯视投影平行于第一 S形弯管 42的俯视投影地朝向中心面 P延伸, 并且在其后端(处于中 心面 P内) 处与第二程炉管 2的前端 (即下端) 相连。 第二程炉管 2 通过处于中心面 P内的连接件 22与第三程炉管 3相连。 第三至六程 炉管及其之间的连接件也以同样的方式布置, 其中各个 S形弯管的俯 视投影均相互间平行。这样,在辐射区 11的前部和后部分别都布置了 三个 S形弯管。 这种布置能够使得辐射区 11 内的温度更加均匀, 同 时能够更加均匀地吸收因热应力而产生的变形, 从而进一步降低炉管 的表面温度, 延长辐射炉管的使用寿命和裂解炉的运行周期。
从图中可以看到, 这种六程辐射炉管的结构非常紧凑, 这对于大 型裂解炉来说是有利的。
下面将介绍根据本发明的六程辐射炉管结构的其它实施例。 为节 约篇幅起见, 在下文中将仅描述那些与上面已经介绍的实施例中不同 的特征或部分及其功能, 而相同的特征或部分及其功能不再赘述。
图 11显示了根据本发明的六程辐射炉管结构的第二实施例。该第 二实施例与第一实施例基本相同, 仅仅是第一程炉管 1未采用分支变 径的 Y形炉管, 而是普通的不分支变径炉管。
图 12显示了根据本发明的六程辐射炉管结构的第三实施例。在该 实施例中, 连接最后两程炉管即第五程炉管 5和第六程炉管 6的连接 件 25并不是如图 10所示的组合式连接件, 而仅仅是采用了对称回弯 管。 这样, 该连接件 25也处于辐射区的中心面 P内。 这种设置的结 构相比于第一实施例更简单一些, 其制造简单、 成本更低, 可以适用 于一些特殊要求的裂解炉。
图 13 所示的根据本发明的六程辐射炉管结构的第四实施例与第 三实施例基本上相同,仅仅是第一程炉管 1未采用分支变径的 Y形炉 管, 而是普通的不分支变径炉管。
图 14显示了根据本发明的六程辐射炉管结构的第五实施例。该第 五实施例与第一实施例大致相同。 然而, 尽管第一程炉管即入口管 1 仍设置在炉管的最外侧, 但第六程炉管即出口管 6并没有设置在相对 的另一外侧,而是设置成在空间上紧邻于第一程炉管 1。如图 14所示, 各程炉管在空间上依次设置成第一程炉管 1、 第六程炉管 6、 第三程 炉管 3、 第二程炉管 2、 第五程炉管 5和第四程炉管 4。 这样, 辐射区 内各程炉管的温度分布依次为 Tl、 Τ6、 Τ3、 Τ2、 Τ5和 Τ4。 并且, 第 一程炉管 1、 第三程炉管 3和第六程炉管 6处于辐射区后部, 而第二 程炉管 2、 第四程炉管 4和第五程炉管 5处于辐射区前部。 考虑到 T1 <Τ2<Τ3<Τ4<Τ5<Τ6 以及炉管的空间构形, 因此这种布置同样能 够实现和第一实施例相同的效果, 且结构也十分紧凑。 此外, 由于温 度最高的第六程炉管 6设置成邻近于温度最低的第一程炉管 1, 因此 有利于进一步地降低辐射区内的不均匀性。
图 15至 17显示了根据本发明的六程辐射炉管结构的第六至八实 施例。 它们相比于第五实施例的变化与第二至四实施例相比于第一实 施例的变化相同, 是本领域的技术人员在参考附图后容易理解的, 因 此这里不再对其进行详细描述。
图 18显示了根据本发明的六程辐射炉管结构的第九实施例。在该 实施例中, 各程炉管在空间上依次设置成第一程炉管 1、 第六程炉管 6、 第二程炉管 2、 第三程炉管 3、 第五程炉管 5和第四程炉管 4。 也 就是说, 与第五实施例相比, 第二程炉管 2和第三程炉管 3的空间位 置互换。 这样, 在辐射区内最高温度的炉管 6与最低温度的两个炉管 1、 2相邻, 极大地降低了温度的不均匀性。 需要注意的是, 在这种布 置中, 最后一个连接件 25的第一 S形弯管 42的俯视投影与其它的 S 形弯管的俯视投影不平行。
图 19至 21显示了根据本发明的六程辐射炉管结构的第十至十二 实施例。 它们相比于第九实施例的变化与第二至四实施例相比于第一 实施例的变化相同, 是本领域的技术人员在参考附图后容易理解的, 因此这里不再对其进行详细描述。
图 22显示了根据本发明的六程辐射炉管结构的第十三实施例。在 该实施例中, 各程炉管在空间上依次设置成第一程炉管 1、 第二程炉 管 2、 第三程炉管 3、 第六程炉管 6、 第四程炉管 4和第五程炉管 5。 在这种设计中, 第一程炉管 1和第二程炉管 2之间的连接件 21为普 通的弯头连接件, 连同另两个连接件 22、 24 一起, 它们都处于辐射 区的中心面 P内。第三至六这四程炉管的设计类似于图 8所示的结构。 这种设计在结构上实现起来相对容易一些。
图 23 所示的根据本发明的六程辐射炉管结构的第十四实施例与 图 22所示的第十三实施例的区别仅在于第一程炉管 1是不分支变径 的普通炉管。
图 24 所示的根据本发明的六程辐射炉管结构的第十五实施例与 图 22所示的第十三实施例的区别仅在于, 第三至六这四程炉管的设 计类似于图 9所示的结构。
图 25 所示的根据本发明的六程辐射炉管结构的第十六实施例与 图 24所示的第十五实施例的区别仅在于第一程炉管 1是不分支变径 的普通炉管。
图 26显示了根据本发明的六程辐射炉管结构的第十七实施例。在 该实施例中, 各程炉管在空间上依次设置成第一程炉管 1、 第三程炉 管 3、 第二程炉管 2、 第六程炉管 6、 第四程炉管 4和第五程炉管 5。 在这种设计中, 处于辐射区下方的三个连接件 21、 23和 25均为组合 式连接件。 由于结构设计的原因, 连接第三程炉管 3和第四程炉管 4 的连接件 23中的第二 S形弯管 43的俯视投影不平行于其它的 S形弯 管的俯视投影。 如图所示的这种结构与前述结构一样, 同样能够实现 降低炉管的表面温度、 延长辐射炉管的使用寿命和裂解炉的运行周期 的技术效果。
图 27 所示的根据本发明的六程辐射炉管结构的第十八实施例与 图 26所示的第十七实施例的区别仅在于第一程炉管 1是不分支变径 的普通炉管。
图 28 所示的根据本发明的六程辐射炉管结构的第十九实施例与 图 26所示的第十七实施例的区别仅在于连接最后两程即第五程炉管 5 和第六程炉管 6的连接件 25是布置在中心面 P内的对称回弯管。
图 29 所示的根据本发明的六程辐射炉管结构的第二十实施例与 图 28所示的第十九实施例的区别仅在于第一程炉管 1 是不分支变径 的普通炉管。
图 30显示了根据本发明的六程辐射炉管结构的第二十一实施例。 在该实施例中,第一程炉管 1和第二程炉管 2均采用分支变径的 Y形 管设计。 各程炉管在空间上依次设置成第一程炉管 1、 第二程炉管 2、 第三程炉管 3、 第五程炉管 5、 第四程炉管 4和第六程炉管 6。
如图所示, 在该实施例中, 第一至三这三程炉管的设置与图 10 中所示的第一至三程炉管的设置类似, 而第三至六这四程炉管的布置 与图 2中所示的结构类似。 所有 S形弯管的俯视投影彼此平行, 所有 对称回弯管的俯视投影也设置成彼此平行。
图 31显示了根据本发明的六程辐射炉管结构的第二十二实施例。 它与第二十一实施例的不同之处在于, 第三至六这四程炉管的布置与 图 3中所示的结构类似。
图 32显示了一种四程辐射炉管结构,其中各程炉管基本上采用如 图 4 所示的结构。 这是采用了两组炉管的一种组合方式, 形成一种 2-2-2-2型结构。
另外, 处于辐射区下方的连接各程炉管之间的连接件仍采用的是 对称回弯管与 S形弯管的组合式连接件。然而,如该图的右半部分(即 左视图) 所示, 这些组合式连接件 21, 23从其侧视图看上去形成了一 个封闭的光滑曲线形状。 这种设置使得连接件能够更加有效地吸收辐 射区内产生的热应力。
同时,如该左视图所示,两个处于辐射区上方的连接件 22即传统 的普通弯头连接件不再处于辐射区的中心面 P上, 而是分别处于与中 心面 P斜交且相互间镜像对称的平面上。 这种设置使得辐射炉管的吊 挂在机械结构上更加合理。
图 33所示的结构与图 32中的类似, 不同之处在于其第一程炉管 中的各分管均为 Y形分支变径管,其中各程炉管基本上采用如图 2所 示的结构, 并且是采用了两组炉管的一种组合方式, 从而构成一种 4-2-2-2型结构。
图 34显示了一种六程辐射炉管结构,其中各程炉管基本上采用如 图 10所示的结构。 它是采用了两组炉管的一种组合方式, 形成一种 4-2-2-2-2-2型结构。 然而, S型弯管的俯视投影与中心面 P垂直。
图 35显示了一种六程辐射炉管结构,其中各程炉管基本上采用如 图 11 所示的结构。 它是采用两组炉管的一种组合方式, 形成一种 2-2-2-2-2-2型结构。
需要说明的是, 尽管在上面的实施例中所有的第一程炉管 1均设 置在整个多程辐射炉管的最外侧, 但容易理解, 第一程炉管 1也可以 如同最后一程炉管 4或 6—样设置在多程辐射炉管的中间。
以上通过四程炉管结构和六程炉管结构为例对本发明进行了说 明。然而容易理解,本发明所披露的结构同样可以适用于八程、十程、 甚至是更多程的辐射炉管中。 这是本领域的技术人员在阅读了本发明 之后能够容易得到的。
容易理解, 在一个未示出的实施例中, 所有炉管都可以是两组炉 管的组合, 即 2-2-2-2 型结构。 在另一些未示出的变型中, 也可以采 用 4-2-2-2型结构, 也可以是多组炉管的组合。
此外, 尽管在上文中以在一台裂解炉中设置一组或两组辐射炉管 为例对本发明进行了描述, 然而可以理解, 在一台裂解炉中也可以设 置更多组辐射炉管, 这完全取决于具体情况的需要。 对于一台裂解炉 通常布置以上实施例中的多组辐射炉管, 一种布置方式可以是按顺序 布置, 另一种布置方式是以出口管集种方式布置 (此布置适合最后一 程管布置在最外侧), 此时通常以镜像对称的方式布置。
虽然在上文中己经参考一些实施例对本发明进行了描述, 然而在 不脱离本发明的范围的情况下, 可以对其进行各种改进并且可以用等 效物替换其中的部件。 尤其是, 只要不存在结构冲突, 本发明所披露 的各个实施例中的各项特征均可通过任意方式相互结合起来使用, 在 本说明书中未对这些组合的情况进行穷举性的描述仅仅是出于省略 篇幅和节约资源的考虑。 因此, 本发明并不局限于文中公开的特定实 施例, 而是包括落入权利要求的范围内的所有技术方案。

Claims

权利要求书
1. 一种具有多程辐射炉管的乙烯裂解炉, 包括:
至少一个辐射区, 其中设置有底部燃烧器和 /或侧壁燃烧器, 以及 沿辐射区的纵向布置的至少一组多程辐射炉管;
其中, 所述多程辐射炉管为四程至十程辐射炉管; 以及 所述多程辐射炉管中的至少一程炉管设置成在空间上与不和其 连续的一程炉管相邻。
2. 根据权利要求 1 所述的乙烯裂解炉, 其特征在于, 所述多程 辐射炉管中的最后两程炉管设置成在空间上彼此不相邻。
3. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 第一 程炉管和最后一程炉管分别设置在所述多程辐射炉管的两侧。
4. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 第一 程炉管和最后一程炉管中的至少一个未设置在所述多程辐射炉管的 两侧。
5. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 各程 炉管均垂直地布置在所述辐射区的中心面内。
6. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 各程 炉管之间通过弯管连接件相连。
7. 根据权利要求 6所述的乙烯裂解炉, 其特征在于, 至少一个 位于所述辐射区下部的弯管连接件为由对称回弯管和分别设置在该 对称回弯管的两端处的 S形弯管组成的组合式连接件。
8. 根据权利要求 7所述的乙烯裂解炉, 其特征在于, 在所述辐 射区的中心面的两侧分别布置有数量相等的 S形弯管。
9. 根据权利要求 8所述的乙烯裂解炉, 其特征在于, 所有 S形 弯管的俯视投影彼此平行。
10. 根据权利要求 8所述的乙烯裂解炉, 其特征在于, 至少一个 S形弯管的俯视投影不平行于其它的 S形弯管的俯视投影。
11. 根据权利要求 8所述的乙烯裂解炉, 其特征在于, 连接对称 回弯管两端的两个 S形弯管的俯视投影相互平行。
12. 根据权利要求 7所述的乙烯裂解炉, 其特征在于, 所有所述 组合式连接件中的各对称回弯管的俯视投影均彼此平行。
13. 根据权利要求 7所述的乙烯裂解炉, 其特征在于, 未采用组 合式连接件形式的弯管连接件均设置在所述辐射区的中心面内。
14. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 第一 程炉管为分支变径管, 或者第一程炉管和第二程炉管均为分支变径 管。
15. 根据权利要求 6所述的乙烯裂解炉, 其特征在于, 处于所述 辐射区下方的弯管连接件从其侧面看去形成了一个封闭的、 大致光滑 的曲线形状。
16. 根据权利要求 1所示的乙烯裂解炉, 其特征在于, 设有两组 或以上多程辐射炉管, 其中处于所述辐射区上方的弯管连接件从其侧 面看去分别处于与所述辐射区的中心面 P斜交且两两镜像的对称平面 内。
PCT/CN2010/001703 2009-10-27 2010-10-26 一种具有多程辐射炉管的乙烯裂解炉 WO2011050573A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/504,117 US8900522B2 (en) 2009-10-27 2010-10-26 Ethylene cracking furnace with multi-pass radiant coil
KR1020127013306A KR101831341B1 (ko) 2009-10-27 2010-10-26 다중 패스 복사로 튜브를 구비한 에틸렌 분해로
RU2012120306/04A RU2552417C2 (ru) 2009-10-27 2010-10-26 Печь для этиленового крекинга с многоходовым радиантным змеевиком

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910181016.6A CN102051197B (zh) 2009-10-27 2009-10-27 一种多管程乙烯裂解炉
CN200910181016.6 2009-10-27

Publications (2)

Publication Number Publication Date
WO2011050573A1 true WO2011050573A1 (zh) 2011-05-05
WO2011050573A8 WO2011050573A8 (zh) 2012-06-07

Family

ID=43921277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001703 WO2011050573A1 (zh) 2009-10-27 2010-10-26 一种具有多程辐射炉管的乙烯裂解炉

Country Status (6)

Country Link
US (1) US8900522B2 (zh)
KR (1) KR101831341B1 (zh)
CN (1) CN102051197B (zh)
MY (1) MY162845A (zh)
RU (1) RU2552417C2 (zh)
WO (1) WO2011050573A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064810A (ko) * 2011-07-28 2014-05-28 차이나 페트로리움 앤드 케미컬 코포레이션 에틸렌 분해로

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773421B (zh) * 2012-10-23 2015-10-07 中国石油化工股份有限公司 一种用于乙烯裂解炉的两程辐射段炉管
CN103773422B (zh) * 2012-10-23 2015-10-07 中国石油化工股份有限公司 一种用于乙烯裂解炉的两程辐射段炉管
CN104232146B (zh) * 2013-06-14 2015-11-18 中国石化工程建设有限公司 一种乙烯裂解炉
CN106635122B (zh) * 2015-10-29 2018-07-20 中国石油化工股份有限公司 一种管式裂解炉
CN106635123B (zh) * 2015-10-29 2018-11-30 中国石油化工股份有限公司 采用富氧燃烧的多程炉管的裂解炉
RU2615753C1 (ru) * 2016-04-18 2017-04-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Радиантный змеевик печи для этиленового крекинга
KR101857885B1 (ko) * 2016-12-09 2018-06-20 주식회사 효성 파이어 히터
CN111763529A (zh) * 2020-06-18 2020-10-13 中国寰球工程有限公司 辐射炉管
US20220119716A1 (en) * 2020-10-15 2022-04-21 Technip Process Technology, Inc. Hybrid ethylene cracking furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050535A (zh) * 1990-10-05 1991-04-10 中国石油化工总公司 乙烯裂解炉
JPH07238288A (ja) * 1994-02-25 1995-09-12 Babcock Hitachi Kk 熱分解炉
WO2005068926A1 (en) * 2004-01-15 2005-07-28 Pycos Engineering (Uk) Ltd. Enhanced radiant heat exchanger apparatus
CN101333147A (zh) * 2007-06-28 2008-12-31 上海惠生化工工程有限公司 一种乙烯裂解炉
CN201520747U (zh) * 2009-10-27 2010-07-07 中国石油化工股份有限公司 一种多管程乙烯裂解炉

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557569A (en) * 1948-02-14 1951-06-19 Stone & Webster Eng Corp Pyrolysis furnace
US3407789A (en) * 1966-06-13 1968-10-29 Stone & Webster Eng Corp Heating apparatus and process
US4002149A (en) * 1974-09-04 1977-01-11 Mitsui Shipbuilding And Engineering Co., Ltd. Arrangement of heat transfer tubes in a heating furnace
WO1998051761A1 (en) * 1997-05-13 1998-11-19 Stone & Webster Engineering Corporation Cracking furnace with radiant heating tubes
EP1136541B1 (en) * 1997-06-10 2004-08-04 ExxonMobil Chemical Patents Inc. Internally finned U-shaped radiant coil
EP1561796A1 (en) * 2004-02-05 2005-08-10 Technip France Cracking furnace
CN2816045Y (zh) * 2005-09-02 2006-09-13 上海惠生化工工程有限公司 新型乙烯裂解炉
CN101062883B (zh) * 2006-04-29 2011-05-04 中国石油化工股份有限公司 一种辐射段炉管采用“u”形结构排布的裂解炉
CN201276507Y (zh) * 2008-10-16 2009-07-22 中国石油化工股份有限公司 一种乙烯裂解炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050535A (zh) * 1990-10-05 1991-04-10 中国石油化工总公司 乙烯裂解炉
JPH07238288A (ja) * 1994-02-25 1995-09-12 Babcock Hitachi Kk 熱分解炉
WO2005068926A1 (en) * 2004-01-15 2005-07-28 Pycos Engineering (Uk) Ltd. Enhanced radiant heat exchanger apparatus
CN101333147A (zh) * 2007-06-28 2008-12-31 上海惠生化工工程有限公司 一种乙烯裂解炉
CN201520747U (zh) * 2009-10-27 2010-07-07 中国石油化工股份有限公司 一种多管程乙烯裂解炉

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064810A (ko) * 2011-07-28 2014-05-28 차이나 페트로리움 앤드 케미컬 코포레이션 에틸렌 분해로
US20140199214A1 (en) * 2011-07-28 2014-07-17 Sinopec Engineering Incorporation Ethylene Cracking Furnace
US9205400B2 (en) * 2011-07-28 2015-12-08 China Petroleum & Chemical Corporation Ethylene cracking furnace
RU2576387C2 (ru) * 2011-07-28 2016-03-10 Чайна Петролеум Энд Кемикал Корпорейшн Крекинговая печь для получения этилена
US9604193B2 (en) 2011-07-28 2017-03-28 China Petroleum & Chemical Corporation Ethylene cracking furnace
KR101896028B1 (ko) * 2011-07-28 2018-09-06 차이나 페트로리움 앤드 케미컬 코포레이션 에틸렌 분해로

Also Published As

Publication number Publication date
MY162845A (en) 2017-07-31
US8900522B2 (en) 2014-12-02
WO2011050573A8 (zh) 2012-06-07
CN102051197A (zh) 2011-05-11
RU2552417C2 (ru) 2015-06-10
RU2012120306A (ru) 2013-12-10
KR101831341B1 (ko) 2018-02-22
US20120219466A1 (en) 2012-08-30
KR20120103598A (ko) 2012-09-19
CN102051197B (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2011050573A1 (zh) 一种具有多程辐射炉管的乙烯裂解炉
CN201520747U (zh) 一种多管程乙烯裂解炉
JP2009001822A (ja) より均一な加熱を用いるクラッキング炉
KR100676163B1 (ko) 수관보일러
CN102146011B (zh) 一种烃类蒸汽裂解制乙烯裂解炉
CN210036337U (zh) 一种列管式光管蒸发器
CN102050696B (zh) 一种烃类蒸汽裂解制乙烯裂解炉
CN100487079C (zh) 新型结构及排布的裂解炉用两程辐射炉管
US9604193B2 (en) Ethylene cracking furnace
CN101723784A (zh) 一种乙烯裂解炉
CN202688271U (zh) 一种乙烯裂解炉
JP2021134971A (ja) 熱交換器およびこれを備えた温水装置
TWI467000B (zh) A double row of radiant furnace tube cracking furnace
CN102911706B (zh) 一种采用分支变径炉管的乙烯裂解炉
CN216049308U (zh) 一种管式换热器及蒸汽发生设备
CN109486506A (zh) 一种乙烯裂解炉
JP4165097B2 (ja) 水管ボイラ
KR200284723Y1 (ko) 가정용 가스보일러의 열교환기
JP4134453B2 (ja) 水管ボイラ
JP5872146B2 (ja) 管群構造ボイラ
CN109423321A (zh) 一种乙烯裂解炉
JPH0649868B2 (ja) 炭化水素の熱分解炉
KR200432038Y1 (ko) 전열핀 보일러
CN110530007A (zh) 燃气热水器及其换热器、换热器壳体结构
CN109425222A (zh) 侧烧重整加热炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3720/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127013306

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012120306

Country of ref document: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-08-2012 )

122 Ep: pct application non-entry in european phase

Ref document number: 10825937

Country of ref document: EP

Kind code of ref document: A1