WO2011049142A1 - Curable composition and cured film utilizing same - Google Patents
Curable composition and cured film utilizing same Download PDFInfo
- Publication number
- WO2011049142A1 WO2011049142A1 PCT/JP2010/068520 JP2010068520W WO2011049142A1 WO 2011049142 A1 WO2011049142 A1 WO 2011049142A1 JP 2010068520 W JP2010068520 W JP 2010068520W WO 2011049142 A1 WO2011049142 A1 WO 2011049142A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- curable composition
- prepolymer
- cured film
- film
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/48—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/48—Polymers modified by chemical after-treatment
- C08G65/485—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/126—Polyphenylene oxides modified by chemical after-treatment
Definitions
- the present invention relates to a curable composition and a cured film obtained by curing the curable composition.
- low dielectric constant insulating materials are being developed for use as interlayer insulation films for semiconductor elements, stress relaxation layers for rewiring layers, and the like.
- various photocurable compositions have been proposed for insulating materials having photosensitivity because, for example, fine processing by photolithography is possible as in the case of resists.
- an insulating material having photosensitivity is required to have high toughness, low temperature curing, and low water absorption.
- benzocyclobutene, polyimide, and epoxy resin cannot have all of these required characteristics.
- the semiconductor package is expected to further increase in size in the future, and as a result, the film stress on the interlayer insulating film in the package is expected to increase. Therefore, a low film stress interlayer insulating film having higher toughness is required. That is, a cured film having high toughness, low film stress, and low dielectric constant, and a curable composition capable of forming the cured film are desired.
- the present invention has been made in view of the above circumstances, and provides a curable composition capable of obtaining a cured film having high toughness, low film stress, and low dielectric constant, and a cured film obtained using the curable composition. For the purpose.
- the gist of the present invention is the following [1] to [10].
- R a O—R b n —R c
- R a is an HS—CH (R 1 ) —CH 2 —CO— group
- R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms
- R b is a divalent carbon group having 1 to 10 carbon atoms.
- R c is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom or an oxygen atom, and n is an integer of 2 to 10.
- the crosslinkable functional group of the fluorine-containing polyarylene prepolymer (A) comprises a vinyl group, a methacryloyl group, a methacryloyloxy group, an acryloyl group, an acryloyloxy group, a trifluorovinyloxy group, an ethynyl group, and a cyclobutalene ring.
- the curable composition according to any one of [1] to [5], which is one or more selected from the group.
- a cured film having high toughness, low film stress, and low dielectric constant can be obtained, and crack generation can be suppressed during the cured film production process.
- the cured film of the present invention is a film having high toughness, low film stress, and low dielectric constant.
- the methacryloyl (oxy) group in the specification of the present invention means a methacryloyl group or a methacryloyloxy group. The same applies to the acryloyl (oxy) group.
- the curable composition of the present invention contains a fluorine-containing polyarylene prepolymer (A), a thiol compound (B) and the like.
- A fluorine-containing polyarylene prepolymer
- B thiol compound
- the fluorine-containing polyarylene prepolymer (A) of the present invention (hereinafter sometimes simply referred to as prepolymer (A)) has a polyarylene structure in which a plurality of aromatic rings are bonded via a single bond or a linking group. And a fluorine atom and a crosslinkable functional group.
- Examples of the linking group in the polyarylene structure include an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), a sulfonyl group (—SO 2 —), and the like.
- the prepolymers (A) those having a structure in which aromatic rings are bonded to each other with a linking group containing an ether bond (—O—) are the fluorine-containing polyarylene ether prepolymer (A1) (hereinafter simply referred to as prepolymer).
- the prepolymer (A) in the present invention is a concept including a fluorine-containing polyarylene ether prepolymer (A1).
- linking group containing an ether bond examples include an ether bond (—O—) consisting only of an etheric oxygen atom, and an alkylene group containing an etheric oxygen atom in the carbon chain.
- the crosslinkable functional group of the prepolymer (A) is a group capable of reacting with a mercapto group, and even when it does not react with a mercapto group, it reacts by giving external energy to crosslink between the prepolymer (A) molecules. Or a group having an unsaturated group having an unsaturated bond between carbon atoms, causing chain extension.
- An unsaturated group having an unsaturated double bond or an unsaturated triple bond between carbon atoms can be bonded to a mercapto group by an enethiol reaction, and unsaturated groups can be bonded to each other by an addition reaction.
- the crosslinkable functional group of the prepolymer (A) reacts with a mercapto group at the time of producing a cured product such as a film, a film or a molded product, or at any time after the production, and does not react with a mercapto group.
- the crosslinkable functional groups react with each other by external energy.
- crosslinkable functional group examples include vinyl group, allyl group, methacryloyl (oxy) group, acryloyl (oxy) group, vinyloxy group, trifluorovinyl group, trifluorovinyloxy group, ethynyl group, 1-oxocyclopenta And a group having at least one unsaturated group or unsaturated bond selected from the group consisting of a -2,5-dien-3-yl group and a cyclobutalene ring.
- a vinyl group is most preferable from the viewpoint of good heat resistance of the resulting cured film.
- External heat includes heat, light, electron beam and the like. These may be used in combination.
- a crosslinkable functional group that reacts at a temperature of 40 to 500 ° C. is preferable. If the reaction temperature is too low, stability during storage of the prepolymer (A) or the curable composition containing the prepolymer (A) cannot be ensured, and if too high, the prepolymer (A) itself is thermally decomposed during the reaction. In the above-mentioned range.
- the crosslinkable functional group that reacts at a temperature of 60 to 300 ° C. is more preferable, and 70 to 200 ° C. is most preferable in that a thermal load applied to a semiconductor element or the like to which the curable composition of the present invention is applied can be suppressed.
- the prepolymer (A) in the exposed portion can be made high molecular weight by selectively irradiating actinic radiation in the exposure step, and if necessary, after exposure and development steps, such as actinic rays or heat.
- the prepolymer (A) can be further increased in molecular weight by applying external energy.
- the prepolymer (A) Since the prepolymer (A) has an aromatic ring, it has good heat resistance and, for example, high reliability is obtained when it is used as a component of a semiconductor element.
- the prepolymer (A) a polymer obtained by bonding aromatic rings through an ether bond by a condensation reaction between a fluorine atom bonded to the aromatic ring and a hydroxyl group bonded to the aromatic ring is preferable.
- the presence of fluorine atoms bonded to the aromatic ring in addition to the fluorine atoms eliminated by this condensation reaction allows the fluorine atom to remain in the aromatic ring after the condensation reaction, thereby obtaining a prepolymer (A) containing the fluorine atom. It is done.
- the aromatic compound having a fluorine atom or a hydroxyl group which is a raw material compound of the prepolymer (A), has at least one aromatic ring, and a benzene ring is preferred as the aromatic ring.
- the aromatic ring may be a condensed ring such as a naphthalene ring.
- the aromatic compound is preferably a polycyclic aromatic compound in which two or more aromatic rings (particularly a benzene ring) are bonded by a single bond or a linking group, and a polycyclic aromatic compound having 2 to 6 aromatic rings. Compounds are preferred. However, in the case of a compound having a hydroxyl group bonded to an aromatic ring, a compound having one aromatic ring may be used.
- linking group examples include a divalent to tetravalent hydrocarbon group (the carbon number is preferably 1 to 6), an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), a sulfonyl group.
- the group (—SO 2 —) is preferred.
- Specific examples of the connecting structure include a biphenyl structure, a terphenyl structure, a triphenylbenzene structure, a diphenyl ether structure, a diphenyl sulfide structure, a benzophenone structure, and a diphenyl sulfone structure.
- a fluorine-containing aromatic compound having at least three fluorine atoms bonded to the aromatic ring is preferred, and in particular, all of the hydrogen atoms bonded to the aromatic ring are substituted with fluorine atoms.
- the fluorine-containing aromatic compound include perfluoro (1,3,5-triphenylbenzene), perfluorobiphenyl, perfluorodiphenyl ether and the like.
- the aromatic compound having a hydroxyl group a polyhydroxy aromatic compound having at least two hydroxyl groups bonded to an aromatic ring is preferable, and a polyhydroxy aromatic compound having 2 to 4 hydroxyl groups bonded to an aromatic ring is preferable.
- the polyhydroxy aromatic compound may have a fluorine atom bonded to the aromatic ring.
- this polyhydroxy aromatic compound include 1,3,5-trihydroxybenzene, 1,1,1-tris (4-hydroxyphenyl) ethane, bisphenol A, bisphenol S and the like.
- a prepolymer (A) having a crosslinkable functional group is obtained by co-condensing an aromatic compound having a crosslinkable functional group with the above-mentioned two kinds of aromatic compounds.
- the prepolymer (A) can also be produced by using an aromatic compound having a crosslinkable functional group in place of either of the two kinds of aromatic compounds.
- the two types of aromatic compounds can be condensed to produce a prepolymer, and then a crosslinkable functional group can be introduced into the resulting prepolymer to obtain a prepolymer (A).
- a crosslinkable functional group is introduced into the prepolymer, it can be produced by subjecting an aromatic compound having a crosslinkable functional group to a condensation reaction with the prepolymer.
- a reactive compound having a crosslinkable functional group (which may be a non-aromatic compound) may be reacted with a functional group (such as a hydroxyl group) of the prepolymer to introduce a crosslinkable functional group.
- an aromatic compound having a crosslinkable functional group in the side chain such as styrene or a derivative thereof is preferable.
- the aromatic compound may have a fluorine atom or a hydroxyl group bonded to an aromatic ring, or may have a reactive group other than those.
- Preferable examples of the aromatic compound having a crosslinkable functional group include pentafluorostyrene, acetoxystyrene, chloromethylstyrene and the like.
- the prepolymer (A) can be obtained by condensing the above two to three kinds of compounds in a reaction solvent in the presence of a dehydrohalogenating agent.
- a dehydrohalogenating agent an alkali metal compound is preferable, and examples thereof include potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide and the like.
- the reaction temperature may be any temperature at which the crosslinkable functional group does not react, and usually 40 to 100 ° C. is employed. After completion of the reaction, purification such as removal of by-products is performed to obtain the prepolymer (A).
- the upper limit of the molecular weight of the prepolymer (A) is not particularly limited as long as the prepolymer (A) is solvent-soluble.
- the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) in terms of polystyrene is preferably 2,000 to 50,000, more preferably 3,000 to 20,000. preferable.
- the fluorine-containing polyarylene ether prepolymer (A1) has an etheric oxygen atom, so that the molecular structure is flexible and the flexibility of the resin is good. Is preferable.
- the prepolymer (A1) may have a single bond derived from the starting polycyclic aromatic compound, a linking group other than the etheric oxygen atom, or the like.
- the prepolymer (A) has a fluorine atom. Having fluorine atoms is preferable as a material for forming the insulating film because the dielectric constant and dielectric loss of the cured film tend to be low. When the dielectric constant and dielectric loss of the insulating film are low, a delay in signal propagation speed can be suppressed, and an element having excellent electrical characteristics can be obtained.
- the prepolymer (A) has a fluorine atom
- the water absorption rate of the cured film is lowered, so that it is possible to suppress the change in the bonding state in the bonding electrode and the surrounding wiring portion, or the alteration of the metal (such as rust). ) Can be suppressed, and the effect is great in terms of improving the reliability of the device.
- the thiol compound (B) of the present invention has 2 to 10 mercapto groups per molecule.
- the crosslinkable functional group in the prepolymer (A) and the mercapto group in the thiol compound (B) undergo an enethiol reaction to form a crosslinked structure in the prepolymer (A).
- the tensile strength at break and the elongation of the cured film obtained by curing the curable composition are improved.
- the crosslinking by an enethiol reaction has a smaller curing shrinkage than the polymerization of olefins, the stress strain at the time of curing is small, and the stress of the cured film can be reduced.
- the thiol compound (B) of the present invention preferably has 2 to 10 mercapto groups per molecule, more preferably 2 to 8, and still more preferably 2 to 6.
- the crosslinkable functional group in the prepolymer (A) can react with the enethiol to have a crosslinked structure, and the tensile strength at break and elongation are improved.
- the number of mercapto groups is 10 or less per molecule, the flexibility of the cured film can be maintained.
- the thiol compound (B) having 2 to 6 mercapto groups per molecule is most preferable.
- the thiol compound (B) of the present invention is preferably a compound having one or more groups represented by the following formula (1) (otherwise, it may have a mercapto group).
- R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, and most preferably a monovalent hydrocarbon group having 1 to 5 carbon atoms. It is. Although the reactivity is lowered by the mercapto group being secondary, it is preferable that the storage stability is excellent.
- the compound of the formula (1) becomes a compound in which the reactivity and the storage stability are balanced.
- the most preferred structure of formula (1) is HS—CH (CH 3 ) —CH 2 —CO—.
- the mercapto group may be anywhere, but it is preferably at the end of the main chain. It is preferable for the mercapto group to be at the end, since the enethiol reaction with the crosslinkable functional group in the prepolymer (A) can be carried out efficiently.
- the thiol compound (B) of the present invention may or may not have an aromatic ring.
- the thiol compound (B) having an aromatic ring is preferable in that radical cleavage is easy and the reactivity is excellent. Since the thiol compound (B) having no aromatic ring is not easily radically cleaved, it is preferable that it is excellent in storage stability.
- the thiol compound (B) of the present invention is preferably a compound represented by the following formula (2).
- (R a O—R b ) n —R c Formula (2) (R a is a group represented by the above formula (1), R b is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and R c is a carbon number having 1 to 20 carbon atoms which may contain a nitrogen atom or an oxygen atom.
- n-valent hydrocarbon group, n is an integer of 2 to 10)
- R b preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
- n is preferably 2 to 8, and more preferably 2 to 6.
- R C preferably has 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
- the thiol compound (B) of the present invention preferably has a boiling point that does not evaporate in the step of forming a cured film from the curable composition. That is, it preferably has a boiling point that does not evaporate at a temperature at which the solvent is evaporated or a temperature at which the curable composition is cured.
- the boiling point of the thiol compound (B) is preferably 200 ° C. or higher.
- Preferred examples of the thiol compound (B) of the present invention are the following compounds (b-1) to (b-3).
- thiol compound (B) of the present invention a commercially available product may be used or synthesized.
- the thiol compound (B) of the present invention can be produced by a known method.
- commercial products of the thiol compound (B) of the present invention Karenz MT BD1 (trade name, manufactured by Showa Denko), Karenz MT PE1 (trade name, manufactured by Showa Denko), Karenz MT NR1 (trade name, Showa Denko) TEMPIC (trade name, manufactured by SC Organic Chemical Co., Ltd.), TMMP (trade name, manufactured by SC Organic Chemical Co., Ltd.), PEMP (trade name, manufactured by SC Organic Chemical Co., Ltd.), DPMP (trade name, manufactured by SC Organic Chemical Co., Ltd.) ) And the like.
- the thiol compound (B) of the present invention is preferably used in an amount of 0.01 to 20 parts by mass with respect to 100 parts by mass of the prepolymer (A).
- the lower limit is more preferably 0.05 parts by mass, and most preferably 0.1 parts by mass.
- the upper limit is more preferably 15 parts by mass, and most preferably 10 parts by mass.
- One type of thiol compound (B) of the present invention may be used, or two or more types may be used in combination.
- the curable composition of the present invention may be photocurable.
- a photosensitizer In order to develop photocurability or to improve reactivity by photocuring, it is preferable to contain a photosensitizer.
- Suitable photosensitizers can be used. Specific examples include IRGACURE 907 ( ⁇ -aminoalkylphenone series), IRGACURE 369 ( ⁇ -aminoalkylphenone series), DAROCUR TPO (acylphosphine oxide series), IRGACURE OXE01 (oxime ester derivative), IRGACURE OXE02 (oxime ester derivative) ) (Both manufactured by Ciba Specialty Chemicals). Among these, DAROCUR TPO, IRGACURE OXE01, and IRGACURE OXE02 are particularly preferable because the curable composition is sufficiently cured and a finer pattern can be produced when producing a cured film pattern by a photolithographic method.
- the photosensitive agent used in the curable composition of the present invention is preferably 0.1 to 10 parts by weight, more preferably 1 to 8 parts by weight, with respect to 100 parts by weight of the prepolymer (A). Is most preferred.
- thermosetting accelerator The curable composition of the present invention may be thermosetting.
- a thermosetting accelerator may be contained.
- thermosetting accelerators can be used. Specific examples include peroxides such as benzoyl peroxide, di-tert-butyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide; azo compounds such as azobisisobutyronitrile, and the like. It is done.
- thermosetting accelerator used in the curable composition of the present invention is preferably 0.1 to 10 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the prepolymer (A). Part by mass is most preferred.
- additives In the curable composition of the present invention, as other additives, stabilizers such as an ultraviolet absorber, an antioxidant, a thermal polymerization inhibitor and the like as required; a leveling agent, an antifoaming agent, a suspending agent, a dispersion Surfactants such as agents; plasticizers; at least one additive selected from various additives well known in the coating field such as thickeners may be blended.
- stabilizers such as an ultraviolet absorber, an antioxidant, a thermal polymerization inhibitor and the like as required
- at least one additive selected from various additives well known in the coating field such as thickeners
- the curable composition contains silane.
- An adhesion-imparting agent such as a coupling agent may be added.
- an adhesiveness imparting agent is contained in the curable composition, it is preferable because the adhesive property between the cured film obtained by curing the curable composition and the substrate is improved.
- the adhesiveness of a cured film and a base material can be improved also by the method of apply
- the other additive of the present invention is preferably 0.001 to 10 parts by mass, more preferably 0.001 to 8 parts by mass with respect to 100 parts by mass of the prepolymer (A).
- the coating composition of the present invention includes a curable composition and a solvent. As will be described later, the coating composition is a composition that is applied to a substrate in order to produce a cured film.
- the curable composition of the present invention is preferably used by dissolving or dispersing in a solvent. Any solvent may be used as long as it dissolves or disperses each component contained in the curable composition, and a solvent that dissolves at least the prepolymer (A) is used. When other components are included, if the solvent that dissolves the prepolymer (A) dissolves the other components, the solvent can be used alone to form a uniform solution. Moreover, you may use together the other solvent which melt
- Examples include aromatic hydrocarbons, dipolar aprotic solvents, ketones, esters, ethers, and halogenated hydrocarbons.
- the solvent may be the same as or different from the reaction solvent used in the production of the prepolymer (A).
- the prepolymer (A) is once recovered from the reaction solution by a reprecipitation method or the like and dissolved or dispersed in a different solvent, or a known method such as an evaporation method or an ultrafiltration method is used. Solvent replacement can be performed using techniques.
- Aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, tetralin, methylnaphthalene and the like.
- dipolar aprotic solvents include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, ⁇ -butyrolactone, dimethyl sulfoxide and the like.
- ketones include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methyl amyl ketone, and the like.
- ethers include tetrahydrofuran, pyran, dioxane, dimethoxyethane, diethoxyethane, diphenyl ether, anisole, phenetole, diglyme, and triglyme.
- Esters include ethyl lactate, methyl benzoate, ethyl benzoate, butyl benzoate, benzyl benzoate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , Propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate (hereinafter also referred to as PEGMEA), propylene glycol monoethyl ether acetate, and the like.
- PEGMEA propylene glycol monoethyl ether acetate
- halogenated hydrocarbons include carbon tetrachloride, chloroform, methylene chloride, tetrachloroethylene, chlorobenzene, dichlorobenzene and the like.
- the solvent used in the coating composition of the present invention preferably has a boiling point of 60 to 200 ° C, more preferably 70 to 150 ° C. By setting it as the above-mentioned range, in the process of removing a solvent before forming a cured film, a solvent can be removed without imposing a burden on each component of curable compositions other than a solvent.
- the solvent used in the coating composition of the present invention is most preferably PEGMEA from the viewpoints of safety, solubility, and formation of a good coating film.
- the solvent used in the coating composition of the present invention may contain moisture, but the moisture content is preferably 5% by mass or less of the solvent from the viewpoint of the solubility of the prepolymer (A).
- the concentration of the prepolymer (A) in the coating composition of the present invention is preferably 0.1 to 50% by mass, more preferably 1.0 to 40% by mass, and most preferably 5 to 40% by mass.
- the cured film of the present invention is a film obtained by curing the curable composition.
- it is a film obtained by applying a curable composition on a substrate to obtain a coating film, and curing (thermosetting) by heating or curing (photocuring) by light.
- coating on a base material obtains a coating film, removes one part or all part of a solvent, and hardened
- a curable composition or a coating composition is applied on a substrate, and in the case of using a coating composition, part or all of the solvent is removed, and prebaking is performed as necessary.
- a cured film is obtained by irradiation (exposure) with light (for example, ultraviolet rays). You may heat as needed after light irradiation. Fine processing by photolithography is also possible.
- heat curing since the substrate does not deteriorate during curing, it is preferably cured at 40 to 500 ° C., more preferably at 130 to 350 ° C.
- curing is preferably performed at room temperature for 1 second to 10 minutes, more preferably 1 second to 1 minute.
- the substrate can be selected without considering the heat resistance of the substrate, photocuring is more preferable. Moreover, in the case of photocuring, since it hardens
- the light is preferably ultraviolet light.
- a part or all of the solvent is removed before forming the cured film (hereinafter, also referred to as a solvent removal process).
- the temperature in a solvent removal process should just be more than the boiling point of a solvent, since prepolymer (A) may decompose
- the time in the solvent removal step may be any time that allows the solvent to be removed, but from the viewpoint of workability, it is preferably 1 minute to 24 hours, and more preferably 1 minute to 1 hour.
- ceramics such as silicon and silicon silicon, glass, stone, metal, resin and the like can be mentioned. Glass, metal, and resin are preferable from the viewpoint of applicability to electronic devices.
- Examples of the coating method of the curable composition and the coating composition include roll coating, casting, dip coating, spin coating, spray coating, flow coating, squeegee coating, water casting, die coating, and Langmuir. -Projet method, slit coat method and the like.
- a curable composition can also be apply
- a method for forming a coating film it is particularly preferable to use a coating composition to form a coating film by spin coating or dip coating.
- the thickness of the cured film is not particularly limited and can be set as appropriate according to the application.
- the thickness is preferably about 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
- the curable composition of the present invention can form a cured film having a low dielectric constant, high toughness, and low film stress.
- the electronic / electrical parts to which the cured film obtained by curing the curable composition of the present invention can be applied are multilayer wiring boards and optical transmission bodies.
- the multilayer wiring board include various boards for mounting electronic devices and the like, and examples thereof include printed wiring boards, build-up wiring boards, MCM boards, and high-density wiring boards such as interposers.
- the insulating film in these electronic / electrical parts include a buffer coat film, a passivation film, an interlayer insulating film, a rewiring insulating film, and an alpha ray shielding film.
- the optical transmission body refers to a member having a function of transmitting, branching, amplifying, demultiplexing / multiplexing, etc. by passing light.
- Optical transmitters include, for example, optical fibers, rod lenses, optical waveguides, optical splitters, optical multiplexers, optical demultiplexers, optical attenuators, optical switches, optical isolators, optical transmission modules, optical reception modules, couplers, and deflections. This means the optical element, the optical wavelength conversion element, the optical modulation element, the optical integrated circuit, the optical / electrical hybrid circuit, the substrate itself, or the optical transmission portion thereof.
- Examples 1 to 8 are examples, and examples 9 to 12 are comparative examples.
- the reaction solution was cooled to room temperature and gradually added dropwise to about 14 L of vigorously stirred 0.5N hydrochloric acid water for reprecipitation. After filtration and further washing with pure water twice, vacuum drying was performed at 70 ° C. for 12 hours to obtain a white powdery prepolymer intermediate (242 g).
- the number average molecular weight (Mn) in terms of polystyrene was determined for the vacuum-dried prepolymer intermediate by gel permeation chromatography (GPC) (HLC-8220, manufactured by Tosoh Corporation). Tetrahydrofuran was used as the carrier solvent. The number average molecular weight (Mn) was 7,824.
- Example 1 In a sample bottle, 3.8 g of prepolymer (A-1) obtained in Synthesis Example 1, 0.19 g of IRGACURE OXE01 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, and the compound (b-3) as a thiol compound ) (Trade name: Karenz MT PE1, Showa Denko Co., Ltd.) 0.038 g and cyclohexanone 5.972 g were charged to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution (1)). The following evaluation was performed using this prepolymer solution (1). Table 1 shows the blending amount (parts by mass) of each component and the evaluation results.
- prepolymer solution (1) Table 1 shows the blending amount (parts by mass) of each component and the evaluation results.
- Cyclohexanone was added to the prepolymer solution (1) to prepare a solution having a polymer concentration of 26% by mass.
- the obtained solution was spin-coated on a 4-inch silicon wafer at 1,500 rpm for 30 seconds to form a wet film having a thickness of about 1 ⁇ m.
- This wet film was pre-baked at 100 ° C. for 90 seconds and at 200 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.) to evaporate a part of the solvent.
- final baking was performed in a nitrogen atmosphere at 320 ° C. for 30 minutes using a vertical furnace to complete the crosslinking reaction, thereby obtaining a cured film.
- CV Cyclic Voltammetry
- This film was developed with cyclohexanone and final baked in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 6.6 ⁇ m.
- the film thickness was measured with a stylus type surface shape measuring instrument (Dektak-3ST, manufactured by Sloan).
- the residual stress of the cured film was measured using a thin film stress measuring apparatus (FLX-2320-S, manufactured by KLA-Tencor).
- the prepolymer solution (1) was spin-coated on a 6-inch silicon wafer at 1,000 rpm for 30 seconds to form a wet film. After pre-baking at 60 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.), the exposure energy (UL-7000, manufactured by Quintel) is applied with ultraviolet rays so that the irradiation energy is 1,530 mJ / cm 2. Full exposure was performed. This film was developed and subjected to final baking in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 20 ⁇ m.
- the cured film was peeled from the wafer using tweezers to obtain a self-supporting film.
- the elastic modulus, tensile rupture stress, and elongation of this self-supporting film were measured according to ASTM-D882 using a tensile tester (Tensilon (registered trademark), manufactured by Toyo Baldwin). However, the distance between chucks was 10 mm, and the tensile speed was 0.5 mm / min.
- the sample (film) used for the measurement had a shape according to ASTM-D1822 (dumb shape with a detail width of 3.18 mm and a length of 9.53 mm) and a thickness of 20 ⁇ m.
- Water absorption rate 50 mg of a 20 ⁇ m-thick free-standing film prepared at the time of measuring the elastic modulus, tensile breaking stress, and tensile breaking elongation was used as a sample.
- the sample was placed in a water absorption measuring device (IGA SORP, manufactured by Hiden) set at a temperature of 25 ° C. and a humidity of 0% RH. After confirming that the mass of the sample did not change, a set temperature of 85 ° C. and a humidity of 85 RH% The water absorption was calculated from the change in mass of the sample as follows.
- Water absorption rate (([Sample weight at set temperature 85 ° C., humidity 85% RH] ⁇ [Sample weight at set temperature 25 ° C., humidity 0% RH]) / [Set temperature 25 ° C., humidity 0% RH] Sample mass at time]) ⁇ 100.
- the above prepolymer solution (1-2) is applied to the wafer coated with the first cured film, and prebaking, exposure, development, and final baking are sequentially performed, and a second layer having a thickness of about 7 ⁇ m is performed.
- a cured film was obtained. It was the same as the formation of the first layer except that the exposure was the entire surface exposure. It was observed with a microscope (BH2-UMA, manufactured by Olympus Corporation) at a magnification of 50 times whether cracks occurred in the pattern portion of the first layer.
- the film in which no crack was generated was OK, and the film in which the crack was generated was NG.
- Example 2 The blending amounts (parts by mass) and evaluation results of the components in Examples 2 to 12 are shown in Table 1 together with (Example 1).
- Example 2 A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.19 g, and a cured film was prepared and evaluated.
- Example 3 A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.38 g, and a cured film was prepared and evaluated.
- Example 4 A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.0038 g, and a cured film was prepared and evaluated.
- Example 5 A curable composition was prepared in the same manner as in Example 1 except that 0.38 g of the compound (b-1) (trade name: Karenz MT BD1, manufactured by Showa Denko KK) was added instead of Karenz MT PE1 of Example 1. was prepared, and a cured film was produced and evaluated.
- the compound (b-1) (trade name: Karenz MT BD1, manufactured by Showa Denko KK) was added instead of Karenz MT PE1 of Example 1.
- prepolymer solution (2) A cured film was prepared and evaluated in the same manner as in Example 1 using this prepolymer solution (2).
- Example 7 In a sample bottle, 3.8 g of the prepolymer obtained in Synthesis Example 3, 0.038 g of 2,6-bis (4-azidobenzal) -4-methylcyclohexanone as a photosensitizer, and Karenz MT PE1 (manufactured by Showa Denko) 0.38 g and 5.812 g of cyclohexanone were added to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution 2). A cured film was prepared in the same manner as in Example 1 using this prepolymer solution 2 and evaluated.
- Example 8 3.8 g of the prepolymer obtained in Synthesis Example 4 in a sample bottle, 0.038 g of IRGACURE 369 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, 0.38 g of Karenz MT BD1 (manufactured by Showa Denko), and A solution having a polymer concentration of 38% by mass was prepared by adding 5.812 g of cyclohexanone (referred to as prepolymer solution 2). A cured film was prepared in the same manner as in Example 1 using this prepolymer solution 2 and evaluated.
- prepolymer solution 2 5.812 g of cyclohexanone
- Example 9 A curable composition was prepared in the same manner as in Example 1 except that Karenz MT PE1 of Example 1 was not added, and a cured film was prepared and evaluated.
- Example 10 A curable composition was prepared in the same manner as in Example 6 except that Karenz MT PE1 of Example 6 was not added, and a cured film was prepared and evaluated.
- Example 11 A curable composition was prepared in the same manner as in Example 7 except that Karenz MT PE1 of Example 7 was not added, and a cured film was prepared and evaluated.
- Example 12 A curable composition was prepared in the same manner as in Example 8 except that Karenz MT BD1 of Example 8 was not added, and a cured film was prepared and evaluated.
- Example 4 As shown in Table 1, the storage stability of the prepolymer solutions of Examples 2 and 3 was good. Further, the cured films obtained in Examples 1 to 8 have a low relative dielectric constant, a small residual stress, a high elastic modulus, a high tensile breaking elongation, and a crack resistance during soft baking at 80 ° C. It had the outstanding characteristic that no occurs. Particularly in Examples 1 to 3 and 5, the crack resistance during soft baking was not cracked even at 120 ° C. Further, in Example 4, even when 0.1 part by weight of PE1 was used as the thiol compound (B) (with respect to 100 parts by weight of the prepolymer), the crack resistance during soft baking was better than that in Example 9 in which PE1 was not used. Had sex. That is, cracks occurred in Example 9 even at 65 ° C., whereas no cracks occurred in Example 4 even at 80 ° C.
- the cured films obtained in Examples 9 to 12 in which the thiol compound (B) was not added to the curable composition had a low relative dielectric constant, a high residual stress, a low elastic modulus, and a tensile elongation at break. The degree of cracking was low, and cracks occurred even at 80 ° C. in the crack test during soft baking.
- the curable composition of the present invention is used, a cured film having high toughness, low film stress, and low dielectric constant is provided, and the obtained cured film can be used as a film for a multilayer wiring board or an optical transmission body.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Disclosed are: a curable composition which enables the production of a cured film having high toughness, low film stress and a low dielectric constant and does not undergo the occurrence of cracking during the process of producing the cured film; and a cured film produced using the curable composition.
The curable composition comprises (A) a fluorinated polyarylene prepolymer having a crosslinkable functional group and (B) a thiol compound having 2 to 10 mercapto groups per molecule.
Description
本発明は硬化性組成物、および該硬化性組成物を硬化させて得られる硬化膜に関する。
The present invention relates to a curable composition and a cured film obtained by curing the curable composition.
エレクトロニクス分野において、半導体素子の層間絶縁膜、再配線層の応力緩和層等用に、低誘電率の絶縁材料の開発が進んでいる。中でも感光性を有する絶縁材料は、例えばレジストと同様に、フォトリソグラフィによる微細加工が可能であることから、種々の光硬化性組成物が提案されている。
In the electronics field, low dielectric constant insulating materials are being developed for use as interlayer insulation films for semiconductor elements, stress relaxation layers for rewiring layers, and the like. Among them, various photocurable compositions have been proposed for insulating materials having photosensitivity because, for example, fine processing by photolithography is possible as in the case of resists.
一般的に感光性を有する絶縁材料としては、高靭性を有し、低温キュアが可能であり、低吸水率であることが求められている。現在主流のベンゾシクロブテンやポリイミド、エポキシ樹脂は、これらの要求特性すべてを併せ持つことができない。
Generally, an insulating material having photosensitivity is required to have high toughness, low temperature curing, and low water absorption. Currently mainstream benzocyclobutene, polyimide, and epoxy resin cannot have all of these required characteristics.
一方、ポリアリーレン樹脂に感光性を持たせた光硬化性組成物が提案されており、これらの要求特性すべてを併せ持つことができる。(特許文献1、および2参照。)
On the other hand, a photocurable composition obtained by imparting photosensitivity to a polyarylene resin has been proposed and can have all of these required characteristics. (See Patent Documents 1 and 2.)
半導体パッケージは今後さらなる大型化が進むと考えられ、その結果、パッケージ中の層間絶縁膜にかかる膜ストレスも増大することが予想される。そこで、さらなる高靭性を有した、低膜ストレスの層間絶縁膜が求められている。すなわち、高靭性、低膜ストレス、低誘電率の硬化膜、および該硬化膜を形成することができる硬化性組成物が求められている。
The semiconductor package is expected to further increase in size in the future, and as a result, the film stress on the interlayer insulating film in the package is expected to increase. Therefore, a low film stress interlayer insulating film having higher toughness is required. That is, a cured film having high toughness, low film stress, and low dielectric constant, and a curable composition capable of forming the cured film are desired.
本発明は前記事情に鑑みてなされたもので、高靭性、低膜ストレス、低誘電率の硬化膜が得られる硬化性組成物、および該硬化性組成物を用いて得られる硬化膜を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a curable composition capable of obtaining a cured film having high toughness, low film stress, and low dielectric constant, and a cured film obtained using the curable composition. For the purpose.
本発明は、下記[1]~[10]を要旨とする。
[1]架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)と、
1分子あたりメルカプト基を2~10個有するチオール系化合物(B)とを含むことを特徴とする、硬化性組成物。
[2]前記含フッ素ポリアリーレンプレポリマー(A)の100質量部に対する、チオール系化合物(B)の割合が0.01~20質量部である、[1]に記載の硬化性組成物。
[3]前記チオール系化合物(B)が1分子あたりメルカプト基を2~6個有する、[1]または[2]に記載の硬化性組成物。
[4]前記チオール系化合物(B)が下式(1)で表わされる基を1個以上有する化合物である、[1]~[3]のいずれかに記載の硬化性組成物。
HS-CH(R1)-CH2-CO- ・・・式(1)
(ただし、R1は炭素数が1~20の1価炭化水素基。)
[5]前記チオール系化合物(B)が下式(2)で表わされる化合物である、[1]~[4]のいずれかに記載の硬化性組成物。
(RaO-Rb)n-Rc ・・・式(2)
(ただし、RaはHS-CH(R1)-CH2-CO-基、R1は炭素数が1~20の1価炭化水素基、Rbは炭素数が1~10の2価炭化水素基、Rcは窒素原子または酸素原子を含んでもよい炭素数が1~20のn価炭化水素基、nは2~10の整数。)
[6]前記含フッ素ポリアリーレンプレポリマー(A)の架橋性官能基がビニル基、メタクリロイル基、メタクリロイルオキシ基、アクリロイル基、アクリロイルオキシ基、トリフルオロビニルオキシ基、エチニル基、およびシクロブタレン環からなる群から選ばれる1種以上である、[1]~[5]のいずれかに記載の硬化性組成物。
[7]さらに感光剤を含む、[1]~[6]のいずれかに記載の硬化性組成物。
[8][1]~[7]のいずれかに記載の硬化性組成物と溶媒とを含む塗布用組成物。
[9][1]~[7]のいずれかに記載の硬化性組成物を硬化させて得られる硬化膜。
[10]誘電率が2.5~3.5である、[9]に記載の硬化膜。 The gist of the present invention is the following [1] to [10].
[1] a fluorine-containing polyarylene prepolymer (A) having a crosslinkable functional group;
A curable composition comprising a thiol compound (B) having 2 to 10 mercapto groups per molecule.
[2] The curable composition according to [1], wherein the ratio of the thiol compound (B) to 0.01 to 20 parts by mass with respect to 100 parts by mass of the fluorine-containing polyarylene prepolymer (A).
[3] The curable composition according to [1] or [2], wherein the thiol compound (B) has 2 to 6 mercapto groups per molecule.
[4] The curable composition according to any one of [1] to [3], wherein the thiol compound (B) is a compound having one or more groups represented by the following formula (1).
HS—CH (R 1 ) —CH 2 —CO— Formula (1)
(However, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.)
[5] The curable composition according to any one of [1] to [4], wherein the thiol compound (B) is a compound represented by the following formula (2).
(R a O—R b ) n —R c Formula (2)
(Where R a is an HS—CH (R 1 ) —CH 2 —CO— group, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R b is a divalent carbon group having 1 to 10 carbon atoms. A hydrogen group, R c is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom or an oxygen atom, and n is an integer of 2 to 10.)
[6] The crosslinkable functional group of the fluorine-containing polyarylene prepolymer (A) comprises a vinyl group, a methacryloyl group, a methacryloyloxy group, an acryloyl group, an acryloyloxy group, a trifluorovinyloxy group, an ethynyl group, and a cyclobutalene ring. The curable composition according to any one of [1] to [5], which is one or more selected from the group.
[7] The curable composition according to any one of [1] to [6], further comprising a photosensitizer.
[8] A coating composition comprising the curable composition according to any one of [1] to [7] and a solvent.
[9] A cured film obtained by curing the curable composition according to any one of [1] to [7].
[10] The cured film according to [9], which has a dielectric constant of 2.5 to 3.5.
[1]架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)と、
1分子あたりメルカプト基を2~10個有するチオール系化合物(B)とを含むことを特徴とする、硬化性組成物。
[2]前記含フッ素ポリアリーレンプレポリマー(A)の100質量部に対する、チオール系化合物(B)の割合が0.01~20質量部である、[1]に記載の硬化性組成物。
[3]前記チオール系化合物(B)が1分子あたりメルカプト基を2~6個有する、[1]または[2]に記載の硬化性組成物。
[4]前記チオール系化合物(B)が下式(1)で表わされる基を1個以上有する化合物である、[1]~[3]のいずれかに記載の硬化性組成物。
HS-CH(R1)-CH2-CO- ・・・式(1)
(ただし、R1は炭素数が1~20の1価炭化水素基。)
[5]前記チオール系化合物(B)が下式(2)で表わされる化合物である、[1]~[4]のいずれかに記載の硬化性組成物。
(RaO-Rb)n-Rc ・・・式(2)
(ただし、RaはHS-CH(R1)-CH2-CO-基、R1は炭素数が1~20の1価炭化水素基、Rbは炭素数が1~10の2価炭化水素基、Rcは窒素原子または酸素原子を含んでもよい炭素数が1~20のn価炭化水素基、nは2~10の整数。)
[6]前記含フッ素ポリアリーレンプレポリマー(A)の架橋性官能基がビニル基、メタクリロイル基、メタクリロイルオキシ基、アクリロイル基、アクリロイルオキシ基、トリフルオロビニルオキシ基、エチニル基、およびシクロブタレン環からなる群から選ばれる1種以上である、[1]~[5]のいずれかに記載の硬化性組成物。
[7]さらに感光剤を含む、[1]~[6]のいずれかに記載の硬化性組成物。
[8][1]~[7]のいずれかに記載の硬化性組成物と溶媒とを含む塗布用組成物。
[9][1]~[7]のいずれかに記載の硬化性組成物を硬化させて得られる硬化膜。
[10]誘電率が2.5~3.5である、[9]に記載の硬化膜。 The gist of the present invention is the following [1] to [10].
[1] a fluorine-containing polyarylene prepolymer (A) having a crosslinkable functional group;
A curable composition comprising a thiol compound (B) having 2 to 10 mercapto groups per molecule.
[2] The curable composition according to [1], wherein the ratio of the thiol compound (B) to 0.01 to 20 parts by mass with respect to 100 parts by mass of the fluorine-containing polyarylene prepolymer (A).
[3] The curable composition according to [1] or [2], wherein the thiol compound (B) has 2 to 6 mercapto groups per molecule.
[4] The curable composition according to any one of [1] to [3], wherein the thiol compound (B) is a compound having one or more groups represented by the following formula (1).
HS—CH (R 1 ) —CH 2 —CO— Formula (1)
(However, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.)
[5] The curable composition according to any one of [1] to [4], wherein the thiol compound (B) is a compound represented by the following formula (2).
(R a O—R b ) n —R c Formula (2)
(Where R a is an HS—CH (R 1 ) —CH 2 —CO— group, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R b is a divalent carbon group having 1 to 10 carbon atoms. A hydrogen group, R c is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom or an oxygen atom, and n is an integer of 2 to 10.)
[6] The crosslinkable functional group of the fluorine-containing polyarylene prepolymer (A) comprises a vinyl group, a methacryloyl group, a methacryloyloxy group, an acryloyl group, an acryloyloxy group, a trifluorovinyloxy group, an ethynyl group, and a cyclobutalene ring. The curable composition according to any one of [1] to [5], which is one or more selected from the group.
[7] The curable composition according to any one of [1] to [6], further comprising a photosensitizer.
[8] A coating composition comprising the curable composition according to any one of [1] to [7] and a solvent.
[9] A cured film obtained by curing the curable composition according to any one of [1] to [7].
[10] The cured film according to [9], which has a dielectric constant of 2.5 to 3.5.
本発明の硬化性組成物からは、高靭性、低膜ストレス、低誘電率の硬化膜が得られ、硬化膜作製プロセス中においては、クラック発生を抑制できる。
From the curable composition of the present invention, a cured film having high toughness, low film stress, and low dielectric constant can be obtained, and crack generation can be suppressed during the cured film production process.
本発明の硬化膜は、高靭性、低膜ストレス、低誘電率を有する膜である。
The cured film of the present invention is a film having high toughness, low film stress, and low dielectric constant.
本発明の明細書におけるメタクリロイル(オキシ)基とは、メタクリロイル基もしくはメタクリロイルオキシ基を意味する。アクリロイル(オキシ)基も同様である。
The methacryloyl (oxy) group in the specification of the present invention means a methacryloyl group or a methacryloyloxy group. The same applies to the acryloyl (oxy) group.
<硬化性組成物>
本発明の硬化性組成物は含フッ素ポリアリーレンプレポリマー(A)、およびチオール系化合物(B)等を含む。以下、各原料について説明する。 <Curable composition>
The curable composition of the present invention contains a fluorine-containing polyarylene prepolymer (A), a thiol compound (B) and the like. Hereinafter, each raw material will be described.
本発明の硬化性組成物は含フッ素ポリアリーレンプレポリマー(A)、およびチオール系化合物(B)等を含む。以下、各原料について説明する。 <Curable composition>
The curable composition of the present invention contains a fluorine-containing polyarylene prepolymer (A), a thiol compound (B) and the like. Hereinafter, each raw material will be described.
(含フッ素ポリアリーレンプレポリマー(A))
本発明の含フッ素ポリアリーレンプレポリマー(A)(以下、単にプレポリマー(A)ということもある。)は、複数の芳香族環が単結合または連結基を介して結合しているポリアリーレン構造を有するとともに、フッ素原子を有し、かつ架橋性官能基を有する。 (Fluorine-containing polyarylene prepolymer (A))
The fluorine-containing polyarylene prepolymer (A) of the present invention (hereinafter sometimes simply referred to as prepolymer (A)) has a polyarylene structure in which a plurality of aromatic rings are bonded via a single bond or a linking group. And a fluorine atom and a crosslinkable functional group.
本発明の含フッ素ポリアリーレンプレポリマー(A)(以下、単にプレポリマー(A)ということもある。)は、複数の芳香族環が単結合または連結基を介して結合しているポリアリーレン構造を有するとともに、フッ素原子を有し、かつ架橋性官能基を有する。 (Fluorine-containing polyarylene prepolymer (A))
The fluorine-containing polyarylene prepolymer (A) of the present invention (hereinafter sometimes simply referred to as prepolymer (A)) has a polyarylene structure in which a plurality of aromatic rings are bonded via a single bond or a linking group. And a fluorine atom and a crosslinkable functional group.
ポリアリーレン構造における連結基は、例えばエーテル結合(-O-)、スルフィド結合(-S-)、カルボニル基(-CO-)、スルホニル基(-SO2-)等が挙げられる。プレポリマー(A)のうち、特に芳香族環同士がエーテル結合(-O-)を含む連結基で結合されている構造を有するものを含フッ素ポリアリーレンエーテルプレポリマー(A1)(以下、単にプレポリマー(A1)ということもある。)という。本発明におけるプレポリマー(A)は含フッ素ポリアリーレンエーテルプレポリマー(A1)を含む概念である。
Examples of the linking group in the polyarylene structure include an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), a sulfonyl group (—SO 2 —), and the like. Among the prepolymers (A), those having a structure in which aromatic rings are bonded to each other with a linking group containing an ether bond (—O—) are the fluorine-containing polyarylene ether prepolymer (A1) (hereinafter simply referred to as prepolymer). Polymer (A1)). The prepolymer (A) in the present invention is a concept including a fluorine-containing polyarylene ether prepolymer (A1).
該エーテル結合を含む連結基の具体例としては、エーテル性酸素原子のみからなるエーテル結合(-O-)、炭素鎖中にエーテル性酸素原子を含むアルキレン基等が例示される。
Specific examples of the linking group containing an ether bond include an ether bond (—O—) consisting only of an etheric oxygen atom, and an alkylene group containing an etheric oxygen atom in the carbon chain.
プレポリマー(A)の架橋性官能基は、メルカプト基と反応しうる基であるとともに、メルカプト基と反応しなかった場合も外部エネルギーを与えることにより反応し、プレポリマー(A)分子間の架橋または鎖延長を引き起こす、炭素原子間に不飽和結合を有する不飽和基を有する基である。炭素原子間に不飽和二重結合や不飽和三重結合を有する不飽和基は、メルカプト基とエンチオール反応で結合でき、また不飽和基同士が付加反応で結合できる。プレポリマー(A)の架橋性官能基は、膜、フィルムまたは成形体等の硬化物を作製する時点、または作製後の任意の時点で、メルカプト基と反応し、また、メルカプト基と反応しなかった架橋性官能基は、外部エネルギーにより架橋性官能基同士が反応する。架橋性官能基同士を反応させるために、感光剤や熱硬化促進剤をチオール系化合物(B)と併用することが好ましい。
The crosslinkable functional group of the prepolymer (A) is a group capable of reacting with a mercapto group, and even when it does not react with a mercapto group, it reacts by giving external energy to crosslink between the prepolymer (A) molecules. Or a group having an unsaturated group having an unsaturated bond between carbon atoms, causing chain extension. An unsaturated group having an unsaturated double bond or an unsaturated triple bond between carbon atoms can be bonded to a mercapto group by an enethiol reaction, and unsaturated groups can be bonded to each other by an addition reaction. The crosslinkable functional group of the prepolymer (A) reacts with a mercapto group at the time of producing a cured product such as a film, a film or a molded product, or at any time after the production, and does not react with a mercapto group. The crosslinkable functional groups react with each other by external energy. In order to cause the crosslinkable functional groups to react with each other, it is preferable to use a photosensitizer and a thermosetting accelerator in combination with the thiol compound (B).
架橋性官能基の具体例としては、ビニル基、アリル基、メタクリロイル(オキシ)基、アクリロイル(オキシ)基、ビニルオキシ基、トリフルオロビニル基、トリフルオロビニルオキシ基、エチニル基、1-オキソシクロペンタ-2,5-ジエン-3-イル基、およびシクロブタレン環からなる群から選ばれる1種以上の不飽和基や不飽和結合を有する基が挙げられる。反応性が高く、高い架橋密度が得られる点で、ビニル基、メタクリロイル(オキシ)基、アクリロイル(オキシ)基、トリフルオロビニルオキシ基、エチニル基、およびシクロブタレン環からなる群から選ばれる1種以上が好ましく、得られる硬化膜の耐熱性が良好となる点から、ビニル基が最も好ましい。
Specific examples of the crosslinkable functional group include vinyl group, allyl group, methacryloyl (oxy) group, acryloyl (oxy) group, vinyloxy group, trifluorovinyl group, trifluorovinyloxy group, ethynyl group, 1-oxocyclopenta And a group having at least one unsaturated group or unsaturated bond selected from the group consisting of a -2,5-dien-3-yl group and a cyclobutalene ring. One or more selected from the group consisting of a vinyl group, a methacryloyl (oxy) group, an acryloyl (oxy) group, a trifluorovinyloxy group, an ethynyl group, and a cyclobutalene ring in terms of high reactivity and high crosslink density. A vinyl group is most preferable from the viewpoint of good heat resistance of the resulting cured film.
外部エネルギーとしては、熱、光、電子線等が挙げられる。これらを併用してもよい。外部エネルギーとして熱を用いる場合、40~500℃の温度で反応する架橋性官能基が好ましい。反応温度が低すぎると、プレポリマー(A)または該プレポリマー(A)を含む硬化性組成物の保存時における安定性が確保できず、高すぎると反応時にプレポリマー(A)自体の熱分解が発生してしまうので、前記範囲にあることが好ましい。本発明の硬化性組成物を適用する半導体素子等に与える熱的負荷を抑制できる点では60~300℃の温度で反応する架橋性官能基がより好ましく、70~200℃が最も好ましい。
External heat includes heat, light, electron beam and the like. These may be used in combination. When heat is used as external energy, a crosslinkable functional group that reacts at a temperature of 40 to 500 ° C. is preferable. If the reaction temperature is too low, stability during storage of the prepolymer (A) or the curable composition containing the prepolymer (A) cannot be ensured, and if too high, the prepolymer (A) itself is thermally decomposed during the reaction. In the above-mentioned range. The crosslinkable functional group that reacts at a temperature of 60 to 300 ° C. is more preferable, and 70 to 200 ° C. is most preferable in that a thermal load applied to a semiconductor element or the like to which the curable composition of the present invention is applied can be suppressed.
また、外部エネルギーとして紫外線などの光(化学線)を用いる場合は、プレポリマー(A)または該プレポリマー(A)を含む硬化性組成物に、感光剤を含有させることが好ましい。この場合、露光工程において化学線を選択的に照射することにより露光部のプレポリマー(A)を高分子量化できるとともに、必要に応じて、露光および現像工程の後にも、化学線または熱等の外部エネルギーを与えてプレポリマー(A)をさらに高分子量化させることができる。
In addition, when light (actinic radiation) such as ultraviolet rays is used as external energy, it is preferable to contain a photosensitizer in the prepolymer (A) or the curable composition containing the prepolymer (A). In this case, the prepolymer (A) in the exposed portion can be made high molecular weight by selectively irradiating actinic radiation in the exposure step, and if necessary, after exposure and development steps, such as actinic rays or heat. The prepolymer (A) can be further increased in molecular weight by applying external energy.
プレポリマー(A)は、芳香族環を有するため、耐熱性が良好であり、例えば半導体素子の構成部材に用いた場合に高い信頼性が得られる。
Since the prepolymer (A) has an aromatic ring, it has good heat resistance and, for example, high reliability is obtained when it is used as a component of a semiconductor element.
プレポリマー(A)としては、芳香族環に結合したフッ素原子と芳香族環に結合した水酸基との縮合反応により、芳香族環同士をエーテル結合を介して結合させることにより得られるものが好ましい。この縮合反応により脱離するフッ素原子以外に芳香族環に結合したフッ素原子を存在させることにより、縮合反応後にも芳香族環にフッ素原子が残存し、フッ素原子を含むプレポリマー(A)が得られる。
As the prepolymer (A), a polymer obtained by bonding aromatic rings through an ether bond by a condensation reaction between a fluorine atom bonded to the aromatic ring and a hydroxyl group bonded to the aromatic ring is preferable. The presence of fluorine atoms bonded to the aromatic ring in addition to the fluorine atoms eliminated by this condensation reaction allows the fluorine atom to remain in the aromatic ring after the condensation reaction, thereby obtaining a prepolymer (A) containing the fluorine atom. It is done.
プレポリマー(A)の原料化合物であるフッ素原子や水酸基を有する芳香族化合物は、少なくとも1個の芳香族環を有し、芳香族環としてはベンゼン環が好ましい。芳香族環としてはナフタレン環等の縮合環であってもよい。芳香族化合物としては、芳香族環(特にベンゼン環)の2個以上が単結合や連結基で結合した多環系芳香族化合物が好ましく、芳香族環を2~6個有する多環系芳香族化合物が好ましい。ただし、芳香族環に結合した水酸基を有する化合物の場合は、芳香族環1個の化合物でもよい。連結基としては、2~4価の炭化水素基(その炭素数は1~6が好ましい)、エーテル結合(-O-)、スルフィド結合(-S-)、カルボニル基(-CO-)、スルホニル基(-SO2-)が好ましい。具体的な連結構造としては、ビフェニル構造、テルフェニル構造、トリフェニルベンゼン構造、ジフェニルエーテル構造、ジフェニルスルフィド構造、ベンゾフェノン構造、ジフェニルスルホン構造等が挙げられる。
The aromatic compound having a fluorine atom or a hydroxyl group, which is a raw material compound of the prepolymer (A), has at least one aromatic ring, and a benzene ring is preferred as the aromatic ring. The aromatic ring may be a condensed ring such as a naphthalene ring. The aromatic compound is preferably a polycyclic aromatic compound in which two or more aromatic rings (particularly a benzene ring) are bonded by a single bond or a linking group, and a polycyclic aromatic compound having 2 to 6 aromatic rings. Compounds are preferred. However, in the case of a compound having a hydroxyl group bonded to an aromatic ring, a compound having one aromatic ring may be used. Examples of the linking group include a divalent to tetravalent hydrocarbon group (the carbon number is preferably 1 to 6), an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), a sulfonyl group. The group (—SO 2 —) is preferred. Specific examples of the connecting structure include a biphenyl structure, a terphenyl structure, a triphenylbenzene structure, a diphenyl ether structure, a diphenyl sulfide structure, a benzophenone structure, and a diphenyl sulfone structure.
フッ素原子を有する芳香族化合物としては、芳香族環に結合した少なくとも3個のフッ素原子を有する含フッ素芳香族化合物が好ましく、特に、芳香族環に結合した水素原子のすべてがフッ素原子に置換された含フッ素芳香族化合物が好ましい。含フッ素芳香族化合物の好適な例としては、ペルフルオロ(1,3,5-トリフェニルベンゼン)、ペルフルオロビフェニル、ペルフルオロジフェニルエーテル等が挙げられる。
As the aromatic compound having a fluorine atom, a fluorine-containing aromatic compound having at least three fluorine atoms bonded to the aromatic ring is preferred, and in particular, all of the hydrogen atoms bonded to the aromatic ring are substituted with fluorine atoms. Preferred are fluorine-containing aromatic compounds. Preferable examples of the fluorine-containing aromatic compound include perfluoro (1,3,5-triphenylbenzene), perfluorobiphenyl, perfluorodiphenyl ether and the like.
水酸基を有する芳香族化合物としては、芳香族環に結合した少なくとも2個の水酸基を有するポリヒドロキシ芳香族化合物が好ましく、芳香族環に結合した水酸基を2~4個有するポリヒドロキシ芳香族化合物が好ましい。また、ポリヒドロキシ芳香族化合物は芳香族環に結合したフッ素原子を有していてもよい。このポリヒドロキシ芳香族化合物の好適な例としては、1,3,5-トリヒドロキシベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールS等が挙げられる。
As the aromatic compound having a hydroxyl group, a polyhydroxy aromatic compound having at least two hydroxyl groups bonded to an aromatic ring is preferable, and a polyhydroxy aromatic compound having 2 to 4 hydroxyl groups bonded to an aromatic ring is preferable. . The polyhydroxy aromatic compound may have a fluorine atom bonded to the aromatic ring. Preferable examples of this polyhydroxy aromatic compound include 1,3,5-trihydroxybenzene, 1,1,1-tris (4-hydroxyphenyl) ethane, bisphenol A, bisphenol S and the like.
架橋性官能基を有する芳香族化合物を上記2種の芳香族化合物と共縮合させることによって架橋性官能基を有するプレポリマー(A)が得られる。上記2種の芳香族化合物のいずれかの代わりに架橋性官能基を有する芳香族化合物を使用することによってもプレポリマー(A)を製造することができる。また、上記2種の芳香族化合物を縮合させてプレポリマーを製造し、その後得られたプレポリマーに架橋性官能基を導入してプレポリマー(A)とすることもできる。プレポリマーに架橋性官能基を導入する場合は、架橋性官能基を有する芳香族化合物をプレポリマーに縮合反応させることにより製造することができる。また、プレポリマーの官能基(水酸基等)に架橋性官能基を有する反応性化合物(非芳香族化合物であってもよい)を反応させて架橋性官能基を導入することもできる。
A prepolymer (A) having a crosslinkable functional group is obtained by co-condensing an aromatic compound having a crosslinkable functional group with the above-mentioned two kinds of aromatic compounds. The prepolymer (A) can also be produced by using an aromatic compound having a crosslinkable functional group in place of either of the two kinds of aromatic compounds. Alternatively, the two types of aromatic compounds can be condensed to produce a prepolymer, and then a crosslinkable functional group can be introduced into the resulting prepolymer to obtain a prepolymer (A). When a crosslinkable functional group is introduced into the prepolymer, it can be produced by subjecting an aromatic compound having a crosslinkable functional group to a condensation reaction with the prepolymer. Moreover, a reactive compound having a crosslinkable functional group (which may be a non-aromatic compound) may be reacted with a functional group (such as a hydroxyl group) of the prepolymer to introduce a crosslinkable functional group.
架橋性官能基を有する芳香族化合物としては、スチレンやその誘導体等の側鎖に架橋性官能基を有する芳香族化合物が好ましい。該芳香族化合物は、芳香族環に結合したフッ素原子や水酸基を有していてもよく、それら以外の反応性基を有していてもよい。架橋性官能基を有する芳香族化合物の好適な例としては、ペンタフルオロスチレン、アセトキシスチレン、クロルメチルスチレン等が挙げられる。
As the aromatic compound having a crosslinkable functional group, an aromatic compound having a crosslinkable functional group in the side chain such as styrene or a derivative thereof is preferable. The aromatic compound may have a fluorine atom or a hydroxyl group bonded to an aromatic ring, or may have a reactive group other than those. Preferable examples of the aromatic compound having a crosslinkable functional group include pentafluorostyrene, acetoxystyrene, chloromethylstyrene and the like.
上記2~3種の化合物を反応溶媒中、脱ハロゲン化水素剤の存在下で縮合させることにより、プレポリマー(A)が得られる。脱ハロゲン化水素剤としては、アルカリ金属化合物が好ましく、例えば、炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム等が挙げられる。反応温度は、架橋性官能基が反応しない温度であればよく、通常40~100℃が採用される。反応終了後、副生物を除去等の精製を行って、プレポリマー(A)を得る。
The prepolymer (A) can be obtained by condensing the above two to three kinds of compounds in a reaction solvent in the presence of a dehydrohalogenating agent. As the dehydrohalogenating agent, an alkali metal compound is preferable, and examples thereof include potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide and the like. The reaction temperature may be any temperature at which the crosslinkable functional group does not react, and usually 40 to 100 ° C. is employed. After completion of the reaction, purification such as removal of by-products is performed to obtain the prepolymer (A).
プレポリマー(A)の分子量は、プレポリマー(A)が溶媒溶解性であればその上限は特に限定されない。通常は、ゲルパーミエーションクロマトグラフィー法(GPC)によりポリスチレン換算で求めた数平均分子量(Mn)が2,000~50,000であるものが好ましく、3,000~20,000であるものがより好ましい。
The upper limit of the molecular weight of the prepolymer (A) is not particularly limited as long as the prepolymer (A) is solvent-soluble. Usually, the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) in terms of polystyrene is preferably 2,000 to 50,000, more preferably 3,000 to 20,000. preferable.
プレポリマー(A)のうちでも、特に、含フッ素ポリアリーレンエーテルプレポリマー(A1)は、エーテル性酸素原子を有するため、分子構造が柔軟性を有し、樹脂の可とう性が良好である点で好ましい。ただし、プレポリマー(A1)は、原料の多環系芳香族化合物に由来する単結合やエーテル性酸素原子以外の連結基等を有していてもよい。
Among the prepolymers (A), in particular, the fluorine-containing polyarylene ether prepolymer (A1) has an etheric oxygen atom, so that the molecular structure is flexible and the flexibility of the resin is good. Is preferable. However, the prepolymer (A1) may have a single bond derived from the starting polycyclic aromatic compound, a linking group other than the etheric oxygen atom, or the like.
プレポリマー(A)はフッ素原子を有する。フッ素原子を有すると、硬化膜の誘電率および誘電損失が低くなりやすいため、絶縁膜を形成する材料として好ましい。絶縁膜の誘電率および誘電損失が低いと、信号伝播速度の遅延を抑制でき、電気特性に優れた素子が得られる。
The prepolymer (A) has a fluorine atom. Having fluorine atoms is preferable as a material for forming the insulating film because the dielectric constant and dielectric loss of the cured film tend to be low. When the dielectric constant and dielectric loss of the insulating film are low, a delay in signal propagation speed can be suppressed, and an element having excellent electrical characteristics can be obtained.
また、プレポリマー(A)がフッ素原子を有すると、硬化膜の吸水率が低くなるため、接合電極およびその周辺の配線部分等における接合状態の変化が抑制できる点、または金属の変質(錆等)が抑制できる点等において優れ、素子の信頼性向上という点で効果が大きい。
Further, when the prepolymer (A) has a fluorine atom, the water absorption rate of the cured film is lowered, so that it is possible to suppress the change in the bonding state in the bonding electrode and the surrounding wiring portion, or the alteration of the metal (such as rust). ) Can be suppressed, and the effect is great in terms of improving the reliability of the device.
(チオール系化合物(B))
本発明のチオール系化合物(B)は、1分子あたりメルカプト基を2~10個有する。プレポリマー(A)中の架橋性官能基と、チオール系化合物(B)中のメルカプト基とがエンチオール反応し、プレポリマー(A)に架橋構造が形成する。この架橋構造により、硬化性組成物が硬化して得られた硬化膜の引張破断強度および伸度が向上する。また、エンチオール反応による架橋は、オレフィン同士の重合に比べて硬化収縮が小さいため、硬化時の応力歪みが小さく、硬化膜のストレスが低減できる。 (Thiol compound (B))
The thiol compound (B) of the present invention has 2 to 10 mercapto groups per molecule. The crosslinkable functional group in the prepolymer (A) and the mercapto group in the thiol compound (B) undergo an enethiol reaction to form a crosslinked structure in the prepolymer (A). With this crosslinked structure, the tensile strength at break and the elongation of the cured film obtained by curing the curable composition are improved. Moreover, since the crosslinking by an enethiol reaction has a smaller curing shrinkage than the polymerization of olefins, the stress strain at the time of curing is small, and the stress of the cured film can be reduced.
本発明のチオール系化合物(B)は、1分子あたりメルカプト基を2~10個有する。プレポリマー(A)中の架橋性官能基と、チオール系化合物(B)中のメルカプト基とがエンチオール反応し、プレポリマー(A)に架橋構造が形成する。この架橋構造により、硬化性組成物が硬化して得られた硬化膜の引張破断強度および伸度が向上する。また、エンチオール反応による架橋は、オレフィン同士の重合に比べて硬化収縮が小さいため、硬化時の応力歪みが小さく、硬化膜のストレスが低減できる。 (Thiol compound (B))
The thiol compound (B) of the present invention has 2 to 10 mercapto groups per molecule. The crosslinkable functional group in the prepolymer (A) and the mercapto group in the thiol compound (B) undergo an enethiol reaction to form a crosslinked structure in the prepolymer (A). With this crosslinked structure, the tensile strength at break and the elongation of the cured film obtained by curing the curable composition are improved. Moreover, since the crosslinking by an enethiol reaction has a smaller curing shrinkage than the polymerization of olefins, the stress strain at the time of curing is small, and the stress of the cured film can be reduced.
本発明のチオール系化合物(B)は、1分子あたりメルカプト基を2~10個有するのが好ましいが、より好ましくは2~8個であり、さらに好ましくは2~6個である。メルカプト基が1分子あたり2個以上だと、プレポリマー(A)中の架橋性官能基とエンチオール反応して架橋構造を有することができ、引張破断強度および伸度が向上する。メルカプト基が1分子あたり10個以下だと、硬化膜の柔軟性を維持することができる。入手容易な点で、メルカプト基が1分子あたり2~6個のチオール系化合物(B)が最も好ましい。
The thiol compound (B) of the present invention preferably has 2 to 10 mercapto groups per molecule, more preferably 2 to 8, and still more preferably 2 to 6. When the number of mercapto groups is 2 or more per molecule, the crosslinkable functional group in the prepolymer (A) can react with the enethiol to have a crosslinked structure, and the tensile strength at break and elongation are improved. When the number of mercapto groups is 10 or less per molecule, the flexibility of the cured film can be maintained. In view of availability, the thiol compound (B) having 2 to 6 mercapto groups per molecule is most preferable.
本発明のチオール系化合物(B)は、下式(1)で表わされる基を1個以上有する化合物(他にメルカプト基を有していてもよい)が好ましい。
HS-CH(R1)-CH2-CO- ・・・式(1)
式(1)中、R1は炭素数が1~20の1価炭化水素基であり、好ましくは1~10の1価炭化水素基であり、最も好ましくは1~5の1価炭化水素基である。
メルカプト基が2級であることで反応性は低下するが、貯蔵安定性が優れる点が好ましい。また、β位にカルボニル基があることで、メルカプト基が2級であっても反応性が向上する。すなわち、式(1)の構造にすることで反応性と貯蔵安定性のバランスのとれた化合物になる。式(1)の最も好ましい構造は、HS-CH(CH3)-CH2-CO-である。 The thiol compound (B) of the present invention is preferably a compound having one or more groups represented by the following formula (1) (otherwise, it may have a mercapto group).
HS—CH (R 1 ) —CH 2 —CO— Formula (1)
In the formula (1), R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, and most preferably a monovalent hydrocarbon group having 1 to 5 carbon atoms. It is.
Although the reactivity is lowered by the mercapto group being secondary, it is preferable that the storage stability is excellent. Further, the presence of a carbonyl group at the β-position improves the reactivity even if the mercapto group is secondary. That is, the compound of the formula (1) becomes a compound in which the reactivity and the storage stability are balanced. The most preferred structure of formula (1) is HS—CH (CH 3 ) —CH 2 —CO—.
HS-CH(R1)-CH2-CO- ・・・式(1)
式(1)中、R1は炭素数が1~20の1価炭化水素基であり、好ましくは1~10の1価炭化水素基であり、最も好ましくは1~5の1価炭化水素基である。
メルカプト基が2級であることで反応性は低下するが、貯蔵安定性が優れる点が好ましい。また、β位にカルボニル基があることで、メルカプト基が2級であっても反応性が向上する。すなわち、式(1)の構造にすることで反応性と貯蔵安定性のバランスのとれた化合物になる。式(1)の最も好ましい構造は、HS-CH(CH3)-CH2-CO-である。 The thiol compound (B) of the present invention is preferably a compound having one or more groups represented by the following formula (1) (otherwise, it may have a mercapto group).
HS—CH (R 1 ) —CH 2 —CO— Formula (1)
In the formula (1), R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, and most preferably a monovalent hydrocarbon group having 1 to 5 carbon atoms. It is.
Although the reactivity is lowered by the mercapto group being secondary, it is preferable that the storage stability is excellent. Further, the presence of a carbonyl group at the β-position improves the reactivity even if the mercapto group is secondary. That is, the compound of the formula (1) becomes a compound in which the reactivity and the storage stability are balanced. The most preferred structure of formula (1) is HS—CH (CH 3 ) —CH 2 —CO—.
本発明のチオール系化合物(B)は、メルカプト基がどこにあってもよいが、主鎖の末端にあるのが好ましい。メルカプト基が末端にあると、プレポリマー(A)中の架橋性官能基とのエンチオール反応を効率よく行うことができるので好ましい。
In the thiol compound (B) of the present invention, the mercapto group may be anywhere, but it is preferably at the end of the main chain. It is preferable for the mercapto group to be at the end, since the enethiol reaction with the crosslinkable functional group in the prepolymer (A) can be carried out efficiently.
本発明のチオール系化合物(B)は、芳香族環を有していても有していなくても構わない。芳香族環を有するチオール系化合物(B)は、ラジカル開裂が容易で反応性に優れる点が好ましい。芳香族環を有しないチオール系化合物(B)は、ラジカル開裂が容易でないため、貯蔵安定性に優れる点が好ましい。
The thiol compound (B) of the present invention may or may not have an aromatic ring. The thiol compound (B) having an aromatic ring is preferable in that radical cleavage is easy and the reactivity is excellent. Since the thiol compound (B) having no aromatic ring is not easily radically cleaved, it is preferable that it is excellent in storage stability.
本発明のチオール系化合物(B)は、下式(2)で表わされる化合物であるのが好ましい。
(RaO-Rb)n-Rc ・・・式(2)
(Raは上記式(1)で表される基、Rbは炭素数が1~10の1価炭化水素基、Rcは窒素原子や酸素原子を含んでもよい炭素数が1~20のn価炭化水素基、nは2~10の整数である。)
Rbの炭素数は好ましくは1~5、さらに好ましくは1~3である。nは好ましくは2~8、さらに好ましくは2~6である。
RCの炭素数は1~5が好ましく、1~3がより好ましい。 The thiol compound (B) of the present invention is preferably a compound represented by the following formula (2).
(R a O—R b ) n —R c Formula (2)
(R a is a group represented by the above formula (1), R b is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and R c is a carbon number having 1 to 20 carbon atoms which may contain a nitrogen atom or an oxygen atom. n-valent hydrocarbon group, n is an integer of 2 to 10)
R b preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. n is preferably 2 to 8, and more preferably 2 to 6.
R C preferably has 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
(RaO-Rb)n-Rc ・・・式(2)
(Raは上記式(1)で表される基、Rbは炭素数が1~10の1価炭化水素基、Rcは窒素原子や酸素原子を含んでもよい炭素数が1~20のn価炭化水素基、nは2~10の整数である。)
Rbの炭素数は好ましくは1~5、さらに好ましくは1~3である。nは好ましくは2~8、さらに好ましくは2~6である。
RCの炭素数は1~5が好ましく、1~3がより好ましい。 The thiol compound (B) of the present invention is preferably a compound represented by the following formula (2).
(R a O—R b ) n —R c Formula (2)
(R a is a group represented by the above formula (1), R b is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and R c is a carbon number having 1 to 20 carbon atoms which may contain a nitrogen atom or an oxygen atom. n-valent hydrocarbon group, n is an integer of 2 to 10)
R b preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. n is preferably 2 to 8, and more preferably 2 to 6.
R C preferably has 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
本発明のチオール系化合物(B)は、硬化性組成物から硬化膜を形成させる工程で蒸発しない沸点を有するのが好ましい。すなわち、溶媒を蒸発させる温度や硬化性組成物を硬化させる温度で蒸発しない沸点を有するのが好ましい。チオール系化合物(B)の沸点は200℃以上が好ましい。
The thiol compound (B) of the present invention preferably has a boiling point that does not evaporate in the step of forming a cured film from the curable composition. That is, it preferably has a boiling point that does not evaporate at a temperature at which the solvent is evaporated or a temperature at which the curable composition is cured. The boiling point of the thiol compound (B) is preferably 200 ° C. or higher.
本発明のチオール系化合物(B)として好ましい例は、下記化合物(b-1)~(b-3)である。
Preferred examples of the thiol compound (B) of the present invention are the following compounds (b-1) to (b-3).
本発明のチオール系化合物(B)は、市販品を用いてもよく、合成してもよい。
本発明のチオール系化合物(B)は、公知の方法で製造することができる。
本発明のチオール系化合物(B)の市販品としては、カレンズMT BD1(商品名、昭和電工社製)、カレンズMT PE1(商品名、昭和電工社製)、カレンズMT NR1(商品名、昭和電工社製)、TEMPIC(商品名、SC有機化学社製)、TMMP(商品名、SC有機化学社製)、PEMP(商品名、SC有機化学社製)、DPMP(商品名、SC有機化学社製)等が挙げられる。 As the thiol compound (B) of the present invention, a commercially available product may be used or synthesized.
The thiol compound (B) of the present invention can be produced by a known method.
As commercial products of the thiol compound (B) of the present invention, Karenz MT BD1 (trade name, manufactured by Showa Denko), Karenz MT PE1 (trade name, manufactured by Showa Denko), Karenz MT NR1 (trade name, Showa Denko) TEMPIC (trade name, manufactured by SC Organic Chemical Co., Ltd.), TMMP (trade name, manufactured by SC Organic Chemical Co., Ltd.), PEMP (trade name, manufactured by SC Organic Chemical Co., Ltd.), DPMP (trade name, manufactured by SC Organic Chemical Co., Ltd.) ) And the like.
本発明のチオール系化合物(B)は、公知の方法で製造することができる。
本発明のチオール系化合物(B)の市販品としては、カレンズMT BD1(商品名、昭和電工社製)、カレンズMT PE1(商品名、昭和電工社製)、カレンズMT NR1(商品名、昭和電工社製)、TEMPIC(商品名、SC有機化学社製)、TMMP(商品名、SC有機化学社製)、PEMP(商品名、SC有機化学社製)、DPMP(商品名、SC有機化学社製)等が挙げられる。 As the thiol compound (B) of the present invention, a commercially available product may be used or synthesized.
The thiol compound (B) of the present invention can be produced by a known method.
As commercial products of the thiol compound (B) of the present invention, Karenz MT BD1 (trade name, manufactured by Showa Denko), Karenz MT PE1 (trade name, manufactured by Showa Denko), Karenz MT NR1 (trade name, Showa Denko) TEMPIC (trade name, manufactured by SC Organic Chemical Co., Ltd.), TMMP (trade name, manufactured by SC Organic Chemical Co., Ltd.), PEMP (trade name, manufactured by SC Organic Chemical Co., Ltd.), DPMP (trade name, manufactured by SC Organic Chemical Co., Ltd.) ) And the like.
本発明のチオール系化合物(B)は、プレポリマー(A)の100質量部に対して、0.01~20質量部用いるのが好ましい。下限値は0.05質量部がより好ましく、0.1質量部が最も好ましい。上限値は15質量部がより好ましく、10質量部が最も好ましい。0.01質量部以上であると、プレポリマー(A)に架橋構造が形成され、硬化性組成物が硬化して得られた硬化膜の引張破断強度および伸度が向上する。一方、20質量部以下であると、硬化膜の低誘電率性、耐熱性を保持できる。
The thiol compound (B) of the present invention is preferably used in an amount of 0.01 to 20 parts by mass with respect to 100 parts by mass of the prepolymer (A). The lower limit is more preferably 0.05 parts by mass, and most preferably 0.1 parts by mass. The upper limit is more preferably 15 parts by mass, and most preferably 10 parts by mass. When it is 0.01 part by mass or more, a crosslinked structure is formed in the prepolymer (A), and the tensile strength at break and elongation of the cured film obtained by curing the curable composition are improved. On the other hand, when it is 20 parts by mass or less, the low dielectric constant and heat resistance of the cured film can be maintained.
本発明のチオール化合物(B)は1種類を用いてもよく、2種類以上を併用してもよい。
One type of thiol compound (B) of the present invention may be used, or two or more types may be used in combination.
(感光剤)
本発明の硬化性組成物は光硬化性であってもよい。光硬化性を発現させるために、または光硬化による反応性を向上させるために、感光剤を含有させることが好ましい。 (Photosensitive agent)
The curable composition of the present invention may be photocurable. In order to develop photocurability or to improve reactivity by photocuring, it is preferable to contain a photosensitizer.
本発明の硬化性組成物は光硬化性であってもよい。光硬化性を発現させるために、または光硬化による反応性を向上させるために、感光剤を含有させることが好ましい。 (Photosensitive agent)
The curable composition of the present invention may be photocurable. In order to develop photocurability or to improve reactivity by photocuring, it is preferable to contain a photosensitizer.
感光剤は公知のものを使用できる。具体例としては、IRGACURE 907(α-アミノアルキルフェノン系)、IRGACURE 369(α-アミノアルキルフェノン系)、DAROCUR TPO(アシルホスフィンオキサイド系)、IRGACURE OXE01(オキシムエステル誘導体)、IRGACURE OXE02(オキシムエステル誘導体)(いずれもチバスペシャリティーケミカルズ社製)等が挙げられる。これらのうちで、硬化性組成物が十分に硬化し、フォトリソグラフ法で硬化膜パターンを製造する時に、より微細なパターンを作製できる点で、DAROCUR TPO、IRGACURE OXE01、IRGACURE OXE02が特に好ましい。
Known photosensitizers can be used. Specific examples include IRGACURE 907 (α-aminoalkylphenone series), IRGACURE 369 (α-aminoalkylphenone series), DAROCUR TPO (acylphosphine oxide series), IRGACURE OXE01 (oxime ester derivative), IRGACURE OXE02 (oxime ester derivative) ) (Both manufactured by Ciba Specialty Chemicals). Among these, DAROCUR TPO, IRGACURE OXE01, and IRGACURE OXE02 are particularly preferable because the curable composition is sufficiently cured and a finer pattern can be produced when producing a cured film pattern by a photolithographic method.
本発明の硬化性組成物に用いる感光剤は、プレポリマー(A)の100質量部に対して、0.1~10質量部が好ましく、1~8質量部がより好ましく、2~5質量部が最も好ましい。
The photosensitive agent used in the curable composition of the present invention is preferably 0.1 to 10 parts by weight, more preferably 1 to 8 parts by weight, with respect to 100 parts by weight of the prepolymer (A). Is most preferred.
(熱硬化促進剤)
本発明の硬化性組成物は熱硬化性であってもよい。この場合、熱硬化促進剤を含有させてもよい。 (Thermosetting accelerator)
The curable composition of the present invention may be thermosetting. In this case, a thermosetting accelerator may be contained.
本発明の硬化性組成物は熱硬化性であってもよい。この場合、熱硬化促進剤を含有させてもよい。 (Thermosetting accelerator)
The curable composition of the present invention may be thermosetting. In this case, a thermosetting accelerator may be contained.
熱硬化促進剤は公知のものを使用できる。具体例としては、過酸化ベンゾイル、過酸化ジ-tert-ブチル、過酸化ジクミル、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド等の過酸化物;アゾビスイソブチロニトリル等のアゾ化合物、等が挙げられる。
Known thermosetting accelerators can be used. Specific examples include peroxides such as benzoyl peroxide, di-tert-butyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide; azo compounds such as azobisisobutyronitrile, and the like. It is done.
本発明の硬化性組成物に用いる熱硬化促進剤は、プレポリマー(A)の100質量部に対して、0.1~10質量部が好ましく、1~8質量部がより好ましく、2~5質量部が最も好ましい。
The thermosetting accelerator used in the curable composition of the present invention is preferably 0.1 to 10 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the prepolymer (A). Part by mass is most preferred.
(その他の添加剤)
本発明の硬化性組成物には、その他の添加剤として、必要に応じて紫外線吸収剤、酸化防止剤、熱重合防止剤等の安定剤類;レベリング剤、消泡剤、沈殿防止剤、分散剤等の界面活性剤類;可塑剤;増粘剤等のコーティング分野で周知の各種添加剤の中から選択される少なくとも1種の添加剤を配合してもよい。 (Other additives)
In the curable composition of the present invention, as other additives, stabilizers such as an ultraviolet absorber, an antioxidant, a thermal polymerization inhibitor and the like as required; a leveling agent, an antifoaming agent, a suspending agent, a dispersion Surfactants such as agents; plasticizers; at least one additive selected from various additives well known in the coating field such as thickeners may be blended.
本発明の硬化性組成物には、その他の添加剤として、必要に応じて紫外線吸収剤、酸化防止剤、熱重合防止剤等の安定剤類;レベリング剤、消泡剤、沈殿防止剤、分散剤等の界面活性剤類;可塑剤;増粘剤等のコーティング分野で周知の各種添加剤の中から選択される少なくとも1種の添加剤を配合してもよい。 (Other additives)
In the curable composition of the present invention, as other additives, stabilizers such as an ultraviolet absorber, an antioxidant, a thermal polymerization inhibitor and the like as required; a leveling agent, an antifoaming agent, a suspending agent, a dispersion Surfactants such as agents; plasticizers; at least one additive selected from various additives well known in the coating field such as thickeners may be blended.
また硬化膜が、例えば層間絶縁膜等、製造工程途中で除去されずに最終製品において機能する部材として残る材料(以下、直材ともいう。)である場合には、硬化性組成物に、シランカップリング剤等の接着性付与剤を添加してもよい。硬化性組成物に接着性付与剤を含有させると、該硬化性組成物が硬化して得られた硬化膜と基材との接着性が向上するため好ましい。なお、基材に予め接着性付与剤を塗布する方法でも、硬化膜と基材との接着性を向上させることができる。
When the cured film is a material that remains as a member that functions in the final product without being removed during the manufacturing process, such as an interlayer insulating film (hereinafter also referred to as a direct material), the curable composition contains silane. An adhesion-imparting agent such as a coupling agent may be added. When an adhesiveness imparting agent is contained in the curable composition, it is preferable because the adhesive property between the cured film obtained by curing the curable composition and the substrate is improved. In addition, the adhesiveness of a cured film and a base material can be improved also by the method of apply | coating an adhesive imparting agent to a base material previously.
本発明のその他の添加剤は、プレポリマー(A)の100質量部に対して、0.001~10質量部が好ましく、0.001~8質量部がより好ましい。
The other additive of the present invention is preferably 0.001 to 10 parts by mass, more preferably 0.001 to 8 parts by mass with respect to 100 parts by mass of the prepolymer (A).
<塗布用組成物>
本発明の塗布用組成物は硬化性組成物と溶媒とを含む。塗布用組成物は後述するように、硬化膜を製造するために基材に塗布する組成物である。 <Coating composition>
The coating composition of the present invention includes a curable composition and a solvent. As will be described later, the coating composition is a composition that is applied to a substrate in order to produce a cured film.
本発明の塗布用組成物は硬化性組成物と溶媒とを含む。塗布用組成物は後述するように、硬化膜を製造するために基材に塗布する組成物である。 <Coating composition>
The coating composition of the present invention includes a curable composition and a solvent. As will be described later, the coating composition is a composition that is applied to a substrate in order to produce a cured film.
(溶媒)
本発明の硬化性組成物は溶媒に溶解ないし分散して使用することが好ましい。溶媒としては、該硬化性組成物に含まれる各成分を溶解ないし分散させるものであればよく、少なくともプレポリマー(A)を溶解する溶媒が用いられる。他の成分を含む場合、プレポリマー(A)を溶解する溶媒が、該他の成分を溶解するものであれば、該溶媒を単独で用いて均一な溶液とすることができる。また、該他の成分を溶解する他の溶媒を併用してもよい。さらに、所望の方法で所望の膜厚、均一性、または埋め込み平坦性を有する硬化膜が得られれば、溶媒の種類には特に制限は無い。例えば芳香族炭化水素類、双極子非プロトン系溶媒類、ケトン類、エステル類、エーテル類、ハロゲン化炭化水素類が挙げられる。溶媒としては、プレポリマー(A)製造時の反応溶媒と同じであっても、異なっていても良い。異なる溶媒を使用する場合には、再沈殿法等でプレポリマー(A)を一旦反応溶液より回収し、異なる溶媒に溶解もしくは分散させるか、またはエパポレーション法、限外濾過法等の公知の手法を用いて溶媒置換を行うことができる。 (solvent)
The curable composition of the present invention is preferably used by dissolving or dispersing in a solvent. Any solvent may be used as long as it dissolves or disperses each component contained in the curable composition, and a solvent that dissolves at least the prepolymer (A) is used. When other components are included, if the solvent that dissolves the prepolymer (A) dissolves the other components, the solvent can be used alone to form a uniform solution. Moreover, you may use together the other solvent which melt | dissolves this other component. Further, the type of solvent is not particularly limited as long as a cured film having a desired film thickness, uniformity, or embedded flatness can be obtained by a desired method. Examples include aromatic hydrocarbons, dipolar aprotic solvents, ketones, esters, ethers, and halogenated hydrocarbons. The solvent may be the same as or different from the reaction solvent used in the production of the prepolymer (A). When a different solvent is used, the prepolymer (A) is once recovered from the reaction solution by a reprecipitation method or the like and dissolved or dispersed in a different solvent, or a known method such as an evaporation method or an ultrafiltration method is used. Solvent replacement can be performed using techniques.
本発明の硬化性組成物は溶媒に溶解ないし分散して使用することが好ましい。溶媒としては、該硬化性組成物に含まれる各成分を溶解ないし分散させるものであればよく、少なくともプレポリマー(A)を溶解する溶媒が用いられる。他の成分を含む場合、プレポリマー(A)を溶解する溶媒が、該他の成分を溶解するものであれば、該溶媒を単独で用いて均一な溶液とすることができる。また、該他の成分を溶解する他の溶媒を併用してもよい。さらに、所望の方法で所望の膜厚、均一性、または埋め込み平坦性を有する硬化膜が得られれば、溶媒の種類には特に制限は無い。例えば芳香族炭化水素類、双極子非プロトン系溶媒類、ケトン類、エステル類、エーテル類、ハロゲン化炭化水素類が挙げられる。溶媒としては、プレポリマー(A)製造時の反応溶媒と同じであっても、異なっていても良い。異なる溶媒を使用する場合には、再沈殿法等でプレポリマー(A)を一旦反応溶液より回収し、異なる溶媒に溶解もしくは分散させるか、またはエパポレーション法、限外濾過法等の公知の手法を用いて溶媒置換を行うことができる。 (solvent)
The curable composition of the present invention is preferably used by dissolving or dispersing in a solvent. Any solvent may be used as long as it dissolves or disperses each component contained in the curable composition, and a solvent that dissolves at least the prepolymer (A) is used. When other components are included, if the solvent that dissolves the prepolymer (A) dissolves the other components, the solvent can be used alone to form a uniform solution. Moreover, you may use together the other solvent which melt | dissolves this other component. Further, the type of solvent is not particularly limited as long as a cured film having a desired film thickness, uniformity, or embedded flatness can be obtained by a desired method. Examples include aromatic hydrocarbons, dipolar aprotic solvents, ketones, esters, ethers, and halogenated hydrocarbons. The solvent may be the same as or different from the reaction solvent used in the production of the prepolymer (A). When a different solvent is used, the prepolymer (A) is once recovered from the reaction solution by a reprecipitation method or the like and dissolved or dispersed in a different solvent, or a known method such as an evaporation method or an ultrafiltration method is used. Solvent replacement can be performed using techniques.
芳香族炭化水素類としては、ベンゼン、トルエン、キシレン、エチルベンゼン、キュメン、メシチレン、テトラリン、メチルナフタレン等が挙げられる。
双極子非プロトン系溶媒類としては、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド等が挙げられる。 Aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, tetralin, methylnaphthalene and the like.
Examples of dipolar aprotic solvents include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, dimethyl sulfoxide and the like.
双極子非プロトン系溶媒類としては、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド等が挙げられる。 Aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, tetralin, methylnaphthalene and the like.
Examples of dipolar aprotic solvents include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, dimethyl sulfoxide and the like.
ケトン類としては、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルアミルケトン等が挙げられる。
エーテル類としては、テトラヒドロフラン、ピラン、ジオキサン、ジメトキシエタン、ジエトキシエタン、ジフェニルエーテル、アニソール、フェネトール、ジグライム、トリグライム等が挙げられる。 Examples of ketones include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methyl amyl ketone, and the like.
Examples of ethers include tetrahydrofuran, pyran, dioxane, dimethoxyethane, diethoxyethane, diphenyl ether, anisole, phenetole, diglyme, and triglyme.
エーテル類としては、テトラヒドロフラン、ピラン、ジオキサン、ジメトキシエタン、ジエトキシエタン、ジフェニルエーテル、アニソール、フェネトール、ジグライム、トリグライム等が挙げられる。 Examples of ketones include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methyl amyl ketone, and the like.
Examples of ethers include tetrahydrofuran, pyran, dioxane, dimethoxyethane, diethoxyethane, diphenyl ether, anisole, phenetole, diglyme, and triglyme.
エステル類としては、乳酸エチル、安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸ベンジル、メチルセルソルブアセテート、エチルセルソルブアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート(以下、PEGMEAともいう)、プロピレングリコールモノエチルエーテルアセテート等が挙げられる。
Esters include ethyl lactate, methyl benzoate, ethyl benzoate, butyl benzoate, benzyl benzoate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , Propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate (hereinafter also referred to as PEGMEA), propylene glycol monoethyl ether acetate, and the like.
ハロゲン化炭化水素類としては、四塩化炭素、クロロホルム、塩化メチレン、テトラクロロエチレン、クロロベンゼン、ジクロロベンゼン等が挙げられる。
Examples of halogenated hydrocarbons include carbon tetrachloride, chloroform, methylene chloride, tetrachloroethylene, chlorobenzene, dichlorobenzene and the like.
本発明の塗布用組成物に用いる溶媒は、沸点が60~200℃が好ましく、より好ましくは70~150℃である。上述の範囲にすることで、硬化膜を形成する前に溶媒を除去する工程において、溶媒以外の硬化性組成物の各成分に負担をかけずに溶媒を除去することができる。
The solvent used in the coating composition of the present invention preferably has a boiling point of 60 to 200 ° C, more preferably 70 to 150 ° C. By setting it as the above-mentioned range, in the process of removing a solvent before forming a cured film, a solvent can be removed without imposing a burden on each component of curable compositions other than a solvent.
本発明の塗布用組成物に用いる溶媒は、安全性、溶解性、良好な塗膜が形成できる点から、PEGMEAが最も好ましい。
The solvent used in the coating composition of the present invention is most preferably PEGMEA from the viewpoints of safety, solubility, and formation of a good coating film.
本発明の塗布用組成物に用いる溶媒は水分を含んでいてもよいが、プレポリマー(A)の溶解度の観点から水分含量は溶媒の5質量%以下が望ましい。
The solvent used in the coating composition of the present invention may contain moisture, but the moisture content is preferably 5% by mass or less of the solvent from the viewpoint of the solubility of the prepolymer (A).
本発明の塗布用組成物におけるプレポリマー(A)の濃度は、0.1~50質量%が好ましく、1.0~40質量%がより好ましく、5~40質量%が最も好ましい。
The concentration of the prepolymer (A) in the coating composition of the present invention is preferably 0.1 to 50% by mass, more preferably 1.0 to 40% by mass, and most preferably 5 to 40% by mass.
<硬化膜>
本発明の硬化膜は、前記硬化性組成物を硬化させて得られる膜である。好ましくは、基材上に硬化性組成物を塗布して塗膜を得、加熱により硬化(熱硬化)または光により硬化(光硬化)させた膜である。または、基材上に塗布用組成物を塗布して塗膜を得、溶媒の一部または全部を除去し、加熱により硬化(熱硬化)または光により硬化(光硬化)させた膜である。硬化前に溶媒が残っている場合には、硬化と同時に残りの溶媒が除去される。光硬化の場合は、基材上に硬化性組成物または塗布用組成物を塗布し、塗布用組成物を使用の場合は溶媒の一部または全部を除去し、必要に応じてプリベークを行い、光(例えば紫外線)を照射(露光)することにより硬化膜が得られる。光照射後に必要に応じて加熱を行ってもよい。フォトリソグラフィによる微細加工も可能である。熱硬化の場合、硬化中に基材が劣化しないことから、40~500℃で硬化させるのが好ましく、130~350℃で硬化させるのがより好ましい。光硬化の場合、常温で1秒~10分かけて硬化させるのが好ましく、1秒~1分かけて硬化させるのがより好ましい。 <Curing film>
The cured film of the present invention is a film obtained by curing the curable composition. Preferably, it is a film obtained by applying a curable composition on a substrate to obtain a coating film, and curing (thermosetting) by heating or curing (photocuring) by light. Or it is a film | membrane which apply | coated the composition for application | coating on a base material, obtains a coating film, removes one part or all part of a solvent, and hardened | cured by heating (heat curing) or hardened | cured with light (photocuring). If the solvent remains before curing, the remaining solvent is removed simultaneously with curing. In the case of photocuring, a curable composition or a coating composition is applied on a substrate, and in the case of using a coating composition, part or all of the solvent is removed, and prebaking is performed as necessary. A cured film is obtained by irradiation (exposure) with light (for example, ultraviolet rays). You may heat as needed after light irradiation. Fine processing by photolithography is also possible. In the case of heat curing, since the substrate does not deteriorate during curing, it is preferably cured at 40 to 500 ° C., more preferably at 130 to 350 ° C. In the case of photocuring, curing is preferably performed at room temperature for 1 second to 10 minutes, more preferably 1 second to 1 minute.
本発明の硬化膜は、前記硬化性組成物を硬化させて得られる膜である。好ましくは、基材上に硬化性組成物を塗布して塗膜を得、加熱により硬化(熱硬化)または光により硬化(光硬化)させた膜である。または、基材上に塗布用組成物を塗布して塗膜を得、溶媒の一部または全部を除去し、加熱により硬化(熱硬化)または光により硬化(光硬化)させた膜である。硬化前に溶媒が残っている場合には、硬化と同時に残りの溶媒が除去される。光硬化の場合は、基材上に硬化性組成物または塗布用組成物を塗布し、塗布用組成物を使用の場合は溶媒の一部または全部を除去し、必要に応じてプリベークを行い、光(例えば紫外線)を照射(露光)することにより硬化膜が得られる。光照射後に必要に応じて加熱を行ってもよい。フォトリソグラフィによる微細加工も可能である。熱硬化の場合、硬化中に基材が劣化しないことから、40~500℃で硬化させるのが好ましく、130~350℃で硬化させるのがより好ましい。光硬化の場合、常温で1秒~10分かけて硬化させるのが好ましく、1秒~1分かけて硬化させるのがより好ましい。 <Curing film>
The cured film of the present invention is a film obtained by curing the curable composition. Preferably, it is a film obtained by applying a curable composition on a substrate to obtain a coating film, and curing (thermosetting) by heating or curing (photocuring) by light. Or it is a film | membrane which apply | coated the composition for application | coating on a base material, obtains a coating film, removes one part or all part of a solvent, and hardened | cured by heating (heat curing) or hardened | cured with light (photocuring). If the solvent remains before curing, the remaining solvent is removed simultaneously with curing. In the case of photocuring, a curable composition or a coating composition is applied on a substrate, and in the case of using a coating composition, part or all of the solvent is removed, and prebaking is performed as necessary. A cured film is obtained by irradiation (exposure) with light (for example, ultraviolet rays). You may heat as needed after light irradiation. Fine processing by photolithography is also possible. In the case of heat curing, since the substrate does not deteriorate during curing, it is preferably cured at 40 to 500 ° C., more preferably at 130 to 350 ° C. In the case of photocuring, curing is preferably performed at room temperature for 1 second to 10 minutes, more preferably 1 second to 1 minute.
基材の耐熱性を考慮せずに基材を選択できるので、光硬化がより好ましい。また、光硬化の場合、熱硬化促進剤を用いなくても硬化するため、熱硬化促進剤が残留しない硬化膜を形成できる。光としては紫外線が好ましい。
Since the substrate can be selected without considering the heat resistance of the substrate, photocuring is more preferable. Moreover, in the case of photocuring, since it hardens | cures without using a thermosetting accelerator, the cured film in which a thermosetting accelerator does not remain can be formed. The light is preferably ultraviolet light.
上記塗布用組成物を使用する場合は、硬化膜を形成する前に溶媒の一部または全部を除去する工程を経る(以下、溶媒除去工程ともいう。)。溶媒除去工程における温度は、溶媒の沸点以上であればよいが、プレポリマー(A)が分解する可能性があるため、400℃以下であるのが好ましく、200℃以下がより好ましい。溶媒除去工程における時間は、溶媒が除去できる時間であればよいが、作業性の観点から1分~24時間が好ましく、より好ましくは1分~1時間である。
When using the coating composition, a part or all of the solvent is removed before forming the cured film (hereinafter, also referred to as a solvent removal process). Although the temperature in a solvent removal process should just be more than the boiling point of a solvent, since prepolymer (A) may decompose | disassemble, it is preferable that it is 400 degrees C or less, and 200 degrees C or less is more preferable. The time in the solvent removal step may be any time that allows the solvent to be removed, but from the viewpoint of workability, it is preferably 1 minute to 24 hours, and more preferably 1 minute to 1 hour.
基材の材料としては、シリコンや窒素ケイ素等のセラミックス、ガラス、石材、金属、樹脂等が挙げられる。電子デバイスへの適用可能性の点からガラス、金属、樹脂が好ましい。
As the material of the base material, ceramics such as silicon and silicon silicon, glass, stone, metal, resin and the like can be mentioned. Glass, metal, and resin are preferable from the viewpoint of applicability to electronic devices.
硬化性組成物および塗布用組成物の塗布方法としては、ロールコート法、キャスト法、ディップコート法、スピンコート法、スプレーコート法、フローコート法、スキージコート法、水上キャスト法、ダイコート法、ラングミュア-プロジェット法、スリットコート法等が挙げられる。また、硬化性組成物を真空蒸着法で塗布することもできる。均一な塗膜ができる点から、スピンコート法、ディップコート法または真空蒸着法が好ましい。また、大量生産できる点から、塗布用組成物を使用して、スプレーコート法、フローコート法、スキージコート法、またはダイコート法で塗膜を形成することが好ましい。塗膜を形成する方法としては、特に、塗布用組成物を使用して、スピンコート法、ディップコート法で塗膜を形成することが好ましい。
Examples of the coating method of the curable composition and the coating composition include roll coating, casting, dip coating, spin coating, spray coating, flow coating, squeegee coating, water casting, die coating, and Langmuir. -Projet method, slit coat method and the like. Moreover, a curable composition can also be apply | coated by a vacuum evaporation method. From the viewpoint of forming a uniform coating film, a spin coating method, a dip coating method or a vacuum deposition method is preferred. Moreover, it is preferable to form a coating film by the spray coat method, the flow coat method, the squeegee coat method, or the die coat method from the point which can be mass-produced. As a method for forming a coating film, it is particularly preferable to use a coating composition to form a coating film by spin coating or dip coating.
硬化膜の厚さは特に限定されず、用途に応じて適宜設定できる。例えば厚さ0.1~100μm程度が好ましく、1~50μmがより好ましい。
The thickness of the cured film is not particularly limited and can be set as appropriate according to the application. For example, the thickness is preferably about 0.1 to 100 μm, more preferably 1 to 50 μm.
本発明の硬化性組成物は、誘電率が低く、かつ高靭性、低膜ストレスの硬化膜を形成することができる。
The curable composition of the present invention can form a cured film having a low dielectric constant, high toughness, and low film stress.
本発明の硬化性組成物を硬化した硬化膜を適用可能な電子・電気部品としては、多層配線板、光伝送体である。前記多層配線板としては、電子デバイス等を実装するための各種基板であり、プリント配線板、ビルドアップ配線板、MCM用基板、インターポーザー等の高密度配線板等が挙げられる。これらの電子・電気部品における絶縁膜としては、バッファコート膜、パッシベーション膜、層間絶縁膜、再配線用絶縁膜、アルファ線遮蔽膜等が挙げられる。
The electronic / electrical parts to which the cured film obtained by curing the curable composition of the present invention can be applied are multilayer wiring boards and optical transmission bodies. Examples of the multilayer wiring board include various boards for mounting electronic devices and the like, and examples thereof include printed wiring boards, build-up wiring boards, MCM boards, and high-density wiring boards such as interposers. Examples of the insulating film in these electronic / electrical parts include a buffer coat film, a passivation film, an interlayer insulating film, a rewiring insulating film, and an alpha ray shielding film.
前記光伝送体とは、光を通過させて伝送、分岐、増幅、または分波/合波等の機能を有する部材をいう。光伝送体は、例えば、光ファイバ、ロッドレンズ、光導波路、光分岐器、光合波器、光分波器、光減衰器、光スイッチ、光アイソレータ、光送信モジュール、光受信モジュール、カプラ、偏向子、光波長変換素子、光変調素子、光集積回路、光/電気混載回路または基板等のそのもの自体やその光伝送部分をいう。
The optical transmission body refers to a member having a function of transmitting, branching, amplifying, demultiplexing / multiplexing, etc. by passing light. Optical transmitters include, for example, optical fibers, rod lenses, optical waveguides, optical splitters, optical multiplexers, optical demultiplexers, optical attenuators, optical switches, optical isolators, optical transmission modules, optical reception modules, couplers, and deflections. This means the optical element, the optical wavelength conversion element, the optical modulation element, the optical integrated circuit, the optical / electrical hybrid circuit, the substrate itself, or the optical transmission portion thereof.
本発明を以下の実施例および比較例により具体的に説明するが、本発明はこれらに限定されない。
The present invention will be specifically described with reference to the following examples and comparative examples, but the present invention is not limited thereto.
例1~8が実施例であり、例9~12が比較例である。
Examples 1 to 8 are examples, and examples 9 to 12 are comparative examples.
(合成例1:プレポリマー(A-1)の合成)
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた5Lガラス製4つ口フラスコに、ペルフルオロビフェニル(225g)、1,3,5-トリヒドロキシベンゼン(40g)、粉末状のモレキュラーシーブス4A(153g)、およびジメチルアセトアミド(以下、DMAcともいう。)(2,388g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(153g)を素早く添加した。撹拌を継続しながら60℃で37時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約14Lに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、70℃で12時間真空乾燥を行って、白色粉末状のプレポリマー中間体(242g)を得た。真空乾燥したプレポリマー中間体をゲルパーミエーションクロマトグラフィー法(GPC)(HLC-8220、東ソー社製)によりポリスチレン換算の数平均分子量(Mn)を求めた。キャリア溶媒はテトラヒドロフランを使用した。数平均分子量(Mn)は7,824であった。 (Synthesis Example 1: Synthesis of Prepolymer (A-1))
A 5-L glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with perfluorobiphenyl (225 g), 1,3,5-trihydroxybenzene (40 g), and powdered molecular sieves 4A (153 g). ) And dimethylacetamide (hereinafter also referred to as DMAc) (2,388 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (153 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 37 hours while stirring was continued. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 14 L of vigorously stirred 0.5N hydrochloric acid water for reprecipitation. After filtration and further washing with pure water twice, vacuum drying was performed at 70 ° C. for 12 hours to obtain a white powdery prepolymer intermediate (242 g). The number average molecular weight (Mn) in terms of polystyrene was determined for the vacuum-dried prepolymer intermediate by gel permeation chromatography (GPC) (HLC-8220, manufactured by Tosoh Corporation). Tetrahydrofuran was used as the carrier solvent. The number average molecular weight (Mn) was 7,824.
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた5Lガラス製4つ口フラスコに、ペルフルオロビフェニル(225g)、1,3,5-トリヒドロキシベンゼン(40g)、粉末状のモレキュラーシーブス4A(153g)、およびジメチルアセトアミド(以下、DMAcともいう。)(2,388g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(153g)を素早く添加した。撹拌を継続しながら60℃で37時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約14Lに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、70℃で12時間真空乾燥を行って、白色粉末状のプレポリマー中間体(242g)を得た。真空乾燥したプレポリマー中間体をゲルパーミエーションクロマトグラフィー法(GPC)(HLC-8220、東ソー社製)によりポリスチレン換算の数平均分子量(Mn)を求めた。キャリア溶媒はテトラヒドロフランを使用した。数平均分子量(Mn)は7,824であった。 (Synthesis Example 1: Synthesis of Prepolymer (A-1))
A 5-L glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with perfluorobiphenyl (225 g), 1,3,5-trihydroxybenzene (40 g), and powdered molecular sieves 4A (153 g). ) And dimethylacetamide (hereinafter also referred to as DMAc) (2,388 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (153 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 37 hours while stirring was continued. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 14 L of vigorously stirred 0.5N hydrochloric acid water for reprecipitation. After filtration and further washing with pure water twice, vacuum drying was performed at 70 ° C. for 12 hours to obtain a white powdery prepolymer intermediate (242 g). The number average molecular weight (Mn) in terms of polystyrene was determined for the vacuum-dried prepolymer intermediate by gel permeation chromatography (GPC) (HLC-8220, manufactured by Tosoh Corporation). Tetrahydrofuran was used as the carrier solvent. The number average molecular weight (Mn) was 7,824.
続いて、ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた5Lガラス製4つ口フラスコに、得られたプレポリマー中間体(120g)、4-アセトキシスチレン(30g)、およびジエチレングリコールジメチルエーテル(1,344g)を仕込んだ。さらに、毎分60回転で撹拌しながら室温下、48質量%水酸化カリウム水溶液(64g)を仕込み、室温下、15時間撹拌した。その後、激しく撹拌した0.5N塩酸水約7Lに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、70℃で12時間真空乾燥を行って、白色粉末状のプレポリマー(A-1)(106g)を得た。得られたプレポリマー(A-1)はエーテル結合およびビニル基を有していた。数平均分子量(Mn)は7,764であった。
Subsequently, a 5 L glass four-necked flask equipped with a Dimroth condenser, a thermocouple thermometer, and a mechanical stirrer was charged with the obtained prepolymer intermediate (120 g), 4-acetoxystyrene (30 g), and diethylene glycol dimethyl ether (1 , 344 g). Furthermore, 48 mass% potassium hydroxide aqueous solution (64g) was prepared at room temperature, stirring at 60 rotations per minute, and it stirred at room temperature for 15 hours. Thereafter, the solution was gradually added dropwise to about 7 L of vigorously stirred 0.5N hydrochloric acid to perform reprecipitation. After filtration, and further washed twice with pure water, vacuum drying was performed at 70 ° C. for 12 hours to obtain a white powdery prepolymer (A-1) (106 g). The obtained prepolymer (A-1) had an ether bond and a vinyl group. The number average molecular weight (Mn) was 7,764.
(合成例2:プレポリマー(A-2)の合成)
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた100mLガラス製4つ口フラスコに、ペンタフルオロスチレン(1.0g)、1,1,1-トリス(4-ヒドロキシフェニル)エタン(2.4g)、およびDMAc(31.1g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(3.8g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、ペルフルオロ-1,3,5-トリフェニルベンゼン(5.0g)をDMAc(45.0g)に溶かした溶液を添加し、さらに60℃で24時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約200mLに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、60℃で12時間真空乾燥を行って、白色粉末状のプレポリマー(A-2)(6.9g)を得た。得られたプレポリマー(A-2)はエーテル結合およびビニル基を有していた。数平均分子量(Mn)は5,300であった。 (Synthesis Example 2: Synthesis of Prepolymer (A-2))
A 100 mL glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with pentafluorostyrene (1.0 g), 1,1,1-tris (4-hydroxyphenyl) ethane (2.4 g). ), And DMAc (31.1 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (3.8 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, a solution of perfluoro-1,3,5-triphenylbenzene (5.0 g) in DMAc (45.0 g) was added, and the mixture was further heated at 60 ° C. for 24 hours. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 200 mL of 0.5N aqueous hydrochloric acid which was vigorously stirred to perform reprecipitation. After filtration, and further washed twice with pure water, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (A-2) (6.9 g). The obtained prepolymer (A-2) had an ether bond and a vinyl group. The number average molecular weight (Mn) was 5,300.
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた100mLガラス製4つ口フラスコに、ペンタフルオロスチレン(1.0g)、1,1,1-トリス(4-ヒドロキシフェニル)エタン(2.4g)、およびDMAc(31.1g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(3.8g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、ペルフルオロ-1,3,5-トリフェニルベンゼン(5.0g)をDMAc(45.0g)に溶かした溶液を添加し、さらに60℃で24時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約200mLに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、60℃で12時間真空乾燥を行って、白色粉末状のプレポリマー(A-2)(6.9g)を得た。得られたプレポリマー(A-2)はエーテル結合およびビニル基を有していた。数平均分子量(Mn)は5,300であった。 (Synthesis Example 2: Synthesis of Prepolymer (A-2))
A 100 mL glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with pentafluorostyrene (1.0 g), 1,1,1-tris (4-hydroxyphenyl) ethane (2.4 g). ), And DMAc (31.1 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (3.8 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, a solution of perfluoro-1,3,5-triphenylbenzene (5.0 g) in DMAc (45.0 g) was added, and the mixture was further heated at 60 ° C. for 24 hours. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 200 mL of 0.5N aqueous hydrochloric acid which was vigorously stirred to perform reprecipitation. After filtration, and further washed twice with pure water, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (A-2) (6.9 g). The obtained prepolymer (A-2) had an ether bond and a vinyl group. The number average molecular weight (Mn) was 5,300.
(合成例3:プレポリマー(A-3)の合成)
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた100mLガラス製4つ口フラスコに、ペンタフルオロスチレン(2.2g)、1,1,1-トリス(4-ヒドロキシフェニル)エタン(3.3g)、およびDMAc(49.2g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(5.1g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、ペルフルオロビフェニル(4.0g)をDMAc(36.0g)に溶かした溶液を添加し、さらに60℃で17時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約300mLに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、60℃で12時間真空乾燥を行って、白色粉末状のプレポリマー(A-3)(7.5g)を得た。得られたプレポリマー(A-3)はエーテル結合およびビニル基を有していた。数平均分子量(Mn)は6,500であった。 (Synthesis Example 3: Synthesis of Prepolymer (A-3))
A 100 mL glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with pentafluorostyrene (2.2 g), 1,1,1-tris (4-hydroxyphenyl) ethane (3.3 g). ) And DMAc (49.2 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (5.1 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, a solution of perfluorobiphenyl (4.0 g) in DMAc (36.0 g) was added, and the mixture was further heated at 60 ° C. for 17 hours. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 300 mL of 0.5N aqueous hydrochloric acid which was vigorously stirred to perform reprecipitation. After filtration, and further washed twice with pure water, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (A-3) (7.5 g). The obtained prepolymer (A-3) had an ether bond and a vinyl group. The number average molecular weight (Mn) was 6,500.
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた100mLガラス製4つ口フラスコに、ペンタフルオロスチレン(2.2g)、1,1,1-トリス(4-ヒドロキシフェニル)エタン(3.3g)、およびDMAc(49.2g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(5.1g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、ペルフルオロビフェニル(4.0g)をDMAc(36.0g)に溶かした溶液を添加し、さらに60℃で17時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約300mLに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、60℃で12時間真空乾燥を行って、白色粉末状のプレポリマー(A-3)(7.5g)を得た。得られたプレポリマー(A-3)はエーテル結合およびビニル基を有していた。数平均分子量(Mn)は6,500であった。 (Synthesis Example 3: Synthesis of Prepolymer (A-3))
A 100 mL glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with pentafluorostyrene (2.2 g), 1,1,1-tris (4-hydroxyphenyl) ethane (3.3 g). ) And DMAc (49.2 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (5.1 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, a solution of perfluorobiphenyl (4.0 g) in DMAc (36.0 g) was added, and the mixture was further heated at 60 ° C. for 17 hours. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 300 mL of 0.5N aqueous hydrochloric acid which was vigorously stirred to perform reprecipitation. After filtration, and further washed twice with pure water, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (A-3) (7.5 g). The obtained prepolymer (A-3) had an ether bond and a vinyl group. The number average molecular weight (Mn) was 6,500.
(合成例4:プレポリマー(A-4)の合成)
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた100mLガラス製4つ口フラスコに、ペンタフルオロスチレン(2.4g)、1,1,1-トリス(4-ヒドロキシフェニル)エタン(3.2g)、およびDMAc(50.8g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(5.0g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、ペルフルオロビフェニル(3.5g)をDMAc(31.5g)に溶かした溶液を添加し、さらに60℃で17時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約300mLに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、60℃で12時間真空乾燥を行って、白色粉末状のプレポリマー(A-4)(7.80g)を得た。得られたプレポリマー(A-4)はエーテル結合およびビニル基を有していた。数平均分子量(Mn)は3,600であった。 (Synthesis Example 4: Synthesis of Prepolymer (A-4))
A 100 mL glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with pentafluorostyrene (2.4 g), 1,1,1-tris (4-hydroxyphenyl) ethane (3.2 g). ) And DMAc (50.8 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (5.0 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, a solution of perfluorobiphenyl (3.5 g) in DMAc (31.5 g) was added, and the mixture was further heated at 60 ° C. for 17 hours. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 300 mL of 0.5N aqueous hydrochloric acid which was vigorously stirred to perform reprecipitation. After filtration, and further washed twice with pure water, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (A-4) (7.80 g). The obtained prepolymer (A-4) had an ether bond and a vinyl group. The number average molecular weight (Mn) was 3,600.
ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラの付いた100mLガラス製4つ口フラスコに、ペンタフルオロスチレン(2.4g)、1,1,1-トリス(4-ヒドロキシフェニル)エタン(3.2g)、およびDMAc(50.8g)を仕込んだ。毎分60回転で撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(5.0g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、ペルフルオロビフェニル(3.5g)をDMAc(31.5g)に溶かした溶液を添加し、さらに60℃で17時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約300mLに徐々に滴下し、再沈殿を行った。ろ過後、さらに純水で2回洗浄した後に、60℃で12時間真空乾燥を行って、白色粉末状のプレポリマー(A-4)(7.80g)を得た。得られたプレポリマー(A-4)はエーテル結合およびビニル基を有していた。数平均分子量(Mn)は3,600であった。 (Synthesis Example 4: Synthesis of Prepolymer (A-4))
A 100 mL glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was charged with pentafluorostyrene (2.4 g), 1,1,1-tris (4-hydroxyphenyl) ethane (3.2 g). ) And DMAc (50.8 g). The mixture was heated on an oil bath with stirring at 60 rpm, and sodium carbonate (5.0 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, a solution of perfluorobiphenyl (3.5 g) in DMAc (31.5 g) was added, and the mixture was further heated at 60 ° C. for 17 hours. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 300 mL of 0.5N aqueous hydrochloric acid which was vigorously stirred to perform reprecipitation. After filtration, and further washed twice with pure water, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (A-4) (7.80 g). The obtained prepolymer (A-4) had an ether bond and a vinyl group. The number average molecular weight (Mn) was 3,600.
(例1)
サンプル瓶に合成例1で得られたプレポリマー(A-1)の3.8g、感光剤としてIRGACURE OXE01(チバスペシャリティーケミカルズ社製)の0.19g、チオール系化合物として前記化合物(b-3)(商品名:カレンズMT PE1、昭和電工社製)の0.038g、およびシクロヘキサノンの5.972gを仕込んで、ポリマー濃度38質量%の溶液を調製した(プレポリマー溶液(1)とする)。このプレポリマー溶液(1)を用いて以下の評価を行った。各成分の配合量(質量部)および評価結果を表1に示した。 (Example 1)
In a sample bottle, 3.8 g of prepolymer (A-1) obtained in Synthesis Example 1, 0.19 g of IRGACURE OXE01 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, and the compound (b-3) as a thiol compound ) (Trade name: Karenz MT PE1, Showa Denko Co., Ltd.) 0.038 g and cyclohexanone 5.972 g were charged to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution (1)). The following evaluation was performed using this prepolymer solution (1). Table 1 shows the blending amount (parts by mass) of each component and the evaluation results.
サンプル瓶に合成例1で得られたプレポリマー(A-1)の3.8g、感光剤としてIRGACURE OXE01(チバスペシャリティーケミカルズ社製)の0.19g、チオール系化合物として前記化合物(b-3)(商品名:カレンズMT PE1、昭和電工社製)の0.038g、およびシクロヘキサノンの5.972gを仕込んで、ポリマー濃度38質量%の溶液を調製した(プレポリマー溶液(1)とする)。このプレポリマー溶液(1)を用いて以下の評価を行った。各成分の配合量(質量部)および評価結果を表1に示した。 (Example 1)
In a sample bottle, 3.8 g of prepolymer (A-1) obtained in Synthesis Example 1, 0.19 g of IRGACURE OXE01 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, and the compound (b-3) as a thiol compound ) (Trade name: Karenz MT PE1, Showa Denko Co., Ltd.) 0.038 g and cyclohexanone 5.972 g were charged to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution (1)). The following evaluation was performed using this prepolymer solution (1). Table 1 shows the blending amount (parts by mass) of each component and the evaluation results.
[比誘電率]
プレポリマー溶液(1)にシクロヘキサノンを加え、ポリマー濃度26質量%の溶液を調製した。得られた溶液を、4インチシリコンウェハ上に毎分1,500回転で30秒間スピンコートし、厚さ約1μmの湿潤膜を形成した。この湿潤膜をホットプレート(ADT-101、コレット工業社製)により100℃で90秒、200℃で90秒のプリベークを行い、溶媒の一部を蒸発させた。さらに縦型炉を用いて320℃で30分、窒素雰囲気下でのファイナルベークを行い、架橋反応を完結させ、硬化膜を得た。続いて水銀プローバー(SSM-495、SSM社製)によるCV(Cyclic Voltammetry)測定を行い、1MHzでの比誘電率を求めた。なお、得られた硬化膜の厚さを薄膜測定システム(F20、フィルメトリクス社製)によって計測したところ、1.0μmであった。 [Relative permittivity]
Cyclohexanone was added to the prepolymer solution (1) to prepare a solution having a polymer concentration of 26% by mass. The obtained solution was spin-coated on a 4-inch silicon wafer at 1,500 rpm for 30 seconds to form a wet film having a thickness of about 1 μm. This wet film was pre-baked at 100 ° C. for 90 seconds and at 200 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.) to evaporate a part of the solvent. Furthermore, final baking was performed in a nitrogen atmosphere at 320 ° C. for 30 minutes using a vertical furnace to complete the crosslinking reaction, thereby obtaining a cured film. Subsequently, CV (Cyclic Voltammetry) measurement was performed using a mercury prober (SSM-495, manufactured by SSM) to determine the relative dielectric constant at 1 MHz. In addition, it was 1.0 micrometer when the thickness of the obtained cured film was measured with the thin film measuring system (F20, the Filmetrics company make).
プレポリマー溶液(1)にシクロヘキサノンを加え、ポリマー濃度26質量%の溶液を調製した。得られた溶液を、4インチシリコンウェハ上に毎分1,500回転で30秒間スピンコートし、厚さ約1μmの湿潤膜を形成した。この湿潤膜をホットプレート(ADT-101、コレット工業社製)により100℃で90秒、200℃で90秒のプリベークを行い、溶媒の一部を蒸発させた。さらに縦型炉を用いて320℃で30分、窒素雰囲気下でのファイナルベークを行い、架橋反応を完結させ、硬化膜を得た。続いて水銀プローバー(SSM-495、SSM社製)によるCV(Cyclic Voltammetry)測定を行い、1MHzでの比誘電率を求めた。なお、得られた硬化膜の厚さを薄膜測定システム(F20、フィルメトリクス社製)によって計測したところ、1.0μmであった。 [Relative permittivity]
Cyclohexanone was added to the prepolymer solution (1) to prepare a solution having a polymer concentration of 26% by mass. The obtained solution was spin-coated on a 4-inch silicon wafer at 1,500 rpm for 30 seconds to form a wet film having a thickness of about 1 μm. This wet film was pre-baked at 100 ° C. for 90 seconds and at 200 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.) to evaporate a part of the solvent. Furthermore, final baking was performed in a nitrogen atmosphere at 320 ° C. for 30 minutes using a vertical furnace to complete the crosslinking reaction, thereby obtaining a cured film. Subsequently, CV (Cyclic Voltammetry) measurement was performed using a mercury prober (SSM-495, manufactured by SSM) to determine the relative dielectric constant at 1 MHz. In addition, it was 1.0 micrometer when the thickness of the obtained cured film was measured with the thin film measuring system (F20, the Filmetrics company make).
[残留応力]
プレポリマー溶液(1)にシクロヘキサノンを加え、ポリマー濃度34質量%の溶液を調製した(プレポリマー溶液(1-2))。得られた溶液を用いて、あらかじめウェハ形状を薄膜ストレス測定装置(FLX-2320-S、KLA-Tencor社製)によって測定しておいた4インチシリコンウェハ上に、毎分2,000回転で30秒間スピンコートし、厚さ約7μmの湿潤膜を形成した。この湿潤膜をホットプレート(ADT-101、コレット工業社製)による60℃で90秒のプリベークの後、露光機(UL-7000、Quintel社製)により照射エネルギーが1,530mJ/cm2になるように紫外線による全面露光を行った。この膜をシクロヘキサノンで現像し、縦型炉を用いて190℃で2時間、窒素雰囲気下でのファイナルベークを行い、膜厚約6.6μmの硬化膜を得た。膜厚は触針式表面形状測定器(Dektak-3ST、Sloan社製)で測定した。硬化膜の残留応力を薄膜ストレス測定装置(FLX-2320-S、KLA-Tencor社製)を用いて測定した。 [Residual stress]
Cyclohexanone was added to the prepolymer solution (1) to prepare a solution having a polymer concentration of 34% by mass (prepolymer solution (1-2)). Using the obtained solution, a wafer shape was previously measured with a thin film stress measuring apparatus (FLX-2320-S, manufactured by KLA-Tencor) on a 4-inch silicon wafer at 30 rpm at 30 rpm. The film was spin-coated for 2 seconds to form a wet film having a thickness of about 7 μm. This wet film is pre-baked at 60 ° C. for 90 seconds using a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.), and then the exposure energy (UL-7000, manufactured by Quintel) is 1,530 mJ / cm 2 . As shown in FIG. This film was developed with cyclohexanone and final baked in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 6.6 μm. The film thickness was measured with a stylus type surface shape measuring instrument (Dektak-3ST, manufactured by Sloan). The residual stress of the cured film was measured using a thin film stress measuring apparatus (FLX-2320-S, manufactured by KLA-Tencor).
プレポリマー溶液(1)にシクロヘキサノンを加え、ポリマー濃度34質量%の溶液を調製した(プレポリマー溶液(1-2))。得られた溶液を用いて、あらかじめウェハ形状を薄膜ストレス測定装置(FLX-2320-S、KLA-Tencor社製)によって測定しておいた4インチシリコンウェハ上に、毎分2,000回転で30秒間スピンコートし、厚さ約7μmの湿潤膜を形成した。この湿潤膜をホットプレート(ADT-101、コレット工業社製)による60℃で90秒のプリベークの後、露光機(UL-7000、Quintel社製)により照射エネルギーが1,530mJ/cm2になるように紫外線による全面露光を行った。この膜をシクロヘキサノンで現像し、縦型炉を用いて190℃で2時間、窒素雰囲気下でのファイナルベークを行い、膜厚約6.6μmの硬化膜を得た。膜厚は触針式表面形状測定器(Dektak-3ST、Sloan社製)で測定した。硬化膜の残留応力を薄膜ストレス測定装置(FLX-2320-S、KLA-Tencor社製)を用いて測定した。 [Residual stress]
Cyclohexanone was added to the prepolymer solution (1) to prepare a solution having a polymer concentration of 34% by mass (prepolymer solution (1-2)). Using the obtained solution, a wafer shape was previously measured with a thin film stress measuring apparatus (FLX-2320-S, manufactured by KLA-Tencor) on a 4-inch silicon wafer at 30 rpm at 30 rpm. The film was spin-coated for 2 seconds to form a wet film having a thickness of about 7 μm. This wet film is pre-baked at 60 ° C. for 90 seconds using a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.), and then the exposure energy (UL-7000, manufactured by Quintel) is 1,530 mJ / cm 2 . As shown in FIG. This film was developed with cyclohexanone and final baked in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 6.6 μm. The film thickness was measured with a stylus type surface shape measuring instrument (Dektak-3ST, manufactured by Sloan). The residual stress of the cured film was measured using a thin film stress measuring apparatus (FLX-2320-S, manufactured by KLA-Tencor).
[弾性率、引張破断応力、および引張破断伸度]
プレポリマー溶液(1)を用いて、6インチシリコンウェハ上に毎分1,000回転で30秒間スピンコートし、湿潤膜を形成した。ホットプレート(ADT-101、コレット工業社製)による60℃で90秒のプリベークの後、露光機(UL-7000、Quintel社製)により照射エネルギーが1,530mJ/cm2になるように紫外線による全面露光を行った。この膜を現像し、縦型炉を用い190℃で2時間、窒素雰囲気下でのファイナルベークを行い、膜厚約20μmの硬化膜を得た。続いて硬化膜をピンセットを用いてウェハから剥離し、自立膜を得た。この自立膜の弾性率、引張破断応力および伸度を、引張試験機(テンシロン(登録商標)、東洋ボールドウィン社製)を用い、ASTM-D882に準じて測定した。ただし、チャック間距離は10mm、引張速度は0.5mm/minとした。また、測定に供するサンプル(フィルム)は、ASTM-D1822に準じた形状(細部の幅が3.18mm、長さが9.53mmのダンベル形状)とし、厚さは20μmとした。 [Elastic modulus, tensile breaking stress, and tensile breaking elongation]
The prepolymer solution (1) was spin-coated on a 6-inch silicon wafer at 1,000 rpm for 30 seconds to form a wet film. After pre-baking at 60 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.), the exposure energy (UL-7000, manufactured by Quintel) is applied with ultraviolet rays so that the irradiation energy is 1,530 mJ / cm 2. Full exposure was performed. This film was developed and subjected to final baking in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 20 μm. Subsequently, the cured film was peeled from the wafer using tweezers to obtain a self-supporting film. The elastic modulus, tensile rupture stress, and elongation of this self-supporting film were measured according to ASTM-D882 using a tensile tester (Tensilon (registered trademark), manufactured by Toyo Baldwin). However, the distance between chucks was 10 mm, and the tensile speed was 0.5 mm / min. The sample (film) used for the measurement had a shape according to ASTM-D1822 (dumb shape with a detail width of 3.18 mm and a length of 9.53 mm) and a thickness of 20 μm.
プレポリマー溶液(1)を用いて、6インチシリコンウェハ上に毎分1,000回転で30秒間スピンコートし、湿潤膜を形成した。ホットプレート(ADT-101、コレット工業社製)による60℃で90秒のプリベークの後、露光機(UL-7000、Quintel社製)により照射エネルギーが1,530mJ/cm2になるように紫外線による全面露光を行った。この膜を現像し、縦型炉を用い190℃で2時間、窒素雰囲気下でのファイナルベークを行い、膜厚約20μmの硬化膜を得た。続いて硬化膜をピンセットを用いてウェハから剥離し、自立膜を得た。この自立膜の弾性率、引張破断応力および伸度を、引張試験機(テンシロン(登録商標)、東洋ボールドウィン社製)を用い、ASTM-D882に準じて測定した。ただし、チャック間距離は10mm、引張速度は0.5mm/minとした。また、測定に供するサンプル(フィルム)は、ASTM-D1822に準じた形状(細部の幅が3.18mm、長さが9.53mmのダンベル形状)とし、厚さは20μmとした。 [Elastic modulus, tensile breaking stress, and tensile breaking elongation]
The prepolymer solution (1) was spin-coated on a 6-inch silicon wafer at 1,000 rpm for 30 seconds to form a wet film. After pre-baking at 60 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.), the exposure energy (UL-7000, manufactured by Quintel) is applied with ultraviolet rays so that the irradiation energy is 1,530 mJ / cm 2. Full exposure was performed. This film was developed and subjected to final baking in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 20 μm. Subsequently, the cured film was peeled from the wafer using tweezers to obtain a self-supporting film. The elastic modulus, tensile rupture stress, and elongation of this self-supporting film were measured according to ASTM-D882 using a tensile tester (Tensilon (registered trademark), manufactured by Toyo Baldwin). However, the distance between chucks was 10 mm, and the tensile speed was 0.5 mm / min. The sample (film) used for the measurement had a shape according to ASTM-D1822 (dumb shape with a detail width of 3.18 mm and a length of 9.53 mm) and a thickness of 20 μm.
[吸水率]
上記弾性率、引張破断応力、および引張破断伸度測定時に作製した20μm厚の自立膜を50mg取り分けて試料とした。試料を温度25℃、湿度0%RHに設定した吸水率測定機(IGA SORP、Hiden社製)に入れ、試料の質量が変化しなくなったのを確認した後、設定温度85℃、湿度85RH%に変更して1時間保持し、試料の質量変化から次のように吸水率を計算した。
吸水率=(([設定温度85℃、湿度85%RH時の試料の質量]-[設定温度25℃、湿度0%RH時の試料の質量])/[設定温度25℃、湿度0%RH時の試料の質量])×100。 [Water absorption rate]
50 mg of a 20 μm-thick free-standing film prepared at the time of measuring the elastic modulus, tensile breaking stress, and tensile breaking elongation was used as a sample. The sample was placed in a water absorption measuring device (IGA SORP, manufactured by Hiden) set at a temperature of 25 ° C. and a humidity of 0% RH. After confirming that the mass of the sample did not change, a set temperature of 85 ° C. and a humidity of 85 RH% The water absorption was calculated from the change in mass of the sample as follows.
Water absorption rate = (([Sample weight at set temperature 85 ° C., humidity 85% RH] − [Sample weight at set temperature 25 ° C., humidity 0% RH]) / [Set temperature 25 ° C., humidity 0% RH] Sample mass at time]) × 100.
上記弾性率、引張破断応力、および引張破断伸度測定時に作製した20μm厚の自立膜を50mg取り分けて試料とした。試料を温度25℃、湿度0%RHに設定した吸水率測定機(IGA SORP、Hiden社製)に入れ、試料の質量が変化しなくなったのを確認した後、設定温度85℃、湿度85RH%に変更して1時間保持し、試料の質量変化から次のように吸水率を計算した。
吸水率=(([設定温度85℃、湿度85%RH時の試料の質量]-[設定温度25℃、湿度0%RH時の試料の質量])/[設定温度25℃、湿度0%RH時の試料の質量])×100。 [Water absorption rate]
50 mg of a 20 μm-thick free-standing film prepared at the time of measuring the elastic modulus, tensile breaking stress, and tensile breaking elongation was used as a sample. The sample was placed in a water absorption measuring device (IGA SORP, manufactured by Hiden) set at a temperature of 25 ° C. and a humidity of 0% RH. After confirming that the mass of the sample did not change, a set temperature of 85 ° C. and a humidity of 85 RH% The water absorption was calculated from the change in mass of the sample as follows.
Water absorption rate = (([Sample weight at set temperature 85 ° C., humidity 85% RH] − [Sample weight at set temperature 25 ° C., humidity 0% RH]) / [Set temperature 25 ° C., humidity 0% RH] Sample mass at time]) × 100.
[積層耐クラック性]
プレポリマー溶液(1-2)を用いて、6インチシリコンウェハ上に毎分1,500回転で30秒間スピンコートし、厚さ約7μmの湿潤膜を形成した。ホットプレート(ADT-101、コレット工業社製)による60℃で90秒のプリベークの後、露光機(UL-7000、Quintel社製)により照射エネルギーが1,530mJ/cm2になるように100μm幅のライン&スペースのパターン露光を行った。この膜をシクロヘキサノンで現像し、縦型炉を用い190℃で2時間、窒素雰囲気下でのファイナルベークを行い、膜厚約6.6μmの硬化膜を得た。この1層目の硬化膜を塗布したウェハに、重ねて上記のプレポリマー溶液(1-2)を塗布し、プリベーク、露光、現像、ファイナルベークを順次行い、膜厚約7μmの2層目の硬化膜を得た。露光を全面露光とした以外は1層目の形成時と同じにした。1層目のパターン部にクラックが発生しているかを顕微鏡(BH2-UMA、オリンパス社製)で倍率50倍にて観察した。クラックが発生していない膜をOK、クラックが発生している膜をNGとした。 [Lamination crack resistance]
Using the prepolymer solution (1-2), a 6-inch silicon wafer was spin-coated at 1,500 rpm for 30 seconds to form a wet film having a thickness of about 7 μm. After pre-baking at 60 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo), the exposure energy (UL-7000, manufactured by Quintel) is 100 μm wide so that the irradiation energy is 1,530 mJ / cm 2. Line & space pattern exposure was performed. This film was developed with cyclohexanone and final baked in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 6.6 μm. The above prepolymer solution (1-2) is applied to the wafer coated with the first cured film, and prebaking, exposure, development, and final baking are sequentially performed, and a second layer having a thickness of about 7 μm is performed. A cured film was obtained. It was the same as the formation of the first layer except that the exposure was the entire surface exposure. It was observed with a microscope (BH2-UMA, manufactured by Olympus Corporation) at a magnification of 50 times whether cracks occurred in the pattern portion of the first layer. The film in which no crack was generated was OK, and the film in which the crack was generated was NG.
プレポリマー溶液(1-2)を用いて、6インチシリコンウェハ上に毎分1,500回転で30秒間スピンコートし、厚さ約7μmの湿潤膜を形成した。ホットプレート(ADT-101、コレット工業社製)による60℃で90秒のプリベークの後、露光機(UL-7000、Quintel社製)により照射エネルギーが1,530mJ/cm2になるように100μm幅のライン&スペースのパターン露光を行った。この膜をシクロヘキサノンで現像し、縦型炉を用い190℃で2時間、窒素雰囲気下でのファイナルベークを行い、膜厚約6.6μmの硬化膜を得た。この1層目の硬化膜を塗布したウェハに、重ねて上記のプレポリマー溶液(1-2)を塗布し、プリベーク、露光、現像、ファイナルベークを順次行い、膜厚約7μmの2層目の硬化膜を得た。露光を全面露光とした以外は1層目の形成時と同じにした。1層目のパターン部にクラックが発生しているかを顕微鏡(BH2-UMA、オリンパス社製)で倍率50倍にて観察した。クラックが発生していない膜をOK、クラックが発生している膜をNGとした。 [Lamination crack resistance]
Using the prepolymer solution (1-2), a 6-inch silicon wafer was spin-coated at 1,500 rpm for 30 seconds to form a wet film having a thickness of about 7 μm. After pre-baking at 60 ° C. for 90 seconds with a hot plate (ADT-101, manufactured by Collet Kogyo), the exposure energy (UL-7000, manufactured by Quintel) is 100 μm wide so that the irradiation energy is 1,530 mJ / cm 2. Line & space pattern exposure was performed. This film was developed with cyclohexanone and final baked in a nitrogen atmosphere at 190 ° C. for 2 hours using a vertical furnace to obtain a cured film having a thickness of about 6.6 μm. The above prepolymer solution (1-2) is applied to the wafer coated with the first cured film, and prebaking, exposure, development, and final baking are sequentially performed, and a second layer having a thickness of about 7 μm is performed. A cured film was obtained. It was the same as the formation of the first layer except that the exposure was the entire surface exposure. It was observed with a microscope (BH2-UMA, manufactured by Olympus Corporation) at a magnification of 50 times whether cracks occurred in the pattern portion of the first layer. The film in which no crack was generated was OK, and the film in which the crack was generated was NG.
[溶液貯蔵安定性]
プレポリマー溶液(1-2)の液調製直後の粘度を液粘度計(VISCOMETER TV-20、東機産業社製)で測定した。続いて、プレポリマー溶液(1-2)をバイアル管に入れて25℃で保管し、28日後の粘度を液粘度計(VISCOMETER TV-20、東機産業社製)で測定した。粘度変化率(液調製直後の粘度を基準とした時の、28日後粘度の変化率)が5%以下の場合をOK、5%を超える場合をNGとした。 [Solution storage stability]
The viscosity immediately after preparation of the prepolymer solution (1-2) was measured with a liquid viscometer (VISCOMETER TV-20, manufactured by Toki Sangyo Co., Ltd.). Subsequently, the prepolymer solution (1-2) was put in a vial tube and stored at 25 ° C., and the viscosity after 28 days was measured with a liquid viscometer (VISCOMETER TV-20, manufactured by Toki Sangyo Co., Ltd.). When the viscosity change rate (change rate of viscosity after 28 days when the viscosity immediately after preparation of the liquid was used as a reference) was 5% or less, OK and when it exceeded 5% were determined as NG.
プレポリマー溶液(1-2)の液調製直後の粘度を液粘度計(VISCOMETER TV-20、東機産業社製)で測定した。続いて、プレポリマー溶液(1-2)をバイアル管に入れて25℃で保管し、28日後の粘度を液粘度計(VISCOMETER TV-20、東機産業社製)で測定した。粘度変化率(液調製直後の粘度を基準とした時の、28日後粘度の変化率)が5%以下の場合をOK、5%を超える場合をNGとした。 [Solution storage stability]
The viscosity immediately after preparation of the prepolymer solution (1-2) was measured with a liquid viscometer (VISCOMETER TV-20, manufactured by Toki Sangyo Co., Ltd.). Subsequently, the prepolymer solution (1-2) was put in a vial tube and stored at 25 ° C., and the viscosity after 28 days was measured with a liquid viscometer (VISCOMETER TV-20, manufactured by Toki Sangyo Co., Ltd.). When the viscosity change rate (change rate of viscosity after 28 days when the viscosity immediately after preparation of the liquid was used as a reference) was 5% or less, OK and when it exceeded 5% were determined as NG.
[ソフトベーク時の耐クラック性]
プレポリマー溶液(1-2)を用いて、6インチシリコンウェハ上に毎分2,000回転で30秒間スピンコートし、厚さ約7μmの湿潤膜を形成した。この湿潤膜を所定温度に設定したホットプレート(ADT-101、コレット工業社製)上に置いて、90秒間加熱した。90秒間加熱後、すぐにシリコンウェハを20℃に設定したホットプレート(プレートFTP-28190、アズワン社製)に置き、30秒間冷却した。その後シリコンウェハを25℃で保管し、クラックの発生を肉眼で観察した。クラックが発生していない膜をOK、クラックが発生している膜をNGとした。 [Crack resistance during soft baking]
Using the prepolymer solution (1-2), a wet film having a thickness of about 7 μm was formed on a 6-inch silicon wafer by spin coating at 2,000 rpm for 30 seconds. This wet film was placed on a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.) set at a predetermined temperature and heated for 90 seconds. After heating for 90 seconds, the silicon wafer was immediately placed on a hot plate (plate FTP-28190, manufactured by ASONE) set at 20 ° C. and cooled for 30 seconds. Thereafter, the silicon wafer was stored at 25 ° C., and the occurrence of cracks was observed with the naked eye. The film in which no crack was generated was OK, and the film in which the crack was generated was NG.
プレポリマー溶液(1-2)を用いて、6インチシリコンウェハ上に毎分2,000回転で30秒間スピンコートし、厚さ約7μmの湿潤膜を形成した。この湿潤膜を所定温度に設定したホットプレート(ADT-101、コレット工業社製)上に置いて、90秒間加熱した。90秒間加熱後、すぐにシリコンウェハを20℃に設定したホットプレート(プレートFTP-28190、アズワン社製)に置き、30秒間冷却した。その後シリコンウェハを25℃で保管し、クラックの発生を肉眼で観察した。クラックが発生していない膜をOK、クラックが発生している膜をNGとした。 [Crack resistance during soft baking]
Using the prepolymer solution (1-2), a wet film having a thickness of about 7 μm was formed on a 6-inch silicon wafer by spin coating at 2,000 rpm for 30 seconds. This wet film was placed on a hot plate (ADT-101, manufactured by Collet Kogyo Co., Ltd.) set at a predetermined temperature and heated for 90 seconds. After heating for 90 seconds, the silicon wafer was immediately placed on a hot plate (plate FTP-28190, manufactured by ASONE) set at 20 ° C. and cooled for 30 seconds. Thereafter, the silicon wafer was stored at 25 ° C., and the occurrence of cracks was observed with the naked eye. The film in which no crack was generated was OK, and the film in which the crack was generated was NG.
例2~例12における各成分の配合量(質量部)および評価結果は、(例1)とあわせて表1にまとめて示した。
(例2)
例1のカレンズMT PE1の添加量を0.19gに変えた以外は実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 The blending amounts (parts by mass) and evaluation results of the components in Examples 2 to 12 are shown in Table 1 together with (Example 1).
(Example 2)
A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.19 g, and a cured film was prepared and evaluated.
(例2)
例1のカレンズMT PE1の添加量を0.19gに変えた以外は実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 The blending amounts (parts by mass) and evaluation results of the components in Examples 2 to 12 are shown in Table 1 together with (Example 1).
(Example 2)
A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.19 g, and a cured film was prepared and evaluated.
(例3)
例1のカレンズMT PE1の添加量を0.38gに変えた以外は実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 3)
A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.38 g, and a cured film was prepared and evaluated.
例1のカレンズMT PE1の添加量を0.38gに変えた以外は実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 3)
A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.38 g, and a cured film was prepared and evaluated.
(例4)
例1のカレンズMT PE1の添加量を0.0038gに変えた以外は実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 4)
A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.0038 g, and a cured film was prepared and evaluated.
例1のカレンズMT PE1の添加量を0.0038gに変えた以外は実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 4)
A curable composition was prepared in the same manner as in Example 1 except that the amount of Karenz MT PE1 added in Example 1 was changed to 0.0038 g, and a cured film was prepared and evaluated.
(例5)
例1のカレンズMT PE1の代わりに前記化合物(b-1)(商品名:カレンズMT BD1、昭和電工社製)を0.38g加えた以外は、実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 5)
A curable composition was prepared in the same manner as in Example 1 except that 0.38 g of the compound (b-1) (trade name: Karenz MT BD1, manufactured by Showa Denko KK) was added instead of Karenz MT PE1 of Example 1. Was prepared, and a cured film was produced and evaluated.
例1のカレンズMT PE1の代わりに前記化合物(b-1)(商品名:カレンズMT BD1、昭和電工社製)を0.38g加えた以外は、実施例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 5)
A curable composition was prepared in the same manner as in Example 1 except that 0.38 g of the compound (b-1) (trade name: Karenz MT BD1, manufactured by Showa Denko KK) was added instead of Karenz MT PE1 of Example 1. Was prepared, and a cured film was produced and evaluated.
(例6)
サンプル瓶に合成例2で得られたプレポリマー(A-2)の3.8g、感光剤としてIRGACURE 369(チバスペシャリティーケミカルズ社製)の0.0076g、カレンズMT PE1(昭和電工社製)の0.38g、およびシクロヘキサノンの5.812gを加え、ポリマー濃度が38質量%の溶液を調製した(プレポリマー溶液(2)とする)。このプレポリマー溶液(2)を用いて例1と同様に硬化膜を作製して評価を行った。 (Example 6)
3.8 g of prepolymer (A-2) obtained in Synthesis Example 2 in a sample bottle, 0.0076 g of IRGACURE 369 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, and Karenz MT PE1 (manufactured by Showa Denko KK) 0.38 g and 5.812 g of cyclohexanone were added to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution (2)). A cured film was prepared and evaluated in the same manner as in Example 1 using this prepolymer solution (2).
サンプル瓶に合成例2で得られたプレポリマー(A-2)の3.8g、感光剤としてIRGACURE 369(チバスペシャリティーケミカルズ社製)の0.0076g、カレンズMT PE1(昭和電工社製)の0.38g、およびシクロヘキサノンの5.812gを加え、ポリマー濃度が38質量%の溶液を調製した(プレポリマー溶液(2)とする)。このプレポリマー溶液(2)を用いて例1と同様に硬化膜を作製して評価を行った。 (Example 6)
3.8 g of prepolymer (A-2) obtained in Synthesis Example 2 in a sample bottle, 0.0076 g of IRGACURE 369 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, and Karenz MT PE1 (manufactured by Showa Denko KK) 0.38 g and 5.812 g of cyclohexanone were added to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution (2)). A cured film was prepared and evaluated in the same manner as in Example 1 using this prepolymer solution (2).
(例7)
サンプル瓶に合成例3で得られたプレポリマーを3.8g、感光剤として2,6-ビス(4-アジドベンザル)-4-メチルシクロヘキサノンを0.038g、カレンズMT PE1(昭和電工社製)を0.38g、およびシクロヘキサノンを5.812g加えてポリマー濃度が38質量%の溶液を調製した(プレポリマー溶液2とする)。このプレポリマー溶液2を用いて例1と同様に硬化膜を作製して評価を行った。 (Example 7)
In a sample bottle, 3.8 g of the prepolymer obtained in Synthesis Example 3, 0.038 g of 2,6-bis (4-azidobenzal) -4-methylcyclohexanone as a photosensitizer, and Karenz MT PE1 (manufactured by Showa Denko) 0.38 g and 5.812 g of cyclohexanone were added to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution 2). A cured film was prepared in the same manner as in Example 1 using this prepolymer solution 2 and evaluated.
サンプル瓶に合成例3で得られたプレポリマーを3.8g、感光剤として2,6-ビス(4-アジドベンザル)-4-メチルシクロヘキサノンを0.038g、カレンズMT PE1(昭和電工社製)を0.38g、およびシクロヘキサノンを5.812g加えてポリマー濃度が38質量%の溶液を調製した(プレポリマー溶液2とする)。このプレポリマー溶液2を用いて例1と同様に硬化膜を作製して評価を行った。 (Example 7)
In a sample bottle, 3.8 g of the prepolymer obtained in Synthesis Example 3, 0.038 g of 2,6-bis (4-azidobenzal) -4-methylcyclohexanone as a photosensitizer, and Karenz MT PE1 (manufactured by Showa Denko) 0.38 g and 5.812 g of cyclohexanone were added to prepare a solution having a polymer concentration of 38% by mass (referred to as prepolymer solution 2). A cured film was prepared in the same manner as in Example 1 using this prepolymer solution 2 and evaluated.
(例8)
サンプル瓶に合成例4で得られたプレポリマーを3.8g、感光剤としてIRGACURE 369(チバスペシャリティーケミカルズ社製)を0.038g、カレンズMT BD1(昭和電工社製)を0.38g、およびシクロヘキサノンを5.812g加えてポリマー濃度が38質量%の溶液を調製した(プレポリマー溶液2とする)。このプレポリマー溶液2を用いて例1と同様に硬化膜を作製して評価を行った。 (Example 8)
3.8 g of the prepolymer obtained in Synthesis Example 4 in a sample bottle, 0.038 g of IRGACURE 369 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, 0.38 g of Karenz MT BD1 (manufactured by Showa Denko), and A solution having a polymer concentration of 38% by mass was prepared by adding 5.812 g of cyclohexanone (referred to as prepolymer solution 2). A cured film was prepared in the same manner as in Example 1 using this prepolymer solution 2 and evaluated.
サンプル瓶に合成例4で得られたプレポリマーを3.8g、感光剤としてIRGACURE 369(チバスペシャリティーケミカルズ社製)を0.038g、カレンズMT BD1(昭和電工社製)を0.38g、およびシクロヘキサノンを5.812g加えてポリマー濃度が38質量%の溶液を調製した(プレポリマー溶液2とする)。このプレポリマー溶液2を用いて例1と同様に硬化膜を作製して評価を行った。 (Example 8)
3.8 g of the prepolymer obtained in Synthesis Example 4 in a sample bottle, 0.038 g of IRGACURE 369 (manufactured by Ciba Specialty Chemicals) as a photosensitizer, 0.38 g of Karenz MT BD1 (manufactured by Showa Denko), and A solution having a polymer concentration of 38% by mass was prepared by adding 5.812 g of cyclohexanone (referred to as prepolymer solution 2). A cured film was prepared in the same manner as in Example 1 using this prepolymer solution 2 and evaluated.
(例9)
例1のカレンズMT PE1を添加しなかった以外は例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 9)
A curable composition was prepared in the same manner as in Example 1 except that Karenz MT PE1 of Example 1 was not added, and a cured film was prepared and evaluated.
例1のカレンズMT PE1を添加しなかった以外は例1と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 9)
A curable composition was prepared in the same manner as in Example 1 except that Karenz MT PE1 of Example 1 was not added, and a cured film was prepared and evaluated.
(例10)
例6のカレンズMT PE1を添加しなかった以外は例6と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 10)
A curable composition was prepared in the same manner as in Example 6 except that Karenz MT PE1 of Example 6 was not added, and a cured film was prepared and evaluated.
例6のカレンズMT PE1を添加しなかった以外は例6と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 10)
A curable composition was prepared in the same manner as in Example 6 except that Karenz MT PE1 of Example 6 was not added, and a cured film was prepared and evaluated.
(例11)
例7のカレンズMT PE1を添加しなかった以外は例7と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 11)
A curable composition was prepared in the same manner as in Example 7 except that Karenz MT PE1 of Example 7 was not added, and a cured film was prepared and evaluated.
例7のカレンズMT PE1を添加しなかった以外は例7と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 11)
A curable composition was prepared in the same manner as in Example 7 except that Karenz MT PE1 of Example 7 was not added, and a cured film was prepared and evaluated.
(例12)
例8のカレンズMT BD1を添加しなかった以外は例8と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 12)
A curable composition was prepared in the same manner as in Example 8 except that Karenz MT BD1 of Example 8 was not added, and a cured film was prepared and evaluated.
例8のカレンズMT BD1を添加しなかった以外は例8と同様の方法で硬化性組成物を調製し、硬化膜を作製して評価を実施した。 (Example 12)
A curable composition was prepared in the same manner as in Example 8 except that Karenz MT BD1 of Example 8 was not added, and a cured film was prepared and evaluated.
表1に示されているように、例2、および例3のプレポリマー溶液の貯蔵安定性は良好であった。また、例1~8で得られた硬化膜は、比誘電率が低く、残留応力が小さく、弾性率が高く、引張破断伸度が高く、ソフトベーク時の耐クラック性が、80℃でもクラックが発生しないという、優れた特性を有していた。特に例1~3および5では、ソフトベーク時の耐クラック性が、120℃でもクラックが発生しなかった。また、例4はチオール系化合物(B)としてPE1を0.1質量部(プレポリマーの100質量部に対して)使用しただけでも、使用しない例9と比べて良好なソフトベーク時の耐クラック性を有していた。すなわち、例9が65℃でもクラックが発生するのに対し、例4は80℃でもクラックが発生しなかった。
As shown in Table 1, the storage stability of the prepolymer solutions of Examples 2 and 3 was good. Further, the cured films obtained in Examples 1 to 8 have a low relative dielectric constant, a small residual stress, a high elastic modulus, a high tensile breaking elongation, and a crack resistance during soft baking at 80 ° C. It had the outstanding characteristic that no occurs. Particularly in Examples 1 to 3 and 5, the crack resistance during soft baking was not cracked even at 120 ° C. Further, in Example 4, even when 0.1 part by weight of PE1 was used as the thiol compound (B) (with respect to 100 parts by weight of the prepolymer), the crack resistance during soft baking was better than that in Example 9 in which PE1 was not used. Had sex. That is, cracks occurred in Example 9 even at 65 ° C., whereas no cracks occurred in Example 4 even at 80 ° C.
一方、硬化性組成物にチオール系化合物(B)を添加しなかった例9~12で得られた硬化膜は、比誘電率は低いが、残留応力が高く、弾性率が低く、引張破断伸度が低く、ソフトベーク時クラック試験において、80℃でもクラックが発生した。
On the other hand, the cured films obtained in Examples 9 to 12 in which the thiol compound (B) was not added to the curable composition had a low relative dielectric constant, a high residual stress, a low elastic modulus, and a tensile elongation at break. The degree of cracking was low, and cracks occurred even at 80 ° C. in the crack test during soft baking.
本発明の硬化性組成物を用いれば、高靭性、低膜ストレス、低誘電率の硬化膜が提供され、得られた硬化膜は多層配線板、光伝送体用の膜として使用できる。
なお、2009年10月22日に出願された日本特許出願2009-243682号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 If the curable composition of the present invention is used, a cured film having high toughness, low film stress, and low dielectric constant is provided, and the obtained cured film can be used as a film for a multilayer wiring board or an optical transmission body.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2009-243682, filed on October 22, 2009, are incorporated herein as the disclosure of the specification of the present invention. Is.
なお、2009年10月22日に出願された日本特許出願2009-243682号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 If the curable composition of the present invention is used, a cured film having high toughness, low film stress, and low dielectric constant is provided, and the obtained cured film can be used as a film for a multilayer wiring board or an optical transmission body.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2009-243682, filed on October 22, 2009, are incorporated herein as the disclosure of the specification of the present invention. Is.
Claims (10)
- 架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)と、
1分子あたりメルカプト基を2~10個有するチオール系化合物(B)とを含むことを特徴とする、硬化性組成物。 A fluorine-containing polyarylene prepolymer (A) having a crosslinkable functional group;
A curable composition comprising a thiol compound (B) having 2 to 10 mercapto groups per molecule. - 前記含フッ素ポリアリーレンプレポリマー(A)の100質量部に対する、チオール系化合物(B)の割合が0.01~20質量部である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the ratio of the thiol compound (B) to 0.01 to 20 parts by mass with respect to 100 parts by mass of the fluorine-containing polyarylene prepolymer (A).
- 前記チオール系化合物(B)が1分子あたりメルカプト基を2~6個有する、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the thiol compound (B) has 2 to 6 mercapto groups per molecule.
- 前記チオール系化合物(B)が下式(1)で表わされる基を1個以上有する化合物である、請求項1~3のいずれか一項に記載の硬化性組成物。
HS-CH(R1)-CH2-CO- ・・・式(1)
(ただし、R1は炭素数が1~20の1価炭化水素基。) The curable composition according to any one of claims 1 to 3, wherein the thiol compound (B) is a compound having one or more groups represented by the following formula (1).
HS—CH (R 1 ) —CH 2 —CO— Formula (1)
(However, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.) - 前記チオール系化合物(B)が下式(2)で表わされる化合物である、請求項1~4のいずれか一項に記載の硬化性組成物。
(RaO-Rb)n-Rc ・・・式(2)
(ただし、RaはHS-CH(R1)-CH2-CO-基、R1は炭素数が1~20の1価炭化水素基、Rbは炭素数が1~10の2価炭化水素基、Rcは窒素原子または酸素原子を含んでもよい炭素数が1~20のn価炭化水素基、nは2~10の整数。) The curable composition according to any one of claims 1 to 4, wherein the thiol compound (B) is a compound represented by the following formula (2).
(R a O—R b ) n —R c Formula (2)
(Where R a is an HS—CH (R 1 ) —CH 2 —CO— group, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R b is a divalent carbon group having 1 to 10 carbon atoms. A hydrogen group, R c is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom or an oxygen atom, and n is an integer of 2 to 10.) - 前記含フッ素ポリアリーレンプレポリマー(A)の架橋性官能基が、ビニル基、メタクリロイル基、メタクリロイルオキシ基、アクリロイル基、アクリロイルオキシ基、トリフルオロビニルオキシ基、エチニル基、およびシクロブタレン環からなる群から選ばれる1種以上である、請求項1~5のいずれか一項に記載の硬化性組成物。 The crosslinkable functional group of the fluorine-containing polyarylene prepolymer (A) is selected from the group consisting of a vinyl group, a methacryloyl group, a methacryloyloxy group, an acryloyl group, an acryloyloxy group, a trifluorovinyloxy group, an ethynyl group, and a cyclobutalene ring. The curable composition according to any one of claims 1 to 5, which is one or more selected.
- さらに感光剤を含む、請求項1~6のいずれか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, further comprising a photosensitizer.
- 請求項1~7のいずれか一項に記載の硬化性組成物と溶媒とを含む塗布用組成物。 A coating composition comprising the curable composition according to any one of claims 1 to 7 and a solvent.
- 請求項1~7のいずれか一項に記載の硬化性組成物を硬化させて得られる硬化膜。 A cured film obtained by curing the curable composition according to any one of claims 1 to 7.
- 誘電率が2.5~3.5である、請求項9に記載の硬化膜。 The cured film according to claim 9, having a dielectric constant of 2.5 to 3.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011537289A JP5655788B2 (en) | 2009-10-22 | 2010-10-20 | Curable composition and cured film using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-243682 | 2009-10-22 | ||
JP2009243682 | 2009-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011049142A1 true WO2011049142A1 (en) | 2011-04-28 |
Family
ID=43900365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068520 WO2011049142A1 (en) | 2009-10-22 | 2010-10-20 | Curable composition and cured film utilizing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5655788B2 (en) |
WO (1) | WO2011049142A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2781528A4 (en) * | 2011-11-18 | 2015-06-24 | Asahi Glass Co Ltd | Curable composition, composition for application, cured film, laser processing method, and manufacturing method for multi-layer wiring structure |
CN112770907A (en) * | 2018-09-28 | 2021-05-07 | 富士胶片株式会社 | Laminate, method for manufacturing laminate, and capacitance-type input device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6173740A (en) * | 1984-09-20 | 1986-04-15 | Asahi Chem Ind Co Ltd | Photosensitive composition |
JPH1180308A (en) * | 1997-09-01 | 1999-03-26 | Sumitomo Seika Chem Co Ltd | Curable composition and optical material obtained by using the same |
JP2005139401A (en) * | 2003-11-10 | 2005-06-02 | Sekisui Chem Co Ltd | Photocurable adhesive agent for polarization plate and liquid crystal display panel |
JP2005533873A (en) * | 2002-03-09 | 2005-11-10 | シーディーティー オックスフォード リミテッド | Polymerized composition and organic light emitting device including the same |
WO2007119384A1 (en) * | 2006-03-16 | 2007-10-25 | Asahi Glass Company, Limited | Negative-type photosensitive fluorinated aromatic resin composition |
JP2008231409A (en) * | 2007-02-19 | 2008-10-02 | Mitsubishi Rayon Co Ltd | Curable composition and its cured product |
JP2010168452A (en) * | 2009-01-22 | 2010-08-05 | Nippon Steel Chem Co Ltd | Polyene/polythiol-based photosensitive resin composition |
-
2010
- 2010-10-20 JP JP2011537289A patent/JP5655788B2/en not_active Expired - Fee Related
- 2010-10-20 WO PCT/JP2010/068520 patent/WO2011049142A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6173740A (en) * | 1984-09-20 | 1986-04-15 | Asahi Chem Ind Co Ltd | Photosensitive composition |
JPH1180308A (en) * | 1997-09-01 | 1999-03-26 | Sumitomo Seika Chem Co Ltd | Curable composition and optical material obtained by using the same |
JP2005533873A (en) * | 2002-03-09 | 2005-11-10 | シーディーティー オックスフォード リミテッド | Polymerized composition and organic light emitting device including the same |
JP2005139401A (en) * | 2003-11-10 | 2005-06-02 | Sekisui Chem Co Ltd | Photocurable adhesive agent for polarization plate and liquid crystal display panel |
WO2007119384A1 (en) * | 2006-03-16 | 2007-10-25 | Asahi Glass Company, Limited | Negative-type photosensitive fluorinated aromatic resin composition |
JP2008231409A (en) * | 2007-02-19 | 2008-10-02 | Mitsubishi Rayon Co Ltd | Curable composition and its cured product |
JP2010168452A (en) * | 2009-01-22 | 2010-08-05 | Nippon Steel Chem Co Ltd | Polyene/polythiol-based photosensitive resin composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2781528A4 (en) * | 2011-11-18 | 2015-06-24 | Asahi Glass Co Ltd | Curable composition, composition for application, cured film, laser processing method, and manufacturing method for multi-layer wiring structure |
CN112770907A (en) * | 2018-09-28 | 2021-05-07 | 富士胶片株式会社 | Laminate, method for manufacturing laminate, and capacitance-type input device |
Also Published As
Publication number | Publication date |
---|---|
JP5655788B2 (en) | 2015-01-21 |
JPWO2011049142A1 (en) | 2013-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549900B2 (en) | Crosslinkable fluorine-containing aromatic prepolymer and use thereof | |
JP4501391B2 (en) | Crosslinkable fluorine-containing aromatic prepolymer and use thereof | |
JP4730436B2 (en) | Negative photosensitive fluorine-containing aromatic resin composition | |
JP5181725B2 (en) | Photosensitive resin composition, laminate, method for producing the same, and electronic component | |
TWI662363B (en) | Radiation-sensitive resin composition and electronic component | |
TWI689561B (en) | Resin composition, resin film and electronic component | |
KR20160148548A (en) | Radiation-sensitive resin composition, resin film, and electronic component | |
KR102539141B1 (en) | resin composition | |
JP5655788B2 (en) | Curable composition and cured film using the same | |
TW201514239A (en) | Resin composition, resin film, and electronic component | |
JP5181444B2 (en) | Crosslinkable fluorine-containing aromatic prepolymer and cured product thereof | |
JP6844115B2 (en) | Radiation-sensitive resin composition and electronic components | |
KR102669089B1 (en) | Positive radiation sensitive resin composition | |
KR102301534B1 (en) | Radiation-sensitive resin composition and electronic components | |
WO2011086981A1 (en) | Negative photosensitive resin composition, cured film using same, and method for producing substrate | |
JP2007224087A (en) | Optical resin material composition and method for producing optical member | |
WO2022080195A1 (en) | Radiation-sensitive resin composition | |
JP2021155522A (en) | Resin composition, resin film, and touch sensor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10824991 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011537289 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10824991 Country of ref document: EP Kind code of ref document: A1 |