WO2011048912A1 - Heat-sensitive lithographic printing plate and printing method thereof - Google Patents

Heat-sensitive lithographic printing plate and printing method thereof Download PDF

Info

Publication number
WO2011048912A1
WO2011048912A1 PCT/JP2010/066753 JP2010066753W WO2011048912A1 WO 2011048912 A1 WO2011048912 A1 WO 2011048912A1 JP 2010066753 W JP2010066753 W JP 2010066753W WO 2011048912 A1 WO2011048912 A1 WO 2011048912A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming layer
image forming
water
heat
lithographic printing
Prior art date
Application number
PCT/JP2010/066753
Other languages
French (fr)
Japanese (ja)
Inventor
隆 宮崎
由人 大橋
大輔 土居
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009244670A external-priority patent/JP5302848B2/en
Priority claimed from JP2009247913A external-priority patent/JP5238670B2/en
Priority claimed from JP2009273331A external-priority patent/JP5351725B2/en
Priority claimed from JP2010060195A external-priority patent/JP5161910B2/en
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to CN201080047759.5A priority Critical patent/CN102712202B/en
Priority to DE112010004234.9T priority patent/DE112010004234B4/en
Publication of WO2011048912A1 publication Critical patent/WO2011048912A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/04Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/02Positive working, i.e. the exposed (imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/08Developable by water or the fountain solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers

Definitions

  • the present invention generally relates to a heat-sensitive lithographic printing plate using an image forming layer that undergoes phase conversion by heat, and more specifically, a heat-sensitive lithographic plate that does not require a layer removal process such as a conventional ablation method or an on-press development method.
  • the present invention relates to a printing plate and a printing method thereof.
  • JP-A-6-138719 and JP-A-6-250424 disclose plate making using a dry electrophotographic laser printer
  • JP-A-9-58144 discloses on-demand using hot-melt ink
  • a plate making by an ink jet printer, and a plate making by a thermal printer using a thermal transfer ink ribbon are known from JP-A 63-166590.
  • the plate making method using a printer as described above is roughly divided from the conventional light mode type using a visible light laser or the like, and has an advantage that it is not restricted by safety light in handling.
  • printing plates made by these plate making methods are collectively referred to as processless printing plates because they do not require post-exposure development processing that is normally used in conventional optical mode types.
  • a processless printing plate that provides an oleophilic image area by providing an image-forming layer containing a thermoplastic resin or a heat-meltable substance on a support and performing thermal printing with a thermal head or infrared laser. Has been.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 58-199153 (Patent Document 1) or Japanese Patent Application Laid-Open No. 59-174395 (Patent Document 2) directly draws heat on an image forming layer with a thermal head or the like without using a thermal transfer ribbon or the like.
  • Patent Document 2 A heat-sensitive lithographic printing plate from which an oleophilic image area can be obtained is described.
  • JP 2000-190649 A (Patent Document 3) and JP 2000-301846 A (Patent Document 4) describe a thermosensitive lithographic printing plate in which an oleophilic image portion can be obtained by heat drawing with an infrared laser or the like. Is described.
  • heat-sensitive lithographic printing plates generally do not have a sufficient lipophilic / hydrophilic difference between the image area and the non-image area, so that it is difficult to obtain a clear printed image and the printing durability is insufficient. , Had a problem that soiling is likely to occur.
  • Patent Document 5 proposes a method in which an image forming layer contains an inorganic pigment, a thermoplastic resin, and a heat-meltable substance as a heat-sensitive lithographic printing plate capable of obtaining a clear and high image density.
  • the thermosensitive lithographic printing plates described in Patent Document 3 and Patent Document 4 described above are made of a heat-meltable substance that exhibits lipophilicity in order to improve the balance between the lipophilicity of the image area and the hydrophilicity of the non-image area.
  • a method of coating with a substance having a specific thermal conductivity and a technique of hydrophobizing the hydrophilic group of a hydrophilic polymer using a chelate reaction by heat are also disclosed. However, in both cases, it is difficult to control the reaction, and the difference in lipophilicity / hydrophilicity between the image area and the non-image area is not sufficient. The remaining.
  • Patent Document 6 uses a crosslinked hydrophilic resin such as polyvinyl alcohol or carboxymethyl cellulose in the image forming layer. Although it is described that the property and water retention are improved, since the phase conversion of the hydrophilic resin itself is utilized, the level of lipophilicity in the image area is low, and the difference between lipophilicity / hydrophilicity is It was not enough.
  • JP-A-2000-75471 Patent Document 7) uses a thermoplastic resin, a wax dispersion, a water repellent, etc. as a hydrophobic substance, and uses gelatin, polyvinyl alcohol or the like as a hydrophilic substance, and is particularly resistant to water. However, the difference in lipophilicity / hydrophilicity was not sufficient.
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2000-238451 (Patent Document 8) has an image forming layer containing a photothermal conversion substance, thermoplastic resin particles and resin particle isolating substance on a support, and the content ratio of the photothermal conversion substance is a film. Although a technique for improving printing durability by having a gradient in the thickness direction has been introduced, it has not been fully satisfactory. Accordingly, there is a need for a heat-sensitive lithographic printing plate using an image forming layer that undergoes phase conversion by heat, which does not require layer removal processing such as an ablation method or an on-machine development method, and has good printing durability and stain resistance. It was done.
  • Patent Document 9 a lithographic printing plate having an image-forming layer containing a reactant that can be converted to hydrophobicity by heat and a colorant that develops color when heated, and a hydrophilic layer on the outermost layer.
  • the support has an image forming layer containing a photothermal conversion substance, thermoplastic resin particles and resin particle isolating substance, and the content ratio of the photothermal conversion substance has a gradient in the film thickness direction.
  • Patent Document 10 JP 2009-255498 A discloses a technique for adding a specific compound such as diphenylalkane or the like, benzylnaphthalene, dibenzyl oxalate, or diphenoxymethylbenzene.
  • a specific compound such as diphenylalkane or the like, benzylnaphthalene, dibenzyl oxalate, or diphenoxymethylbenzene.
  • Each lithographic printing plate is disclosed, but these also have insufficient difference in hydrophobicity / hydrophilicity, so that the printing durability is insufficient and scumming is likely to occur. A problem that remained.
  • Patent Document 1 since the direct thermal lithographic printing plates described in Patent Document 1, Patent Document 2, Patent Document 9, Patent Document 10 and the like are directly heated and drawn by a thermal head or the like, in addition to the above problems, further, The image area that is melted by heat adheres to the thermal head and the image is distorted, so-called sticking occurs. There is a problem in that printing defects due to so-called head debris are liable to occur due to the heat transfer inhibition from the thermal head and good image formation cannot be performed.
  • the layer removal process such as ablation method or on-machine development method that has good printing durability and stain resistance (water retention), improved printing defects due to head debris and image disturbance due to sticking phenomenon
  • the layer removal process such as ablation method or on-machine development method that has good printing durability and stain resistance (water retention), improved printing defects due to head debris and image disturbance due to sticking phenomenon
  • the first object of the present invention is to provide a phase change by heat that does not require a layer removal treatment such as an ablation method or an on-press development method, which has good printing durability and stain resistance (water retention).
  • Another object of the present invention is to provide a heat-sensitive lithographic printing plate using an image forming layer.
  • An image forming layer (B) which has at least two image forming layers containing a water-soluble polymer compound and a thermoplastic resin on a water resistant support, and is most distant from the water resistant support, and an image forming layer A heat-sensitive lithographic printing plate that satisfies the following requirements i) and / or ii) in the image forming layer (A) closer to the water-resistant support than (B).
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) is higher than the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B).
  • the ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) is the water solubility in the image forming layer (B). Higher than the ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the functional polymer compound.
  • X 1 represents —O— or —CO—O—
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 1 , R 2 and R 3 are bonded to each other to form an aromatic ring
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 4 , R 5 and R 6 are bonded to each other to form an aromatic ring
  • n represents an integer of 1 to 10.
  • R 7 represents an alkyl group, an aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkylsulfonyl group or an arylsulfonyl group, and the naphthalene ring of the general formula (2) may further have a substituent. Good.
  • R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and X 2 represents a single bond or —O—.
  • N represents an integer of 1 to 4.
  • R 10 , R 10 ′ , R 11 and R 11 ′ each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group or An aryloxy group is shown.
  • thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) The difference between the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) and the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) is 0.
  • the heat-sensitive lithographic printing plate according to (1) which is 5 or more.
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) is 1 to 20, and the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) is 0.
  • the ratio of at least one compound selected from the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (B) is 0.5 or less.
  • the heat-sensitive lithographic printing plate as described in (1) above.
  • an image forming layer that has a good printing durability and anti-stain property (water retention) and does not require layer removal processing such as an ablation method or an on-press development method, and undergoes phase conversion by heat.
  • a heat-sensitive lithographic printing plate using can be provided.
  • alkyl means a saturated straight or branched chain hydrocarbon group such as methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, 2 -Butyl, t-butyl, pentyl, hexyl, decanyl and the like.
  • alkoxy refers to a group to which a saturated straight or branched chain hydrocarbon group as described above is attached through an oxygen atom.
  • halogen means chlorine, iodine, fluorine and bromine.
  • aryl means a monovalent cyclic aromatic hydrocarbon group consisting of one or two fused rings, wherein at least one ring is aromatic in nature, such as phenyl, benzyl, naphthyl or Biphenyl is mentioned.
  • the image forming layer of the heat-sensitive lithographic printing plate that satisfies the requirement i) will be described.
  • the heat-sensitive lithographic printing plate i) has at least two image-forming layers containing a water-soluble polymer compound and a thermoplastic resin on a water-resistant support, and is more water-resistant than the image-forming layer (B).
  • Ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) (hereinafter also simply referred to as the image forming layer (A)) close to (the mass of the thermoplastic resin / the mass of the water-soluble polymer compound) Is higher than the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) farthest from the water-resistant support (hereinafter also simply referred to as image forming layer (B)).
  • layer removal treatment such as ablation method or on-press development method, which has good printing durability and scum resistance (water retention), can be performed. It is possible to provide a heat-sensitive lithographic printing plate using an image forming layer that does not require a phase conversion by heat.
  • the heat-sensitive lithographic printing plate (i) has an image forming layer that is converted to hydrophobicity by using phase conversion by heat on a water-resistant support.
  • the layer to be converted to hydrophobic means that when heat is applied, part of the layer is melted and converted to hydrophobic, and the portion to which heat is not applied retains the hydrophilicity of the original layer. Yes. More specifically, when heat is applied, a part of the image forming layer melts and becomes hydrophobic, so that the thermoplastic resin embedded in the water-soluble polymer compound oozes out on the surface of the layer to make it hydrophobic. Sex is expressed.
  • the non-printed portion that is, the non-image portion of the thermoplastic resin remains buried in the water-soluble polymer compound and thus does not exhibit hydrophobicity.
  • the difference in hydrophobicity / hydrophilicity between the image area and the non-image area can be improved. It is important to maintain enough.
  • the hydrophilicity of the surface is increased and the water retention during printing is improved.
  • the improved hydrophobicity is overcome by providing an image forming layer (A) having a higher thermoplastic resin ratio than the image forming layer (B) and close to a water-resistant support, It is estimated that the thermoplastic resin can be sufficiently exuded to the surface during image formation, and both high printing durability and ground stain resistance (water retention) can be achieved.
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image-forming layer (A) is higher than that in the image-forming layer (B).
  • the method for producing the printing plate For example, the image forming layer (A) is applied and then the image forming layer (B) is sequentially applied and stacked, or multiple layers are simultaneously formed by a slide hopper method. There is a method of applying.
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) may be any ratio as long as the ratio is higher than that in the image forming layer (B).
  • the difference between the ratio in A) and the ratio in the image forming layer (B) is preferably 0.5 or more.
  • an image forming layer (C) may be provided between the image forming layer (A) and the image forming layer (B).
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (C) may be higher or lower than that in the image forming layer (B), but the ratio in the image forming layer (A). It is preferable that the ratio is lower than that in the image forming layer (B).
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) (the mass of the thermoplastic resin / the mass of the water-soluble polymer compound) is 0.01 to 10 Preferably, it is 0.1-3.
  • the ratio in the image forming layer (A) is preferably from 0.1 to 50, more preferably from 1 to 20.
  • the image forming layer of the heat-sensitive lithographic printing plate contains a thermoplastic resin.
  • a thermoplastic resin refers to a solid organic polymer compound made of a chain polymer and exhibiting plasticity when heated.
  • the thermoplastic resin of the present invention is added as a thermoplastic resin aqueous dispersion in a coating liquid used for forming an image forming layer, and the coating liquid is applied and dried to form a thermoplastic resin in the image forming layer. It exists as resin particles.
  • thermoplastic resins include styrene butadiene copolymers, acrylonitrile butadiene copolymers, methyl methacrylate butadiene copolymers, styrene acrylonitrile butadiene copolymers, styrene methyl methacrylate butadiene copolymers and other synthetic rubber latexes and their modifications. Things. Examples of modified products of synthetic rubber latex include amino-modified products, polyether-modified products, epoxy-modified products, fatty acid-modified products, carbonyl-modified products, and carboxy-modified products.
  • thermoplastic resins include styrene maleic anhydride copolymer, methyl vinyl ether maleic anhydride copolymer, polyacrylic acid copolymer, polystyrene, styrene / acrylic acid ester copolymer, polyacrylic acid ester, Also included are polymethacrylic acid esters, acrylic acid ester / acrylic acid ester copolymers, and low melting point polyamide resins. These thermoplastic resins can be used alone or in combination of two or more.
  • the thermoplastic resin is preferably a synthetic rubber latex, and particularly preferably a styrene-butadiene copolymer and a modified product thereof.
  • the blending amount of the thermoplastic resin in the entire image forming layer is preferably 5 to 50% by mass with respect to the solid content of the entire image forming layer.
  • the glass transition temperature of the thermoplastic resin is preferably 50 to 150 ° C., more preferably 55 to 120 ° C. If the glass transition temperature is less than 50 ° C., a phase change occurs in a liquid state during the production process, and oleophilicity appears in the non-image area, which may cause printing stains. When the glass transition temperature exceeds 150 ° C., the polymer is hardly melted by heat, and it may be difficult to form a strong image with a relatively small output laser or a small thermal printer.
  • the image forming layer of the heat-sensitive lithographic printing plate contains a water-soluble polymer compound.
  • water-soluble polymer compounds include polyvinyl alcohol and modified products thereof (for example, carboxy-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, silanol-modified polyvinyl alcohol), hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, pullulan and starch, and Examples thereof include polysaccharides such as derivatives, gelatin, casein, sodium alginate, polyvinylpyrrolidone, styrene / maleic acid copolymer salts, styrene / acrylic acid copolymer salts, and the like.
  • water-soluble polymer compounds may be used alone or in combination of two or more.
  • gelatin and polyvinyl alcohol rich in film formation and modified products thereof are selected because they are preferable for maintaining hydrophilicity in the non-image area.
  • the blending amount of the water-soluble polymer compound in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the entire image forming layer.
  • the image forming layer preferably contains a hardening agent (waterproofing agent) depending on the type of the water-soluble polymer compound.
  • a hardening agent waterproofing agent
  • those imparting water resistance by promoting crosslinking of the resin can be used.
  • melamine resin, epoxy resin, polyisocyanate compound, aldehyde compound, silane compound, chromium alum, divinyl sulfone, etc. can be mentioned.
  • the water-soluble polymer compound is gelatin
  • divinyl sulfone is preferably used as the hardener
  • the water-soluble polymer compound is polyvinyl alcohol
  • glyoxal is preferably used as the hardener.
  • the blending amount of the hardener in the entire image forming layer is preferably 0.01 to 30% by mass, more preferably 5 to 5% by weight based on the solid content of the water-soluble polymer compound contained in the entire image forming layer. 30% by mass.
  • the image forming layer i) can contain a heat-meltable substance, and is one of the more preferable forms from the viewpoint of printing durability.
  • the heat-meltable substance to be contained is preferably an organic compound having a melting point of 50 to 150 ° C. If the melting point of the heat-meltable material is less than 50 ° C., it may melt during the production process and cause printed soiling. On the other hand, if the melting point of the hot-melt material exceeds 150 ° C., it may be difficult to melt by applying heat from a thermal head or the like, and the lipophilicity may be poor.
  • heat-meltable substance examples include waxes such as carnauba wax, microcrystalline wax, paraffin wax, and polyethylene wax, and fatty acids such as lauric acid, stearic acid, oleic acid, palmitic acid, behenic acid, and montanic acid. And esters or amides thereof. Further, as the heat-meltable substance, compounds represented by the general formulas (1) to (4) described in detail later in this specification may be used.
  • preferred compounds are 1- (1-naphthoxy) -2-phenoxyethane, 1- (2-naphthoxy) -4-phenoxybutane, 1- ( 2-Isopropylphenoxy) -2- (2-naphthoxy) ethane, 1- (4-methylphenoxy) -3- (2-naphthoxy) propane, 1- (2-methylphenoxy) -2- (2-naphthoxy) ethane 1- (3-methylphenoxy) -2- (2-naphthoxy) ethane, 1- (2-naphthoxy) -2-phenoxyethane, 1- (2-naphthoxy) -6-phenoxyhexane, 1-phenoxy-2 -(2-phenylphenoxy) ethane, 1- (2-methylphenoxy) -2- (4-phenylphenoxy) ethane, 1,4-diphenoxybutane, 1,4-bis ( -Methylphen
  • the above hot-melt materials can be used alone or in combination.
  • the blending amount of the heat-meltable substance in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the entire image forming layer.
  • the content ratio of the heat-meltable substance to the water-soluble polymer compound in the image forming layer (A) is preferably higher than the content ratio in the image forming layer (B).
  • These hot melt materials are solid materials at room temperature. In order to increase the reactivity due to heat, it is preferable to use these hot-melt materials after being finely dispersed.
  • the fine dispersion treatment can be performed by a wet dispersion method generally used at the time of producing a paint, and for example, a bead mill such as a roll mill, a colloid mill, a ball mill, an attritor, and a sand mill can be used.
  • beads in the bead mill ceramic beads such as zirconia, titania, and alumina, metal beads such as chrome and steel, glass beads, and the like can be used.
  • the dispersed particle diameter of the hot-melt material obtained by the fine dispersion treatment is preferably from 0.1 to 1.2 ⁇ m, more preferably from 0.3 to 0.8 ⁇ m in terms of median diameter.
  • the median diameter is the particle diameter (cumulative average diameter) at which the cumulative curve becomes 50% when the total curve of one population of particles is 100%, and the particle size distribution is evaluated.
  • it can be measured using a laser diffraction / scattering particle size distribution measuring apparatus LA920 (manufactured by Horiba, Ltd.) or the like.
  • a developer such as a phenol derivative or an aromatic carboxylic acid derivative used for general heat-sensitive recording paper or pressure-sensitive recording paper is used for ensuring visibility.
  • a color former electro-donating dye precursor
  • developer examples include 4-cumylphenol, hydroquinone monobenzyl ether, 4,4′-isopropylidenediphenol, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4′- Dihydroxydiphenyl-2,2-butane, 4,4′-dihydroxydiphenylmethane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4-hydroxyphenyl) heptane, bis (4 -Hydroxyphenylthioethoxy) methane, 1,5-di (4-hydroxyphenylthio) -3-oxapentane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,4-bis [ ⁇ -Methyl- ⁇ - (4'-hydroxyphenyl) ethyl] benzene, 1,3-bis [ ⁇ -methyl- ⁇ - (4'-hydride) Xylphenyl) ethyl] benzene
  • the color former include (1) 3,3′-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide as a triarylmethane compound. (Crystal violet lactone), 3,3'-bis (p-dimethylaminophenyl) phthalide, 3- (p-dimethylaminophenyl) -3- (1,2-dimethylindol-3-yl) phthalide, 3 -(P-dimethylaminophenyl) -3- (2-methylindol-3-yl) phthalide, 3- (p-dimethylaminophenyl) -3- (2-phenylindol-3-yl) phthalide, 3,3 -Bis (1,2-dimethylindol-3-yl) -5-dimethylaminophthalide, 3,3-bis (1,2-dimethylindol-3-yl) -6- Methylaminophthalide,
  • the image forming layer can also contain a photothermal conversion substance.
  • a photothermal conversion substance By including the photothermal conversion agent, writing with active light such as an infrared laser as well as a thermal head is possible.
  • the photothermal conversion substance a material that efficiently absorbs light and converts it into heat is preferable.
  • the photothermal conversion substance is preferably a near infrared light absorber having an absorption band in the near infrared, for example , Carbon black, cyanine dyes, polymethine dyes, azurenium dyes, squalium dyes, thiopyrylium dyes, naphthoquinone dyes, anthraquinone dyes and other organic compounds, phthalocyanine, azo, thioamide organic metal complexes, or Examples thereof include metal compounds such as iron powder, graphite powder, iron oxide powder, lead oxide, silver oxide, chromium oxide, iron sulfide, and chromium sulfide.
  • the coating amount of the entire image forming layer of the heat-sensitive lithographic printing plate i) is 0.5 to 30 g / dry solids from the viewpoints of printing durability of the image area, water resistance of the non-image area and mechanical strength. m 2 is preferable.
  • the heat-sensitive lithographic printing plate of ii) has at least two image-forming layers containing a water-soluble polymer compound and a thermoplastic resin on a water-resistant support, and is more water-resistant than the image-forming layer (B).
  • the ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) close to (that is, the general formulas (1) to ( The mass of at least one compound selected from the compounds represented by 4) / the mass of the water-soluble polymer compound) is higher than the ratio in the image forming layer (B) farthest from the water-resistant support.
  • the heat-sensitive lithographic printing plate of ii) has a good printing durability and stain resistance (water retention), and further has improved printing defects due to head debris and image disturbance due to sticking phenomenon. The reason why is obtained is not clear, but is estimated as follows.
  • the heat-sensitive lithographic printing plate of ii) has an image forming layer on a water-resistant support that is converted to hydrophobicity by utilizing phase conversion by heat.
  • the layer to be converted to hydrophobic means that when heat is applied, part of the layer is melted and converted to hydrophobic, and the portion to which heat is not applied retains the hydrophilicity of the original layer. Yes. More specifically, when heat is applied, a part of the image forming layer melts and becomes hydrophobic, so that the thermoplastic resin embedded in the water-soluble polymer compound oozes out on the surface of the layer to make it hydrophobic. Sex is expressed.
  • the non-printed portion that is, the non-image portion does not exhibit hydrophobicity because the thermoplastic resin remains buried in the water-soluble polymer compound.
  • hydrophobicity / hydrophilicity there is a difference in hydrophobicity / hydrophilicity between the image area and the non-image area.
  • the hydrophilicity of the surface is reduced by reducing the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (B) farthest from the water-resistant support.
  • the water retention at the time of printing is improved, and at the same time, the hydrophobicity of the image area, which is reduced by this, is lower than that of the compounds represented by the general formulas (1) to (4) rather than the image forming layer (B). It can be overcome by providing an image forming layer (A) having a high ratio and close to a water-resistant support. As a result, when an image is formed by applying heat, the melting start temperature of the thermoplastic resin in the image forming layer (A) is lowered, melted with less energy, and oozed out on the surface of the image portion, thereby achieving high printing durability and durability. It is presumed that both soiling properties (water retention) can be achieved.
  • thermoplastic resin of the image forming layer is added.
  • the melting start temperature is lowered, sticking is improved, and general formulas (1) to (4) for the water-soluble polymer compound in the image forming layer (B) farthest from the water-resistant support in direct contact with the thermal head are shown.
  • the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) in ii) is higher than that in the image forming layer (B).
  • the method for producing the heat-sensitive lithographic printing plate there is no limitation on the method for producing the heat-sensitive lithographic printing plate to be used. For example, a method of applying the image forming layer (A) and then applying the image forming layer (B) sequentially and stacking, or a slide hopper method And a method of applying multiple layers simultaneously.
  • the image forming layer of the thermosensitive lithographic printing plate contains at least one selected from the compounds represented by the general formulas (1) to (4).
  • the compound represented by the general formula (1) will be described below.
  • X 1 represents —O— or —CO—O—
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 1 , R 2 and R 3 may be bonded to each other to form an aromatic ring.
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 4 , R 5 and R 6 may be bonded to each other to form an aromatic ring.
  • n represents an integer of 1 to 10.
  • the compound represented by the general formula (1) is a compound in which X 1 is —O—.
  • R 1 and R 6 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Examples of the compound represented by the general formula (1) include the following compounds, but the present invention is not limited to these: (1) 1- (1-naphthoxy) -2-phenoxyethane; (2) 1- (2-naphthoxy) -4-phenoxybutane; (3) 1- (2-isopropylphenoxy) -2- (2-naphthoxy) ethane; (4) 1- (4-methylphenoxy) -3- (2-naphthoxy) propane; (5) 1- (2-methylphenoxy) -2- (2-naphthoxy) ethane; (6) 1- (3-methylphenoxy) -2- (2-naphthoxy) ethane; (7) 1- (2-naphthoxy) -2-phenoxyethane; (8) 1- (2-naphthoxy) -6-phenoxyhexane; (9) 1-phenoxy-2- (2-phenylphenoxy) ethane; (10) 1- (2-methylphenoxy) -2- (4-phenylphenoxy) e
  • R 7 represents an alkyl group, an aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkylsulfonyl group or an arylsulfonyl group.
  • the naphthalene ring in the formula may further have a substituent, and examples of preferable substituents include an alkyl group, an aryl group, a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, and an alkyloxycarbonyl group. , Alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, sulfamoyl group and the like.
  • R 7 is an alkyl group having 4 to 20 carbon atoms, an aryl group having 4 to 24 carbon atoms, an alkylcarbonyl group having 2 to 20 carbon atoms, or a carbon atom.
  • the substituent that the naphthalene ring may further have is a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having 2 to 20 carbon atoms.
  • the compound is an alkyloxycarbonyl group, an aryloxycarbonyl group having 7 to 20 carbon atoms, or a carbamoyl group having 2 to 25 carbon atoms.
  • Examples of the compound represented by the general formula (2) include the following compounds, but the present invention is not limited to these: (1) 1-benzyloxynaphthalene; (2) 2-Benzyloxynaphthalene: (3) 2-p-chlorobenzyloxynaphthalene; (4) 2-p-isopropylbenzyloxynaphthalene; (5) 2-dodecyloxynaphthalene; (6) 2-decanoyloxynaphthalene; (7) 2-Myristoyloxynaphthalene; (8) 2-p-tert-butylbenzoyloxynaphthalene; (9) 2-benzoyloxynaphthalene; (10) 2-Benzyloxy-3-N- (3-dodecyloxypropyl) carbamoylnaphthalene; (11) 2-Benzyloxy-3-N-octylcarbamoylnaphthalene; (12) 2-benzyloxy-3-dodecyloxycarbonylnaphthalene
  • R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, X 2 represents a single bond or —O—, n represents an integer of 1 to 4.
  • Examples of the compound represented by the general formula (3) include the following compounds, but the present invention is not limited to these: (1) Bisbenzyl oxalate; (2) bis (p-methylbenzyl) oxalate; (3) Bis oxalate (p-chlorobenzyl); (4) bis (m-methylbenzyl) oxalate; (5) Bis oxalate (p-ethylbenzyl); (6) bis (p-methoxybenzyl) oxalate; (7) bis (2-phenoxyethyl) oxalate; (8) Bis (2-o-chlorophenoxyethyl) oxalate; (9) Bis (2-p-chlorophenoxyethyl) oxalate; (10) Bis (2-p-ethylphenoxyethyl) oxalate; (11) bis (2-m-methoxyphenoxyethyl) oxalate; (12) bis (2-p-methoxyphenoxyethyl) o
  • Preferred examples of these exemplary compounds include bisbenzyl oxalate, bis (p-methylbenzyl) oxalate, bis (p-chlorobenzyl) oxalate, bis (m-methylbenzyl) oxalate, and bisoxalate. (P-ethylbenzyl), and bis (p-methoxybenzyl) oxalate.
  • R 10 , R 10 ′ , R 11 and R 11 ′ each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group or an alkoxycarbonyl group. Or an aryloxy group is shown.
  • Examples of the compound represented by the general formula (4) include the following compounds, but the present invention is not limited to these: (1) 1,2-bisphenoxymethylbenzene; (2) 1,3-bisphenoxymethylbenzene: (3) 1,4-bis (2-methylphenoxymethyl) benzene; (4) 1,4-bis (3-methylphenoxymethyl) benzene; (5) 1,3-bis (4-methylphenoxymethyl) benzene; (6) 1,3-bis (2,4-dimethylphenoxymethyl) benzene; (7) 1,3-bis (2,6-dimethylphenoxymethyl) benzene; (8) 1,4-bis (2-chlorophenoxymethyl) benzene; (9) 1,2-bis (4-chlorophenoxymethyl) benzene; (10) 1,3-bis (4-chlorophenoxymethyl) benzene; (11) 1,2-bis (4-octylphenoxymethyl) benzene; (12) 1,3-bis (4-octylphenoxymethyl) benzene; (13) 1,3-bis
  • preferred specific examples include 1,2-bisphenoxymethylbenzene, 1,4-bis (2-methylphenoxymethyl) benzene, 1,4-bis (3-methylphenoxymethyl) benzene, And 1,4-bis (2-chlorophenoxymethyl) benzene.
  • the compounding amount of the compounds represented by the general formulas (1) to (4) in the entire image forming layer is preferably 30 to 130% by mass with respect to the amount of the thermoplastic resin in the entire image forming layer. This compound may be used alone or in combination with other heat-meltable substances.
  • the compounds represented by the general formulas (1) to (4) are solid substances at room temperature. In order to increase the reactivity due to heat, these compounds are preferably used after being finely dispersed.
  • the fine dispersion treatment can be performed by a wet dispersion method generally used at the time of producing a paint, and for example, a bead mill such as a roll mill, a colloid mill, a ball mill, an attritor, and a sand mill can be used.
  • beads in the bead mill ceramic beads such as zirconia, titania and alumina, metal beads such as chrome and steel, glass beads and the like can be used.
  • the dispersed particle diameter of the compound obtained by the fine dispersion treatment is preferably from 0.1 to 1.2 ⁇ m, more preferably from 0.3 to 0.8 ⁇ m in terms of median diameter.
  • the median diameter is the particle diameter (cumulative average diameter) at which the cumulative curve becomes 50% when the total curve of one population of particles is 100%, and the particle size distribution is evaluated.
  • it can be measured using a laser diffraction / scattering particle size distribution measuring apparatus LA920 (manufactured by Horiba, Ltd.) or the like.
  • Ratio of compounds represented by general formulas (1) to (4) to water-soluble polymer compounds in the image forming layer (B) farthest from the water-resistant support is preferably 0 to 0.5. Further, the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) close to the water-resistant support (the compounds represented by the general formulas (1) to (4)) (Mass / water-soluble polymer compound) is preferably 1.0 or more.
  • the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) is more than the ratio in the image forming layer (B).
  • the difference between the ratio in the image forming layer (A) and the ratio in the image forming layer (B) is preferably 1.0 or more.
  • an image forming layer (C) may be provided between the image forming layer (A) and the image forming layer (B).
  • the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (C) may be higher or lower than that in the image forming layer (B). It is preferably lower than the ratio in the image forming layer (A) and higher than the ratio in the image forming layer (B).
  • the image forming layer of the heat-sensitive lithographic printing plate contains a thermoplastic resin.
  • the thermoplastic resin include those similar to the thermoplastic resin contained in the image forming layer of the heat-sensitive lithographic printing plate of i) described above in the present specification. These thermoplastic resins can be used alone or in combination of two or more.
  • the thermoplastic resin is preferably a synthetic rubber latex, and particularly preferably a styrene-butadiene copolymer and a modified product thereof.
  • the blending amount of the thermoplastic resin in the entire image forming layer is preferably 5 to 50% by mass with respect to the solid content of the entire image forming layer.
  • the glass transition temperature of the thermoplastic resin is preferably 50 to 150 ° C., more preferably 55 to 120 ° C. If the glass transition temperature is less than 50 ° C., a phase change occurs in the liquid state during the production process, and hydrophobicity is developed even in the non-image area, which may cause printing stains. Further, when the glass transition temperature exceeds 150 ° C., the polymer is hardly melted by heat, and it may be difficult to form a strong image with a relatively small output laser or a small thermal printer.
  • the image forming layer of the heat-sensitive lithographic printing plate contains a water-soluble polymer compound.
  • the water-soluble polymer compound include those similar to the water-soluble polymer compound contained in the image forming layer of the heat-sensitive lithographic printing plate of i).
  • the water-soluble polymer compound may be used alone or in combination of two or more.
  • gelatin and polyvinyl alcohol rich in film formation and modified products thereof are preferably selected for maintaining the hydrophilicity of the non-image area.
  • the blending amount of the water-soluble polymer compound in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the entire image forming layer.
  • the image forming layer preferably contains a hardening agent (waterproofing agent) depending on the type of the water-soluble polymer compound.
  • a hardening agent waterproofing agent
  • the hardener used include those similar to the hardener contained in the image forming layer of the heat-sensitive lithographic printing plate i) described above.
  • the water-soluble polymer compound is gelatin, divinyl sulfone is preferably used as the hardener, and when the water-soluble polymer compound is polyvinyl alcohol, glyoxal is preferably used as the hardener.
  • the blending amount of the hardener in the entire image forming layer is preferably 0.01 to 30% by mass, more preferably 5 to 5% by weight based on the solid content of the water-soluble polymer compound contained in the entire image forming layer. 30% by mass.
  • the image forming layer of the heat-sensitive lithographic printing plate of ii) can contain a hot-melt material.
  • a hot-melt material an organic compound having a melting point of 50 to 150 ° C. is preferable.
  • waxes such as carnauba wax, microcrystalline wax, paraffin wax, polyethylene wax, lauric acid, stearic acid, oleic acid, palmitic acid, behen Acids, fatty acids such as montanic acid, and esters and amides thereof can be used.
  • the blending amount of the heat-meltable substance in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the image forming layer.
  • a developer or a color former such as a phenol derivative or an aromatic carboxylic acid derivative used in general heat-sensitive recording paper and pressure-sensitive recording paper.
  • Dye precursor a color former used in general heat-sensitive recording paper and pressure-sensitive recording paper.
  • Specific examples of the color developer and color former include those similar to the color developer and color developer contained in the image forming layer of the heat-sensitive lithographic printing plate i) described above.
  • a photothermal conversion substance can be added to the image forming layer of the heat-sensitive lithographic printing plate of ii).
  • a photothermal conversion agent By using a photothermal conversion agent, writing with active light such as an infrared laser as well as a thermal head is possible.
  • the photothermal conversion material include the same photothermal conversion materials as those contained in the image forming layer of the heat-sensitive lithographic printing plate i) described above.
  • the coating amount of the entire image forming layer of the heat-sensitive lithographic printing plate of ii) is 0.5 to 30 g / in dry solid content from the viewpoints of printing durability of the image area, water resistance of the non-image area and mechanical strength. m 2 is preferable.
  • the image forming layer (B) farthest from the water-resistant support of the heat-sensitive lithographic printing plate that satisfies the above requirements i) and / or ii) can contain zinc oxide or barium sulfate. As a result, it is possible to provide a heat-sensitive lithographic printing plate in which printing durability and background stain resistance (water retention) are improved in a balanced manner.
  • Zinc oxide is roughly classified into a dry method and a wet method according to its production method.
  • a French method and an American method in the dry method and a German method is well known as the wet method.
  • the French method is a method in which zinc oxide is produced by heating high-purity metallic zinc and combusting generated zinc vapor in an oxidizing atmosphere.
  • the American method is a method in which a reducing agent such as coke is added to zinc ore (flankite) and roasted, and the generated zinc vapor is oxidized by air to produce it.
  • the wet method includes a method of thermally decomposing a zinc salt such as zinc carbonate, a method of directly depositing zinc oxide in a solution while neutralizing an alkaline solution of the zinc salt with an acid, an acidic solution of the zinc salt There is a method of direct precipitation in the liquid while neutralizing the solution.
  • a zinc salt such as zinc carbonate
  • an acidic solution of zinc salt zinc sulfate solution or zinc chloride solution
  • an alkali such as soda ash
  • Zinc oxide produced by these methods is commercially available from, for example, Shodo Chemical Co., Ltd., Sakai Chemical Co., Ltd., Hakusui Tech Co., Ltd., Honjo Chemical Co., Ltd., Toho Zinc Co., Ltd. Any of these can be used in the present invention.
  • Barium sulfate is barium sulfate obtained by pulverizing barite and removing iron, washing with water, and sedimentation produced by adding a sulfate aqueous solution to a barium chlorine solution and chemically precipitating. And barium sulfate.
  • Examples of the barium sulfate produced by these methods include those commercially available from Sakai Chemical Co., Ltd., Takehara Chemical Industry Co., Ltd., Hakusuikku Co., Ltd., etc. Can be used.
  • barium sulfate may be subjected to organic polymer treatment as a post-treatment after particle formation, and may be a hydroxide or oxide of any metal element such as Al, Si and Zr, or Mg, Ca, Sr. And surface treatment may be performed with a phosphate or the like of any of metal elements such as Ba.
  • the contact area may decrease when printing is performed by directly contacting the image forming layer (B) with a thermal head.
  • the reduction of the contact area may lead to a decrease in thermal efficiency and a decrease in printing durability.
  • the average particle size of zinc oxide or barium sulfate is too small, the effect on printing durability and soil resistance (water retention) is naturally reduced, but depending on the particle size of zinc oxide or barium sulfate.
  • the shape of zinc oxide or barium sulfate used in the present invention may be any of an irregular shape, a plate shape, a columnar shape, and a granular shape, but an irregular shape is preferred.
  • the content of zinc oxide or barium sulfate contained in the image forming layer (B) is preferably 8 to 26% by mass with respect to the amount of the thermoplastic resin contained in the image forming layer (B). Thereby, it is possible to achieve both printing durability and ground stain resistance (water retention) at a higher level. Further, it is desirable to use zinc oxide or barium sulfate in an amount not exceeding the range of 5% by mass or less with respect to the total amount of the thermoplastic resin contained in the image forming layer (A) and the image forming layer (B).
  • an undercoat layer containing at least titanium dioxide, a binder resin and a crosslinking agent having an average particle size smaller than the average dry film thickness of the undercoat layer is provided between the image forming layer (A) and the water-resistant support. be able to.
  • the image forming layer (A) and the water-resistant support.
  • Scratch resistance in the present invention is effective not only for surface scratches and the like which are introduced in the production process and plate making process of the lithographic printing plate, but also for quality deterioration due to scratches generated during printing.
  • a scratch generated during printing is a partial change in plate pressure caused by a slight undulation formed on a blanket roller of a printing press, resulting in poor printability by scratching the plate surface.
  • This partial plate pressure change is particularly likely to occur at the portion where the blanket bends in the vicinity of the cylinder gripping portion of the printing press, and appears on the printing paper as dirt at the extreme tip and the bottom edge.
  • this soil is referred to as “bran scratch” and resistance to this soil is also referred to as “bran scratch resistance”.
  • the titanium dioxide used for the undercoat layer may be either a rutile type or an anatase type. Further, the production method is not limited to either the sulfuric acid method or the chlorine method, and they may be used alone or in combination. Furthermore, from the viewpoint of dispersion stability and other functionality, it is possible to selectively use those subjected to various surface treatments.
  • As the surface treatment composition alumina, silica, zinc oxide, zirconia and the like are common. Examples of commercially available titanium dioxide include SR-1, R-650, R-5N, R-7E, R-3L, A-110, and A-190 from Sakai Chemical Industry Co., Ltd.
  • Typeke R-580, R-930, A-100, A-220, CR-58, etc. from Titanium Industry Co., Ltd., Kronos KR-310, KR-380, KA-10 KA-20 etc., from Teika Co., Ltd., Titanics JR-301, JR-600A, JR-800, JR-701 etc., from DuPont Co., Ltd., Taipure R-900, R-931 Etc.
  • the average particle diameter of titanium dioxide used in the present invention is preferably smaller than the average dry film thickness of the undercoat layer.
  • Titanium dioxide generally exists in the form of secondary particles, tertiary particles, etc., with some primary particles agglomerated.
  • the average particle diameter of the titanium dioxide is, for example, titanium dioxide in a dispersion medium to which a dispersant such as polycarboxylic acid, fatty acid amine, sulfonic acid amide, ⁇ -caprolactone, hydrostearic acid, polyester amine is added.
  • the average particle diameter of titanium dioxide in the undercoat layer is preferably from 0.1 to 1.5 ⁇ m, and more preferably from 0.3 to 1.0 ⁇ m.
  • the average particle diameter of titanium dioxide can be measured as a number median diameter using a laser scattering particle size distribution meter (for example, LA920 manufactured by Horiba, Ltd.).
  • the content of titanium dioxide used in the undercoat layer of the present invention can be set within a wide range, but it should be used at 200 to 1000% by mass with respect to 100 parts by mass of the binder resin solid content contained in the undercoat layer. Is more preferable, and 400 to 600% by mass is more preferable.
  • the content of titanium dioxide is small, the water retention may be lowered or the effect on scratch resistance may not be recognized.
  • titanium dioxide is used in excess, for example, the stability of the coating solution may decrease, the bulk density may increase due to irregular aggregation, etc., and the surface roughness may increase, or the printability may decrease. .
  • gelatin such as lime-processed gelatin, acid-processed gelatin, and enzyme-processed gelatin
  • water-soluble polymers such as polysaccharides, polyvinyl alcohol, and polyvinylpyrrolidone
  • crosslinking agent contained in the undercoat layer of the present invention for example, melamine resin, epoxy resin, polyisocyanate compound, aldehyde compound, silane compound, chromium alum, divinyl sulfone and the like can be suitably used, but the binder resin is gelatin.
  • a particularly preferred cross-linking agent is divinyl sulfone.
  • the amount of the crosslinking agent in the undercoat layer is preferably 1 to 30% by mass, more preferably 2 to 15% by mass, based on the solid content of the binder.
  • a method for adding the cross-linking agent there are a method of adding a coating solution for the undercoat layer, a method of adding it in-line immediately before coating, and the like.
  • a plastic film, resin-coated paper, water-resistant paper and the like can be used as the water-resistant support used in the heat-sensitive lithographic printing plate of the present invention.
  • polyolefin films such as polyethylene and polypropylene, polyethersulfone, polyester, poly (meth) acrylate, polycarbonate, polyamide, and polyvinyl chloride, etc .
  • resin-coated paper with these plastics laminated or coated on the surface melamine formaldehyde Paper that has been water-resistant with a wet paper strength agent such as a resin, urea formaldehyde resin, or epoxidized polyamide resin can be suitably used.
  • the heat-sensitive lithographic printing plate of the present invention has a heat-sensitive image forming layer.
  • the image forming layer contains a photothermal conversion substance
  • laser exposure enables desired image-like recording directly from digital information of a computer.
  • the heat-sensitive lithographic printing plate of the present invention it is also possible to draw an image forming layer directly by heat with a thermal head or a heat block to form an image portion. According to the thermal head, desired image-like recording can be performed directly from digital information of a computer.
  • the heat-sensitive lithographic printing plate of the present invention can be printed without removing the image forming layer by the ablation method or the on-press development method after printing in this way.
  • the recording energy density is preferably 10 to 100 mJ / mm 2 .
  • the image recording density of the head is preferably 300 dpi or more.
  • the heat-sensitive lithographic printing plate of the present invention can be converted into ink acceptability or improved by any known surface treatment agent that has been suitably used in conventional lithographic printing plates.
  • the printing method, or the desensitizing liquid and the moisturizing liquid to be used can be applied by a generally well-known method.
  • Example 1 As shown in Table 1, the first layer (image forming layer (A)) and the second layer (as shown in Table 1) are coated on one side of a polyethylene-coated paper having a thickness of about 180 ⁇ m and laminated on both sides. to prepare a coating liquid of the image forming layer (B)), were simultaneously coated to a wet coating weight first layer 30 g / m 2, 2-layer 10 g / m 2 by a slide hopper coating method, dried An image forming layer was prepared and sample no. 1 to 13 thermosensitive lithographic printing plates were obtained.
  • a coating liquid of the image forming layer (B) were simultaneously coated to a wet coating weight first layer 30 g / m 2, 2-layer 10 g / m 2 by a slide hopper coating method, dried An image forming layer was prepared and sample no. 1 to 13 thermosensitive lithographic printing plates were obtained.
  • the color former mixed slurry used for the image forming layer coating solution a was prepared in advance by the following constitution.
  • ⁇ Preparation of color former mixed slurry> Material a: 1,2-bis (3-methylphenoxy) ethane (manufactured by Sanko Co., Ltd .: KS-232)
  • Material b 4-hydroxy-4'-isopropoxydiphenyl sulfone (manufactured by Nippon Soda Co., Ltd .: D-8)
  • Material c 3-dibutylamino-6-methyl-7-anilinofluorane (manufactured by Yamamoto Kasei Co., Ltd .: ODB2)
  • the materials a, b, and c are individually dispersed in a small dyno mill (bead mill) using a zirconia bead to an arbitrary particle size to prepare dispersions adjusted to a solid content concentration of about 30%, Dispersion a, dispersion b, and dispersion c were used.
  • a color former mixed slurry was prepared by mixing 1 part of the dispersion c at room temperature with 3 parts of each of the dispersions a and b.
  • the ratio represents the ratio (mass ratio) of the thermoplastic resin to the water-soluble polymer compound. (Hot-melting resin (Y) / water-soluble polymer compound (X))
  • a coating liquid prepared as shown in the following image forming layer coating liquid b formulation was applied to one side of a polyethylene-coated paper with a thickness of about 180 ⁇ m and laminated on both sides by the slide hopper coating method.
  • the sample was applied in an amount of 60 g / m 2 and dried. 14 heat-sensitive lithographic printing plates were obtained.
  • a test printing mode (printing speed 2 inch / sec, applied energy 18) of a direct thermal printer (barcode printer B-433 manufactured by TOSHIBA TEC CO., LTD .: line type thermal head 300 dpi) is applied to the heat-sensitive lithographic printing plate thus prepared. .6 mJ / mm 2 ), an image was recorded, and a printing plate was produced.
  • HAMADAH234C (trademark of offset printing machine manufactured by Hamada Printing Co., Ltd.) is used as a printing machine, and ink is New Champion F Gloss Sumi N (trademark manufactured by DIC Corporation), supply.
  • the dampening solution uses a 12% aqueous solution of SLM-OD (trademark of dampening solution manufactured by Mitsubishi Paper Industries Co., Ltd.).
  • SLM-OD trademark of dampening solution manufactured by Mitsubishi Paper Industries Co., Ltd.
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image-forming layer (A) close to the water-resistant support is the image-forming layer (B) farthest from the water-resistant support. It can be seen that when the ratio is higher than the ratio, good printing durability and soil resistance (water retention) can be obtained.
  • Example 2 The coating solution for the first layer (image forming layer (A)) as shown in Table 3 is applied to one side of a polyethylene-coated paper having a thickness of about 180 ⁇ m and laminated on both sides as shown in Table 3 below. Prepared, applied by a slide hopper coating method at a moisture application amount of 20 g / m 2 , dried, and further coated with the second layer (image forming layer (C)) as shown in Table 3 in the image forming layer coating solution c formulation.
  • thermosensitive lithographic printing plates were obtained.
  • the color former mixed slurry used at this time was the sample No. described above. The same one was used.
  • the sample No. Fourteen thermosensitive lithographic printing plates were used. The thus produced thermosensitive lithographic printing plate was printed and evaluated in the same manner as in Example 1. The results are shown in Table 4.
  • the ratio represents the ratio (mass ratio) of the thermoplastic resin to the water-soluble polymer compound. (Hot-melting resin (Y) / water-soluble polymer compound (X))
  • the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) close to the water resistant support was determined as the water resistant support. It can be seen that by making the ratio higher than that in the image forming layer (B) furthest away from the body, good printing durability and soil resistance (water retention) can be obtained.
  • Example 3 As shown in Table 5, the first layer (image forming layer (A)) and the second layer (with the following image forming layer coating solution d formulation) are coated on one side of a polyethylene-coated paper having a thickness of about 180 ⁇ m and laminated on both sides. to prepare a coating liquid of the image forming layer (B)), were simultaneously coated as a wet coating weight first layer 30 g / m 2, 2-layer 10 g / m 2 by a slide hopper coating method, dried An image forming layer was prepared and sample no. 19 to 25 thermosensitive lithographic printing plates were obtained.
  • the compounds of general formulas (1) to (4), the developer, and the color former are individually dispersed in advance using a small dynomill (bead mill) with zirconia beads at a solid content concentration of 30%. Used in liquid form.
  • a coating solution as shown in Table 5 was prepared, applied at a moisture application amount of 40 g / m 2 by a slide hopper coating method, and then dried, and then a comparative sample (thermal lithographic printing plate of sample Nos. 26 and 27). ) was produced.
  • a test printing mode (printing speed 2 inches / sec, applied energy 18) of a direct thermal printer (barcode printer B-433 manufactured by TOSHIBA TEC CO., LTD .: line type thermal head 300 dpi) is applied to the heat-sensitive lithographic printing plate thus produced. .6 mJ / mm 2 ), an image was recorded, and a printing plate was produced.
  • Table 6 shows the results of the evaluation of head scum improvement, in which one-dot images printed with diagonal lines were continuously made into 50 plates, and the first plate and the 50th plate were visually inspected according to the following evaluation criteria.
  • ⁇ Head residue improvement> ⁇ : No difference in image quality between the 1st and 50th plates.
  • X There is a difference in image quality between the first plate and the 50th plate.
  • Print> As for printing durability, an image for printing evaluation was made under the above-mentioned plate making conditions, and a printing test was conducted using this as a printing sample.
  • the printing machine uses HAMADA DU342C (offset printing machine manufactured by Hamada Printing Machinery Co., Ltd.), the ink is New Champion F gloss ink 85N (manufactured by DIC Corporation), and the dampening liquid is SLM-OD30 (Mitsubishi Paper Co., Ltd.).
  • SLM-OD30 Mitsubishi Paper Co., Ltd.
  • the black solid portion of the printed material was confirmed by the presence or absence of white streaks generated in the direction perpendicular to the plate-making printing direction, and evaluated according to the following evaluation criteria.
  • the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image-forming layer (A) close to the water-resistant support was determined using the water-resistant support.
  • the ratio higher than that in the image forming layer (B) farthest from the image, in addition to sufficient printing durability and background stain resistance (water retention), printing defects due to head debris and image disturbance due to sticking phenomenon are caused. It can be seen that an improved thermal lithographic printing plate is obtained.
  • Example 4 As a result of performing the same test except that the compound of the general formulas (1) to (4) in Example 3 was 2-benzyloxynaphthalene, the same result as in Example 3 was obtained.
  • Example 5 As a result of testing in the same manner except that the compound of the general formulas (1) to (4) in Example 3 was bis (p-methylbenzyl) oxalate, the same result as in Example 3 was obtained.
  • Example 6 As a result of the same test except that the compound of the general formulas (1) to (4) in Example 3 was 1,2-bisphenoxymethylbenzene, the same result as in Example 3 was obtained.
  • Example 7 The image forming layer coating solution was the same except that 0.25 kg of carbon black: SD9020 (manufactured by DIC Corporation) was added as a solid content to the image forming layer coating solution of Example 3 as a photothermal conversion agent. Samples and comparative samples were made. Image exposure was performed with a semiconductor laser (wavelength 830 nm, output 500 mw) at a resolution of 1200 dpi, and the same print evaluation as in Example 3 was performed. As a result, the same print result as in Example 3 was obtained.
  • a semiconductor laser wavelength 830 nm, output 500 mw
  • Example 8 A coating solution for the first layer (image forming layer (A)) as shown in Table 7 is applied to one side of a polyethylene-coated paper having a thickness of about 180 ⁇ m and laminated on both sides as shown in Table 7. Prepared, applied by a slide hopper coating method at a moisture application amount of 20 g / m 2 , dried, and further coated with the second layer (image forming layer (C)) as shown in Table 7 in the image forming layer coating solution d formulation.
  • a liquid is prepared, applied by a slide hopper coating method at a moisture application amount of 10 g / m 2 , dried, and further, the third layer (image forming layer (B)) of the image forming layer coating liquid d formulation as shown in Table 7
  • a coating solution was prepared, applied at a moisture application amount of 10 g / m 2 by a slide hopper coating method, and dried to prepare an image forming layer.
  • 28-31 thermosensitive lithographic printing plates were obtained.
  • the developer, and the color former in the same manner as in Example 3, individually using a small dynomill (bead mill) and using zirconia beads at a solid content concentration of 30% in advance.
  • Example 9 Applying the following undercoat layer, image forming layer (A), and image forming layer (B) coating liquid to one side of approximately 180 ⁇ m thick polyethylene-coated paper that has been laminated on both sides by a slide hopper coating method.
  • the undercoat layer coating solution a is 15 g / m 2
  • the image forming layer (A) coating solution e is 30 g / m 2
  • the image forming layer (B) coating solution f is 10 g / m 2 in coating amounts.
  • Three layers were simultaneously applied so that an undercoat layer, an image forming layer (A), and an image forming layer (B) (uppermost layer) were formed in this order from the support side.
  • the undercoat layer coating solution a is obtained by adding titanium dioxide into water to which a dispersant has been added and subjecting the mixture to high-speed fine dispersion for 30 minutes using a homomixer, and then sequentially adding gelatin, surfactant, and divinyl sulfone. Prepared by mixing. A part of the undercoat layer coating solution a was collected and diluted, and the average particle size of titanium dioxide was measured using a laser scattering type particle size distribution meter (LA920 manufactured by Horiba, Ltd.). Met.
  • LA920 laser scattering type particle size distribution meter
  • Each of the above materials a, b, and c is preliminarily dispersed in a small dyno mill (bead mill) using a zirconia bead to an arbitrary particle size to produce a dispersion liquid adjusted to a solid content concentration of about 30%.
  • Dispersion a, dispersion b, and dispersion c were obtained.
  • a color former mixed slurry was prepared by mixing 3 parts of dispersions a and b with 1 part of dispersion c at room temperature.
  • the coating film was immediately gelled with cold air at 3 ° C. and then dried with hot air at 30 ° C. After drying, by heating for 7 days using a constant temperature and humidity chamber adjusted to a temperature of 40 ° C./humidity of 40%, sample No. 32 heat-sensitive lithographic printing plates were obtained. The cross section of the obtained heat-sensitive lithographic printing plate was observed using a scanning electron microscope, and the average dry film thickness of the undercoat layer was determined from the average value at any 10 locations. The average dry film thickness of the image forming layer was about 5.0 ⁇ m for both the A layer and the B layer.
  • TYPEKE R-580 Ishihara Sangyo Co., Ltd., rutile type, alumina treatment.
  • sample No. 33 heat-sensitive lithographic printing plates were obtained.
  • the average dry film thickness of the undercoat layer was 1.5 ⁇ m
  • the average particle diameter of titanium dioxide was 0.9 ⁇ m.
  • thermosensitive lithographic printing plates were output using a thermal digital printer for CTP (Thermal Digiplater TDP-459: 1200 dpi / 120 lpi manufactured by Mitsubishi Paper Co., Ltd.) (recording energy density 70 to 100 mJ / mm 2 , electric A capacity of 330 W) was performed to prepare a printing plate.
  • CTP Thermal Digiplater TDP-459: 1200 dpi / 120 lpi manufactured by Mitsubishi Paper Co., Ltd.
  • the printing plate produced in this way was mounted on an offset printing machine as it was and subjected to plate surface etching using the following moisturizing liquid, followed by printing.
  • the total volume was made up to 2 liters with water.
  • Printing was performed using an offset printing machine (manufactured by Heidelberg: QM46), Fusion G black N ink manufactured by DIC Corporation as the printing ink, and the above-described humidifying liquid as the humidifying liquid.
  • thermosensitive planographic printing plate was immersed in water at 23 ° C. for 60 seconds, and then evaluated under the conditions of a sapphire needle 0.2 mm and a scratching speed of 10 mm / sec. The determination was made based on the weighted value [g] in which the surface of the printing plate was damaged. The results are shown in Table 9.
  • Example 10 An undercoat layer coating solution b, an image forming layer (A) coating solution g, and an image forming layer (B) applied to one side of a polyethylene resin-coated paper having a thickness of about 180 ⁇ m and laminated on both sides.
  • the coating solution h was simultaneously applied in triple layers by the slide hopper coating method so that the undercoat layer, the image forming layer (A), and the image forming layer (B) (uppermost layer) were arranged in this order from the support side.
  • the wet coating weight, the undercoat layer coating solution b is 15 g / m 2
  • the image forming layer (B) coating liquid h is 10 g / It was carried out set to m 2.
  • an acrylic acid copolymerized metal salt is used as a pigment dispersant.
  • the production method is to gradually add titanium dioxide or barium sulfate under water with constant stirring to the water to which the pigment dispersant has been added, and perform high-speed fine dispersion treatment for 30 minutes using a homomixer. Can be made.
  • the slurry used was prepared just before preparing the coating solution.
  • the developer mixed slurry used for the image forming layer (A) coating solution g was prepared and manufactured in advance with the following constituent chemicals.
  • ⁇ Constituent chemicals of developer mixed slurry> Material a: KS-232 (Sanko Co., Ltd., sensitizer, 1,2-bis (3-methylphenoxy) ethane)
  • Material c Polymeron 1318 (Arakawa Chemical Co., Ltd., dispersant, 15% aqueous solution of anionic styrene resin)
  • any particle size can be obtained using zirconia beads in a small dyno mill (bead mill). Fine dispersion treatment was performed until a developer mixed slurry was obtained. In addition, it adjusted so that solid content concentration in the sum total of the material a, the material b, and the material c might be about 35%.
  • the coating was immediately gelled with cold air of 1 to 3 ° C., and then dried with hot air set at 30 ° C. After drying, by heating for 7 days using a constant temperature and humidity chamber adjusted to a temperature of 40 ° C./humidity of 40%, sample No. 35 heat-sensitive lithographic printing plates were obtained.
  • thermosensitive lithographic printing plates were obtained.
  • thermosensitive lithographic printing plate No. 35 Except that the addition amount of the barium sulfate slurry contained in the image forming layer (B) coating solution h used for the preparation of the thermosensitive lithographic printing plate No. 35 was changed from 0.03 part to 0.08 part, sample No. In the same manner as in the heat-sensitive lithographic printing plate No. 35, sample No. 38 heat-sensitive lithographic printing plates were obtained.
  • thermosensitive lithographic printing plates were obtained.
  • a thermal lithographic printing plate of 35 to 39 was subjected to image output (recording energy density 70 to 100 mJ / mm 2 , electric power using a thermal digital printer for CTP (Thermal Digiplater TDP-459: 1200 dpi / 120 lpi manufactured by Mitsubishi Paper Co., Ltd.)
  • a printing plate was prepared by performing a capacity of 330 W). Using this printing plate, printability was evaluated by the following method.
  • ⁇ Print durability> The printing machine uses an offset sheet-fed press Heidelberg QM46, the printing ink is FusionG black N from Dainippon Ink & Chemicals, and the dampening solution is 10% diluted with SLM-OD from Mitsubishi Paper Industries. Printing was performed using the same moisturizing liquid as it was for the etching liquid. For printing durability evaluation, the printing paper surface at the start and the printing paper surface at the time of printing 5,000 sheets were compared, and the attenuation ratio of 20% halftone dot and 50% halftone dot was observed with a 25 times loupe. The evaluation criteria were used. The results are shown in Table 10.
  • the offset press is also the Heidelberg QM46 offset sheet-fed press.
  • the printing ink is FusionG Ink S from Dainippon Ink Chemical Co., Ltd., and the Astro Mark III from Nikken Chemical Co., Ltd. is used as the dampening solution. .5% diluted solution was used and printing was started without etching.
  • As the background stain resistance evaluation the following evaluation criteria were used on the 2,000th printed paper surface from the start of printing. The results are shown in Table 10.

Abstract

Disclosed is a heat-sensitive lithographic printing plate which has good printing durability and background stain resistance (water retainability). Also disclosed is a heat-sensitive lithographic printing plate which is improved with respect to printing defects due to head dust and image blurring due to the sticking phenomenon, while having sufficient printing durability and background stain resistance (water retainability). Specifically disclosed is a heat-sensitive lithographic printing plate which comprises, on a water-resistant supporting body, at least two image formation layers that contains a water-soluble polymer compound and a thermoplastic resin. In the heat-sensitive lithographic printing plate, an image formation layer (B) that is farthest from the water-resistant supporting body and an image formation layer (A) that is closer to the water-resistant supporting body than the image formation layer (B) satisfy the condition (i) and/or the condition (ii) described below. (i) The ratio of the thermoplastic resin to the water-soluble polymer compound in the image formation layer (A) is higher than the ratio of the thermoplastic resin to the water-soluble polymer compound in the image formation layer (B). (ii) The ratio of at least one compound, which is selected from among the compounds represented by general formulae (1)-(4), to the water-soluble polymer compound in the image formation layer (A) is higher than the ratio of at least one compound, which is selected from among the compounds represented by general formulae (1)-(4), to the water-soluble polymer compound in the image formation layer (B).

Description

感熱型平版印刷版およびその印刷方法Thermosensitive planographic printing plate and printing method thereof
 本発明は、概して、熱により相変換する画像形成層を用いた感熱型平版印刷版に関し、より詳細には、従来のアブレーション方式や機上現像方式等の層除去処理を必要としない感熱型平版印刷版、およびその印刷方法に関する。 The present invention generally relates to a heat-sensitive lithographic printing plate using an image forming layer that undergoes phase conversion by heat, and more specifically, a heat-sensitive lithographic plate that does not require a layer removal process such as a conventional ablation method or an on-press development method. The present invention relates to a printing plate and a printing method thereof.
 近年、コンピューターおよびその周辺機器の発展により各種デジタルプリンタを用いた平版印刷版の製版方法が各種提案されている。例えば、特開平6-138719号公報、特開平6-250424号公報には、乾式電子写真法レーザープリンタにより製版するもの、特開平9-58144号公報には、熱溶融型インクを用いたオンデマンドインクジェットプリンタにより製版するもの、更に、特開昭63-166590号公報には熱転写インクリボンを用いたサーマルプリンタにより製版するもの等が知られている。 In recent years, various plate-making methods for lithographic printing plates using various digital printers have been proposed with the development of computers and peripheral devices. For example, JP-A-6-138719 and JP-A-6-250424 disclose plate making using a dry electrophotographic laser printer, and JP-A-9-58144 discloses on-demand using hot-melt ink. A plate making by an ink jet printer, and a plate making by a thermal printer using a thermal transfer ink ribbon are known from JP-A 63-166590.
 上記のようなプリンタを用いた製版方法は、従来の可視光レーザー等を用いた光モードタイプとは大別され、取り扱い上において安全光の制約を受けないと言う利点を持つ。また、従来の光モードタイプにおいて通常用いられる露光後の現像処理を必要としない点から、これらの製版方式で製版される印刷版はプロセスレス印刷版と総称されている。 The plate making method using a printer as described above is roughly divided from the conventional light mode type using a visible light laser or the like, and has an advantage that it is not restricted by safety light in handling. In addition, printing plates made by these plate making methods are collectively referred to as processless printing plates because they do not require post-exposure development processing that is normally used in conventional optical mode types.
 しかし上記プロセスレス印刷版は、いずれも保水性付与層が設けられた支持体表面に感脂性(即ち、平版印刷インク着肉性)の記録画像を転写付与することにより印刷版を形成する方式であるため、次のような問題点があった。 However, all of the above processless printing plates are formed by forming a printing plate by transferring and imparting a grease-sensitive (that is, lithographic printing ink inking property) recorded image to the surface of a support provided with a water retention layer. Therefore, there were the following problems.
 1)画像を形成する層が親水性であるためトナーやインク等の付着が十分ではなく、例えば転写トナー画像濃度が不足したり、転写画像に白抜けが発生したりするような問題。
 2)転写画像の定着が十分ではなく、耐刷性が低下し、特に小ポイント文字の一部や低網点画像に欠落が生じるような問題。
 3)非画像部に少量のトナーが不規則に転写されたり、熱転写インクリボンが擦れたりすること等によって、全体的に薄い地汚れが発生する等の問題。
1) Since a layer for forming an image is hydrophilic, adhesion of toner, ink or the like is not sufficient. For example, the transfer toner image density is insufficient, or white spots occur in the transferred image.
2) A problem that the transfer image is not sufficiently fixed, the printing durability is lowered, and a part of a small point character or a low dot image is lost.
3) A problem that a thin background smudge occurs as a result of irregularly transferring a small amount of toner to the non-image area or rubbing the thermal transfer ink ribbon.
 一方、支持体上に熱可塑性樹脂あるいは熱溶融性物質を含有する画像形成層を設け、サーマルヘッドや赤外線レーザー等で加熱印字することで親油性の画像部が得られるプロセスレス印刷版等も提案されている。 On the other hand, we propose a processless printing plate that provides an oleophilic image area by providing an image-forming layer containing a thermoplastic resin or a heat-meltable substance on a support and performing thermal printing with a thermal head or infrared laser. Has been.
 例えば、特開昭58-199153号公報(特許文献1)、あるいは特開昭59-174395号公報(特許文献2)には、画像形成層に熱転写リボン等を介さずサーマルヘッド等で直接加熱描画することにより親油性の画像部が得られる感熱型平版印刷版が記載されている。特開2000-190649号公報(特許文献3)、特開2000-301846号公報(特許文献4)には、赤外線レーザー等で加熱描画することで親油性の画像部が得られる感熱型平版印刷版が記載されている。通常の平版印刷では、上記のように得られた親油性の画像部に水とインキの両方が同時に供給され、該画像部は着色性のインキを受理し、他の非画像部は親水性のため水を選択的に受け入れ、該画像上に受理したインキを、例えば、紙等の被印刷体に転写させることによって印刷がなされている。 For example, Japanese Patent Application Laid-Open No. 58-199153 (Patent Document 1) or Japanese Patent Application Laid-Open No. 59-174395 (Patent Document 2) directly draws heat on an image forming layer with a thermal head or the like without using a thermal transfer ribbon or the like. A heat-sensitive lithographic printing plate from which an oleophilic image area can be obtained is described. JP 2000-190649 A (Patent Document 3) and JP 2000-301846 A (Patent Document 4) describe a thermosensitive lithographic printing plate in which an oleophilic image portion can be obtained by heat drawing with an infrared laser or the like. Is described. In normal lithographic printing, both water and ink are simultaneously supplied to the oleophilic image area obtained as described above, the image area accepts colored ink, and the other non-image areas are hydrophilic. Therefore, printing is performed by selectively receiving water and transferring the ink received on the image onto a printing medium such as paper.
 しかし、これらの感熱型平版印刷版は一般に、画像部と非画像部との親油性/親水性の差が十分でなかったため、鮮明な印刷画像を得難く、耐刷性が不十分であったり、地汚れが発生しやすいという問題を有していた。 However, these heat-sensitive lithographic printing plates generally do not have a sufficient lipophilic / hydrophilic difference between the image area and the non-image area, so that it is difficult to obtain a clear printed image and the printing durability is insufficient. , Had a problem that soiling is likely to occur.
 鮮明な高い画像濃度が得られる感熱型平版印刷版として、画像形成層に無機顔料、熱可塑性樹脂および熱溶融性物質を含有する方法が特開昭63-64747号公報(特許文献5)で提案されている。また前述の特許文献3、特許文献4に記載される感熱型平版印刷版は、画像部の親油性と非画像部の親水性のバランスを改善するため、親油性を発現する熱溶融性物質を特定の熱伝導率を有する物質でコーティングする方法や、熱によるキレート反応を利用して親水性ポリマーの親水基を疎水化する技術も合わせて開示されている。しかしながら、いずれも反応の制御が難しく、画像部と非画像部との親油性/親水性の差が十分でないため、やはり耐刷性が不十分であったり、地汚れが発生しやすいという問題が残った。 JP-A-63-64747 (Patent Document 5) proposes a method in which an image forming layer contains an inorganic pigment, a thermoplastic resin, and a heat-meltable substance as a heat-sensitive lithographic printing plate capable of obtaining a clear and high image density. Has been. The thermosensitive lithographic printing plates described in Patent Document 3 and Patent Document 4 described above are made of a heat-meltable substance that exhibits lipophilicity in order to improve the balance between the lipophilicity of the image area and the hydrophilicity of the non-image area. A method of coating with a substance having a specific thermal conductivity and a technique of hydrophobizing the hydrophilic group of a hydrophilic polymer using a chelate reaction by heat are also disclosed. However, in both cases, it is difficult to control the reaction, and the difference in lipophilicity / hydrophilicity between the image area and the non-image area is not sufficient. The remaining.
 耐刷性や地汚れといった問題に対しては、特開平11-95417号公報(特許文献6)では、画像形成層にポリビニルアルコール、カルボキシメチルセルロース等の親水性樹脂を架橋して用いることで耐刷性や保水性を改善されることが記載されているが、親水性樹脂自体の相変換を利用するものであるので、画像部の親油化のレベルが低く、親油性/親水性の差が十分ではなかった。特開2000-75471号公報(特許文献7)では、疎水性発生物質に熱可塑性樹脂、ワックス分散物、撥水剤等を用い、親水性物質にゼラチンやポリビニルアルコール等を用いることで、特に耐水性、印刷再現性等を向上させたとあるが、これも親油性/親水性の差が十分ではなかった。 With respect to problems such as printing durability and background stains, Japanese Patent Application Laid-Open No. 11-95417 (Patent Document 6) uses a crosslinked hydrophilic resin such as polyvinyl alcohol or carboxymethyl cellulose in the image forming layer. Although it is described that the property and water retention are improved, since the phase conversion of the hydrophilic resin itself is utilized, the level of lipophilicity in the image area is low, and the difference between lipophilicity / hydrophilicity is It was not enough. JP-A-2000-75471 (Patent Document 7) uses a thermoplastic resin, a wax dispersion, a water repellent, etc. as a hydrophobic substance, and uses gelatin, polyvinyl alcohol or the like as a hydrophilic substance, and is particularly resistant to water. However, the difference in lipophilicity / hydrophilicity was not sufficient.
 特開2000-238451号公報(特許文献8)では、支持体上に光熱変換物質、熱可塑性樹脂粒子および樹脂粒子隔離物質を含有する画像形成層を有し、該光熱変換物質の含有比率が膜厚方向に勾配を有することで、耐刷性を高める技術が紹介されているが、十分満足できるものではなかった。従って、良好な耐刷性と耐地汚れ性を有する、アブレーション方式や機上現像方式等の層除去処理を必要としない、熱により相変換する画像形成層を用いた感熱型平版印刷版が求められていた。 Japanese Patent Application Laid-Open No. 2000-238451 (Patent Document 8) has an image forming layer containing a photothermal conversion substance, thermoplastic resin particles and resin particle isolating substance on a support, and the content ratio of the photothermal conversion substance is a film. Although a technique for improving printing durability by having a gradient in the thickness direction has been introduced, it has not been fully satisfactory. Accordingly, there is a need for a heat-sensitive lithographic printing plate using an image forming layer that undergoes phase conversion by heat, which does not require layer removal processing such as an ablation method or an on-machine development method, and has good printing durability and stain resistance. It was done.
 また特開2006-272941号公報(特許文献9)では、熱により疎水性へ変換できる反応体と加熱時に発色する着色体を含有した画像形成層および最表層に親水性層を有した平版印刷版、前述の特許文献8では、支持体上に光熱変換物質、熱可塑性樹脂粒子および樹脂粒子隔離物質を含有する画像形成層を有し、該光熱変換物質の含有比率が膜厚方向に勾配を有することで耐刷性を高める技術、特開2009-255498号公報(特許文献10)では、ジフェニルアルカン等やベンジルナフタレン類、シュウ酸ジベンジル類、ジフェノキシメチルベンゼン類の特定な化合物を添加する感熱型平版印刷版がそれぞれ開示されているが、これらも疎水性/親水性の差が十分ではないため、耐刷性が不十分であったり、地汚れが発生し易いという問題が残った。 In JP-A-2006-272941 (Patent Document 9), a lithographic printing plate having an image-forming layer containing a reactant that can be converted to hydrophobicity by heat and a colorant that develops color when heated, and a hydrophilic layer on the outermost layer. In the aforementioned Patent Document 8, the support has an image forming layer containing a photothermal conversion substance, thermoplastic resin particles and resin particle isolating substance, and the content ratio of the photothermal conversion substance has a gradient in the film thickness direction. JP 2009-255498 A (Patent Document 10) discloses a technique for adding a specific compound such as diphenylalkane or the like, benzylnaphthalene, dibenzyl oxalate, or diphenoxymethylbenzene. Each lithographic printing plate is disclosed, but these also have insufficient difference in hydrophobicity / hydrophilicity, so that the printing durability is insufficient and scumming is likely to occur. A problem that remained.
 更に前記特許文献1、特許文献2、特許文献9、特許文献10等に記載される直接感熱型平版印刷版はサーマルヘッド等で直接加熱描画されるため、上記課題に加えて更に、加熱描画の際に熱溶融した画像部がサーマルヘッドに粘着し画像が乱れる、いわゆるスティッキングを起こしたり、サーマルヘッドの熱および圧力により連続製版するうちに画像形成層中の熱溶融物質がサーマルヘッドの発熱部分周辺に付着しサーマルヘッドからの伝熱阻害を生じ良好な画像形成が行えず印字不良を発生させる、いわゆるヘッドカスによる印字不良を起こし易いという問題があった。従って、良好な耐刷性と耐地汚れ性(保水性)を有し、且つヘッドカスによる印字不良、およびスティッキング現象による画像の乱れが改善された、アブレーション方式や機上現像方式等の層除去処理を必要としない、熱により相変換する画像形成層を用いた感熱型平版印刷版が求められていた。 Furthermore, since the direct thermal lithographic printing plates described in Patent Document 1, Patent Document 2, Patent Document 9, Patent Document 10 and the like are directly heated and drawn by a thermal head or the like, in addition to the above problems, further, The image area that is melted by heat adheres to the thermal head and the image is distorted, so-called sticking occurs. There is a problem in that printing defects due to so-called head debris are liable to occur due to the heat transfer inhibition from the thermal head and good image formation cannot be performed. Therefore, the layer removal process such as ablation method or on-machine development method that has good printing durability and stain resistance (water retention), improved printing defects due to head debris and image disturbance due to sticking phenomenon There has been a demand for a heat-sensitive lithographic printing plate using an image forming layer which does not require a phase change by heat.
特開昭58-199153号公報JP 58-199153 A 特開昭59-174395号公報JP 59-174395 A 特開2000-190649号公報JP 2000-190649 A 特開2000-301846号公報JP 2000-301846 A 特開昭63-64747号公報JP-A-63-64747 特開平11-95417号公報JP-A-11-95417 特開2000-75471号公報JP 2000-75471 A 特開2000-238451号公報JP 2000-238451 A 特開2006-272941号公報JP 2006-229441 A 特開2009-255498号公報JP 2009-255498 A
 従って、本発明の目的は、第1に、良好な耐刷性と耐地汚れ性(保水性)を有する、アブレーション方式や機上現像方式等の層除去処理を必要としない、熱により相変換する画像形成層を用いた、感熱型平版印刷版を提供することにある。第2に、良好な耐刷性と耐地汚れ性(保水性)を有し、且つ、ヘッドカスによる印字不良、およびスティッキング現象による画像の乱れが改善された、感熱型平版印刷版を提供することにある。 Accordingly, the first object of the present invention is to provide a phase change by heat that does not require a layer removal treatment such as an ablation method or an on-press development method, which has good printing durability and stain resistance (water retention). Another object of the present invention is to provide a heat-sensitive lithographic printing plate using an image forming layer. Second, to provide a heat-sensitive lithographic printing plate having good printing durability and background stain resistance (water retention), improved printing defects due to head scum, and improved image disturbance due to sticking phenomenon. It is in.
 上記課題は下記の手段によって解決された。
 (1)耐水性支持体上に水溶性高分子化合物および熱可塑性樹脂を含有する画像形成層を少なくとも2層有し、耐水性支持体から最も離れた画像形成層(B)と、画像形成層(B)よりも耐水性支持体に近い画像形成層(A)とにおいて、下記i)および/またはii)の要件を満たす、感熱型平版印刷版。
 i)画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率が、画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率よりも高い。
 ii)画像形成層(A)における水溶性高分子化合物に対する下記一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率が、画像形成層(B)における水溶性高分子化合物に対する下記一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率よりも高い。
The above problems have been solved by the following means.
(1) An image forming layer (B) which has at least two image forming layers containing a water-soluble polymer compound and a thermoplastic resin on a water resistant support, and is most distant from the water resistant support, and an image forming layer A heat-sensitive lithographic printing plate that satisfies the following requirements i) and / or ii) in the image forming layer (A) closer to the water-resistant support than (B).
i) The ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) is higher than the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B).
ii) The ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) is the water solubility in the image forming layer (B). Higher than the ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the functional polymer compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Xは-O-または-CO-O-を示し、
 R、RおよびRは、それぞれ独立して、水素原子、アルキル基またはアリール基を示すか、あるいはR、RおよびRは、互いに結合して芳香環を形成し、
 R、RおよびRは、それぞれ独立して、水素原子、アルキル基またはアリール基を示すか、あるいはR、RおよびRは、互いに結合して芳香環を形成し、
 nは1~10の整数を示す。
In the formula, X 1 represents —O— or —CO—O—,
R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 1 , R 2 and R 3 are bonded to each other to form an aromatic ring;
R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 4 , R 5 and R 6 are bonded to each other to form an aromatic ring;
n represents an integer of 1 to 10.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、Rは、アルキル基、アリール基、アルキルカルボニル基、アリールカルボニル基、アルキルスルホニル基またはアリールスルホニル基を示し、一般式(2)のナフタレン環は、更に置換基を有していてもよい。 In the formula, R 7 represents an alkyl group, an aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkylsulfonyl group or an arylsulfonyl group, and the naphthalene ring of the general formula (2) may further have a substituent. Good.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を示し、Xは単結合または-O-を示し、nは1~4の整数を示す。 In the formula, R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and X 2 represents a single bond or —O—. N represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、R10、R10′、R11およびR11′は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基またはアリールオキシ基を示す。 In the formula, R 10 , R 10 ′ , R 11 and R 11 ′ each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group or An aryloxy group is shown.
 (2)上記画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率と、上記画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率との差が、0.5以上である、上記(1)記載の感熱型平版印刷版。
 (3)上記画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率が1~20であり、上記画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率が0.1~3である、上記(1)または(2)に記載の感熱型平版印刷版。
 (4)上記画像形成層(B)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率が、0.5以下である、上記(1)記載の感熱型平版印刷版。
 (5)上記画像形成層(A)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率と、上記画像形成層(B)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率との差が、1.0以上である、上記(1)または(4)記載の感熱型平版印刷版。
 (6)上記i)およびii)の要件を満たす、上記(1)~(5)のいずれかに記載の感熱型平版印刷版。
 (7)上記画像形成層(A)と耐水性支持体との間に、平均粒子径が下塗り層の平均乾燥膜厚よりも小さい二酸化チタン、バインダー樹脂および架橋剤を少なくとも含有する下塗り層を有する、上記(1)~(6)のいずれかに記載の感熱型平版印刷版。
 (8)上記画像形成層(B)が、酸化亜鉛または硫酸バリウムを含有する、上記(1)~(7)のいずれかに記載の感熱型平版印刷版。
 (9)画像形成層が、画像形成層全体が含有する水溶性高分子化合物の固形分量に対して5~30質量%の硬膜剤を含有する、上記(1)~(8)のいずれかに記載の感熱型平版印刷版。
 (10)上記(1)~(9)のいずれかに記載の感熱型平版印刷版に印字した後、画像形成層を除去することなく印刷する、感熱型平版印刷版の印刷方法。
(2) The difference between the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) and the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) is 0. The heat-sensitive lithographic printing plate according to (1), which is 5 or more.
(3) The ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) is 1 to 20, and the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) is 0. The heat-sensitive lithographic printing plate as described in (1) or (2) above, which is 1 to 3.
(4) The ratio of at least one compound selected from the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (B) is 0.5 or less. The heat-sensitive lithographic printing plate as described in (1) above.
(5) The ratio of at least one compound selected from the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A), and the image forming layer (B) (1) or (4), wherein the difference from the ratio of at least one compound selected from the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound is 1.0 or more ) Thermal lithographic printing plate as described.
(6) The heat-sensitive lithographic printing plate according to any one of (1) to (5), which satisfies the requirements of i) and ii).
(7) Between the image forming layer (A) and the water-resistant support, there is an undercoat layer containing at least titanium dioxide, a binder resin and a crosslinking agent having an average particle size smaller than the average dry film thickness of the undercoat layer. The heat-sensitive lithographic printing plate according to any one of (1) to (6) above.
(8) The heat-sensitive lithographic printing plate as described in any one of (1) to (7) above, wherein the image forming layer (B) contains zinc oxide or barium sulfate.
(9) Any of the above (1) to (8), wherein the image forming layer contains 5 to 30% by mass of a hardener based on the solid content of the water-soluble polymer compound contained in the entire image forming layer A heat-sensitive lithographic printing plate as described in 1.
(10) A method for printing a heat-sensitive lithographic printing plate, comprising: printing on the heat-sensitive lithographic printing plate according to any one of (1) to (9) above; and printing without removing the image forming layer.
 本発明により、第1に、良好な耐刷性と耐地汚れ性(保水性)を有する、アブレーション方式や機上現像方式等の層除去処理を必要としない、熱により相変換する画像形成層を用いた、感熱型平版印刷版を提供することができる。第2に、十分な耐刷性と耐地汚れ性(保水性)に加え、ヘッドカスによる印字不良、およびスティッキング現象による画像の乱れが改善された、感熱型平版印刷版を提供することができる。 According to the present invention, first, an image forming layer that has a good printing durability and anti-stain property (water retention) and does not require layer removal processing such as an ablation method or an on-press development method, and undergoes phase conversion by heat. A heat-sensitive lithographic printing plate using can be provided. Secondly, it is possible to provide a heat-sensitive lithographic printing plate in which, in addition to sufficient printing durability and background stain resistance (water retention), printing defects due to head debris and image disturbance due to sticking phenomenon are improved.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本明細書中で使用される場合、用語「アルキル」は、飽和直鎖または分枝鎖の炭化水素基を意味し、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、i-ブチル、2-ブチル、t-ブチル、ペンチル、ヘキシル、デカニルなどが挙げられる。
 用語「アルコキシ」は、上記のような飽和直鎖または分枝鎖炭化水素基が酸素原子を介して結合される基を意味する。
 用語「ハロゲン」は、塩素、ヨウ素、フッ素および臭素を意味する。
 用語「アリール」は、少なくとも1個の環が芳香族の性質である1個または2個の縮合環からなる一価の環式芳香族炭化水素基を意味し、例えば、フェニル、ベンジル、ナフチルまたはビフェニルが挙げられる。
As used herein, the term “alkyl” means a saturated straight or branched chain hydrocarbon group such as methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, 2 -Butyl, t-butyl, pentyl, hexyl, decanyl and the like.
The term “alkoxy” refers to a group to which a saturated straight or branched chain hydrocarbon group as described above is attached through an oxygen atom.
The term “halogen” means chlorine, iodine, fluorine and bromine.
The term “aryl” means a monovalent cyclic aromatic hydrocarbon group consisting of one or two fused rings, wherein at least one ring is aromatic in nature, such as phenyl, benzyl, naphthyl or Biphenyl is mentioned.
 i)の要件を満たす感熱型平版印刷版の画像形成層ついて説明する。i)の感熱型平版印刷版は、耐水性支持体上に水溶性高分子化合物および熱可塑性樹脂を含有する画像形成層を少なくとも2層有し、画像形成層(B)よりも耐水性支持体に近い画像形成層(A)(以下、単に画像形成層(A)とも呼ぶ)における水溶性高分子化合物に対する熱可塑性樹脂の比率(すなわち、熱可塑性樹脂の質量/水溶性高分子化合物の質量)が、耐水性支持体から最も離れた画像形成層(B)(以下、単に画像形成層(B)とも呼ぶ)における水溶性高分子化合物に対する熱可塑性樹脂の比率よりも高い。耐水性支持体上にこの様な少なくとも2層の画像形成層設けることにより、良好な耐刷性と耐地汚れ性(保水性)を有する、アブレーション方式や機上現像方式等の層除去処理を必要としない、熱により相変換する画像形成層を用いた、感熱型平版印刷版を提供することが可能となる。 The image forming layer of the heat-sensitive lithographic printing plate that satisfies the requirement i) will be described. The heat-sensitive lithographic printing plate i) has at least two image-forming layers containing a water-soluble polymer compound and a thermoplastic resin on a water-resistant support, and is more water-resistant than the image-forming layer (B). Ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) (hereinafter also simply referred to as the image forming layer (A)) close to (the mass of the thermoplastic resin / the mass of the water-soluble polymer compound) Is higher than the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) farthest from the water-resistant support (hereinafter also simply referred to as image forming layer (B)). By providing such at least two image forming layers on a water-resistant support, layer removal treatment such as ablation method or on-press development method, which has good printing durability and scum resistance (water retention), can be performed. It is possible to provide a heat-sensitive lithographic printing plate using an image forming layer that does not require a phase conversion by heat.
 本発明においてi)の形態を満たす感熱型平版印刷版によって、良好な耐刷性と耐地汚れ性(保水性)が得られるという理由については定かではないが、以下のように推測している。 In the present invention, the reason why good printing durability and soil resistance (water retention) can be obtained by the heat-sensitive lithographic printing plate satisfying the form i) is not clear, but is presumed as follows. .
 i)の感熱型平版印刷版は、耐水性支持体上に熱による相変換を利用し疎水性に変換する画像形成層を有している。ここで疎水性へ変換する層とは、熱が加わるとその層の一部が溶融し疎水性へと変換するもので、熱が与えられない部分は元の層が有する親水性を保持している。より具体的には、熱が加わると画像形成層の一部が溶融し疎水性へと変換する際に、水溶性高分子化合物に埋もれている熱可塑性樹脂が層の表面に滲出することで疎水性が発現する。一方、印字されなかった部分、即ち非画像部の熱可塑性樹脂は水溶性高分子化合物に埋もれたままであるので疎水性を発現しない。このようにして画像部と非画像部の疎水性/親水性の差が生じる感熱型平版印刷版の耐刷性と耐地汚れ性(保水性)の改善には、印刷中においてもこの差を十分に維持することが重要である。本発明は、耐水性支持体から最も離れた画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率を少なくすることによって、表面の親水性が増し印刷時の保水性の向上が改善されると同時に、これにより低下した疎水性を、画像形成層(B)よりも熱可塑性樹脂の比率が高く、且つ耐水性支持体に近い画像形成層(A)を設けることによって克服し、画像形成時に熱可塑性樹脂を十分に表面に滲出させることが可能となり、高い耐刷性と耐地汚れ性(保水性)が両立できるものと推測される。 The heat-sensitive lithographic printing plate (i) has an image forming layer that is converted to hydrophobicity by using phase conversion by heat on a water-resistant support. Here, the layer to be converted to hydrophobic means that when heat is applied, part of the layer is melted and converted to hydrophobic, and the portion to which heat is not applied retains the hydrophilicity of the original layer. Yes. More specifically, when heat is applied, a part of the image forming layer melts and becomes hydrophobic, so that the thermoplastic resin embedded in the water-soluble polymer compound oozes out on the surface of the layer to make it hydrophobic. Sex is expressed. On the other hand, the non-printed portion, that is, the non-image portion of the thermoplastic resin remains buried in the water-soluble polymer compound and thus does not exhibit hydrophobicity. In this way, the difference in hydrophobicity / hydrophilicity between the image area and the non-image area can be improved. It is important to maintain enough. In the present invention, by reducing the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) farthest from the water-resistant support, the hydrophilicity of the surface is increased and the water retention during printing is improved. At the same time, the improved hydrophobicity is overcome by providing an image forming layer (A) having a higher thermoplastic resin ratio than the image forming layer (B) and close to a water-resistant support, It is estimated that the thermoplastic resin can be sufficiently exuded to the surface during image formation, and both high printing durability and ground stain resistance (water retention) can be achieved.
 i)の感熱型平版印刷版において、画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率が、画像形成層(B)におけるその比率よりも高いことを特徴とする感熱型平版印刷版を作製する方法に制限はないが、例えば、画像形成層(A)を塗布し、次に画像形成層(B)を順次塗布して重ねていく方法や、スライドホッパー方式で多層を同時に塗布する方法等がある。 In the heat-sensitive lithographic printing plate of i), the ratio of the thermoplastic resin to the water-soluble polymer compound in the image-forming layer (A) is higher than that in the image-forming layer (B). There is no limitation on the method for producing the printing plate. For example, the image forming layer (A) is applied and then the image forming layer (B) is sequentially applied and stacked, or multiple layers are simultaneously formed by a slide hopper method. There is a method of applying.
 画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率は、画像形成層(B)におけるその比率よりも高くなるように構成すればどのような比率でも良いが、画像形成層(A)におけるその比率と画像形成層(B)におけるその比率との差が、0.5以上であることが好ましい。 The ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) may be any ratio as long as the ratio is higher than that in the image forming layer (B). The difference between the ratio in A) and the ratio in the image forming layer (B) is preferably 0.5 or more.
 i)の感熱型平版印刷版において画像形成層を3層設ける場合、画像形成層(A)と画像形成層(B)との間に画像形成層(C)を設けてもよい。当該画像形成層(C)における水溶性高分子化合物に対する熱可塑性樹脂の比率は、画像形成層(B)におけるその比率よりも高くても低くても良いが、画像形成層(A)におけるその比率よりも低く、画像形成層(B)におけるその比率よりも高いことが好ましい。 When three image forming layers are provided in the heat-sensitive lithographic printing plate of i), an image forming layer (C) may be provided between the image forming layer (A) and the image forming layer (B). The ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (C) may be higher or lower than that in the image forming layer (B), but the ratio in the image forming layer (A). It is preferable that the ratio is lower than that in the image forming layer (B).
 i)の感熱型平版印刷版において、画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率(熱可塑性樹脂の質量/水溶性高分子化合物の質量)は、0.01~10であることが好ましく、更に好ましくは0.1~3である。また画像形成層(A)における当該比率は、0.1~50であることが好ましく、更に好ましくは1~20である。 In the heat-sensitive lithographic printing plate of i), the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) (the mass of the thermoplastic resin / the mass of the water-soluble polymer compound) is 0.01 to 10 Preferably, it is 0.1-3. The ratio in the image forming layer (A) is preferably from 0.1 to 50, more preferably from 1 to 20.
 i)の感熱型平版印刷版の画像形成層は、熱可塑性樹脂を含有する。かかる熱可塑性樹脂としては、鎖状ポリマーからなり加熱によって可塑性を示す固体状の有機高分子化合物を指す。本発明の熱可塑性樹脂は、画像形成層を形成せしめる為に用いる塗工液中に熱可塑性樹脂水分散体として添加し、該塗工液を塗布、乾燥することで画像形成層中に熱可塑性樹脂粒子として存在せしめる。熱可塑性樹脂の代表例としては、スチレンブタジエン共重合体、アクリロニトリルブタジエン共重合体、メチルメタクリレートブタジエン共重合体、スチレンアクリロニトリルブタジエン共重合体、スチレンメチルメタクリレートブタジエン共重合体などの合成ゴムラテックスおよびその変性物が挙げられる。合成ゴムラテックスの変性物としては、アミノ変性物、ポリエーテル変性物、エポキシ変性物、脂肪酸変性物、カルボニル変性物、カルボキシ変性物などが挙げられる。熱可塑性樹脂の他の例としては、スチレン無水マレイン酸共重合体、メチルビニルエーテル無水マレイン酸共重合体、ポリアクリル酸共重合体、ポリスチレン、スチレン/アクリル酸エステル共重合体、ポリアクリル酸エステル、ポリメタクリル酸エステル、アクリル酸エステル/アクリル酸エステル共重合体、および低融点ポリアミド樹脂等もまた挙げられる。これら熱可塑性樹脂は単独で、もしくは2種以上併用して用いることができる。印刷インクのビヒクル(バインダー成分)との親和性から、かかる熱可塑性樹脂としては合成ゴムラテックスが好ましく、特にスチレンブタジエン共重合体とその変性物が好ましい。画像形成層全体における熱可塑性樹脂の配合量としては、画像形成層全体の固形分量に対して5~50質量%とすることが好ましい。 I) The image forming layer of the heat-sensitive lithographic printing plate contains a thermoplastic resin. Such a thermoplastic resin refers to a solid organic polymer compound made of a chain polymer and exhibiting plasticity when heated. The thermoplastic resin of the present invention is added as a thermoplastic resin aqueous dispersion in a coating liquid used for forming an image forming layer, and the coating liquid is applied and dried to form a thermoplastic resin in the image forming layer. It exists as resin particles. Representative examples of thermoplastic resins include styrene butadiene copolymers, acrylonitrile butadiene copolymers, methyl methacrylate butadiene copolymers, styrene acrylonitrile butadiene copolymers, styrene methyl methacrylate butadiene copolymers and other synthetic rubber latexes and their modifications. Things. Examples of modified products of synthetic rubber latex include amino-modified products, polyether-modified products, epoxy-modified products, fatty acid-modified products, carbonyl-modified products, and carboxy-modified products. Other examples of thermoplastic resins include styrene maleic anhydride copolymer, methyl vinyl ether maleic anhydride copolymer, polyacrylic acid copolymer, polystyrene, styrene / acrylic acid ester copolymer, polyacrylic acid ester, Also included are polymethacrylic acid esters, acrylic acid ester / acrylic acid ester copolymers, and low melting point polyamide resins. These thermoplastic resins can be used alone or in combination of two or more. In view of the affinity with the printing ink vehicle (binder component), the thermoplastic resin is preferably a synthetic rubber latex, and particularly preferably a styrene-butadiene copolymer and a modified product thereof. The blending amount of the thermoplastic resin in the entire image forming layer is preferably 5 to 50% by mass with respect to the solid content of the entire image forming layer.
 また、熱による溶融、融着効果を発現しやすくするためには、熱可塑性樹脂のガラス転移温度は50~150℃であることが好ましく、更に好ましくは55~120℃である。ガラス転移温度が50℃未満では製造工程中に液状に相変化を起こし、非画像部にも親油性が発現するため印刷地汚れの原因となる場合がある。またガラス転移温度が150℃を超える場合はポリマーの熱溶融が起こりにくく、比較的小出力のレーザーや小型サーマルプリンタでは強固な画像を形成するのが困難となる場合がある。 Further, in order to make the melting and fusing effect due to heat easy to develop, the glass transition temperature of the thermoplastic resin is preferably 50 to 150 ° C., more preferably 55 to 120 ° C. If the glass transition temperature is less than 50 ° C., a phase change occurs in a liquid state during the production process, and oleophilicity appears in the non-image area, which may cause printing stains. When the glass transition temperature exceeds 150 ° C., the polymer is hardly melted by heat, and it may be difficult to form a strong image with a relatively small output laser or a small thermal printer.
 i)の感熱型平版印刷版の画像形成層は、水溶性高分子化合物を含有する。かかる水溶性高分子化合物としては、例えば、ポリビニルアルコールおよびその変性物(例えば、カルボキシ変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、シラノール変性ポリビニルアルコール)、ヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロース、プルランやデンプンおよびその誘導体などの多糖類、ゼラチン、カゼイン、アルギン酸ソーダ、ポリビニルピロリドン、スチレン・マレイン酸共重合体塩、スチレン・アクリル酸共重合体塩等が挙げられる。これらの水溶性高分子化合物は、単独使用でも2種類以上の併用でも良い。特に皮膜形成に富むゼラチンやポリビニルアルコールおよびその変性物が、非画像部の親水性保持に好ましいので、選択される。画像形成層全体におけるかかる水溶性高分子化合物の配合量は、画像形成層全体の全固形分量に対して0.5~50質量%が好ましい。 I) The image forming layer of the heat-sensitive lithographic printing plate contains a water-soluble polymer compound. Examples of such water-soluble polymer compounds include polyvinyl alcohol and modified products thereof (for example, carboxy-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, silanol-modified polyvinyl alcohol), hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, pullulan and starch, and Examples thereof include polysaccharides such as derivatives, gelatin, casein, sodium alginate, polyvinylpyrrolidone, styrene / maleic acid copolymer salts, styrene / acrylic acid copolymer salts, and the like. These water-soluble polymer compounds may be used alone or in combination of two or more. In particular, gelatin and polyvinyl alcohol rich in film formation and modified products thereof are selected because they are preferable for maintaining hydrophilicity in the non-image area. The blending amount of the water-soluble polymer compound in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the entire image forming layer.
 また非画像部の耐水性および機械的強度を向上させるため、画像形成層は前記水溶性高分子化合物の種類に応じて硬膜剤(耐水化剤)を含有することが好ましい。硬膜剤としては、樹脂の架橋を促すことによって耐水性を付与するものを用いることができ、例えば、メラミン樹脂、エポキシ樹脂、ポリイソシアネート化合物、アルデヒド化合物、シラン化合物、クロム明礬、ジビニルスルホン等が挙げられる。特に、水溶性高分子化合物がゼラチンの場合、硬膜剤はジビニルスルホンが好ましく用いられ、水溶性高分子化合物がポリビニルアルコールの場合、硬膜剤はグリオキザールが好ましく用いられる。画像形成層全体における硬膜剤の配合量は、全画像形成層が含有する水溶性高分子化合物の固形分量に対して、0.01~30質量%とすることが好ましく、より好ましくは5~30質量%である。 In order to improve the water resistance and mechanical strength of the non-image area, the image forming layer preferably contains a hardening agent (waterproofing agent) depending on the type of the water-soluble polymer compound. As the hardener, those imparting water resistance by promoting crosslinking of the resin can be used. For example, melamine resin, epoxy resin, polyisocyanate compound, aldehyde compound, silane compound, chromium alum, divinyl sulfone, etc. Can be mentioned. In particular, when the water-soluble polymer compound is gelatin, divinyl sulfone is preferably used as the hardener, and when the water-soluble polymer compound is polyvinyl alcohol, glyoxal is preferably used as the hardener. The blending amount of the hardener in the entire image forming layer is preferably 0.01 to 30% by mass, more preferably 5 to 5% by weight based on the solid content of the water-soluble polymer compound contained in the entire image forming layer. 30% by mass.
 i)の画像形成層は熱溶融性物質を含有することができ、耐刷性の観点からより好ましい形態の1つである。含有する熱溶融性物質としては、融点が50~150℃の有機化合物であることが好ましい。熱溶融性物質の融点が50℃未満では、製造工程中に溶融してしまい印刷物の地汚れの原因となる場合がある。一方、熱溶融性物質の融点が150℃を超えると、サーマルヘッド等の熱印加で溶融しにくく、親油性の発現が乏しい場合がある。好ましく使用される熱溶融性物質としては、例えば、カルナバワックス、マイクロクリスタリンワックス、パラフィンワックス、ポリエチレンワックスなどのワックス類、ラウリン酸、ステアリン酸、オレイン酸、パルミチン酸、ベヘン酸、モンタン酸などの脂肪酸、およびそのエステルまたはアミド類が挙げられる。また、熱溶融性物質として、本明細書において下記で詳述する一般式(1)~(4)で示される化合物を使用してもよい。一般式(1)~(4)で示される化合物のうち、好ましい化合物としては、1-(1-ナフトキシ)-2-フェノキシエタン、1-(2-ナフトキシ)-4-フェノキシブタン、1-(2-イソプロピルフェノキシ)-2-(2-ナフトキシ)エタン、1-(4-メチルフェノキシ)-3-(2-ナフトキシ)プロパン、1-(2-メチルフェノキシ)-2-(2-ナフトキシ)エタン、1-(3-メチルフェノキシ)-2-(2-ナフトキシ)エタン、1-(2-ナフトキシ)-2-フェノキシエタン、1-(2-ナフトキシ)-6-フェノキシヘキサン、1-フェノキシ-2-(2-フェニルフェノキシ)エタン、1-(2-メチルフェノキシ)-2-(4-フェニルフェノキシ)エタン、1,4-ジフェノキシブタン、1,4-ビス(4-メチルフェノキシ)ブタン、1,2-ジ(3,4-ジメチルフェノキシ)エタン、1-フェノキシ-3-(4-フェニルフェノキシ)プロパン、1-(4-tert-ブチルフェノキシ)-2-フェノキシエタン、1,2-ジフェノキシエタン、1-(4-メチルフェノキシ)-2-フェノキシエタン、1-(2,3-ジメチルフェノキシ)-2-フェノキシエタン、1-(3,4-ジメチルフェノキシ)-2-フェノキシエタン、1-(4-エチルフェノキシ)-2-フェノキシエタン、1-(4-イソプロピルフェノキシ)-2-フェノキシエタン、1,2-ビス(2-メチルフェノキシ)エタン、1-(2-メチルフェノキシ)-2-(4-メチルフェノキシ)エタン、1-(4-tert-ブチルフェノキシ)-2-(2-メチルフェノキシ)エタン、1,2-ビス(3-メチルフェノキシ)エタン、1-(3-メチルフェノキシ)-2-(4-メチルフェノキシ)エタン、1-(4-エチルフェノキシ)-2-(3-メチルフェノキシ)エタン、1,2-ビス(4-メチルフェノキシ)エタン、1-(2,3-ジメチルフェノキシ)-2-(4-メチルフェノキシ)エタン、1-(2,5-ジメチルフェノキシ)-2-(4-メチルフェノキシ)エタン、フェノキシ酢酸-2-ナフチル、2-ナフトキシ酢酸-4-メチルフェニル、2-ナフトキシ酢酸-3-メチルフェニル、1-ベンジルオキシナフタレン、2-ベンジルオキシナフタレン、2-p-クロロベンジルオキシナフタレン、2-p-イソプロピルベンジルオキシナフタレン、2-ドデシルオキシナフタレン、2-デカノイルオキシナフタレン、2-ミリストイルオキシナフタレン、2-p-tert-ブチルベンゾイルオキシナフタレン、2-ベンゾイルオキシナフタレン、2-ベンジルオキシ-3-N-(3-ドデシルオキシプロピル)カルバモイルナフタレン、2-ベンジルオキシ-3-N-オクチルカルバモイルナフタレン、2-ベンジルオキシ-3-ドデシルオキシカルボニルナフタレン、2-ベンジルオキシ-3-p-tert-ブチルフェノキシカルボニルナフタレン、シュウ酸ビスベンジル、シュウ酸ビス(p-メチルベンジル)、シュウ酸ビス(p-クロロベンジル)、シュウ酸ビス(m-メチルベンジル)、シュウ酸ビス(p-エチルベンジル)、シュウ酸ビス(p-メトキシベンジル)、シュウ酸ビス(2-フェノキシエチル)、シュウ酸ビス(2-o-クロロフェノキシエチル)、シュウ酸ビス(2-p-クロロフェノキシエチル)、シュウ酸ビス(2-p-エチルフェノキシエチル)、シュウ酸ビス(2-m-メトキシフェノキシエチル)、シュウ酸ビス(2-p-メトキシフェノキシエチル)、シュウ酸ビス(4-フェノキシブチル)、1,2-ビスフェノキシメチルベンゼン、1,3-ビスフェノキシメチルベンゼン、1,4-ビス(2-メチルフェノキシメチル)ベンゼン、1,4-ビス(3-メチルフェノキシメチル)ベンゼン、1,3-ビス(4-メチルフェノキシメチル)ベンゼン、1,3-ビス(2,4-ジメチルフェノキシメチル)ベンゼン、1,3-ビス(2,6-ジメチルフェノキシメチル)ベンゼン、1,4-ビス(2-クロロフェノキシメチル)ベンゼン、1,2-ビス(4-クロロフェノキシメチル)ベンゼン、1,3-ビス(4-クロロフェノキシメチル)ベンゼン、1,2-ビス(4-オクチルフェノキシメチル)ベンゼン、1,3-ビス(4-オクチルフェノキシメチル)ベンゼン、1,3-ビス(4-イソプロピルフェニルフェノキシメチル)ベンゼン、1,4-ビス(4-イソプロピルフェニルフェノキシメチル)ベンゼン等が挙げられる。 The image forming layer i) can contain a heat-meltable substance, and is one of the more preferable forms from the viewpoint of printing durability. The heat-meltable substance to be contained is preferably an organic compound having a melting point of 50 to 150 ° C. If the melting point of the heat-meltable material is less than 50 ° C., it may melt during the production process and cause printed soiling. On the other hand, if the melting point of the hot-melt material exceeds 150 ° C., it may be difficult to melt by applying heat from a thermal head or the like, and the lipophilicity may be poor. Examples of the heat-meltable substance preferably used include waxes such as carnauba wax, microcrystalline wax, paraffin wax, and polyethylene wax, and fatty acids such as lauric acid, stearic acid, oleic acid, palmitic acid, behenic acid, and montanic acid. And esters or amides thereof. Further, as the heat-meltable substance, compounds represented by the general formulas (1) to (4) described in detail later in this specification may be used. Of the compounds represented by the general formulas (1) to (4), preferred compounds are 1- (1-naphthoxy) -2-phenoxyethane, 1- (2-naphthoxy) -4-phenoxybutane, 1- ( 2-Isopropylphenoxy) -2- (2-naphthoxy) ethane, 1- (4-methylphenoxy) -3- (2-naphthoxy) propane, 1- (2-methylphenoxy) -2- (2-naphthoxy) ethane 1- (3-methylphenoxy) -2- (2-naphthoxy) ethane, 1- (2-naphthoxy) -2-phenoxyethane, 1- (2-naphthoxy) -6-phenoxyhexane, 1-phenoxy-2 -(2-phenylphenoxy) ethane, 1- (2-methylphenoxy) -2- (4-phenylphenoxy) ethane, 1,4-diphenoxybutane, 1,4-bis ( -Methylphenoxy) butane, 1,2-di (3,4-dimethylphenoxy) ethane, 1-phenoxy-3- (4-phenylphenoxy) propane, 1- (4-tert-butylphenoxy) -2-phenoxyethane 1,2-diphenoxyethane, 1- (4-methylphenoxy) -2-phenoxyethane, 1- (2,3-dimethylphenoxy) -2-phenoxyethane, 1- (3,4-dimethylphenoxy)- 2-phenoxyethane, 1- (4-ethylphenoxy) -2-phenoxyethane, 1- (4-isopropylphenoxy) -2-phenoxyethane, 1,2-bis (2-methylphenoxy) ethane, 1- (2 -Methylphenoxy) -2- (4-methylphenoxy) ethane, 1- (4-tert-butylphenoxy) -2- (2-methylphenoxy) ) Ethane, 1,2-bis (3-methylphenoxy) ethane, 1- (3-methylphenoxy) -2- (4-methylphenoxy) ethane, 1- (4-ethylphenoxy) -2- (3-methyl) Phenoxy) ethane, 1,2-bis (4-methylphenoxy) ethane, 1- (2,3-dimethylphenoxy) -2- (4-methylphenoxy) ethane, 1- (2,5-dimethylphenoxy) -2 -(4-methylphenoxy) ethane, phenoxyacetic acid-2-naphthyl, 2-naphthoxyacetic acid-4-methylphenyl, 2-naphthoxyacetic acid-3-methylphenyl, 1-benzyloxynaphthalene, 2-benzyloxynaphthalene, 2- p-chlorobenzyloxynaphthalene, 2-p-isopropylbenzyloxynaphthalene, 2-dodecyloxynaphthalene, 2-de Noyloxynaphthalene, 2-myristoyloxynaphthalene, 2-p-tert-butylbenzoyloxynaphthalene, 2-benzoyloxynaphthalene, 2-benzyloxy-3-N- (3-dodecyloxypropyl) carbamoylnaphthalene, 2-benzyloxy -3-N-octylcarbamoylnaphthalene, 2-benzyloxy-3-dodecyloxycarbonylnaphthalene, 2-benzyloxy-3-p-tert-butylphenoxycarbonylnaphthalene, bisbenzyl oxalate, bis (p-methylbenzyl) oxalate Bis (p-chlorobenzyl) oxalate, bis (m-methylbenzyl) oxalate, bis (p-ethylbenzyl) oxalate, bis (p-methoxybenzyl) oxalate, bis (2-phenoxyethyl) oxalate , Bis oxalate ( 2-o-chlorophenoxyethyl), bis (2-p-chlorophenoxyethyl) oxalate, bis (2-p-ethylphenoxyethyl) oxalate, bis (2-m-methoxyphenoxyethyl) oxalate, oxalic acid Bis (2-p-methoxyphenoxyethyl), bis (4-phenoxybutyl) oxalate, 1,2-bisphenoxymethylbenzene, 1,3-bisphenoxymethylbenzene, 1,4-bis (2-methylphenoxymethyl) ) Benzene, 1,4-bis (3-methylphenoxymethyl) benzene, 1,3-bis (4-methylphenoxymethyl) benzene, 1,3-bis (2,4-dimethylphenoxymethyl) benzene, 1,3 -Bis (2,6-dimethylphenoxymethyl) benzene, 1,4-bis (2-chlorophenoxymethyl) benzene 1,2-bis (4-chlorophenoxymethyl) benzene, 1,3-bis (4-chlorophenoxymethyl) benzene, 1,2-bis (4-octylphenoxymethyl) benzene, 1,3-bis (4- Octylphenoxymethyl) benzene, 1,3-bis (4-isopropylphenylphenoxymethyl) benzene, 1,4-bis (4-isopropylphenylphenoxymethyl) benzene, and the like.
 上記熱溶融性物質については、それぞれを単独で使用してもよいし、組み合わせて使用することもできる。画像形成層全体におけるかかる熱溶融性物質の配合量は、画像形成層全体の全固形分量に対して0.5~50質量%が好ましい。また、画像形成層(A)における水溶性高分子化合物に対する熱溶融性物質の含有比率は、画像形成層(B)におけるその含有比率よりも高くすることが好ましい。 The above hot-melt materials can be used alone or in combination. The blending amount of the heat-meltable substance in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the entire image forming layer. Further, the content ratio of the heat-meltable substance to the water-soluble polymer compound in the image forming layer (A) is preferably higher than the content ratio in the image forming layer (B).
 これらの熱溶融性物質は、常温で固体の物質である。熱による反応性を高めるために、これら熱溶融性物質を微分散処理して使用することが好ましい。微分散処理は、一般に塗料製造時に用いられる湿式分散方式により行うことが可能であり、例えば、ロールミル、コロイドミル、ボールミル、アトライター、サンドミル等のビーズミル等を使用することができる。ビーズミルにおけるビーズとしては、ジルコニア、チタニア、アルミナ等のセラミックビーズや、クロム、スチール等の金属ビーズ、またはガラスビーズ等が使用できる。微分散処理により得られる熱溶融性物質の分散粒径は、メジアン径で0.1~1.2μmが好ましく、より好ましくは0.3~0.8μmである。なお、メジアン径とは、粒子体の一つの集団の全体積を100%として累積曲線を求めた時、累積曲線が50%となる点の粒子径(累積平均径)であり、粒度分布を評価するパラメータの一つとしてレーザー回折/散乱式粒度分布測定装置LA920((株)堀場製作所製)等を用いて測定することができる。 These hot melt materials are solid materials at room temperature. In order to increase the reactivity due to heat, it is preferable to use these hot-melt materials after being finely dispersed. The fine dispersion treatment can be performed by a wet dispersion method generally used at the time of producing a paint, and for example, a bead mill such as a roll mill, a colloid mill, a ball mill, an attritor, and a sand mill can be used. As beads in the bead mill, ceramic beads such as zirconia, titania, and alumina, metal beads such as chrome and steel, glass beads, and the like can be used. The dispersed particle diameter of the hot-melt material obtained by the fine dispersion treatment is preferably from 0.1 to 1.2 μm, more preferably from 0.3 to 0.8 μm in terms of median diameter. The median diameter is the particle diameter (cumulative average diameter) at which the cumulative curve becomes 50% when the total curve of one population of particles is 100%, and the particle size distribution is evaluated. As one of the parameters to be measured, it can be measured using a laser diffraction / scattering particle size distribution measuring apparatus LA920 (manufactured by Horiba, Ltd.) or the like.
 i)の感熱型平版印刷版の画像形成層には、視認性確保のため、一般的な感熱記録紙、感圧記録紙に使用されるフェノール誘導体や芳香族カルボン酸誘導体等の顕色剤や発色剤(電子供与性染料前駆体)を含有させることができる。 In the image forming layer of the heat-sensitive lithographic printing plate of i), a developer such as a phenol derivative or an aromatic carboxylic acid derivative used for general heat-sensitive recording paper or pressure-sensitive recording paper is used for ensuring visibility. A color former (electron-donating dye precursor) can be contained.
 顕色剤の具体的な例としては、4-クミルフェノール、ヒドロキノンモノベンジルエーテル、4,4′-イソプロピリデンジフェノール、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4′-ジヒドロキシジフェニル-2,2-ブタン、4,4′-ジヒドロキシジフェニルメタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、ビス(4-ヒドロキシフェニルチオエトキシ)メタン、1,5-ジ(4-ヒドロキシフェニルチオ)-3-オキサペンタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,4-ビス[α-メチル-α-(4′-ヒドロキシフェニル)エチル]ベンゼン、1,3-ビス[α-メチル-α-(4′-ヒドロキシフェニル)エチル]ベンゼン、4,4′-ジヒドロキシジフェニルスルフィド、ジ(4-ヒドロキシ-3-メチルフェニル)スルホン、4-ヒドロキシ-4′-メチルジフェニルスルホン、4-ヒドロキシ-4′-イソプロポキシジフェニルスルホン、2,4′-ジヒドロキシジフェニルスルホン、4,4′-ジヒドロキシジフェニルスルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、4-ヒドロキシフェニル-4′-ベンジルオキシフェニルスルホン、4-ヒドロキシ-3′,4′-テトラメチレンビフェニルスルホン、3,4-ジヒドロキシフェニル-p-トリルスルホン、4,4′-ジヒドロキシベンゾフェノン、4-ヒドロキシ安息香酸ベンジル、N,N′-ジ-m-クロロフェニルチオ尿素、N-(フェノキシエチル)-4-ヒドロキシフェニルスルホンアミド等のフェノール性化合物;4-[3-(p-トリルスルホニル)プロピルオキシ]サリチル酸亜鉛、4-[2-(p-メトキシフェノキシ)エチルオキシ]サリチル酸亜鉛、5-[p-(2-p-メトキシフェノキシエトキシ)クミル]サリチル酸亜鉛、p-クロロ安息香酸亜鉛等の芳香族カルボン酸の亜鉛塩;更にはチオシアン酸亜鉛のアンチピリン錯体等の有機酸性物質等が例示される。 Specific examples of the developer include 4-cumylphenol, hydroquinone monobenzyl ether, 4,4′-isopropylidenediphenol, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4′- Dihydroxydiphenyl-2,2-butane, 4,4′-dihydroxydiphenylmethane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4-hydroxyphenyl) heptane, bis (4 -Hydroxyphenylthioethoxy) methane, 1,5-di (4-hydroxyphenylthio) -3-oxapentane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,4-bis [α -Methyl-α- (4'-hydroxyphenyl) ethyl] benzene, 1,3-bis [α-methyl-α- (4'-hydride) Xylphenyl) ethyl] benzene, 4,4'-dihydroxydiphenyl sulfide, di (4-hydroxy-3-methylphenyl) sulfone, 4-hydroxy-4'-methyldiphenylsulfone, 4-hydroxy-4'-isopropoxydiphenylsulfone 2,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylsulfone, bis (3-allyl-4-hydroxyphenyl) sulfone, 4-hydroxyphenyl-4'-benzyloxyphenylsulfone, 4-hydroxy-3 ', 4'-tetramethylenebiphenylsulfone, 3,4-dihydroxyphenyl-p-tolylsulfone, 4,4'-dihydroxybenzophenone, benzyl 4-hydroxybenzoate, N, N'-di-m-chlorophenylthiourea, N- (phenoxy Phenolic compounds such as (ciethyl) -4-hydroxyphenylsulfonamide; zinc 4- [3- (p-tolylsulfonyl) propyloxy] salicylate, 4- [2- (p-methoxyphenoxy) ethyloxy] zinc salicylate, 5- [P- (2-p-methoxyphenoxyethoxy) cumyl] zinc salts of aromatic carboxylic acids such as zinc salicylate and zinc p-chlorobenzoate; and organic acidic substances such as antipyrine complexes of zinc thiocyanate The
 また、発色剤(電子供与性染料前駆体)の具体的な例としては、(1)トリアリールメタン系化合物として、3,3′-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(クリスタル・バイオレット・ラクトン)、3,3′-ビス(p-ジメチルアミノフェニル)フタリド、3-(p-ジメチルアミノフェニル)-3-(1,2-ジメチルインドール-3-イル)フタリド、3-(p-ジメチルアミノフェニル)-3-(2-メチルインドール-3-イル)フタリド、3-(p-ジメチルアミノフェニル)-3-(2-フェニルインドール-3-イル)フタリド、3,3-ビス(1,2-ジメチルインドール-3-イル)-5-ジメチルアミノフタリド、3,3-ビス(1,2-ジメチルインドール-3-イル)-6-ジメチルアミノフタリド、3,3-ビス(9-エチルカルバゾール-3-イル)-5-ジメチルアミノフタリド、3,3-ビス(2-フェニルインドール-3-イル)-5-ジメチルアミノフタリド、3-p-ジメチルアミノフェニル-3-(1-メチルピロール-2-イル)-6-ジメチル-アミノフタリド等;(2)ジフェニルメタン系化合物として、4,4′-ビス-ジメチルアミノベンズヒドリンベンジルエーテル、N-ハロフェニルロイコオーラミン、N-2,4,5-トリクロロフェニルロイコオーラミン等;(3)キサンテン系化合物として、ローダミンB-アニリノラクタム、ローダミンB-p-ニトロアニリノラクタム、ローダミンB-p-クロロアニリノラクタム、3-ジエチルアミノ-7-ジベンジルアミノフルオラン、3-ジエチルアミノ-7-オクチルアミノフルオラン、3-ジエチルアミノ-7-フェニルフルオラン、3-ジエチルアミノ-7-(3,4-ジクロロアニリノ)フルオラン、3-ジエチルアミノ-7-(2-クロロアニリノ)フルオラン、3-ジエチルアミノ-6-メチル-7-アニリノフルオラン、3-ジブチルアミノ-6-メチル-7-アニリノフルオラン、3-ピペリジノ-6-メチル-7-アニリノフルオラン、3-エチル-トリルアミノ-6-メチル-7-アニリノフルオラン、3-エチル-トリルアミノ-6-メチル-7-フェニチルフルオラン、3-ジエチルアミノ-7-(4-ニトロアニリノ)フルオラン等;(4)チアジン系化合物として、ベンゾイルロイコメチレンブルー、p-ニトロベンゾイルロイコメチレンブルー等;(5)スピロ系化合物として、3-メチル-スピロ-ジナフトピラン、3-エチル-スピロ-ジナフトピラン、3,3′-ジクロロ-スピロ-ジナフトピラン、3-ベンジル-スピロ-ジナフトピラン、3-メチルナフト-(3-メトキシ-ベンゾ)-スピロピラン、3-プロピル-スピロ-ジベンゾピラン等が挙げられる。また、これらは単独でも2種以上を併用して用いても良い。 Specific examples of the color former (electron-donating dye precursor) include (1) 3,3′-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide as a triarylmethane compound. (Crystal violet lactone), 3,3'-bis (p-dimethylaminophenyl) phthalide, 3- (p-dimethylaminophenyl) -3- (1,2-dimethylindol-3-yl) phthalide, 3 -(P-dimethylaminophenyl) -3- (2-methylindol-3-yl) phthalide, 3- (p-dimethylaminophenyl) -3- (2-phenylindol-3-yl) phthalide, 3,3 -Bis (1,2-dimethylindol-3-yl) -5-dimethylaminophthalide, 3,3-bis (1,2-dimethylindol-3-yl) -6- Methylaminophthalide, 3,3-bis (9-ethylcarbazol-3-yl) -5-dimethylaminophthalide, 3,3-bis (2-phenylindol-3-yl) -5-dimethylaminophthalide 3-p-dimethylaminophenyl-3- (1-methylpyrrol-2-yl) -6-dimethyl-aminophthalide, etc .; (2) 4,4'-bis-dimethylaminobenzhydrin benzyl as diphenylmethane compounds Ethers, N-halophenyl leucooramines, N-2,4,5-trichlorophenyl leucooramines, etc .; (3) as xanthene compounds, rhodamine B-anilinolactam, rhodamine Bp-nitroanilinolactam, Rhodamine Bp-chloroanilinolactam, 3-diethylamino-7-dibenzylaminofluora 3-diethylamino-7-octylaminofluorane, 3-diethylamino-7-phenylfluorane, 3-diethylamino-7- (3,4-dichloroanilino) fluorane, 3-diethylamino-7- (2-chloroanilino) Fluorane, 3-diethylamino-6-methyl-7-anilinofluorane, 3-dibutylamino-6-methyl-7-anilinofluorane, 3-piperidino-6-methyl-7-anilinofluorane, 3- Ethyl-tolylamino-6-methyl-7-anilinofluorane, 3-ethyl-tolylamino-6-methyl-7-phenethylfluorane, 3-diethylamino-7- (4-nitroanilino) fluorane, etc .; (4) thiazine Benzoyl leucomethylene blue, p-nitrobenzoyl leucomethylene blue (5) As spiro compounds, 3-methyl-spiro-dinaphthopyrans, 3-ethyl-spiro-dinaphthopyrans, 3,3'-dichloro-spiro-dinaphthopyrans, 3-benzyl-spiro-dinaphthopyrans, 3-methylnaphtho- (3-methoxy-benzo) -spiropyran, 3-propyl-spiro-dibenzopyran and the like. These may be used alone or in combination of two or more.
 更に、画像形成層は、光熱変換物質を含有することもできる。光熱変換剤を含有することで、サーマルヘッドだけでなく赤外線レーザー等の活性光による書き込みも可能となる。光熱変換物質の例としては、効率よく光を吸収し熱に変換する材料が好ましい。使用する光源によって異なるが、例えば近赤外光を放出する半導体レーザーを光源として使用する場合には、光熱変換物質としては、近赤外に吸収帯を有する近赤外光吸収剤が好ましく、例えば、カーボンブラック、シアニン系色素、ポリメチン系色素、アズレニウム系色素、スクワリウム系色素、チオピリリウム系色素、ナフトキノン系色素、アントラキノン系色素等の有機化合物、フタロシアニン系、アゾ系、チオアミド系の有機金属錯体、または鉄粉、黒鉛粉末、酸化鉄粉、酸化鉛、酸化銀、酸化クロム、硫化鉄、硫化クロム等の金属化合物類等が挙げられる。 Furthermore, the image forming layer can also contain a photothermal conversion substance. By including the photothermal conversion agent, writing with active light such as an infrared laser as well as a thermal head is possible. As an example of the photothermal conversion substance, a material that efficiently absorbs light and converts it into heat is preferable. Depending on the light source used, for example, when a semiconductor laser emitting near infrared light is used as the light source, the photothermal conversion substance is preferably a near infrared light absorber having an absorption band in the near infrared, for example , Carbon black, cyanine dyes, polymethine dyes, azurenium dyes, squalium dyes, thiopyrylium dyes, naphthoquinone dyes, anthraquinone dyes and other organic compounds, phthalocyanine, azo, thioamide organic metal complexes, or Examples thereof include metal compounds such as iron powder, graphite powder, iron oxide powder, lead oxide, silver oxide, chromium oxide, iron sulfide, and chromium sulfide.
 i)の感熱型平版印刷版が有する画像形成層全体の塗布量は、画像部の耐刷性、非画像部の耐水性および機械的強度の観点から、乾燥固形分として0.5~30g/mであることが好ましい。 The coating amount of the entire image forming layer of the heat-sensitive lithographic printing plate i) is 0.5 to 30 g / dry solids from the viewpoints of printing durability of the image area, water resistance of the non-image area and mechanical strength. m 2 is preferable.
 次に、ii)の要件を満たす感熱型平版印刷版の画像形成層について説明する。ii)の感熱型平版印刷版は、耐水性支持体上に水溶性高分子化合物および熱可塑性樹脂を含有する画像形成層を少なくとも2層有し、画像形成層(B)よりも耐水性支持体に近い画像形成層(A)における水溶性高分子化合物に対する下記一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率(すなわち、一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の質量/水溶性高分子化合物の質量)が、耐水性支持体から最も離れた画像形成層(B)におけるその比率よりも高い。耐水性支持体上にこのような少なくとも2層の画像形成層を設けることにより、十分な耐刷性と耐地汚れ性(保水性)に加え、ヘッドカスによる印字不良、およびスティッキング現象による画像の乱れが改善された、感熱型平版印刷版を提供することができる。 Next, the image forming layer of the heat-sensitive lithographic printing plate that satisfies the requirements of ii) will be described. The heat-sensitive lithographic printing plate of ii) has at least two image-forming layers containing a water-soluble polymer compound and a thermoplastic resin on a water-resistant support, and is more water-resistant than the image-forming layer (B). The ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) close to (that is, the general formulas (1) to ( The mass of at least one compound selected from the compounds represented by 4) / the mass of the water-soluble polymer compound) is higher than the ratio in the image forming layer (B) farthest from the water-resistant support. By providing such an image-forming layer of at least two layers on a water-resistant support, in addition to sufficient printing durability and soil resistance (water retention), printing defects due to head debris and image disturbance due to sticking phenomenon It is possible to provide a heat-sensitive lithographic printing plate having an improved
 ii)の感熱型平版印刷版によって、良好な耐刷性と耐地汚れ性(保水性)が得られ、更にヘッドカスによる印字不良や、スティッキング現象による画像の乱れが改善された感熱型平版印刷版が得られる理由については定かではないが、以下のように推測している。 The heat-sensitive lithographic printing plate of ii) has a good printing durability and stain resistance (water retention), and further has improved printing defects due to head debris and image disturbance due to sticking phenomenon. The reason why is obtained is not clear, but is estimated as follows.
 ii)の感熱型平版印刷版は、耐水性支持体上に熱による相変換を利用し疎水性に変換する画像形成層を有している。ここで疎水性へ変換する層とは、熱が加わるとその層の一部が溶融し疎水性へと変換するもので、熱が与えられない部分は元の層が有する親水性を保持している。より具体的には、熱が加わると画像形成層の一部が溶融し疎水性へと変換する際に、水溶性高分子化合物に埋もれている熱可塑性樹脂が層の表面に滲出することで疎水性が発現する。一方、印字されなかった部分、即ち非画像部は、熱可塑性樹脂が水溶性高分子化合物に埋もれたままであるので疎水性を発現しない。この様にして画像部と非画像部の疎水性/親水性の差が生じる。この様な感熱型平版印刷版の耐刷性と耐地汚れ性(保水性)の改善には、印刷中においてもこの差を十分に維持することが重要である。本発明は、耐水性支持体から最も離れた画像形成層(B)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率を少なくすることによって、表面の親水性を増すことができ印刷時の保水性が改善されると同時に、これにより低下する画像部の疎水性を、画像形成層(B)よりも一般式(1)~(4)で示される化合物の比率が高く、且つ耐水性支持体に近い画像形成層(A)を設けることによって克服すると考えられる。これにより、熱印加し画像形成する際、画像形成層(A)における熱可塑性樹脂の溶融開始温度が下がり、より小さなエネルギーで溶融し、画像部表面に滲出させることによって、高い耐刷性と耐地汚れ性(保水性)を両立できるものと推測される。更に、直接加熱描画を行う製版方法に用いる感熱型平版印刷版としては、画像形成層に一般式(1)~(4)で示される化合物を添加することで、画像形成層の熱可塑性樹脂の溶融開始温度が下がりスティッキングが改善し、また、サーマルヘッドと直接接する耐水性支持体から最も離れた画像形成層(B)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率を少なくすることによって、ヘッドカスによる画像の乱れも改善するという極めて優れた効果が得られる。 The heat-sensitive lithographic printing plate of ii) has an image forming layer on a water-resistant support that is converted to hydrophobicity by utilizing phase conversion by heat. Here, the layer to be converted to hydrophobic means that when heat is applied, part of the layer is melted and converted to hydrophobic, and the portion to which heat is not applied retains the hydrophilicity of the original layer. Yes. More specifically, when heat is applied, a part of the image forming layer melts and becomes hydrophobic, so that the thermoplastic resin embedded in the water-soluble polymer compound oozes out on the surface of the layer to make it hydrophobic. Sex is expressed. On the other hand, the non-printed portion, that is, the non-image portion does not exhibit hydrophobicity because the thermoplastic resin remains buried in the water-soluble polymer compound. In this way, there is a difference in hydrophobicity / hydrophilicity between the image area and the non-image area. In order to improve the printing durability and background stain resistance (water retention) of such a heat-sensitive lithographic printing plate, it is important to maintain this difference sufficiently even during printing. In the present invention, the hydrophilicity of the surface is reduced by reducing the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (B) farthest from the water-resistant support. The water retention at the time of printing is improved, and at the same time, the hydrophobicity of the image area, which is reduced by this, is lower than that of the compounds represented by the general formulas (1) to (4) rather than the image forming layer (B). It can be overcome by providing an image forming layer (A) having a high ratio and close to a water-resistant support. As a result, when an image is formed by applying heat, the melting start temperature of the thermoplastic resin in the image forming layer (A) is lowered, melted with less energy, and oozed out on the surface of the image portion, thereby achieving high printing durability and durability. It is presumed that both soiling properties (water retention) can be achieved. Furthermore, as a heat-sensitive lithographic printing plate used in a plate making method for direct heat drawing, by adding the compounds represented by the general formulas (1) to (4) to the image forming layer, the thermoplastic resin of the image forming layer is added. The melting start temperature is lowered, sticking is improved, and general formulas (1) to (4) for the water-soluble polymer compound in the image forming layer (B) farthest from the water-resistant support in direct contact with the thermal head are shown. By reducing the ratio of the compound, an extremely excellent effect of improving the image disturbance due to the head residue can be obtained.
 ii)の、画像形成層(A)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率が、画像形成層(B)におけるその比率よりも高いことを特徴とする感熱型平版印刷版を作製する方法に制限はないが、例えば、画像形成層(A)を塗布し、次に画像形成層(B)を順次塗布して重ねていく方法や、スライドホッパー方式で多層を同時に塗布する方法等がある。 The ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) in ii) is higher than that in the image forming layer (B). There is no limitation on the method for producing the heat-sensitive lithographic printing plate to be used. For example, a method of applying the image forming layer (A) and then applying the image forming layer (B) sequentially and stacking, or a slide hopper method And a method of applying multiple layers simultaneously.
 ii)の感熱型平版印刷版の画像形成層は、一般式(1)~(4)で示される化合物から選択される少なくとも1種を含有する。以下に一般式(1)で示される化合物について説明する。 Ii) The image forming layer of the thermosensitive lithographic printing plate contains at least one selected from the compounds represented by the general formulas (1) to (4). The compound represented by the general formula (1) will be described below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式中、Xは-O-または-CO-O-を示し、
 R、RおよびRは、それぞれ独立して、水素原子、アルキル基またはアリール基を示すか、あるいはR、RおよびRは、互いに結合して芳香環を形成しても良く、
 R、RおよびRは、それぞれ独立して、水素原子、アルキル基またはアリール基を示すか、あるいはR、RおよびRは、互いに結合して芳香環を形成しても良く、
 nは、1~10の整数を示す。
In the above formula, X 1 represents —O— or —CO—O—,
R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 1 , R 2 and R 3 may be bonded to each other to form an aromatic ring. ,
R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 4 , R 5 and R 6 may be bonded to each other to form an aromatic ring. ,
n represents an integer of 1 to 10.
 本発明の好ましい実施形態では、一般式(1)で示される化合物は、Xが-O-である化合物である。本発明のより好ましい実施形態では、一般式(1)で示される化合物は、RおよびRが水素原子または炭素数1~4のアルキル基であり、R、R、RおよびRが水素原子であり、nが1~4の整数である化合物である。 In a preferred embodiment of the present invention, the compound represented by the general formula (1) is a compound in which X 1 is —O—. In a more preferred embodiment of the present invention, in the compound represented by the general formula (1), R 1 and R 6 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 , R 3 , R 4 and R A compound in which 5 is a hydrogen atom and n is an integer of 1 to 4.
 かかる一般式(1)で示される化合物としては、例えば下記の化合物が例示されるが、本発明はこれらに限定されるものではない:
(1)1-(1-ナフトキシ)-2-フェノキシエタン;
(2)1-(2-ナフトキシ)-4-フェノキシブタン;
(3)1-(2-イソプロピルフェノキシ)-2-(2-ナフトキシ)エタン;
(4)1-(4-メチルフェノキシ)-3-(2-ナフトキシ)プロパン;
(5)1-(2-メチルフェノキシ)-2-(2-ナフトキシ)エタン;
(6)1-(3-メチルフェノキシ)-2-(2-ナフトキシ)エタン;
(7)1-(2-ナフトキシ)-2-フェノキシエタン;
(8)1-(2-ナフトキシ)-6-フェノキシヘキサン;
(9)1-フェノキシ-2-(2-フェニルフェノキシ)エタン;
(10)1-(2-メチルフェノキシ)-2-(4-フェニルフェノキシ)エタン;
(11)1,4-ジフェノキシブタン;
(12)1,4-ビス(4-メチルフェノキシ)ブタン;
(13)1,2-ジ(3,4-ジメチルフェノキシ)エタン;
(14)1-フェノキシ-3-(4-フェニルフェノキシ)プロパン;
(15)1-(4-tert-ブチルフェノキシ)-2-フェノキシエタン;
(16)1,2-ジフェノキシエタン;
(17)1-(4-メチルフェノキシ)-2-フェノキシエタン;
(18)1-(2,3-ジメチルフェノキシ)-2-フェノキシエタン;
(19)1-(3,4-ジメチルフェノキシ)-2-フェノキシエタン;
(20)1-(4-エチルフェノキシ)-2-フェノキシエタン;
(21)1-(4-イソプロピルフェノキシ)-2-フェノキシエタン;
(22)1,2-ビス(2-メチルフェノキシ)エタン;
(23)1-(2-メチルフェノキシ)-2-(4-メチルフェノキシ)エタン;
(24)1-(4-tert-ブチルフェノキシ)-2-(2-メチルフェノキシ)エタン;
(25)1,2-ビス(3-メチルフェノキシ)エタン;
(26)1-(3-メチルフェノキシ)-2-(4-メチルフェノキシ)エタン;
(27)1-(4-エチルフェノキシ)-2-(3-メチルフェノキシ)エタン;
(28)1,2-ビス(4-メチルフェノキシ)エタン;
(29)1-(2,3-ジメチルフェノキシ)-2-(4-メチルフェノキシ)エタン;
(30)1-(2,5-ジメチルフェノキシ)-2-(4-メチルフェノキシ)エタン;
(31)フェノキシ酢酸-2-ナフチル;
(32)2-ナフトキシ酢酸-4-メチルフェニル;および
(33)2-ナフトキシ酢酸-3-メチルフェニル。
Examples of the compound represented by the general formula (1) include the following compounds, but the present invention is not limited to these:
(1) 1- (1-naphthoxy) -2-phenoxyethane;
(2) 1- (2-naphthoxy) -4-phenoxybutane;
(3) 1- (2-isopropylphenoxy) -2- (2-naphthoxy) ethane;
(4) 1- (4-methylphenoxy) -3- (2-naphthoxy) propane;
(5) 1- (2-methylphenoxy) -2- (2-naphthoxy) ethane;
(6) 1- (3-methylphenoxy) -2- (2-naphthoxy) ethane;
(7) 1- (2-naphthoxy) -2-phenoxyethane;
(8) 1- (2-naphthoxy) -6-phenoxyhexane;
(9) 1-phenoxy-2- (2-phenylphenoxy) ethane;
(10) 1- (2-methylphenoxy) -2- (4-phenylphenoxy) ethane;
(11) 1,4-diphenoxybutane;
(12) 1,4-bis (4-methylphenoxy) butane;
(13) 1,2-di (3,4-dimethylphenoxy) ethane;
(14) 1-phenoxy-3- (4-phenylphenoxy) propane;
(15) 1- (4-tert-butylphenoxy) -2-phenoxyethane;
(16) 1,2-diphenoxyethane;
(17) 1- (4-methylphenoxy) -2-phenoxyethane;
(18) 1- (2,3-dimethylphenoxy) -2-phenoxyethane;
(19) 1- (3,4-dimethylphenoxy) -2-phenoxyethane;
(20) 1- (4-ethylphenoxy) -2-phenoxyethane;
(21) 1- (4-Isopropylphenoxy) -2-phenoxyethane;
(22) 1,2-bis (2-methylphenoxy) ethane;
(23) 1- (2-methylphenoxy) -2- (4-methylphenoxy) ethane;
(24) 1- (4-tert-butylphenoxy) -2- (2-methylphenoxy) ethane;
(25) 1,2-bis (3-methylphenoxy) ethane;
(26) 1- (3-methylphenoxy) -2- (4-methylphenoxy) ethane;
(27) 1- (4-ethylphenoxy) -2- (3-methylphenoxy) ethane;
(28) 1,2-bis (4-methylphenoxy) ethane;
(29) 1- (2,3-dimethylphenoxy) -2- (4-methylphenoxy) ethane;
(30) 1- (2,5-dimethylphenoxy) -2- (4-methylphenoxy) ethane;
(31) Phenoxyacetic acid-2-naphthyl;
(32) 2-naphthoxyacetic acid-4-methylphenyl; and (33) 2-naphthoxyacetic acid-3-methylphenyl.
 次に一般式(2)で示される化合物について説明する。 Next, the compound represented by the general formula (2) will be described.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式中、Rは、アルキル基、アリール基、アルキルカルボニル基、アリールカルボニル基、アルキルスルホニル基またはアリールスルホニル基を示す。また、式中のナフタレン環は更に置換基を有していても良く、好ましい置換基の例としては、アルキル基、アリール基、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルキルオキシカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、スルファモイル基などが挙げられる。 In the above formula, R 7 represents an alkyl group, an aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkylsulfonyl group or an arylsulfonyl group. The naphthalene ring in the formula may further have a substituent, and examples of preferable substituents include an alkyl group, an aryl group, a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, and an alkyloxycarbonyl group. , Alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, sulfamoyl group and the like.
 本発明の好ましい実施形態では、上記一般式(2)の化合物は、Rが炭素数4~20のアルキル基、炭素数4~24のアリール基、炭素数2~20のアルキルカルボニル基または炭素数7~20のアリールカルボニル基である化合物である。本発明のより好ましい実施形態では、上記一般式(2)の化合物は、ナフタレン環が更に有しても良い置換基が、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基または炭素数2~25のカルバモイル基である化合物である。 In a preferred embodiment of the present invention, in the compound of the general formula (2), R 7 is an alkyl group having 4 to 20 carbon atoms, an aryl group having 4 to 24 carbon atoms, an alkylcarbonyl group having 2 to 20 carbon atoms, or a carbon atom. A compound which is an arylcarbonyl group of formula 7-20. In a more preferred embodiment of the present invention, in the compound of the above general formula (2), the substituent that the naphthalene ring may further have is a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having 2 to 20 carbon atoms. The compound is an alkyloxycarbonyl group, an aryloxycarbonyl group having 7 to 20 carbon atoms, or a carbamoyl group having 2 to 25 carbon atoms.
 かかる一般式(2)で示される化合物としては、例えば下記の化合物が例示されるが、本発明はこれらに限定されるものではない:
(1)1-ベンジルオキシナフタレン;
(2)2-ベンジルオキシナフタレン:
(3)2-p-クロロベンジルオキシナフタレン;
(4)2-p-イソプロピルベンジルオキシナフタレン;
(5)2-ドデシルオキシナフタレン;
(6)2-デカノイルオキシナフタレン;
(7)2-ミリストイルオキシナフタレン;
(8)2-p-tert-ブチルベンゾイルオキシナフタレン;
(9)2-ベンゾイルオキシナフタレン;
(10)2-ベンジルオキシ-3-N-(3-ドデシルオキシプロピル)カルバモイルナフタレン;
(11)2-ベンジルオキシ-3-N-オクチルカルバモイルナフタレン;
(12)2-ベンジルオキシ-3-ドデシルオキシカルボニルナフタレン;および
(13)2-ベンジルオキシ-3-p-tert-ブチルフェノキシカルボニルナフタレン。
Examples of the compound represented by the general formula (2) include the following compounds, but the present invention is not limited to these:
(1) 1-benzyloxynaphthalene;
(2) 2-Benzyloxynaphthalene:
(3) 2-p-chlorobenzyloxynaphthalene;
(4) 2-p-isopropylbenzyloxynaphthalene;
(5) 2-dodecyloxynaphthalene;
(6) 2-decanoyloxynaphthalene;
(7) 2-Myristoyloxynaphthalene;
(8) 2-p-tert-butylbenzoyloxynaphthalene;
(9) 2-benzoyloxynaphthalene;
(10) 2-Benzyloxy-3-N- (3-dodecyloxypropyl) carbamoylnaphthalene;
(11) 2-Benzyloxy-3-N-octylcarbamoylnaphthalene;
(12) 2-benzyloxy-3-dodecyloxycarbonylnaphthalene; and (13) 2-benzyloxy-3-p-tert-butylphenoxycarbonylnaphthalene.
 次に一般式(3)で示される化合物について説明する。 Next, the compound represented by the general formula (3) will be described.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を示し、
 Xは、単結合または-O-を示し、
 nは1~4の整数を示す。
In the above formula, R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms,
X 2 represents a single bond or —O—,
n represents an integer of 1 to 4.
 かかる一般式(3)で示される化合物としては、例えば下記の化合物が例示されるが、本発明はこれらに限定されるものではない:
(1)シュウ酸ビスベンジル;
(2)シュウ酸ビス(p-メチルベンジル);
(3)シュウ酸ビス(p-クロロベンジル);
(4)シュウ酸ビス(m-メチルベンジル);
(5)シュウ酸ビス(p-エチルベンジル);
(6)シュウ酸ビス(p-メトキシベンジル);
(7)シュウ酸ビス(2-フェノキシエチル);
(8)シュウ酸ビス(2-o-クロロフェノキシエチル);
(9)シュウ酸ビス(2-p-クロロフェノキシエチル);
(10)シュウ酸ビス(2-p-エチルフェノキシエチル);
(11)シュウ酸ビス(2-m-メトキシフェノキシエチル);
(12)シュウ酸ビス(2-p-メトキシフェノキシエチル);および
(13)シュウ酸ビス(4-フェノキシブチル)。
Examples of the compound represented by the general formula (3) include the following compounds, but the present invention is not limited to these:
(1) Bisbenzyl oxalate;
(2) bis (p-methylbenzyl) oxalate;
(3) Bis oxalate (p-chlorobenzyl);
(4) bis (m-methylbenzyl) oxalate;
(5) Bis oxalate (p-ethylbenzyl);
(6) bis (p-methoxybenzyl) oxalate;
(7) bis (2-phenoxyethyl) oxalate;
(8) Bis (2-o-chlorophenoxyethyl) oxalate;
(9) Bis (2-p-chlorophenoxyethyl) oxalate;
(10) Bis (2-p-ethylphenoxyethyl) oxalate;
(11) bis (2-m-methoxyphenoxyethyl) oxalate;
(12) bis (2-p-methoxyphenoxyethyl) oxalate; and (13) bis (4-phenoxybutyl) oxalate.
 これらの例示化合物の中で好ましい具体例としては、シュウ酸ビスベンジル、シュウ酸ビス(p-メチルベンジル)、シュウ酸ビス(p-クロロベンジル)、シュウ酸ビス(m-メチルベンジル)、シュウ酸ビス(p-エチルベンジル)、およびシュウ酸ビス(p-メトキシベンジル)が挙げられる。 Preferred examples of these exemplary compounds include bisbenzyl oxalate, bis (p-methylbenzyl) oxalate, bis (p-chlorobenzyl) oxalate, bis (m-methylbenzyl) oxalate, and bisoxalate. (P-ethylbenzyl), and bis (p-methoxybenzyl) oxalate.
 以下に一般式(4)で示される化合物について説明する。 Hereinafter, the compound represented by the general formula (4) will be described.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式中、R10、R10′、R11およびR11′は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基またはアリールオキシ基を示す。 In the above formula, R 10 , R 10 ′ , R 11 and R 11 ′ each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group or an alkoxycarbonyl group. Or an aryloxy group is shown.
 かかる一般式(4)で示される化合物としては、例えば下記の化合物が例示されるが、本発明はこれらに限定されるものではない:
(1)1,2-ビスフェノキシメチルベンゼン;
(2)1,3-ビスフェノキシメチルベンゼン:
(3)1,4-ビス(2-メチルフェノキシメチル)ベンゼン;
(4)1,4-ビス(3-メチルフェノキシメチル)ベンゼン;
(5)1,3-ビス(4-メチルフェノキシメチル)ベンゼン;
(6)1,3-ビス(2,4-ジメチルフェノキシメチル)ベンゼン;
(7)1,3-ビス(2,6-ジメチルフェノキシメチル)ベンゼン;
(8)1,4-ビス(2-クロロフェノキシメチル)ベンゼン;
(9)1,2-ビス(4-クロロフェノキシメチル)ベンゼン;
(10)1,3-ビス(4-クロロフェノキシメチル)ベンゼン;
(11)1,2-ビス(4-オクチルフェノキシメチル)ベンゼン;
(12)1,3-ビス(4-オクチルフェノキシメチル)ベンゼン;
(13)1,3-ビス(4-イソプロピルフェニルフェノキシメチル)ベンゼン;および
(14)1,4-ビス(4-イソプロピルフェニルフェノキシメチル)ベンゼン。
Examples of the compound represented by the general formula (4) include the following compounds, but the present invention is not limited to these:
(1) 1,2-bisphenoxymethylbenzene;
(2) 1,3-bisphenoxymethylbenzene:
(3) 1,4-bis (2-methylphenoxymethyl) benzene;
(4) 1,4-bis (3-methylphenoxymethyl) benzene;
(5) 1,3-bis (4-methylphenoxymethyl) benzene;
(6) 1,3-bis (2,4-dimethylphenoxymethyl) benzene;
(7) 1,3-bis (2,6-dimethylphenoxymethyl) benzene;
(8) 1,4-bis (2-chlorophenoxymethyl) benzene;
(9) 1,2-bis (4-chlorophenoxymethyl) benzene;
(10) 1,3-bis (4-chlorophenoxymethyl) benzene;
(11) 1,2-bis (4-octylphenoxymethyl) benzene;
(12) 1,3-bis (4-octylphenoxymethyl) benzene;
(13) 1,3-bis (4-isopropylphenylphenoxymethyl) benzene; and (14) 1,4-bis (4-isopropylphenylphenoxymethyl) benzene.
 これらの例示化合物の中で好ましい具体例としては、1,2-ビスフェノキシメチルベンゼン、1,4-ビス(2-メチルフェノキシメチル)ベンゼン、1,4-ビス(3-メチルフェノキシメチル)ベンゼン、および1,4-ビス(2-クロロフェノキシメチル)ベンゼンが挙げられる。画像形成層全体における一般式(1)~(4)で示される化合物の配合量は、画像形成層全体における熱可塑性樹脂の量に対し30~130質量%であることが好ましい。この化合物は単独使用でも良いし、他の熱溶融性物質と併用することもできる。 Among these exemplified compounds, preferred specific examples include 1,2-bisphenoxymethylbenzene, 1,4-bis (2-methylphenoxymethyl) benzene, 1,4-bis (3-methylphenoxymethyl) benzene, And 1,4-bis (2-chlorophenoxymethyl) benzene. The compounding amount of the compounds represented by the general formulas (1) to (4) in the entire image forming layer is preferably 30 to 130% by mass with respect to the amount of the thermoplastic resin in the entire image forming layer. This compound may be used alone or in combination with other heat-meltable substances.
 上記一般式(1)~(4)で示される化合物は常温で固体の物質である。熱による反応性を高めるために、これら化合物を微分散処理して使用することが好ましい。微分散処理は、一般に塗料製造時に用いられる湿式分散方式により行うことが可能であり、例えば、ロールミル、コロイドミル、ボールミル、アトライター、サンドミル等のビーズミル等を使用することができる。ビーズミルにおけるビーズとしては、ジルコニア、チタニア、アルミナ等のセラミックビーズ、クロム、スチール等の金属ビーズ、またはガラスビーズ等が使用できる。微分散処理により得られる化合物の分散粒径は、メジアン径で0.1~1.2μmが好ましく、より好ましくは0.3~0.8μmである。なお、メジアン径とは、粒子体の一つの集団の全体積を100%として累積曲線を求めた時、累積曲線が50%となる点の粒子径(累積平均径)であり、粒度分布を評価するパラメータの一つとしてレーザー回折/散乱式粒度分布測定装置LA920((株)堀場製作所製)等を用いて測定することができる。 The compounds represented by the general formulas (1) to (4) are solid substances at room temperature. In order to increase the reactivity due to heat, these compounds are preferably used after being finely dispersed. The fine dispersion treatment can be performed by a wet dispersion method generally used at the time of producing a paint, and for example, a bead mill such as a roll mill, a colloid mill, a ball mill, an attritor, and a sand mill can be used. As beads in the bead mill, ceramic beads such as zirconia, titania and alumina, metal beads such as chrome and steel, glass beads and the like can be used. The dispersed particle diameter of the compound obtained by the fine dispersion treatment is preferably from 0.1 to 1.2 μm, more preferably from 0.3 to 0.8 μm in terms of median diameter. The median diameter is the particle diameter (cumulative average diameter) at which the cumulative curve becomes 50% when the total curve of one population of particles is 100%, and the particle size distribution is evaluated. As one of the parameters to be measured, it can be measured using a laser diffraction / scattering particle size distribution measuring apparatus LA920 (manufactured by Horiba, Ltd.) or the like.
 耐水性支持体から最も離れた画像形成層(B)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率(一般式(1)~(4)で示される化合物の質量/水溶性高分子化合物の質量)は、0~0.5であることが好ましい。また、耐水性支持体に近い画像形成層(A)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率(一般式(1)~(4)で示される化合物の質量/水溶性高分子化合物の質量)は、1.0以上であることが好ましい。 Ratio of compounds represented by general formulas (1) to (4) to water-soluble polymer compounds in the image forming layer (B) farthest from the water-resistant support (compounds represented by general formulas (1) to (4)) (Mass / water soluble polymer compound) is preferably 0 to 0.5. Further, the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) close to the water-resistant support (the compounds represented by the general formulas (1) to (4)) (Mass / water-soluble polymer compound) is preferably 1.0 or more.
 ii)の感熱型平版印刷版において、画像形成層(A)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率が、画像形成層(B)におけるその比率よりも高くなる様に構成すればどのような比率でも良いが、画像形成層(A)におけるその比率と画像形成層(B)におけるその比率との差は、1.0以上であることが好ましい。 In the heat-sensitive lithographic printing plate of ii), the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) is more than the ratio in the image forming layer (B). However, the difference between the ratio in the image forming layer (A) and the ratio in the image forming layer (B) is preferably 1.0 or more.
 ii)の感熱型平版印刷版において、画像形成層を3層設ける場合、画像形成層(A)と画像形成層(B)との間に画像形成層(C)を設けてもよい。画像形成層(C)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率は、画像形成層(B)におけるその比率よりも高くても低くても良いが、画像形成層(A)におけるその比率よりも低く、画像形成層(B)におけるその比率よりも高いことが好ましい。 In the thermosensitive planographic printing plate of ii), when three image forming layers are provided, an image forming layer (C) may be provided between the image forming layer (A) and the image forming layer (B). The ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (C) may be higher or lower than that in the image forming layer (B). It is preferably lower than the ratio in the image forming layer (A) and higher than the ratio in the image forming layer (B).
 ii)の感熱型平版印刷版の画像形成層は、熱可塑性樹脂を含有する。かかる熱可塑性樹脂としては、本明細書中において上述した、i)の感熱型平版印刷版の画像形成層が含有する熱可塑性樹脂と同様のものが挙げられる。これら熱可塑性樹脂は単独で、もしくは2種以上併用して用いることができる。印刷インクのビヒクル(バインダー成分)との親和性から、かかる熱可塑性樹脂としては合成ゴムラテックスが好ましく、特にスチレンブタジエン共重合体とその変性物が好ましい。画像形成層全体における熱可塑性樹脂の配合量としては、画像形成層全体の固形分量に対して5~50質量%とすることが好ましい。 Ii) The image forming layer of the heat-sensitive lithographic printing plate contains a thermoplastic resin. Examples of the thermoplastic resin include those similar to the thermoplastic resin contained in the image forming layer of the heat-sensitive lithographic printing plate of i) described above in the present specification. These thermoplastic resins can be used alone or in combination of two or more. In view of the affinity with the printing ink vehicle (binder component), the thermoplastic resin is preferably a synthetic rubber latex, and particularly preferably a styrene-butadiene copolymer and a modified product thereof. The blending amount of the thermoplastic resin in the entire image forming layer is preferably 5 to 50% by mass with respect to the solid content of the entire image forming layer.
 また熱による溶融、融着効果を発現し易くするためには、熱可塑性樹脂のガラス転移温度は50~150℃であることが好ましく、更に好ましくは55~120℃である。ガラス転移温度が50℃未満では製造工程中に液状に相変化を起こし、非画像部にも疎水性が発現するため印刷地汚れの原因となる場合がある。また、ガラス転移温度が150℃を超える場合はポリマーの熱溶融が起こりにくく、比較的小出力のレーザーや小型サーマルプリンタでは強固な画像を形成するのが困難となる場合がある。 Further, in order to easily develop the effect of melting and fusing by heat, the glass transition temperature of the thermoplastic resin is preferably 50 to 150 ° C., more preferably 55 to 120 ° C. If the glass transition temperature is less than 50 ° C., a phase change occurs in the liquid state during the production process, and hydrophobicity is developed even in the non-image area, which may cause printing stains. Further, when the glass transition temperature exceeds 150 ° C., the polymer is hardly melted by heat, and it may be difficult to form a strong image with a relatively small output laser or a small thermal printer.
 ii)の感熱型平版印刷版の画像形成層は、水溶性高分子化合物を含有する。かかる水溶性高分子化合物としては、i)の感熱型平版印刷版の画像形成層が含有する水溶性高分子化合物と同様のものが挙げられる。水溶性高分子化合物は、単独使用でも、2種類以上の併用でも良い。特に皮膜形成に富むゼラチンやポリビニルアルコールとその変性物が非画像部の親水性保持に好ましく選択される。画像形成層全体におけるかかる水溶性高分子化合物の配合量は、画像形成層全体の全固形分量に対して0.5~50質量%であることが好ましい。 Ii) The image forming layer of the heat-sensitive lithographic printing plate contains a water-soluble polymer compound. Examples of the water-soluble polymer compound include those similar to the water-soluble polymer compound contained in the image forming layer of the heat-sensitive lithographic printing plate of i). The water-soluble polymer compound may be used alone or in combination of two or more. In particular, gelatin and polyvinyl alcohol rich in film formation and modified products thereof are preferably selected for maintaining the hydrophilicity of the non-image area. The blending amount of the water-soluble polymer compound in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the entire image forming layer.
 また、非画像部の耐水性および機械的強度を向上させるため、画像形成層は前記水溶性高分子化合物の種類に応じて硬膜剤(耐水化剤)を含有することが好ましい。用いられる硬膜剤としては、前記したi)の感熱型平版印刷版の画像形成層が含有する硬膜剤と同様のものが挙げられる。水溶性高分子化合物がゼラチンの場合、硬膜剤はジビニルスルホンが好ましく用いられ、水溶性高分子化合物がポリビニルアルコールの場合、硬膜剤はグリオキザールが好ましく用いられる。画像形成層全体における硬膜剤の配合量は、全画像形成層が含有する水溶性高分子化合物の固形分量に対して、0.01~30質量%とすることが好ましく、より好ましくは5~30質量%である。 In order to improve the water resistance and mechanical strength of the non-image area, the image forming layer preferably contains a hardening agent (waterproofing agent) depending on the type of the water-soluble polymer compound. Examples of the hardener used include those similar to the hardener contained in the image forming layer of the heat-sensitive lithographic printing plate i) described above. When the water-soluble polymer compound is gelatin, divinyl sulfone is preferably used as the hardener, and when the water-soluble polymer compound is polyvinyl alcohol, glyoxal is preferably used as the hardener. The blending amount of the hardener in the entire image forming layer is preferably 0.01 to 30% by mass, more preferably 5 to 5% by weight based on the solid content of the water-soluble polymer compound contained in the entire image forming layer. 30% by mass.
 ii)の感熱型平版印刷版が有する画像形成層には、一般式(1)~(4)で示される化合物以外に熱溶融性物質を含有することができる。熱溶融性物質としては、融点が50~150℃の有機化合物が好ましく、例えばカルナバワックス、マイクロクリスタリンワックス、パラフィンワックス、ポリエチレンワックス等のワックス類、ラウリン酸、ステアリン酸、オレイン酸、パルミチン酸、ベヘン酸、モンタン酸等の脂肪酸、およびそのエステル、アミド類等が使用できる。画像形成層全体におけるかかる熱溶融性物質の配合量は、画像形成層の全固形分量に対して0.5~50質量%であることが好ましい。 In addition to the compounds represented by the general formulas (1) to (4), the image forming layer of the heat-sensitive lithographic printing plate of ii) can contain a hot-melt material. As the hot-melt material, an organic compound having a melting point of 50 to 150 ° C. is preferable. For example, waxes such as carnauba wax, microcrystalline wax, paraffin wax, polyethylene wax, lauric acid, stearic acid, oleic acid, palmitic acid, behen Acids, fatty acids such as montanic acid, and esters and amides thereof can be used. The blending amount of the heat-meltable substance in the entire image forming layer is preferably 0.5 to 50% by mass with respect to the total solid content of the image forming layer.
 ii)の感熱型平版印刷版では、視認性確保のため、一般的な感熱記録紙、感圧記録紙に使用されるフェノール誘導体や芳香族カルボン酸誘導体等の顕色剤や発色剤(電子供与性染料前駆体)を含有させることができる。具体的な顕色剤および発色剤としては、前記したi)の感熱型平版印刷版の画像形成層が含有する顕色剤および発色剤と同様のものが挙げられる。 In the heat-sensitive lithographic printing plate of ii), in order to ensure visibility, a developer or a color former (electron donor) such as a phenol derivative or an aromatic carboxylic acid derivative used in general heat-sensitive recording paper and pressure-sensitive recording paper. Dye precursor). Specific examples of the color developer and color former include those similar to the color developer and color developer contained in the image forming layer of the heat-sensitive lithographic printing plate i) described above.
 更に、ii)の感熱型平版印刷版が有する画像形成層に光熱変換物質を配合することもできる。光熱変換剤を用いることで、サーマルヘッドだけでなく赤外線レーザー等の活性光による書き込みも可能となる。光熱変換物質の例としては、前記したi)の感熱型平版印刷版の画像形成層が含有する光熱変換物質と同様のものが挙げられる。 Furthermore, a photothermal conversion substance can be added to the image forming layer of the heat-sensitive lithographic printing plate of ii). By using a photothermal conversion agent, writing with active light such as an infrared laser as well as a thermal head is possible. Examples of the photothermal conversion material include the same photothermal conversion materials as those contained in the image forming layer of the heat-sensitive lithographic printing plate i) described above.
 ii)の感熱型平版印刷版が有する画像形成層全体の塗布量は、画像部の耐刷性、非画像部の耐水性および機械的強度の観点から、乾燥固形分として0.5~30g/mであることが好ましい。 The coating amount of the entire image forming layer of the heat-sensitive lithographic printing plate of ii) is 0.5 to 30 g / in dry solid content from the viewpoints of printing durability of the image area, water resistance of the non-image area and mechanical strength. m 2 is preferable.
 上記したi)および/またはii)の要件を満たす感熱型平版印刷版の耐水性支持体から最も離れた画像形成層(B)は、酸化亜鉛または硫酸バリウムを含有することができる。これにより耐刷性と耐地汚れ性(保水性)がバランスよく向上した感熱型平版印刷版を提供することができる。 The image forming layer (B) farthest from the water-resistant support of the heat-sensitive lithographic printing plate that satisfies the above requirements i) and / or ii) can contain zinc oxide or barium sulfate. As a result, it is possible to provide a heat-sensitive lithographic printing plate in which printing durability and background stain resistance (water retention) are improved in a balanced manner.
 <酸化亜鉛>
 酸化亜鉛はその製法から乾式法と湿式法に大別され、乾式法には、フランス法とアメリカ法があり、湿式法ではドイツ法等がよく知られている。フランス法は、高純度金属亜鉛を加熱し、発生する亜鉛蒸気を酸化雰囲気中で燃焼させて酸化亜鉛を生成する方法である。一方のアメリカ法は、亜鉛鉱石(フランクナイト)にコークス等の還元剤を加えてばい焼し、発生する亜鉛蒸気を空気酸化して生成する方法である。また、湿式法は、亜鉛塩、例えば炭酸亜鉛等を熱分解する方法、亜鉛塩のアルカリ溶液を酸で中和しながら直接液中に酸化亜鉛を沈澱させる方法、亜鉛塩の酸性溶液を、アルカリ中で中和しながら直接液中に沈澱させる方法がある。一般的には、亜鉛塩の酸性溶液(硫酸亜鉛液または塩化亜鉛液)と、ソーダ灰等のアルカリと反応させ、水洗-ろ過-乾燥後、焼成、粉砕して製造される。これらの方法で製造される酸化亜鉛については、例えば、正同化学(株)、堺化学(株)、ハクスイテック(株)、本荘ケミカル(株)、東邦亜鉛(株)等の各社から市販されているものが挙げられ、いずれについても本発明で使用することができる。
<Zinc oxide>
Zinc oxide is roughly classified into a dry method and a wet method according to its production method. There are a French method and an American method in the dry method, and a German method is well known as the wet method. The French method is a method in which zinc oxide is produced by heating high-purity metallic zinc and combusting generated zinc vapor in an oxidizing atmosphere. On the other hand, the American method is a method in which a reducing agent such as coke is added to zinc ore (flankite) and roasted, and the generated zinc vapor is oxidized by air to produce it. Further, the wet method includes a method of thermally decomposing a zinc salt such as zinc carbonate, a method of directly depositing zinc oxide in a solution while neutralizing an alkaline solution of the zinc salt with an acid, an acidic solution of the zinc salt There is a method of direct precipitation in the liquid while neutralizing the solution. In general, it is produced by reacting an acidic solution of zinc salt (zinc sulfate solution or zinc chloride solution) with an alkali such as soda ash, washing with water, filtering and drying, firing and pulverizing. Zinc oxide produced by these methods is commercially available from, for example, Shodo Chemical Co., Ltd., Sakai Chemical Co., Ltd., Hakusui Tech Co., Ltd., Honjo Chemical Co., Ltd., Toho Zinc Co., Ltd. Any of these can be used in the present invention.
 <硫酸バリウム>
 硫酸バリウムは、重晶石を粉砕して脱鉄洗浄、水ひして得られるひ性硫酸バリウム(バライト粉)と、バリウム塩素溶液に硫酸塩水溶液を加えて化学的に沈澱させて製造される沈降性硫酸バリウムとがある。これらの方法で製造される硫酸バリウムについては、例えば、堺化学(株)、竹原化学工業(株)、ハクスイテック(株)等から市販されているもの等が挙げられるが、いずれについても本発明で使用することができる。さらに、硫酸バリウムについては、粒子形成後に後処理として有機高分子処理が施されていてもよく、Al、SiおよびZr等の金属元素いずれかの水酸化物や酸化物、またはMg、Ca、SrおよびBa等の金属元素いずれかのリン酸塩等によって表面処理が施されていてもよい。
<Barium sulfate>
Barium sulfate is barium sulfate obtained by pulverizing barite and removing iron, washing with water, and sedimentation produced by adding a sulfate aqueous solution to a barium chlorine solution and chemically precipitating. And barium sulfate. Examples of the barium sulfate produced by these methods include those commercially available from Sakai Chemical Co., Ltd., Takehara Chemical Industry Co., Ltd., Hakusuikku Co., Ltd., etc. Can be used. Furthermore, barium sulfate may be subjected to organic polymer treatment as a post-treatment after particle formation, and may be a hydroxide or oxide of any metal element such as Al, Si and Zr, or Mg, Ca, Sr. And surface treatment may be performed with a phosphate or the like of any of metal elements such as Ba.
 酸化亜鉛または硫酸バリウムの平均粒径が大きすぎる場合、画像形成層(B)にサーマルヘッドにて直接接触させて印字した際に、接触面積が減少するおそれがある。接触面積の減少は、熱効率の低下を招き耐刷性を低下させたりする場合がある。一方、酸化亜鉛または硫酸バリウムの平均粒径が小さすぎる場合、耐刷性や耐地汚れ性(保水性)において効果が小さくなるのは勿論ではあるが、酸化亜鉛または硫酸バリウムの粒径如何によって、過度に接触面積が拡大するような場合においては、剥離性が低下する等して、スティッキング耐性を低下させる場合がある。このことから本発明に用いる酸化亜鉛または硫酸バリウムの平均粒径は、0.1~1.0μmの範囲のものが好ましく、より好ましくは0.2~0.5μmである。 When the average particle diameter of zinc oxide or barium sulfate is too large, the contact area may decrease when printing is performed by directly contacting the image forming layer (B) with a thermal head. The reduction of the contact area may lead to a decrease in thermal efficiency and a decrease in printing durability. On the other hand, if the average particle size of zinc oxide or barium sulfate is too small, the effect on printing durability and soil resistance (water retention) is naturally reduced, but depending on the particle size of zinc oxide or barium sulfate. In the case where the contact area is excessively enlarged, the sticking resistance may be lowered due to a decrease in peelability or the like. Therefore, the average particle diameter of zinc oxide or barium sulfate used in the present invention is preferably in the range of 0.1 to 1.0 μm, more preferably 0.2 to 0.5 μm.
 本発明で用いる酸化亜鉛または硫酸バリウムの形状については、不定形、板状、柱状、粒状のいずれであってもよいが、不定形のものが好ましい。 The shape of zinc oxide or barium sulfate used in the present invention may be any of an irregular shape, a plate shape, a columnar shape, and a granular shape, but an irregular shape is preferred.
 また画像形成層(B)が含有する酸化亜鉛または硫酸バリウムの含有量は、画像形成層(B)が含有する熱可塑性樹脂量に対して8~26質量%であることが好ましい。これにより耐刷性と耐地汚れ性(保水性)をより高いレベルで両立させることができる。また、画像形成層(A)および画像形成層(B)に含まれる熱可塑性樹脂の総量に対しては5質量%以下の範囲を超えない量で酸化亜鉛または硫酸バリウムを用いることが望ましい。 The content of zinc oxide or barium sulfate contained in the image forming layer (B) is preferably 8 to 26% by mass with respect to the amount of the thermoplastic resin contained in the image forming layer (B). Thereby, it is possible to achieve both printing durability and ground stain resistance (water retention) at a higher level. Further, it is desirable to use zinc oxide or barium sulfate in an amount not exceeding the range of 5% by mass or less with respect to the total amount of the thermoplastic resin contained in the image forming layer (A) and the image forming layer (B).
 <下塗り層>
 本発明において、画像形成層(A)と耐水性支持体との間に、平均粒子径が下塗り層の平均乾燥膜厚よりも小さい二酸化チタン、バインダー樹脂および架橋剤を少なくとも含有する下塗り層を設けることができる。これにより画質や耐刷性を低下させることなく耐傷性が改善された、アブレーション方式や機上現像方式等における所謂デブリ処理を一切必要としない感熱型平版印刷版を提供することができる。
<Undercoat layer>
In the present invention, an undercoat layer containing at least titanium dioxide, a binder resin and a crosslinking agent having an average particle size smaller than the average dry film thickness of the undercoat layer is provided between the image forming layer (A) and the water-resistant support. be able to. As a result, it is possible to provide a heat-sensitive lithographic printing plate that does not require any so-called debris processing in an ablation method, an on-machine development method, or the like, with improved scratch resistance without deteriorating image quality and printing durability.
 本発明における耐傷性とは、該平版印刷版の製造過程や製版過程等において入るような表面上の傷等だけではなく、印刷中に生じる傷による品質低下にも効果を示す。印刷中に生じる傷とは、印刷機のブランケットローラー上にできた僅かな起伏が原因で部分的な版圧変化が生じ、結果的に版面を傷付けることで印刷適性不良を生じるというものである。そしてこの部分的な版圧変化は、印刷機のシリンダー咥え部付近でブランケットが折り曲がる部分において特に起こりやすく、印刷紙面には極先端および尻端部に汚れとなって現れる。本明細書で使用される場合、この汚れを「ブラン傷」と称し、この汚れに対する耐性を「ブラン傷耐性」とも称す。 Scratch resistance in the present invention is effective not only for surface scratches and the like which are introduced in the production process and plate making process of the lithographic printing plate, but also for quality deterioration due to scratches generated during printing. A scratch generated during printing is a partial change in plate pressure caused by a slight undulation formed on a blanket roller of a printing press, resulting in poor printability by scratching the plate surface. This partial plate pressure change is particularly likely to occur at the portion where the blanket bends in the vicinity of the cylinder gripping portion of the printing press, and appears on the printing paper as dirt at the extreme tip and the bottom edge. As used herein, this soil is referred to as “bran scratch” and resistance to this soil is also referred to as “bran scratch resistance”.
 下塗り層に用いられる二酸化チタンは、ルチル型、アナタース型の何れであっても良い。また、その製法についても硫酸法、塩素法何れかに限定されるものでもなく、それらを単独または混合して使用しても良い。更に、分散安定性や他の機能性の観点から、各種表面処理を施したものを選択的に用いることも可能である。表面処理組成としては、アルミナやシリカ、酸化亜鉛、ジルコニア等が一般的である。市販されている二酸化チタンとしては、例えば堺化学工業(株)からSR-1、R-650、R-5N、R-7E、R-3L、A-110、A-190等、石原産業(株)から、タイペークR-580、同R-930、同A-100、同A-220、同CR-58等、チタン工業(株)から、クロノスKR-310、同KR-380、同KA-10、同KA-20等、テイカ(株)から、チタニックスJR-301、同JR-600A、同JR-800、同JR-701等、デュポン(株)から、タイピュアR-900、同R-931等が挙げられる。 The titanium dioxide used for the undercoat layer may be either a rutile type or an anatase type. Further, the production method is not limited to either the sulfuric acid method or the chlorine method, and they may be used alone or in combination. Furthermore, from the viewpoint of dispersion stability and other functionality, it is possible to selectively use those subjected to various surface treatments. As the surface treatment composition, alumina, silica, zinc oxide, zirconia and the like are common. Examples of commercially available titanium dioxide include SR-1, R-650, R-5N, R-7E, R-3L, A-110, and A-190 from Sakai Chemical Industry Co., Ltd. ), Typeke R-580, R-930, A-100, A-220, CR-58, etc., from Titanium Industry Co., Ltd., Kronos KR-310, KR-380, KA-10 KA-20 etc., from Teika Co., Ltd., Titanics JR-301, JR-600A, JR-800, JR-701 etc., from DuPont Co., Ltd., Taipure R-900, R-931 Etc.
 本発明に用いる二酸化チタンの平均粒子径は、下塗り層の平均乾燥膜厚よりも小さくすることが好ましい。二酸化チタンは一般に一次粒子が幾つか凝集して二次粒子、三次粒子等の形で存在する。該二酸化チタンの平均粒子径は、例えば、ポリカルボン酸系や脂肪酸アミン系、スルホン酸アミド系、ε-カプロラクトン系、ハイドロステアリン酸系、ポリエステルアミン等の分散剤を加えた分散媒中に二酸化チタンを添加し、これをボールミル、ビーズミル、サンドグラインダー等のメディアミル、高圧ホモジナイザー、超高圧ホモジナイザー等の圧力式分散機、超音波分散機、および薄膜旋回型分散機等を使用して分散することで、適宜調整することが好ましい。下塗り層中における二酸化チタン平均粒子径としては、0.1~1.5μmであることが好ましく、0.3~1.0μmであることがより好ましい。なお二酸化チタンの平均粒子径は、レーザー散乱式の粒度分布計(例えば(株)堀場製作所製LA920)を用いて、個数メジアン径として測定することができる。 The average particle diameter of titanium dioxide used in the present invention is preferably smaller than the average dry film thickness of the undercoat layer. Titanium dioxide generally exists in the form of secondary particles, tertiary particles, etc., with some primary particles agglomerated. The average particle diameter of the titanium dioxide is, for example, titanium dioxide in a dispersion medium to which a dispersant such as polycarboxylic acid, fatty acid amine, sulfonic acid amide, ε-caprolactone, hydrostearic acid, polyester amine is added. Is dispersed using a media mill such as a ball mill, a bead mill, a sand grinder, a pressure disperser such as a high pressure homogenizer, an ultra high pressure homogenizer, an ultrasonic disperser, and a thin film swirl disperser. It is preferable to adjust appropriately. The average particle diameter of titanium dioxide in the undercoat layer is preferably from 0.1 to 1.5 μm, and more preferably from 0.3 to 1.0 μm. The average particle diameter of titanium dioxide can be measured as a number median diameter using a laser scattering particle size distribution meter (for example, LA920 manufactured by Horiba, Ltd.).
 本発明の下塗り層に用いられる二酸化チタンの含有量としては、広い範囲で設定することができるが、下塗り層が含有するバインダー樹脂の固形分100質量部に対して200~1000質量%で用いることが好ましく、より好ましくは400~600質量%である。二酸化チタンの含有量が少ない場合には、保水性が低下したり、耐傷性に効果が認められない場合がある。二酸化チタンを過剰に用いた場合においては、例えば塗液の安定性が低下したり、不規則な凝集等により嵩密度が増大して表面粗さが大きくなったり、印刷適性が低下する場合がある。 The content of titanium dioxide used in the undercoat layer of the present invention can be set within a wide range, but it should be used at 200 to 1000% by mass with respect to 100 parts by mass of the binder resin solid content contained in the undercoat layer. Is more preferable, and 400 to 600% by mass is more preferable. When the content of titanium dioxide is small, the water retention may be lowered or the effect on scratch resistance may not be recognized. When titanium dioxide is used in excess, for example, the stability of the coating solution may decrease, the bulk density may increase due to irregular aggregation, etc., and the surface roughness may increase, or the printability may decrease. .
 本発明の下塗り層が含有するバインダー樹脂としては、例えば、石灰処理ゼラチン、酸処理ゼラチン、酵素処理ゼラチン等のゼラチン、多糖類、ポリビニルアルコール、ポリビニルピロリドン等の水溶性ポリマーを用いることができるが、特にゼラチンを用いることが好ましい。 As the binder resin contained in the undercoat layer of the present invention, for example, gelatin such as lime-processed gelatin, acid-processed gelatin, and enzyme-processed gelatin, water-soluble polymers such as polysaccharides, polyvinyl alcohol, and polyvinylpyrrolidone can be used. It is particularly preferable to use gelatin.
 本発明の下塗り層が含有する架橋剤としては、例えば、メラミン樹脂、エポキシ樹脂、ポリイソシアネート化合物、アルデヒド化合物、シラン化合物、クロム明礬、ジビニルスルホン等が好適に用いることができるが、バインダー樹脂がゼラチンである場合に特に好ましい架橋剤はジビニルスルホンである。下塗り層における架橋剤の配合量は、前記バインダーの固形分量に対して1~30質量%が好ましく、更には2~15質量%とすることが好ましい。架橋剤の添加方法については、該下塗り層の塗布液を製造する際に添加したり、塗布直前にインラインで添加する方法等があるが何れでも良い。 As the crosslinking agent contained in the undercoat layer of the present invention, for example, melamine resin, epoxy resin, polyisocyanate compound, aldehyde compound, silane compound, chromium alum, divinyl sulfone and the like can be suitably used, but the binder resin is gelatin. A particularly preferred cross-linking agent is divinyl sulfone. The amount of the crosslinking agent in the undercoat layer is preferably 1 to 30% by mass, more preferably 2 to 15% by mass, based on the solid content of the binder. As a method for adding the cross-linking agent, there are a method of adding a coating solution for the undercoat layer, a method of adding it in-line immediately before coating, and the like.
 <耐水性支持体>
 本発明の感熱型平版印刷版に用いる耐水性支持体としては、プラスチックフィルム、樹脂被覆紙、耐水紙等が使用できる。具体的にはポリエチレン、ポリプロピレン等のポリオレフィン、ポリエーテルスルホン、ポリエステル、ポリ(メタ)アクリレート、ポリカーボネート、ポリアミドおよびポリ塩化ビニル等のプラスチックフィルム;これらプラスチックを表面にラミネートやコーティングした樹脂被覆紙;メラミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、エポキシ化ポリアミド樹脂等の湿潤紙力剤によって耐水化された紙を好適に用いることができる。
<Water resistant support>
As the water-resistant support used in the heat-sensitive lithographic printing plate of the present invention, a plastic film, resin-coated paper, water-resistant paper and the like can be used. Specifically, polyolefin films such as polyethylene and polypropylene, polyethersulfone, polyester, poly (meth) acrylate, polycarbonate, polyamide, and polyvinyl chloride, etc .; resin-coated paper with these plastics laminated or coated on the surface; melamine formaldehyde Paper that has been water-resistant with a wet paper strength agent such as a resin, urea formaldehyde resin, or epoxidized polyamide resin can be suitably used.
 次に、上述した本発明の感熱型平版印刷版を用いた製版方法について説明する。本発明の感熱型平版印刷版は、感熱型の画像形成層を有する。本発明の感熱型平版印刷版において、画像形成層中が光熱変換物質を含有する場合、例えば760nmから1200nmの赤外光を含む光を照射することで画像部を形成することが可能である。更に赤外線を放射する固体レーザーおよび半導体レーザーにより画像部を形成することが好ましい。特にレーザー露光によれば、コンピューターのデジタル情報から直接所望の画像様の記録が可能となる。また、本発明の感熱型平版印刷版において、サーマルヘッドやヒートブロック等により画像形成層を直接熱により描画し画像部を形成することも可能である。サーマルヘッドによれば、コンピューターのデジタル情報から直接所望の画像様の記録が可能となる。本発明の感熱型平版印刷版はこのように印字した後、アブレーション方式や機上現像方式等により画像形成層を除去することなく、印刷することができる。 Next, a plate making method using the above-described heat-sensitive lithographic printing plate of the present invention will be described. The heat-sensitive lithographic printing plate of the present invention has a heat-sensitive image forming layer. In the heat-sensitive lithographic printing plate of the present invention, when the image forming layer contains a photothermal conversion substance, it is possible to form an image portion by irradiating light containing infrared light from 760 nm to 1200 nm, for example. Further, it is preferable to form the image portion with a solid-state laser and a semiconductor laser emitting infrared rays. In particular, laser exposure enables desired image-like recording directly from digital information of a computer. In the heat-sensitive lithographic printing plate of the present invention, it is also possible to draw an image forming layer directly by heat with a thermal head or a heat block to form an image portion. According to the thermal head, desired image-like recording can be performed directly from digital information of a computer. The heat-sensitive lithographic printing plate of the present invention can be printed without removing the image forming layer by the ablation method or the on-press development method after printing in this way.
 サーマルヘッドを使用する場合は、厚膜または薄膜のラインヘッドを用いたラインプリンタや、薄膜のシリアルヘッドを用いたシリアルプリンタ等が使用できる。記録エネルギー密度は、10~100mJ/mmであることが好ましい。また、比較的高品質な出力画像を得るためには、ヘッドの画像記録密度が300dpi以上であることが好ましい。 When a thermal head is used, a line printer using a thick film or thin film line head, a serial printer using a thin film serial head, or the like can be used. The recording energy density is preferably 10 to 100 mJ / mm 2 . In order to obtain a relatively high quality output image, the image recording density of the head is preferably 300 dpi or more.
 本発明の感熱型平版印刷版は、従来の平版印刷版で好適に用いられてきた任意公知の表面処理剤でインキ受容性に変換ないしは受容性を改善させることも可能である。印刷方法、あるいは使用する不感脂化液、給湿液等は普通に良く知られた方法により施すこともできる。 The heat-sensitive lithographic printing plate of the present invention can be converted into ink acceptability or improved by any known surface treatment agent that has been suitably used in conventional lithographic printing plates. The printing method, or the desensitizing liquid and the moisturizing liquid to be used can be applied by a generally well-known method.
 以下、実施例を用いて本発明を説明するが、無論この記述により本発明が限定されるものではない。なお、以下の記述中、「%」および「部」は、特に示さない限り、「質量%」および「質量部」を示す。 Hereinafter, the present invention will be described with reference to examples, but it is needless to say that the present invention is not limited to this description. In the following description, “%” and “part” indicate “% by mass” and “part by mass” unless otherwise specified.
(実施例1)
 両面にラミネート加工が施された厚さ約180μmのポリエチレン被覆紙の片面に、下記画像形成層塗工液a処方で表1の如く1層目(画像形成層(A))、2層目(画像形成層(B))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量1層目30g/m、2層目10g/mとなるように同時塗布した後、乾燥し画像形成層を作製し、サンプルNo.1~13の感熱型平版印刷版を得た。
Figure JPOXMLDOC01-appb-I000013
Example 1
As shown in Table 1, the first layer (image forming layer (A)) and the second layer (as shown in Table 1) are coated on one side of a polyethylene-coated paper having a thickness of about 180 μm and laminated on both sides. to prepare a coating liquid of the image forming layer (B)), were simultaneously coated to a wet coating weight first layer 30 g / m 2, 2-layer 10 g / m 2 by a slide hopper coating method, dried An image forming layer was prepared and sample no. 1 to 13 thermosensitive lithographic printing plates were obtained.
Figure JPOXMLDOC01-appb-I000013
 上記画像形成層塗工液aに用いる発色剤混合スラリーは、予め下記構成により調製した。
<発色剤混合スラリーの調製>
 材料a:1,2-ビス(3-メチルフェノキシ)エタン
 (三光(株)製:KS-232)
 材料b:4-ヒドロキシ-4′-イソプロポキシジフェニルスルホン
 (日本曹達(株)製:D-8)
 材料c:3-ジブチルアミノ-6-メチル-7-アニリノフルオラン
 (山本化成(株)製:ODB2)
The color former mixed slurry used for the image forming layer coating solution a was prepared in advance by the following constitution.
<Preparation of color former mixed slurry>
Material a: 1,2-bis (3-methylphenoxy) ethane (manufactured by Sanko Co., Ltd .: KS-232)
Material b: 4-hydroxy-4'-isopropoxydiphenyl sulfone (manufactured by Nippon Soda Co., Ltd .: D-8)
Material c: 3-dibutylamino-6-methyl-7-anilinofluorane (manufactured by Yamamoto Kasei Co., Ltd .: ODB2)
 材料a、b、cを予め、個々に小型ダイノーミル(ビーズミル)でジルコニアビーズを用いて任意の粒径まで微分散処理を施し、固形分濃度約30%に調整された分散液をそれぞれ作製し、分散液a、分散液b、分散液cとした。分散液a、b各々3部に対し、分散液c1部を常温下で混合することで発色剤混合スラリーを調製した。 The materials a, b, and c are individually dispersed in a small dyno mill (bead mill) using a zirconia bead to an arbitrary particle size to prepare dispersions adjusted to a solid content concentration of about 30%, Dispersion a, dispersion b, and dispersion c were used. A color former mixed slurry was prepared by mixing 1 part of the dispersion c at room temperature with 3 parts of each of the dispersions a and b.
Figure JPOXMLDOC01-appb-T000014
※比率とは、水溶性高分子化合物に対する熱可塑性樹脂の比率(質量比)を表す。
(熱溶融性樹脂(Y)/水溶性高分子化合物(X))
Figure JPOXMLDOC01-appb-T000014
* The ratio represents the ratio (mass ratio) of the thermoplastic resin to the water-soluble polymer compound.
(Hot-melting resin (Y) / water-soluble polymer compound (X))
 また比較として、両面にラミネート加工が施された厚さ約180μmのポリエチレン被覆紙の片面に、下記画像形成層塗工液b処方の如く作製した塗工液を、スライドホッパーコーティング法により湿分塗布量60g/mで塗布し乾燥して、サンプルNo.14の感熱型平版印刷版を得た。 Also, as a comparison, a coating liquid prepared as shown in the following image forming layer coating liquid b formulation was applied to one side of a polyethylene-coated paper with a thickness of about 180 μm and laminated on both sides by the slide hopper coating method. The sample was applied in an amount of 60 g / m 2 and dried. 14 heat-sensitive lithographic printing plates were obtained.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 このように作製した感熱型平版印刷版に、ダイレクトサーマルプリンタ(東芝テック(株)製バーコードプリンタB-433:ライン型サーマルヘッド300dpi)のテスト印字モード(印刷速度2インチ/sec、印加エネルギー18.6mJ/mm)で画像を記録し、印刷版を作製した。 A test printing mode (printing speed 2 inch / sec, applied energy 18) of a direct thermal printer (barcode printer B-433 manufactured by TOSHIBA TEC CO., LTD .: line type thermal head 300 dpi) is applied to the heat-sensitive lithographic printing plate thus prepared. .6 mJ / mm 2 ), an image was recorded, and a printing plate was produced.
 印刷評価として耐刷性については、印刷機はHAMADAH234C(ハマダ印刷機(株)製オフセット印刷機の商標)を使用し、インキはニューチャンピオンFグロス墨N(DIC(株)製の商標)、給湿液はSLM-OD(三菱製紙(株)製給湿液の商標)の12%水溶液を使用し、印刷開始前に給湿液にて版面をくまなく拭き与えた後、強制条件で評価をするために、版胴と版の間に0.1mmのゲージフィルムを挟み、印圧を上げた状態で印刷を開始した。印刷物の画像に欠落を生じ印刷できなくなった枚数を下記評価基準で評価した。
<耐刷性>
 ◎:5,000枚以上
 ○:3,000~5,000枚未満
 △:1,000~3,000枚未満
 ×:1,000枚未満
結果を表2に示す。
As for printing durability, as for printing durability, HAMADAH234C (trademark of offset printing machine manufactured by Hamada Printing Co., Ltd.) is used as a printing machine, and ink is New Champion F Gloss Sumi N (trademark manufactured by DIC Corporation), supply. The dampening solution uses a 12% aqueous solution of SLM-OD (trademark of dampening solution manufactured by Mitsubishi Paper Industries Co., Ltd.). Before starting printing, wipe the plate surface thoroughly with dampening solution, and then evaluate under forced conditions. In order to achieve this, printing was started with a 0.1 mm gauge film sandwiched between the plate cylinder and the plate and the printing pressure increased. The number of printed images that were missing and could not be printed was evaluated according to the following evaluation criteria.
<Print durability>
A: More than 5,000 sheets O: 3,000 to less than 5,000 Δ: 1,000 to less than 3,000 x: Less than 1,000 results are shown in Table 2.
 耐地汚れ性(保水性)についての印刷評価は、印刷機はRyobi3200CD(リョービイマジクス(株)製の商標)を使用し、インキはニューチャンピオン紫68N(DIC(株)製インキの商標)、給湿液はSLM-OD(三菱製紙(株)製給湿液の商標)2%水溶液を使用し印刷開始前に給湿液にて版面をくまなく拭き与えた後印刷を開始した。印刷物の非画像部に汚れ(地汚れ)が発生した枚数を下記評価基準で評価した。
<耐地汚れ性(保水性)>
 ◎:2,000枚以上
 ○:1,500~2,000枚未満
 △:1,000~1,500枚未満
 ×:1,000枚未満
結果を表2に示す。
Printing evaluation for soil stain resistance (water retention) was carried out using Ryobi 3200CD (trademark made by Ryobi Imagics Co., Ltd.) as the printing machine, and ink as New Champion Purple 68N (trademark of ink produced by DIC Corporation), As the dampening solution, SLM-OD (trademark of dampening solution manufactured by Mitsubishi Paper Industries Co., Ltd.) 2% aqueous solution was used. Before starting printing, printing was started after wiping the entire plate surface with dampening solution. The number of stains (background stains) generated on the non-image area of the printed material was evaluated according to the following evaluation criteria.
<Soil stain resistance (water retention)>
A: More than 2,000 sheets O: 1,500 to less than 2,000 Δ: 1,000 to less than 1,500 sheets ×: Less than 1,000 results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表2に示す結果から判るように、耐水性支持体に近い画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率を、耐水性支持体から最も離れた画像形成層(B)におけるその比率よりも高くすることで、良好な耐刷性と耐地汚れ性(保水性)が得られることが判る。 As can be seen from the results shown in Table 2, the ratio of the thermoplastic resin to the water-soluble polymer compound in the image-forming layer (A) close to the water-resistant support is the image-forming layer (B) farthest from the water-resistant support. It can be seen that when the ratio is higher than the ratio, good printing durability and soil resistance (water retention) can be obtained.
(実施例2)
 両面にラミネート加工が施された厚さ約180μmのポリエチレン被覆紙の片面に、下記画像形成層塗工液c処方で表3の如く1層目(画像形成層(A))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量20g/mで塗布し乾燥後、更に画像形成層塗工液c処方で表3の如く2層目(画像形成層(C))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量20g/mで塗布、乾燥し、更に画像形成層塗工液c処方で表3の如く3層目(画像形成層(B))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量20g/mで塗布、乾燥して画像形成層を作製し、サンプルNo.15~18の感熱型平版印刷版を得た。このとき使用した発色剤混合スラリーは、前記したサンプルNo.1のものと同じものを使用した。比較として、前記サンプルNo.14の感熱型平版印刷版を使用した。このように作製した感熱型平版印刷版を、実施例1と同様にして印刷・評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-I000017
(Example 2)
The coating solution for the first layer (image forming layer (A)) as shown in Table 3 is applied to one side of a polyethylene-coated paper having a thickness of about 180 μm and laminated on both sides as shown in Table 3 below. Prepared, applied by a slide hopper coating method at a moisture application amount of 20 g / m 2 , dried, and further coated with the second layer (image forming layer (C)) as shown in Table 3 in the image forming layer coating solution c formulation. A liquid is prepared, applied by a slide hopper coating method at a moisture application amount of 20 g / m 2 , dried, and further, the third layer (image forming layer (B)) of the image forming layer coating liquid c formulation as shown in Table 3 A coating solution was prepared, applied by a slide hopper coating method at a moisture application amount of 20 g / m 2 and dried to prepare an image forming layer. 15-18 thermosensitive lithographic printing plates were obtained. The color former mixed slurry used at this time was the sample No. described above. The same one was used. For comparison, the sample No. Fourteen thermosensitive lithographic printing plates were used. The thus produced thermosensitive lithographic printing plate was printed and evaluated in the same manner as in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-T000018
※比率とは、水溶性高分子化合物に対する熱可塑性樹脂の比率(質量比)を表す。
(熱溶融性樹脂(Y)/水溶性高分子化合物(X))
Figure JPOXMLDOC01-appb-T000018
* The ratio represents the ratio (mass ratio) of the thermoplastic resin to the water-soluble polymer compound.
(Hot-melting resin (Y) / water-soluble polymer compound (X))
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表4に示す結果から判るように画像形成層を3層設けた場合においても、耐水性支持体に近い画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率を、耐水性支持体から最も離れた画像形成層(B)におけるその比率よりも高くすることで、良好な耐刷性と耐地汚れ性(保水性)が得られることが判る。 As can be seen from the results shown in Table 4, even when three image forming layers were provided, the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) close to the water resistant support was determined as the water resistant support. It can be seen that by making the ratio higher than that in the image forming layer (B) furthest away from the body, good printing durability and soil resistance (water retention) can be obtained.
(実施例3)
 両面にラミネート加工が施された厚さ約180μmのポリエチレン被覆紙の片面に、下記画像形成層塗工液d処方で表5の如く1層目(画像形成層(A))、2層目(画像形成層(B))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量1層目30g/m、2層目10g/mとなる様に同時塗布した後、乾燥し画像形成層を作製し、サンプルNo.19~25の感熱型平版印刷版を得た。なお、一般式(1)~(4)の化合物、顕色剤、発色剤については、事前に個々に小型ダイノミル(ビーズミル)でジルコニアビーズを用いて固形分濃度30%で微分散処理しそれぞれ分散液の状態で使用した。
Figure JPOXMLDOC01-appb-I000020
(Example 3)
As shown in Table 5, the first layer (image forming layer (A)) and the second layer (with the following image forming layer coating solution d formulation) are coated on one side of a polyethylene-coated paper having a thickness of about 180 μm and laminated on both sides. to prepare a coating liquid of the image forming layer (B)), were simultaneously coated as a wet coating weight first layer 30 g / m 2, 2-layer 10 g / m 2 by a slide hopper coating method, dried An image forming layer was prepared and sample no. 19 to 25 thermosensitive lithographic printing plates were obtained. The compounds of general formulas (1) to (4), the developer, and the color former are individually dispersed in advance using a small dynomill (bead mill) with zirconia beads at a solid content concentration of 30%. Used in liquid form.
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 また比較として、表5の如く塗工液を作製し、スライドホッパーコーティング法により湿分塗布量40g/mで塗布した後乾燥し、比較サンプル(サンプルNo.26および27の感熱型平版印刷版)を作製した。 For comparison, a coating solution as shown in Table 5 was prepared, applied at a moisture application amount of 40 g / m 2 by a slide hopper coating method, and then dried, and then a comparative sample (thermal lithographic printing plate of sample Nos. 26 and 27). ) Was produced.
 この様に作製した感熱型平版印刷版に、ダイレクトサーマルプリンタ(東芝テック(株)製バーコードプリンタB-433:ライン型サーマルヘッド300dpi)のテスト印字モード(印刷速度2インチ/sec、印加エネルギー18.6mJ/mm)で画像を記録し、印刷版を作製した。 A test printing mode (printing speed 2 inches / sec, applied energy 18) of a direct thermal printer (barcode printer B-433 manufactured by TOSHIBA TEC CO., LTD .: line type thermal head 300 dpi) is applied to the heat-sensitive lithographic printing plate thus produced. .6 mJ / mm 2 ), an image was recorded, and a printing plate was produced.
 ヘッドカス改善の評価として、斜線印字1ドット画像を連続50版製版し、1版目の製版物と50版目の製版物を目視にて下記評価基準で検版した結果を表6に示した。
<ヘッドカス改善>
 ○:1版目と50版目の画像品質に差が見られない。
 ×:1版目と50版目の画像品質に差が見られる。
<印刷>
 耐刷性については、前記製版条件で印刷評価用画像を製版し、それを印刷用サンプルとして印刷試験を行った。印刷機はHAMADA DU342C(ハマダ印刷機械(株)製オフセット印刷機)を使用し、インキはニューチャンピオンFグロス墨85N(DIC(株)製)、給湿液はSLM-OD30(三菱製紙(株)製給湿液)の3%水溶液を使用し、印刷開始前にSLM-OD30(三菱製紙(株)製給湿液)の10%水溶液を使用し版面をくまなく拭き与えた後、印刷を開始した。スティッキング現象改善の評価として、印刷物の黒ベタ部に、製版印字方向とは垂直方向に発生する白筋の有無で確認し下記評価基準で評価した。又、耐刷性の評価として印刷物の画像に欠落を生じ印刷できなくなった枚数を下記評価基準で評価した。
<スティッキング現象改善>
 ○:白筋が見られない。
 ×:白筋が見られる。
<耐刷性>
 ◎:5,000枚以上
 ○:3,000~5,000枚未満
 △:1,000~3,000枚未満
 ×:1,000枚未満
結果を表6に示す。
Table 6 shows the results of the evaluation of head scum improvement, in which one-dot images printed with diagonal lines were continuously made into 50 plates, and the first plate and the 50th plate were visually inspected according to the following evaluation criteria.
<Head residue improvement>
○: No difference in image quality between the 1st and 50th plates.
X: There is a difference in image quality between the first plate and the 50th plate.
<Printing>
As for printing durability, an image for printing evaluation was made under the above-mentioned plate making conditions, and a printing test was conducted using this as a printing sample. The printing machine uses HAMADA DU342C (offset printing machine manufactured by Hamada Printing Machinery Co., Ltd.), the ink is New Champion F gloss ink 85N (manufactured by DIC Corporation), and the dampening liquid is SLM-OD30 (Mitsubishi Paper Co., Ltd.). Use a 10% aqueous solution of SLM-OD30 (Mitsubishi Paper Co., Ltd. moisturizing solution) before commencing printing, and then start printing after wiping the entire plate surface. did. As an evaluation of the improvement of the sticking phenomenon, the black solid portion of the printed material was confirmed by the presence or absence of white streaks generated in the direction perpendicular to the plate-making printing direction, and evaluated according to the following evaluation criteria. Further, as an evaluation of printing durability, the number of prints that could not be printed due to missing images was evaluated according to the following evaluation criteria.
<Improve sticking phenomenon>
○: White stripes are not seen.
X: White streaks are observed.
<Print durability>
A: 5,000 or more B: 3,000 to less than 5,000 Δ: 1,000 to less than 3,000 ×: Less than 1,000 results are shown in Table 6.
 耐地汚れ性(保水性)については、前記製版条件で印刷評価用画像を製版し、それを印刷用サンプルとして印刷試験を行った。印刷機はRyobi3200CD(リョービイマジクス(株)製)を使用し、インキはニューチャンピオンFグロス紫68N(DIC(株)製)、給湿液はSLM-OD(三菱製紙(株)製給湿液)2%水溶液を使用し、印刷開始前にSLM-OD30(三菱製紙(株)製給湿液)の20%水溶液を使用し版面をくまなく拭き与えた後、印刷を開始した。印刷物の非画像部に汚れ(地汚れ)が発生した枚数を下記評価基準で評価した。
<耐地汚れ性(保水性)>
 ◎:2,000枚以上
 ○:1,500~2,000枚未満
 △:1,000~1,500枚未満
 ×:1,000枚未満
結果を表6に示す。
As for the soil resistance (water retention), an image for printing evaluation was made under the plate making conditions, and a printing test was performed using the image as a printing sample. The printer uses Ryobi 3200CD (manufactured by Ryobi Imagics Co., Ltd.), the ink is New Champion F Gloss Purple 68N (DIC Co., Ltd.), and the dampening solution is SLM-OD (Mitsubishi Paper Co., Ltd. dampening solution). ) Using a 2% aqueous solution, before starting printing, printing was started after using a 20% aqueous solution of SLM-OD30 (Mitsubishi Paper Co., Ltd. dampening solution) to wipe the entire plate surface. The number of stains (background stains) generated on the non-image area of the printed material was evaluated according to the following evaluation criteria.
<Soil stain resistance (water retention)>
◎: More than 2,000 sheets ○: 1,500 to less than 2,000 sheets △: 1,000 to less than 1,500 sheets ×: Less than 1,000 sheets Table 6 shows the results.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表6に示す結果からわかるように、耐水性支持体に近い画像形成層(A)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率を、耐水性支持体から最も離れた画像形成層(B)におけるその比率よりも高くすることで、十分な耐刷性と耐地汚れ性(保水性)に加え、ヘッドカスによる印字不良、およびスティッキング現象による画像の乱れが改善された感熱型平版印刷版が得られることが判る。 As can be seen from the results shown in Table 6, the ratio of the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image-forming layer (A) close to the water-resistant support was determined using the water-resistant support. By making the ratio higher than that in the image forming layer (B) farthest from the image, in addition to sufficient printing durability and background stain resistance (water retention), printing defects due to head debris and image disturbance due to sticking phenomenon are caused. It can be seen that an improved thermal lithographic printing plate is obtained.
(実施例4)
 実施例3の一般式(1)~(4)の化合物が2-ベンジルオキシナフタレンであること以外は同様に試験した結果、実施例3と同様の結果が得られた。
Example 4
As a result of performing the same test except that the compound of the general formulas (1) to (4) in Example 3 was 2-benzyloxynaphthalene, the same result as in Example 3 was obtained.
(実施例5)
 実施例3の一般式(1)~(4)の化合物がシュウ酸ビス(p-メチルベンジル)であること以外は同様に試験した結果、実施例3と同様の結果が得られた。
(Example 5)
As a result of testing in the same manner except that the compound of the general formulas (1) to (4) in Example 3 was bis (p-methylbenzyl) oxalate, the same result as in Example 3 was obtained.
(実施例6)
 実施例3の一般式(1)~(4)の化合物が1,2-ビスフェノキシメチルベンゼンであること以外は同様に試験した結果、実施例3と同様の結果が得られた。
(Example 6)
As a result of the same test except that the compound of the general formulas (1) to (4) in Example 3 was 1,2-bisphenoxymethylbenzene, the same result as in Example 3 was obtained.
(実施例7)
 画像形成層塗工液については、実施例3の画像形成層塗工液に光熱変換剤としてカーボンブラック:SD9020(DIC(株)製)を固形分として0.25kg添加すること以外は同様にしてサンプルおよび比較サンプルを作製した。半導体レーザー(波長830nm、出力500mw)で1200dpiの解像度で画像露光を行い実施例3と同様の印刷評価を行った結果、実施例3と同様の印刷結果が得られた。
(Example 7)
The image forming layer coating solution was the same except that 0.25 kg of carbon black: SD9020 (manufactured by DIC Corporation) was added as a solid content to the image forming layer coating solution of Example 3 as a photothermal conversion agent. Samples and comparative samples were made. Image exposure was performed with a semiconductor laser (wavelength 830 nm, output 500 mw) at a resolution of 1200 dpi, and the same print evaluation as in Example 3 was performed. As a result, the same print result as in Example 3 was obtained.
(実施例8)
 両面にラミネート加工が施された厚さ約180μmのポリエチレン被覆紙の片面に、前記画像形成層塗工液d処方で表7の如く1層目(画像形成層(A))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量20g/mで塗布し乾燥後、更に画像形成層塗工液d処方で表7の如く2層目(画像形成層(C))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量10g/mで塗布、乾燥し、更に画像形成層塗工液d処方で表7の如く3層目(画像形成層(B))の塗工液を作製し、スライドホッパーコーティング法により湿分塗布量10g/mで塗布、乾燥して画像形成層を作製し、サンプルNo.28~31の感熱型平版印刷版を得た。なお、一般式(1)~(4)の化合物、顕色剤、発色剤については、実施例3と同様に事前に個々に小型ダイノミル(ビーズミル)でジルコニアビーズを用いて固形分濃度30%で微分散処理しそれぞれ分散液の状態で使用した。又、比較として、前記サンプルNo.26、27の感熱型平版印刷版を使用した。この様に作製した感熱型平版印刷版を、実施例3と同様にして評価を行った。結果を表8に示す。
(Example 8)
A coating solution for the first layer (image forming layer (A)) as shown in Table 7 is applied to one side of a polyethylene-coated paper having a thickness of about 180 μm and laminated on both sides as shown in Table 7. Prepared, applied by a slide hopper coating method at a moisture application amount of 20 g / m 2 , dried, and further coated with the second layer (image forming layer (C)) as shown in Table 7 in the image forming layer coating solution d formulation. A liquid is prepared, applied by a slide hopper coating method at a moisture application amount of 10 g / m 2 , dried, and further, the third layer (image forming layer (B)) of the image forming layer coating liquid d formulation as shown in Table 7 A coating solution was prepared, applied at a moisture application amount of 10 g / m 2 by a slide hopper coating method, and dried to prepare an image forming layer. 28-31 thermosensitive lithographic printing plates were obtained. For the compounds of general formulas (1) to (4), the developer, and the color former, in the same manner as in Example 3, individually using a small dynomill (bead mill) and using zirconia beads at a solid content concentration of 30% in advance. Each was finely dispersed and used in the form of a dispersion. For comparison, the sample No. Heat-sensitive lithographic printing plates 26 and 27 were used. The heat-sensitive lithographic printing plate produced in this way was evaluated in the same manner as in Example 3. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表8に示す結果から判る様に画像形成層を3層設けた場合においても、耐水性支持体に近い画像形成層(A)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物の比率を、耐水性支持体から最も離れた画像形成層(B)におけるその比率よりも高くすることで、十分な耐刷性と耐地汚れ性(保水性)に加え、ヘッドカスによる印字不良、およびスティッキング現象による画像の乱れが改善された感熱型平版印刷版が得られることが判る。 As can be seen from the results shown in Table 8, even when three image forming layers were provided, the general formulas (1) to (4) for the water-soluble polymer compound in the image forming layer (A) close to the water-resistant support were used. By making the ratio of the compounds shown higher than that in the image forming layer (B) farthest from the water-resistant support, in addition to sufficient printing durability and stain resistance (water retention), It can be seen that a thermal lithographic printing plate with improved printing defects and image disturbance due to the sticking phenomenon can be obtained.
(実施例9)
 両面にラミネート加工が施された厚さ約180μmのポリエチレン被覆紙の片面に、下記下塗り層と画像形成層(A)および画像形成層(B)の塗工液をスライドホッパーコーティング法により、湿分塗布量で下塗り層塗工液aを15g/m、画像形成層(A)塗工液eを30g/m、画像形成層(B)塗工液fを10g/mになるように、支持体側から順に下塗り層、画像形成層(A)、画像形成層(B)(最上層)となるように3重層同時塗布を行った。
Example 9
Applying the following undercoat layer, image forming layer (A), and image forming layer (B) coating liquid to one side of approximately 180 μm thick polyethylene-coated paper that has been laminated on both sides by a slide hopper coating method. The undercoat layer coating solution a is 15 g / m 2 , the image forming layer (A) coating solution e is 30 g / m 2 , and the image forming layer (B) coating solution f is 10 g / m 2 in coating amounts. Three layers were simultaneously applied so that an undercoat layer, an image forming layer (A), and an image forming layer (B) (uppermost layer) were formed in this order from the support side.
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000027
 上記下塗り層塗工液aは、分散剤が添加された水中に二酸化チタンを加えてホモミキサーを用いて30分間の高速微分散処理を施し、その後、ゼラチン、界面活性剤、およびジビニルスルホンを順次混ぜ合わせることで調製した。なおこの下塗り層塗工液aの一部を採取、希釈してレーザー散乱式の粒度分布計((株)堀場製作所製LA920)を用いて二酸化チタンの平均粒子径を測定したところ、0.7μmであった。 The undercoat layer coating solution a is obtained by adding titanium dioxide into water to which a dispersant has been added and subjecting the mixture to high-speed fine dispersion for 30 minutes using a homomixer, and then sequentially adding gelatin, surfactant, and divinyl sulfone. Prepared by mixing. A part of the undercoat layer coating solution a was collected and diluted, and the average particle size of titanium dioxide was measured using a laser scattering type particle size distribution meter (LA920 manufactured by Horiba, Ltd.). Met.
 上記画像形成層(A)塗工液eおよび画像形成層(B)塗工液fに用いている発色剤混合スラリーは、下記調製方法で予め製造したものを使用した。
<発色剤混合スラリーの調製>
 材料a:1,2-ビス(3-メチルフェノキシ)エタン
 (三光(株)製:KS-232)
 材料b:4-ヒドロキシ-4′-イソプロポキシジフェニルスルホン
 (日本曹達(株)製:D-8)
 材料c:3-ジブチルアミノ-6-メチル-7-アニリノフルオラン
 (山本化成(株)製:ODB2)
As the color former mixed slurry used in the image forming layer (A) coating solution e and the image forming layer (B) coating solution f, those prepared in advance by the following preparation method were used.
<Preparation of color former mixed slurry>
Material a: 1,2-bis (3-methylphenoxy) ethane (manufactured by Sanko Co., Ltd .: KS-232)
Material b: 4-hydroxy-4'-isopropoxydiphenyl sulfone (manufactured by Nippon Soda Co., Ltd .: D-8)
Material c: 3-dibutylamino-6-methyl-7-anilinofluorane (manufactured by Yamamoto Kasei Co., Ltd .: ODB2)
 上記の材料a、b、cを予め、個々に小型ダイノーミル(ビーズミル)でジルコニアビーズを用いて任意の粒径まで微分散処理を施し、固形分濃度約30%に調整された分散液をそれぞれ作製し、分散液a、分散液b、分散液cとした。分散液a、bを各々3部に対し、分散液cを1部常温下で混合することで発色剤混合スラリーを調製した。 Each of the above materials a, b, and c is preliminarily dispersed in a small dyno mill (bead mill) using a zirconia bead to an arbitrary particle size to produce a dispersion liquid adjusted to a solid content concentration of about 30%. Dispersion a, dispersion b, and dispersion c were obtained. A color former mixed slurry was prepared by mixing 3 parts of dispersions a and b with 1 part of dispersion c at room temperature.
 上記湿分塗布量にて3重層同時塗布を行った後、直ちに3℃の冷風にて塗膜をゲル化させ、その後30℃の温風にて乾燥を行った。乾燥後、温度40℃/湿度40%に調整された恒温恒湿器を用いて7日間の加温を行うことにより、サンプルNo.32の感熱型平版印刷版を得た。得られた感熱型平版印刷版の断面を走査型電子顕微鏡を用いて観察し、任意の10カ所の平均値から下塗り層の平均乾燥膜厚を求めたところ1.5μmであった。また画像形成層の平均乾燥膜厚はA層とB層を合わせて約5.0μmであった。 After three layers were simultaneously applied at the above moisture application amount, the coating film was immediately gelled with cold air at 3 ° C. and then dried with hot air at 30 ° C. After drying, by heating for 7 days using a constant temperature and humidity chamber adjusted to a temperature of 40 ° C./humidity of 40%, sample No. 32 heat-sensitive lithographic printing plates were obtained. The cross section of the obtained heat-sensitive lithographic printing plate was observed using a scanning electron microscope, and the average dry film thickness of the undercoat layer was determined from the average value at any 10 locations. The average dry film thickness of the image forming layer was about 5.0 μm for both the A layer and the B layer.
 サンプルNo.32の感熱型平版印刷版の作製で用いた下塗り層塗工液aが含有する二酸化チタンTISR1をタイペークR-580(石原産業(株)製、ルチル型、アルミナ処理)に変更した以外はサンプルNo.32の感熱型平版印刷版と同様にして、サンプルNo.33の感熱型平版印刷版を得た。なお、この時の下塗り層の平均乾燥膜厚は1.5μmであり、二酸化チタンの平均粒子径は0.9μmであった。 Sample No. Sample No. except that the titanium dioxide TISR1 contained in the undercoat layer coating liquid a used in the preparation of the 32 heat-sensitive lithographic printing plate was changed to TYPEKE R-580 (Ishihara Sangyo Co., Ltd., rutile type, alumina treatment). . In the same manner as the heat-sensitive lithographic printing plate No. 32, sample No. 33 heat-sensitive lithographic printing plates were obtained. At this time, the average dry film thickness of the undercoat layer was 1.5 μm, and the average particle diameter of titanium dioxide was 0.9 μm.
 サンプルNo.33の感熱型平版印刷版の作製で用いた下塗り層塗工液aが含有する二酸化チタン(タイペークR-580)の添加量を4部から3部に、更にゼラチン量を0.8部から0.6部に変更した以外はサンプルNo.33の感熱型平版印刷版と同様にして、サンプルNo.34の感熱型平版印刷版を得た。なお、この時の下塗り層の平均乾燥膜厚は1.2μmであり、二酸化チタンの平均粒子径は0.9μmであった。 Sample No. The amount of titanium dioxide (Typaque R-580) contained in the undercoat layer coating solution a used in the preparation of the 33 heat-sensitive lithographic printing plate was changed from 4 parts to 3 parts, and the gelatin amount was further changed from 0.8 parts to 0 parts. Sample No. except for changing to 6 parts. In the same manner as in the heat-sensitive lithographic printing plate No. 33, sample No. 34 heat-sensitive lithographic printing plates were obtained. At this time, the average dry film thickness of the undercoat layer was 1.2 μm, and the average particle diameter of titanium dioxide was 0.9 μm.
 上記のように作製したサンプルNo.32~34の感熱型平版印刷版を、CTP用サーマルデジタルプリンター(三菱製紙(株)製Thermal Digiplater TDP-459:1200dpi/120lpi)を用いて画像出力(記録エネルギー密度70~100mJ/mm、電気容量330W)を行い、印刷刷版を作製した。 Sample No. produced as described above. 32 to 34 thermosensitive lithographic printing plates were output using a thermal digital printer for CTP (Thermal Digiplater TDP-459: 1200 dpi / 120 lpi manufactured by Mitsubishi Paper Co., Ltd.) (recording energy density 70 to 100 mJ / mm 2 , electric A capacity of 330 W) was performed to prepare a printing plate.
 このように作製した印刷刷版をそのままオフセット印刷機に装着し、下記給湿液を用いて版面エッチング処理を施した後、印刷を行った。
Figure JPOXMLDOC01-appb-I000028
 水で全量を2リットルにした。
The printing plate produced in this way was mounted on an offset printing machine as it was and subjected to plate surface etching using the following moisturizing liquid, followed by printing.
Figure JPOXMLDOC01-appb-I000028
The total volume was made up to 2 liters with water.
 印刷は、オフセット印刷機(ハイデルベルグ製:QM46)を用いて、印刷インキにはDIC(株)製のFusionG墨Nインキ、給湿液には上記給湿液を使用した。 Printing was performed using an offset printing machine (manufactured by Heidelberg: QM46), Fusion G black N ink manufactured by DIC Corporation as the printing ink, and the above-described humidifying liquid as the humidifying liquid.
 <画質評価>
 印刷紙面における1Q(級)細線文字の再現性を25倍ルーペで観察し、以下の評価基準を用いて判定した。この結果を表9に示す。
 ○:1Q文字に一切欠けがなく、シャープに再現されている。
 △:1Q文字に部分的な欠け見られ、ややシャープさに欠ける。
 ×:1Q文字の大半が欠落している。
<Image quality evaluation>
The reproducibility of 1Q (class) fine line characters on the printed paper surface was observed with a 25-fold loupe and judged using the following evaluation criteria. The results are shown in Table 9.
○: There is no chipping in 1Q characters, and they are reproduced sharply.
Δ: Partially chipped in 1Q character, slightly sharpened.
×: Most of Q characters are missing.
 <耐刷性>
 印刷紙面における1Q(級)細線文字の再現性が失われるまで印刷を行い、以下の評価基準を用いて判定した。この結果を表9に示す。
 ○:3,000枚以上
 △:2,000~3,000枚未満
 ×:2,000枚未満
<Print durability>
Printing was performed until the reproducibility of 1Q (class) fine line characters on the printing paper was lost, and the determination was made using the following evaluation criteria. The results are shown in Table 9.
○: More than 3,000 sheets △: Less than 2,000 to 3,000 sheets ×: Less than 2,000 sheets
 <ブラン傷耐性>
 通常印刷時の版-ブランケット圧を約2倍まで上げて印刷を行い、500枚目の印刷紙面の頭端、および尻端の部分汚れを観察し、以下の評価基準を用いて判定した。この結果を表9に示す。
 ○:局所的な部分汚れ、不均一な汚れが一切見られない。
 △:局所的な部分汚れ、不均一な汚れが僅かに見られる。
 ×:局所的な部分汚れ、不均一な汚れが明確に見られる。
<Bran scratch resistance>
Printing was performed by increasing the plate-blankette pressure to about 2 times during normal printing, observing the stain on the head edge and the bottom edge of the 500th printing paper surface, and judging using the following evaluation criteria. The results are shown in Table 9.
○: No local partial stains or non-uniform stains are observed.
(Triangle | delta): A local partial stain | pollution | contamination and nonuniform stain | pollution | contamination are slightly seen.
X: Local partial stains and non-uniform stains are clearly seen.
<引っ掻き傷耐性>
 HEIDON製Scratching Intensity TESTER:HEIDON-18型を用いて、得られた感熱型平版印刷版を23℃の水に60秒間浸漬した後、サファイア針0.2mm、引っ掻き速度10mm/secの条件で評価し、印刷版の表面に傷が入った加重値〔g〕にて判定を行った。この結果を表9に示す。
<Scratch resistance>
Using a HEIDON Scratching Intensity Tester: HEIDON-18 type, the obtained thermosensitive planographic printing plate was immersed in water at 23 ° C. for 60 seconds, and then evaluated under the conditions of a sapphire needle 0.2 mm and a scratching speed of 10 mm / sec. The determination was made based on the weighted value [g] in which the surface of the printing plate was damaged. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表9に示す結果から判るように、耐水性支持体に近い画像形成層(A)と耐水性支持体との間に、平均粒子径が下塗り層の平均乾燥膜厚よりも小さい二酸化チタン、バインダー樹脂および架橋剤を少なくとも含有する下塗り層を設けることによって、画質や耐刷性を低下させることなく耐傷性が改善された感熱型平版印刷版が得られることが判る。 As can be seen from the results shown in Table 9, between the image forming layer (A) close to the water-resistant support and the water-resistant support, titanium dioxide and a binder having an average particle size smaller than the average dry film thickness of the undercoat layer It can be seen that by providing an undercoat layer containing at least a resin and a crosslinking agent, a heat-sensitive lithographic printing plate having improved scratch resistance can be obtained without deteriorating image quality and printing durability.
 (実施例10)
 両面にラミネート加工が施された厚さ約180μmのポリエチレン樹脂被覆紙の片面に、下記組成の下塗り層塗工液bと、画像形成層(A)塗工液gおよび画像形成層(B)塗工液hをスライドホッパーコーティング法により、支持体側から下塗り層、画像形成層(A)、画像形成層(B)(最上層)の順になるように3重層同時塗布を行った。その際、湿分塗布量を、下塗り層塗工液bが15g/m、画像形成層(A)塗工液gが30g/m、画像形成層(B)塗工液hが10g/mに設定して行った。
(Example 10)
An undercoat layer coating solution b, an image forming layer (A) coating solution g, and an image forming layer (B) applied to one side of a polyethylene resin-coated paper having a thickness of about 180 μm and laminated on both sides. The coating solution h was simultaneously applied in triple layers by the slide hopper coating method so that the undercoat layer, the image forming layer (A), and the image forming layer (B) (uppermost layer) were arranged in this order from the support side. At that time, the wet coating weight, the undercoat layer coating solution b is 15 g / m 2, the image forming layer (A) coating liquid g of 30 g / m 2, the image forming layer (B) coating liquid h is 10 g / It was carried out set to m 2.
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000032
 上記下塗り層塗工液bに用いる二酸化チタンスラリー、および画像形成層(A)塗工液gに用いる硫酸バリウムスラリーの作製には、共に顔料分散剤としてアクリル酸共重合金属塩を用いる。その作製方法は、顔料分散剤が添加された水中に、一定撹拌のもと、二酸化チタン、または硫酸バリウムを徐々に加えていき、ホモミキサーを用いて30分間の高速微分散処理を施すことで作製できる。スラリーは塗工液調製の直前に作製したものを用いた。 In preparing the titanium dioxide slurry used for the undercoat layer coating solution b and the barium sulfate slurry used for the image forming layer (A) coating solution g, an acrylic acid copolymerized metal salt is used as a pigment dispersant. The production method is to gradually add titanium dioxide or barium sulfate under water with constant stirring to the water to which the pigment dispersant has been added, and perform high-speed fine dispersion treatment for 30 minutes using a homomixer. Can be made. The slurry used was prepared just before preparing the coating solution.
 また、上記画像形成層(A)塗工液gに用いる顕色剤混合スラリーは、下記構成薬品で予め調製され製造したものを使用した。
<顕色剤混合スラリーの構成薬品>
 材料a:KS-232
 (三光(株)製、増感剤、1,2-ビス(3-メチルフェノキシ)エタン)
 材料b:D-8
 (日本曹達(株)製、顕色剤、4-ヒドロキシ-4′-イソプロポキシジフェニルスルホン)
 材料c:ポリマロン1318
 (荒川化学(株)製、分散剤、アニオン性スチレン系樹脂15%水溶液)
Moreover, the developer mixed slurry used for the image forming layer (A) coating solution g was prepared and manufactured in advance with the following constituent chemicals.
<Constituent chemicals of developer mixed slurry>
Material a: KS-232
(Sanko Co., Ltd., sensitizer, 1,2-bis (3-methylphenoxy) ethane)
Material b: D-8
(Nippon Soda Co., Ltd., developer, 4-hydroxy-4'-isopropoxydiphenyl sulfone)
Material c: Polymeron 1318
(Arakawa Chemical Co., Ltd., dispersant, 15% aqueous solution of anionic styrene resin)
 上記の材料cを0.7部添加した水中に、一定撹拌のもと、材料aおよび材料bを各々1部ずつ混ぜ合わせた後、小型ダイノーミル(ビーズミル)でジルコニアビーズを用いて任意の粒径まで微分散処理を施し、顕色剤混合スラリーを得た。なお、材料a、材料bおよび材料cの合計での固形分濃度が約35%になるように調整した。 After mixing 1 part each of material a and material b in water to which 0.7 part of the material c is added under constant stirring, any particle size can be obtained using zirconia beads in a small dyno mill (bead mill). Fine dispersion treatment was performed until a developer mixed slurry was obtained. In addition, it adjusted so that solid content concentration in the sum total of the material a, the material b, and the material c might be about 35%.
 その他の薬品については、ゼラチンやポリビニルアルコールさらには水溶性多糖類等の親水性高分子を水中で加熱溶解させる以外は、割水以外に特別な調整等は行わなかった。ただし、上記顕色剤混合スラリーについては、調製の段階から、また、発色剤については、取り扱う全ての過程において、温度が45℃を超えないように注意して行った。 For other chemicals, no special adjustments were made except for water splitting, except that hydrophilic polymers such as gelatin, polyvinyl alcohol and water-soluble polysaccharides were heated and dissolved in water. However, with respect to the developer mixed slurry, care was taken from the stage of preparation and with respect to the color former, so that the temperature did not exceed 45 ° C. throughout the handling.
 上記湿分塗布量において3重層同時塗布を行った後、直ちに1~3℃の冷風にて塗膜をゲル化させ、その後30℃に設定された温風にて乾燥を行った。乾燥後、温度40℃/湿度40%に調整された恒温恒湿器を用いて7日間の加温を行うことにより、サンプルNo.35の感熱型平版印刷版を得た。 After three layers were simultaneously applied at the above moisture application amount, the coating was immediately gelled with cold air of 1 to 3 ° C., and then dried with hot air set at 30 ° C. After drying, by heating for 7 days using a constant temperature and humidity chamber adjusted to a temperature of 40 ° C./humidity of 40%, sample No. 35 heat-sensitive lithographic printing plates were obtained.
 サンプルNo.35の感熱型平版印刷版の作製に用いた画像形成層(B)塗工液hが含有する硫酸バリウムに代えて酸化亜鉛(堺化学工業(株)製、微細酸化亜鉛、平均粒径=0.29μm)に変更した以外はサンプルNo.35の感熱型平版印刷版と同様にして、サンプルNo.36の感熱型平版印刷版を得た。 Sample No. Zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., fine zinc oxide, average particle size = 0) instead of barium sulfate contained in the image-forming layer (B) coating solution h used in the preparation of the 35 heat-sensitive lithographic printing plate Sample no. In the same manner as in the heat-sensitive lithographic printing plate No. 35, sample No. 36 heat-sensitive lithographic printing plates were obtained.
 サンプルNo.35の感熱型平版印刷版の作製に用いた画像形成層(B)塗工液hが含有する硫酸バリウムスラリーの添加量を0.03部から0.06部に変更した以外はサンプルNo.35の感熱型平版印刷版と同様にして、サンプルNo.37の感熱型平版印刷版を得た。 Sample No. Except that the addition amount of the barium sulfate slurry contained in the image forming layer (B) coating solution h used for the preparation of the thermosensitive lithographic printing plate No. 35 was changed from 0.03 part to 0.06 part, sample No. In the same manner as in the heat-sensitive lithographic printing plate No. 35, sample No. 37 thermosensitive lithographic printing plates were obtained.
 サンプルNo.35の感熱型平版印刷版の作製に用いた画像形成層(B)塗工液hが含有する硫酸バリウムスラリーの添加量を0.03部から0.08部に変更した以外はサンプルNo.35の感熱型平版印刷版と同様にして、サンプルNo.38の感熱型平版印刷版を得た。 Sample No. Except that the addition amount of the barium sulfate slurry contained in the image forming layer (B) coating solution h used for the preparation of the thermosensitive lithographic printing plate No. 35 was changed from 0.03 part to 0.08 part, sample No. In the same manner as in the heat-sensitive lithographic printing plate No. 35, sample No. 38 heat-sensitive lithographic printing plates were obtained.
 サンプルNo.35の感熱型平版印刷版の作製に用いた画像形成層(B)塗工液hが含有する硫酸バリウムスラリーの添加量を0.03部から0.0135部に変更した以外はサンプルNo.35の感熱型平版印刷版と同様にして、サンプルNo.39の感熱型平版印刷版を得た。 Sample No. Except for changing the addition amount of the barium sulfate slurry contained in the image forming layer (B) coating liquid h used in the preparation of the thermosensitive lithographic printing plate No. 35 from 0.03 part to 0.0135 part, In the same manner as in the heat-sensitive lithographic printing plate No. 35, sample No. 39 thermosensitive lithographic printing plates were obtained.
 上記のように作製したサンプルNo.35~39の感熱型平版印刷版を、CTP用サーマルデジタルプリンター(三菱製紙(株)製Thermal Digiplater TDP-459:1200dpi/120lpi)を用いて画像出力(記録エネルギー密度70~100mJ/mm、電気容量330W)を行い印刷刷版を作製した。この印刷刷版を用いて以下の方法にて印刷適性の評価を行った。 Sample No. produced as described above. A thermal lithographic printing plate of 35 to 39 was subjected to image output (recording energy density 70 to 100 mJ / mm 2 , electric power using a thermal digital printer for CTP (Thermal Digiplater TDP-459: 1200 dpi / 120 lpi manufactured by Mitsubishi Paper Co., Ltd.) A printing plate was prepared by performing a capacity of 330 W). Using this printing plate, printability was evaluated by the following method.
 <耐刷性>
 印刷機は、オフセット枚葉印刷機ハイデルベルグQM46を使用、印刷インキには大日本インキ化学工業(株)製のFusionG墨N、給湿液には三菱製紙(株)製SLM-ODを10%希釈液で用い、エッチング液にも同給湿液をそのまま用いて印刷を行った。耐刷性評価としては、スタート時の印刷紙面と、5,000枚印刷時の印刷紙面とを比較して、20%網点および50%網点の減衰割合を25倍ルーペで観察し、以下の評価基準を用いて判定した。この結果を表10に示す。
 ◎:20%、50%網点部共に、殆ど変化なし
 ○:50%網点部では殆ど変化ないが、20%網点部で減衰が確認できる
 △:20%、50%網点部共に、減衰が確認できる
 ×:20%網点部で5割以上の減衰が見られる
 ××:20%網点部で9割以上の減衰が見られる
<Print durability>
The printing machine uses an offset sheet-fed press Heidelberg QM46, the printing ink is FusionG black N from Dainippon Ink & Chemicals, and the dampening solution is 10% diluted with SLM-OD from Mitsubishi Paper Industries. Printing was performed using the same moisturizing liquid as it was for the etching liquid. For printing durability evaluation, the printing paper surface at the start and the printing paper surface at the time of printing 5,000 sheets were compared, and the attenuation ratio of 20% halftone dot and 50% halftone dot was observed with a 25 times loupe. The evaluation criteria were used. The results are shown in Table 10.
◎: Almost no change in both 20% and 50% halftone dot portions ○: Almost no change in the 50% halftone dot portion, but attenuation can be confirmed in the 20% halftone dot portion △: Both the 20% and 50% halftone dot portions Attenuation can be confirmed ×: More than 50% attenuation is observed at 20% halftone dot part XX: Over 90% attenuation is observed at 20% halftone dot part
 <耐地汚れ性(保水性)>
 印刷機は、同じくオフセット枚葉印刷機ハイデルベルグQM46を使用、印刷インキには大日本インキ化学工業(株)製のFusionG墨S、給湿液には日研化学(株)製アストロマークIIIを0.5%希釈液で用い、エッチング処理を施さず印刷をスタートした。耐地汚れ性評価としては、印刷スタートから2,000枚目の印刷紙面において、以下の評価基準を用いて判定した。この結果を表10に示す。
 ◎:1~2,000枚目まで地汚れの発生なし
 ○:1~1,500枚目までは地汚れの発生なし
 △:1~1,000枚目までは地汚れの発生なし
 ×:刷り出し汚れが発生(5枚以内)、または1,000枚未満で地汚れ発生
 ××:刷り出し汚れが発生(6枚以上)
<Soil stain resistance (water retention)>
The offset press is also the Heidelberg QM46 offset sheet-fed press. The printing ink is FusionG Ink S from Dainippon Ink Chemical Co., Ltd., and the Astro Mark III from Nikken Chemical Co., Ltd. is used as the dampening solution. .5% diluted solution was used and printing was started without etching. As the background stain resistance evaluation, the following evaluation criteria were used on the 2,000th printed paper surface from the start of printing. The results are shown in Table 10.
◎: No scumming up to the 1st to 2,000th sheets ○: No scumming up to the 1st to 1500th sheets △: No scumming up to the 1st to 1000th sheets ×: Printing Smudge out (5 sheets or less), or less than 1,000 background xx: Print out stain (6 sheets or more)
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表10に示す結果から判るように、耐水性支持体から最も離れた画像形成層(B)が、酸化亜鉛またはは硫酸バリウムを含有することで、耐刷性と耐地汚れ性(保水性)がバランスよく向上した感熱型平版印刷版が得られていることが判る。 As can be seen from the results shown in Table 10, when the image forming layer (B) farthest from the water-resistant support contains zinc oxide or barium sulfate, the printing durability and soil resistance (water retention) are improved. It can be seen that a heat-sensitive lithographic printing plate with improved balance is obtained.

Claims (10)

  1.  耐水性支持体上に水溶性高分子化合物および熱可塑性樹脂を含有する画像形成層を少なくとも2層有し、耐水性支持体から最も離れた画像形成層(B)と、画像形成層(B)よりも耐水性支持体に近い画像形成層(A)とにおいて、下記i)および/またはii)の要件を満たす、感熱型平版印刷版。
     i)画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率が、画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率よりも高い。
     ii)画像形成層(A)における水溶性高分子化合物に対する下記一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率が、画像形成層(B)における水溶性高分子化合物に対する下記一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率よりも高い。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Xは-O-または-CO-O-を示し、
     R、RおよびRは、それぞれ独立して、水素原子、アルキル基またはアリール基を示すか、あるいはR、RおよびRは、互いに結合して芳香環を形成し、
     R、RおよびRは、それぞれ独立して、水素原子、アルキル基またはアリール基を示すか、あるいはR、RおよびRは、互いに結合して芳香環を形成し、
     nは1~10の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
     (式中、Rは、アルキル基、アリール基、アルキルカルボニル基、アリールカルボニル基、アルキルスルホニル基またはアリールスルホニル基を示し、一般式(2)のナフタレン環は、更に置換基を有していてもよい。)
    Figure JPOXMLDOC01-appb-C000003
     (式中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を示し、Xは単結合または-O-を示し、nは1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
     (式中、R10、R10′、R11およびR11′は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基またはアリールオキシ基を示す。)
    An image forming layer (B) that has at least two image-forming layers containing a water-soluble polymer compound and a thermoplastic resin on a water-resistant support, and is furthest from the water-resistant support, and an image forming layer (B) A heat-sensitive lithographic printing plate that satisfies the following requirements i) and / or ii) with an image forming layer (A) closer to a water-resistant support.
    i) The ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) is higher than the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B).
    ii) The ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A) is the water solubility in the image forming layer (B). Higher than the ratio of at least one compound selected from the compounds represented by the following general formulas (1) to (4) to the functional polymer compound.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X 1 represents —O— or —CO—O—,
    R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 1 , R 2 and R 3 are bonded to each other to form an aromatic ring;
    R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group or an aryl group, or R 4 , R 5 and R 6 are bonded to each other to form an aromatic ring;
    n represents an integer of 1 to 10. )
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 7 represents an alkyl group, an aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkylsulfonyl group or an arylsulfonyl group, and the naphthalene ring of the general formula (2) further has a substituent. May be.)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and X 2 represents a single bond or —O -Represents n, and n represents an integer of 1 to 4.)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 10 , R 10 ′ , R 11 and R 11 ′ each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group or an alkoxycarbonyl group. Or an aryloxy group.)
  2.  前記画像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率と、前記画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率との差が、0.5以上である、請求項1記載の感熱型平版印刷版。 The difference between the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) and the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) is 0.5 or more. The heat-sensitive lithographic printing plate according to claim 1.
  3.  前記像形成層(A)における水溶性高分子化合物に対する熱可塑性樹脂の比率が1~20であり、前記画像形成層(B)における水溶性高分子化合物に対する熱可塑性樹脂の比率が0.1~3である、請求項1または2に記載の感熱型平版印刷版。 The ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (A) is from 1 to 20, and the ratio of the thermoplastic resin to the water-soluble polymer compound in the image forming layer (B) is from 0.1 to The heat-sensitive lithographic printing plate according to claim 1, which is 3.
  4.  前記画像形成層(B)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率が、0.5以下である、請求項1記載の感熱型平版印刷版。 The ratio of at least one compound selected from the compounds represented by the general formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (B) is 0.5 or less. The thermal lithographic printing plate as described.
  5.  前記画像形成層(A)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率と、前記画像形成層(B)における水溶性高分子化合物に対する一般式(1)~(4)で示される化合物から選択される少なくとも1種の化合物の比率との差が、1.0以上である、請求項1または4記載の感熱型平版印刷版。 The ratio of at least one compound selected from the compounds represented by formulas (1) to (4) to the water-soluble polymer compound in the image forming layer (A), and the water solubility in the image forming layer (B) The thermosensitive lithographic plate according to claim 1 or 4, wherein a difference from a ratio of at least one compound selected from the compounds represented by the general formulas (1) to (4) to the polymer compound is 1.0 or more. Print version.
  6.  前記i)およびii)の要件を満たす、請求項1~5のいずれかに記載の感熱型平版印刷版。 The heat-sensitive lithographic printing plate according to any one of claims 1 to 5, which satisfies the requirements of i) and ii).
  7.  前記画像形成層(A)と耐水性支持体との間に、平均粒子径が下塗り層の平均乾燥膜厚よりも小さい二酸化チタン、バインダー樹脂および架橋剤を少なくとも含有する下塗り層を有する、請求項1~6のいずれかに記載の感熱型平版印刷版。 An undercoat layer containing at least titanium dioxide, a binder resin, and a crosslinking agent having an average particle size smaller than the average dry film thickness of the undercoat layer between the image forming layer (A) and the water-resistant support. The heat-sensitive lithographic printing plate according to any one of 1 to 6.
  8.  前記画像形成層(B)が、酸化亜鉛または硫酸バリウムを含有することを特徴とする、請求項1~7のいずれかに記載の感熱型平版印刷版。 The heat-sensitive lithographic printing plate according to any one of claims 1 to 7, wherein the image forming layer (B) contains zinc oxide or barium sulfate.
  9.  画像形成層が、画像形成層全体が含有する水溶性高分子化合物の固形分量に対して5~30質量%の硬膜剤を含有する、請求項1~8のいずれかに記載の感熱型平版印刷版。 The heat-sensitive lithographic plate according to any one of claims 1 to 8, wherein the image-forming layer contains 5 to 30% by mass of a hardener based on the solid content of the water-soluble polymer compound contained in the entire image-forming layer. Printed version.
  10.  請求項1~9のいずれかに記載の感熱型平版印刷版に印字した後、画像形成層を除去することなく印刷する、感熱型平版印刷版の印刷方法。 A printing method for a heat-sensitive lithographic printing plate, wherein printing is performed without removing the image forming layer after printing on the heat-sensitive lithographic printing plate according to any one of claims 1 to 9.
PCT/JP2010/066753 2009-10-23 2010-09-28 Heat-sensitive lithographic printing plate and printing method thereof WO2011048912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080047759.5A CN102712202B (en) 2009-10-23 2010-09-28 Thermosensitive type lithographic plate and printing process thereof
DE112010004234.9T DE112010004234B4 (en) 2009-10-23 2010-09-28 Thermosensitive lithographic printing plate and its printing process

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-244670 2009-10-23
JP2009244670A JP5302848B2 (en) 2009-10-23 2009-10-23 Thermal lithographic printing plate
JP2009-247913 2009-10-28
JP2009247913A JP5238670B2 (en) 2009-10-28 2009-10-28 Thermal lithographic printing plate
JP2009273331A JP5351725B2 (en) 2009-12-01 2009-12-01 Thermal lithographic printing plate
JP2009-273331 2009-12-01
JP2010-060195 2010-03-17
JP2010060195A JP5161910B2 (en) 2010-03-17 2010-03-17 Thermal lithographic printing plate

Publications (1)

Publication Number Publication Date
WO2011048912A1 true WO2011048912A1 (en) 2011-04-28

Family

ID=43900150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066753 WO2011048912A1 (en) 2009-10-23 2010-09-28 Heat-sensitive lithographic printing plate and printing method thereof

Country Status (3)

Country Link
CN (1) CN102712202B (en)
DE (1) DE112010004234B4 (en)
WO (1) WO2011048912A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262693A1 (en) * 2019-06-28 2020-12-30 富士フイルム株式会社 Original plate for lithographic printing plate, lithographic printing plate manufacturing method, and lithographic printing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127645A (en) * 1998-10-26 2000-05-09 Agfa Gevaert Nv Lithographic base used for nonimpact printing
JP2005096169A (en) * 2003-09-24 2005-04-14 Konica Minolta Medical & Graphic Inc Lithographic printing plate material and printing method
WO2007007504A1 (en) * 2005-07-08 2007-01-18 Mitsui Chemicals, Inc. Lithographic printing plate precursor
JP2007160668A (en) * 2005-12-13 2007-06-28 Konica Minolta Medical & Graphic Inc Lithographic printing plate material, its manufacturing method and printing method
JP2007203612A (en) * 2006-02-02 2007-08-16 Konica Minolta Medical & Graphic Inc Lithographic printing plate material, manufacturing method thereof and printing method
WO2009078346A1 (en) * 2007-12-14 2009-06-25 Mitsubishi Paper Mills Limited Heat-sensitive lithographic printing plates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127645A (en) * 1998-10-26 2000-05-09 Agfa Gevaert Nv Lithographic base used for nonimpact printing
JP2005096169A (en) * 2003-09-24 2005-04-14 Konica Minolta Medical & Graphic Inc Lithographic printing plate material and printing method
WO2007007504A1 (en) * 2005-07-08 2007-01-18 Mitsui Chemicals, Inc. Lithographic printing plate precursor
JP2007160668A (en) * 2005-12-13 2007-06-28 Konica Minolta Medical & Graphic Inc Lithographic printing plate material, its manufacturing method and printing method
JP2007203612A (en) * 2006-02-02 2007-08-16 Konica Minolta Medical & Graphic Inc Lithographic printing plate material, manufacturing method thereof and printing method
WO2009078346A1 (en) * 2007-12-14 2009-06-25 Mitsubishi Paper Mills Limited Heat-sensitive lithographic printing plates

Also Published As

Publication number Publication date
DE112010004234B4 (en) 2017-03-23
CN102712202B (en) 2015-10-21
CN102712202A (en) 2012-10-03
DE112010004234T5 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4825854B2 (en) Thermal lithographic printing plate
JP5374168B2 (en) Printing method of heat-sensitive lithographic printing plate
JP5238670B2 (en) Thermal lithographic printing plate
JP6581525B2 (en) Thermal lithographic printing plate
WO2011048912A1 (en) Heat-sensitive lithographic printing plate and printing method thereof
JP5455701B2 (en) Thermal lithographic printing plate
JP5529061B2 (en) Thermal lithographic printing plate
JP5161910B2 (en) Thermal lithographic printing plate
JP5956199B2 (en) Thermal lithographic printing plate
JP5351725B2 (en) Thermal lithographic printing plate
JP5523943B2 (en) Thermal lithographic printing plate
JP5529066B2 (en) Thermal lithographic printing plate
JP5302848B2 (en) Thermal lithographic printing plate
JP5128993B2 (en) Printing method of heat-sensitive lithographic printing plate
JP5341595B2 (en) Thermal lithographic printing plate
JP2012161929A (en) Heat-sensible type lithographic printing plate
JP2011207138A (en) Image erasing method for thermal lithographic printing plate
JP2010274511A (en) Image erasing method for thermal lithographic printing plate
JP2013091241A (en) Thermal planographic printing plate
JP2018065326A (en) Thermo-sensitive lithographic printing plate
JP2012162006A (en) Heat-sensitive lithographic printing plate
JP2016190486A (en) Heat-sensitive lithographic printing plate
JP2016030360A (en) Thermosensitive lithographic printing plate
JP2015182326A (en) heat-sensitive lithographic printing plate
JP2015182404A (en) heat-sensitive lithographic printing plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047759.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120100042349

Country of ref document: DE

Ref document number: 112010004234

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824761

Country of ref document: EP

Kind code of ref document: A1