WO2011048253A1 - Células multipotenciales nestina positivas - Google Patents

Células multipotenciales nestina positivas Download PDF

Info

Publication number
WO2011048253A1
WO2011048253A1 PCT/ES2010/070682 ES2010070682W WO2011048253A1 WO 2011048253 A1 WO2011048253 A1 WO 2011048253A1 ES 2010070682 W ES2010070682 W ES 2010070682W WO 2011048253 A1 WO2011048253 A1 WO 2011048253A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
isolated
cell
hematopoietic
nestin
Prior art date
Application number
PCT/ES2010/070682
Other languages
English (en)
French (fr)
Inventor
Simón MÉNDEZ FERRER
Original Assignee
Fundación Pública Andaluza Para La Gestión De La Investigación En Salud En Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Pública Andaluza Para La Gestión De La Investigación En Salud En Sevilla filed Critical Fundación Pública Andaluza Para La Gestión De La Investigación En Salud En Sevilla
Priority to EP10824506.9A priority Critical patent/EP2492341A4/en
Priority to US13/503,137 priority patent/US20130022582A1/en
Publication of WO2011048253A1 publication Critical patent/WO2011048253A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0664Dental pulp stem cells, Dental follicle stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0665Blood-borne mesenchymal stem cells, e.g. from umbilical cord blood
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0666Mesenchymal stem cells from hair follicles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells

Definitions

  • the present invention relates to the use of at least one isolated multipotential stem cell for the maintenance of in vitro hematopoiesis where preferably said multipotential stem cell is a mesenchymal stem cell or more preferably said mesenchymal stem cell is a mesenchymal cell capable of expressing the protein Nestina
  • the present invention also relates to an isolated cell population of adult nestin positive mesenchymal cells of a mammal, including humans, for use in the manufacture of a medicament for the maintenance of a mammalian hematopoiesis, for the prevention and / or the treatment of at least one disease associated with a dysfunction in the maintenance of hematopoiesis of a mammal, and to maintain and expand hematopoietic adult stem cells of said mammal, including a human.
  • the present invention also relates to a method for the maintenance of hematopoiesis in vitro or to a method for evaluating the hematopoietic capacity of a mammal
  • HSCs hematopoietic stem cells
  • hematopoietic stem cells are preferably located in perivascular regions of the bone marrow (Kiel et al., 2005. Cell 121: 1 109-1 121), near reticular cells with elevated expression of the CXCL12 chemokine / SDF-1 (Sugiyama et al.,
  • CD146 is expressed in perivascular cells that have osteoprogenitor capacity and can self-renew and reconstitute hematopoiesis (Sacchetti et al.,
  • CD45 CD146 + perivascular cells of the bone marrow and other tissues contain osteoprogenitors (Sacchetti et al., 2007. Cell 131: 324-336) or MSCs (Crisan et al., 2008 Cell Stem Cell, 3: 301-313), and recent data suggest that cells capable of endochondral ossification are necessary for the formation of the hemopoietic niche in the fetal bone marrow (Chan et al., 2008. Nature, 457 [7228]: 490-4).
  • Nestine is an intermediate filament protein. It constitutes a marker of multilineage progenitor cells and their presence in these cells indicates the multipotentiality of the cells and their regenerative capacity (Wiese et al., 2004. CMLS, Cell. Mol. Life Sci., 61: 2510-2522). In this sense, it is known that Nestina + cells of the hair follicle bulb region, have stem cell properties, are multipotent (mesenchymal stem cells) and can generate neural lineage cells in vitro and in vivo (Mignone et al., 2007. Cell Cycle, 6 (17): 2161-2170).
  • Hematopoietic progenitor cell transplantation consists in the infusion of these cells obtained from the bone marrow, the peripheral blood (Korbling et al., 1981. Exp Hematol 9: 684-690), the umbilical cord or the fetal liver, to a patient who has previously been conditioned to receive the graft.
  • SP Peripheral blood
  • GM-CSF granule-monocytic FEC
  • hematopoietic cells can be obtained in situations where bone marrow removal is difficult (myelofibrosis, pelvic irradiation, etc.)
  • the necessary cellularity is not achieved with a single apheresis process, and several donation (or self-donation) processes are necessary, with the consequent damage to the donor, which suffers from various symptoms: low back, bone and muscle pain, headache, hypotension, malaise, drowsiness, loss of appetite, rash, nausea, fever, fluid retention, etc.
  • Cases of cardiac arrest and myocardial infarction during apheresis have been described in donors with a history of cardiovascular disease. Other complications include enlarged spleen and splenic rupture, as well as signs of extramedullary hematopoiesis. Episcleritis and ulceris may also occur.
  • the umbilical cord is the third source of cells for transplantation in adults and the second in children. It has been used in genetic and malignant diseases and has been used in patients with total or partial compatibility, family and non-family.
  • immature and compromised hematopoietic progenitors obtained from the umbilical cord presents the disadvantage that its efficacy in adults is yet to be tested, since the number of cells is too small to provide a durable implant (Broxmeyer et al., 1990. Int J Cell Cloning 8:76).
  • the present invention relates to the use of at least one isolated multipotential stem cell for the maintenance of in vitro hematopoiesis where preferably said multipotential stem cell is a cell mesenchymal mother or. more preferably said mesenchymal stem cell is a mesenchymal cell capable of expressing the Nestine protein.
  • the present invention also relates to the use of any of the stem cells described above for the manufacture of a medicament for the maintenance of hematopoiesis of a mammal, or for the prevention and / or treatment of at least one disease associated with a dysfunction. of the maintenance of the hematopoiesis of a mammal. Preferably said disease with a deficiency in myelopoiesis or lymphopoiesis.
  • the present invention also relates to a method for the maintenance of hematopoiesis in vitro or to a method for evaluating the hematopoietic capacity of a mammal.
  • Nestin positive cells are mesenchymal stem cells and therefore, multipotent, capable of differentiating to cell lineages such as osteoblastic, chondrocytic or adipocytic lineages.
  • Such Nestin positive cells express high levels of molecules involved in the maintenance of hematopoietic stem cells, that is, in hematopoiesis.
  • the expression of Cxcl12, a chemokine involved, for example, in the migration of hematopoietic cells from the liver of the fetus to the bone marrow, is about 50 times higher in Nestin positive cells than in the rest of the stromal cells.
  • the expression of other genes responsible for regulating the maintenance of hematopoietic stem cells such as Kitl, 117 or Vcaml is 140 to 800 times higher in Nestina positive cells than in the rest of stromal cells.
  • mice in which 90% of Nestina + cells have been selectively removed show a 2-4 fold reduction in the number of hemopoietic stem cells in the bone marrow. 90% reduction in the ability of hemopoietic progenitors to nest in the bone marrow. Also, while the total cellularity and the number of Lin “ CD48 " cells in the bone marrow of these mice were not affected, hemopoietic progenitors and hemopoietic stem cells were reduced by ⁇ 50%. This reduction was associated with a proportional and selective increase in the spleen, with no differences detected in the cell cycle or the frequency of apoptotic cells.
  • the authors of the present invention have isolated a population of nestin-positive mesenchymal cells, and that promote self-renewal and / or expansion of hematopoietic stem cells, both in vitro and in vivo.
  • a first aspect of the invention relates to an isolated cell population, hereafter referred to as the cell population of the invention, which comprises at least one Nestin positive multi-potential stem cell.
  • the Nestin positive multipotential stem cell is a mesenchymal cell.
  • the Nestin positive multipotential stem cell is a non-adherent cell.
  • the Nestin positive multipotential stem cell is obtained by a method comprising:
  • step (c) Sow the cells of step (c) in a suitable medium.
  • the mammal of step (a) is human.
  • the cell population of the invention further comprises at least one hematopoietic stem cell.
  • the hematopoietic stem cell is human.
  • compositions hereinafter composition of the invention, comprising the isolated cell population of the invention.
  • the composition is a pharmaceutical composition.
  • the composition further comprises a pharmaceutically acceptable carrier.
  • the composition further comprises another active ingredient.
  • Another aspect relates to the use of an isolated cell population of the invention or of a pharmaceutical composition of the invention, for the maintenance of hematopoiesis in vitro.
  • Another aspect relates to the use of an isolated cell population of the invention or a pharmaceutical composition of the invention, for the maintenance of hematopoiesis in vivo.
  • Another aspect of the invention relates to the use of an isolated cell population of the invention, or of a pharmaceutical composition of the invention, for the self-renewal of hematopoietic stem cells.
  • Another aspect of the invention relates to the use of an isolated cell population of the invention, or of a pharmaceutical composition of the invention, for the expansion of hematopoietic stem cells.
  • Another aspect relates to the use of an isolated cell population of the invention or a pharmaceutical composition of the invention, for the preparation of a medicament.
  • Another aspect relates to the use of an isolated cell population of the invention or a pharmaceutical composition of the invention, for the preparation of a medicament for the maintenance of hematopoiesis in a mammal.
  • the mammal is human.
  • Another aspect relates to the use of an isolated cell population of the invention or a pharmaceutical composition of the invention, for the preparation of a medicament for tissue repair and regeneration.
  • the tissue is blood.
  • Another aspect concerns the use of an isolated cell population of the invention or of a pharmaceutical composition of the invention, for the preparation of a medicament for the treatment of diseases of the blood and of the hematopoietic organs.
  • the disease is deficient in myelopoiesis or lymphopoiesis.
  • Diseases of the blood and hematopoietic organs are collected, but not limited to, in the third chapter of the ICD-10 code list (tenth version of the International Statistical Classification of Diseases and Other Health Problems (ICD) International Statistical Classification of Diseases and Related Health Problems.) Among others, the following are understood as "diseases of the blood and hematopoietic organs" as follows: Acquired
  • NEMO essential modulator NF-kappa-B
  • ⁇ ⁇ thalassemia major (Cooley's anemia) or Anemias
  • HHL Hemophagocytic lymphohistiocytosis
  • the disease is selected from the list comprising: myeloma, benign monoclonal gamma disease, hypoplasia and spinal cord aplasia, myelofibrosis, myelodysplastic syndrome, anemia, polycythemia, neutropenia, acute leukemia, chronic leukemia, lymphoma, purpura, hemophilia, or any of their combinations.
  • Another aspect of the invention relates to a method of obtaining hematopoietic cells in vitro, hereinafter method of obtaining hematopoietic cells of the invention, comprising: a) contacting at least one isolated Nestine positive cell with at least an isolated hematopoietic stem cell, and
  • the Nestin positive cell is isolated from the bone marrow.
  • the Nestin positive cell is a multipotence stem cell.
  • the Nestin positive cell is a mesenchymal stem cell.
  • the Nestin positive cell is a non-adherent cell.
  • the Nestin positive cell is human.
  • Another aspect of the invention relates to the hematopoietic cells obtainable by the method of obtaining hematopoietic cells of the invention.
  • Another aspect of the present invention relates to the use of at least one isolated multipotential stem cell for the maintenance of hematopoiesis in vitro.
  • Stem cells are undifferentiated cells that have the ability to divide without losing their properties and produce both differentiated and undifferentiated cells. Depending on the origin of the stem cells, it is possible to differentiate between embryonic stem cells and adult stem cells. In the present invention reference is made to an adult or embryonic stem cell.
  • the multipotential stem cell of the present invention is able to differentiate into different cell types from the same embryonic layer (Weissman et al., 2001. Annu Rev Cell Dev Biol. 17: 387-403) and as a consequence, to any adult tissue derivative.
  • isolated refers to the stem cells remaining outside the human or animal body.
  • the term "maintenance of hematopoiesis” refers to the preservation of the hematopoiesis process, that is, the preservation of the generation, regulation and production of cells derived from hematopoietic stem cells as well as of the division of said hematopoietic stem cells.
  • hemopoiesis may be used as a synonym for the term hematopoiesis.
  • Hematopoietic stem cells may be, but not limited to, "long-term hematopoietic stem cells” (LT-HSC) or “short-term hematopoietic stem cells” (ST-hematopoietic stem cells) HSC).
  • LT-HSC long-term hematopoietic stem cells
  • ST-hematopoietic stem cells ST-hematopoietic stem cells
  • Cells derived from hematopoietic stem cells can be, but not limited to, committed hematopoietic progenitors capable of differentiating to a myelocytic or lymphopoietic cell line, erythrocytes, platelets, granulocytes (neutrophils, basophils, eosinophils), monocytes or lymphocytes.
  • cells derived from hematopoietic stem cells can be any of the precursors of erythrocytes, platelets, granulocytes, monocytes or lymphocytes.
  • hematopoiesis occurs in various organs or tissues depending on the individual's state of development or even the development of pathological states.
  • hematopoiesis occurs in the yolk sac.
  • hematopoietic tissue appears in the liver.
  • the myeloid tissue of the bone marrow begins to develop, which is where the hematopoiesis process mainly occurs.
  • the eighth month of embryonic development hematopoietic tissue appears in the spleen.
  • hematopoietic foci can be seen in some of the organs mentioned above, in this case hematopoiesis is extramedullary.
  • the maintenance of the in vitro hematopoiesis of the present invention can be carried out in the isolated cells from the hematopoietic tissue of any of the organs that possess said tissue such as, but not limited to, any of the organs mentioned in the preceding paragraph in any state of development of the individual.
  • a preferred embodiment of the present invention relates to the use where the multipotential stem cell is a mesenchymal cell.
  • the mesenchymal cell comes from any mesenchymal tissue.
  • Mesenchymal tissue is one that comes from the embryonic layer called mesoderm.
  • the mesenchymal tissue from which the mesenchymal cell of the present invention is derived is selected from the list comprising loose connective tissue, dense connective tissue, adipose tissue, cartilaginous tissue, bone tissue, hematopoietic tissue, blood tissue or muscle tissue.
  • the mesenchymal cell of the present invention is derived from hematopoietic tissue. More preferably the mesenchymal cell It comes from bone marrow.
  • the bone marrow is a tissue that is found, for example, but not limited, inside the long bones, vertebrae, ribs, sternum, skull bones, shoulder girdle or pelvis.
  • the bone marrow is red bone marrow, which occupies the spongy tissue of flat bones, such as, but not limited to, the sternum, the vertebrae, the pelvis or the ribs.
  • This type of bone marrow is the one that has hematopoietic function.
  • the mesenchymal cells of the present invention may come from the umbilical cord.
  • Another preferred embodiment of the present invention relates to the use where the mesenchymal stem cell is a Nestina positive cell.
  • Nestin protein is a type of intermediate filament type IV. This protein is expressed in undifferentiated cells during early stages of the development of the central nervous system, peripheral nervous system as well as in organs such as the pancreas or in muscle tissue.
  • the Nestin protein is considered a marker of stem cells.
  • the cells that express said protein are cells that behave like mesenchymal cells taking into account their ability to differentiate.
  • the positive Nestin mesenchymal cell of the present invention refers to a mesenchymal cell capable of expressing the Nestine protein.
  • Nestin positive mesenchymal cells can express said protein in a variable amount depending on multifactorial conditions such as the type of tissue in which the mesenchymal cell is located as well as the stage of development of the tissue to which it belongs, etc.
  • the examples of the present invention demonstrate how the drastic reduction of Nestin positive mesenchymal cells in a mouse produces a 75% reduction in the number of hematopoietic bone marrow stem cells, capable of generate hemopoietic colonies after cultivating them for long periods of time.
  • the stem cell constitutes an isolated cell population.
  • the cell population is constituted by, or comprises, any of the multipotent stem cells, mesenchymal stem cells or Nestin positive mesenchymal cells.
  • Said cell population may consist of any combination of multipotent stem cells, mesenchymal stem cells or Nestin positive mesenchymal cells or may comprise any combination of the above cells.
  • Another aspect of the present invention relates to the use of at least one multipotential stem cell for the manufacture of a medicament for the maintenance of hematopoiesis of a mammal.
  • Another aspect of the invention relates to the use of at least one multipotential stem cell for the manufacture of a medicament for the prevention or treatment of at least one disease associated with a dysfunction of the maintenance of the hematopoiesis of a mammal.
  • prevention as understood in the present invention is to prevent the occurrence of diseases that occur with a dysfunction of the maintenance of hematopoiesis.
  • treatment as understood in the present invention is to combat the effects caused as a result of said dysfunction, to stabilize the condition of individuals or prevent further damage.
  • hematopoiesis maintenance dysfunction refers to a quantitative alteration of hematopoiesis that results in total or partial loss in the maintenance of hematopoiesis and as a consequence thereof. dysfunction there is a decrease in cellularity (hypocellularity) in the bone marrow of the individual with respect to a normal condition.
  • the normal condition is that in which said cellularity is maintained above a minimum percentage such as, for example, but not limited, above 20, 25, 30 or 35%.
  • the condition of hypocellularity does not affect the present invention.
  • the disease associated with said dysfunction in the maintenance of hematopoiesis is produced as a result of the decrease in the division and / or differentiation of hematopoietic cells, which causes a decrease in the production of each of the cells derived from hematopoietic stem cells with respect to a production control value of said cells.
  • This comparison can be carried out by determining the concentration of any type of differentiated hematopoietic cell and comparing it with the reference levels.
  • These reference levels are the control levels.
  • the reference level of erythrocytes is 4.5-10 6 cells / mm 3 in the case of men or the reference level of leukocytes is 5000 cells / mm 3 .
  • the above reference levels are minimum levels below which it would be considered that there is a decrease in the production of each of the cells derived from hematopoietic stem cells.
  • hematopoietic cells refers to the relationship between hematopoietic cells and adipose tissue (major constituent cells of the bone marrow) expressed in the percentage of cells.
  • a preferred embodiment refers to the use where the disease associated with the maintenance dysfunction of hematopoiesis is a disease that is deficient in myelopoiesis or lymphopoiesis.
  • defect refers to a lower-than-normal operation, that is to say, a capacity for division and / or differentiation of myelopoietic or lymphopoietic stem cells below the established reference levels for each type of cells derived from hematopoietic stem cells and for each sex .
  • Myelopoiesis is the process that results in the generation, development and maturation of myeloid blood cells, that is, erythrocytes, platelets, granulocytes (neutrophils, basophils, eosinophils) or monocytes. Erythrocytes are generated by a process called erythropoiesis. Platelets are generated by thrombopoiesis. Granulocytes are generated by granulopoiesis. Monocytes are generated by monopoiesis. Lymphopoiesis is the process that allows the generation, development and maturation of lymphocytes.
  • the disease with a deficiency in myelopoiesis or lymphopoiesis is selected from the list that includes aplastic anemia, pancytopenia, erythroblastopenia, erythrocytic aplasia, Fanconi anemia, Blackfan-Diamond syndrome, panmieloptisis, dyseritropoietic anemia, dyshematopoietic anemia, granulocytopenia (agranulocytosis), neutropenia, or lymphopenia.
  • Another preferred embodiment of the present invention relates to the use of at least one multipotential stem cell for the manufacture of a medicament where the multipotential stem cell is a mesenchymal cell.
  • Another preferred embodiment relates to the use where the mesenchymal stem cell is a Nestina positive cell.
  • the stem cell constitutes an isolated cell population. Said medicine comprises:
  • the medicament may comprise any of said cells with the vehicle, excipient or other active substance in any of its combinations.
  • the vehicle as well as the excipient must be pharmaceutically acceptable.
  • vehicle refers to those substances, or combination of substances, known in the pharmaceutical sector, used in the preparation of pharmaceutical forms of administration and includes, but are not limited to, solids, liquids, solvents or surfactants.
  • the vehicle can be an inert substance or action analogous to any of the sequences of the present invention.
  • the function of the vehicle is to facilitate the incorporation of the multipotential, mesenchymal or mesenchymal positive Nestin stem cell and / or other compounds, allow a better dosage and administration or give consistency and form to the medication.
  • the presentation form is liquid, the vehicle is the diluent.
  • excipient refers to a substance that helps the absorption of any of the sequences of the present invention, stabilizes said sequence or helps the preparation of the drug in the sense of giving it consistency or providing flavors that make it more pleasant.
  • the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, coloring function, protection function of the medicine such as to isolate it from air and / or moisture, filling function of a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph .
  • pharmaceutically acceptable refers to the compound referred to being allowed and evaluated so as not to cause damage to the organisms to which it is administered.
  • the term "pharmaceutically acceptable” refers to the compound referred to permit the activity of the multipotential, mesenchymal or mesenchymal positive Nestine stem cell of the present invention.
  • active substance refers to an active substance that must allow the activity of any of the cells of the invention, that is, it must be compatible with the multi-potential, mesenchymal or mesenchymal positive Nestin stem cell. That is, at least one multipotential stem cell, mesenchymal or mesenchymal Nestin positive, is formulated in an appropriate pharmaceutical and pharmacological composition (medicament), in a therapeutically effective amount.
  • the medicament can be formulated together with one or more pharmaceutically and pharmacologically acceptable carriers, adjuvants or excipients, as well as another active substance.
  • the form of presentation of the medicament will be adapted to the type of administration used, therefore, the composition of the present invention can be presented in the form of solutions or any other form of clinically permitted administration.
  • the medicament of the present invention may be presented in a form adapted to oral or parenteral administration.
  • the form adapted to oral administration refers to a physical state that can allow oral administration.
  • the form adapted to oral administration is selected from the list comprising, but not limited to, drops, syrup, herbal tea, elixir, suspension, extemporaneous suspension, drinkable vial, tablet, capsule, granulate, seal, pill, tablet, tablet, tablet, troccus or lyophilized.
  • parenteral administration refers to a physical state that can allow its injectable administration, that is, preferably in a liquid state.
  • Parenteral administration can be carried out by intramuscular, intraarterial, intravenous, intradermal, subcutaneous or intraosseous administration but not limited to these types of parenteral administration routes.
  • the medication is presented in a form adapted to sublingual, nasal, intracatecal, bronchial, lymphatic, transdermal or inhaled administration.
  • Another preferred embodiment of the present invention relates to the use of at least one multipotential, mesenchymal or mesenchymal Nestin positive stem cell, where the mammal is a human.
  • Another aspect of the present invention relates to a method for maintaining in vitro hematopoiesis comprising:
  • the multipotential stem cell preferably the mesenchymal stem cell and more preferably the Nestin positive mesenchymal cell shares the same niche in the bone marrow as hematopoietic stem cells. Therefore, the first step of the method for the maintenance of hematopoiesis in vitro consists in contacting said isolated multipotential stem cell with at least one hematopoietic stem cell at any stage of development prior to its differentiation.
  • the incubation of said cell mixture must be carried out in a culture medium that allows the division and / or differentiation of the hematopoietic stem cell.
  • suitable culture medium means any solution comprising nutrients necessary for division and / or differentiation, or for the recovery or isolation of any of the cells derived from the hematopoietic stem cells of the present invention. Said culture is carried out under favorable conditions of temperature and pH.
  • the culture medium is selected, but not limited to the list comprising DMEM (Dulbecco 's Modified Eagle' s Medium), RPMI 1640, F12, F10, MCDB 131, MEM (Minimum Essential Media) or DMEM / F12.
  • the culture medium may be supplemented with other components, such as, but not limited to, C0 2 , 0 2 , serum or serum substitute, amino acids, antibiotics, etc.
  • any culture medium known in the state of the art for the cultivation of hematopoietic stem cells can be used. Some types of culture medium are described in the examples section of the present invention.
  • the incubation described in section (b) of the method for the maintenance of hematopoiesis in vitro should be carried out for the desired time as long as the adequate conditions for said hematopoiesis maintenance are maintained. For this, periodic renewal of said medium, or the addition of new culture medium, or the recovery of part of the medium in which the cells derived from any of the hematopoietic stem cells of the present invention can be found may be necessary.
  • a preferred embodiment of the present invention relates to the method for the maintenance of hematopoiesis in vitro, where the multipotential stem cell is a mesenchymal cell. Another preferred embodiment of the present invention relates to the method where the mesenchymal stem cell is a Nestina positive cell. According to another preferred embodiment of the method for the maintenance of hematopoiesis in vitro, the stem cell constitutes an isolated cell population.
  • Another aspect of the present invention relates to a method for determining the maintenance of the hematopoietic capacity of a mammal comprising:
  • expression product refers to any product resulting from the expression of the nucleotide sequence encoding the mammalian Nestin protein.
  • a product resulting from the expression it is understood, for example, the messenger RNA that is obtained from the transcription of the nucleotide sequence, the processed messenger RNA, the protein resulting from the translation of any of the messenger RNAs or the cDNA sequence (DNA complementary to the messenger RNA sequence).
  • a preferred embodiment of the present invention relates to the method for determining the maintenance of the hematopoietic capacity of a mammal, comprising:
  • the negative control is, for example, but not limited to, a sample of hematopoietic tissue where cells are not able to carry out the maintenance of hematopoiesis, that is, where said cells are not capable, for example, of maintaining cellularity within desired percentages (known to those skilled in the art) for any type of cell derived from a hematopoietic stem cell.
  • the desired percentages of cellularity can be, but not limited to, percentages lower than 20%, that is, the negative control presents dysfunction of the maintenance of hematopoiesis.
  • the positive control is, for example, but not limited to, a sample of hematopoietic tissue where cells are capable of carrying out the maintenance of hematopoiesis, that is, where said cells are capable, for example, of maintaining cellularity within Desired percentages (known to those skilled in the art) for any type of cell derived from a hematopoietic stem cell.
  • Desired percentages can be, but not limited to, percentages greater than 20%, that is, the positive control has the ability to maintain hematopoiesis.
  • significant difference refers to a difference calculated in section (b) of the method greater than a defined standard error multiplied by a defined security.
  • the defined security can have a value, for example, but not limited to 95% (p ⁇ 0.05) or 99% (p ⁇ 0.01).
  • absence of a significant difference refers to a difference calculated in section (b) of the method equal to or less than a defined standard error multiplied by a defined security.
  • Another preferred embodiment relates to the method for evaluating the hematopoietic capacity of a mammal, wherein said mammal is a human.
  • Both Nestina positive multipotential stem cells and hematopoietic stem cells are adult cells, and have been obtained without destroy embryos, or without affecting their viability.
  • the word "comprises” and its variants are not intended to exclude other technical characteristics, additives, components or steps.
  • other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention.
  • the following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention.
  • FIG. 1 It shows that Nes: GFP + cells are mesenchymal stem cells.
  • FIG. 2. It shows that Nes: GFP + cells are physically associated with HSCs.
  • A, B Immunohistochemistry against CD150 (arrows), CD48 and markers of hemopoietic lineages in bone marrow sections of Nes-Gfp mice. Representative images of "CD150 + CD48 " HSCs located adjacent to Nes cells: GFP + of the endothelium (A) and sinusoids (B); (A) CD150 + CD48 / Lin + megakaryocytes, indicated with asterisks, could easily identify by its large size and homogeneous CD150 staining Deconvolutions of Z projections.
  • FIG. 3. It shows how HSCs cells are located near Nes: GFP + cells in the MO.
  • FIG. 4. It shows how the selective removal of nestin-expressing cells sharply reduces the content and nesting of HSCs in the bone marrow.
  • HSCs stained with DyD fine arrow
  • GFP + cells thin arrow
  • FIG. 5 It shows that the Nes: GFP + cells of the cranial bone marrow are perivascular. Intravital microscopy of the calvary of the injected Nes-Gfp transgenic mice i.v. with Qdot (fine arrow).
  • Nes cells GFP + (thick arrow) surrounding the vessels of the coronal suture.
  • Nes cells GFP + in the endothelium.
  • FIG. 6 It shows how selective cell depletion in Nes-Cre / iDTR mice does not alter the cell cycle of hemopoietic progenitors.
  • FIG. 7 It shows how selective cell depletion in long-lasting cultures made from the bone marrow of Nes-Cre / iDTR mice reduces the number of hemopoietic progenitors.
  • CFU-C colony forming units in culture
  • A adherent fraction
  • B supernatants
  • B myeloid cultures
  • DT diphtheria toxin
  • FIG. 8 It shows how selective cell depletion in Nes-CreliDTR mice reduces survival but does not affect vascular permeability or bone marrow histology or blood count.
  • B-C FITC-Dextran dye, prepared and injected i.v. in Nes-Cre I iDTR animals treated with DT in the cranial bone marrow vasculature (C), or in control animals (B).
  • FIG. 9. Shows the expression of genes critical for the maintenance of HSCs.
  • FIG. 10 Displays the results of quantitative RT-PCR using a different "housekeeping" gene.
  • FIG. 11 Representative human mesenphere.
  • FIG. 12 Osteoblastic differentiation of human mesenpheres.
  • the alkaline phosphatase and von Kossa stains of the CFU-F derived from each primary human mesenphere cultured under osteoblastic differentiation conditions are observed.
  • GFP + (Nestine positive) cells are mesenchymal stem cells (MSCs).
  • CD45 " Nes: GFP + and CD45 " Nes: GFP " cells isolated by FACS were planted under conditions that favor differentiation in the osteoblastic, adipocytic and chondrocytic lineages.
  • the CD45 fraction " Nes: GFP + demonstrated a robust capacity for differentiation towards mesenchymal lineages, while the CD45 fraction " Nes: GFP " did not generate any offspring.
  • Different genes needed for differentiation into OBs (FIG. 1 C), adipocytes ( FIG. 1 E) and chondrocytes (FIG. 1 G) were significantly upregulated in CD45 " Nes: GFP + cells for 3 weeks of culture with differentiation medium.
  • the mature mineralizing, adipocytic or chondrocytic phenotype was confirmed after one month in culture (FIG. 1 D, F, H), thus checking its capacity for differentiation in multiple lineages.
  • Nes GFP + cells in low adhesion culture plates.
  • CD45 Nes: GFP + cells, but not CD45
  • Nes: GFP (isolated by FACS), formed clonal spheres when planted at low density (FIG.
  • mesenchymal spheres referred to herein as " mespheres ", they had an average diameter of 85 ⁇ 6 ⁇ and continued to express GFP after 7-10 days in culture (FIG. 1J-K).
  • the efficiency of sphere formation (6.5 ⁇ 0.7%) was similar to that of the stem cells of the neural crest (Molofsky et al., 2003. Nature, 425: 962-967)
  • the frequency of the spheres was remarkably similar (6.9 ⁇ 0.7%) when CD45 " Nes: GFP + cells were seeded in 96-well plates ( 1 cell / well).
  • Nes GFP + cells
  • a line expressing Cre recombinase under the proximal fragment of 2.3 Kb of the a1 (l) collagen promoter Col2.3-Cre
  • selectively expressed in the OBs Dacquin et al., 2002. Dev Dyn, 224: 245-251
  • ROSA26 / loxP-stop report line -loxP-LacZ R26R
  • the clonal mespheres obtained from transgenic triple animals showed spontaneous differentiation into adipocytes, whose identity was confirmed by staining with Oil Red O, and in OBs identified unequivocally by the expression of ⁇ -galactosidase directed by the Col2.3 promoter ( ⁇ 53%; 27/51; FIG. 1 N-0).
  • the mespheres that had already shown signs of adipocytic differentiation were seeded under conditions that favor differentiation in chondrocytes, they accumulated mucopolysaccharides characteristic of cartilage (stained with "Alcian Blue"; FIG. 1 P) and increased the expression of genes necessary for differentiation chondrocytic (FIG. 1 Q).
  • FIG. 1 B the Q-PCR expression analysis shows a rapid reduction in Gfp expression one week after seeding the cells with CFU-F formation medium.
  • FIG. 1 E shows how the mature differential phenotype of adipocytes from CD45 " Nes: GFP + isolated cells was confirmed in 4-week cultures by staining" Oil Red O "; on the contrary, CD45 cells " Nes: GFP " did not generate any colony (box).
  • FIG. 1 E shows how the mature differential phenotype of adipocytes from CD45 " Nes: GFP + isolated cells was confirmed in 4-week cultures by staining" Oil Red O "; on the contrary, CD45 cells " Nes: GFP " did not generate any colony (box).
  • FIG. 1 G shows how the progressive differentiation in chondrocytes of CFU-Fs obtained from CD45 cells " Nes: GFP + isolated was manifested by an increase in aggrecan expression during the 3 weeks of culture with chondrocyte differentiation medium ⁇ Acan).
  • FIG. 1 H accumulation of Alcian blue + mucopolysaccharides is observed in cell pellets from CD45 " Nes: GFP + cells grown for 3 weeks with chondrocyte differentiation medium.
  • CD45 Nes cells: GFP + , but not the rest of the CD45 " population of the bone marrow, form clone spheres after 7 days of low-density culture.
  • FIG. 1 L shows how CD45 " Nes: GFP + cells isolated and plated together Polystyrene rapidly lost GFP expression and differentiated into mesenchymal lineages; GFP-adipocytes were evidenced by refractive lipoid deposits under clear field.
  • FIG. 1 M can be observed multipolar and unilocular refractory adipocytes, as well as cells migrating from the outer layer of the sphere, adhered to the surface of the culture plate.
  • FIG. 1 N-0 shows how after 3 weeks in culture, 53% of the clonal mespheres showed signs of multi-line differentiation in OBs Col2.3-LacZ + OBs and adipocytes Oil red O + .
  • FIG. 1 M shows how after 3 weeks in culture, 53% of the clonal mespheres showed signs of multi-line differentiation in OBs Col2.3-LacZ + OBs and adipocytes Oil red O + .
  • Nes: GFP + of the bone marrow with that of different stem cells, obtained from the databases have been performed Gene Expression Omnibus "(http://www.ncbi.nlm.nih.gov/geo/) and" Stem-base "
  • Nes: GFP + cells of the bone marrow were performed, compared to all other stem cells studied. These analyzes revealed that most of the regulated genes upward they were involved in metabolic and biosynthetic processes, while most of the downregulated genes were involved in mitosis and cell division. These results indicate that the CD45 " Nes: GFP + cells of the bone marrow are relatively quiescent but Very metabolically active.
  • HSCs can be identified and isolated with great purity using a combination of SLAM markers (Kiel et al., 2005. Cell, 121: 1 109-112).
  • SLAM markers Kiel et al., 2005. Cell, 121: 1 109-112
  • immunohistochemistry was performed on bone marrow cryocuts of Nes-Gfp transgenic mice using hemopoietic lineage markers (anti-Ter1 19, Gr-1, CD3e, B220 and Mac-1), CD48 and CD150 (FIG. 2A-B and FIG. 3).
  • the CD150 + CD48-Lin " HSCs cells represented a very small subpopulation (-0.005%) of the nucleated bone marrow cells.
  • GFP + cells Despite the low frequency of both HSCs and Nes: GFP + cells, the vast majority ( 88%; 37/42) of the CD150 + CD48-Lin- cells were located within 5 cell diameters of the Nes cells: GFP + , and the majority (60%; 25/42) had a location directly adjacent to the Nes: GFP + cells distributed in the sinusoids (62%) or the endothelium (26%; FIG. 2A, B. FIG. 3)
  • the statistical inference of the expected Poisson distribution for Nes: GFP + cells in the area sampling shows that the observed co-localization of CD150 + CD48-Lin- and Nes: GFP + cells is highly significant (p ⁇ 10 "16 ).
  • Nes GFP + cells contribute to the stromal layer.
  • GFP + cells detectable in these cultures, these cells were frequently associated with "cobblestone-forming areas", enriched in hemopoietic progenitors (FIG. 2C). Therefore, these results suggest a close physical association between Nes: GFP + cells and HSCs in the MO.
  • Nes: GFP + cells and their marked reduction during mobilization induced by granulocyte colony growth factor (G-CSF) or after ⁇ -stimulation adrenergic agents suggested that nestin + cells could regulate the attraction of HSCs and their traffic in the bone marrow.
  • G-CSF granulocyte colony growth factor
  • ⁇ -stimulation adrenergic agents suggested that nestin + cells could regulate the attraction of HSCs and their traffic in the bone marrow.
  • To determine whether nestin + cells played an important role in the nesting of HSCs in the bone marrow they were transplanted 5x10 6 nucleated bone marrow cells from congenital wild-type animals in Nes-Cre I iDTR, Nes-Cre ERT2 I iTR and mice and lethally irradiated iDTR controls, following a protocol described above (Katayama et al., 2006.
  • Nes GFP + cells of the baldness were also perivascular, as demonstrated by intravital microscopy of Nes-Gfp transgenic mice injected iv with Qdot to stain the vasculature (FIG. 5).
  • the CD45 " Nes: GFP + cells also contained all the CFU-F activity of the cranial bone marrow.
  • the frequency and morphology of the Nes GFP + cells of the bone marrow of the skull were not affected by lethal irradiation, in accordance with the radio-resistance characteristic of the MSCs.
  • LSK CD150 + CD48 " cells were isolated by flow cytometry, stained with a fluorescent lipophilic dye and injected iv into lethally irradiated adult Nes-Gfp transgenic mice.
  • the nesting of HSCs in the bone marrow was directly visualized in the bone marrow. Cranial bone 2, 48 and 96 h later, using a combination of confocal and "two-photon" microscopy (Lo Celso et al., 2009. Nature, 457: 92-96).
  • the entire cranial bone marrow was scanned and they obtained Z projections from which the shortest distance of the HSCs that had nested in the bone marrow with respect to the Nes cells: GFP + and the bone surface was calculated (FIG. 40).
  • the analyzes carried out clearly show that HSCs quickly nested near the Nes: GFP + cells of the bone marrow (FIG. 4O-Q), indicating that nestin + cells direct the migration of HSCs into the bone marrow.
  • EXAMPLE 5 Demonstration that Nestin positive cells are necessary for the maintenance of HSCs in the bone marrow.
  • HSCs were found to be extremely sensitive to selective cell depletion in Nes-Cre I iDTR double transgenic mice, as manifested by a ⁇ 75% reduction in the number of LSK cells (FIG. 4D) and ⁇ 58% in the number of LSK CD150 + CD48 " cells (FIG. 4E) of the bone marrow. It was studied whether this greater reduction in HSCs was due to apoptosis, but no difference was detected between the two groups of animals in the LSK CD48 " TUNEL + or LSK CD150 + CD48 " TUNEL + cell frequency (FIG. 6).
  • Hemopoietic progenitors in the bone marrow was directly caused by selective cellular depletion in the bone marrow, since treatment with DT of the primary bone marrow cultures of the transgenic double mice Nes-Cre I iDTR reduced the number of hemopoietic progenitors in a ⁇ 70%, compared to simple transgenic controls (FIG. 7).
  • FIG. 8B-F shows how the FITC-Dextran dye, prepared and injected iv, as described above (von Andrian, 1996), in Nes-Cre I iDTR animals treated with DT, remained in the cranial bone marrow vascultaura (FIG. 8C), as was the case in control animals (FIG. 8B), indicating the absence of vascular damage.
  • FIG. 8B-C shows how the FITC-Dextran dye, prepared and injected iv, as described above (von Andrian, 1996), in Nes-Cre I iDTR animals treated with DT, remained in the cranial bone marrow vascultaura (FIG. 8C), as was the case in control animals (FIG. 8B), indicating the absence of vascular damage.
  • FIG. 8B-F shows how the FITC-Dextran dye, prepared and injected iv, as described above (von Andrian, 1996), in Nes-Cre I iDTR
  • FIG. 8D-E shows how the bone marrow histology of Nes-Cre I iDTR animals treated with DT (8E) is similar to that of control animals (8D).
  • FIG. 8F shows how selective cell depletion in Nes-Cre I iDTR mice did not affect the blood count or the number of circulating progenitors.
  • FIG. 4A-E it is observed that after selective cellular ablation in Nes-Cre I iDTR transgenic double mice, hemopoietic progenitors move from the bone marrow to extramedullary sites.
  • FIG. 4A shows how a single injection of diphtheria toxin (DT, 4 ⁇ g / kg, ip) in Nes-Cre I transgenic triple mice ROSA-Gfp I iDTR completely removed the GFP + population from the bone marrow after 24-48 h, as it was revealed by the absence of GFP + cells, compared to normal levels in triple transgenic control mice injected with PBS or in Nes-Cre I ROSA-Gfp double transgenic mice injected with DT.
  • DT diphtheria toxin
  • FIG. 4B shows the reduced cellularity in the bone marrow of the femurs and tibiae of the Nes-Cre / iDTR and Nes-Cre / iDTR / ROSA-Gfp mice 24-48 h after treatment with DT, which did not affect the animals that did not have the iDTR transgene, as a control.
  • FIG. 4C shows the detection of a 2.8-fold increase in the number of " CD48 " Lin cells detected in the spleen of Nestin-Cre I iDTR mice 24-48h after DT injection, compared to transgenic double control animals injected with PBS or single transgenic treated with DT.
  • FIG. 4C shows the detection of a 2.8-fold increase in the number of " CD48 " Lin cells detected in the spleen of Nestin-Cre I iDTR mice 24-48h after DT injection, compared to transgenic double control animals injected with PBS or single transgenic treated with DT.
  • 4D-E shows a reduction in the number of HSCs cells in the bone marrow after selective cell ablation in Nes-Cre I iDTR mice.
  • FIG. 4F-I show how nestin + bone marrow cells are necessary for the nesting of HSCs and hemopoietic progenitors. For example, in FIG.
  • 4F shows how nestin + cell depletion reduces the nesting of hemopoietic progenitors in the bone marrow.
  • the Nes-Cre I iDTR, Nes-Cre ERT2 I iDTR mice and the iDTR controls were injected with DT (4 ⁇ g / kg, ip) and were lethally irradiated (1 .2 Gy, one dose) 16-20 h later.
  • Five million nucleated cells obtained from the bone marrow of congenital animals were injected iv in a volume of 200 ⁇ of PBS.
  • the bone marrow was seeded 3 h later in the medium for growth of colony forming units in culture (CFU-C).
  • EXAMPLE 6 Determination of the expression and regulation of maintenance genes of HSCs by Nes: GFP + cells.
  • the G-CSF factor and the Central Nervous System SNS
  • Nes: GFP + and CD45 Nes: GFP " cells isolated from the bone marrow of treated mice with G-CSF or injected with vehicle, as in previous studies (Katayama et al., 2006.
  • connexins 45 and 43 were also 200 500 times higher in CD45 " Nes: GFP + cells than in CD45 " Nes: GFP " (FIG. 9C), suggesting the existence of electromechanical coupling between CD45 " Nes: GFP + cells innervated by sympathetic nerve terminals (Katayama et al., 2006. Cell, 124: 407-421; Mendez-Ferrer et al., 2008. Nature, 452: 442-447; Yamazaki and Alien, 1990. Am J Anat, 187: 261-276).
  • nestin + MSCs cytokines, hormones and SNS regulate both the attraction of HSCs and the formation of bone in the bone marrow niche through the co Direct control of nestina + MSCs, where the expression of genes critical for the maintenance of HSCs and cell fate (proliferation and differentiation) is regulated in a coordinated manner.
  • the relevant role of nestin + MSCs in the hemopoietic niche is based on the following evidence: i) In the present invention, a marked, non-random proximity of both stem cells has been shown in homeostasis conditions.
  • the nestin + MSCs are innervated by the SNS, enriched in the expression of Cxcl12 and the functional ⁇ 3 adrenergic receptor, iii)
  • the nestin + MSCs have expression levels very high levels of critical molecules for the maintenance and quiescence of HSCs in the "osteoblastic niche", such as angiopoietin-1, osteopontin, caderin-N and c-kit ligand.
  • the studies carried out allow us to propose the existence of a unique niche in the bone marrow formed by the MSC-HSC association, strictly regulated locally by the microenvironment and also remotely by means of humoral and autonomic nervous system signals.
  • Nes-Gfp transgenic mice (Mignone et al., 2004. Cell Cycle, 6: 2161-270), FVB-Tg (Co / 7a7-cre) 1 Kry / Mmcd (Dacquin et al., 2002. Dev Dyn, were used 224: 245-251), B6.Cg (SJL) -TgN (/ Ves-cre) 1 Kln (Tronche et al., 1999. Nat Genet, 23: 99-103), Nes-Cre ERT2 , C57BL / 6- Gt (ROSA) 26Sortm1 (HBEGF) Awai / J (Buch et al., 2005.
  • the bone marrow was eluted with FACS medium described in previous studies (Molofsky et al., 2003. Nature, 425: 962-967), constituted by means of L-15 of Leibovitz (Invitrogen) supplemented with 1 mg / ml bovine serum albumin (BSA, Sigma), 10 mM HEPES (Sigma) pH 7.4 and 1% penicillin-streptomycin (PS, Invitrogen). After lysing the erythrocytes with 0.8% NH 4 CI, the bone marrow was enzymatically processed in the same manner described to isolate the cells of the neural crest of the postnatal intestine (Molofsky et al., 2003.
  • Cells were enriched immuno-magnetically using balls magnetic conjugated with an anti-CD45 antibody (Milteyi Biotec), following the manufacturer's instructions, and the CD45 " GFP + and CD45 " GFP " cells were isolated by FACS.
  • the cells were seeded at density clonal ( ⁇ 1,000 cells / cm 2 ) in 35 mm plates ⁇ StemCell Technologies) or in single wells of ultra-low adhesion 96-well plates (Corning)
  • the composition of the culture medium was adapted from that of the cells of the neural crest (Pardal et al., 2007.
  • Osteoblastic differentiation was induced by culturing the cells for 4 weeks with 50 g / ml L-ascorbic acid 2-phosphate, 10 mM glycerophosphate (Sigma) and 15% FBS in a-MEM supplemented with PS (Invitrogen).
  • Adipocyte differentiation was induced with 1 ⁇ dexamethasone, 100 ⁇ indomethacin, 0.5 mM 3-isobutyl-l-methylxanthine (IBMX), 10 g / ml insulin (Sigma) and 10% FBS in a-MEM supplemented with PS.
  • the cells were washed twice with PBS and incubated for 20 min at room temperature with 50 ⁇ g / ml Naftol AS-MX phosphate, 0.5% N, N-dimethylformamide and 0.6 mg / ml "Fast Red Violet LB "in Tris-HCI 0.1 M, pH 8.9.
  • the formation of calcium nodules was examined by von Kossa staining. For this, the cells were washed 3 times and stained with freshly prepared 5% silver nitrate for 30 min. After 3 washes, the reaction was developed with 5% sodium carbonate in 25% formalin for 5 min.
  • the adipocytes were stained with "Oil Red O" as follows: the cells were washed with 60% isopropanol and allowed to dry completely. A 6: 4 dilution in distilled water of a stock solution containing 0.35 g / ml Oil Red O in isopropanol (Sigma), filtered 20 min later, was prepared. The cells were incubated for 10 min with this solution and washed 4 times.
  • Porous ceramic cubes ( ⁇ 3 mm 3 ) containing 65% calcium phosphate hydroxyapatite and 35% tricalcium phosphate (Ceraform®) were washed twice to remove small fragments detached from the cubes, autoclaved and coated with 0.1 mg / ml bovine plasma fibronectin (Sigma). To remove air from the ossicles and ensure total surface coverage, the ossicles were placed in a tube containing the fibronectin solution and stirred for 1 min while applying negative pressure by suction with a 60 ml syringe with a needle 21 g through the tube cover. The cover was replaced with a new one and the same procedure was repeated.
  • the fibronectin-covered ossicles were allowed to dry overnight in a laminar flow hood. Freshly isolated cells were introduced into the ossicles by the same process described, while the spheres were deposited on the surface of the ossicles. In both cases the cells were allowed to adhere to the ossicles, in the growth medium of the spheres, for 24 hours in the incubator. The ossicles were implanted sc under the dorsal skin of anesthetized adult animals, coming from the same bait, but which did not have the transgenes.
  • the ossicles were partially decalcified with 0.25 M EDTA for 2 or 3 days and processed for section with cryostat (10 ⁇ ) using a tungsten carbide blade (Diamond Knives) and covers covered with 4x methacrylate and the transfer system with adhesive tapes CryoJane (Instrumedics). Immunohistochemistry with signal amplification was performed as described above (Mendez-Ferrer et al., 2008. Nature, 452: 442-447). Immunohistochemistry for the detection of SLAM markers has been described in previous studies (Kiel et al., 2005. Cell, 121: 1 109-1 121).
  • Isoproterenol or BRL37344 agonist (2 mg / kg; Sigma) was injected i.p. 2 h before sacrificing the animals; Adrenergic agonists were also present at a concentration of 50 ⁇ during enzymatic digestion and cell separation by FACS, performed at 37 ° C and room temperature, respectively.
  • Treatments with G-CSF (Katayama et al., 2006. Cell, 124: 407-421) or PTH (Adams et al., 2007. Nat Biotechnol, 25: 238-243) have been described in previous studies.
  • Gpnmb_Fw SEQ ID NO: 19
  • Gpnmb_Rv SEQ ID NO: 20 65 60
  • the abbreviation Fw refers to primers with direct sequences (from English Forward) and the abbreviation Rv refers to primers with reverse sequences (from English Reverse).
  • the size of the fragment that can be amplified with each of the corresponding Fw / Rv primer pairs is measured in base pairs (bp).
  • the "banding" parameter indicates the optimum hybridization temperature between primers Fw and Rv and the template DNA sequence.
  • EXAMPLE 8 Tests with human bone marrow biopsies. 8.1. Extraction and culture of cells.
  • Medullary aspirates obtained from healthy donors were washed with PBS. Bone marrow cells were obtained by centrifugation. The red series blood cells were lysed and the samples were enzymatically and mechanically digested as described in the murine samples.
  • CD45- cells were isolated by an automatic separator (FACS) and seeded at clonal density ( ⁇ 1,000 cells / cm 2 ) under the same conditions that promote the growth of murine mesenpheres, with the exception of which growth factors They were of human origin.
  • the spheres had the same appearance as the murine spheres formed in 7-10 days (Fig. 1 1).
  • the primary spherass were taken individually, and were digested with collagenase (StemCell Technologies), and seeded in three different culture media:
  • MSCs mesenchymal stem cells
  • the isolated primary spheres were attached to phosphocalcic ceramic ossicles, and subcutaneously implanted in immunodeficient mice.
  • the ossicles were removed after two months, enzymatically digested, and separated by FACS using combinations of the MSC markers CD105, CD140b and CD146, and subcultured in mesenferase-forming medium.
  • the mesenfera formation capacity of each population is indicated in Table 4.
  • Table 4 In vivo self-renewal of human mesenpheres. The efficiency of sphere formation (as a percentage with respect to the number of sown cells) of each population within the different ossicles is indicated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención se refiere al uso de al menos una célula madre multipotencial aislada para el mantenimiento de la hematopoyesis in vitro donde preferiblemente dicha célula madre multipotencial es una célula madre mesenquimal o más preferiblemente dicha célula madre mesenquimal es una célula mesenquimal capaz de expresar la proteína Nestina. La presente invención también se refiere a una población celular aislada de células mesenquimales adultas nestina positivas de un mamífero, incluyendo humanas, a su uso para la fabricación de un medicamento para el mantenimiento de la hematopoyesis de un mamífero, para la prevención y/o el tratamiento de al menos una enfermedad asociada con una disfunción del mantenimiento de la hematopoyesis de un mamífero, y para mantener y expandir células madre adultas hematopoyéticas de dicho mamífero, incluyendo un humano. Asimismo, la presente invención también se refiere a un método para el mantenimiento de la hematopoyesis in vitro o a un método para evaluar la capacidad hematopoyética de un mamífero.

Description

CÉLULAS MULTIPOTENCIALES NESTINA POSITIVAS
La presente invención se refiere al uso de al menos una célula madre multipotencial aislada para el mantenimiento de la hematopoyesis in vitro donde preferiblemente dicha célula madre multipotencial es una célula madre mesenquimal o más preferiblemente dicha célula madre mesenquimal es una célula mesenquimal capaz de expresar la proteína Nestina. La presente invención también se refiere a una población celular aislada de células mesenquimales adultas nestina positivas de un mamífero, incluyendo humanas, a su uso para la fabricación de un medicamento para el mantenimiento de la hematopoyesis de un mamífero, para la prevención y/o el tratamiento de al menos una enfermedad asociada con una disfunción del mantenimiento de la hematopoyesis de un mamífero, y para mantener y expandir células madre adultas hematopoyéticas de dicho mamífero, incluyendo un humano. Asimismo, la presente invención también se refiere a un método para el mantenimiento de la hematopoyesis in vitro o a un método para evaluar la capacidad hematopoyética de un mamífero.
ESTADO DE LA TÉCNICA ANTERIOR
Se ha sugerido que las células madre hematopoyéticas (HSCs) están preferentemente localizadas en regiones perivasculares de la médula ósea (Kiel et al., 2005. Cell 121 : 1 109-1 121 ), cerca de células reticulares con expresión elevada de la quemoquina CXCL12/SDF-1 (Sugiyama et al.,
2006. Immunity 25: 977-988). No obstante, no se conoce la identidad y función de estas células. En la médula ósea humana, CD146 se expresa en células perivasculares que tienen capacidad osteoprogenitora y que pueden autorrenovarse y reconstituir la hematopoyesis (Sacchetti et al.,
2007. Cell 131 : 324-336). Sin embargo, no está claro si las células CD45" CD146+ forman parte del nicho hematopoyético y esta combinación de marcadores está presente también en las células endoteliales vasculares. La migración de las HSCs ofrece un paradigma útil para estudiar los elementos celulares que forman el nicho hemopoyético, ya que la atracción de las HSCs está directamente controlada por el microambiente de la médula ósea. Estudios previos han revelado que la movilización de las HSCs inducida por el factor de crecimiento de colonias de granulocitos (G-CSF) está regulada por el sistema nervioso simpático (SNS) (Katayama et al., 2006. Cell, 124: 407-421 ). En homeostasis, un bajo número de HSCs abandona la médula ósea para pasar al torrente circulatorio (Abkowitz et al., 2003. Blood, 102: 1249-1253; Wright et al., 2001 . Science, 294: 1933-1936). Su liberación en la sangre está regulada por el reloj molecular y dirigida por el SNS, el cual libera cíclicamente noradrenalina en la médula ósea, activando los receptores adrenérgicos β3 e induciendo en consecuencia oscilaciones rítmicas en la expresión de Cxcl12 (Mendez- Ferrer et al., 2008. Nature, 452: 442-447).
Por otro lado, estudios previos han demostrado que las células perivasculares CD45" CD146+ de la médula ósea y de otros tejidos contienen osteoprogenitores (Sacchetti et al., 2007. Cell 131 : 324-336) o MSCs (Crisan et al., 2008. Cell Stem Cell, 3: 301 -313), y datos recientes sugieren que células capaces de osificación endocondral son necesarias para la formación del nicho hemopoyético en la médula ósea fetal (Chan et al., 2008. Nature, 457[7228]: 490-4).
La nestina es una proteína del filamento intermedio. Constituye un marcador de células progenitoras multilinaje y su presencia en estas células indica la multipotencialidad de las células y su capacidad regenerativa (Wiese et al., 2004. CMLS, Cell. Mol. Life Sci., 61 : 2510- 2522). En este sentido, es conocido que las células Nestina+ de la región del bulbo del folículo capilar, tienen propiedades de células madre, son multipotentes (células madre mesenquimales) y pueden generar células del linaje neural in vitro e in vivo (Mignone et al., 2007. Cell Cycle, 6 (17): 2161 -2170). En la discusión de Mignore et al., 2007, se mencionan los tipos celulares a los que pueden diferenciarse las células Nestina+, por ejemplo, células madre neuronales y células neuronales, células ovales del hígado, células satélite del músculo, células madre del páncreas, células Leydig progenitoras, células de músculo liso, células de la glándula sebácea, melanocitos o keratinocitos. El traspalnte de células progenitoras hematopoyéticas, consiste en la infusión de estas células obtenidas de la médula ósea, la sangre periférica (Korbling et al., 1981 . Exp Hematol 9:684-690), el cordón umbilical o el hígado fetal, a un paciente que ha sido previamente acondicionado para recibir el injerto. Se ha convertido en una modalidad terapéutica para una gran variedad de enfermedades, como hemopatías malignas, anemia aplástica, inmunodeficiencias y gran número de tumores sólidos. En la actualidad se trasplantan más de 30 000 pacientes al año en todo el mundo. La selección de la fuente y el tipo de trasplante están determinados por diferentes factores. La sangre periférica (SP) fue la fuente de progenitores hematopoyéticos en el 90 % de los trasplantes autólogos y en el 30 % de los alogénicos.
La morbilidad y mortalidad del proceder ha mejorado en los últimos años gracias a un mejor conocimiento del sistema de histocompatibilidad, al desarrollo de la terapia anti-infecciosa, al uso de ambientes con escasa contaminación microbiana, al soporte hemoterapéutico y a la administración de inmunosupresores potentes.
Existe la necesidad de garantizar una función hematopoyética correcta tras un tratamiento quimiorradioterápico en dosis elevadas. Además, existen varias limitaciones del trasplante alogénico, lo que ha sido la causa del desarrollo del autotrasplante en los últimos años. Consiste en obtener células progenitoras hematopoyéticas del propio paciente, conservarlas y reinfundirlas, después de administrar dosis de quimioterapia y/o radioterapia ablativa,
Sin embargo, los transplantes autólogos, pese a presentar una serie de ventajas (no requiere la búsqueda de un donante, menor toxicidad relacionada con el proceder, se puede realizar a pacientes de mayor edad (60 - 65 años), no existen las complicaciones indeseables de enfermedad de injerto contra huésped (EICH), permite la realización de consolidación en los tumores sólidos, en el momento en que la masa tumoral es menor, se necesita un número menor de células para la reconstrucción medular que en el trasplante alogénico, y es una opción en pacientes que por diferentes causas no pueden recibir un trasplante alogénico), presentan una menor frecuencia en la recuperación medular debido a defectos en el microambiente medular, influido por la enfermedad de base y/o los tratamientos previos.
El transplante de precursores hematopoyéticos obtenidos de sangre periférica, requiere la administración de FEC gránulo-monocítico (GM- CSF). La ventaja principal del TCH de SP sobre el trasplante de médula ósea, es que el primero contiene un mayor número de células y se logra un mejor implante. Además, presenta otra serie de ventajas: no hay necesidad de empleo del salón de operaciones y se evitan todos los riesgos que esto conlleva, rápida recuperación hematológica después del implante, menor posibilidad de obtención de células malignas, disminución del riesgo de infección del material recolectado, y se pueden obtener células hematopoyéticas en situaciones en las que se dificulta su extracción de la médula ósea (mielofibrosis, irradiación pélvica, etc.) Sin embargo, a veces no se consigue la celularidad necesaria con un solo proceso de aféresis, y son necesarios varios procesos de donación (o autodonación), con el consiguiente perjuicio para el donante, que sufre diversos síntomas: dolor lumbar, óseo y muscular, cefalea, hipotensión, malestar general, somnolencia, pérdida de apetito, erupción, náuseas, fiebre, retención de líquidos, etc. Se han descrito casos de parada cardíaca e infarto del miocardio durante la aféresis en donantes con antecedentes de enfermedades cardiovasculares. Otras complicaciones incluyen aumento de tamaño del bazo y ruptura esplénica, así como signos de hematopoyesis extramedular. También se puede presentar epiescleritis e iritis.
Es la actualidad, el cordón umbilical es la tercera fuente de células para trasplante en adultos y la segunda en niños. Se ha empleado en enfermedades genéticas y malignas y se ha utilizado en pacientes con compatibilidad total o parcial, familiares y no familiares. Sin embargo, el uso de progenitores hematopoyéticos inmaduros y comprometidos obtenidos a partir del cordón umbilical presenta el inconveniente de que su eficacia en adultos está por probar, ya que el número de células es muy pequeño para proveer un implante duradero (Broxmeyer et al., 1990. Int J Cell Cloning 8:76).
Existe, por tanto, la dificultad de mantener la producción de células sanguíneas derivadas de células madre hematopoyéticas (in vivo y/o in vitro), y de expandirlas, por ejemplo para su aplicación en terapéutica,
EXPLICACIÓN DE LA INVENCIÓN
La presente invención se refiere al uso de al menos una célula madre multipotencial aislada para el mantenimiento de la hematopoyesis in vitro donde preferiblemente dicha célula madre multipotencial es una célula madre mesenquimal o. más preferiblemente dicha célula madre mesenquimal es una célula mesenquimal capaz de expresar la proteína Nestina. La presente invención también se refiere al uso de cualquiera de las células madre descritas anteriormente para la fabricación de un medicamento para el mantenimiento de la hematopoyesis de un mamífero, o para la prevención y/o el tratamiento de al menos una enfermedad asociada con una disfunción del mantenimiento de la hematopoyesis de un mamífero. Preferiblemente dicha enfermedad que cursa con una deficiencia en la mielopoyesis o en la linfopoyesis. Asimismo, la presente invención también se refiere a un método para el mantenimiento de la hematopoyesis in vitro o a un método para evaluar la capacidad hematopoyética de un mamífero.
En la presente invención se demuestra que las células Nestina positivas son células madre mesenquimales y por tanto, multipotentes, capaces de diferenciarse a linajes celulares como por ejemplo linajes osteoblásticos, chondrocíticos o adipocíticos.
Dichas células Nestina positivas expresan altos niveles de moléculas implicadas en el mantenimiento de las células madre hematopoyéticas, es decir, en la hematopoyesis. La expresión de Cxcl12, una chemoquina implicada, por ejemplo, en la migración de células hematopoyéticas del hígado del feto hasta la médula ósea, es alrededor de 50 veces mayor en las células Nestina positivas que en el resto de las células del estroma. La expresión de otros genes encargados de regular el mantenimiento de las células madre hematopoyéticas como por ejemplo Kitl, 117 ó Vcaml es de 140 a 800 veces mayor en las células Nestina positivas que en el resto de las células del estroma.
En este sentido, los ratones en los que se ha eliminado selectivamente el 90% de las células Nestina+ presentan una reducción de 2-4 veces el número de células madre hemopoyéticas en la médula ósea tienen una reducción del 90% en la capacidad de los progenitores hemopoyeticos de anidar en la médula ósea. Asimismo, mientras que la celularidad total y el número de células Lin" CD48" de la médula ósea de estos ratones no se afectaron, los progenitores hemopoyéticos y las células madre hemopoyéticas se redujeron en un ~ 50%. Esta reducción estaba asociada con un incremento proporcional y selectivo en el bazo, sin detectarse diferencias en el ciclo celular o la frecuencia de células apoptóticas. Por tanto, estos estudios indican que las células madre hematopoyéticas y los progenitores hemopoyéticos se movilizaban de la médula ósea a sitios extramedulares después de depletar las células nestina+. Las severas reducciones de HSCs detectadas sugieren un papel central para las células nestina+ en el mantenimiento de las HSCs y en la hematopoyesis. Por tanto, la puesta en contacto de estas células madre nestina+ junto con células madre hematopoyéticas, produce el mantenimiento de la hematopoyesis. Este uso tiene una aplicación industrial clara, por ejemplo, en el campo del tratamiento de enfermedades asociadas con una disfunción en el mantenimiento de la hematopoyesis de un mamífero o en el mantenimiento de la hematopoyesis in vitro con el objeto de permitir la generación de células derivadas de las células madre hematopoyéticas, como por ejemplo, células sanguíneas.
Así pues, los autores de la presente invención han aislado una población de células mesenquimales nestina positivas, y que promueven la auto- renovación y/o la expansión de las células madre hematopoyéticas, tanto in vitro como in vivo.
Por tanto, un primer aspecto de la invención se refiere a una población celular aislada, de ahora en adelante población celular de la invención, que comprende al menos una célula madre multipotencial Nestina positiva. En una realización preferida de este aspecto de la invención, la célula madre multipotencial Nestina positiva es una célula mesenquimal. En otra realización más preferida de este aspecto de la invención, la célula madre multipotencial Nestina positiva es una célula no adherente. En otra realización más preferida de este aspecto de la invención, la célula madre multipotencial Nestina positiva se obtiene por un procedimiento que comprende:
a) Obtener un aspirado de la médula ósea de un mamífero, b) Lisar las células de la serie roja,
c) Seleccionar las células CD45 -, y
d) Sembrar las células del paso (c) en un medio adecuado. En otra realización aún más preferida, el mamífero del paso (a) es humano.
En otra realización preferida, la población celular de la invención además comprende, al menos una célula madre hematopoyética. En otra realización más preferida, la célula madre hematopoyética es humana.
Otro aspecto se refiere a una composición, de ahora en adelante composición de la invención, que comprende la población celular aislada de la invención. En una realización preferida de este aspecto, la composición es una composición farmacéutica. En otra realización más preferida, la composición además comprende un vehículo farmacéuticamente aceptable. En otra realización más preferida, la composición además comprende otro principio activo. Otro aspecto se refiere al uso de una población celular aislada de la invención o de una composición farmacéutica de la invención, para el mantenimiento de la hematopoyesis in vitro. Otro aspecto se refiere al uso de una población celular aislada de la invención o de una composición farmacéutica de la invención, para el mantenimiento de la hematopoyesis in vivo. Otro aspecto de la invención se refiere al uso de una población celular aislada de la invención, o de una composición farmacéutica de la invención, para la auto-renovación de las células madre hematopoyéticas. Otro aspecto de la invención se refiere al uso de una población celular aislada de la invención, o de una composición farmacéutica de la invención, para la la expansión de las células madre hematopoyéticas.
Otro aspecto se refiere al uso de una población celular aislada de la invención o de una composición farmacéutica de la invención, para la elaboración de un medicamento.
Otro aspecto se refiere al uso de una población celular aislada de la invención o de una composición farmacéutica de la invención, para la elaboración de un medicamento para el mantenimiento de la hematopoyesis en un mamífero. En una realización preferida de este aspecto de la invención, el mamífero es humano.
Otro aspecto se refiere al uso de una población celular aislada de la invención o de una composición farmacéutica de la invención, para la elaboración de un medicamento para la reparación y regeneración de tejidos. En una realización preferida, el tejido es la sangre.
Otro aspecto se refiere al uso de una población celular aislada de la invención o de una composición farmacéutica de la invención, para la elaboración de un medicamento para el tratamiento de enfermedades de la sangre y de los órganos hematopoyéticos. En una realización preferida la enfermedad cursa con una deficiencia en la mielopoyesis o en la linfopoyesis. Las enfermedades de la sangre y de los órganos hematopoyéticos se recogen, pero sin limitarse, en el tercer capítulo de la lista de códigos CIE- 10 (décima versión de la Clasificación estadística internacional de enfermedades y otros problemas de salud (en inglés ICD, siglas de International Statistical Classification of Diseases and Related Health Problems). Entre otras, en esta memoria se entienden como "enfermedades de la sangre y de los órganos hematopoyéticos" las siguiente: Adquiridas
• Neoplasias malignas
o Hematológicas
■ Leucemias
Leucemia linfoblástica aguda
■ Leucemia no linfoblástica aguda
Leucemia linfocítica crónica
Leucemia mieloide crónica, en fase acelerada o crisis blástica
Linfomas
Enfermedad de Hodgkin
Linfoma no-Hodgkin
Mielomas
Mieloma múltiple (enfermedad de Kahler) o Cánceres de tumor sólido
Neuroblastoma
Tumor desmoplásico de células pequeñas redondas Sarcoma de Ewing
Coriocarcinoma
Enfermedades hematológicas
o Trastornos fagocíticos
■ Mielodisplasia o Anemias
Hemoglobinuria nocturna paroxística (aplasia severa)
Anemia aplásica
Aplasia pura de células rojas
o Trastornos mieloproliferativos
Policitemia vera
Trombocitosis esencial
Mielofibrosis
• Trastornos metabólicos
o amiloidosis
Amiloidosis de cadena ligera amiloide
• Enfermedades ambientalmente inducidas
o Envenenamiento por radiación
• Enfermedades virales
o VIH[3]
Congénitas
• Enfermedades de almacenamiento lisosómico
o Lipidosis (trastornos del almacenamiento de lípidos)
Lipofuscinosis neuronal ceroidea
Ceroidolipofuscinosis neuronal infantil (INCL, enfermedad de Santavuori)
■ Enfermedad de Jansky-Bielschowsky (lipofuscinosis neuronal ceroidea infantil tardía )
Esfingolipidosis
■ Enfermedad de Niemann-Pick
Enfermedad de Gaucher
Leucodistrofias
Adrenoleucodistrofia
Leucodistrofia metacromática
Enfermedad de Krabbe (leucodistrofia de células globoides) Mucopolisacaridosis
Síndrome de Hurler (MPS IH, deficiencia de a- L-iduronidasa)
Síndrome de Scheie (MPS I S)
Síndrome de Hurler-Scheie (MPS I H-S)
Síndrome de Hunter (MPS II, deficiencia de sulfato de iduronidasa)
Síndrome de Sanfilippo (MPS III)
Síndrome de Morquio (MPS IV)
■ Síndrome de Maroteaux-Lamy (MPS VI)
■ Síndrome de Sly (MPS VII)
Glucoproteinosis
Mucolipidosis II (l-enfermedad celular)
Fucosidosis
Aspartilglucosaminuria
Alfa-manosidosis
Otros
Enfermedad de Wolman (deficiencia de ácido lipasa)
nmunodeficiencias
o Deficiencia de células T
Ataxia telangiectasia
Síndrome de DiGeorge
o Deficiencias combinadas de células B y T
Inmunodeficiencia combinada severa (SCID), todos los tipos
o Síndromes bien definidos
■ Síndrome de Wiskott-Aldrich o Trastornos fagocíticos
Síndrome de Kostmann
Síndrome de Shwachman-Diamond
o Enfermedades de desregulación inmune
Síndrome de Griscelli, tipo II
o Deficiencias inmunes innatas
Deficiencia del modulador esencial NF-kappa-B (NEMO) (Potenciador del gen inhibidor del polipéptido ligero kappa en deficiencia de células B Gamma kinasa)
Enfermedades hematológicas
o
Hemoglobinopatías
Enfermedad de células falciformes
β talasemia mayor (anemia de Cooley) o Anemias
Anemia aplásica
■ Anemia de Diamond-Blackfan
Anemia de Fanconi
o Citopenias
Amegakaryocytic trombocitopenia
o Síndromes hemofagocítico
Linfohistiocitosis hemofagocítica (HLH)
En otra realización preferida la enfermedad se selecciona de la lista que comprende: mieloma, gamapatía monoclonal benigna, hipoplasia y aplasia medular, mielofibrosis, síndrome mielodisplásico, anemia, policitemia, neutropenia, leucemia aguda, leucemia crónica, linfoma, púrpuras, hemofilia, o cualquiera de sus combinaciones. Otro aspecto de la invención se refiere a un método de obtención de células hematopoyéticas in vitro, de ahora en adelante método de obtención de células hematopoyéticas de la invención, que comprende: a) poner en contacto al menos una célula Nestina positiva aislada con al menos una célula madre hematopoyética aislada, e
b) incubar el producto obtenido en el apartado (a) en un medio de cultivo adecuado para la división y/o diferenciación de la célula madre hematopoyética. En una realización preferida de este aspecto de la invención, la célula Nestina positiva se aisla de la médula ósea. En otra realización preferida la célula Nestina positiva es célula madre multipotencia. En otra realización preferida la célula Nestina positivo es una célula madre mesenquimal. En otra realización preferida la célula Nestina positivo es una célula no adherente. En otra realización preferida la célula Nestina positivo es humana.
Otro aspecto de la invención se refiere a las células hematopoyéticas obtenibles por el método de obtención de células hematopoyéticas de la invención. Otro aspecto de la presente invención se refiere al uso de al menos una célula madre multipotencial aislada para el mantenimiento de la hematopoyesis in vitro.
Las células madre (o células troncales) son células indiferenciadas que tienen la capacidad de dividirse sin perder sus propiedades y llegar a producir tanto células diferenciadas como células no diferenciadas. Según el origen de las células madre se puede diferenciar entre células madre embrionarias y células madre adultas. En la presente invención se hace referencia a una célula madre adulta o embrionaria. La célula madre multipotencial de la presente invención es capaz de diferenciarse en distintos tipos celulares procedentes de la misma capa embrionaria (Weissman et al., 2001 . Annu Rev Cell Dev Biol. 17: 387-403) y como consecuencia, a cualquier tejido adulto derivado.
El término "aislada" se refiere a que las células madre permanecen fuera del cuerpo humano o animal.
Tal como se entiende en la presente invención, el término "mantenimiento de la hematopoyesis" hace referencia a la preservación del proceso de hematopoyesis, es decir la preservación de la generación, regulación y producción de las células derivadas de las células madre hematopoyéticas así como de la división de dichas células madre hematopoyéticas. En adelante se podrá emplear el término hemopoyesis como sinónimo del término hematopoyesis.
Las células madre hematopoyéticas pueden ser, pero sin limitarse, "células madre hematopoyéticas de largo plazo" (long-term hematopoietic stem cells, LT-HSC) o "células madre hematopoyéticas de corto plazo" (short-term hematopoietic stem cells, ST-HSC).
Las células derivadas de las células madre hematopoyéticas pueden ser, pero sin limitarse, progenitores hematopoyéticos comprometidos capaces de diferenciarse a una línea celular mielocítica o linfopoyética, eritrocitos, plaquetas, granulocitos (neutrófilos, basófilos, eosinófilos), monocitos o linfocitos. Asimismo las células derivadas de las células madre hematopoyéticas pueden cualquiera de los precursores de los eritrocitos, plaquetas, granulocitos, monocitos o linfocitos. En condiciones in vivo, la hematopoyesis se produce en diversos órganos o tejidos dependiendo del estado de desarrollo del individuo o incluso del desarrollo de estados patológicos. Así pues, durante el transcurso de la segunda y tercera semanas aproximadamente de desarrollo embrionario se produce hematopoyesis en el saco vitelino. Aproximadamente a partir de la sexta semana aparece tejido hematopoyético en el hígado. A partir del tercer mes de desarrollo embrionario se empieza a desarrollar el tejido mieloide de la médula ósea, que es donde se produce principalmente el proceso de hematopoyesis. A partir del octavo mes de desarrollo embrionario aparece tejido hematopoyético en el bazo. En el individuo adulto la actividad hematopoyética se mantiene en la médula ósea, sin embargo, en el transcurso de determinados estados patológicos pueden apreciarse focos hematopoyéticos en algunos de los órganos mencionados anteriormente, en este caso la hematopoyesis es extramedular. El mantenimiento de la hematopoyesis in vitro de la presente invención puede llevarse a cabo en las células aisladas procedentes del tejido hematopoyético de cualquiera de los órganos que poseen dicho tejido como por ejemplo, pero sin limitarse, cualquiera de los órganos citados en el párrafo anterior en cualquier estado de desarrollo del individuo.
Una realización preferida de la presente invención se refiere al uso donde la célula madre multipotencial es una célula mesenquimal.
La célula mesenquimal procede de cualquier tejido mesenquimal. El tejido mesenquimal es aquel que procede de la capa embrionaria llamada mesodermo. El tejido mesenquimal del que procede la célula mesenquimal de la presente invención se selecciona de la lista que comprende tejido conectivo laxo, tejido conectivo denso, tejido adiposo, tejido cartilaginoso, tejido óseo, tejido hematopoyético, tejido sanguíneo o tejido muscular. Preferiblemente la célula mesenquimal de la presente invención procede de tejido hematopoyético. Más preferiblemente la célula mesenquimal procede de médula ósea. La médula ósea es un tejido que se encuentra, por ejemplo, pero sin limitarse, en el interior de los huesos largos, vértebras, costillas, esternón, huesos del cráneo, cintura escapular o pelvis. Preferiblemente la médula ósea es médula ósea roja, que ocupa el tejido esponjoso de los huesos planos, como por ejemplo, pero sin limitarse, el esternón, las vértebras, la pelvis o las costillas. Este tipo de médula ósea es la que tiene la función hematopoyética. Además, las células mesenquimales de la presente invención pueden proceder de cordón umbilical.
Otra realización preferida de la presente invención se refiere al uso donde la célula madre mesenquimal es una célula Nestina positiva.
La proteína Nestina es un tipo de filamento intermedio tipo IV. Esta proteína se expresa en células no diferenciadas durante estadios tempranos del desarrollo del sistema nervioso central, sistema nervioso periférico así como en órganos como el páncreas o en el tejido muscular. La proteína Nestina está considerada como un marcador de células madre. Las células que expresan dicha proteína son células que se comportan como células mesenquimales teniendo en cuenta su capacidad de diferenciación. Por tanto, la célula mesenquimal Nestina positiva de la presente invención se refiere a una célula mesenquimal capaz de expresar la proteína Nestina. Las células mesenquimales Nestina positivas pueden expresar dicha proteína en una cantidad variable dependiendo de condiciones multifactoriales como por ejemplo el tipo de tejido en el que se encuentre la célula mesenquimal así como el estadio de desarrollo del tejido al que pertenece, etc. En los ejemplos de la presente invención se demuestra cómo la reducción drástica de las células mesenquimales Nestina positivas en un ratón, produce una reducción del 75% en el número de células madre hematopoyéticas de la médula ósea, capaces de generar colonias hemopoyéticas después de cultivarlas durante largos períodos de tiempo.
Según otra realización preferida, la célula madre constituye una población celular aislada. La población celular está constituida por, o comprende, cualquiera de las células madre multipotentes, células madre mesenquimales o células mesenquimales Nestina positivas. Dicha población celular puede consistir en cualquier combinación de células madre multipotentes, células madre mesenquimales o células mesenquimales Nestina positivas o puede comprender cualquier combinación de las células anteriores.
Otro aspecto de la presente invención se refiere al uso de al menos una célula madre multipotencial para la fabricación de un medicamento para el mantenimiento de la hematopoyesis de un mamífero.
Otro aspecto de la invención se refiere al uso de al menos una célula madre multipotencial para la fabricación de un medicamento para la prevención o el tratamiento de al menos una enfermedad asociada con una disfunción del mantenimiento de la hematopoyesis de un mamífero.
El término "prevención" tal como se entiende en la presente invención consiste en evitar la aparición de enfermedades que cursen con una disfunción del mantenimiento de la hematopoyesis. El término "tratamiento" tal como se entiende en la presente invención supone combatir los efectos causados como consecuencia de dicha disfunción, para estabilizar el estado de los individuos o prevenir daños posteriores.
El término "disfunción del mantenimiento de la hematopoyesis" tal como se emplea en la presente invención hace referencia a una alteración cuantitativa de la hematopoyesis que produce la pérdida total o parcial en el mantenimiento de la hematopoyesis y como consecuencia de dicha disfunción se produce una bajada en la celularidad (hipocelularidad) en la médula ósea del individuo respecto de una condición normal. La condición normal es aquella en la que dicha celularidad se mantiene por encima de un porcentaje mínimo como por ejemplo, pero sin limitarse, por encima del 20, 25, 30 ó 35%. La condición de hipocelularidad no afecta a la presente invención. Es decir, la enfermedad asociada a dicha disfunción en el mantenimiento de la hematopoyesis está producida como consecuencia de la disminución de la división y/o diferenciación de las células hematopoyéticas, lo que origina una disminución de la producción de cada una de las células derivadas de las células madre hematopoyéticas con respecto a un valor control de producción de dichas células. Dicha comparación puede llevarse a cabo determinando la concentración de cualquier tipo de célula hematopoyética diferenciada y comparándola con los niveles de referencia. Estos niveles de referencia son los niveles control. Por ejemplo, el nivel de referencia de los eritrocitos es de 4,5-106 células/mm3 en el caso de varones o el nivel de referencia de los leucocitos es de 5000 células/ mm3. Los niveles de referencia anteriores son niveles mínimos por debajo de los cuales se consideraría que hay una disminución de la producción de cada una de las células derivadas de las células madre hematopoyéticas.
El término "celularidad" tal como se entiende en la presente invención hace referencia a la relación entre las células hematopoyéticas y el tejido adiposo (células constituyentes mayoritarias de la médula ósea) expresado en el porcentaje de células.
Una realización preferida se refiere al uso donde la enfermedad asociada a la disfunción del mantenimiento de la hematopoyesis es una enfermedad que cursa con una deficiencia en la mielopoyesis o en la linfopoyesis.
El término "deficiencia" tal como se entiende en la presente invención se refiere a un funcionamiento inferior a lo normal, es decir a una capacidad de división y/o diferenciación de las células madre mielopoyéticas o linfopoyéticas por debajo de los niveles de referencia establecidos para cada tipo de células derivadas de las células madre hematopoyéticas y para cada sexo.
La mielopoyesis es el proceso que da lugar a la generación, desarrollo y maduración de las células mieloides de la sangre, es decir, eritrocitos, plaquetas, granulocitos (neutrófilos, basófilos, eosinófilos) o monocitos. Los eritrocitos se generan por un proceso denominado eritropoyesis. Las plaquetas se generan por trombopoyesis. Los granulocitos se generan por granulopoyesis. Los monocitos se generan por monopoyesis. La linfopoyesis es el proceso que permite la generación, desarrollo y maduración de los linfocitos.
La enfermedad que cursa con una deficiencia en la mielopoyesis o en la linfopoyesis se selecciona de la lista que comprende anemia aplástica, pancitopenia, eritroblastopenia, aplasia eritrocítica, anemia de Fanconi, síndrome de Blackfan-Diamond, panmieloptisis, anemia diseritropoyética, anemia dishematopoyética, granulocitopenia (agranulocitosis), neutropenia, o linfopenia.
Otra realización preferida de la presente invención se refiere al uso de al menos una célula madre multipotencial para la fabricación de un medicamento donde la célula madre multipotencial es una célula mesenquimal. Otra realización preferida se refiere al uso donde la célula madre mesenquimal es una célula Nestina positiva. Según otra realización preferida, la célula madre constituye una población celular aislada. Dicho medicamento comprende:
- la célula madre multipotencial, mesenquimal o mesenquimal Nestina positiva, y
- un vehículo farmacológicamente aceptable,
- un excipiente farmacológicamente aceptable, u
- otra sustancia activa.
El medicamento puede comprender cualquiera de dichas células con el vehículo, excipiente u otra sustancia activa en cualquiera de sus combinaciones. Además, el vehículo así como el excipiente deben ser farmacéuticamente aceptables.
El término "vehículo" se refiere a aquellas sustancias, o combinación de sustancias, conocidas en el sector farmacéutico, utilizadas en la elaboración de formas farmacéuticas de administración e incluye, pero sin limitarse, sólidos, líquidos, disolventes o tensioactivos. El vehículo puede ser una sustancia inerte o de acción análoga a cualquiera de las secuencias de la presente invención. La función del vehículo es facilitar la incorporación de la célula madre multipotencial, mesenquimal o mesenquimal Nestina positiva y/o de otros compuestos, permitir una mejor dosificación y administración o dar consistencia y forma al medicamento. Cuando la forma de presentación es líquida, el vehículo es el diluyente.
El término "excipiente" hace referencia a una sustancia que ayuda a la absorción de cualquiera de las secuencias de la presente invención, estabiliza dicha secuencia o ayuda a la preparación del medicamento en el sentido de darle consistencia o aportar sabores que lo hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos como por ejemplo almidones, azúcares o celulosas, función de endulzar, función de colorante, función de protección del medicamento como por ejemplo para aislarlo del aire y/o la humedad, función de relleno de una pastilla, cápsula o cualquier otra forma de presentación como por ejemplo el fosfato de calcio dibásico, función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo.
El término "farmacológicamente aceptable" se refiere a que el compuesto al que hace referencia esté permitido y evaluado de modo que no cause daño a los organismos a los que se administra.
El término "farmacéuticamente aceptable" se refiere a que el compuesto al que hace referencia permita la actividad de la célula madre multipotencial, mesenquimal o mesenquimal Nestina positiva de la presente invención. El término "sustancia activa" hace referencia a una sustancia activa que debe permitir la actividad de cualquiera de las células de la invención, es decir, debe ser compatible con la célula madre multipotencial, mesenquimal o mesenquimal Nestina positiva. Es decir, al menos una célula madre multipotencial, mesenquimal o mesenquimal Nestina positiva, se formula en una composición farmacéutica y farmacológica apropiada (medicamento), en una cantidad terapéuticamente efectiva. El medicamento puede formularse junto con uno o más vehículos, adyuvantes o excipientes farmacéuticamente y farmacológicamente aceptables, así como también puede comprender otra sustancia activa.
En cada caso, la forma de presentación del medicamento se adaptará al tipo de administración utilizada, por ello, la composición de la presente invención se puede presentar bajo la forma de soluciones o cualquier otra forma de administración clínicamente permitida. El medicamento de la presente invención se puede presentar en una forma adaptada a la administración oral o parenteral.
La forma adaptada a la administración oral se refiere a un estado físico que pueda permitir su administración oral. La forma adaptada a la administración oral se selecciona de la lista que comprende, pero sin limitarse, gotas, jarabe, tisana, elixir, suspensión, suspensión extemporánea, vial bebible, comprimido, cápsula, granulado, sello, pildora, tableta, pastilla, trocisco o liofilizado.
La forma adaptada a la administración parenteral se refiere a un estado físico que pueda permitir su administración inyectable, es decir, preferiblemente en estado líquido. La administración parenteral se puede llevar a cabo por vía de administración intramuscular, intraarterial, intravenosa, intradérmica, subcutánea o intraósea pero sin limitarse únicamente a estos tipos de vías de administración parenteral.
Otra posibilidad es que el medicamento se presente en una forma adaptada a la administración sublingual, nasal, intracatecal, bronquial, linfática, transdérmica o inhalada.
Otra realización preferida de la presente invención se refiere al uso de al menos una célula madre multipotencial, mesenquimal o mesenquimal Nestina positiva, donde el mamífero es un humano.
Otro aspecto de la presente invención se refiere a un método para el mantenimiento de la hematopoyesis in vitro que comprende:
a) poner en contacto al menos una célula madre multipotencial aislada con al menos una célula madre hematopoyética aislada, e
b) incubar el producto obtenido en el apartado (a) en un medio de cultivo adecuado para la división y/o diferenciación de la célula madre hematopoyética.
Tal como se demuestra en el apartado de ejemplos de la presente invención, la célula madre multipotencial, preferiblemente la célula madre mesenquimal y más preferiblemente la célula mesenquimal Nestina positiva comparte el mismo nicho en la médula ósea que las células madre hematopoyéticas. Por tanto, el primer paso del método para el mantenimiento de la hematopoyesis in vitro consiste en poner en contacto dicha célula madre multipotencial aislada con al menos una célula madre hematopoyética en cualquier fase de desarrollo previo a su diferenciación.
La incubación de dicha mezcla celular debe llevarse a cabo en un medio de cultivo que permita la división y/o diferenciación de la célula madre hematopoyética.
En la presente invención se entiende por "medio de cultivo adecuado" cualquier solución que comprenda nutrientes necesarios para la división y/o diferenciación, o para la recuperación o aislamiento de cualquiera de las células derivadas de las células madre hematopoyéticas de la presente invención. Dicho cultivo se lleva a cabo en condiciones favorables de temperatura y pH. El medio de cultivo se selecciona, pero sin limitarse, de la lista que comprende DMEM (Dulbecco's Modified Eagle's Médium), RPMI 1640, F12, F10, MCDB 131 , MEM (Mínimum Essential Media) o DMEM/F12. Además, el medio de cultivo puede estar suplementado con otros componentes, como por ejemplo, pero sin limitarse, C02, 02, suero o sustituto de suero, aminoácidos, antibióticos, etc. No obstante puede ser empleado cualquier medio de cultivo conocido en el estado de la técnica para el cultivo de células madre hematopoyéticas. En el apartado de ejemplos de la presente invención se describen algunos tipos de medio de cultivo. La incubación descrita en el apartado (b) del método para el mantenimiento de la hematopoyesis in vitro debe llevarse a cabo durante el tiempo deseado siempre que se mantengan las condiciones adecuadas para dicho mantenimiento de la hematopoyesis. Para ello puede ser necesaria la renovación periódica de dicho medio, o la adición de nuevo medio de cultivo, o la recuperación de parte del medio en el que se encuentren las células derivadas de cualquiera de las células madre hematopoyéticas de la presente invención. Una realización preferida de la presente invención se refiere al método para el mantenimiento de la hematopoyesis in vitro, donde la célula madre multipotencial es una célula mesenquimal. Otra realización preferida de la presente invención se refiere al método donde la célula madre mesenquimal es una célula Nestina positiva. Según otra realización preferida del método para el mantenimiento de la hematopoyesis in vitro, la célula madre constituye una población celular aislada.
Otro aspecto de la presente invención se refiere a un método para determinar el mantenimiento de la capacidad hematopoyética de un mamífero que comprende:
a) analizar al menos un producto de expresión del gen que codifica para la proteína Nestina en las células de una muestra de tejido hematopoyético aislado de dicho mamífero y
b) asignar la presencia de dicho producto de expresión analizado en el apartado (a) al mantenimiento de la capacidad hematopoyética del órgano del que procede dicho tejido.
El término "producto de la expresión" tal como se entiende en la presente invención hace referencia a cualquier producto resultante de la expresión de la secuencia de nucleótidos que codifica para la proteína Nestina del mamífero. Así pues, como producto resultante de la expresión se entiende, por ejemplo, el ARN mensajero que se obtiene de la transcripción de la secuencia nucleotídica, el ARN mensajero procesado, la proteína resultante de la traducción de cualquiera de los ARN mensajeros o la secuencia de cDNA (ADN complementario a la secuencia de ARN mensajero).
El análisis del producto de expresión se lleva a cabo mediante cualquier técnica conocida en el estado de la técnica. La presencia del producto de expresión descrito en un párrafo anterior indica la producción de proteína Nestina en las células del tejido aislado de dicho mamífero. La detección de dicha presencia depende de la sensibilidad de la técnica de detección que se emplee en el análisis. Una realización preferida de la presente invención se refiere al método para determinar el mantenimiento de la capacidad hematopoyética de un mamífero, que comprende:
a) determinar la concentración de al menos un producto de expresión del gen que codifica para la proteína Nestina en las células de una muestra de tejido hematopoyético aislada de dicho mamífero,
b) calcular la diferencia de la concentración del producto de la expresión del gen que codifica para la proteína Nestina determinada en el apartado (a) con respecto a la concentración de la expresión de dicho gen en un control positivo y/o negativo, y
c) asignar una diferencia significativa con respecto al control positivo, y/o la ausencia de una diferencia significativa con respecto al control negativo, calculadas en el apartado (b), al mantenimiento de la capacidad hematopoyética del tejido del que procede dicha muestra. El control negativo es, por ejemplo, pero sin limitarse, una muestra de tejido hematopoyético donde las células no sean capaces de llevar a cabo el mantenimiento de la hematopoyesis, es decir, donde dichas células no son capaces, por ejemplo, de mantener la celularidad dentro de unos porcentajes deseados (conocidos por el experto en la materia) para cualquier tipo de célula derivada de una célula madre hematopoyética. Los porcentajes deseados de celularidad pueden ser, pero sin limitarse, porcentajes inferiores a un 20%, es decir, el control negativo presenta disfunción del mantenimiento de la hematopoyesis.
El control positivo es, por ejemplo, pero sin limitarse, una muestra de tejido hematopoyético donde las células sean capaces de llevar a cabo el mantenimiento de la hematopoyesis, es decir, donde dichas células son capaces, por ejemplo, de mantener la celularidad dentro de unos porcentajes deseados (conocidos por el experto en la materia) para cualquier tipo de célula derivada de una célula madre hematopoyética. Los porcentajes deseados de celularidad pueden ser, pero sin limitarse, porcentajes superiores a un 20%, es decir, el control positivo presenta la capacidad de mantener la hematopoyesis.
El término "diferencia significativa" tal como se emplea en la presente invención hace referencia a una diferencia calculada en el apartado (b) del método mayor que un error estándar definido multiplicado por una seguridad definida. La seguridad definida puede tener un valor, por ejemplo, pero sin limitarse, de un 95% (p<0,05) o de un 99% (p<0,01 ). Por el contrario, la "ausencia de una diferencia significativa" hace referencia a una diferencia calculada en el apartado (b) del método igual o menor que un error estándar definido multiplicado por una seguridad definida.
Otra realización preferida se refiere al método para evaluar la capacidad hematopoyética de un mamífero, donde dicho mamífero es un humano. Tanto las células madre multipotenciales Nestina positivas como las células madre hematopoyéticas son células adultas, y se han obtenido sin destruir embriones, o sin afectar a la viabilidad de los mismos. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCION DE LAS FIGURAS
Con la intención de complementar la descripción que se ha llevado a cabo, así como de ayudar a un mejor entendimiento de las características de la invención, de acuerdo con algunos ejemplos realizados, se muestran aquí, con carácter ilustrativo y no limitante, las siguientes figuras:
FIG. 1. Muestra que las células Nes:GFP+ son células madre mesenquimales.
(A) n = 12.
(B) n = 4.
(C) n = 4.
(D) Células aisladas como CD45" Nes:GFP+ y CD45" Nes:GFP" (recuadro) cultivadas durante 4 semanas con medio de diferenciación osteoblástica. (E) Diferenciación progresiva en adipocitos a partir de CFU-Fs obtenidos de células CD45" Nes:GFP+ cultivadas durante 3 semanas con medio de diferenciación adipocítica (n = 4).
(F) Las células CD45" Nes:GFP" no generaron ninguna colonia (recuadro). (G) Acan: expresión de agrecano durante las 3 semanas de cultivo con medio de diferenciación condrocítica.
(H) Acumulación de mucopolisacáridos Alcian blue+ en pellets celulares procedentes de células CD45" Nes:GFP+ cultivadas durantes 3 semanas con medio de diferenciación condrocítica (n = 4).
(I) Esferas clónales Las células CD45" Nes:GFP+ tras 7 días de cultivo en baja densidad; campo claro.
(J-K) expresión de GFP en una esfera tras 10 días de cultivo; (J) campo claro; (K) fluorescencia.
(L) Diferenciación de las células CD45" Nes:GFP+ en linajes mesenquimales.
(M) Adipocitos refringentes multi- y uniloculares, así como células migrando desde la capa externa de la esfera, adheridas a la superficie de la placa de cultivo.
(N-O) Mesesferas clónales (n = 51 ) diferenciadas en OBs Col2.3-l_acZ+ OBs y adipocitos Oil red 0+.
(P) Ejemplo representativo de mesesfera clonal que acumuló mucopolisacáridos Alcian blue+ tras 3 semanas en cultivo con medio de diferenciación condrocítica (n = 4).
(Q) Diferenciación progresiva de las mesesferas clónales cultivadas durante 3 semanas en medio de diferenciación condrocítica (n = 5-1 1 ), manifestada por la expresión aumentada de "(sex determining región Y)- box 9" (Sox9), agrecano (Acan) y de los colágenos tipo Ila1 (Col2o1) y tipo Xla2 (Col11a2).
Escala, 100 μιη (F, I, K, N, P); 500 μιη (H); 50 μιη (L-M, O). * p < 0.05; ** p < 0.01 ; *** p < 0.001 ; test t no pareado de dos colas; las barras de error indican error estándar.
FIG. 2. Muestra que las células Nes:GFP+ están físicamente asociadas con las HSCs. (A, B) Inmunohistoquímica frente a CD150 (flechas), CD48 y marcadores de linajes hemopoyéticos en secciones de médula ósea de ratones Nes- Gfp. Imágenes representativas de HSCs CD150+ CD48" Lin- localizadas adyacentes a las células Nes:GFP+ del endostio (A) y de los sinusoides (B); (A) Los megacariocitos CD150+ CD48 / Lin+, indicados con asteriscos, se pudieron identificar fácilmente por su gran tamaño y tinción de CD150 homogénea. Deconvoluciones de las proyecciones Z.
(C) Las escasas células Nes:GFP+ detectables en cultivos primarios mieloides estaban frecuentemente asociadas con "cobblestone-forming áreas", enriquecidas en progenitores hemopoyéticos. Imagen combinada de fluorescencia y contraste de fase.
Escala, 50 μηπ.
FIG. 3. Muestra cómo las células HSCs están localizadas cerca de las células Nes:GFP+ en la MO.
Inmunohistoquímica frente a CD15; Ter1 19, Gr-1 , CD3e, B220 y Mac-1 (Lin), y CD48 en secciones de médula ósea de ratones trangénicos Nes- Gfp. Las puntas de flecha señalan ejemplos de HSCs CD150+ CD48- Lin— . Las HSCs se hallaron frecuentemente localizadas adyacentes a (A, C) o cerca de (B, D) las células Nes:GFP+ del endostio, y la mayoría de ellas en contacto directo con (E, G-l) o cerca de (J-L) las células Nes:GFP+ que bordeaban los sinusoides. Los asteriscos indican megacariocitos CD150+ CD48+, fácilmente identificables por su gran tamaño y distribución citoplasmática homogénea de CD150. Rejilla, 50 μηπ.
FIG. 4. Muestra cómo la eliminación selectiva de las células que expresan nestina reduce de forma aguda el contenido y anidamiento de las células HSCs en la médula ósea.
(A) n = 5-10. (B) n = 5-7.
(C) n = 3-8.
(D-E) n = 4-5.
(F) n = 4-8.
(G) Distancias medias más cortas encontradas entre las células Nes:GFP+ y las HSCs anidadas en la médula ósea, o entre éstas y la pared del hueso 2 h (n = 16), 48 h (n = 30) y 96 h (n = 14) más tarde.
(H-l) Ejemplos representativos de las HSCs teñidas con DyD (flecha fina) anidadas en menos de 2 h cerca de las células GFP+ (flecha gruesa) en la médula ósea de los ratones Nes-Gfp. La matriz del hueso se visualizó mediante la señal harmónica secundaria generada por el colágeno cuando se ilumina mediante pulsos de femtosegundos con un láser de titanio:zafiro.
* p < 0.05, ** p < 0.01 , *** p < 0.001 ; test t no pareado de dos colas; las barras de error indican error estándar.
FIG. 5. Muestra que las células Nes:GFP+ de la médula ósea craneal son perivasculares. Microscopía intravital de la calvaría de los ratones transgénicos Nes-Gfp inyectados i.v. con Qdot (flecha fina).
(A-C) Células Nes:GFP+ (flecha gruesa) rodeando los vasos de la sutura coronal.
(D-F) Células Nes:GFP+ en el endostio.
FIG. 6. Muestra cómo la depleción celular selectiva en los ratones Nes-Cre/iDTR no altera el ciclo celular de los progenitores hemopoyéticos. Frecuencia de células CD48-, Lin-Sca-1 + c-kit+ (LSK) (A) y CD150+ CD48- LSK (B) en la médula ósea de ratones dobles transgénicos Nes- Cre/iDTR o de animales controles iDTR 24 h tras la inyección de toxina diftérica (DT). Las muestras de médula ósea, teñidas como se describe en el apartado de Materiales y Métodos, se fijaron y permeabilizaron, y se detectó TUNEL utilizando el kit Mebstain Apoptosis Kit Direct (MBL) y FACS. Cada punto corresponde a un ratón. ** p < 0.01 , test t no pareado de dos colas.
FIG. 7. Muestra cómo la depleción celular selectiva en los cultivos de larga duración realizados a partir de la médula ósea de los ratones Nes-Cre/iDTR reduce el número de progenitores hemopoyéticos.
Se determinó el número de unidades formadoras de colonias en cultivo (CFU-C) en la fracción adherente (A) y los sobrenadantes (B) de cultivos mieloides (tipo Dexter) de médula ósea de ratones dobles transgénicos Nes-Cre / iDTR. La toxina diftérica (DT, 100 ng/ml) se añadió al medio al sembrar los cultivos y en los recambios semanales de la mitad del medio de cultivo. Los datos se normalizaron en base a cultivos similares de médula ósea de animales controles iDTR para descartar la toxicidad inespecífica de la DT in vitro (n = 3 ratones). ** p < 0.05; test t no pareado de dos colas. Las barras de error indican error estándar.
FIG. 8. Muestra cómo la depleción celular selectiva en los ratones Nes-CreliDTR reduce la supervivencia pero no afecta la permeabilidad vascular o la histología de la médula ósea ni el hemograma.
(A) Supervivencia reducida de los ratones Nes-Cre/iDTR tras la ablación celular selectiva. Porcentaje de supervivencia de los ratones Nes-Cre / iDTR y Nes-Cre / iDTR / ROSA-Gfp tripleinyectados con toxina diftérica (DT, 4 [Ág/kg, i.p.; línea sin elementos en los extremos) o PBS (línea con puntas de flecha en ambos extremos) (n = 10), comparado con animales controles tratados con DT (línea con círculos negros en ambos extremos, n = 5). *** p < 0.001 (test de Logrank).
(B-C) Colorante FITC-Dextran, preparado e inyectado i.v. en los animales Nes-Cre I iDTR tratados con DT en la vasculatura de la médula ósea craneal (C), o en animales control (B).
(D-E) Histología de la médula ósea de los animales Nes-Cre I iDTR tratados con DT (E) e histología de los animales control (D). Ejemplos representativos de n = 4 ratones. Escala, 100 μηι (B-C); 50 μηι (D-E).
(F) Cantidad de eritrocitos (RBC), hemoglobina (Hgb), hematocrito (Hct), plaquetas (Plt), leucocitos (WBC) y progenitores hemopoyéticos (CFU-C) en la sangre en ratones Nes-Cre I iDTR y Nes-Cre I iDTR I ROSA-Gfp 24- 48 h después del tratamiento con DT comparado con los niveles observados en animales transgénicos inyectados con PBS o en ratones controles tratados con DT (n = 4-7). Test t no pareado de dos colas. Las barras de error indican error estándar.
FIG. 9. Muestra la expresión de genes críticos para el mantenimiento de las HSCs.
RT-PCR cuantitativa a partir de muestras de ARN obtenidas de las células CD45" GFP+ y CD45" GFP" aisladas de la médula ósea de los ratones transgénicos Nes-Gfp para determinar la expresión de Cxcl12, "stem cell factor/ligando de kit (Kitl), interleucina-7 (IL7), "vascular cell adhesión molecule-V (Vcaml), osteopontina (Spp1) y caderina-N (Cdh2), Gapdh, angiopoyetina-1 (Angptl), en las células Nes:GFP+ y en el resto de la población CD45" de la médula ósea.
(A) n = 6.
(B) Los animales se inyectaron con salino, un agonista b-adrenérgico no selectivo (isoproterenol, b-AR) o un agonista selectivo para receptores adrenérgicos β3 (BRL37344; P3-AR) (2 mg/kg, i.p.) y se sacrificaron 2 h después, (n = 6).
(C) Expresión de las conexinas 45 (Gjc1 ) y 43 (Gja1 ). (n = 3). * p < 0.05, ** p < 0.01 , *** p < 0.001 ; test t no pareado de dos colas; las barras de error indican error estándar.
FIG. 10. Muestra los resultados de RT-PCR cuantitativa utilizando un gen "housekeeping" distinto.
(A-B) Se realizó PCR cuantitativa a partir de muestras de ARN obtenidas de las células CD45- GFP+ y CD45- GFP- aisladas de la médula ósea de los ratones transgénicos Nes-Gfp. Se obtuvieron resultados muy reproducibles utilizando la β-actina en vez de Gapdh como gen "housekeeping". Expresión de genes críticos para el mantenimiento de las HSCs (A) o para la diferenciación mesenquimal (B). (n = 3-7). * p < 0.05, ** p < 0.01 , *** p < 0.001 ; test t no pareado de dos colas. Las barras de error indican error estándar.
FIG. 11. Mesenfera humana representativa.
FIG. 12. Diferenciación osteoblástica de las mesenferas humanas. Se observan las tinciones de fosfatasa alcalina y de Von Kossa de las CFU-F derivadas de cada mesenfera humana primaria cultivada bajo condiciones de diferenciación osteoblástica.
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos ilustrativos y de carácter no limitante, realizados por los inventores, que describen el uso de las células multipotenciales de la presente invención para el mantenimiento de la hematopoyesis. EJEMPLO 1. Determinación de que las células Nes:GFP+ (Nestina positivas) son células madre mesenquimales (MSCs).
En primer lugar se planteó la hipótesis de las células Nes:GFP+ fueran auténticas MSCs. De hecho, toda la capacidad unidades formadoras de colonias fibroblásticas (CFU-F) y clonogénica de la médula ósea residía en la fracción Nes:GFP+ (FIG. 1A). El cultivo de todo el resto de células CD45" Nes:GFP" de la médula ósea a igual o mayor densidad no generó ningún CFU-F. Tras sembrar las células CD45" Nes:GFP+ en distintas condiciones de cultivo, incluyendo medio para "MSCs", las células perdían rápidamente expresión de GFP (FIG. 1 B) y se diferenciaban en progenitores mesenquimales, como se determinó utilizando el ensayo CFU-F. Con el fin de analizar más exhaustivamente su potencial de diferenciación, las células CD45" Nes:GFP+ y CD45" Nes:GFP" aisladas por FACS se sembraron en condiciones que favorecen la diferenciación en los linajes osteoblástico, adipocítico y condrocítico. La fracción CD45" Nes:GFP+ demostró una robusta capacidad de diferenciación hacia linajes mesenquimales, mientras que la fracción CD45" Nes:GFP" no generó ninguna descendencia. Distintos genes necesarios para la diferenciación en OBs (FIG. 1 C), adipocitos (FIG. 1 E) y condrocitos (FIG. 1 G) se regularon al alza significativamente en las células CD45" Nes:GFP+ durante 3 semanas de cultivo con medio de diferenciación. El fenotipo maduro mineralizante, adipocítico o condrocítico se confirmó tras un mes en cultivo (FIG. 1 D, F, H), comprobando así su capacidad para diferenciación en múltiples linajes.
Dado que las células madre neurales, que expresan nestina, pueden autorrenovarse si se cultivan como esferas en flotación (Stemple & Anderson, 1992. Cell. Dec 1 1 ;71 (6):973-85, adaptamos condiciones del cultivo de células madre de la cresta neural (Pardal et al., 2007. Cell, 131 : 364-377) y de los pericitos (Crisan et al., 2008. Curr Protoc Stem Cell Biol, Chapter 2, Unit 2B 2 1 -2B 2 13) para expandir las células Nes:GFP+ en placas de cultivo de baja adherencia. Las células CD45" Nes:GFP+, pero no las CD45" Nes:GFP" (aisladas por FACS), formaban esferas clónales cuando se sembraban a baja densidad (FIG. 1 1). Estas esferas mesenquimales, denominadas aquí "mesesferas", tenían un diámetro medio de 85 ± 6 μηι y seguían expresando GFP tras 7-10 días en cultivo (FIG. 1J-K). La eficiencia de formación de esferas (6.5 ± 0.7 %) era similar a la de las células madre de la cresta neural (Molofsky et al., 2003. Nature, 425: 962-967). La frecuencia de las esferas era notablemente similar (6.9 ± 0.7 %) cuando las células CD45" Nes:GFP+ se sembraron en placas de 96 pocilios (1 célula / pocilio). Se estudió la capacidad de autorrenovación de las células CD45" Nes:GFP+ disociando las mesesferas y sembrándolas en las mismas condiciones. Se obtuvieron de media 4.4 ± 0.8 mesesferas secundarias a partir de cada esfera primaria (n = 19), una frecuencia menor a la descrita a partir de células madre neurales (Molofsky et al., 2003. Nature, 425: 962-967), posiblemente debido a la densa matriz extracelular producida por las células CD45" Nes:GFP+, la cual dificulta una disociación eficaz de las esferas sin comprometer la viabilidad celular. Tras dos semanas en cultivo, las mesesferas clónales, así como los cultivos muticlonales a partir de células CD45" Nes:GFP+ (FIG. 1 L), seguían proliferando pero mostraban una pérdida progresiva en la expresión de GFP y comenzaban a diferenciarse en linajes mesenquimales (FIG. 1 M). Con el fin de estudiar más exhaustivamente la capacidad de diferenciación mesenquimal de las células CD45" Nes:GFP+, cruzamos ratones transgénicos Nes-Gfp con una línea que expresa la recombinasa Cre bajo el fragmento proximal de 2.3 Kb del promotor del colágeno a1 (l) (Col2.3-Cre), expresado selectivamente en los OBs (Dacquin et al., 2002. Dev Dyn, 224: 245-251 ), y con la línea reportera ROSA26 / loxP-stop-loxP-LacZ (R26R). Después de dos semanas en cultivo, las mesesferas clónales obtenidas de animales triples transgénicos mostraron diferenciación espontánea en adipocitos, cuya identidad se confirmó mediante la tinción con Oil Red O, y en OBs identificados de forma inequívoca mediante la expresión de β-galactosidasa dirigida por el promotor Col2.3 (~ 53%; 27/51 ; FIG. 1 N-0). Cuando las mesesferas que habían mostrado ya signos de diferenciación adipocítica se sembraron en condiciones que favorecen la diferenciación en condrocitos, acumularon mucopolisacáridos característicos del cartílago (teñidos con "Alcian Blue"; FIG. 1 P) y aumentaron la expresión de genes necesarios para la diferenciación condrocítica (FIG. 1 Q). Estos datos demuestran claramente que las mesesferas Nes:GFP+ son autorrenovables y multipotentes in vitro.
Conclusiones de acuerdo con lo mostrado en la FIG. 1 :
Según la FIG. 1A, toda la capacidad de generar unidades formadoras de colonias fibrobásticas (CFU-F) o actividad mesenquimal de la médula ósea está contenida en la población Nes:GFP+ (n = 12). En la FIG 1 B el análisis de expresión por Q-PCR muestra una rápida reducción en la expresión de Gfp una semana después de sembrar las células con medio de formación de CFU-F.
En 1 C se muestran distintos marcadores de determinación hacia el linaje osteoblástico {alkaline phosphatase, Alpl; Runx2) y genes asociados con la diferenciación en OBs ("bone morphogenetic protein-4", Bmp4; osteoglicina, Ogn; osterix, Sp7; osteocalcina, Bglap; osteoactivina, Gpnmb). Dichos marcadores mostraron un aumento progresivo de expresión en CFU-Fs derivados de las células aisladas CD45" Nes:GFP+ cultivados durante 4 semanas en medio de diferenciación osteoblástica. En la FIG. 1 D se observa la confirmación de la presencia de células osteoprogenitoras únicamente en la población CD45" Nes:GFP+ por medio de la detección de la actividad fosfatasa alcalina y de los depósitos de calcio. Las células CD45" Nes:GFP" no generaron ninguna colonia. En la FIG. 1 E se observa la diferenciación progresiva en adipocitos a partir de CFU-Fs obtenidos de células CD45" Nes:GFP+ cultivadas durante 3 semanas con medio de diferenciación adipocítica, evidenciada por un aumento en la expresión de la adipsina (Cfd) y del "peroxisome proliferator-activated receptor gamma 2" (Pparg). En la FIG. 1 F se muestra cómo el fenotipo diferenciado maduro de los adipocitos procedentes de las células CD45" Nes:GFP+ aisladas se confirmó en los cultivos de 4 semanas de duración mediante la tinción "Oil Red O"; por el contrario, las células CD45" Nes:GFP" no generaron ninguna colonia (recuadro). La FIG. 1 G muestra cómo la diferenciación progresiva en condrocitos de los CFU- Fs obtenidos de las células CD45" Nes:GFP+ aisladas se manifestó por un aumento en la expresión de agrecano durante las 3 semanas de cultivo con medio de diferenciación condrocítica {Acan). En la FIG. 1 H se observa la acumulación de mucopolisacáridos Alcian blue+ en pellets celulares procedentes de células CD45" Nes:GFP+ cultivadas durantes 3 semanas con medio de diferenciación condrocítica. Tal como se muestra en la FIG. 1 1, las células CD45" Nes:GFP+, pero no el resto de la población CD45" de la médula ósea, forman esferas clónales tras 7 días de cultivo en baja densidad. La FIG. 1 L muestra cómo las células CD45" Nes:GFP+ aisladas y cultivadas juntas en placas de poliestireno rápidamente perdieron expresión de GFP y se diferenciaran en linajes mesenquimales; los adipocitos GFP- se evidenciaron por los depósitos lipoides refringentes bajo campo claro. En la FIG. 1 M se pueden observar adipocitos refringentes multi- y uniloculares, así como células migrando desde la capa externa de la esfera, adheridas a la superficie de la placa de cultivo. En la FIG. 1 N-0 se observa cómo tras 3 semanas en cultivo, el 53 % de las mesesferas clónales mostró signos de diferenciación multi-linaje en OBs Col2.3-LacZ+ OBs y adipocitos Oil red O+. En la FIG. 1 Q se observa la diferenciación progresiva de las mesesferas clónales cultivadas durante 3 semanas en medio de diferenciación condrocítica, manifestada por la expresión aumentada de "(sex determining región Y)-box 9" (Sox9), agrecano (Acan) y de los colágenos tipo I la1 (Col2o1) y tipo Xla2 (Col11ct2). EJEMPLO 2. Demostración de que las células Nes:GFP+ son distintas de otras células madre.
Tratando de dilucidar el origen y la identidad de las MSCs Nes:GFP+, se han realizado análisis comparativos del genoma completo de células CD45" Nes:GFP+ de la médula ósea con el de distintas células madre, obtenido de las bases de datos "Gene Expression Omnibus" (http://www.ncbi.nlm.nih.gov/geo/) y "Stem-base"
(http://www.stembase.ca/?path=/). Estos análisis han comprendido MSCs humanas y murinas, células madre embrionarias y neurales de ratón, células murinas multipotentes procedentes de carcinomas embrionarios, células satélite de ratón y células madre hematopoyéticas (HSCs) humanas (Tabla 1 ). Para poder comparar los datos procedentes del genoma humano y el murino, los genes de ratón homólogos a los humanos se identificaron utilizando HomoloGene (http://www.ncbi.nlm.nih.gov/homologene). Como resultado, la expresión de 9.000 genes pareados y con anotación en las bases de datos se utilizó finalmente para el estudio. Los análisis de agrupamiento jerárquico imparcial y de los componentes principales revelaron que las células CD45" Nes:GFP+ de médula ósea eran muy distintas de las células madre neurales adultas. Aunque las células CD45" Nes:GFP+ son diferentes de todas las células madre incluidas en el análisis, su patrón de expresión fue más próximo a las células osteoprogenitoras humanas CD45" CD146+ (Sacchetti et al., 2007. Cell, 131 : 324-336).
Tabla 1. Lista de experimentos con chips de ADN y sus números de acceso.
m, ratón; BM, médula ósea; NSC, célula madre neural; h, humano; FB, sangre fetal; PB, sangre periférica; EB, cuerpos embrionarios; MSC, célula madre mesenquimal; ESC, célula madre embrionaria. I mBM CD45-Nes:GFP+
~ mBM CD45-Nes:GFP+
3 mBM CD45-Nes:GFP+
GSM314045 mNSC
5 GSM314046 mNSC
6 GSM314047 mNSC
7 GSM314048 mNSC
8 GSM148485 hBM CD45-CD146+
9 GSM148487 hBM CD45-CD146+
10 GSM148488 hBM CD45-CD146+
I I GSM148491 hBM CD45-CD146+
12 GSM87697 hFB Lin-CD34+ CD38+
13 GSM87693 hFB Lin-CD34+ CD38+
14 GSM87695 hFB Lin-CD34+ CD38+
15 GSM86779 hPB Lin-CD34+ CD38-
16 GSM86781 hPB Lin-CD34+ CD38-
17 GSM86783-4 hPB Lin-CD34+ CD38-
18 GSM72616 J1 -EB
19 GSM72618 J1 -EB
20 GSM72621 J1 -EB
1 GSM93543 P19
22 GSM93541 P19
3 GSM93545 P19
24 GSM86489 mBM CD45-CD31-CD34 low/- 5 GSM86492 mBM CD45-CD31-CD34 low/-
26 GSM86495 mBM CD45-CD31-CD34 low/- 7 GSM86435 mBM CD34+ clonal MSC
28 GSM86438 mBM CD34+ clonal MSC 9 GSM86441 mBM CD34+ clonal MSC
30 GSM86510 mf Sox9+ Col2+ MSC
31 GSM86504 mf Sox9+ Col2+ MSC
32 GSM86507 mf Sox9+Col2+ MSC
33 GSM73026 mMuscle Satellite Cell
34 GSM73029 mMuscle Satellite Cell
35 GSM73032 mMuscle Satellite Cell
36 GSM72622 J1-ESC
37 GSM72624 J1-ESC 38 GSM72626 J1-ESC
39 GSM194075 hBM MSC
40 GSM194076 hBM MSC
41 GSM194077 hBM MSC
42 GSM194078 hBM MSC
43 GSM194079 hBM MSC
44 GSM252290 mNSC
45 GSM252291 mNSC
46 GSM252292 mNSC
47 GSM252296 mNSC
Se realizaron análisis ontológicos genéticos de los transcritos que estaban significativamente regulados al alza o a la baja en las células CD45" Nes:GFP+ de la médula ósea, comparado con todas las demás células madre estudiadas. Estos análisis revelaron que la mayoría de los genes regulados al alza estaban implicados en procesos metabólicos y biosintéticos, mientras que la mayor parte de los genes regulados a la baja estaban involucrados en mitosis y división celular. Estos resultados indican que las células CD45" Nes:GFP+ de la médula ósea son relativamente quiescentes pero muy activas metabólicamente.
EJEMPLO 3. Demostración de que las células Nes:GFP+ forman un nicho único perivascular.
Las HSCs se pueden identificar y aislar con gran pureza utilizando una combinación de marcadores SLAM (Kiel et al., 2005. Cell, 121 : 1 109- 1 121 ). Con el fin de evaluar la relación espacial entre las células Nes:GFP+ y las HSCs, se realizó inmunohistoquímica en criocortes de médula ósea de ratones transgénicos Nes-Gfp utilizando marcadores de linajes hemopoyéticos (anti-Ter1 19, Gr-1 , CD3e, B220 y Mac-1 ), CD48 y CD150 (FIG. 2A-B y FIG. 3). Las células HSCs CD150+ CD48- Lin" representaban una subpoblación muy pequeña (-0.005%) de las células nucleadas de médula ósea. A pesar de la escasa frecuencia tanto de las HSCs como de las células Nes:GFP+, la inmensa mayoría (88%; 37/42) de las células CD150+ CD48- Lin- estaban localizadas a menos de 5 diámetros celulares de las células Nes:GFP+, y la mayoría (60%; 25/42) tenía una localización directamente adyacente a las células Nes:GFP+ distribuidas en los sinusoides (62%) o el endostio (26%; FIG. 2A, B. FIG. 3). La inferencia estadística de la distribución de Poisson esperada para las células Nes:GFP+ en el área de muestreo, demuestra que la co-localización observada de las células CD150+ CD48- Lin- y las Nes:GFP+ es altamente significativa (p < 10"16). Se cultivó médula ósea total en condiciones que promueven el crecimiento mieloide (tipo Dexter) con el fin de determinar si las células Nes:GFP+ contribuyen a la capa estromal. A pesar del bajo número de células Nes:GFP+ detectables en estos cultivos, estas células se localizaban frecuentemente asociadas con "cobblestone-forming áreas", enriquecidas en progenitores hemopoyéticos (FIG. 2C). Por tanto, estos resultados sugieren una estrecha asociación física entre las células Nes:GFP+ y las HSCs en la MO.
EJEMPLO 4. Demostración de que las células nestina+ son necesarias para el anidamiento de las HSCs en la MO.
La elevada expresión de Cxcl12, Vcaml, Kitl, 117 y Angptl en las células CD45" Nes:GFP+ y su marcada reducción durante la movilización inducida por el factor de crecimiento de colonias de granulocitos (G-CSF) o tras la estimulación β-adrenérgica sugerían que las células nestina+ podrían regular la atración de las HSCs y su tráfico en la médula ósea. Para poder determinar si las células nestina+ jugaban un papel importante en el anidamiento de las HSCs en la médula ósea, se transplantaron 5 x 106 células nucleadas de médula ósea de animales congénicos wild-type en ratones Nes-Cre I iDTR, Nes-CreERT2 I iDTR y controles iDTR letalmente irradiados, siguiendo un protocolo descrito anteriormente (Katayama et al., 2006. Cell, 124: 407-421 ). El anidamiento de CFU-Cs en la médula ósea se redujo en un 73% en los ratones Nes-Cre I iDTR y en un 90% en los animales Nes-CreERT2 1 iDTR (FIG. 4N), indicando que las células nestina+ son de hecho necesarias para el anidamiento de progenitores hemopoyéticos en la MO.
Con el fin de determinar si las células nestina+ de la médula ósea regulaban directamente el anidamiento de las HSCs, se visualizó mediante microscopía intravital la migración de HSCs previamente aisladas con elevado grado de purificación y posteriormente marcadas y trasplantadas en ratones transgénicos Nes-Gfp irradiados letalmente. Dado que estos estudios de imagen in vivo se pueden realizar sólo en la médula ósea del cráneo, pero no en los huesos largos (Lo Celso et al., 2009. Nature, 457: 92-96), se validó primero el modelo de calvaría comparando la frecuencia, distribución y propiedades fisiológicas (capacidad de formar CFU-C y mesesferas) de las células CD45" Nes:GFP+ aisladas de la médula ósea del cráneo y de los huesos largos. Las células Nes:GFP+ de la calvaría eran también perivasculares, como se comprobó por microscopía intravital de ratones transgénicos Nes-Gfp inyectados i.v. con Qdot para teñir la vasculatura (FIG. 5). La frecuencia de formación de mesesferas de las células CD45" Nes:GFP+ obtenidas de la médula ósea craneal era idéntica a la encontrada en la médula ósea de los huesos largos, y también exclusiva dentro de la población CD45". Las células CD45" Nes:GFP+ también contenían toda la actividad CFU-F de la médula ósea craneal. La frecuencia y morfología de las células Nes:GFP+ de la médula ósea del cráneo no se afectaron por la irradiación letal, en concordancia con la característica radio-resistencia de las MSCs. Las células LSK CD150+ CD48" se aislaron por citometría de flujo, se tiñeron con un colorante lipofílico fluorescente y se inyectaron i.v. en ratones transgénicos Nes-Gfp adultos irradiados letalmente. El anidamiento de las HSCs en la médula ósea se visualizó directamente en la médula ósea craneal 2, 48 y 96 h más tarde, mediante una combinación de microscopía confocal y "two-photon" (Lo Celso et al., 2009. Nature, 457: 92-96). Se escaneó toda la médula ósea craneal y se obtuvieron proyecciones Z a partir de las cuales se calculó la distancia más corta de las HSCs que habían anidado en la médula ósea respecto de las células Nes:GFP+ y la superficie del hueso (FIG. 40). Los análisis realizados muestran claramente que las HSCs anidaron rápidamente cerca de las células Nes:GFP+ de la médula ósea (FIG. 4O-Q), indicando que las células nestina+ dirigen la migración de las HSCs en la médula ósea. EJEMPLO 5. Demostración de que las células Nestina positivas son necesarias para el mantenimiento de las HSCs en la médula ósea.
Para determinar si las células nestina+ son de hecho necesarias para el mantenimiento de las HSCs en la médula ósea, intentamos eliminarlas cruzando los ratones Nes-Cre con una línea que expresa de manera inducible por Cre el receptor para la toxina diftérica (DT) (Buch et al., 2005. Nat Methods, 2: 419-426) {iDTR) y con la línea reportera ROSA26 I loxP- stop-loxP-GFP (ROSA-GFP) (Mao et al., 2001 . Blood, 97: 324-326). Una única inyección de DT (4 g/kg, i.p.) eliminó completamente en 24-48 h las células GFP+ de la médula ósea (FIG. 4A), y provocó una reducción del ~ 45% en la celularidad total de la médula ósea (FIG. 4B), asociada con un incremento del ~ 40% en las células teñidas con yoduro de propidio, probablemente debido a la brusca reducción de citocinas y factores de crecimiento críticos para distintos progenitores hemopoyéticos (como IL-7, el ligando de c-kit y M-CSF) que son producidos en grandes cantidades por las células nestina+ de la médula ósea. También se detectó un incremento de 2.3 veces en el número de progenitores hemopoyéticos Lin" CD48" en el bazo de los ratones dobles transgénicos Nes-Cre I iDTR, comparado con controles transgénicos sencillos, 24-48 h después del tratamiento con DT (FIG. 4C), sugiriendo una migración extramedular de los progenitores hemopoyéticos.
Es de destacar que las HSCs resultaron ser extremadamente sensibles a la depleción celular selectiva en los ratones dobles transgénicos Nes-Cre I iDTR, como se manifestó por una reducción del ~ 75% en el número de células LSK (FIG. 4D) y del ~ 58% en el número de células LSK CD150+ CD48" (FIG. 4E) de la médula ósea. Se estudió si esta mayor reducción en las HSCs se debía a apoptosis, pero no se detectó ninguna diferencia entre los dos grupos de animales en la frecuencia de células LSK CD48" TUNEL+ o LSK CD150+ CD48" TUNEL+ (FIG. 6). La reducción de progenitores hemopoyéticos en la médula ósea estaba directamente causada por la depleción celular selectiva en la médula ósea, ya que el tratamiento con DT de los cultivos primarios de médula ósea de los ratones dobles transgénicos Nes-Cre I iDTR redujo el número de progenitores hemopoyéticos en un ~ 70%, comparado con controles transgénicos sencillos (FIG. 7). El tratamiento con DT de los ratones dobles transgénicos Nes-Cre I iDTR y triples transgénicos Nes-Cre I ROSA-Gfp I iDTR fue letal en el 50% de los animales después de 24 h y en el 80% de ellos 48 h más tarde (n = 10), mientras que no afectó a la viabilidad de los ratones controles dobles transgénicos Nes-Cre I ROSA- Gfp y transgénicos sencillos (FIG. 8A). A pesar de la reducción en la celularidad total de la médula ósea, la permeabilidad vascular, la histología y el hemograma eran normales (FIG. 8B-F), sugiriendo que la mortalidad no se debía a un fallo hematopoyético sino a la depleción de las células nestina+ o su progenie en órganos vitales, como el corazón y/o el cerebro. En las FIG. 8B-C se observa cómo el colorante FITC-Dextran, preparado e inyectado i.v., como se ha descrito anteriormente (von Andrian, 1996), en los animales Nes-Cre I iDTR tratados con DT, permanecía en la vascultaura de la médula ósea craneal (FIG. 8C), como ocurría en los animales controles (FIG. 8B), indicando la ausencia de daño vascular. En las FIG. 8D-E se observa cómo la histología de la médula ósea de los animales Nes-Cre I iDTR tratados con DT (8E) es similar a la de los animales controles (8D). La FIG. 8F muestra cómo la depleción celular selectiva en los ratones Nes-Cre I iDTR no afectó al hemograma o al número de progenitores circulantes. La cantidad de eritrocitos (RBC), hemoglobina (Hgb), hematocrito (Hct), plaquetas (Plt), leucocitos (WBC) y progenitores hemopoyéticos (CFU-C) en la sangre no cambiaron significativamente en los ratones Nes-Cre I iDTR y Nes-Cre I iDTR I ROSA-Gfp 24-48 h después del tratamiento con DT, comparado con los niveles observados en animales transgénicos inyectados con PBS o en ratones controles tratados con DT. Conclusiones basadas en lo mostrado en la FIG. 4:
En la FIG. 4A-E se observa que tras la ablación celular selectiva en ratones dobles transgénicos Nes-Cre I iDTR, los progenitores hemopoyéticos se desplazan de la médula ósea a sitios extramedulares. La FIG. 4A muestra cómo una única inyección de toxina diftérica (DT, 4 μg/kg, i.p.) en ratones triples transgénicos Nes-Cre I ROSA-Gfp I iDTR eliminó completamente la población GFP+ de la médula ósea después de 24-48 h, como se reveló por la ausencia de células GFP+, comparado con los niveles normales en ratones controles triples transgénicos inyectados con PBS o en ratones dobles transgénicos Nes-Cre I ROSA-Gfp inyectados con DT. En la FIG. 4B se observa la celularidad reducida en la médula ósea de los fémures y tibias de los ratones Nes-Cre / iDTR y Nes- Cre / iDTR / ROSA-Gfp 24-48 h tras el tratamiento con DT, el cual no afectó a los animales que no tenían el transgén iDTR, como control. En la FIG. 4C se muestra la detección de un incremento de 2.8 veces en el número de células Lin" CD48" detectadas en el bazo de los ratones Nestin- Cre I iDTR 24-48h después de la inyección con DT, comparado con animales controles dobles transgénicos inyectados con PBS o transgénicos sencillos tratados con DT. En la FIG. 4D-E se observa una reducción en el número de células HSCs de la médula ósea tras la ablación celular selectiva en los ratones Nes-Cre I iDTR. El tratamiento con DT en los ratones Nes-Cre I iDTR y Nes-Cre I ROSA-Gfp I iDTR causó 24-48 h más tarde una reducción del (D) ~ 75% en el número de células Lin" Sca-1 + c-kit+ (LSK) y del (E) ~ 58% en las células LSK CD150+ CD48" de la médula ósea. Las FIG. 4F-I muestran cómo las células nestina+ de la médula ósea son necesarias para el anidamiento de las HSCs y de los progenitores hemopoyéticos. Por ejemplo, en la FIG. 4F se observa cómo la depleción de las células nestina+ reduce el anidamiento de los progenitores hemopoyéticos en la médula ósea. Los ratones Nes-Cre I iDTR, Nes-CreERT2 I iDTR y los controles iDTR se inyectaron con DT (4 μg/kg, i.p.) y se irradiaron letalmente (1 .2 Gy, una dosis) 16-20 h después. Se inyectaron i.v. cinco millones de células nucleadas obtenidas de la médula ósea de animales congénicos en un volumen de 200 μΙ de PBS. La médula ósea se sembró 3 h más tarde en el medio para el crecimiento de unidades formadoras de colonias en cultivo (CFU-C). El número de CFU- Cs anidadas por cada fémur se corrigió para representar la médula ósea total multiplicando por 16.9, ya que un fémur contiene aproximadamente el 5.9% de la médula ósea total del ratón, como se describió anteriormente (Katayama et al., 2006. Cell, 124: 407-421 ). Uno o dos animales irradiados (de la misma edad, genotipo y género) no recibieron trasplante en cada experimento, para poder corregir los datos en caso de encontrar progenitores residuales del receptor. La eliminación selectiva de las células nestina+ en los ratones Nes-Cre I iDTR y Nes-CreERT2 I iDTR comprometió significativamente el anidamiento de progenitores hemopoyéticos en la médula ósea. Por otra parte, en la FIG. 4G-I se observa cómo las HSCs anidan rápidamente cerca de las células GFP+ en la médula ósea de los ratones transgénicos Nes-Gfp. Las células de la médula ósea de ratones congénicos se tiñó con anticuerpos biotinilados frente a los marcadores de linajes hemopoyéticos (detectados con estreptavidina conjugada con "Pacific Orange"), a-c-kit conjugado con APC, a-Sca-1 conjugado con "Pacific Blue", a-CD150 conjugado con PE y a-CD48 conjugado con FITC. Las células LSK CD150+ CD48" se aislaron y se tiñeron con Vybrant DyD (Invitrogen). Un número de HSCs entre 5.000 y 1 1.000 se inyectó i.v. en ratones transgénicos Nes-Gfp letalmente irradiados como se ha descrito en estudios previos (Lo Celso et al., 2009. Nature, 457: 92-96 ).
EJEMPLO 6. Determinación de la expresión y regulación de genes de mantenimiento de las HSCs por las células Nes:GFP+. Con el fin de estudiar con mayor profundidad la regulación del nicho de las células madre hematopoyéticas (nicho hemopoyético, del inglés haematopoietic stem-cell niche) por el factor G-CSF y el Sistema Nervioso Central (SNS), se analizó la expresión de genes que regulan el mantenimiento de las HSCs y su atracción en la médula ósea (CXCL12/SDF-1 , ligando de c-kit, angiopoyetina-1 , interleucina-7, "vascular cell adhesión molecule-1 ", osteopontina y caderina-N) en células CD45" Nes:GFP+ y CD45" Nes:GFP" aisladas de la médula ósea de ratones tratados con G-CSF o inyectados con vehículo, como en estudios previos (Katayama et al., 2006. Cell, 124: 407-421 ). La expresión de estos genes fue extremadamente elevada (próxima o superior a la de Gapdh) en las células CD45" Nes:GFP+ y, con la excepción de Angptl, de 50 a 800 veces superior que en las células CD45" Nes:GFP" de la médula ósea. Además, la expresión de estos genes (excepto osteopontina y caderina-N) disminuyó significativamente en las células CD45" Nes:GFP+, pero no en las CD45" Nes:GFP", después de la movilización de las HSCs inducida por G-CSF (FIG. 9A) o tras la estimulación del receptor adrenérgico β3 (FIG. 9B). El uso de un gen "housekeeping" diferente mostró resultados muy similares (FIG. 10). La expresión de las conexinas 45 y 43 fue también de 200 a 500 veces superior en las células CD45" Nes:GFP+ que en las CD45" Nes:GFP" (FIG. 9C), sugiriendo la existencia de acoplamiento electromecánico entre las células CD45" Nes:GFP+ inervadas por terminales nerviosos simpáticos (Katayama et al., 2006. Cell, 124: 407- 421 ; Mendez-Ferrer et al., 2008. Nature, 452: 442-447; Yamazaki y Alien, 1990. Am J Anat, 187: 261 -276). Por tanto, las citoquinas, las hormonas y el SNS regulan tanto la atracción de las HSCs como la formación del hueso en el nicho de la médula ósea por medio del control directo de las MSCs nestina+, donde la expresión de genes críticos para el mantenimiento de las HSCs y el destino celular (proliferación y diferenciación) está regulada de manera coordinada. Conclusiones acerca de la función de las células MSCs nestina+ en el nicho hemopoyético. El papel relevante de las MSCs nestina+ en el nicho hemopoyético está basado en las siguientes evidencias: i) En la presente invención se ha mostrado en condiciones de homeostasis una marcada proximidad, no azarosa, de ambas células madre. Esta asociación física se produce tanto en el endostio como en el parénquima medular, ii) Las MSCs nestina+ están inervadas por el SNS, enriquecidas en la expresión de Cxcl12 y del receptor adrenérgico β3 funcional, iii) Las MSCs nestina+ presentan niveles de expresión muy elevados de moléculas críticas para el mantenimiento y la quiescencia de las HSCs en el "nicho osteoblástico", tales como angiopoyetina-1 , osteopontina, caderina-N y ligando de c-kit.
En la presente invención muestran evidencias de que tanto la proliferación como la diferenciación osteoblástica de las MSCs nestina+ de la médula ósea se inducen selectivamente por PTH y se inhiben por G-CSF y las fibras simpáticas que inervan las células nestina+. Por tanto, estos resultados extienden a las MSCs observaciones previas del efecto inhibidor del SNS en la formación del hueso y de la expansión de HSCs inducida por PTH (Adams et al., 2007. Nat Biotechnol, 25: 238-243; Calvi et al., 2003. Nature, 425: 841-846), ambos descritos como mediados exclusivamente por los OBs. iv) El G-CSF o los agonistas de receptores adrenérgicos β3, cuya activación también promueve la salida de HSCs de la médula ósea, redujeron significativamente la expresión de genes que controlan la atracción de las HSCs en el nicho de la médula ósea {Cxcl12, Kitl, Angptl y Vcaml). Los resultados que se muestran en la presente invención indican que la regulación coordinada de los linajes hemopoyéticos y mesenquimales también ocurre a nivel de las células madre, ya que los mecanismos homeostáticos neurales (SNS) y humorales (PTH) regulan en tándem el mantenimiento y la quiescencia de las HSCs y la proliferación y diferenciación de las MSCs. v) Es de destacar que los experimentos de depleción celular selectiva basados en dos líneas transgénicas independientes (ratones ¡DTR cruzados con animales Nes- Cre y Nes-CreERT2) resultaron en ambos casos en una rápida reducción en el número de células LSK CD150+ CD48" de la médula ósea y en su movilización hacia el bazo. El hecho de que la depleción de células nestina+ en cultivos primarios de médula ósea también redujo el número de progenitores hemopoyéticos demuestra que el efecto fue directamente causado por la ablación celular selectiva en la médula ósea. Por otro lado, esta reducción es más aguda y pronunciada que la descrita tras la eliminación selectiva de los OBs utilizando la expresión de timidina quinasa dirigida por Col2.3 (Zhu et al., 2007. Blood, 109: 3706-3712), apoyando el papel de las células nestina+ en el nicho hemopoyético. vi) Finalmente, se ha demostrado que las células nestina+ son necesarias para el anidamiento de las HSCs en la médula ósea utilizando dos métodos diferentes. En un grupo de experimentos, la eliminación de las células nestina+, utilizando ambos modelos de depleción basados en el DTR, comprometió el anidamiento de los progenitores hemopoyéticos en la médula ósea de animales receptores irradiados letalmente. No se observó el mismo efecto en la migración de leucocitos, en línea con evidencias recientes que apoyan la existencia de mecanismos distintos que regulan el tráfico de células sanguíneas maduras vs inmaduras. En otro grupo de experimentos que las HSCs aisladas con elevado grado de pureza, marcadas e inyectadas en animales receptores letalmente irradiados, rápidamente (en menos de dos horas) anidan cerca de las células Nes:GFP+ de la médula ósea, como evidencia adicional del papel de las MSCs nestina+ como células reguladoras de la atracción de las HSCs en el nicho de la médula ósea. En conjunto, estos estudios indican un papel relevante de las MSCs nestina+ en el nicho hemopoyético.
Los estudios realizados permiten proponer la existencia de un nicho único en la médula ósea formado por la asociación MSC-HSC, estrictamente regulado a nivel local por el microambiente y también a distancia mediante señales humorales y del sistema nervioso autónomo.
EJEMPLO 7. ateriales y métodos
7.1. Animales.
Se utilizaron ratones transgénicos Nes-Gfp (Mignone et al., 2004. Cell Cycle, 6: 2161 -2170), FVB-Tg(Co/7a7-cre)1 Kry/Mmcd (Dacquin et al., 2002. Dev Dyn, 224: 245-251 ), B6.Cg(SJL)-TgN(/Ves-cre)1 Kln (Tronche et al., 1999. Nat Genet, 23: 99-103), Nes-CreERT2, C57BL/6- Gt(ROSA)26Sortm1 (HBEGF)Awai/J (Buch et al., 2005. Nat Methods, 2: 419-426), B6; 129-Gt(ROSA)26Sortm2Sho/J (Mao et al., 2001 . Blood, 97: 324-326), RCE.LoxP, Tg(CAG-Bgeo/GFP)21 Lbe/J (Z/EG) y B6.129S4- Gt(ROSA)26Sortm1 Sor/J (Jackson Laboratories) y ratones congénicos C57BL/6-CD45.1 (Frederick Cáncer Research Center). A menos que se indique en el pie de figura, todos los animales utilizados fueron adultos. Los procedimientos fueron aprobados por el comité de uso y mantenimiento de animales de Mount Sinai School of Medicine.
7.2. Extracción y cultivo de las células.
Para extraer las células, la médula ósea se eluyó con medio de FACS descrito en estudios previos (Molofsky et al., 2003. Nature, 425: 962-967), constituido por medio L-15 de Leibovitz (Invitrogen) suplementado con 1 mg/ml albúmina de suero bovino (BSA, Sigma), 10 mM HEPES (Sigma) pH 7.4 y 1 % penicilina-estreptomicina (PS, Invitrogen). Tras lisar los eritrocitos con 0.8% NH4CI, la médula ósea se procesó enzimáticamente del mismo modo descrito para aislar las células de la cresta neural del intestino postnatal (Molofsky et al., 2003. Nature, 425: 962-967). Las células se enriquecieron inmuno-magnéticamente utilizando bolas magnéticas conjugadas con un anticuerpo anti-CD45 (Milteyi Biotec), siguiendo las indicaciones del fabricante, y se aislaron las células CD45" GFP+ y CD45" GFP" por FACS. Para el ensayo de formación de esferas, las células se sembraron a densidad clonal (< 1 ,000 células/cm2) en placas de 35 mm {StemCell Technologies) o en pocilios únicos de placas de 96 pocilios (Corning) de adherencia ultra-baja. La composición del medio de cultivo se adaptó del de las células de la cresta neural (Pardal et al., 2007. Cell, 131 : 364-377) y del de los pericitos (Crisan et al., 2008a. Curr Protoc Stem Cell Biol, Chapter 2, Unit 2B 2 1 -2B 2 13) y contenía un 15% de extracto de embrión de pollo, preparado como se ha descrito anteriormente (Stemple y Anderson, 1992. Cell, 71 : 973-985), β- mercaptoetanol 0.1 mM, 1 % de aminoácidos no esenciales (Sigma), 1 % de suplemento N2 y 2% de suplemento B27 (Invitrogen), factor de crecimiento de fibroblastos (FGF)-basic, "insulin-like growth factor-1 " (IGF-1 ), "epidermal growth factor" (EGF), "platelet-derived growth factor" (PDGF), "oncostatin M" (OSM) (Peprotech) y "leukemia inhibitory factor" (ESGRO®, Millipore) (todos a 20 ng/ml) en DMEM/F12 (1 : 1 ) / human endothelial (Invitrogen) (1 :2). Los cultivos se mantuvieron a 37 °C con 5% CO2 en un incubador de cámara de agua y se dejaron sin tocar durante una semana para evitar la agregación celular. La mitad del medio de cultivo se cambió semanalmente.
7.3. Diferenciación in vitro. La diferenciación osteoblástica fue inducida cultivando las células durante 4 semanas con 50 g/ml ácido L-ascórbico 2-fosfato, glicerofosfato 10 mM (Sigma) y 15% FBS en a-MEM suplementado con PS (Invitrogen). La diferenciación adipocítica fue inducida con dexametasona 1 μΜ, indometacina 100 μΜ, 3-isobutil-l-metilxantina (IBMX) 0.5 mM, 10 g/ml insulina (Sigma) y 10% FBS en a-MEM suplementado con PS. La diferenciación condrocítica fue inducida en cultivos de CFU-F confluentes preparados como se ha descrito anteriormente (Mendez-Ferrer et al., 2008. Nature, 452: 442-447), y también en pellets celulares, con dexametasona 10"7 M, ácido L-ascórbico 10"4 M, piruvato de sodio 1 mM, aminoácidos no esenciales 1 mM, 1 x ITS+1 (10 mg/L insulina bovina, 5.5 mg/L transferrina, 5 μg/L selenita de sodio, 4.7 μg/ml ácido linoleico, y 0.5 mg/ml albúmina de suero bovino; Sigma) y 10 ng/ml TGF^3 (Peprotech) en DMEM (Invitrogen) durante 4 semanas. Todos los cultivos se mantuvieron con 5% CO2 en un incubador de cámara de agua a 37°C, y la mitad del medio se cambió 2 veces por semana. Para estudiar la diferenciación en linajes mesenquimales, las células se lavaron con PBS suplementado con CaCl2 0.1 mM y MgC 1 mM (modPBS) y se fijaron durante 10 min a temperatura ambiente con paraformaldehído (Sigma) al 3% en modPBS. Para detectar la actividad fosfatasa alcalina, las células se lavaron dos veces con PBS y se incubaron durante 20 min a temperatura ambiente con 50 μg/ml Naftol AS-MX fosfato, 0.5% N,N- dimetilformamida y 0.6 mg/ml "Fast Red Violet LB" en Tris-HCI 0.1 M, pH 8.9. La formación de nodulos de calcio se examinó mediante la tinción de von Kossa. Para ello se lavaron las células 3 veces y se tiñeron con nitrato de plata al 5%, recién preparado, durante 30 min. Tras 3 lavados, la reacción se reveló con carbonato de sodio al 5% en formalina al 25% durante 5 min. Tras lavar 3 veces, las células se fijaron con tiosulfato de sodio al 5% durante 2 min y se dieron 3 lavados. Los adipocitos se tiñeron con "Oil Red O" de la siguiente manera: se lavaron las células con 60% isopropanol y se dejaron secar completamente. Se preparó una dilución 6:4 en agua destilada de una solución stock conteniendo 0.35 g/ml Oil Red O en isopropanol (Sigma), filtrada 20 min más tarde. Las células se incubaron durante 10 min con esta solución y se lavaron 4 veces. Para teñir los mucopolisacáridos característicos del cartílago, los cultivos y pellets celulares fijados se incubaron durante 30 min a temperatura ambiente con 1 % Alcian blue 8GX (Sigma) en ácido acético al 3%, pH 2.5, y se lavaron 4 veces. 7.4. Trasplante in vivo.
Los cubos cerámicos porosos (~ 3 mm3) conteniendo un 65% de hidroxiapatita de fosfato cálcico y un 35% de fosfato tricálcico (Ceraform®) se lavaron dos veces para eliminar pequeños fragmentos desprendidos de los cubos, se autoclavaron y se recubrieron con 0.1 mg/ml fibronectina de plasma bovino (Sigma). Para eliminar el aire de los osículos y asegurar el recubrimiento total de su superficie, los osículos se colocaron en un tubo conteniendo la solución de fibronectina y se agitaron durante 1 min mientras se aplicaba presión negativa mediante succión con una jeringa de 60 mi con una aguja de 21 g atravesando la tapa del tubo. Se reemplazó la tapa por una nueva y se repitió el mismo procedimiento. Los osículos cubiertos con fibronectina se dejaron secar toda la noche en una campana de flujo laminar. Las células recién aisladas se introdujeron en los osículos mediante el mismo proceso descrito, mientras que las esferas se depositaron sobre la superficie de los osículos. En ambos casos las células se dejaron adherir a los osículos, en el medio de crecimiento de las esferas, durante 24 h en el incubador. Los osículos se implantaron s.c. bajo la piel dorsal de animales adultos anestesiados, procedentes de la misma carnada, pero que no tenían los transgenes.
7.5. Análisis histológicos. Dos meses después del trasplante, los animales anestesiados se inyectaron con 100 U de heparina sódica (i.p., Sigma) para evitar la coagulación, y se perfundieron a través del ventrículo izquierdo con ~ 20 mi MgCI2 2 mM en PBS frío, seguido de 100 mi paraformaldehído al 2%, glutaraldehído al 0.2%, EGTA 5 mM y MgCI2 2 mM en PBS, pH 7.4, a 4 °C. Los osículos se recuperaron y se post-fijaron durante 2 h a 4 °C con la misma solución fijadora. Tras dos lavados con MgCI2 2 mM en PBS frío, los osículos se lavaron durante 10 min con MgCI2 2 mM, 0.01 % desoxicolato sódico (Sigma) y 0.02% Nonidet P-40 (Roche) en PBS. Se realizó la tinción de X-gal con K3Fe(CN)6 5 mM, K4Fe(CN)6 5 mM, MgCI2 2 mM, 0.01 % desoxicolato sódico (Sigma), 1 mg/ml 5-Bromo-4-cloro-3- indoxil-beta-D-galactopiranósido (X-gal, BioSynth AG®) y 0.02% Nonidet P-40 (Roche) en PBS a 37 °C y con movimiento durante toda la noche. Los osículos se descalcificaron parcialmente con EDTA 0.25 M durante 2 ó 3 días y se procesaron para sección con criostato (10 μηπ) utilizando una cuchilla de carburo de tungsteno (Diamond Knives) y portas cubiertos con 4x metacrilato y el sistema de transferencia con cintas adhesivas CryoJane (Instrumedics). La inmunohistoquímica con amplificación de la señal se realizó del mismo descrito anteriormente (Mendez-Ferrer et al., 2008. Nature, 452: 442-447). La inmunohistoquímica para la detección de los marcadores SLAM se ha descrito en estudios previos (Kiel et al., 2005. Cell, 121 : 1 109-1 121 ).
7.6. Tratamiento in vivo.
El isoproterenol o el agonista BRL37344 (2 mg/kg; Sigma) se inyectaron i.p. 2 h antes de sacrificar a los animales; los agonistas adrenérgicos estaban también presentes a una concentración de 50 μΜ durante la digestión enzimática y la separación celular por FACS, realizados a 37° C y temperatura ambiente, respectivamente. Los tratamientos con G-CSF (Katayama et al., 2006. Cell, 124: 407-421 ) o PTH (Adams et al., 2007. Nat Biotechnol, 25: 238-243) han sido descritos en estudios previos.
7.6. Extracción de RNA y PCR cuantitativa.
Las células separadas por FACS se recuperaron directamente en solución de lisis y se extrajo el RNA utilizando el kit Dynabeads® mRNA DIRECT™ Micro Kit (Invitrogen). La transcripción inversa se realizó con el Reverse Transcription System (Promega). El protocolo de PCR cuantitativa se ha descrito previamente (Mendez-Ferrer et al., 2008. Nature, 452: 442-447). Las secuencias de los oligonucleótidos utilizados se han incluido en la Tabla 2.
Tabla 2. Secuencias de cebadores usados para la PCR cuantitativa.
Producto
Cebadores Secuencia (Pb) Anillamiento (°C)
Cxcl12_Fw SEQ ID NO: 1
Cxc/72_Rv SEQ ID NO: 2 1 18 60
Gfp_Fw SEQ ID NO: 3
Gfp_Rv SEQ ID NO: 4 280 60
Kitl_Fw SEQ ID NO: 5
Kitl_Rv SEQ ID NO: 6 65 60
Angpt1_Fw SEQ ID NO: 7
Angpt1_ Rv SEQ ID NO: 8 138 60
IL7_FVJ SEQ ID NO: 9
/L7_Rv SEQ ID NO: 10 102 60
Vcaml _Fw SEQ ID NO: 1 1
Vcam1_ Rv SEQ ID NO: 12 121 60
Spp1_F\N SEQ ID NO: 13
Spp1_Rv SEQ ID NO: 14 149 60
Ogn_Fw SEQ ID NO: 15
Ogn_Rv SEQ ID NO: 16 122 60
Alpl_Fw SEQ ID NO: 17
Alpl_Rv SEQ ID NO: 18 73 60
Gpnmb_Fw SEQ ID NO: 19 Gpnmb_Rv SEQ ID NO: 20 65 60
Runx2_Fw SEQ ID NO: 21
Runx2_Rv SEQ ID NO: 22 128 60
Sp7_Fw SEQ ID NO: 23
Sp7_Rv SEQ ID NO: 24 275 60
Bglap_Fw SEQ ID NO: 25
Bglap_Rv SEQ ID NO: 26 183 60
Bmp4_Fw SEQ ID NO: 27
Bmp4_ Rv SEQ ID NO: 28 69 60
Pparg_Fw SEQ ID NO: 29
Pparg_Rv SEQ ID NO: 30 100 60
Cfd Fw SEQ ID NO: 31
Cfd_Rv SEQ ID NO: 32 50 60
Acan Fw SEQ ID NO: 33
Acan_Rv SEQ ID NO: 34 269 60
Sox9_Fw SEQ ID NO: 35
Sox9_Rv SEQ ID NO: 36 186 60
Gjc1_Fw SEQ ID NO: 37
Gjc1_Rv SEQ ID NO: 38 245 60
Gja1_Fw SEQ ID NO: 39
Gja1_Rv SEQ ID NO: 40 1 19 60
Gapdh_Fw SEQ ID NO: 41
Gapdh_Rv SEQ ID NO: 42 77 60
Nota: La abreviatura Fw se refiere a cebadores con secuencias directas (del inglés Forward) y la abreviatura Rv se refiere a cebadores con secuencias inversas (del inglés Reverse). El tamaño del fragmento que se consigue amplificar con cada uno de los pares de cebadores Fw/Rv correspondientes está medido en pares de bases (pb). El parámetro "anillamiento" indica la temperatura de hibridación óptima entre los cebadores Fw y Rv y la secuencia de ADN molde. EJEMPLO 8. Ensayos con biopsias de médula ósea humana. 8.1. Extracción y cultivo de las células.
Se lavaron con PBS los aspirados medulares obtenidos de donantes sanos. Las células de la médula ósea se obtuvieron por centrifugación. Las células sanguíneas de la serie roja se lisaron y las muestras fueron enzimática y mecánicamente digeridas como se ha descrito en las muestras murinas.
Las muestras fueron inmunomagnéticamente deplecionadas de la mayor parte de células CD45+ empleando bolas magnéticas conjugadas con un anticuerpo antihumano (Miltenyi Biotec) siguiendo las recomendaciones del fabricante. Las células CD45- fueron aisladas mediante un separador automático (FACS) y se sembraron a densidad clonal (< 1 ,000 células/cm2) en las mismas condiciones que promueven el crecimiento de mesenferas murinas, con la excepción del que los factores de crecimiento eran de origen humano.
Las esferas tenían la misma apariencia que las esferas murinas formadas en 7-10 días (Fig. 1 1 ).
Las esferass primarias se cogieron individualmente, y fueron digeridas con colagenasa (StemCell Technologies), y sembradas en tres medios de cultivo diferentes:
1 - Medio formador de mesenferas (medio B).
2- Medio formador de mesenferas modificado, en el que el extracto de embrión de pollo se substituye por un 10% de suero humano (medio A).
3- Medio aMEM libre de fenol, conteniendo 10% FBS y 1 % penicilina-streptomicina (Invitrogen), condiciones que promueven el crecimiento de las unidades formadoras de colonias de fibroblastos (CFU- F).
El número de esferas secundarias y CFU-F obtenidas de cada esfera primaria se indica en la Tabla 3.
Medio A Medio B
43.5 ± 6.6 esferas (n = 24) 1 7.4 ± 2.1 Esferas (n = 16)
Tabla 3. Número de esferas secundarias y CFU-F generadas a partir de cada esfera primaria.
Se observa una expansión significativa de las células formadoras de esferas se observa después del subcultivo in vitro. La función MSC de las esferas primarias se confirmó por la generación de un elevado número de CFU-F de cada esfera primaria (Tabla 3). Estas CFU-F fueron fosfatasa alcalina+ y podían diferenciarse en adipositos y osteoblastos mineralizantes, como se comprobó mediante tinción de Von Kossa de los depósitos de calcio (Fig. 12).
Para testar la autorrenovación in vitro, las esferas secundarias fueron digeridas y subcultivadas bajo las mismas condiciones. Una media de 436.4 ± 42.3 esferas terciarias fueron obtenidas de cada esfera secundaria (n = 13). Por tanto, estos datos demostraron una expansión de las células formadoras de esferas de 3,230 a 18,983 veces. Esta expansión fue aproximadamente 6 veces mayor en el medio A, que no tenía productos animales. Dichas condiciones de cultivo serían potencialmente útiles para expandir células madre mesenquimales (MSCs) humanas. Para testar in vivo la autorrenovación, las esferas primarias aisladas fueron unidas a osículos cerámicos fosfocálcicos, e implantados subcutáneamente en ratones inmunodeficientes. Se extrajeron los osículos tras dos meses, fueron digeridos enzimáticamente, y separados por FACS usando combinaciones de los marcadores de MSC CD105, CD140b y CD146, y subcultivados en medio formador de mesenferas. La capacidad formadora de mesenferas de cada población se indica en la Tabla 4.
\ CD105+ CD140b+ CD146+ CD140b+
\ 32 (9/28) 47 (65/137)
\ 1 1 (4/38) 5.5 (1/18)
10.5 (4/38)
Tabla 4: Auto-renovación in vivo de las mesenferas humanas. Se indica la eficiencia de formación de esferas (como porcentaje con respecto al número de células sembradas) de cada población dentro de los diferentes osículos.
A pesar del bajo número de mesenferas que fueron positivas para los marcadores de MSCs clásicos, fueron enriquecidas en células formadoras de esferas, lo que indica que las mesenferas humanas pueden auto- renovarse in vivo.
Nuestros estudios previos sugieren que se requieren las MSCs Nestina positivas para la auto-renovación de HSC. Para testar el posible uso de las mesenferas humanas para promocionar la auto-renovación in vitro y/o expansión, las mesenferas humanas primarias formadas tras 10 días en cultivo fueron co-cultivadas con células CD34+ de médula ósea humana en medio libre de suero (StemSpan, StemCell Technologies), suplementado con 10 mg/ml heparin (Sigma), 10 ng/ml factor de células madre de ratón, 20 ng/ml de trombopoietina humana y 10 ng/ml de FGF-1 humano (R&D). La presencia de mesenferas en el medio de cultivo fue asociado a una expansión de 21 veces en el número de células CD34+ después de 12 días de cultivo, frente al crecimiento en ausencia de mesenferas, en las mismas condiciones. La capacidad hematopoyética de estas células se está testando actualmente. Estos resultado sugieren que las MSCs cultivadas en estas condiciones podrían potencialmente ser usadas para promover in vitro la expansión y la auto-renovación de las células HSC.

Claims

REIVINDICACIONES
Una población celular aislada que comprende al menos una célula madre multipotencial Nestina positiva.
Una población celular aislada según la reivindicación anterior, donde la célula madre multipotencial Nestina positiva es una célula madre mesenquimal.
Una población celular aislada según la reivindicación anterior, donde la célula madre mesenquimal Nestina positiva es no adherente.
Una población celular aislada según cualquiera de las reivindicaciones 1-3, donde la célula madre multipotencial Nestina positiva se obtiene por un procedimiento que comprende:
a) Obtener un aspirado de la médula ósea de un mamífero, b) Lisar las células de la serie roja,
c) Seleccionar las células CD45 -, y
d) Sembrar las células del paso (c) en un medio adecuado.
Una población celular aislada según la reivindicación 4, donde el mamífero es humano.
Una población celular aislada según cualquiera de las reivindicaciones 1 -5, que además comprende, al menos una célula madre hematopoyética.
Una población celular aislada según la reivindicación 6, donde la célula madre hematopoyética es humana.
8. Una composición que comprende una población celular aislada según cualquiera de las reivindicaciones 1 -7.
9. Una composición según la reivindicación anterior, que es una composición farmacéutica.
10. Una composición según cualquiera de las reivindicaciones 8-9, que además comprende un vehículo farmacéuticamente aceptable.
1 1. Una composición según cualquiera de las reivindicaciones 8-10, que además comprende otro principio activo.
12. El uso de una población celular aislada según cualquiera de las reivindicaciones 1 -7, o de una composición farmacéutica según las reivindicaciones 8-1 1 , para el mantenimiento de la hematopoyesis in vitro.
13. El uso de una población celular aislada según cualquiera de las reivindicaciones 1 -7, o de una composición farmacéutica según las reivindicaciones 8-1 1 , para la auto-renovación de las células madre hematopoyéticas.
14. El uso de una población celular aislada según cualquiera de las reivindicaciones 1 -7, o de una composición farmacéutica según las reivindicaciones 8-1 1 , para la expansión de las células madre hematopoyéticas.
15. El uso de una población celular aislada según cualquiera de las reivindicaciones 1 -7, o de una composición farmacéutica según las reivindicaciones 8-1 1 , para la elaboración de un medicamento.
16. El uso de una población celular aislada según cualquiera de las reivindicaciones 1 -7, o de una composición farmacéutica según las reivindicaciones 7-1 1 , para la elaboración de un medicamento para el mantenimiento de la hematopoyesis en un mamífero.
17. El uso de una población celular aislada o de una composición farmacéutica según la reivindicación anterior, donde el mamífero es humano.
18. El uso de una población celular aislada según cualquiera de las reivindicaciones 1 -7, o de una composición farmacéutica según las reivindicaciones 8-1 1 , para la elaboración de un medicamento para la reparación y regeneración de tejidos.
19. El uso de una población celular aislada o de una composición farmacéutica según la reivindicación anterior, donde el tejido es la sangre.
20. El uso de una población celular aislada según cualquiera de las reivindicaciones 1 -7, o de una composición farmacéutica según las reivindicaciones 8-1 1 , para la elaboración de un medicamento para el tratamiento de enfermedades de la sangre y de los órganos hematopoyéticos.
21. El uso de una población celular aislada o de una composición farmacéutica según la reivindicación anterior, donde la enfermedad cursa con una deficiencia en la mielopoyesis o en la linfopoyesis.
22. El uso de una población celular aislada o de una composición farmacéutica según cualquiera de las reivindicaciones 20-21 , donde la enfermedad se selecciona de la lista que comprende: mieloma, gamapatía monoclonal benigna, hipoplasia y aplasia medular, mielofibrosis, síndrome mielodisplásico, anemia, policitemia, neutropenia, leucemia aguda, leucemia crónica, linfoma, púrpuras, hemofilia, o cualquiera de sus combinaciones.
23. Un método para el mantenimiento de la hematopoyesis in vitro que comprende:
a) poner en contacto al menos una célula Nestina positiva aislada con al menos una célula madre hematopoyética aislada, e
b) incubar el producto obtenido en el apartado (a) en un medio de cultivo adecuado para la división y/o diferenciación de la célula madre hematopoyética.
24. Un método de obtención de células hematopoyéticas in vitro que comprende:
a) poner en contacto al menos una célula Nestina positiva aislada con al menos una célula madre hematopoyética aislada, e
b) incubar el producto obtenido en el apartado (a) en un medio de cultivo adecuado para la división y/o diferenciación de la célula madre hematopoyética. 25. Un método según cualquiera de las reivindicaciones 23-24, donde la célula Nestina positiva se aisla de la médula ósea.
26. Un método según cualquiera de las reivindicaciones 23-25, donde la célula Nestina positiva es célula madre multipotente.
27. Un método según cualquiera de las reivindicaciones 23-26, donde la célula Nestina positivo es una célula madre mesenquimal.
28. Un método según cualquiera de las reivindicaciones 23-27, donde la célula Nestina positivo y la célula madre hematopoyética son humanas.
29. Las células hematopoyéticas obtenibles por el método de las reivindicaciones 24-28.
30. Un método para determinar el mantenimiento de la capacidad hematopoyética de un mamífero que comprende: a) analizar al menos un producto de expresión del gen que codifica para la proteína Nestina en las células de una muestra de tejido hematopoyético aislado de dicho mamífero y
b) asignar la presencia de dicho producto de expresión analizado en el apartado (a) al mantenimiento de la capacidad hematopoyética del órgano del que procede dicho tejido.
. Un método para determinar el mantenimiento de la capacidad hematopoyética de un mamífero que comprende: a) determinar la concentración de al menos un producto de expresión del gen que codifica para la proteína Nestina en las células de una muestra de tejido hematopoyético aislada de dicho mamífero,
b) calcular la diferencia de la concentración del producto de la expresión del gen que codifica para la proteína Nestina determinada en el apartado (a) con respecto a la concentración de la expresión de dicho gen en un control positivo y/o negativo, y
c) asignar una diferencia significativa con respecto al control positivo, y/o la ausencia de una diferencia significativa con respecto al control negativo, calculadas en el apartado (b), al mantenimiento de la capacidad hematopoyética del tejido del que procede dicha muestra.
32. Un método según cualquiera de las reivindicaciones 30 ó 31 , donde el mamífero es un humano.
PCT/ES2010/070682 2009-10-22 2010-10-22 Células multipotenciales nestina positivas WO2011048253A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10824506.9A EP2492341A4 (en) 2009-10-22 2010-10-22 PLURIPOTENT CELLS OF POSITIVE NESTINE
US13/503,137 US20130022582A1 (en) 2009-10-22 2010-10-22 Multipotent nestin-positive cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930890A ES2358146B1 (es) 2009-10-22 2009-10-22 Uso de células mesenquimales nestina positivas para el mantenimiento de la hematopoyesis.
ESP200930890 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011048253A1 true WO2011048253A1 (es) 2011-04-28

Family

ID=43880330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070682 WO2011048253A1 (es) 2009-10-22 2010-10-22 Células multipotenciales nestina positivas

Country Status (4)

Country Link
US (1) US20130022582A1 (es)
EP (1) EP2492341A4 (es)
ES (1) ES2358146B1 (es)
WO (1) WO2011048253A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472609B2 (en) 2011-07-06 2019-11-12 Cell Therapy Limited Progenitor cells of mesodermal lineage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201911206PA (en) * 2015-05-28 2020-01-30 Celularity Inc Placental-derived stem cells to restore the regenerative engine, correct proteomic defects and extend lifespan
WO2017027512A1 (en) * 2015-08-13 2017-02-16 Teva Pharmaceutical Industries Ltd. Use of laquinimod to treat traumatic brain injury

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053182A1 (en) * 2007-05-25 2009-02-26 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020123143A1 (en) * 1997-08-22 2002-09-05 Jean Toma Multipotent stem cells from peripheral tissues and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053182A1 (en) * 2007-05-25 2009-02-26 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHAN, C.K.F. ET AL.: "Endochondral ossification is required for haematopoietic stem-cell niche formation.", NATURE., vol. 457, no. 7228, 22 January 2009 (2009-01-22), pages 490 - 494, XP008156293 *
FORRAZ, N. ET AL.: "Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC.", STEM CELLS., vol. 22, no. 1, 2004, pages 100 - 108, XP008156287 *
FRENETTE, P. S. ET AL.: "Hematopoietic Stem Cell Niche.", BLOOD (ASH ANNUAL MEETING ABSTRACTS), vol. 114, no. 22, - 20 November 2009 (2009-11-20), pages 1586, XP008156282 *
MCGUCKIN, C.P. ET AL.: "Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro.", EXPERIMENTAL CELL RESEARCH., vol. 295, no. 2, May 2004 (2004-05-01), pages 350 - 359, XP008156288 *
MENDEZ-FERRER, S. ET AL.: "Coordinated Regulation of Hematopoietic and Mesenchymal Stem Cells in a Bone Marrow Niche.", BLOOD (ASH ANNUAL MEETING ABSTRACTS), vol. 114, no. 22, - 20 November 2009 (2009-11-20), pages 3, XP008156279 *
MÉNDEZ-FERRER, S. ET AL.: "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche.", NATURE., vol. 466, no. 7308, 12 August 2010 (2010-08-12), pages 829 - 834, XP008156278 *
See also references of EP2492341A4 *
SHIH, C-C ET AL.: "Identification of a candidate human neurohematopoietic stem-cell population.", BLOOD., vol. 98, no. 8, 15 October 2001 (2001-10-15), pages 2412 - 2422, XP008156286 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472609B2 (en) 2011-07-06 2019-11-12 Cell Therapy Limited Progenitor cells of mesodermal lineage
US10829739B2 (en) 2011-07-06 2020-11-10 Cell Therapy Limited Progenitor cells of mesodermal lineage
US11873513B2 (en) 2011-07-06 2024-01-16 Cell Therapy Limited Progenitor cells of mesodermal lineage

Also Published As

Publication number Publication date
ES2358146B1 (es) 2012-03-23
EP2492341A1 (en) 2012-08-29
US20130022582A1 (en) 2013-01-24
EP2492341A4 (en) 2013-09-11
ES2358146A1 (es) 2011-05-06

Similar Documents

Publication Publication Date Title
Valorani et al. Pre‐culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials
Hegab et al. Isolation and characterization of murine multipotent lung stem cells
JP6755850B2 (ja) 間葉系幹細胞の使用
Charbord Bone marrow mesenchymal stem cells: historical overview and concepts
ES2604581T3 (es) Modulación de la diferenciación de citoblastos y células progenitoras, ensayos y usos de los mismos
Kang et al. Isolation and perivascular localization of mesenchymal stem cells from mouse brain
Huang et al. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche
Takizawa et al. Ex vivo expansion of hematopoietic stem cells: mission accomplished?
BR112014020119A2 (pt) cultura de células-tronco mesenquimais
CN104873540A (zh) 多潜能成体祖细胞的免疫调节特性及其用途
US20080145860A1 (en) Encapsulated cell indicator system
CN101490246A (zh) 自吸脂后脂肪吸取物分离及纯化造血干细胞
Ahmadbeigi et al. Isolation, characterization, and transplantation of bone marrow-derived cell components with hematopoietic stem cell niche properties
CN105814196A (zh) 终末分化的神经元谱系的获得方法及其用途
Kim et al. Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model
ES2716015T3 (es) Procedimiento para tratar los efectos de un accidente cerebrovascular
Deutsch et al. Mimicking the haematopoietic niche microenvironment provides a novel strategy for expansion of haematopoietic and megakaryocyte‐progenitor cells from cord blood
WO2010138873A1 (en) Long term expansion of human hematopoietic stem cells
Lai et al. Recombinant IL-7/HGFβ efficiently induces transplantable murine hematopoietic stem cells
WO2011048253A1 (es) Células multipotenciales nestina positivas
Xi et al. Fibroblasts support functional integration of purified embryonic stem cell-derived cardiomyocytes into avital myocardial tissue
CN110551688B (zh) 一种诱导体细胞重编程为造血干/祖细胞且促进造血干/祖细胞体外扩增的组合物及其应用
Butler et al. Generation of a vascular niche for studying stem cell homeostasis
RU2525143C1 (ru) СПОСОБ ЭКСПАНСИИ МОНОНУКЛЕАРНЫХ КЛЕТОК ПУПОВИННОЙ КРОВИ (пкМНК) ex vivo В ПРИСУТСТВИИ МУЛЬТИПОТЕНТНЫХ СТРОМАЛЬНЫХ МЕЗЕНХИМАЛЬНЫХ КЛЕТОК (ММСК)
US9051548B2 (en) Methods for enhancing hematopoietic stem/progenitor cell engraftment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010824506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13503137

Country of ref document: US