WO2011048231A1 - Intelligent device and method for compensating for ram sag in machine tools - Google Patents

Intelligent device and method for compensating for ram sag in machine tools Download PDF

Info

Publication number
WO2011048231A1
WO2011048231A1 PCT/ES2009/070453 ES2009070453W WO2011048231A1 WO 2011048231 A1 WO2011048231 A1 WO 2011048231A1 ES 2009070453 W ES2009070453 W ES 2009070453W WO 2011048231 A1 WO2011048231 A1 WO 2011048231A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensating
ram
falls
machine tools
network
Prior art date
Application number
PCT/ES2009/070453
Other languages
Spanish (es)
French (fr)
Inventor
Andrés BUSTILLO IGLESIAS
Maritza Correa Valencia
Rodolfo Elias Haber Guerra
Original Assignee
Universidad De Burgos
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Burgos, Consejo Superior De Investigaciones Científicas filed Critical Universidad De Burgos
Priority to CN2009801610844A priority Critical patent/CN102483622A/en
Priority to DE112009005232T priority patent/DE112009005232T5/en
Priority to PCT/ES2009/070453 priority patent/WO2011048231A1/en
Priority to ES201290001A priority patent/ES2398814B1/en
Publication of WO2011048231A1 publication Critical patent/WO2011048231A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/001Arrangements compensating weight or flexion on parts of the machine
    • B23Q11/0028Arrangements compensating weight or flexion on parts of the machine by actively reacting to a change of the configuration of the machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present invention is encompassed in the field of machine tools and specifically in those consisting of a ram, such as milling machines.
  • Said invention is an intelligent device and the method using said device to compensate for ram falls through the use of probabilistic calculation, in particular by means of Bayesian networks, and an internal model control, specifically a neuro-fuzzy adaptive control device. .
  • X axis is the longitudinal axis of the bench
  • Y axis is the longitudinal axis of the column
  • Z axis is the longitudi nal axis ⁇ ram.
  • the present invention is charac ⁇ terizada established and in the independent claims, mien ⁇ after the dependent claims describe other characteristics of the same.
  • the present invention relates to a Inteli device ⁇ people for compensation falls ram in machine tools comprising the following ele ⁇ ments: a machine tool with computer numerical control (CNC), means for the application of probabilistic calculation and means for control by internal model.
  • CNC computer numerical control
  • the present invention relates to a method for compensating ram falls on machine tools using an intelligent device according to claim 1 comprising the following steps:
  • Figure 1 represents a perspective of a machine tool.
  • Figure 2 represents the structure of a Bayesian network augmented by tree of the variables.
  • Figure 3 shows a diagram of smart vo ⁇ dispositi showing paths exchange information between elements forming said dispo ⁇ sitivo.
  • an intelligent device is described and the procedure carried out therein by means of a calculation system that allows to achieve the optimum compensation of the ram's fall (1.1).
  • Said calculation system is based on a distributed system and prediction calculation ⁇ ten sion of compensating cylinders and control machinable Zado.
  • the elements forming the device intelli ⁇ people are:
  • CNC Computer Numerical Control
  • the machine tool specifically milling machine, is responsible for the final milling or finishing of the outer surface of the ram (1.1) that will be incorporated into other milling machines.
  • the CNC (1.3) is responsible for starting up the smart device by means of a virtual key programmed in the programmable logic controller (PLC, acronym of the English name "Programmable Logic Controller" (1.2) of the machine.
  • PLC programmable logic controller
  • This virtual key must be pressed by the operator when a ram (1.1) has been placed for final machining on this machine. Then the virtual key sends to the workstation (2) the machining program from which extract the values of the variables preci ⁇ sa for calculating voltage cylinders com ⁇ thinkers and so starts the intelligent device presented here.
  • the CNC (1.3) is responsible for, during the machining of the ram (1.1), modify in real time the machining conditions according to the variation proposed by the neuro-fuzzy adaptive control device (3).
  • CNC (1.3) After starting the intelligent device CNC (1.3) receives from the workstation (2) ten ⁇ sion (TCC) the operator must apply to cilin ⁇ compensators ders before machining and sample the operator in his screen. If the workstation (2) cannot discern the appropriate voltage, the CNC (1.3) shows the operator the probabilities for each type of CBT so that it is he who makes the decision of the voltage to be applied.
  • the workstation (2) with Bayesian Networks application provides the voltage value to apply to compensating cylinders (TCC) based on known variables. This value allows indi ⁇ TCC uprightly obtain the appropriate curvature of the ram (1.1) to be machined, as removing the compensating cylinders after machining has previously applied the appropriate voltage, the ram (1.1) curves only.
  • the prediction of CBT is carried out based on the value of 9 variables that we call predictor variables.
  • the value of the predictor variables is obtained by the application of both the ram machining program (1.1) included in the CNC (1.3) of the machine and the Database (4) of Company Orders.
  • DAA active shock absorber
  • the network structure is built on the 9 predictor variables obtained before starting the machining process and a tenth variable, the CBT, called the class variable.
  • the 9 variables used in the network are characteristics of the manufacturing process, the design of the ram (1.1) and the subsequent operating conditions of the ram (1.1) to be machined.
  • FEM Finite Element Method
  • TCC is continuous variable defi nition ⁇
  • variables in a Bayesian network must have a discrete number of states, this variable is discretized according to the attached table below values.
  • a Laplace correction is applied to the Bayesian network to thereby assign a proportion of participation to cases that are not present at the time of training but may appear in the future.
  • Event or state of nature i (xi) ⁇ tua is whether in the future on which we want to know certain information.
  • a priori probability of a state x (p (xi)): probability that a state of nature i occurs from the initial information, that is to say without any evidence.
  • Study or sample information this is usually the extra information that can be obtained after conducting a study or test.
  • the results of a study or sample can be represented by different res ⁇ indicated.
  • the set of findings is called evidence and is usually noted as e.
  • Probability Aposteriori of xi given e (p (xi
  • e) P (e, x ⁇ )
  • Step 1 Calculate I (Xi, X j
  • C) with i ⁇ j; i, j l, ..., n.
  • Step 2 Construct a complete non-directed graph whose nodes correspond to the predictor variables: Xi, ..., X n . Assign each edge by connecting the variables Xi and X a weight given by I (Xi, X j
  • Step 3 Assign the two edges of greatest weight to the tree to be built.
  • Step 4 Examine the next edge of greater weight, and add it to the tree unless it forms a cycle, in which case the next edge of greater weight is discarded and examined. Repeat step 4 until seleccio ⁇ nar n-1 edges.
  • Step 5 Transform the tree undirected resul tant ⁇ one run, choosing a variable as root, to then direct the other edges.
  • Step 6 Build a TAN model by adding a no ⁇ do labeled as C and then an arc from C to each predictor variable X ⁇ .
  • the cross-validation method or K-fold cross-validation was used, according to its English name, and a file with data Experimental
  • the initial data set is divided into K subsets, of the K subsets a single subset is saved as validation data to test the model, and the other Kl subsets are used as training data.
  • the process is repeated K times, partitions, where each of the K subsets is used exactly once as validation data.
  • the results of the parti tions ⁇ averaged, or otherwise combined to produce a single estimate of the accuracy of classi ⁇ er, K 10 was taken.
  • the output of the model after validation is a contingency table or confusion matrix, which summarizes the results of data well and poorly classified ⁇ two for each state of the class and a general precision value that indicates the percentage of success with that the model will classify the new data presented to the network.
  • the application is ready for use, questions can be asked to the Bayesian network on different types of questions to find the posterior probability of the different possible answers.
  • the type of question is the razo ⁇ tioning predictive or causal inference where the prediction of effects sought.
  • the Bayesian network is asked "What is the probability of each state of the TCC class given certain manufacturing requirements?"
  • the manufacturing requirements will be the variables LMC, PCC, DAA, FAA, PAA, CIF, TCIF, ECC and PAAA already defined above.
  • the Ba ⁇ yesiana network would be asked about the probability of CBT according to the following values: P (TCC
  • the network calculates the following probabilities of CBT, expressed here as both by one: low voltage 0.02; average tension 0.89; medium-high voltage 0.09 and high voltage 0.00. With these requirements the states of the class with higher probabilities identify the best voltage to apply that corresponds to the average voltage since its probability is 89%. This reasoning is correct since it corresponds to values obtained in the experimental tests.
  • one of the TCC states is predominant, probability greater than 80%, it is transferred to the CNC (1.3) of the machine, if it is not, the probabilities ⁇ des for each state of the TCC class are warned to the operator for To analyze the situation.
  • the neuro-blurred adaptive control device (3) is the device that receives information from the machine's internal sensors (1.3) or, additionally, from external sensors installed in it. In addition, it monitors and modifies variables of the CNC (1.3) related to the execution of the part program such as the speed of advance and the speed of rotation in order to optimize the machining time and minimize the error due to the flexion of the ram (1.1 ).
  • This adaptive control device is a computer or an embedded control system connected to the CNC (1.3), in the specific example proposed here by a network medium, which sends the desired part program to the CNC (1.3) run.
  • this device receives information from the sensors included in the machine tool with its CNC (1) through the network medium.
  • This device implements a control mode ⁇ internally (BMI, which stands for the English name "Infernal Control Model”) based on neuro- fuzzy controllers for, from the tension applica ⁇ car is due to compensating cylinders and real-time machining conditions, modify the speed of advance or rotation of the milling machine that mechanizes the ram (1.1), that is, modify the machining conditions provided for in the machining program, sending the new conditions to the CNC for implementation .
  • BMI which stands for the English name "Infernal Control Model”
  • the controller is based on fuzzy logic and corpora ⁇ precontrol module based on networks neuron Ies (neuro-fuzzy controller).
  • the parameters defining the neuro-fuzzy controllers are DETERMI ⁇ nan so that minimizes an Index of merit.
  • Blurred logic is based on fuzzy sets, whose elements are associated with a membership function that indicates to what extent the element is part of that fuzzy set.
  • Forms functions qu ⁇ nence most typical are trapezoidal, triangular and siana gaus-. That is, the fuzzy logic is based on heuristic rules of the form IF (antecedent) THEN ( ⁇ sequent), where the antecedent and consequent are also fuzzy sets, either pure or result of operating with them.
  • the rules that determine the rennovation ⁇ nence of the elements of fuzzy sets is based, in the case of the ram (1.1) in the designer's experience and on information provided by the Bayesian networks.
  • the network medium is responsible for joining the three allowing the elements described above Chri ⁇ cation therebetween and minimizing the delay in communications between them.
  • Said network medium can be a field bus, belonging to the Profibus family, or others depending on the type of network: mpi, ethernet, internet, etc.
  • the network medium is characterized by the maximum delay that it introduces in the transmission of monitoring and control signals between the CNC (1.3) and the control medium, which will be called L mec iio re d -
  • This delay in preferred embodiments of the invention, is less than 60 seconds.
  • a preferred use of the network medium for the probabilistic calculation allows several elements to work at the same time for the execution of said calculation, so that the calculation time is minimized.

Abstract

The present invention consists of an intelligent device and the method using said device in order to compensate for ram sag by using probabilistic calculation, specifically by means of Bayesian networks, and internal model control, specifically an adaptive neuro-fuzzy control device.

Description

DISPOSITIVO INTELIGENTE Y PROCEDIMIENTO PARA LA COMPENSACIÓN DE CAÍDAS DE CARNERO EN MÁQUINAS SMART DEVICE AND PROCEDURE FOR THE COMPENSATION OF BUTCH FALLS IN MACHINES
HERRAMIENTA TOOL
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se engloba en el campo de las máquinas herramienta y de manera concreta en las que constan de un carnero, como las fresadoras. The present invention is encompassed in the field of machine tools and specifically in those consisting of a ram, such as milling machines.
Dicha invención es un dispositivo inteligente y el procedimiento usando dicho dispositivo para compensar las caídas de carnero mediante el uso de cálculo proba- bilístico, en concreto mediante redes bayesianas, y un control por modelo interno, en concreto un dispositivo de control adaptativo neuro-borroso . Said invention is an intelligent device and the method using said device to compensate for ram falls through the use of probabilistic calculation, in particular by means of Bayesian networks, and an internal model control, specifically a neuro-fuzzy adaptive control device. .
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los carneros en máquinas-herramientas, en espe¬ cial fresadoras, con carnero horizontal, lo que se conoce como máquinas en configuración de columna, su¬ fren, por definición, de un error geométrico en el eje (normalmente el eje Y) definido por este elemento es¬ tructural. Este error se debe a la flexión del carnero debida a su peso y al peso del cabezal de la máquina- herramienta, en especial de fresado, que incorporan. Rams in machine tools, in spe ¬ cial milling, horizontal ram, which is known as machines in column configuration, its ¬ fren by definition a geometric axis error (typically the Y - axis) defined by This element is ¬ tructural. This error is due to the flexion of the ram due to its weight and the weight of the machine tool head, especially milling, which they incorporate.
A lo largo de este documento los ejes de la máquina herramienta son considerados como sigue: eje X, es el eje longitudinal de la bancada; eje Y, es el eje longitudinal de la columna; eje Z, es el eje longitudi¬ nal del carnero. Este problema se agudiza en la actualidad debido a la proliferación de máquinas herramientas que incorpo¬ ran más de un cabezal gracias a un sistema de cambio automático de cabezales. Cada cabezal tiene un peso distinto y por lo tanto la flexión que se produce es distinta . Throughout this document the axes of the machine tool are considered as follows: X axis, is the longitudinal axis of the bench; Y axis, is the longitudinal axis of the column; Z axis is the longitudi nal axis ¬ ram. This problem is exacerbated today because of the proliferation of machine tools incorpo ¬ ran over a head thanks to an automatic change of heads. Each head has a different weight and therefore the flexion that occurs is different.
El método tradicional para evitar esta flexión, que se conoce como "compensación electrónica", se pro¬ grama en el Control Numérico por Computador (CNC) de la máquina fresadora una tabla de compensación del eje Y de la máquina que compense esta caida del carnero. El problema de esta solución es que no permite recuperar la pérdida de ortogonalidad entre los ejes generada por esta caida. Asi, para cabezales mecánicos para desbaste de fresadoras con los que se utilizan grandes fresas de plaquitas, esta desviación en operaciones de planeado puede producir escalones entre cada planeado consecutivo de hasta 0,5 mm. The traditional method to prevent this bending is known as "electronic compensation" is ¬ gram in the computer numerical control (CNC) milling machine compensation table axis Y of the machine to compensate this fall of ram . The problem with this solution is that it does not allow to recover the loss of orthogonality between the axes generated by this fall. Thus, for mechanical grinding heads for milling machines with which large plate milling cutters are used, this deviation in planning operations can produce steps between each consecutive planning of up to 0.5 mm.
Para resolver este problema, en la actualidad algunos fabricantes de máquinas herramientas cuando realizan el mecanizado final de los carneros introducen en los mismos unos tensores en su interior que simulen el peso del cabezal. Al desatornillar estos tensores tras su fabricación el carnero presenta una curvatura en su eje longitudinal que compensa su posterior caida. Esta solución sólo es válida si la máquina herramienta incorpora un único cabezal. Si la máquina incorpora varios cabezales de distinto peso se suele hacer esta compensación para el más pesado o para aquel que se supone que va a ser más utilizado, según el propio criterio del cliente. Para compensar el resto de los cabezales se utiliza la compensación electrónica ante¬ riormente descrita o se introducen tensores fijos en el carnero a los que se les programa distinta tensión según el cabezal que incorpore la máquina en cada momento. To solve this problem, currently some manufacturers of machine tools when they perform the final machining of the rams introduce tensors inside them that simulate the weight of the head. When unscrewing these tensioners after their manufacture, the ram presents a curvature in its longitudinal axis that compensates for its subsequent fall. This solution is only valid if the machine tool incorporates a single head. If the machine incorporates several heads of different weight this compensation is usually made for the heaviest or for the one that is supposed to be more used, according to the client's own criteria. To offset the remaining heads electronic compensation is used to ¬ quently described or fixed tensioners are introduced into the ram to which different tension is programmed according to the head that incorporates the machine at all times.
A este problema tradicional se añade el impor¬ tante desarrollo en los últimos años de sistemas activos de compensación de vibraciones para máquinas herramien¬ tas, en especial fresadoras, que se deben incorporar lo más cerca posible de la herramienta, esto es, en el carnero de la máquina herramienta. Estos sistemas se deben colocar en la superficie superior/inferior del carnero para compensar las vibraciones en los ejes X y/o Z de la máquina y en las superficies laterales del carnero para compensar las vibraciones en el eje Y de la máquina. Por lo tanto, introducen nuevos pesos y modifi¬ caciones locales de la rigidez que deben de ser compen¬ sadas. Además, dependiendo de la utilización que se vaya a dar de la máquina herramienta, el rango de fuerzas que el sistema activo de compensación de vibraciones debe compensar será distinto, por lo que su peso, tamaño de superficie de amarre y localización también será distinto . In this traditional problem impor ¬ tant development in recent years of active compensation systems vibration machines TOOLS ¬ tas, especially milling, which should be incorporated as close as possible to the tool is added, that is, in the ram of the machine tool. These systems should be placed on the upper / lower surface of the ram to compensate for vibrations in the X and / or Z axes of the machine and on the lateral surfaces of the ram to compensate for vibrations in the Y axis of the machine. Therefore, introduce new weights and modifi cations ¬ local stiffness should be compen ¬ sadas. In addition, depending on the use of the machine tool, the range of forces that the active vibration compensation system must compensate for will be different, so its weight, mooring surface size and location will also be different.
El método más lógico para compensar estas modi¬ ficaciones es realizar un Modelado por Elementos Finitos (FEM) del carnero que permita estimar su rigidez y calcular la tensión de los tensores que se acoplan durante el mecanizado del carnero. Pero, realizar un estudio de esta naturaleza para cada carnero de máquina herramienta a fabricar es demasiado costoso económica¬ mente en el caso de grandes máquinas herramienta que incorporan una alta personalización en dimensiones, cabezales y optimización a procesos específicos, en especial en el caso de fresadoras. The most logical to compensate these modi fications ¬ method is to perform a Finite Element Modeling (FEM) of the ram to estimate its rigidity and calculate the voltage tensioners which engage during machining of the ram. But, carrying out a study of this nature for each ram of machine tool to be manufactured is too costly economically ¬ in the case of large machine tools that incorporate high customization in dimensions, heads and optimization to specific processes, especially in the case of milling machines
Es por ello que el desarrollo de un dispositivo y el correspondiente procedimiento que pueda realizar una estimación suficiente de la tensión a aplicar a los tensores que se acoplan durante el mecanizado del carne¬ ro de forma automática se convierte en una aplicación de interés industrial. That is why the development of a device and the corresponding procedure that can perform a sufficient estimate of the tension to be applied to the tensioners that are coupled during the mechanization of the meat ¬ ro automatically becomes an application of industrial interest.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención queda establecida y carac¬ terizada en las reivindicaciones independientes, mien¬ tras que las reivindicaciones dependientes describen otras características de la misma. The present invention is charac ¬ terizada established and in the independent claims, mien ¬ after the dependent claims describe other characteristics of the same.
A la vista de lo anteriormente enunciado, la presente invención se refiere a un dispositivo inteli¬ gente para la compensación de caídas de carnero en máquinas herramienta que comprende los siguientes ele¬ mentos: una máquina herramienta con su Control Numérico por Computador (CNC) , medios para la aplicación de cálculo probabilístico y medios para control por modelo interno . In view of the above statement, the present invention relates to a Inteli device ¬ people for compensation falls ram in machine tools comprising the following ele ¬ ments: a machine tool with computer numerical control (CNC), means for the application of probabilistic calculation and means for control by internal model.
Asimismo, la presente invención se refiere a un procedimiento para la compensación de caídas de carnero en máquinas herramienta que utiliza un dispositivo inteligente según la reivindicación 1 que comprende las siguientes etapas: Also, the present invention relates to a method for compensating ram falls on machine tools using an intelligent device according to claim 1 comprising the following steps:
-arranque del dispositivo por parte del CNC,  - device start by the CNC,
-adquisición de valores para las variables a utilizar, -utilización de cálculo probabilístico para estimar la tensión de los cilindros compensadores utilizando los valores de las variables por parte de los medios para la aplicación de cálculo probabilístico, - Acquisition of values for the variables to be used, - Use of probabilistic calculation to estimate the tension of the compensating cylinders using the values of the variables by the means for the application of probabilistic calculation,
-elección de la tensión de los cilindros compensadores, -modificación del programa de mecanizado por parte de los medios para control por modelo interno que implemen- ta un control por modelo interno (IMC), -election of the tension of the compensating cylinders, -modification of the machining program by the means for internal model control that implements an internal model control (BMI),
-implementación de las condiciones reales de mecanizado por parte del CNC .  -implementation of the real machining conditions by the CNC.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Se complementa la presente memoria descriptiva, con un juego de figuras, ilustrativas del ejemplo prefe¬ rente, y nunca limitativas de la invención. Herein, with a set of drawings, illustrative example prefe ¬ ent, and never limiting the invention it is complemented.
La figura 1 representa una perspectiva de una máquina herramienta. Figure 1 represents a perspective of a machine tool.
La figura 2 representa la estructura de una red Bayesiana aumentada a árbol de las variables. Figure 2 represents the structure of a Bayesian network augmented by tree of the variables.
La figura 3 representa un esquema del dispositi¬ vo inteligente mostrando los caminos de intercambio de información entre los elementos que forman dicho dispo¬ sitivo . Figure 3 shows a diagram of smart vo ¬ dispositi showing paths exchange information between elements forming said dispo ¬ sitivo.
EXPOSICIÓN DETALLADA DE LA INVENCIÓN DETAILED EXHIBITION OF THE INVENTION
En la presente realización de la invención se describe un dispositivo inteligente y el procedimiento que lleva a cabo el mismo mediante un sistema de cálculo que permite alcanzar la compensación óptima de la caida del carnero (1.1) . Dichos sistema de cálculo se basa en un sistema distribuido de predicción y cálculo de ten¬ sión de cilindros compensadores y de control del mecani- zado . In the present embodiment of the invention, an intelligent device is described and the procedure carried out therein by means of a calculation system that allows to achieve the optimum compensation of the ram's fall (1.1). Said calculation system is based on a distributed system and prediction calculation ¬ ten sion of compensating cylinders and control machinable Zado.
Los elementos que forman el dispositivo inteli¬ gente son: The elements forming the device intelli ¬ people are:
-Máquina herramienta con su Control Numérico por Computador (CNC) (1), en concreto fresadora, que mecaniza el carnero (1.1) .  -Machine tool with its Computer Numerical Control (CNC) (1), specifically milling machine, which mechanizes the ram (1.1).
-Medios para la aplicación de cálculo proba- bilistico (2), en concreto una estación de trabajo con aplicación de Redes Bayesianas.  -Media for the application of probabilistic calculation (2), specifically a workstation with Bayesian Networks application.
-Medios para control por modelo interno (3) , en concreto un dispositivo de control adaptativo neuro- borroso .  -Media for control by internal model (3), specifically a neuro-fuzzy adaptive control device.
-Medio de red para la comunicación entre los elementos que forman el dispositivo inteligente.  -Network medium for communication between the elements that make up the smart device.
La máquina herramienta, en concreto fresadora, es la encargada de realizar el fresado final o acabado de la superficie exterior del carnero (1.1) que se incorporará a otras fresadoras. Sobre esta superficie exterior se apoyarán tanto el sistema de guiado del carnero (1.1) como su accionamiento, por lo que esta superficie determina la geometría final de la nueva fresadora, en concreto del movimiento del eje Z en máquinas de columna. The machine tool, specifically milling machine, is responsible for the final milling or finishing of the outer surface of the ram (1.1) that will be incorporated into other milling machines. On this outer surface both the ram guidance system (1.1) and its drive will be supported, so that this surface determines the final geometry of the new milling machine, specifically the movement of the Z axis in column machines.
El CNC (1.3) es el encargado de poner en marcha el dispositivo inteligente mediante una tecla virtual programada en el controlador lógico programable (PLC, siglas de la denominación en inglés "Programmable Logic Controller") (1.2) de la máquina. Esta tecla virtual debe ser pulsada por el operario cuando un carnero (1.1) se halle colocado para su mecanizado final sobre esta máquina. Entonces la tecla virtual envía a la estación de trabajo (2) el programa de mecanizado del que se extraen los valores de parte de las variables que preci¬ sa para el cálculo de la tensión de los cilindros com¬ pensadores y arranca asi el dispositivo inteligente aquí expuesto . The CNC (1.3) is responsible for starting up the smart device by means of a virtual key programmed in the programmable logic controller (PLC, acronym of the English name "Programmable Logic Controller") (1.2) of the machine. This virtual key must be pressed by the operator when a ram (1.1) has been placed for final machining on this machine. Then the virtual key sends to the workstation (2) the machining program from which extract the values of the variables preci ¬ sa for calculating voltage cylinders com ¬ thinkers and so starts the intelligent device presented here.
Además, el CNC (1.3) es el encargado de, durante el mecanizado del carnero (1.1), modificar en tiempo real las condiciones de mecanizado según la variación propuesta por el dispositivo de control adaptativo neuro-borroso (3) . In addition, the CNC (1.3) is responsible for, during the machining of the ram (1.1), modify in real time the machining conditions according to the variation proposed by the neuro-fuzzy adaptive control device (3).
Esta modificación en tiempo real de las condi¬ ciones de mecanizado por parte del CNC (1.3) es posible ya que éste es el encargado de controlar que la herra¬ mienta sigue la trayectoria programada en el programa de mecanizado utilizando las señales de los sensores inter¬ nos de posición y otros de los que dispone la máquina; además junto al CNC (1.3) la fresadora dispone de un autómata programable o controlador lógico programable (PLC) (1.2) cuya programación es más accesible que la del CNC (1.3), habitualmente cerrada o restringida por su fabricante. This modification in real time condi ¬ tions machining by the CNC (1.3) is possible since it is responsible for controlling the herra ¬ lie follows the programmed path in the machining program using sensor signals inter ¬ position and others available to the machine; In addition to the CNC (1.3), the milling machine has a programmable controller or programmable logic controller (PLC) (1.2) whose programming is more accessible than that of the CNC (1.3), usually closed or restricted by its manufacturer.
Tras el arranque del dispositivo inteligente el CNC (1.3) recibe de la estación de trabajo (2) la ten¬ sión (TCC) que el operario debe de aplicar a los cilin¬ dros compensadores antes del mecanizado y se la muestra al operario en su pantalla. Si la estación de trabajo (2) no puede discernir la tensión apropiada, el CNC (1.3) muestra al operario las probabilidades para cada clase de TCC para que sea éste el que tome la decisión de la tensión a aplicar. After starting the intelligent device CNC (1.3) receives from the workstation (2) ten ¬ sion (TCC) the operator must apply to cilin ¬ compensators ders before machining and sample the operator in his screen. If the workstation (2) cannot discern the appropriate voltage, the CNC (1.3) shows the operator the probabilities for each type of CBT so that it is he who makes the decision of the voltage to be applied.
La estación de trabajo (2) con aplicación de Redes Bayesianas proporciona el valor de la tensión a aplicar a los cilindros compensadores (TCC) en función de variables conocidas. Este valor de TCC permite indi¬ rectamente obtener la curvatura apropiada del carnero (1.1) a mecanizar, ya que al quitar los cilindros compensadores después del mecanizado, habiendo aplicado previamente la tensión apropiada, el carnero (1.1) se curva sólo. The workstation (2) with Bayesian Networks application provides the voltage value to apply to compensating cylinders (TCC) based on known variables. This value allows indi ¬ TCC uprightly obtain the appropriate curvature of the ram (1.1) to be machined, as removing the compensating cylinders after machining has previously applied the appropriate voltage, the ram (1.1) curves only.
La predicción de TCC se lleva a cabo a partir del valor de 9 variables que denominamos variables predictoras. El valor de las variables predictoras lo obtiene la aplicación tanto del programa de mecanizado del carnero (1.1) incluido en el CNC (1.3) de la máquina como de la Base de datos (4) de Pedidos de la Empresa. The prediction of CBT is carried out based on the value of 9 variables that we call predictor variables. The value of the predictor variables is obtained by the application of both the ram machining program (1.1) included in the CNC (1.3) of the machine and the Database (4) of Company Orders.
Estas variables predictoras son: These predictive variables are:
• Longitud máxima del carnero (1.1) en su posi¬ ción más exterior (LMC) . • Maximum length of the ram (1.1) in its posi ¬ outermost (LMC).
• Peso critico del cabezal o cabezal a compensar • Critical weight of the head or head to compensate
(PCC) . (PCC).
• Dimensiones del amortiguador activo (DAA) .  • Dimensions of the active shock absorber (DAA).
• Fuerzas a aplicar por el/los amortiguador/es activo/s (FAA) .  • Forces to be applied by the shock absorber (s) / s (FAA).
• Peso del amortiguador activo (PAA) .  • Weight of the active shock absorber (PAA).
• Existencia o no de cilindros interiores fijos de compensación de la caida para cabezales secundarios (CIF) .  • Existence or not of fixed internal cylinders of compensation of the fall for secondary heads (CIF).
• Valor de tensión de cilindros interiores fijos de compensación (TCIF) .  • Tension value of fixed internal compensation cylinders (TCIF).
• Espesor de las chapas que conforman las pare¬ des del carnero (1.1) (ECC) . • thickness of the plates that make up the des ¬ pare the ram (1.1) (ECC).
• Posición de amarre del amortiguador activo • Mooring position of the active shock absorber
(PAAA) . (PAAA).
La ecuación, que define al valor de TCC tiene la siguiente forma: TCC=f (variables predictoras) The equation, which defines the value of CBT has the following form: CBT = f (predictor variables)
La estructura de red se construye sobre las 9 variables predictoras obtenidas antes de comenzar el proceso de mecanizado y una décima variable, la TCC, denominada como la variable clase. Las 9 variables utilizadas en la red son características del proceso de fabricación, del diseño del carnero (1.1) y de las condiciones de funcionamiento posterior del carnero (1.1) a mecanizar. The network structure is built on the 9 predictor variables obtained before starting the machining process and a tenth variable, the CBT, called the class variable. The 9 variables used in the network are characteristics of the manufacturing process, the design of the ram (1.1) and the subsequent operating conditions of the ram (1.1) to be machined.
Para generar datos para el entrenamiento de la red se ha utilizado el Método de Elementos Finitos (FEM, siglas de la denominación en inglés "Finite Element Method") . To generate data for the training of the network, the Finite Element Method (FEM) has been used.
Dado que la variable TCC es continua por defi¬ nición, mientras que las variables en una Red Bayesiana deben de tener un número discreto de estados, esta variable se discretiza de acuerdo con la tabla de valores adjunta aquí debajo. Since the TCC is continuous variable defi nition ¬, while variables in a Bayesian network must have a discrete number of states, this variable is discretized according to the attached table below values.
Figure imgf000011_0001
Figure imgf000011_0001
A la red Bayesiana se le aplica una corrección de Laplace para de este modo asignar una proporción de participación a los casos que no estén presentes en el momento del entrenamiento pero que sí pueden aparecer en el futuro. Para describir el procedimiento de generación de la red Bayesiana utilizaremos la terminología y notación siguiente : A Laplace correction is applied to the Bayesian network to thereby assign a proportion of participation to cases that are not present at the time of training but may appear in the future. To describe the procedure for generating the Bayesian network, we will use the following terminology and notation:
Evento o estado de naturaleza i (xi) : es una si¬ tuación en el futuro sobre la que se desea conocer cierta información. Event or state of nature i (xi) ¬ tuación is whether in the future on which we want to know certain information.
Probabilidad a priori de un estado x (p (xi) ) : probabilidad de que un estado de naturaleza i ocurra a partir de la información inicial, es decir sin ninguna evidencia .  A priori probability of a state x (p (xi)): probability that a state of nature i occurs from the initial information, that is to say without any evidence.
Estudio o información de la muestra: normalmente es la información extra que se puede conseguir tras la realización de un estudio o prueba. Los resultados de un estudio o muestra pueden ser representados por indicado¬ res diferentes. El conjunto de hallazgos se denomina evidencia y suele notarse como e. Study or sample information: this is usually the extra information that can be obtained after conducting a study or test. The results of a study or sample can be represented by different res ¬ indicated. The set of findings is called evidence and is usually noted as e.
Probabilidad condicional de xi dado e (p(xi|e)): Es la probabilidad cuando un evento A influye en el resultado de un segundo evento B.  Conditional probability of xi given e (p (xi | e)): It is the probability when an event A influences the result of a second event B.
Probabilidad Aposteriori de xi dado e (p(xi|e)): Es la probabilidad de un evento después de que éste se haya producido. Si P(xi|e) representa la probabilidad aposteriori, entonces P(xi|e) = P (e, x±) | P (e) .  Probability Aposteriori of xi given e (p (xi | e)): It is the probability of an event after it has occurred. If P (xi | e) represents the aposteriori probability, then P (xi | e) = P (e, x ±) | P (e).
En el método Naive Bayes, la probabilidad que un k-ésimo ejemplo pertenezca a la clase i-ésima de la variable xi se calcula según la siguiente ecuación:
Figure imgf000012_0001
In the Naive Bayes method, the probability that a k-th example belongs to the ith class of the variable xi is calculated according to the following equation:
Figure imgf000012_0001
Para la generación de la estructura Naive Bayes aumentada a árbol se ha utilizado el algoritmo denomina¬ do en inglés "Tree Augmented Network" (TAN) propuesto por Friedman. En dicho algoritmo se tiene en cuenta la cantidad de información mutua condicionada a la variable clase. La cantidad de información mutua entre las varia¬ bles discretas X e Y condicionada a la variable C se define en la siguiente ecuación:
Figure imgf000013_0001
The algorithm called ¬ do in English "Tree Augmented Network" (TAN) proposed by Friedman has been used for the generation of the Naive Bayes structure augmented to tree. In this algorithm the amount of mutual information conditioned to the variable is taken into account class. The amount of mutual information between various discrete bles ¬ X and Y conditional variable C is defined by the following equation:
Figure imgf000013_0001
Para aplicarlo se han seguido los siguientes pa¬ sos : To apply have followed the following pa ¬ sos:
Paso 1. Calcular I ( Xi , Xj|C) con i<j ; i,j=l,...,n.Step 1. Calculate I (Xi, X j | C) with i <j; i, j = l, ..., n.
Paso 2. Construir un grafo no dirigido completo cuyos nodos corresponden a las variables predictoras: Xi , ... , Xn . Asignar a cada arista conectando las variables Xi y X un peso dado por I ( Xi , Xj|C) . Step 2. Construct a complete non-directed graph whose nodes correspond to the predictor variables: Xi, ..., X n . Assign each edge by connecting the variables Xi and X a weight given by I (Xi, X j | C).
Paso 3. Asignar las dos aristas de mayor peso al árbol a construir.  Step 3. Assign the two edges of greatest weight to the tree to be built.
Paso 4. Examinar la siguiente arista de mayor peso, y añadirla al árbol a no ser que forme un ciclo, en cuyo caso se descarta y se examina la siguiente arista de mayor peso. Repetir el paso 4 hasta seleccio¬ nar n-1 aristas. Step 4. Examine the next edge of greater weight, and add it to the tree unless it forms a cycle, in which case the next edge of greater weight is discarded and examined. Repeat step 4 until seleccio ¬ nar n-1 edges.
Paso 5. Transformar el árbol no dirigido resul¬ tante en uno dirigido, escogiendo una variable como raiz, para a continuación direccionar el resto de aristas . Step 5. Transform the tree undirected resul tant ¬ one run, choosing a variable as root, to then direct the other edges.
Paso 6. Construir un modelo TAN añadiendo un no¬ do etiquetado como C y posteriormente un arco desde C a cada variable predictora X±. Step 6. Build a TAN model by adding a no ¬ do labeled as C and then an arc from C to each predictor variable X ±.
La estructura TAN obtenida para el problema pro¬ puesto se ilustra en la Figura 2. The TAN structure obtained for the proposed problem is illustrated in Figure 2.
Para la validación de la Red Bayesiana se usó el método de validación cruzada o K-fold cross-validation, según su denominación inglesa, y un fichero con datos experimentales. En el método de validación cruzada el conjunto de datos inicial se divide en K subconj untos , de los K subconjuntos un solo subconjunto se guarda como datos de validación para probar el modelo, y los otros K-l subconjuntos son usados como datos de entrenamiento. El proceso se repite K veces, particiones, donde cada uno de los K subconjuntos se usa exactamente una vez como datos de validación. Los resultados de las parti¬ ciones se promedian, o se combinan de otra manera, para producir un solo estimador de la exactitud del clasifi¬ cador, se tomó K=10. For the validation of the Bayesian Network, the cross-validation method or K-fold cross-validation was used, according to its English name, and a file with data Experimental In the cross-validation method, the initial data set is divided into K subsets, of the K subsets a single subset is saved as validation data to test the model, and the other Kl subsets are used as training data. The process is repeated K times, partitions, where each of the K subsets is used exactly once as validation data. The results of the parti tions ¬ averaged, or otherwise combined to produce a single estimate of the accuracy of classi ¬ er, K = 10 was taken.
La salida del modelo después de la validación es una tabla de contingencia o matriz de confusión, donde se resumen los resultados de datos bien y mal clasifica¬ dos por cada estado de la clase y un valor general de precisión que indica el porcentaje de acierto con que el modelo clasificará los nuevos datos presentados a la red. Tras la validación, la aplicación está lista para su uso, se pueden hacer preguntas a la red Bayesiana sobre distintos tipos de cuestiones para encontrar la probabilidad a posteriori de las distintas respuestas posibles . The output of the model after validation is a contingency table or confusion matrix, which summarizes the results of data well and poorly classified ¬ two for each state of the class and a general precision value that indicates the percentage of success with that the model will classify the new data presented to the network. After validation, the application is ready for use, questions can be asked to the Bayesian network on different types of questions to find the posterior probability of the different possible answers.
En nuestro caso, el tipo de pregunta es el razo¬ namiento predictivo o inferencia causal donde se busca la predicción de efectos. Se pregunta a la red Bayesiana "¿Cuál es la probabilidad de cada estado de la clase TCC dados ciertos requisitos de fabricación?" Los requisitos de fabricación serán las variables LMC, PCC, DAA, FAA, PAA, CIF, TCIF, ECC y PAAA ya definidas anteriormente. In our case, the type of question is the razo ¬ tioning predictive or causal inference where the prediction of effects sought. The Bayesian network is asked "What is the probability of each state of the TCC class given certain manufacturing requirements?" The manufacturing requirements will be the variables LMC, PCC, DAA, FAA, PAA, CIF, TCIF, ECC and PAAA already defined above.
En un caso concreto se preguntaría a la red Ba¬ yesiana por la probabilidad de TCC según los siguientes valores: P(TCC|LMC=1, PCC=500, DAA=150, FAA=300, PAA=40, CIF=0, TCIF=0, ECC=15 y PAAA=250) . Propagando esta evidencia, la red calcula las siguientes probabilidades de TCC, expresadas aquí en tanto por uno: tensión baja 0,02; tensión media 0,89; tensión medio-alta 0,09 y tensión alta 0,00. Con estos requisitos los estados de la clase con probabilidades más altas identifican la mejor tensión a aplicar que se corresponde con la tensión media ya que su probabilidad es del 89%. Este razonamiento es correcto dado que se corresponde con valores obtenidos en las pruebas experimentales. In a specific case, the Ba ¬ yesiana network would be asked about the probability of CBT according to the following values: P (TCC | LMC = 1, PCC = 500, DAA = 150, FAA = 300, PAA = 40, CIF = 0, TCIF = 0, ECC = 15 and PAAA = 250). By propagating this evidence, the network calculates the following probabilities of CBT, expressed here as both by one: low voltage 0.02; average tension 0.89; medium-high voltage 0.09 and high voltage 0.00. With these requirements the states of the class with higher probabilities identify the best voltage to apply that corresponds to the average voltage since its probability is 89%. This reasoning is correct since it corresponds to values obtained in the experimental tests.
Si uno de los estados de TCC es predominante, probabilidad mayor de 80%, se transfiere al CNC (1.3) de la máquina, si no lo es, se advierte de las probabilida¬ des para cada estado de la clase de TCC al operario para que analice la situación. If one of the TCC states is predominant, probability greater than 80%, it is transferred to the CNC (1.3) of the machine, if it is not, the probabilities ¬ des for each state of the TCC class are warned to the operator for To analyze the situation.
El dispositivo de control adaptativo neuro- borroso (3) es el dispositivo que recibe del CNC (1.3) información de los sensores internos de la máquina o, adicionalmente, de sensores externos instalados en ella. Además, monitoriza y modifica variables del CNC (1.3) relacionadas con la ejecución del programa pieza tales como la velocidad de avance y la velocidad de giro con el fin de optimizar el tiempo de mecanizado y minimizar el error debido a la flexión del carnero (1.1) . The neuro-blurred adaptive control device (3) is the device that receives information from the machine's internal sensors (1.3) or, additionally, from external sensors installed in it. In addition, it monitors and modifies variables of the CNC (1.3) related to the execution of the part program such as the speed of advance and the speed of rotation in order to optimize the machining time and minimize the error due to the flexion of the ram (1.1 ).
Este dispositivo de control adaptativo se trata de un ordenador o de un sistema embebido de control conectado al CNC (1.3), en el ejemplo concreto aquí propuesto por un medio de red, que le envía al CNC (1.3) el programa pieza que se desea ejecutar. Además, este dispositivo recibe información de los sensores incluidos en la máquina herramienta con su CNC (1) por el medio de red . Este dispositivo implementa un control por mode¬ lo interno (IMC, siglas de la denominación en inglés "Infernal Model Control") basado en controladores neuro- borrosos para, a partir de la tensión que se debe apli¬ car a los cilindros compensadores y a las condiciones del mecanizado en tiempo real, modificar la velocidad de avance o de giro de la fresadora que mecaniza el carnero (1.1), es decir, modificar las condiciones de mecanizado previstas en el programa de mecanizado, enviando las nuevas condiciones al CNC para su implementación . This adaptive control device is a computer or an embedded control system connected to the CNC (1.3), in the specific example proposed here by a network medium, which sends the desired part program to the CNC (1.3) run. In addition, this device receives information from the sensors included in the machine tool with its CNC (1) through the network medium. This device implements a control mode ¬ internally (BMI, which stands for the English name "Infernal Control Model") based on neuro- fuzzy controllers for, from the tension applica ¬ car is due to compensating cylinders and real-time machining conditions, modify the speed of advance or rotation of the milling machine that mechanizes the ram (1.1), that is, modify the machining conditions provided for in the machining program, sending the new conditions to the CNC for implementation .
El controlador se basa en lógica borrosa e in¬ corpora un módulo anticipativo basado en redes neurona- Ies (controlador neuro-borroso) . De acuerdo con realizaciones preferidas de la invención, los parámetros que definen los controladores neuro-borrosos se determi¬ nan de forma que se minimice un Índice de mérito. The controller is based on fuzzy logic and corpora ¬ precontrol module based on networks neuron Ies (neuro-fuzzy controller). According to preferred embodiments of the invention, the parameters defining the neuro-fuzzy controllers are DETERMI ¬ nan so that minimizes an Index of merit.
La lógica borrosa se basa en conjuntos borrosos, a cuyos elementos se asocia una función de pertenencia que indica en qué medida el elemento forma parte de ese conjunto borroso. Las formas de las funciones de perte¬ nencia más típicas son trapezoidal, triangular y gaus- siana. Es decir, la lógica borrosa se basa en reglas heurísticas de la forma SI (antecedente) ENTONCES (con¬ secuente) , donde el antecedente y el consecuente son también conjuntos borrosos, ya sea puros o resultado de operar con ellos. Las reglas que determinan la perte¬ nencia de los elementos a los conjuntos borrosos se basa, en el caso del carnero (1.1), en la experiencia del diseñador y en información proporcionada por las redes bayesianas. Blurred logic is based on fuzzy sets, whose elements are associated with a membership function that indicates to what extent the element is part of that fuzzy set. Forms functions perte ¬ nence most typical are trapezoidal, triangular and siana gaus-. That is, the fuzzy logic is based on heuristic rules of the form IF (antecedent) THEN sequent), where the antecedent and consequent are also fuzzy sets, either pure or result of operating with them. The rules that determine the rennovation ¬ nence of the elements of fuzzy sets is based, in the case of the ram (1.1) in the designer's experience and on information provided by the Bayesian networks.
El medio de red es el encargado de unir los tres elementos anteriormente descritos permitiendo la comuni¬ cación entre los mismos y minimizando los tiempos de retardo en las comunicaciones entre ellos. The network medium is responsible for joining the three allowing the elements described above comuni ¬ cation therebetween and minimizing the delay in communications between them.
Dicho medio de red puede ser un bus de campo, perteneciente a la familia Profibus, u otros dependiendo del tipo de red: mpi, ethernet, internet, etc. En cualquier caso, el medio de red se caracteriza por el retardo máximo que introduce en la transmisión de señales de monitorización y control entre el CNC (1.3) y el medio de control, que se denominará Lmeciio red - El retardo global máximo del proceso de comunicaciones Lmax será, por tanto, la suma del retardo introducido por el medio de red Lmedi0 red y el retardo debido al tiempo muerto del proceso Lcarner0, es decir, Lmax=Lcarner0+L . Este retardo, en realizaciones preferidas de la invención, es menor de 60 segundos. Said network medium can be a field bus, belonging to the Profibus family, or others depending on the type of network: mpi, ethernet, internet, etc. In any case, the network medium is characterized by the maximum delay that it introduces in the transmission of monitoring and control signals between the CNC (1.3) and the control medium, which will be called L mec iio re d - The maximum global delay of the communications process L max will therefore be the sum of the delay introduced by the network medium L medi0 network and the delay due to the dead time of the process L carner0 , that is, L max = L carner0 + L. This delay, in preferred embodiments of the invention, is less than 60 seconds.
Un uso preferente del medio de red para el cálculo probabilistico permite que varios elementos trabajen a la vez para la ejecución de dicho cálculo, de forma que se minimiza el tiempo de cálculo. A preferred use of the network medium for the probabilistic calculation allows several elements to work at the same time for the execution of said calculation, so that the calculation time is minimized.

Claims

REIVINDICACIONES
1. Dispositivo inteligente para la compensación de caídas de carnero en máquinas herramienta que com¬ prende los siguientes elementos: una máquina herramienta con su CNC (1), medios para la aplicación de cálculo probabilístico (2) y medios para control por modelo interno (3) . 1. Intelligent compensation ram falls in machine tools com ¬ device turns the following elements: a machine tool with CNC (1), means for applying probabilistic calculation (2) and means for internal model control ( 3) .
2. Dispositivo inteligente para la compensación de caídas de carnero en máquinas herramienta según la reivindicación 1 caracterizado porque la comunicación entre los elementos que forman el dispositivo es a través de un medio de red. 2. Intelligent device for compensating ram falls on machine tools according to claim 1, characterized in that the communication between the elements that form the device is through a network means.
3. Procedimiento para la compensación de caídas de carnero en máquinas herramienta que utiliza un dispo¬ sitivo inteligente según la reivindicación 1 que comprende las siguientes etapas: 3. Method for compensating ram falls in machine tools using a smart ¬ dispo sitivo according to claim 1 comprising the following steps:
-arranque del dispositivo por parte del CNC (1.3), -adquisición de valores para las variables a utilizar, -utilización de cálculo probabilístico para estimar la tensión de los cilindros compensadores utilizando los valores de las variables por parte de los medios para la aplicación de cálculo probabilístico (2),  - Start-up of the device by the CNC (1.3), - Acquisition of values for the variables to be used, - Use of probabilistic calculation to estimate the tension of the compensating cylinders using the values of the variables by the means for the application of probabilistic calculation (2),
-elección de la tensión de los cilindros compensadores, -modificación de las condiciones de mecanizado previstas en el programa de mecanizado por parte de los medios para control por modelo interno (3) que implementa un control adaptativo neuro-borroso, -election of the tension of the compensating cylinders, -modification of the machining conditions foreseen in the machining program by the means for control by internal model (3) that implements an adaptive neuro-blurred control,
-implementación de las nuevas condiciones de mecanizado por parte del CNC (1.3).  -implementation of the new machining conditions by the CNC (1.3).
4. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindica- - li ¬ ción 3 caracterizado porque el arranque del dispositivo por parte del CNC (1.3) se hace mediante una tecla virtual del controlador lógico programable (1.2). 4. Procedure for compensating ram falls on machine tools according to claim - ¬ tion 3 characterized in that the device is started by the CNC (1.3) using a virtual key of the programmable logic controller (1.2).
5. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindica¬ ción 3 caracterizado porque los valores de las variables se adquieren del programa de mecanizado y de una base de datos ( 4 ) . 5. Method for compensating ram falls in machine tool according to claims 3 ¬ characterized in that the values of the variables are acquired machining program and a database (4).
6. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindica¬ ción 3 caracterizado porque las variables a utilizar son una selección de entre las siguientes: longitud máxima del carnero en su posición más exterior, LMC; peso del cabezal crítico o cabezal a compensar, PCC; dimensiones amortiguador activo, DAA; fuerzas a aplicar por el/los amortiguador/es activo/s, FAA; peso del amortiguador activo, PAA; existencia de cilindros interiores fijos de compensación de la caída para cabezales secundarios, CIF; valor de tensión de cilindros interiores fijos de compensación, TCIF; espesor de las chapas que conforman las paredes del carnero, ECC; posición de amarre del amortiguador activo, PAAA. 6. Method for compensating ram falls in machine tool according to claims 3 ¬ wherein the variables used are selected among the following: maximum length of the ram at its outermost position, CML; critical head weight or head to compensate, PCC; active damping dimensions, DAA; forces to be applied by the shock absorber (s), FAA; weight of active shock absorber, PAA; existence of fixed inner cylinders of fall compensation for secondary heads, CIF; tension value of fixed internal compensation cylinders, TCIF; thickness of the sheets that make up the ram's walls, ECC; mooring position of the active shock absorber, PAAA.
7. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindica¬ ción 3 caracterizado porque para el cálculo probabilís- tico se utiliza una red de Naive Bayes. 7. Method for compensating ram falls in machine tool according to claims 3 characterized ¬ for probabilistic calculation tico Naive Bayes one network is used.
8. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindica¬ ción 7 caracterizado porque la red de Naive Bayes se ha entrenado utilizando el método de elementos finitos. 8. Method for compensating ram falls in machine tool according to claims 7 ¬ characterized Naive Bayes network has been trained using the finite element method.
9. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindica¬ ción 7 caracterizado porque la red de Naive Bayes se aumenta a árbol utilizando el algoritmo de Friedman. 9. Method for compensating ram falls in machine tool according to claims 7 characterized ¬ Naive Bayes network is increased to tree algorithm using the Friedman.
10. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindicación 9 caracterizado porque la red aumentada a árbol se corrige utilizando la corrección de Laplace. 10. Procedure for compensating ram falls on machine tools according to claim 9, characterized in that the raised tree network is corrected using the Laplace correction.
11. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindicación 7 caracterizado porque la red de Naive Bayes se valida utilizando el método de validación cruzada y datos experimentales. 11. Procedure for compensating ram falls on machine tools according to claim 7, characterized in that the Naive Bayes network is validated using the cross-validation method and experimental data.
12. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindicación 3 caracterizado porque la elección de la tensión de los cilindros compensadores la lleva a cabo el dispositivo si la probabilidad es mayor del 80% y la lleva a cabo el operario si es igual o menor al 80%. 12. Procedure for compensating ram falls in machine tools according to claim 3, characterized in that the device is selected by the device if the probability is greater than 80% and the operator performs it if It is equal to or less than 80%.
13. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindicación 7 caracterizado porque el valor de la tensión de los cilindros compensadores es discreto. 13. Procedure for compensating ram falls in machine tools according to claim 7, characterized in that the value of the tension of the compensating cylinders is discrete.
14. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindicación 3 caracterizado porque el dispositivo de control adaptativo neuro-borroso modifica las condicio¬ nes de mecanizado en tiempo real para adaptar las velo¬ cidades de avance y giro del cabezal. 14. Method for compensation falls ram machine tool according to claim 3 characterized in that the neuro-fuzzy adaptive control modifies condicio ¬ tions machining in real time to adapt veil ¬ cidades forward and spindle.
15. Procedimiento para la compensación de caídas de carnero en máquinas herramienta según la reivindicación 3 caracterizado porque se utiliza el medio de red para el cálculo probabilístico de manera que varios elementos trabajan a la vez para la ejecución de dicho cálculo. 15. Procedure for compensating ram falls on machine tools according to claim 3, characterized in that the network means is used for the probabilistic calculation so that several elements work simultaneously for the execution of said calculation.
PCT/ES2009/070453 2009-10-23 2009-10-23 Intelligent device and method for compensating for ram sag in machine tools WO2011048231A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801610844A CN102483622A (en) 2009-10-23 2009-10-23 Intelligent device and method for compensating for ram sag in machine tools
DE112009005232T DE112009005232T5 (en) 2009-10-23 2009-10-23 Intelligent apparatus and method for compensating tool shifter passage in machine tools
PCT/ES2009/070453 WO2011048231A1 (en) 2009-10-23 2009-10-23 Intelligent device and method for compensating for ram sag in machine tools
ES201290001A ES2398814B1 (en) 2009-10-23 2009-10-23 SMART DEVICE AND PROCEDURE FOR COMPENSATION OF BUTCH FALLS IN TOOL MACHINES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/070453 WO2011048231A1 (en) 2009-10-23 2009-10-23 Intelligent device and method for compensating for ram sag in machine tools

Publications (1)

Publication Number Publication Date
WO2011048231A1 true WO2011048231A1 (en) 2011-04-28

Family

ID=43899858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070453 WO2011048231A1 (en) 2009-10-23 2009-10-23 Intelligent device and method for compensating for ram sag in machine tools

Country Status (4)

Country Link
CN (1) CN102483622A (en)
DE (1) DE112009005232T5 (en)
ES (1) ES2398814B1 (en)
WO (1) WO2011048231A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749850A (en) * 2012-07-20 2012-10-24 富阳登城塑料机械有限公司 Implementation method for applying fuzzy control to intermittent pre-feeding device on basis of ladder diagram

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965441B (en) * 2021-02-01 2022-03-15 新代科技(苏州)有限公司 Communication delay compensation method for controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214592A (en) * 1989-10-19 1993-05-25 Toshiba Kikai Kabushiki Kaisha Machine tool position correcting method and apparatus
US20030187624A1 (en) * 2002-03-27 2003-10-02 Joze Balic CNC control unit with learning ability for machining centers
EP1659468A2 (en) * 2004-11-16 2006-05-24 Rockwell Automation Technologies, Inc. Universal run-time interface for agent-based simulation and control systems
WO2009109673A1 (en) * 2008-03-03 2009-09-11 Consejo Superior De Investigaciones Científicas Fuzzy logic-based control methods for drilling processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214592A (en) * 1989-10-19 1993-05-25 Toshiba Kikai Kabushiki Kaisha Machine tool position correcting method and apparatus
US20030187624A1 (en) * 2002-03-27 2003-10-02 Joze Balic CNC control unit with learning ability for machining centers
EP1659468A2 (en) * 2004-11-16 2006-05-24 Rockwell Automation Technologies, Inc. Universal run-time interface for agent-based simulation and control systems
WO2009109673A1 (en) * 2008-03-03 2009-09-11 Consejo Superior De Investigaciones Científicas Fuzzy logic-based control methods for drilling processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749850A (en) * 2012-07-20 2012-10-24 富阳登城塑料机械有限公司 Implementation method for applying fuzzy control to intermittent pre-feeding device on basis of ladder diagram

Also Published As

Publication number Publication date
ES2398814B1 (en) 2014-01-29
DE112009005232T5 (en) 2012-12-20
ES2398814A1 (en) 2013-03-21
CN102483622A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
CN106406235A (en) Machine tool, simulation apparatus, and machine learning device
Huang et al. Stream of variation modeling and diagnosis of multi-station machining processes
US9256823B2 (en) Apparatus and methods for efficient updates in spiking neuron network
Gawronski Balanced control of flexible structures
Liu et al. Establishing a reliable mechanism model of the digital twin machining system: An adaptive evaluation network approach
CN106910223A (en) A kind of Robotic Hand-Eye Calibration method based on convex lax global optimization approach
Hu et al. Multiplexed model predictive control for active vehicle suspensions
EP3537346A1 (en) Method and system for incorporating regression into stacked auto encoder (sae)
JP2022537606A (en) Constraint Adapter for Reinforcement Learning Control
Ersal et al. Statistical transparency analysis in internet-distributed hardware-in-the-loop simulation
WO2011048231A1 (en) Intelligent device and method for compensating for ram sag in machine tools
Apprich et al. Approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools for vibration reduction
Izquierdo et al. Feedforward control of multistage assembly processes using programmable tooling
EP4102313A1 (en) System and method for determining operational configuration of an asset
Benjamin et al. Using simulation for robust system design
CN114074332A (en) Friction compensation method and device, electronic equipment and storage medium
Chen et al. Modeling and adaptive compensation of unknown multiple frequency vibrations for the stabilization and control of an active isolation system
Persson et al. A framework for multidisciplinary optimization of a balancing mechanism for an industrial robot
Chen et al. Dynamic modeling and residual vibration suppression of the redundantly-actuated cable driving parallel manipulator
Singh " Bionic Manipulator
Inci Adaptive co-simulation framework exploiting system physics of mechatronic systems
Fu et al. Load sharing multiobjective optimization design of a split torque helicopter transmission
Krimpenis et al. Balancing multiple criteria in formulation of weighted, single-objective genetic algorithm optimization for CNC machining problems
DE102022200462B3 (en) Computer-implemented method for determining a manufacturing correction model for the manufacture of ophthalmic lenses, storage device, computer program product, method and apparatus
Hopkins et al. Eliminating parasitic error in dynamically driven flexure systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161084.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201290001

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 1120090052320

Country of ref document: DE

Ref document number: 112009005232

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850522

Country of ref document: EP

Kind code of ref document: A1