WO2009109673A1 - Fuzzy logic-based control methods for drilling processes - Google Patents

Fuzzy logic-based control methods for drilling processes Download PDF

Info

Publication number
WO2009109673A1
WO2009109673A1 PCT/ES2008/070039 ES2008070039W WO2009109673A1 WO 2009109673 A1 WO2009109673 A1 WO 2009109673A1 ES 2008070039 W ES2008070039 W ES 2008070039W WO 2009109673 A1 WO2009109673 A1 WO 2009109673A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
drilling
control procedure
network
max
Prior art date
Application number
PCT/ES2008/070039
Other languages
Spanish (es)
French (fr)
Inventor
Rodolfo Haber Guerra
Fernando MARTÍNEZ PUENTE
Raúl Mario DEL TORO
Bruno Caballero Retamosa
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to PCT/ES2008/070039 priority Critical patent/WO2009109673A1/en
Publication of WO2009109673A1 publication Critical patent/WO2009109673A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0275Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34065Fuzzy logic, controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35499Model of process, machine and parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45129Boring, drilling

Definitions

  • the main object of the present invention is to provide control procedures (single-loop blur, internal neuro-fuzzy model and linear PID) to efficiently control drilling processes, so as to minimize the wear of the drill bit and maximize it Ia rate of material removal.
  • the drilling processes have a significant impact on the production in many industries, such as the aerospace industry, the automotive industry, etc. In spite of this, generally the conditions of the drilling process are generally chosen from a data manual for drilling, and the experience and skill of the operator are necessary. It must adjust the speed of advance if the process is too slow or unstable, if an overload occurs or if vibrations appear.
  • SUBSTITUTE SHEET (RULE 26) controls properly unnecessarily wears Ia bit, reducing its useful life. This implies the need to change the drill more frequently, which causes the consequent loss of production time.
  • machining refers jointly to milling, drilling, grinding, turning, and in general any process whose objective is to modify the shape of a solid piece by extracting part of the material by cutting it .
  • drilling refers here to any process whose objective is to make a circular hole in a solid piece. Therefore, not only industrial drilling processes are included, but also, for example, drilling processes carried out in the field of medicine, such as bones or teeth.
  • bit The rotating tool that physically makes the hole
  • piece can be a metal plate, the tooth of a patient, or others.
  • piece program is defined as the set of actions that a drill is desired to perform on the piece to be drilled.
  • a part program could be to make a hole of diameter D and depth H at a forward speed V.
  • internal sensor refers to a sensor included as standard in a CNC machine, as opposed to the term “external sensor”, which refers to an additional sensor installed in the CNC machine for a specific purpose.
  • typical drilling installation comprises:
  • a CNC-machine comprises a machine tool and a CNC, both provided by the manufacturer.
  • the machine tool is the apparatus that physically performs the drilling process, and comprises a base to which a drill is attached which, thanks to electric motors, advances and rotates at the same time, so that the material of a piece is pierced. which is located under the drill.
  • the two variables that define the drilling process are, therefore, the longitudinal speed of advance and the speed of rotation of the drill.
  • the manufacturer of the drill specifies a maximum drilling depth that is not advisable to overcome.
  • the machine tool In order to know the force that the bit applies to the piece, the machine tool usually includes a set of internal sensors that measure process variables directly or indirectly.
  • the term "force” or “resultant force” refers to the sum of the three components of the force that the drill performs on the piece. It is common, for example, that the machine tools have internal sensors that measure the intensity of current supplied to each of the motors, which intensity is in turn proportional to the torque applied by said motors. Other available variables (internally) are the power consumed and the cutting torque.
  • the machine also has position and speed sensors for the axes (to place the drill bit in the position where it must drill) and encoders for the speed of rotation. The CNC uses these sensors to keep constant the speeds of advance and rotation by means of the internal control loops to the CNC, as well as the position of the drill bit. Other internal sensors that usually include temperature sensors, etc.
  • the CNC is basically a computer with closed architecture (access restricted to some variables and internal parameters) or open (access to all variables and parameters) that controls the operation of the machine tool so that it can carry out a program of drilling another desired piece program.
  • the CNC is connected to the machine tool so that it processes the program for the manufacture of the piece (part program). From this program the CNC algorithms (interpolation, position control, speed, trajectory) require the signals from the sensors installed in the machine tool and execute the sending of the necessary commands for its operation, such as the intensities of the engines, etc.
  • the CNC is provided by the machine tool manufacturer, in such a way that the term "CNC machine", in this document, refers jointly to the machine tool and the CNC.
  • a means of control It is usually a computer connected to the CNC that sends the part program to be executed.
  • the control means receives information from the internal sensors of the CNC-machine, through a network medium, or, additionally, from external sensors installed in the machine tool.
  • parameters and variables of internal CNC operation related to the execution of the part program such as the speed of advance and the speed of rotation can be monitored (and in some cases modified) from the control means.
  • a network medium The control means is connected to the CNC through a network medium, which can be a field bus, belonging to the PROFIBUS family or others. Other system configurations that allow the use of network media such as Ethernet or Internet are possible.
  • the present document describes control procedures for high performance drilling processes based on fuzzy, neuro-fuzzy and PID controllers, whose objective is to maximize the material start-up and the life of the bit, and for this they try to keep the force constant. resulting from the bit on the piece.
  • the fuzzy logic is used for the resolution of a variety of problems, mainly those related to the control of complex industrial processes and decision systems in general, the resolution Ia compression of data. These systems are generally robust and tolerant of inaccuracies and noise in the input data. Fuzzy logic is based on fuzzy sets, whose elements are associated with a membership function that indicates to what extent the element is part of that fuzzy set. The forms of the most typical membership functions are trapezoidal, triangular and Gaussian. That is, the fuzzy logic is based on heuristic rules of the form Sl (antecedent)
  • the rules that determine the belonging of the elements to the fuzzy sets is based, in the case of drilling processes, on the operator's experience.
  • a closed-loop control method based on a fuzzy controller, is described for drilling processes performed by a CNC-machine controlled from a control means, where the machine-
  • the CNC and the control medium are connected by a network medium, and where the maximum overall delay of the drilling process is L max .
  • the network medium can be an MPI, Profibus, Ethernet, Internet, or other network, and its global maximum delay L max , according to preferred embodiments of the invention, is greater respectively 0.2 and 0.4 seconds.
  • the internal line of the loop of the control scheme corresponding to the first aspect of the invention comprises, fundamentally, blocks corresponding to scale factors for the inputs and outputs of the drilling process, also known as gains or parameters of the controller, a block corresponding to the fuzzy controller and a block representing the drilling process.
  • the drilling process is represented by a function G t (s) that models the dynamics of the drilling process.
  • This function includes a maximum delay L max that includes the dead time of the drilling process (intrinsic delay of the process, delayed) and the delay due to the network medium (Lmedio red) -
  • the function Gt (s) can be obtained using methods known in the art from the performance of tests and the taking of data, either by internal sensors belonging to the CNC-machine, or by external sensors installed ad hoc.
  • the fuzzy controller is based on rules that emulate the actions of the operator during the control of a drilling process, with the advantage that the fuzzy controller is much more robust (less sensitive to the disturbances that occur such as variations in the hardness of the material, wear of the tool, etc) in industrial environments than other regulators. It is also fast and precise in its application.
  • the fuzzy controller includes three stages: smudging, inference and desemborronado.
  • the entries of physical or dimensionless units are converted into membership values.
  • the inputs are processed and with known mechanism (Sup-Min, Sup-Prod, etc ...) the output is obtained. Finally, the output is converted to physical units (percents, increases in speeds, displacements, etc.) in the unbundling or de-busting stage.
  • the rules are obtained from the operator and then in controllers of two inputs and one output are extended to bases of 9, 25 or 49 rules.
  • a procedure for designing these rule bases is to use known templates of these rule bases on which certain rules are modified, added and eliminated depending on the application and technical knowledge about the drilling process.
  • the implementation usually goes from a search table with numerical elements (faster and less precise since the table has a fixed size with a number of predefined elements) until a computational procedure that calculates in real time the output (less fast and more precise). It is equivalent to a computer program that receives two inputs and offers an output being deterministic (the same outputs always occur at the same inputs), invariant in time (does not change) and non-linear (non-linear relationship between inputs and exit).
  • the scale factors considering two inputs and one output, they are usually one for each input and the output. These three scale factors constitute the controller's gains and decisively influence the desired (optimal) operation of the control procedure. The three values are usually adjusted by different procedures, although the adjustment of the two scaling factors of the inputs is sufficient to obtain the desired operation of the controller.
  • the maximum challenge of The network is greater than 0.2 seconds, and greater than 0.4 seconds according to a more preferred embodiment of the invention.
  • a merit index also known as a cost function
  • IAE integral of the absolute value of the error
  • ITAE integral of absolute value of the error by time
  • ISE integral of quadratic error
  • ITSE integral of the squared error by time
  • the anticipatory control is combined with the fuzzy controller, by adding a block that relates the reference or prescribed value (reference or reference value that is desired to remain constant during the process) with the scale factor (gain) of the output.
  • a second aspect of the present invention describes a control method by internal model (IMC) based on neuro-fuzzy controllers for drilling processes performed by a CNC machine controlled from a control means, where the CNC machine and the control means are connected by a network means, and where the maximum overall delay of the drilling process is L max .
  • the parameters that define the neuro-fuzzy controllers are determined in such a way that a merit index is minimized, such as, for example, the IAE, ITAE, ISE and ITSE.
  • the network medium can be an MPI network, PROFIBUS, Ethernet, Internet, and in general any network medium used in the industry.
  • the connecting means is characterized by its global maximum delay L max , which in preferred embodiments of the invention is greater than 0.2 seconds, and in another even more preferred embodiment of the invention, L max is greater than 0.4 seconds.
  • the BMI is a well-established contribution in the literature to design controllers so that the process model is used explicitly (direct synthesis) in the design procedure of a controller.
  • the IMC can use an explicit model obtained by experimental identification (known as "black box” contribution).
  • neural networks (have shown an excellent ability to represent any non-linear function with the desired degree of precision.) Because of this feature, neural networks are suitable for the identification and control of non-linear systems. a block anticipative to the control system by internal model, which relates the difference between the reference and the output with the control input to the drilling process itself.
  • An embodiment of the present invention combines the control by internal model (IMC) with a neuro-fuzzy scheme called ANFIS to control the cutting force of a drilling process so that the rate of material removal is maximized, at the same time that the useful life of the bit is also maximized.
  • the ANFIS system is one of the first known neuro-fuzzy systems.
  • Dash, et al Fuzzy and neural controllers for dynamic systems", of the Proceedings of the International Conference on Power Electronics and Power Systems, IEEE, in Singapore.
  • the principle of the ANFIS scheme is based on the extraction of fuzzy rules in each level of a neural network. Once the rules are obtained, they must provide the necessary information of the overall behavior of the process.
  • control by internal model is combined with the neural networks, the fuzzy logic and the transductive techniques.
  • transductive reasoning uses a particular element or detail of an event to judge or anticipate a second element or event. This process can lead to creative or divergent perceptions of the environment, and in some cases can lead to excessive generalization. From the point of view of the Theory of Systems and modeling of systems, the transductive methods generate a model in a single point of the workspace. For each new data that has to be processed, the closest examples among the known data are looked for, with the aim of creating a new local model that dynamically approaches the process in the new state as faithfully as possible. It is, therefore, to give more importance to the specific information related to the data to be processed than to the general information provided by the entire training set.
  • the transductive methods have some advantages over the inductive ones since, on occasion, creating a valid model for the entire space or region of operation is a difficult task and in some cases the result is insufficient.
  • the dynamic generation of personalized local models allows the extension of knowledge (represented as the set of known data) in a simple way, allowing incremental learning online.
  • these strategies have the ability to function properly with a reduced training set.
  • the present invention employs the TWNFI (Transductive Weighed Neuro-Fuzzy Inference system), used by Song and Kasabov for obtaining local models of the process in "TWNF I-a system of neuro-fuzzy transductive inference with normalization of data for personalized modeling ", published in Neural Networks, 19, 1591 - 1596, document cited as reference.
  • TWNFI Transductive Weighed Neuro-Fuzzy Inference system
  • Neuronal excellent ability to model any non-linear function with a high degree of precision, in addition to having a high learning capacity.
  • Blurry semantic transparency, ability to represent human thought and excellent behavior in situations of uncertainty and imprecision.
  • Transductive estimation of the model in a single input-output set of the space, using only information related to said set.
  • a control procedure is provided for drilling processes performed by a CNC-machine controlled from a control means, where the CNC-machine and the control means are connected by a means of a network, where L max is the maximum overall delay of the drilling process, and where the control scheme is a closed-loop PID control scheme whose internal line comprises a PID block characterized by three factors called K p , k, and k d , and a block that represents the drilling process.
  • the network medium can be MPI, Profibus, Ethernet, Internet, etc. being in a preferred embodiment of the invention overall maximum delay L max of the drilling process of 0.2 seconds, and in a still more preferred embodiment of the invention, L max is greater than 0.4 seconds.
  • the initial calculation of the factors K p , k, and k d is carried out, in a preferred embodiment, using the Ziegler-Nichols method, based on the knowledge of the transfer function in the Laplace transform domain of the drilling process high performance and delay global maximum L max, which comprises the delay due to dead times and the delay caused by the network medium.
  • the choice of parameters can be optimized by means of methods such as Nelder-Mead, simulated tempering, and others known in the art, following minimization criteria based on merit indexes, such as, for example, the integral of the absolute value of the error (IAE), the integral of absolute value of the error by time (ITAE), the integral of quadratic error (ISE) and the integral of the squared error by time (ITSE), just to mention some indices.
  • IAE integral of the absolute value of the error
  • ITAE integral of absolute value of the error by time
  • ISE integral of quadratic error
  • ITSE integral of the squared error by time
  • the method comprises pre-filtering the input signal.
  • the reference or prescribed value is not entered directly into the control system, but is filtered with a filter:
  • Gf (z) is the transfer function in the Z domain
  • Fr ' is the filtered reference value
  • Fres the reference value
  • is the filter coefficient
  • Figure 1 shows a diagram of the drilling system according to the invention.
  • Figure 2.- Shows a scheme of the fuzzy control system in simple loop.
  • Figure 3. It shows a scheme of the fuzzy partitions and the membership functions for ⁇ F, ⁇ 2 F and ⁇ f.
  • Figure A - Shows a graph representing the response of the drilling force to an input in a drilling process where the control signals are transmitted through a network medium.
  • Figure 5. Represents a diagram of the devices that make up the system in a preferred embodiment of the invention.
  • Figure 6. Represents a graph of the ITAE index that results from the optimization.
  • Figure 7. Represents the corresponding input factors for the fuzzy controller.
  • Figure 8 Represents the response to the step of the cutting force.
  • Figure 9.- Represents the behavior of the cutting force in an embodiment of the present invention.
  • Figure 10.- represents the variations in the speed of advance for the minimum, medium and maximum delays.
  • Figure 11. Represents the behavior of the ITAE (dashed line) and the ITSE (solid line) when delays occur.
  • Figure 13 Graph showing the behavior of the cutting force in relation to the drilling depth.
  • Figure 14.- Graph showing the cutting force in uncontrolled drilling processes and controlled by a fuzzy regulator.
  • Figure 15. Graph showing the variations in the speed of advance in uncontrolled drilling processes and controlled by a fuzzy regulator.
  • Figure 18. Graph that represents the functions of belonging, rules and outputs of the direct ANFIS model.
  • Figure 19 Graph that represents the functions of belonging, rules and outputs of the ANFIS inverse model.
  • Figure 20 - Graph that represents the response of the direct model in an ANFIS system.
  • Figure 21 - Graph that represents the response of the inverse model in an ANFIS system.
  • FIG. 22 - Architecture of the ANFIS-IMC system in an embodiment of
  • Figure 25 Example of the evolutionary grouping algorithm for two inputs.
  • Figure 26 - Membership function generated from the results of the ECM algorithm of Figure 26.
  • Figure 27 - Membership function generated from the results of the ECM algorithm of Figure 26.
  • Figure 28 Represents a block diagram of the TWNFI algorithm.
  • Figure 29.- Represents the direct model of the drilling process obtained by TWNFI.
  • Figure 30 Represents the inverse model of the drilling process obtained by TWNFI.
  • Figure 31 Represents the control scheme by internal model in
  • Figure 32 Represents the statistical distribution of the induced delays in the network obtained with a set of 10,000 samples.
  • Figure 33 Represents the cumulative distribution of the delays induced by the network obtained with a set of 10,000 samples.
  • Figure 34 Represents the architecture of the TWNFI-CMI control in a preferred embodiment of the invention.
  • Figure 35 Shows a graph of the response of the real system.
  • Figure 36 Shows a graph showing the control action in the control action when the material is drilled 17-4PH.
  • Figure 37 Shows a PID control scheme with a previous filter.
  • Example 1 Fuzzy controller in simple closed loop
  • FIG. 1 An example of a preferred embodiment of the invention is described below where a fuzzy control scheme by simple loop is used, whose general scheme is represented in figure 2, to control a drilling process carried out by means of a system (1) such as which is shown in Figure 1, in which an accelerometer (9) arranged on the drill bit (6) of a machine tool (2) is observed. The part to be drilled (6) is located on a dynamometer platform (8). Finally, the CNC (3) controlling the operation of the machine tool (2) is connected to a PCI (4) by means of a connection means, which in this case is an MPI network (5). In Figure 2, the reference number 10 represents the fuzzy controller.
  • the fuzzy control performs actions in real time to modify the advance speed / of the bit (6).
  • the manipulated or output variable is the increment of the feed rate (Af, as a percentage of the initial value programmed in the CNC machine).
  • the error and output vectors are:
  • ⁇ F is the error in the resultant force (in newtons)
  • a 2 F is the change in the error in the resulting force (in newtons)
  • K e , K ce and GC are scale factors for the inputs (error and change in the error) and output (change in the speed of advance) respectively.
  • the torque values applied by the motors that move the bit (6) are acquired from an open architecture CNC (3).
  • the reference value of the force (F r ) is obtained from the combination bit (6) / material of the piece (7).
  • the error in the resulting force and the change in the error in the resulting force are calculated as:
  • the blurred partition of speech universes is based on prior knowledge and experimental results.
  • the universe of Speech input variables consist of three membership functions of triangular shape in the range of [-150, 150].
  • the universe of discourse of the output variables consists of five trapezoidal belonging functions, equally spaced, and established according to the maximum modification of the nominal advance speed under nominal cutting conditions (around 10% for the speed of nominal advance).
  • Figure 3 shows the resulting fuzzy partition.
  • Three fuzzy sets of three and five are used for the inputs and output. They are, NB, big negative; NM, negative medium; ZE, zero; PM, positive medium; and PB, large positive.
  • the process of selecting the belongings is the result of combining the process of trial and error with several empirical design guidelines obtained mostly from the knowledge of the process and from simulation studies.
  • the membership functions are essential to achieve adequate control.
  • the resulting system is the sum of a non-linear global controller (static part) and a non-linear local PLC controller (which changes dynamically with respect to the input space). Therefore, this type of membership function is relevant to deal with processes of non-linear behavior, such as the drilling process.
  • the selection of the type of fuzzy input and output sets is a key step in the design of a fuzzy controller.
  • the sub-product composition operator is selected for the interference compositional rule.
  • the algebraic product operation and developing the fuzzy implications and applying the maximum binding operation one obtains, considering the particular case of the "Sup-Product" inference method and applying the T2 (product) standard:
  • Af (DW) is the crisp value ⁇ f ⁇ ( ⁇ w ⁇ ) to a clear input given ( ⁇ F ⁇ , ⁇ 2 Fj), and ⁇ R ( ⁇ f ⁇ ) ( ⁇ R ( ⁇ w ⁇ )) is the function of belonging to the union.
  • the control scheme considering only as an action variable ⁇ f.
  • the control action generated for each sampling instant defines the final actions that are applied.
  • the strategy used to compute / and ⁇ determines what type of fuzzy regulator is used.
  • the output scale factor (GC) multiplied by the control action generated at each sampling time provides the final actions that will be applied to the cutting parameters of the CNC machine (2, 3).
  • the present invention admits the possibility that the control is carried out through network means with relatively large delays, either a field bus or other possibilities, such as Internet, Ethernet, etc.
  • the network medium is the field bus MPI (5), very similar to PROFIBUS, which operates according to a master-slave scheme between devices connected to a network. Each slave is assigned a set of slaves that polls periodically. The access to the network, in this case an MPI network (5), is regulated by a witness that moves between the masters.
  • This type of distributed control systems are affected by instabilities due to the retransmission of data by slaves and the asynchronous activities carried out by teachers.
  • the multipoint interface (MPI) or MPI network (5) is a programming interface for the SIMATIC S7 series from Siemens that resembles the PROFIBUS protocol.
  • the interface of the MPI network (5) is identical to that of the standard PROFIBUS RS485.
  • the transmission speed can be increased up to 12 MB / sec with the use of an MPI network (5).
  • the architecture of the control system for a CNC machine (2, 3) based on an MPI network is shown in Figure 1.
  • L max The maximum global delay (L max ) is around 0.4 seconds, including both the dead time process (delayed) and the delay introduced by the network (L mechanical network) -
  • the fuzzy control procedure described in the present example works even with the delays introduced by the MPI network (5).
  • the data acquisition system consists of a dynamometer, a load amplifier and the hardware and software modules described in figure 5.
  • the cutting forces are measured with a piezoelectric dynamometer Kistler 9257B mounted between the piece and the drill table.
  • the electrical load is then transmitted to the four-channel Kistler 5070A amplifier through a network cable.
  • the interface hardware module consists of a network block and a 16-channel AT-MIO-16E-1 A / D acquisition card with a maximum sampling frequency of 500 kHz.
  • the A / D device transforms the analog signal into a digital signal, so that the Simulink program can read the data and the force components for the three axes can be obtained, processed and displayed.
  • Real-Time Windows Target (RTWT) allows real-time execution of Simulink models.
  • the output of the fuzzy controller is connected to the process through an MPI network (5) with a default transmission speed of 187.5 Kbits / s.
  • a CP5611 card connects the PC that implements the fuzzy control procedure.
  • the interface of the MPI network (5) is a master client (active station) and manages exchanges with Siemens S7 PLCs.
  • the system has two masters, the man-machine control (MMC 103) and a numerical control unit (NCU 573.3)
  • the fuzzy control is tested by simulation using the Simulink software.
  • the adjustment of the fuzzy controller is based on an optimization criterion of a merit index.
  • the objective is to obtain the optimal parameters for the input scale factors where the merit index or ITAE cost function is minimal.
  • the integral of time due to absolute error (ITAE) or index of merit describes the quality of the response of the system to an external disturbance.
  • ITAE absolute error
  • index of merit describes the quality of the response of the system to an external disturbance.
  • the optimization is done here using a simplex search algorithm for unrestricted optimization.
  • the cost function is evaluated by simulation, so a process model is necessary.
  • the adjustment is carried out using the Matlab / Simulink software and the optimization tools.
  • the ITSE criterion is 3.0432 x 10 5 , and the maximum overshoot or overshoot is 0.30%.
  • the results of the simulation are shown in figures 6 and 7.
  • the response to step of the system is shown in figure 8. It is observed in it how the resulting force is optimally regulated with respect to the reference value.
  • the delay L of the MPI network (5) is simulated assuming a random delay between 0 and 0.6 seconds, and 100 simulation tests are carried out for each set of simulation parameters.
  • the maximum, minimum and average value of the ITAE index are then calculated.
  • the maximum overshoot or overshoot was -0.86% and the ITAE index was 289.87.
  • the maximum overshoot or overshoot was -0.2131% and the ITAE was 389.30.
  • the worst case occurs for the maximum random delay, 0.5966 seconds, where the maximum overshoot or overshoot is 1.38% and the ITAE is 697.30.
  • Figures 9 and 10 show the simulation results corresponding to the response of the system to the step for the three delays.
  • Figure 9 represents the behavior of the resultant force
  • Figure 10 represents the variations of the forward speed in each case. It is deduced from the simulation results that the optimum adjustment achieved in the simulation guarantees a transient response without maximum overshoot or overshoot, with a rise time of around 0.7 seconds.
  • the execution example is completed with a test using a machine tool (2) Kondia HS1000 equipped with a CNC (3) Sinumerik 840D.
  • the drill bit (6) used is a 10 mm Sandvik. diameter.
  • the material of the piece (7) to be drilled is GGG40 with a hardness number of 233 HB.
  • Figure 13 shows the experimental results that correspond to the drilling of the piece (7) GGG40 with the drill (6) of 10 mm. diameter.
  • Figures 14 and 15 represent the behavior of the controlled and uncontrolled force and the variations in the speed of advance for both cases analyzed.
  • the advance speed is gradually decreased when the depth increases, and the resulting force is suitably regulated in the given reference.
  • the good behavior of the transitory response is verified by the ITAE (17.72), ITSE (9.23) and IAE (16.46) indices.
  • the drilling time increases by 5.75% when controlling the drilling force.
  • ANFIS implements the Takagi-Sugeno model for the structure of the If-Then rules of the fuzzy system.
  • the architecture of ANFIS which is represented in Figure 16, has five layers.
  • the nodes represented with squares are nodes whose parameters are adjustable, while the nodes represented by circles are fixed nodes.
  • ANFIS is presented for the particular case of a system of one input and one output.
  • each node In the first layer smearing occurs.
  • the output of each node is represented by Ol, i, where i is the i-th node of layer I:
  • the output is the result of applying the maximum rule.
  • the third layer normalizes the importance of each rule:
  • the fourth layer calculates the consequent, or what is the same, the function of Takagi-Sugeno for each fuzzy rule, where m and c are the consequent parameters.
  • ANFIS uses as a learning strategy the retro-propagation or backward propagation of errors to determine the antecedent of the rules.
  • the consequent of the rule is estimated by means of the method of least squares.
  • the input models are propagated and the optimal consequents are estimated by an iterative procedure of least squares, while the antecedents remain fixed.
  • the error backpropagation procedure is used to modify the background while the consequents remain constant. This procedure is repeated until the stop condition is reached (error criterion).
  • the control by internal model uses a closed-loop control scheme in which both a direct model (G M ) of the process to be controlled (G t ) located in parallel with it, intervene. as well as an inverse model (G M ').
  • the delay is represented by L and the disturbances by d (figure 17).
  • the filter Gf is included in the control system in order to reduce the high frequency gain and improve the robustness of the system. It also serves to smooth the rapid and abrupt changes in the signals, improving the response of the controller:
  • An IMC scheme can be implemented using an ANFIS neuroborpore system.
  • the ANFIS system is trained to learn the dynamics of the process through input-output data. In this way the so-called direct model is obtained.
  • Another ANFIS system is trained to learn the inverse dynamics of the process and to function as a non-linear controller. In this way the so-called inverse model is obtained.
  • the forward speed has been considered as the input variable and the average cutting force as the output variable for the direct model.
  • an initial model is created by introducing a set of training data (178 data) to the neuroborbary system to subsequently adjust the parameters of the model initially created by introducing a set of test data into the neuroborbary system. (209 data) different from the previous ones.
  • Drills are made, using a system analogous to that of Example 1, on specimens of nodular cast iron GGG40, material widely used in the aerospace industry.
  • the nominal operating conditions were rotational speed of 870 rpm, initial speed of 100 mm / min, and depth of cut of 15 mm.
  • certain parameters are modifiable such as the number of membership functions in the smudging, the class or type of said functions, as well as the order of the Takagi-Sugeno rules of unbundling.
  • the accuracy of the model can be improved by changing the parameters of the learning process (hybrid learning or error backpropagation, number of iterations, step size, etc.).
  • the choice of the correct variables and the optimal parameters has been made based on obtaining a balance between the error criterion of the square root of the mean square error (RMSE) and the dynamic response of the model.
  • RMSE mean square error
  • the training parameters were 100 iterations of the algorithm (a greater number of iterations causes an overtraining and, as a result of this, unwanted peaks in the system output), hybrid training mode (only with backpropagation of the error the value of desired output) and step size of 0.01 (the increase of this value does not produce a significant improvement of the output and a greater computation of operations).
  • the models were obtained by means of a tool provided by the well-known Matlab software.
  • the training time in the models is around 0.14 seconds for both the direct model and the inverse model.
  • RMSE mean square error
  • Tests are carried out in a drilling system (2) comprising a machine tool (2) Kondia HS1000 equipped with a
  • the control has been carried out through a PC (4) that is connected to the CNC (3) through an MPI network (5), as shown in Figure 22.
  • the models and the control scheme are implemented in Simulink Real-Time Windows Target software.
  • the control system has programmed a safety mechanism in the CNC (3) that keeps the speed of advance constant on the process.
  • TWNFI is the acronym that collects the literature for a neuro-fuzzy transductive and dynamic inference system, originally proposed by Song and Kasabov, which implies the creation of particular local models for each sub-space of the problem, using a modification of the Euclidean distance .
  • each of the input data is normalized according:
  • ⁇ j is the average and ⁇ j is the standard deviation of the known data set or training set.
  • the customized local model is created from the data of the training set closest to each new input data.
  • the weighted Euclidean distance is used:
  • the size of this subset (N q ) is a parameter of the algorithm.
  • the weights (W j ) of each component of the input vector (whose values are between 0 and 1) are obtained in a subsequent process of adjustment of the model and reflect the importance of each variable. Initially, all have the unit value.
  • TWNFI employs a Mamdani inference engine whose fuzzy membership functions are Gaussian, both in the background and in the consequential if-then rules.
  • fuzzy membership functions are Gaussian, both in the background and in the consequential if-then rules.
  • back-propagation in English
  • based on least squares and descent by gradient to optimize its parameters.
  • the algorithm starts with an initial set for the first data.
  • the algorithm starting from the Euclidean distances and the grouping threshold value (D t hr), adds it to an existing set (updating the center and the radius thereof) or creates a new set.
  • the resulting groups or clusters are circular and are used to create the Gaussian membership functions.
  • the center of the set is taken as center of the Gaussian function, and the radius as width (figures 25, 26 and 27).
  • the lth rule has the form:
  • the m and n centers as well as the widths a and ⁇ are obtained as a result of the ECM grouping algorithm, while the parameter ⁇ y is chosen by design (initially with a unit value) and represents the weight each of the functions of belonging to the input . All these parameters and other important factors are adjusted later with the algorithm of backward propagation of the errors as described by Song and Kasabov.
  • IMC internal model control
  • the TWNFI algorithm is used to create the models (direct and reverse) online. Before each new entry to the control scheme, both models are calculated. By means of this neuro-fuzzy inference technique, the creation of the inverse model is simpler and always offers a solution.
  • the direct model must be trained to learn the dynamics of the process.
  • a TWNFI system is used with a set of training composed of input-output data, in which the inputs correspond to forward speed values, while the cutting force is used as the output variable (figure 29).
  • the training data of both the direct model and the inverse model have been obtained from real drilling operations with specimens of material GGG40 under the conditions that appear in the table that is shown a few pages below in this document. This set of data does not have to be very extensive since representative values of each operating region are sufficient.
  • the inverse models G M 'and direct G M are auto-regressive and moving average (ARMA) since they use previous states of the input and output variables to get a better approximation in the force-advance relationships of the training set of the TWNFI algorithms:
  • the degree of accuracy of the models will be determined by Ia choice of certain parameters of the TWNFI algorithm such as number of nearest neighbors, number of iterations and learning rates of the error propagation algorithm, threshold value of the grouping of sets (parameter of the grouping algorithm used), etc.
  • parameters of the TWNFI algorithm such as number of nearest neighbors, number of iterations and learning rates of the error propagation algorithm, threshold value of the grouping of sets (parameter of the grouping algorithm used), etc.
  • the filter is incorporated into the control system in order to reduce the high frequency gain and improve the robustness of the control system. It also serves to smooth the rapid and abrupt changes in the signals, improving the response of the controller.
  • Figure 31 shows the control scheme by internal network model. In it, the layout of the direct and inverse models GM and GM ', respectively, can be observed. In addition, the GF filter and the drilling process represented by G t are shown . The delay (including the one introduced by the different levels of the network and the intrinsic to the drilling process) is included in block L. The issues related to the delay L and the architecture of the control system through a network media will be explained below.
  • Ethernet is being used in the field of industrial automation, due to the low cost, availability and high transmission speeds.
  • the main technical obstacle of Ethernet in industrial environments is its nondeterministic behavior, which makes it in principle inappropriate for applications with real time requirements. Ethernet does not consume time in the bus arbitration, but the collision of packages can cause delays in the sending and even loss of information. For these reasons, a priori, it is impossible to predict the delay in sending information.
  • the main difficulty of network control in general, and through Ethernet in particular, is that, although the control system is robust to the variations contemplated in the design, it may not be entirely tolerant of delays in communications not modeled
  • switched Ethernet whose network element is the switch
  • This embodiment of the invention addresses the control of the high performance drilling process through the switched Ethernet network technology, although the use of the Internet or other networks of similar maximum delays is also valid.
  • the first network level (15) has a computer PC1 (14) connected to the CNC (13) of open process architecture through a Profibus network (15) and using proprietary software. From the technical point of view the existence of proprietary software imposes restrictions on the connectivity to the open architecture CNCs (13). The model of the drilling process was obtained through this Profibus network (15). The maximum delay at this Profibus network level (15) is 0.4 seconds:
  • ⁇ S c is the delay in the communications of the sensor to PC1 (14)
  • T CA the delay in sending the control action of PC1 (14) to the CNC (13) and Drilling the intrinsic delay to the drilling process itself performed by the machine tool (12).
  • a second network level is also defined, in this case an Ethernet network (15 '), which connects another personal computer PC2 (14') to PC1 (14).
  • PC2 (14 ') incorporates free software and a real-time intermediary system (RT-CORBA).
  • R-CORBA real-time intermediary system
  • the TWNFI-CMI control system is finally implemented on this computer.
  • a security mechanism in PC1 (14) keeps the control action constant in the CNC (13).
  • Ts2 is the delay in sending data to PC2 (14 ') and T A2 is the delay in sending the control action of PC2 (14 ') to PC1 (14).
  • the control system obtained is applied to a drilling process.
  • different drilling tests have been performed on stainless steel specimens hardened by precipitation 17-4PH (martensilic), which is a material highly used in the naval and aerospace industry.
  • precipitation 17-4PH martensilic
  • the optimal conditions recommended by the manufacturers of drill bits for the drilling of this material, as well as other data of interest are presented in the following table.
  • the TWNFI algorithm that generates the direct and inverse personalized models only has in its training set data from tests performed on nodular casting specimens with GGG40 spherical graphite. It also tries to demonstrate in this work that the control is valid for another series of conditions for which it has not been trained. The characteristics that are operated with GGG40 material are also shown in the previous table in order to compare the differences of both materials.
  • a high-speed drilling system (11) comprising a machine tool (12) Kondia HS1000 equipped with a CNC (13) open Sinumerik 840D. Due to manufacturer restrictions, the communication with the open architecture CNC (13) must be carried out through a proprietary protocol based on the Profibus network (15).
  • PC1 (14) has a Windows 2000 operating system and the application for reading CNC variables (13) is developed in Labview.
  • the force is measured through a Kistler dynamometer platform
  • the control has been carried out from the PC2 (14 ') that is connected to the PC1 (14) previously commented through an Ethernet network (15').
  • the PC1 (14 ') is the TWNFI-CMI control system developed in C ++, performing the control over a platform in RT-Corba and under the RT-Linux operating system.
  • the TWNFI-CMI control system calculates the control action (f) based on the measurement of the received force and sends it to PC1 (14), which will later write the variable in the open architecture CNC (13).
  • the control action is wider in range (because it takes extreme values in the training set) but less changeable in time, which favors the performance of the team.
  • Figure 37 shows a control scheme corresponding to the PID closed loop control, which also includes a previous filter located before the control loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

The invention relates to a control method for drilling processes performed by a CNC machine (2, 3) controlled using a control means (4), in which the CNC machine (2, 3) and the control means (4) are connected by a network means (5), Lmax representing the maximum total delay involved in the drilling process. According to the invention, the control diagram is a simple closed loop diagram, the inner line of which comprises a block that represents the machining process, a fuzzy controller and scaling factors Ke, Kce and GC.

Description

PROCEDIMIENTO DE CONTROL BASADO EN LÓGICA BORROSA PARA PROCESOS DE TALADRADO PROCEDURE OF CONTROL BASED ON BLURRY LOGIC FOR DRILLING PROCESSES
D E S C R I P C I Ó ND E S C R I P C I O N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
El objeto principal de Ia presente invención es proporcionar procedimientos de control (borroso en lazo simple, por modelo interno neuro- borroso y PID lineal) para controlar de forma eficiente procesos de taladrado, de modo que se minimice el desgaste de Ia broca y se maximice Ia tasa de arranque de material.The main object of the present invention is to provide control procedures (single-loop blur, internal neuro-fuzzy model and linear PID) to efficiently control drilling processes, so as to minimize the wear of the drill bit and maximize it Ia rate of material removal.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Los procesos de taladrado tienen un impacto significativo en Ia producción en muchas industrias, como Ia industria aeroespacial, Ia automoción, etc. A pesar de ello, generalmente las condiciones del proceso de taladrado se eligen en general de un manual de datos para taladrado, y son necesarias Ia experiencia y habilidad del operador. Éste debe ajustar Ia velocidad de avance si el proceso es demasiado lento o inestable, si se produce una sobrecarga o si aparecen vibraciones.The drilling processes have a significant impact on the production in many industries, such as the aerospace industry, the automotive industry, etc. In spite of this, generally the conditions of the drilling process are generally chosen from a data manual for drilling, and the experience and skill of the operator are necessary. It must adjust the speed of advance if the process is too slow or unstable, if an overload occurs or if vibrations appear.
A medida que aumenta Ia profundidad del taladrado es más difícil conseguir Ia extracción de las virutas del orificio, y se produce un incremento de Ia fricción entre Ia broca y Ia pieza. Fuerzas y pares mayores también tienen efectos negativos, como un desgaste más rápido de Ia broca, aparición de vibraciones y riesgo de rotura. Aproximadamente a partir de una profundidad mayor de tres veces el diámetro de Ia broca no es suficiente Ia estrategia de control basada en Ia pericia del operador, y se requiere otro tipo de control de Ia fuerza en tiempo real. Además, un taladrado que no seAs the depth of the drilling increases, it is more difficult to obtain the extraction of the chips from the hole, and there is an increase in the friction between the bit and the piece. Forces and major pairs also have negative effects, such as faster wear of the drill, appearance of vibrations and risk of breakage. Approximately from a depth greater than three times the diameter of the bit, the control strategy based on the operator's skill is not sufficient, and another type of force control in real time is required. In addition, a drilling that is not
HOJA DE SUSTITUCIÓN (REGLA 26) controla adecuadamente desgasta innecesariamente Ia broca, disminuyendo su vida útil. Esto implica Ia necesidad de cambiar de broca con mayor frecuencia, Io que provoca Ia consiguiente pérdida de tiempo de producción.SUBSTITUTE SHEET (RULE 26) controls properly unnecessarily wears Ia bit, reducing its useful life. This implies the need to change the drill more frequently, which causes the consequent loss of production time.
Hasta el momento, el esfuerzo se ha dirigido fundamentalmente hacia el desarrollo de controladores adaptativos. Los controladores adaptativos, sin embargo, son frecuentemente demasiado lentos, ya que los parámetros se estiman en tiempo real y se ajustan las ganancias del controlador en función de ellos. Además, si no se ajustan cuidadosamente se pueden presentar comportamientos complejos e indeseables.So far, the effort has been directed mainly towards the development of adaptive controllers. Adaptive controllers, however, are often too slow, since the parameters are estimated in real time and the controller's gains are adjusted accordingly. Furthermore, if they are not adjusted carefully, complex and undesirable behaviors may occur.
Por tanto, existe en Ia técnica Ia necesidad de desarrollar estrategias de control para optimizar las condiciones de los procesos de taladrado, y particularmente para maximizar Ia vida útil de las brocas y Ia tasa de arranque de material.Therefore, there is a need in the technique to develop control strategies to optimize the conditions of the drilling processes, and particularly to maximize the useful life of the drills and the material removal rate.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
En el presente documento el término "mecanizado" hace referencia conjuntamente al fresado, taladrado, rectificado, torneado, y en general cualquier proceso cuyo objetivo sea el modificar Ia forma de una pieza sólida mediante Ia extracción de parte del material mediante el corte que Ia forma.In the present document, the term "machining" refers jointly to milling, drilling, grinding, turning, and in general any process whose objective is to modify the shape of a solid piece by extracting part of the material by cutting it .
Por otro lado, el término "taladrado" hace referencia aquí a cualquier proceso cuyo objetivo sea realizar un orificio circular en una pieza sólida. Se incluyen, por tanto, no solo procesos industriales de taladrado, sino también, por ejemplo, procesos de taladrado efectuados en el campo de Ia medicina, como por ejemplo en huesos o dientes.On the other hand, the term "drilling" refers here to any process whose objective is to make a circular hole in a solid piece. Therefore, not only industrial drilling processes are included, but also, for example, drilling processes carried out in the field of medicine, such as bones or teeth.
La herramienta giratoria que realiza físicamente el orificio se denomina "broca", mientras que se denomina "pieza" al objeto que se perfora. Como se ha mencionado anteriormente, una pieza puede ser una plancha metálica, el diente de un paciente, u otros. Además, se define el término "programa pieza" como el conjunto de acciones que se desea que una broca realice sobre Ia pieza a taladrar. Por ejemplo, un programa pieza podría ser realizar un orificio de diámetro D y profundidad H a una velocidad de avance V.The rotating tool that physically makes the hole is called "bit", while the object that is drilled is called "piece". As mentioned above, a piece can be a metal plate, the tooth of a patient, or others. In addition, the term "piece program" is defined as the set of actions that a drill is desired to perform on the piece to be drilled. For example, a part program could be to make a hole of diameter D and depth H at a forward speed V.
El término "sensor interno" hace referencia a un sensor incluido de serie en una máquina-CNC, en contraposición con el término "sensor externo", que hace referencia a un sensor adicional que instala en Ia máquina-CNC con un fin determinado.The term "internal sensor" refers to a sensor included as standard in a CNC machine, as opposed to the term "external sensor", which refers to an additional sensor installed in the CNC machine for a specific purpose.
De acuerdo con esto, instalación para taladrado típica comprende:According to this, typical drilling installation comprises:
a) Una máquina-CNC: En el presente documento, se entenderá que Ia máquina-CNC comprende una máquina herramienta y un CNC, ambos proporcionados por el fabricante.a) A CNC-machine: In the present document, it will be understood that the CNC-machine comprises a machine tool and a CNC, both provided by the manufacturer.
La máquina herramienta es el aparato que realiza físicamente el proceso de taladrado, y comprende una base a Ia que se acopla una broca que, gracias a unos motores eléctricos, avanza y gira al mismo tiempo, de modo que se horada el material de una pieza que se ubica bajo Ia broca. Las dos variables que definen el proceso de taladrado son, por tanto, Ia velocidad longitudinal de avance y Ia velocidad de giro de Ia broca. Además, normalmente el fabricante de Ia broca especifica una profundidad máxima de taladrado que no es aconsejable superar.The machine tool is the apparatus that physically performs the drilling process, and comprises a base to which a drill is attached which, thanks to electric motors, advances and rotates at the same time, so that the material of a piece is pierced. which is located under the drill. The two variables that define the drilling process are, therefore, the longitudinal speed of advance and the speed of rotation of the drill. In addition, normally the manufacturer of the drill specifies a maximum drilling depth that is not advisable to overcome.
Para conocer Ia fuerza que Ia broca aplica sobre Ia pieza, Ia máquina herramienta suele incluir un conjunto de sensores internos que miden variables del proceso directa o indirectamente. En el presente documento, el término "fuerza" o "fuerza resultante" hace referencia a Ia suma de las tres componentes de Ia fuerza que efectúa Ia broca sobre Ia pieza. Es común, por ejemplo, que las máquinas herramienta dispongan de sensores internos que miden Ia intensidad de corriente suministrada a cada uno de los motores, intensidad que a su vez es proporcional al par aplicado por dichos motores. Otras variables disponibles (internamente) son Ia potencia consumida y el par de corte. La máquina tiene también sensores de posición y de velocidad de los ejes (para colocar Ia broca en Ia posición donde debe taladrar) y encoders para Ia conocer velocidad de giro. El CNC usa estos sensores para mantener constantes las velocidades de avance y de giro por medio de los lazos de control internos al CNC, así como Ia posición de Ia broca. Otros sensores internos que suelen incluir son sensores de temperatura, etc.In order to know the force that the bit applies to the piece, the machine tool usually includes a set of internal sensors that measure process variables directly or indirectly. In the present document, the term "force" or "resultant force" refers to the sum of the three components of the force that the drill performs on the piece. It is common, for example, that the machine tools have internal sensors that measure the intensity of current supplied to each of the motors, which intensity is in turn proportional to the torque applied by said motors. Other available variables (internally) are the power consumed and the cutting torque. The machine also has position and speed sensors for the axes (to place the drill bit in the position where it must drill) and encoders for the speed of rotation. The CNC uses these sensors to keep constant the speeds of advance and rotation by means of the internal control loops to the CNC, as well as the position of the drill bit. Other internal sensors that usually include temperature sensors, etc.
Por otro lado, dependiendo de Ia arquitectura del CNC, utilizada por su fabricante, suele existir en el bajo nivel un autómata programable o PLC. En Ia actualidad el CNC es básicamente un computador de arquitectura cerrada (acceso restringido a algunas variables y parámetros internos) o abierta (acceso a todas las variables y parámetros) que controla el funcionamiento de Ia máquina herramienta para que realice un programa pieza de taladrado u otro programa pieza deseado. El CNC está conectado a Ia máquina herramienta de manera que procesa el programa para Ia fabricación de Ia pieza (programa pieza). A partir de este programa los algoritmos del CNC (de interpolación, de control de posición, velocidad, trayectoria) requieren de las señales de los sensores instalados en Ia máquina herramienta y ejecutan el envío de las órdenes necesarias para su funcionamiento, como las intensidades de los motores, etc. El CNC es proporcionado por el fabricante de Ia máquina herramienta, de tal forma que el término "máquina-CNC", en el presente documento, hace referencia conjunta a Ia máquina herramienta y al CNC.On the other hand, depending on the architecture of the CNC, used by its manufacturer, usually exists at the low level a PLC or PLC. Currently, the CNC is basically a computer with closed architecture (access restricted to some variables and internal parameters) or open (access to all variables and parameters) that controls the operation of the machine tool so that it can carry out a program of drilling another desired piece program. The CNC is connected to the machine tool so that it processes the program for the manufacture of the piece (part program). From this program the CNC algorithms (interpolation, position control, speed, trajectory) require the signals from the sensors installed in the machine tool and execute the sending of the necessary commands for its operation, such as the intensities of the engines, etc. The CNC is provided by the machine tool manufacturer, in such a way that the term "CNC machine", in this document, refers jointly to the machine tool and the CNC.
b) Un medio de control: Se trata normalmente de un ordenador conectado al CNC que Ie envía el programa pieza que se desea ejecutar. Además, el medio de control recibe información de los sensores internos de Ia máquina-CNC, a través de un medio de red, o, adicionalmente, de sensores externos instalados en Ia máquina herramienta. Además, desde el medio de control se pueden monitorizar (y en algunas ocasiones modificar) parámetros y variables de funcionamiento interno del CNC relacionados con Ia ejecución del programa pieza tales como Ia velocidad de avance y Ia velocidad de giro.b) A means of control: It is usually a computer connected to the CNC that sends the part program to be executed. In addition, the control means receives information from the internal sensors of the CNC-machine, through a network medium, or, additionally, from external sensors installed in the machine tool. Furthermore, parameters and variables of internal CNC operation related to the execution of the part program such as the speed of advance and the speed of rotation can be monitored (and in some cases modified) from the control means.
c) Un medio de red: El medio de control está conectado al CNC a través de un medio de red, que puede ser un bus de campo, perteneciente a Ia familia PROFIBUS u otros. Son posibles otras configuraciones del sistema que permiten Ia utilización de medios de red como Ethernet o Internet. En cualquier caso, el medio de red se caracteriza por el retardo máximo que introduce en Ia transmisión de señales de monitorización y control entre el CNC y el medio de control, que se denominará Lmedio red- El retardo global del proceso de taladrado Lmax será, por tanto, Ia suma del retardo introducido por el medio de red Lmedio red y el retardo debido al tiempo muerto del proceso de taladrado Ltaladrado, es decir, Lmax= Ltaladrado + Lmedio redc) A network medium: The control means is connected to the CNC through a network medium, which can be a field bus, belonging to the PROFIBUS family or others. Other system configurations that allow the use of network media such as Ethernet or Internet are possible. In any case, the network medium is characterized by the maximum delay it introduces in the transmission of monitoring and control signals between the CNC and the control means, which will be called L gave me the network- The overall delay of the drilling process L max , therefore, the sum of the delay introduced by the network means L gave me network and the delay due to the dead time of the drilling process L drilled, ie L max = L drilled + L network
El presente documento describe procedimientos de control para procesos de taladrado de alto rendimiento basados en controladores borrosos, neuro-borrosos y PID, cuyo objetivo es maximizar el arranque de material y Ia vida útil de Ia broca, y para ello tratan de mantener constante Ia fuerza resultante de Ia broca sobre Ia pieza.The present document describes control procedures for high performance drilling processes based on fuzzy, neuro-fuzzy and PID controllers, whose objective is to maximize the material start-up and the life of the bit, and for this they try to keep the force constant. resulting from the bit on the piece.
La lógica borrosa se utiliza para Ia resolución de una variedad de problemas, principalmente los relacionados con control de procesos industriales complejos y sistemas de decisión en general, Ia resolución Ia compresión de datos. Estos sistemas son generalmente robustos y tolerantes a imprecisiones y ruidos en los datos de entrada. La lógica borrosa se basa en conjuntos borrosos, a cuyos elementos se asocia una función de pertenencia que indica en qué medida el elemento forma parte de ese conjunto borroso. Las formas de las funciones de pertenencia más típicas son trapezoidal, triangular y gaussiana. Es decir, Ia lógica borrosa se basa en reglas heurísticas de Ia forma Sl (antecedente)The fuzzy logic is used for the resolution of a variety of problems, mainly those related to the control of complex industrial processes and decision systems in general, the resolution Ia compression of data. These systems are generally robust and tolerant of inaccuracies and noise in the input data. Fuzzy logic is based on fuzzy sets, whose elements are associated with a membership function that indicates to what extent the element is part of that fuzzy set. The forms of the most typical membership functions are trapezoidal, triangular and Gaussian. That is, the fuzzy logic is based on heuristic rules of the form Sl (antecedent)
ENTONCES (consecuente), donde el antecedente y el consecuente son también conjuntos borrosos, ya sea puros o resultado de operar con ellos.THEN (consequential), where the antecedent and consequent are also fuzzy sets, either pure or the result of operating with them.
Las reglas que determinan Ia pertenencia de los elementos a los conjuntos borrosos se basa, en el caso de procesos de taladrado, en Ia experiencia del operador.The rules that determine the belonging of the elements to the fuzzy sets is based, in the case of drilling processes, on the operator's experience.
Control borrosoBlurry control
Así, de acuerdo con un primer aspecto de Ia presente invención, se describe un procedimiento de control en bucle cerrado, basado en un controlador borroso, para procesos de taladrado realizados por una máquina-CNC controlada desde un medio de control, donde Ia máquina-Thus, according to a first aspect of the present invention, a closed-loop control method, based on a fuzzy controller, is described for drilling processes performed by a CNC-machine controlled from a control means, where the machine-
CNC y el medio de control están conectados por un medio de red, y donde el retardo global máximo del proceso de taladrado es Lmax. El medio de red puede ser una red MPI, Profibus, Ethernet, Internet, u otra, y su retardo máximo global Lmax, de acuerdo con realizaciones preferidas de Ia invención, es mayor respectivamente de 0,2 y 0,4 segundos.CNC and the control medium are connected by a network medium, and where the maximum overall delay of the drilling process is L max . The network medium can be an MPI, Profibus, Ethernet, Internet, or other network, and its global maximum delay L max , according to preferred embodiments of the invention, is greater respectively 0.2 and 0.4 seconds.
La línea interna del bucle del esquema de control correspondiente al primer aspecto de Ia invención comprende, fundamentalmente, unos bloques correspondientes a factores de escala para las entradas y salidas del proceso de taladrado, también conocidos como ganancias ó parámetros del controlador, un bloque correspondiente al controlador borroso y un bloque que representa el proceso de taladrado.The internal line of the loop of the control scheme corresponding to the first aspect of the invention comprises, fundamentally, blocks corresponding to scale factors for the inputs and outputs of the drilling process, also known as gains or parameters of the controller, a block corresponding to the fuzzy controller and a block representing the drilling process.
El proceso de taladrado se representa mediante una función Gt(s) que modela Ia dinámica del proceso de taladrado. En esta función se incluye un retardo máximo Lmax que incluye el tiempo muerto del proceso de taladrado (retardo intrínseco del proceso, Ltaiadrado) y el retardo debido al medio de red (Lmedio red)- La función Gt(s) se puede obtener utilizando métodos conocidos en Ia técnica a partir de Ia realización de pruebas y Ia toma de datos, bien mediante los sensores internos pertenecientes a Ia máquina-CNC, o bien mediante sensores externos instalados ad hoc.The drilling process is represented by a function G t (s) that models the dynamics of the drilling process. This function includes a maximum delay L max that includes the dead time of the drilling process (intrinsic delay of the process, delayed) and the delay due to the network medium (Lmedio red) - The function Gt (s) can be obtained using methods known in the art from the performance of tests and the taking of data, either by internal sensors belonging to the CNC-machine, or by external sensors installed ad hoc.
El controlador borroso se basa en reglas que emulan las acciones del operador durante el control de un proceso de taladrado, con Ia ventaja de que el controlador borroso es mucho más robusto (menos sensible a las perturbaciones que se producen tales como variaciones en Ia dureza del material, desgaste de Ia herramienta, etc) en entornos industriales que otros reguladores. Además es rápido y preciso en su aplicación. El controlador borroso incluye tres etapas: emborronado, inferencia y desemborronado.The fuzzy controller is based on rules that emulate the actions of the operator during the control of a drilling process, with the advantage that the fuzzy controller is much more robust (less sensitive to the disturbances that occur such as variations in the hardness of the material, wear of the tool, etc) in industrial environments than other regulators. It is also fast and precise in its application. The fuzzy controller includes three stages: smudging, inference and desemborronado.
En el emborronado o borrosificación se convierten las entradas de unidades físicas o adimensionales a valores de pertenencia. En Ia inferencia se procesan las entradas y con mecanismo conocido (Sup-Min, Sup-Prod, etc..) se obtiene Ia salida. Finalmente Ia salida se convierte a unidades físicas (porcientos, incrementos en velocidades, desplazamientos, etc) en Ia etapa de desemborronado o desborrosificación.In the smearing or blurring, the entries of physical or dimensionless units are converted into membership values. In the inference the inputs are processed and with known mechanism (Sup-Min, Sup-Prod, etc ...) the output is obtained. Finally, the output is converted to physical units (percents, increases in speeds, displacements, etc.) in the unbundling or de-busting stage.
Las reglas se obtienen del operador y luego en controladores de dos entradas y una salida se amplían a bases de 9, 25 o 49 reglas. Un procedimiento para diseñar estas bases de reglas es utilizar plantillas conocidas de estas bases de reglas sobre las que se modifican, añaden y eliminan determinadas reglas dependiendo de Ia aplicación y el conocimiento técnico acerca del proceso de taladrado.The rules are obtained from the operator and then in controllers of two inputs and one output are extended to bases of 9, 25 or 49 rules. A procedure for designing these rule bases is to use known templates of these rule bases on which certain rules are modified, added and eliminated depending on the application and technical knowledge about the drilling process.
La implementación suele ir desde una tabla de búsqueda con elementos numéricos (más rápido y menos preciso ya que Ia tabla tiene una tamaño fijo con un número de elementos predefinidos) hasta un procedimiento computacional que calcula en tiempo real Ia salida (menos rápido y más preciso). Es equivalente a un programa de computador que recibe dos entradas y ofrece una salida siendo determinista (ante las mismas entradas siempre se producen las mismas salidas), invariante en el tiempo (no cambia) y no lineal (relación no lineal entre las entradas y Ia salida).The implementation usually goes from a search table with numerical elements (faster and less precise since the table has a fixed size with a number of predefined elements) until a computational procedure that calculates in real time the output (less fast and more precise). It is equivalent to a computer program that receives two inputs and offers an output being deterministic (the same outputs always occur at the same inputs), invariant in time (does not change) and non-linear (non-linear relationship between inputs and exit).
En cuanto a los factores de escala, considerando dos entradas y una salida, suelen ser uno para cada entrada y Ia salida. Estos tres factores de escala constituyen las ganancias del controlador e influyen de forma decisiva en el funcionamiento deseado (óptimo) del procedimiento de control. Se suelen ajustar los tres valores por diferentes procedimientos, aunque el ajuste de los dos factores de escala de las entradas es suficiente para obtener el funcionamiento deseado del controlador.As for the scale factors, considering two inputs and one output, they are usually one for each input and the output. These three scale factors constitute the controller's gains and decisively influence the desired (optimal) operation of the control procedure. The three values are usually adjusted by different procedures, although the adjustment of the two scaling factors of the inputs is sufficient to obtain the desired operation of the controller.
Así, para ajustar el bucle de control sólo es necesario calcular los valores óptimos de los factores de escala, que se obtienen a partir de:Thus, to adjust the control loop it is only necessary to calculate the optimal values of the scale factors, which are obtained from:
- el conocimiento de Ia función Gt(s) que modela el proceso de taladrado,- the knowledge of the function G t (s) that models the drilling process,
- el conocimiento del retardo máximo Lmax, que es Ia suma del retardo Lmedio red provocado por el medio de red y el retardo debido al tiempo muerto del proceso de taladrado Uaiadrado- De acuerdo con una realización preferida de Ia invención, el retado máximo de Ia red es mayor de 0,2 segundos, y mayor de 0,4 segundos de acuerdo con una realización más preferida de Ia invención.- the knowledge of the maximum delay L max , which is the sum of the delay Medium network caused by the network means and the delay due to the dead time of the drilling process Unedited- According to a preferred embodiment of the invention, the maximum challenge of The network is greater than 0.2 seconds, and greater than 0.4 seconds according to a more preferred embodiment of the invention.
- Ia utilización de un índice de mérito (también conocido como función de coste) que se desea minimizar, tal como Ia integral de valor absoluto del error (IAE), Ia integral de valor absoluto del error por el tiempo (ITAE), Ia integral de error cuadrático (ISE) y Ia integral del error cuadrático por el tiempo (ITSE), por solo citar algunos índices. La minimización de estos índices permite Ia optimización del proceso tales como maximizar Ia tasa de arranque, maximizar Ia vida útil de Ia broca, minimizar las vibraciones, etc.- The use of a merit index (also known as a cost function) that one wishes to minimize, such as the integral of the absolute value of the error (IAE), the integral of absolute value of the error by time (ITAE), the integral of quadratic error (ISE) and the integral of the squared error by time (ITSE), just to mention some indices. The minimization of these indices allows the optimization of the process, such as maximizing the starting rate, maximizing the useful life of the bit, minimizing vibrations, etc.
En primer lugar, se realiza un ajuste inicial en el que se asigna un valor 1 a todos los factores de escala, aunque a partir del conocimiento técnico del proceso se pueden asignar otros valores iniciales. Posteriormente se obtienen los valores de los factores de escala que minimizan uno de los criterios anteriormente mencionados. De este modo se ajusta o sintoniza el controlador con los valores óptimos de estos factores de escala para el correspondiente índice de mérito (índice de comportamiento o función de coste). Se utilizan métodos conocidos, como el método de Nelder-Mead, temple simulado, entropía cruzada, algoritmos genéticos, u otros.First, an initial adjustment is made in which a value of 1 is assigned to all the scale factors, although other initial values can be assigned from the technical knowledge of the process. Subsequently, the values of the scale factors that minimize one of the aforementioned criteria are obtained. In this way, the controller is adjusted or tuned to the optimal values of these scale factors for the corresponding merit index (behavior index or cost function). Known methods are used, such as the Nelder-Mead method, simulated temple, crossed entropy, genetic algorithms, or others.
Además, de acuerdo con una realización preferida de Ia invención, se combina el control anticipativo con el controlador borroso, mediante Ia adición de un bloque que relaciona el valor de referencia o prescrito (valor de consigna o de referencia que se desea permanezca constante durante el proceso) con el factor de escala (ganancia) de Ia salida. De este modo el factor de escala de Ia salida es el resultado de multiplicar el valor de referencia por una constante (para el taladrado, k=0,0005). De este modo, siempre que cambie Ia referencia o el valor prescrito deseado cambiará el factor de escala de Ia salidaIn addition, according to a preferred embodiment of the invention, the anticipatory control is combined with the fuzzy controller, by adding a block that relates the reference or prescribed value (reference or reference value that is desired to remain constant during the process) with the scale factor (gain) of the output. In this way, the scale factor of the output is the result of multiplying the reference value by a constant (for drilling, k = 0.0005). In this way, whenever the reference or the prescribed prescribed value changes, the scale factor of the output will change
Control Neuro- BorrosoNeuro-Blurry Control
Por otro lado, un segundo aspecto de Ia presente invención describe un procedimiento de control por modelo interno (IMC) basado en controladores neuro-borrosos para procesos de taladrado realizados por una máquina-CNC controlada desde un medio de control, donde Ia máquina- CNC y el medio de control están conectados por un medio de red, y donde el retardo global máximo del proceso de taladrado es Lmax. De acuerdo con realizaciones preferidas de Ia invención, los parámetros que definen los controladores neuro-borrosos se determinan de forma que se minimice un índice de mérito, como por ejemplo el IAE, ITAE, ISE y ITSE. Además, el medio de red puede ser una red MPI, PROFIBUS, Ethernet, Internet, y en general cualquier medio de red utilizado en Ia industria. El medio de conexión se caracteriza por su retardo máximo global Lmax, que en realizaciones preferidas de Ia invención es mayor de 0,2 segundos, y en otra realización aún más preferida de Ia invención, Lmax es mayor de 0,4 segundos.On the other hand, a second aspect of the present invention describes a control method by internal model (IMC) based on neuro-fuzzy controllers for drilling processes performed by a CNC machine controlled from a control means, where the CNC machine and the control means are connected by a network means, and where the maximum overall delay of the drilling process is L max . According to preferred embodiments of the invention, the parameters that define the neuro-fuzzy controllers are determined in such a way that a merit index is minimized, such as, for example, the IAE, ITAE, ISE and ITSE. In addition, the network medium can be an MPI network, PROFIBUS, Ethernet, Internet, and in general any network medium used in the industry. The connecting means is characterized by its global maximum delay L max , which in preferred embodiments of the invention is greater than 0.2 seconds, and in another even more preferred embodiment of the invention, L max is greater than 0.4 seconds.
El IMC es un aporte bien fecundo y establecido en Ia literatura para diseñar controladores de modo que el modelo del proceso es utilizado de forma explícita (síntesis directa) en el procedimiento de diseño de un controlador. No obstante cuando no esta disponible el modelo matemático del proceso Gt(s) o este es muy sofisticado, el IMC puede valerse de un modelo explícito obtenido por identificación experimental (conocido como aporte "caja negra").The BMI is a well-established contribution in the literature to design controllers so that the process model is used explicitly (direct synthesis) in the design procedure of a controller. However, when the mathematical model of the Gt (s) process is not available or it is very sophisticated, the IMC can use an explicit model obtained by experimental identification (known as "black box" contribution).
Por otro lado, las redes neuronales (han mostrado una excelente capacidad para representar cualquier función no lineal con el grado de precisión deseado. Debido a esta característica las redes neuronales son adecuadas para Ia identificación y control de sistemas no lineales. Además, es posible añadir un bloque anticipativo al sistema de control por modelo interno, que relaciona Ia diferencia entre Ia referencia y Ia salida con Ia entrada de control al propio proceso de taladrado.On the other hand, neural networks (have shown an excellent ability to represent any non-linear function with the desired degree of precision.) Because of this feature, neural networks are suitable for the identification and control of non-linear systems. a block anticipative to the control system by internal model, which relates the difference between the reference and the output with the control input to the drilling process itself.
Se describen a continuación dos realizaciones particulares con relación a este segundo aspecto de Ia invención que combinan las redes neuronales con Ia lógica borrosa en esquemas de control por modelo interno.Two particular embodiments are described below in relation to this second aspect of the invention that combine networks neurons with fuzzy logic in control schemes by internal model.
ANFISANFIS
Una realización de Ia presente invención combina el control por modelo interno (IMC) con un esquema neuro-borroso denominado ANFIS para controlar Ia fuerza de corte de un proceso de taladrado de manera que se maximiza Ia tasa de arranque de material, al mismo tiempo que se maximiza también Ia vida útil de Ia broca. El sistema ANFIS es uno de los primeros sistemas neuro-borrosos conocidos. Como referencia, se presenta el documento de Dash, et al "Controladores borrosos y neuronales para sistemas dinámicos", de las Actas de Ia conferencia internacional sobre electrónica de potencia y sistemas de alimentación, IEEE, en Singapur. El principio del esquema ANFIS se basa en Ia extracción de reglas borrosas en cada nivel de una red neuronal. Una vez obtenidas las reglas, éstas deben proporcionar Ia información necesaria del comportamiento global del proceso.An embodiment of the present invention combines the control by internal model (IMC) with a neuro-fuzzy scheme called ANFIS to control the cutting force of a drilling process so that the rate of material removal is maximized, at the same time that the useful life of the bit is also maximized. The ANFIS system is one of the first known neuro-fuzzy systems. As a reference, we present the document by Dash, et al "Fuzzy and neural controllers for dynamic systems", of the Proceedings of the International Conference on Power Electronics and Power Systems, IEEE, in Singapore. The principle of the ANFIS scheme is based on the extraction of fuzzy rules in each level of a neural network. Once the rules are obtained, they must provide the necessary information of the overall behavior of the process.
TWNFITWNFI
En otra realización de Ia presente invención se combina el control por modelo interno (IMC) con las redes neuronales, Ia lógica borrosa y las técnicas transductivas.In another embodiment of the present invention, the control by internal model (IMC) is combined with the neural networks, the fuzzy logic and the transductive techniques.
Desde Ia perspectiva de Ia psicología y Ia medicina (pediatría), en el razonamiento transductivo se utiliza un elemento particular o detalle de un acontecimiento para juzgar o anticipar un segundo elemento o suceso. Este proceso puede conducir a percepciones creativas o divergentes del entorno, y en algunos casos puede producir a una generalización excesiva. Desde el punto de vista de Ia Teoría de Sistemas y el modelado de sistemas, los métodos transductivos generan un modelo en un único punto del espacio de trabajo. Para cada nuevo dato que tenga que ser procesado, se buscan los ejemplos más cercanos entre los datos conocidos, con el objetivo de crear un nuevo modelo local que dinámicamente se aproxime Io más fielmente posible al proceso en el nuevo estado. Se trata, por tanto, de darle más importancia a Ia información específica relacionada con el dato a procesar que a Ia información general aportada por todo el conjunto de entrenamiento.From the perspective of psychology and medicine (pediatrics), transductive reasoning uses a particular element or detail of an event to judge or anticipate a second element or event. This process can lead to creative or divergent perceptions of the environment, and in some cases can lead to excessive generalization. From the point of view of the Theory of Systems and modeling of systems, the transductive methods generate a model in a single point of the workspace. For each new data that has to be processed, the closest examples among the known data are looked for, with the aim of creating a new local model that dynamically approaches the process in the new state as faithfully as possible. It is, therefore, to give more importance to the specific information related to the data to be processed than to the general information provided by the entire training set.
Los métodos transductivos tienen algunas ventajas sobre los inductivos ya que, en ocasiones, crear un modelo válido para todo el espacio o región de operación es una tarea difícil y en algunos casos el resultado es insuficiente. La generación dinámica de modelos locales personalizados permite Ia ampliación del conocimiento (representado como el conjunto de datos conocidos) de manera sencilla, permitiendo un aprendizaje incremental online. Además, estas estrategias tienen capacidad de funcionar correctamente con un conjunto de entrenamiento reducido.The transductive methods have some advantages over the inductive ones since, on occasion, creating a valid model for the entire space or region of operation is a difficult task and in some cases the result is insufficient. The dynamic generation of personalized local models allows the extension of knowledge (represented as the set of known data) in a simple way, allowing incremental learning online. In addition, these strategies have the ability to function properly with a reduced training set.
Entre las diversas técnicas transductivas disponibles, Ia presente invención emplea el TWNFI (Transductive Weigthed Neuro-Fuzzy Inference system, por sus siglas en inglés), empleado por Song y Kasabov para Ia obtención de modelos locales del proceso en "TWNF I- un sistema de inferencia transductivo neuro-borroso con normalización de datos para un modelado personalizado", publicado en Neural Networks, 19, 1591 - 1596, documento que se cita como referencia. Este esquema de control aporta las ventajas características de las tres técnicas que Ia forman:Among the various transductive techniques available, the present invention employs the TWNFI (Transductive Weighed Neuro-Fuzzy Inference system), used by Song and Kasabov for obtaining local models of the process in "TWNF I-a system of neuro-fuzzy transductive inference with normalization of data for personalized modeling ", published in Neural Networks, 19, 1591 - 1596, document cited as reference. This control scheme provides the characteristic advantages of the three techniques that form it:
Neuronal: excelente habilidad para modelar cualquier función no lineal con un alto grado de precisión, además de poseer una alta capacidad de aprendizaje. Borroso: transparencia semántica, habilidad para Ia representación del pensamiento humano y excelente comportamiento en situaciones de cierta incertidumbre e imprecisión.Neuronal: excellent ability to model any non-linear function with a high degree of precision, in addition to having a high learning capacity. Blurry: semantic transparency, ability to represent human thought and excellent behavior in situations of uncertainty and imprecision.
Transductiva: estimación del modelo en un único conjunto entrada- salida del espacio, utilizando solo información relacionada con dicho conjunto.Transductive: estimation of the model in a single input-output set of the space, using only information related to said set.
Control PID + filtradoPID control + filtering
Finalmente, de acuerdo con un tercer aspecto de Ia invención, se proporciona un procedimiento de control para procesos de taladrado realizados por una máquina-CNC controlada desde un medio de control, donde Ia máquina-CNC y el medio de control están conectados por un medio de una red, siendo Lmax el retardo global máximo del proceso de taladrado, y donde el esquema de control es un esquema de control PID en bucle cerrado cuya Ia línea interna comprende un bloque PID caracterizado por tres factores denominados Kp, k¡ y kd, y un bloque que representa el proceso de taladrado.Finally, according to a third aspect of the invention, a control procedure is provided for drilling processes performed by a CNC-machine controlled from a control means, where the CNC-machine and the control means are connected by a means of a network, where L max is the maximum overall delay of the drilling process, and where the control scheme is a closed-loop PID control scheme whose internal line comprises a PID block characterized by three factors called K p , k, and k d , and a block that represents the drilling process.
Además, de acuerdo con realizaciones preferidas de Ia invención, el medio de red puede ser MPI, Profibus, Ethernet, Internet, etc. siendo en una realización preferida de Ia invención retardo máximo global Lmax del proceso de taladrado de 0,2 segundos, y en una realización aún más preferida de Ia invención, Lmax es mayor de 0,4 segundos.Furthermore, according to preferred embodiments of the invention, the network medium can be MPI, Profibus, Ethernet, Internet, etc. being in a preferred embodiment of the invention overall maximum delay L max of the drilling process of 0.2 seconds, and in a still more preferred embodiment of the invention, L max is greater than 0.4 seconds.
El cálculo inicial de los factores Kp, k¡ y kd se realiza, en una realización preferida, utilizando el método de Ziegler-Nichols, a partir del conocimiento de Ia función de transferencia en el dominio de Ia transformada de Laplace del proceso de taladrado de alto rendimiento y del retardo máximo global Lmax, que comprende el retardo debido a tiempos muertos y el retardo provocado por el medio de red. Posteriormente, se puede optimizar Ia elección de los parámetros mediante métodos como el de Nelder-Mead, temple simulado, y otros conocidos en Ia técnica, siguiendo criterios de minimización basados en índices de mérito, como por ejemplo, Ia integral de valor absoluto del error (IAE), Ia integral de valor absoluto del error por el tiempo (ITAE), Ia integral de error cuadrático (ISE) y Ia integral del error cuadrático por el tiempo (ITSE), por solo citar algunos índices.The initial calculation of the factors K p , k, and k d is carried out, in a preferred embodiment, using the Ziegler-Nichols method, based on the knowledge of the transfer function in the Laplace transform domain of the drilling process high performance and delay global maximum L max, which comprises the delay due to dead times and the delay caused by the network medium. Subsequently, the choice of parameters can be optimized by means of methods such as Nelder-Mead, simulated tempering, and others known in the art, following minimization criteria based on merit indexes, such as, for example, the integral of the absolute value of the error (IAE), the integral of absolute value of the error by time (ITAE), the integral of quadratic error (ISE) and the integral of the squared error by time (ITSE), just to mention some indices.
Además, el procedimiento comprende efectuar un filtrado previo de Ia señal de entrada. El valor de referencia o prescrito no se introduce directamente al sistema de control, sino que se filtra con un filtro:In addition, the method comprises pre-filtering the input signal. The reference or prescribed value is not entered directly into the control system, but is filtered with a filter:
Figure imgf000015_0001
donde Gf(z) es Ia función de transferencia en el dominio Z, Fr' es el valor de referencia filtrado, Fres el valor de referencia y τes el coeficiente del filtro.
Figure imgf000015_0001
where Gf (z) is the transfer function in the Z domain, Fr 'is the filtered reference value, Fres the reference value and τis the filter coefficient.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical realization of the same, a set of drawings is included as an integral part of said description. where, with illustrative and non-limiting character, the following has been represented:
Figura 1.- Muestra un esquema del sistema de taladrado de acuerdo con Ia invención. Figura 2.- Muestra un esquema del sistema de control borroso en bucle simple.Figure 1 shows a diagram of the drilling system according to the invention. Figure 2.- Shows a scheme of the fuzzy control system in simple loop.
Figura 3.- Muestra un esquema de las particiones borrosas y las funciones de pertenencia para ΔF, Δ2F y Δf.Figure 3.- It shows a scheme of the fuzzy partitions and the membership functions for ΔF, Δ 2 F and Δf.
Figura A - Muestra una gráfica que representa Ia respuesta de Ia fuerza de taladrado ante una entrada en un proceso de taladrado donde las señales de control se transmiten a través de un medio de red.Figure A - Shows a graph representing the response of the drilling force to an input in a drilling process where the control signals are transmitted through a network medium.
Figura 5.- Representa un esquema de los dispositivos que componen el sistema en una realización preferida de Ia invención.Figure 5.- Represents a diagram of the devices that make up the system in a preferred embodiment of the invention.
Figura 6.- Representa una gráfica del índice ITAE que resulta de Ia optimización.Figure 6.- Represents a graph of the ITAE index that results from the optimization.
Figura 7.- Representa los factores de entrada correspondientes para el controlador borroso.Figure 7.- Represents the corresponding input factors for the fuzzy controller.
Figura 8.- Representa Ia respuesta al escalón de Ia fuerza de corte.Figure 8 .- Represents the response to the step of the cutting force.
Figura 9.- Representa el comportamiento de Ia fuerza de corte en una realización de Ia presente invención.Figure 9.- Represents the behavior of the cutting force in an embodiment of the present invention.
Figura 10.- Representa las variaciones en Ia velocidad de avance para los retardos mínimo, medio y máximo.Figure 10.- Represents the variations in the speed of advance for the minimum, medium and maximum delays.
Figura 11.- Representa el comportamiento del ITAE (línea discontinua) y del ITSE (línea continua) cuando se producen retardos.Figure 11.- Represents the behavior of the ITAE (dashed line) and the ITSE (solid line) when delays occur.
Figura 12.- Gráfica que representa el sobrepaso en presencia de retardos.Figure 12.- Graph representing the overshoot in the presence of delays
Figura 13.- Gráfica que representa el comportamiento de ia fuerza de corte con relación a Ia profundidad de taladrado.Figure 13.- Graph showing the behavior of the cutting force in relation to the drilling depth.
Figura 14.- Gráfica que representa Ia fuerza de corte en procesos de taladrado incontrolado y controlado por un regulador borroso.Figure 14.- Graph showing the cutting force in uncontrolled drilling processes and controlled by a fuzzy regulator.
Figura 15.- Gráfica que representa las variaciones en Ia velocidad de avance en procesos de taladrado incontrolado y controlado por un regulador borroso.Figure 15.- Graph showing the variations in the speed of advance in uncontrolled drilling processes and controlled by a fuzzy regulator.
Figura 16.- Esquema que representa Ia arquitectura del sistema ANFIS.Figure 16.- Scheme that represents the architecture of the ANFIS system.
Figura 17.- Esquema de control por modelo interno (IMC).Figure 17.- Control scheme by internal model (IMC).
Figura 18.- Gráfica que representa las funciones de pertenencia, reglas y salidas del modelo directo ANFIS.Figure 18.- Graph that represents the functions of belonging, rules and outputs of the direct ANFIS model.
Figura 19.- Gráfica que representa las funciones de pertenencia, reglas y salidas del modelo inverso ANFIS.Figure 19.- Graph that represents the functions of belonging, rules and outputs of the ANFIS inverse model.
Figura 20.- Gráfica que representa Ia respuesta del modelo directo en un sistema ANFIS.Figure 20.- Graph that represents the response of the direct model in an ANFIS system.
Figura 21.- Gráfica que representa Ia respuesta del modelo inverso en un sistema ANFIS.Figure 21.- Graph that represents the response of the inverse model in an ANFIS system.
Figura 22.- Arquitectura del sistema ANFIS-IMC en una realización deFigure 22.- Architecture of the ANFIS-IMC system in an embodiment of
Ia invención. Figura 23.- Gráfica que representa Ia respuesta del sistema real en un sistema ANFIS.Ia invention. Figure 23.- Graph that represents the response of the real system in an ANFIS system.
Figura 24.- Gráfica que representa Ia acción de control en un sistemaFigure 24.- Graph that represents the control action in a system
ANFIS.ANFIS.
Figura 25.- Ejemplo del algoritmo de agrupamiento evolutivo para dos entradas.Figure 25.- Example of the evolutionary grouping algorithm for two inputs.
Figura 26.- Función de pertenencia generada a partir de los resultados del algoritmo ECM de Ia figura 26.Figure 26.- Membership function generated from the results of the ECM algorithm of Figure 26.
Figura 27.- Función de pertenencia generada a partir de los resultados del algoritmo ECM de Ia figura 26.Figure 27.- Membership function generated from the results of the ECM algorithm of Figure 26.
Figura 28.- Representa un diagrama de bloques del algoritmo TWNFI.Figure 28.- Represents a block diagram of the TWNFI algorithm.
Figura 29.- Representa el modelo directo del proceso de taladrado obtenido por TWNFI.Figure 29.- Represents the direct model of the drilling process obtained by TWNFI.
Figura 30.- Representa el modelo inverso del proceso de taladrado obtenido por TWNFI.Figure 30.- Represents the inverse model of the drilling process obtained by TWNFI.
Figura 31.- Representa el esquema de control por modelo interno enFigure 31.- Represents the control scheme by internal model in
Ia red.Ia network.
Figura 32.- Representa Ia distribución estadística de los retardos inducidos en Ia red obtenida con un conjunto de 10000 muestras.Figure 32.- Represents the statistical distribution of the induced delays in the network obtained with a set of 10,000 samples.
Figura 33.- Representa Ia distribución acumulada de los retardos inducidos por Ia red obtenida con un conjunto de 10000 muestras.Figure 33.- Represents the cumulative distribution of the delays induced by the network obtained with a set of 10,000 samples.
Figura 34.- Representa Ia arquitectura del control TWNFI-CMI en una realización preferida de Ia invención.Figure 34.- Represents the architecture of the TWNFI-CMI control in a preferred embodiment of the invention.
Figura 35.- Muestra un gráfico de Ia respuesta del sistema real.Figure 35.- Shows a graph of the response of the real system.
Figura 36.- Muestra un gráfico que muestra Ia acción de control en Ia acción de control cuando se taladra el material 17-4PH.Figure 36.- Shows a graph showing the control action in the control action when the material is drilled 17-4PH.
Figura 37.- Muestra un esquema de control PID con filtro previo.Figure 37.- Shows a PID control scheme with a previous filter.
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
Ejemplo 1 : Controlador borroso en bucle cerrado simpleExample 1: Fuzzy controller in simple closed loop
Se describe a continuación un ejemplo de una realización preferida de Ia invención donde se utiliza un esquema de control borroso por lazo simple, cuyo esquema general se representa en Ia figura 2, para controlar un proceso de taladrado efectuado mediante un sistema (1 ) como el que se muestra en Ia figura 1 , en Ia que se observe un acelerómetro (9) dispuesto sobre Ia broca (6) de una máquina herramienta (2). La pieza a taladrar (6) está situada sobre una plataforma dinamométrica (8). Finalmente, el CNC (3) que controla el funcionamiento de Ia máquina herramienta (2) está conectado a un PCI (4) por medio de un medio de conexión, que en este caso es una red MPI (5). En Ia figura 2, el número de referencia 10 representa el controlador borroso. Se han seguido los pasos habituales para definir las funciones de pertenencia de entrada y salida y para construir reglas de control borroso en el diseño de un procedimiento de control borroso de dos entradas y una salida. El control borroso efectúa acciones en tiempo real para modificar Ia velocidad de avance / de Ia broca (6). La variable manipulada o de salida es el incremento de velocidad de avance (Af , como un porcentaje del valor inicial programado en Ia máquina-CNC). Los vectores de error y de salida son:An example of a preferred embodiment of the invention is described below where a fuzzy control scheme by simple loop is used, whose general scheme is represented in figure 2, to control a drilling process carried out by means of a system (1) such as which is shown in Figure 1, in which an accelerometer (9) arranged on the drill bit (6) of a machine tool (2) is observed. The part to be drilled (6) is located on a dynamometer platform (8). Finally, the CNC (3) controlling the operation of the machine tool (2) is connected to a PCI (4) by means of a connection means, which in this case is an MPI network (5). In Figure 2, the reference number 10 represents the fuzzy controller. The usual steps have been followed to define the input and output membership functions and to construct fuzzy control rules in the design of a control procedure blur of two inputs and one output. The fuzzy control performs actions in real time to modify the advance speed / of the bit (6). The manipulated or output variable is the increment of the feed rate (Af, as a percentage of the initial value programmed in the CNC machine). The error and output vectors are:
Figure imgf000020_0001
donde ΔF es el error en Ia fuerza resultante (en newtons), A2F es el cambio en el error en Ia fuerza resultante (en newtons) y Ke, Kce y GC son factores de escala para las entradas (error y cambio en el error) y Ia salida (cambio en Ia velocidad de avance) respectivamente.
Figure imgf000020_0001
where ΔF is the error in the resultant force (in newtons), A 2 F is the change in the error in the resulting force (in newtons) and K e , K ce and GC are scale factors for the inputs (error and change in the error) and output (change in the speed of advance) respectively.
Los valores de par aplicado por los motores que mueven Ia broca (6) se adquieren de un CNC de arquitectura abierta (3). El valor de referencia de Ia fuerza (Fr) se obtiene a partir de Ia combinación broca (6) / material de Ia pieza (7). Para cada período de muestreo k, el error en Ia fuerza resultante y el cambio en el error en Ia fuerza resultante se calculan como:The torque values applied by the motors that move the bit (6) are acquired from an open architecture CNC (3). The reference value of the force (F r ) is obtained from the combination bit (6) / material of the piece (7). For each sampling period k, the error in the resulting force and the change in the error in the resulting force are calculated as:
Figure imgf000020_0002
donde AF es el error en Ia fuerza resultante (en newtons) e A2F es el cambio en el error en Ia fuerza resultante en el instante k.
Figure imgf000020_0002
where AF is the error in the resulting force (in newtons) and A 2 F is the change in the error in the force resulting in the instant k.
La partición borrosa de universos de discurso se basa en conocimientos previos y en resultados experimentales. El universo de discurso de variables de entrada consiste en tres funciones de pertenencia de forma triangular en el rango de [-150, 150]. El universo de discurso de las variables de salida consiste en cinco funciones de pertenencia de forma trapezoidal, igualmente espaciadas, y establecidas de acuerdo a Ia modificación máxima de Ia velocidad de avance nominal en condiciones de corte nominales (alrededor del 10% para Ia velocidad de avance nominal). La figura 3 muestra Ia partición borrosa resultante. Se utilizan tres conjuntos borrosos de tres y cinco para las entradas y Ia salida. Son, NB, grande negativo; NM, medio negativo; ZE, cero; PM, medio positivo; y PB, grande positivo.The blurred partition of speech universes is based on prior knowledge and experimental results. The universe of Speech input variables consist of three membership functions of triangular shape in the range of [-150, 150]. The universe of discourse of the output variables consists of five trapezoidal belonging functions, equally spaced, and established according to the maximum modification of the nominal advance speed under nominal cutting conditions (around 10% for the speed of nominal advance). Figure 3 shows the resulting fuzzy partition. Three fuzzy sets of three and five are used for the inputs and output. They are, NB, big negative; NM, negative medium; ZE, zero; PM, positive medium; and PB, large positive.
El proceso de selección de las pertenencias es el resultado de combinar el proceso de prueba y error con varias directrices empíricas de diseño obtenidas en su mayoría del conocimiento del proceso y de estudios de simulación. Las funciones de pertenencia son esenciales para conseguir un control adecuado. Cuando se utilizan funciones de pertenencia, el sistema resultante es Ia suma de un controlador global no lineal (parte estática) y un controlador Pl local no lineal (que cambia dinámicamente con respecto del espacio de entrada). Por tanto, este tipo de función de pertenencia es relevante para tratar con procesos de comportamiento no lineal, como es el proceso de taladrado. La selección del tipo de conjuntos borrosos de entrada y salida es un paso clave en el diseño de un controlador borroso.The process of selecting the belongings is the result of combining the process of trial and error with several empirical design guidelines obtained mostly from the knowledge of the process and from simulation studies. The membership functions are essential to achieve adequate control. When membership functions are used, the resulting system is the sum of a non-linear global controller (static part) and a non-linear local PLC controller (which changes dynamically with respect to the input space). Therefore, this type of membership function is relevant to deal with processes of non-linear behavior, such as the drilling process. The selection of the type of fuzzy input and output sets is a key step in the design of a fuzzy controller.
Se consideran una serie de reglas, que consisten en afirmaciones lingüísticas que enlazan cada antecedente con su consecuencia respectiva, con el siguiente sintaxis:A series of rules are considered, which consist of linguistic statements that link each antecedent with its respective consequence, with the following syntax:
IF ΔF es PB AND Δ2F es PB THEN Δf es PBIF ΔF is PB AND Δ 2 F is PB THEN Δf is PB
Estas reglas borrosas proporcionan importantes principios e información relevante acerca del proceso de taladrado. En condiciones de taladrado normales, Ia velocidad de avance constante se establece de un modo conservador, de acuerdo con manuales de datos acerca de taladrado, brocas y materiales. Sin embargo, los valores de velocidad de avance se ajustan manualmente en tiempo real dependiendo de los parámetros de corte, para optimizar el proceso de taladrado. Para mantener una fuerza resultante constante, Ia velocidad de avance se debe reducir cuando aumenta Ia fuerza (es decir, debido a un aumento de Ia profundidad del taladrado). Por otro lado, cuando Ia fuerza disminuye, Ia velocidad de avance debería aumentarse para maximizar Ia velocidad de extracción de material. Se desarrollan un total de 9 reglas de control, que se extienden a 49 reglas, que se muestran en las siguientes tablas:These fuzzy rules provide important principles and relevant information about the drilling process. Under normal drilling conditions, the constant feed speed is set conservatively, according to data manuals about drilling, bits and materials. However, the feed rate values are adjusted manually in real time depending on the cutting parameters, to optimize the drilling process. In order to maintain a constant resultant force, the advance speed must be reduced when the force increases (that is, due to an increase in the depth of the drilling). On the other hand, when the force decreases, the advance speed should be increased to maximize the speed of material extraction. A total of 9 control rules are developed, which extend to 49 rules, which are shown in the following tables:
Figure imgf000022_0001
El operador de composición de sub-producto se selecciona para Ia regla composicional de interferencia. Utilizando Ia operación producto algebraico y desarrollando las implicaciones borrosas y aplicando Ia máxima operación de unión, se obtiene, considerando el caso particular del método de inferencia "Sup-Producto" y aplicando Ia norma T2 (producto):
Figure imgf000022_0001
The sub-product composition operator is selected for the interference compositional rule. Using the algebraic product operation and developing the fuzzy implications and applying the maximum binding operation, one obtains, considering the particular case of the "Sup-Product" inference method and applying the T2 (product) standard:
Figure imgf000023_0001
Figure imgf000023_0001
Desarrollando Ia implicación y aplicando Ia co-norma Si (MAX el valor máximo, pero puede ser otra: hay más de 30 válidas para el control. Esta es Ia más usada), donde ω representa Ia velocidad de giro de Ia broca (6):Developing the implication and applying the co-norm Si (MAX the maximum value, but it can be another: there are more than 30 valid for the control, this one is the most used), where ω represents the rotation speed of the bit (6) :
Figure imgf000023_0002
donde mi es 9, 25 o 49 reglas.
Figure imgf000023_0002
where my is 9, 25 or 49 rules.
De forma similar, se puede hacer considerando como norma Ti (mínimo) ó T2 (producto). Son las dos más usadas en el control. Como método de desborrosificación se seleccionó el centro de gravedad:Similarly, it can be done considering Ti (minimum) or T2 (product) as the norm. They are the two most used in control. The center of gravity was selected as the deborrosification method:
Figure imgf000024_0001
Figure imgf000024_0001
donde Δf ( Δw ) es el valor nítido de Δf¡ ( Δw¡ ) ante una entrada nítida dada ( ΔF¡, Δ2F¡), y μR(Δf¡ ) (μR(Δw¡)) es Ia función de pertenencia correspondiente a Ia unión. El esquema de control considerando sólo como variable de acción Δf.where Af (DW) is the crisp value Δf¡ (Δw¡) to a clear input given (ΔF¡, Δ 2 Fj), and μ R (Δf¡) (μ R (Δw¡)) is the function of belonging to the union. The control scheme considering only as an action variable Δf.
Existen básicamente tres métodos de desemborronado tradicionales: el máximo, media de máximos (MOM) y centro de área (COA). Se conoce desde hace tiempo que el COA produce un error de mínimos cuadrados menor que el MOM. En todos los casos, el máximo produce peores resultados que los otros métodos, a pesar de su simplicidad y menor tiempo de computación. Desde el punto de vista de Ia dinámica del bucle de control, el MOM produce una mejor respuesta transitoria, mientras que el COA se comporta mejor en el estado estacionario. Adicionalmente, el MOM se comporta como un relé de múltiples niveles, y el COA se comporta como un controlador proporcional integral (Pl). Recientemente se han desarrollado otras estrategias de desemborronado bajo el mismo punto de vista, es decir, el tratamiento formal de Ia incertidumbre con relación a Ia validez de Ia distribución probabilística de Ia salida generada por el proceso de toma de decisiones de sistemas borrosos (es decir, Ia conversión de Ia distribución probabilística del conjunto borroso de salida en una función de distribución probabilística. Se selecciona Ia estrategia del método COA para el desemborronado debido a su adecuado comportamiento en estado estacionario y su uso en controladores borrosos experimentales e industriales.There are basically three traditional unbundling methods: maximum, mean of maximums (MOM) and center of area (COA). It has been known for some time that the COA produces a least squares error smaller than the MOM. In all cases, the maximum produces worse results than the other methods, despite its simplicity and less computing time. From the point of view of the dynamics of the control loop, the MOM produces a better transient response, while the COA behaves better in the steady state. Additionally, the MOM behaves like a multi-level relay, and the COA behaves like an integral proportional controller (Pl). Recently they have been developed other disembedding strategies under the same point of view, that is, the formal treatment of the uncertainty regarding the validity of the probabilistic distribution of the output generated by the decision-making process of fuzzy systems (that is, the conversion of The probabilistic distribution of the fuzzy output set in a probabilistic distribution function The strategy of the COA method for desembornado is selected due to its adequate behavior in steady state and its use in experimental and industrial fuzzy controllers.
La acción de control generada para cada instante de muestreo define las acciones finales que se aplican. La estrategia utilizada para computar / y ω determina qué tipo de regulador borroso se utiliza. El factor de escala de salida (GC) multiplicado por Ia acción de control generada en cada instante de muestreo proporciona las acciones finales que se aplicarán a los parámetros de corte de Ia máquina-CNC (2, 3).The control action generated for each sampling instant defines the final actions that are applied. The strategy used to compute / and ω determines what type of fuzzy regulator is used. The output scale factor (GC) multiplied by the control action generated at each sampling time provides the final actions that will be applied to the cutting parameters of the CNC machine (2, 3).
Figure imgf000025_0001
Además, Ia presente invención admite Ia posibilidad de que el control se realice a través de medios de red con retardos relativamente grandes, bien un bus de campo u otras posibilidades, como por ejemplo Internet, Ethernet, etc. En este ejemplo, el medio de red es el bus de campo MPI (5), muy parecido al PROFIBUS, que funciona según un esquema maestro- esclavo entre dispositivos conectados a una red. Se asigna a cada maestro un conjunto de esclavos que sondea periódicamente. El acceso a Ia red, en este caso una red MPI (5), está regulado por un testigo que se mueve entre los maestros. Este tipo de sistemas de control distribuido se ven afectados por inestabilidades debido a Ia retransmisión de datos mediante esclavos y a las actividades asincronas llevadas a cabo por los maestros. El interfaz multipunto (MPI) o red MPI (5) es un interfaz de programación para Ia serie SIMATIC S7 de Siemens que recuerda al protocolo PROFIBUS. La interfaz de Ia red MPI (5) es idéntica a Ia del PROFIBUS RS485 estándar. La velocidad de transmisión se puede aumentar hasta los 12 MB/seg con el uso de una red MPI (5). La arquitectura del sistema de control para una máquina-CNC (2, 3) basada en una red MPI se muestra en Ia figura 1.
Figure imgf000025_0001
Furthermore, the present invention admits the possibility that the control is carried out through network means with relatively large delays, either a field bus or other possibilities, such as Internet, Ethernet, etc. In this example, the network medium is the field bus MPI (5), very similar to PROFIBUS, which operates according to a master-slave scheme between devices connected to a network. Each slave is assigned a set of slaves that polls periodically. The access to the network, in this case an MPI network (5), is regulated by a witness that moves between the masters. This type of distributed control systems are affected by instabilities due to the retransmission of data by slaves and the asynchronous activities carried out by teachers. The multipoint interface (MPI) or MPI network (5) is a programming interface for the SIMATIC S7 series from Siemens that resembles the PROFIBUS protocol. The interface of the MPI network (5) is identical to that of the standard PROFIBUS RS485. The transmission speed can be increased up to 12 MB / sec with the use of an MPI network (5). The architecture of the control system for a CNC machine (2, 3) based on an MPI network is shown in Figure 1.
Cuando Ia señal de control (orden de velocidad de avance) es transmitida a través de Ia red MPI (5), es inevitable Ia introducción de un retardo. La figura 4 muestra Ia respuesta al escalón de Ia fuerza resultante aWhen the control signal (forward speed order) is transmitted through the MPI network (5), the introduction of a delay is inevitable. Figure 4 shows the response to the step of the resultant force to
Ia orden de velocidad de avance en un proceso de taladrado de alto rendimiento. El retardo global máximo (Lmax) está en torno a 0,4 segundos, incluyendo tanto el proceso de tiempo muerto (Ltaiadrado) y el retardo introducido por Ia red (Lmeciio red)-Ia order of speed of advance in a process of drilling of high performance. The maximum global delay (L max ) is around 0.4 seconds, including both the dead time process (delayed) and the delay introduced by the network (L mechanical network) -
El procedimiento de control borroso descrito en el presente ejemplo funciona incluso con los retardos introducidos por Ia red MPI (5). El sistema de adquisición de datos consiste en un dinamómetro, un amplificador de carga y los módulos de hardware y software descritos en Ia figura 5. Las fuerzas de corte se miden con un dinamómetro piezoeléctrico Kistler 9257B montado entre Ia pieza y Ia mesa de taladrado. La carga eléctrica se transmite entonces al amplificador de cuatro canales Kistler 5070A a través de un cable de red. El módulo de hardware de interfaz consiste en un bloque de red y una tarjeta de adquisición A/D AT-MIO-16E-1 de 16 canales con una frecuencia de muestreo máxima de 500 kHz. El dispositivo A/D transforma Ia señal analógica en una señal digital, de forma que el progrma Simulink puede leer los datos y se pueden obtener, procesar y mostrar las componentes de Ia fuerza para los tres ejes. Real-Time Windows Target (RTWT) permite Ia ejecución en tiempo real de los modelos de Simulink. La salida del controlador borroso está conectada al proceso a través de una red MPI (5) con una velocidad de transmisión por defecto de 187.5 Kbits/s. Una tarjeta CP5611 conecta el PC que implementa el procedimiento de control borroso. La interfaz de Ia red MPI (5) es un cliente master (estación activa) y gestiona intercambios con los PLCs S7 de siemens. El sistema tiene dos maestros, el control hombre-máquina (MMC 103) y una unidad de control numérico (NCU 573,3)The fuzzy control procedure described in the present example works even with the delays introduced by the MPI network (5). The data acquisition system consists of a dynamometer, a load amplifier and the hardware and software modules described in figure 5. The cutting forces are measured with a piezoelectric dynamometer Kistler 9257B mounted between the piece and the drill table. The electrical load is then transmitted to the four-channel Kistler 5070A amplifier through a network cable. The interface hardware module consists of a network block and a 16-channel AT-MIO-16E-1 A / D acquisition card with a maximum sampling frequency of 500 kHz. The A / D device transforms the analog signal into a digital signal, so that the Simulink program can read the data and the force components for the three axes can be obtained, processed and displayed. Real-Time Windows Target (RTWT) allows real-time execution of Simulink models. The output of the fuzzy controller is connected to the process through an MPI network (5) with a default transmission speed of 187.5 Kbits / s. A CP5611 card connects the PC that implements the fuzzy control procedure. The interface of the MPI network (5) is a master client (active station) and manages exchanges with Siemens S7 PLCs. The system has two masters, the man-machine control (MMC 103) and a numerical control unit (NCU 573.3)
Para comprobar Ia eficiencia del procedimiento de control en bucle cerrado, se prueba el control borroso mediante una simulación utilizando el software Simulink. En Ia optimización, el ajuste del controlador borroso está basado en un criterio de optimización de un índice de mérito. El objetivo es obtener los parámetros óptimos para los factores de escala de entrada
Figure imgf000027_0002
donde el índice de mérito o función de coste ITAE es mínimo.
Figure imgf000027_0003
To check the efficiency of the closed-loop control procedure, the fuzzy control is tested by simulation using the Simulink software. In optimization, the adjustment of the fuzzy controller is based on an optimization criterion of a merit index. The objective is to obtain the optimal parameters for the input scale factors
Figure imgf000027_0002
where the merit index or ITAE cost function is minimal.
Figure imgf000027_0003
Figure imgf000027_0001
Figure imgf000027_0001
La integral del tiempo por el error absoluto (ITAE) o índice de mérito describe Ia calidad de Ia respuesta del sistema ante una perturbación externa. En este estudio, se considera un escalón en Ia referencia de Ia fuerza como una perturbación, y el objetivo es valorar Ia precisión con Ia cual el sistema sigue cambios de referencia utilizando el criterio ITAE. La optimización se realiza aquí utilizando un algoritmo de búsqueda simplex para una optimización sin restricciones. La función de coste se evalúa mediante simulación, de modo que es necesario un modelo del proceso. El ajuste se lleva a cabo mediante el software Matlab/Simulink y las herramientas de optimización. Se alcanza el mínimo ITAE=463,07 en Ia iteración 64, correspondiendo a [Ke, Kce]opt= [0,0559, 0,1156]. El criterio ITSE es 3,0432 x 105, y el sobrepaso o sobrepico máximo es del 0,30%. Se muestran los resultados de Ia simulación en las figuras 6 y 7. La respuesta al escalón del sistema se muestra en Ia figura 8. Se observa en ella cómo se regula Ia fuerza resultante de manera óptima con respecto del valor de referencia.The integral of time due to absolute error (ITAE) or index of merit describes the quality of the response of the system to an external disturbance. In this study, a step in the reference of force as a disturbance is considered, and the objective is to assess the precision with which the system follows reference changes using the ITAE criterion. The optimization is done here using a simplex search algorithm for unrestricted optimization. The cost function is evaluated by simulation, so a process model is necessary. The adjustment is carried out using the Matlab / Simulink software and the optimization tools. The minimum ITAE = 463.07 is reached in iteration 64, corresponding to [K e , Kce] opt = [0.0559, 0.1156]. The ITSE criterion is 3.0432 x 10 5 , and the maximum overshoot or overshoot is 0.30%. The results of the simulation are shown in figures 6 and 7. The response to step of the system is shown in figure 8. It is observed in it how the resulting force is optimally regulated with respect to the reference value.
Se simula el retardo L de Ia red MPI (5) suponiendo un retardo aleatorio de entre 0 y 0,6 segundos, y se realizan 100 pruebas de simulación para cada conjunto de parámetros de simulación. Se calculan entonces el máximo, mínimo y el valor medio del índice ITAE. Para el retardo mínimo generado aleatoriamente, de 0,0077 segundos, el sobrepaso o sobrepico máximo fue de -0,86% y el índice ITAE fue 289,87. Para el retardo medio de 0,2783 segundos, el sobrepaso o sobrepico máximo fue del -0,2131 % y el ITAE fue de 389,30. El peor caso se produce para el retardo aleatorio máximo, 0,5966 segundos, donde el sobrepaso o sobrepico máximo es del 1 ,38% y el ITAE de 697,30. Las figuras 9 y 10 muestran los resultados de simulación correspondientes a Ia respuesta del sistema al escalón para los tres retardos. La figura 9 representa el comportamiento de Ia fuerza resultante, mientras que Ia figura 10 representa las variaciones de velocidad de avance en cada caso. Se deduce de los resultados de simulación que el ajuste óptimo conseguido en Ia simulación garantiza una respuesta transitoria sin sobrepaso o sobrepico máximo, con un tiempo de subida de alrededor de 0,7 segundos.The delay L of the MPI network (5) is simulated assuming a random delay between 0 and 0.6 seconds, and 100 simulation tests are carried out for each set of simulation parameters. The maximum, minimum and average value of the ITAE index are then calculated. For the minimum randomly generated delay of 0.0077 seconds, the maximum overshoot or overshoot was -0.86% and the ITAE index was 289.87. For the average delay of 0.2783 seconds, the maximum overshoot or overshoot was -0.2131% and the ITAE was 389.30. The worst case occurs for the maximum random delay, 0.5966 seconds, where the maximum overshoot or overshoot is 1.38% and the ITAE is 697.30. Figures 9 and 10 show the simulation results corresponding to the response of the system to the step for the three delays. Figure 9 represents the behavior of the resultant force, while Figure 10 represents the variations of the forward speed in each case. It is deduced from the simulation results that the optimum adjustment achieved in the simulation guarantees a transient response without maximum overshoot or overshoot, with a rise time of around 0.7 seconds.
La influencia del retardo sobre el deterioro de los índices ITAE e ITSE se muestra en Ia figura 11. El aumento de los índices ITAE e ITSE con el aumento del retardo no es demasiado pronunciado, Io que demuestra Ia robustez del controlador borroso en presencia de un tiempo muerto más un retardo introducido por el interfaz MPI. El ITAE (línea continua) y el ITSE (línea discontinua) aumentan con el retardo de una forma que no es lineal.The influence of the delay on the deterioration of the ITAE and ITSE indices is shown in Figure 11. The increase in the ITAE and ITSE indices with the increase in the delay is not too pronounced, which demonstrates the robustness of the fuzzy controller in the presence of a dead time plus a delay introduced by the MPI interface. The ITAE (solid line) and the ITSE (dashed line) increase with the delay in a non-linear way.
La influencia del retardo en Ia respuesta transitoria también se analiza considerando un retardo aleatorio. El retardo aleatorio se distribuye uniformemente entre 0 y 0,6 segundos. Se efectúa un análisis de simulación utilizando 1000 muestras de retardo. La figura 12 muestra el comportamiento del sobrepaso o sobrepico máximo en presencia de retardos de hasta 0,6 segundos. Es evidente de esta gráfica que se puede conseguir una respuesta transitoria sin sobrepaso o sobrepico máximo, a pesar de los retardos.The influence of the delay in the transitory response is also analyzed considering a random delay. The random delay is distributed evenly between 0 and 0.6 seconds. A simulation analysis is performed using 1000 delay samples. Figure 12 shows the behavior of the maximum overshoot or overshoot in the presence of delays of up to 0.6 seconds. It is evident from this graph that a transient response can be achieved without maximum overshoot or overshoot, despite the delays.
Se completa el ejemplo de realización con una prueba utilizando una máquina herramienta (2) Kondia HS1000 equipada con un CNC (3) Sinumerik 840D. La broca (6) utilizada es una Sandvik de 10 mm. de diámetro. El material de Ia pieza (7) a taladrar es GGG40 con un número de dureza de 233 HB. La velocidad de avance nominal y Ia velocidad de giro nominal son f0=100 mm./min y wo=87O rpm, con una profundidad de corte máxima de 10 mm. (igual al diámetro del orificio).The execution example is completed with a test using a machine tool (2) Kondia HS1000 equipped with a CNC (3) Sinumerik 840D. The drill bit (6) used is a 10 mm Sandvik. diameter. The material of the piece (7) to be drilled is GGG40 with a hardness number of 233 HB. The nominal feed speed and nominal speed are f 0 = 100 mm./min and w o = 87O rpm, with a maximum cutting depth of 10 mm. (equal to the diameter of the hole).
La figura 13 muestra los resultados experimentales que corresponden al taladrado de Ia pieza (7) GGG40 con Ia broca (6) de 10 mm. de diámetro. Las figuras 14 y 15 representan el comportamiento de Ia fuerza controlado e incontrolado y las variaciones en Ia velocidad de avance para ambos casos analizados. Para suprimir el incremento en Ia fuerza resultante, se disminuye gradualmente Ia velocidad de avance al aumentar Ia profundidad, y Ia fuerza resultante se regula adecuadamente en Ia referencia dada. Se verifica el buen comportamiento de Ia respuesta transitoria por los índices ITAE (17,72), ITSE (9,23) e IAE (16,46). Sin embargo, el tiempo de taladrado aumenta un 5,75% cuando se controla Ia fuerza del taladrado.Figure 13 shows the experimental results that correspond to the drilling of the piece (7) GGG40 with the drill (6) of 10 mm. diameter. Figures 14 and 15 represent the behavior of the controlled and uncontrolled force and the variations in the speed of advance for both cases analyzed. In order to suppress the increase in the resultant force, the advance speed is gradually decreased when the depth increases, and the resulting force is suitably regulated in the given reference. The good behavior of the transitory response is verified by the ITAE (17.72), ITSE (9.23) and IAE (16.46) indices. However, the drilling time increases by 5.75% when controlling the drilling force.
Ejemplo 2: Control neuro-borroso ANFISExample 2: ANFIS neuro-fuzzy control
ANFIS implementa el modelo de Takagi-Sugeno para Ia estructura de las reglas If-Then del sistema borroso. La arquitectura de ANFIS, que se representa en Ia figura 16, dispone de cinco capas. Los nodos representados con cuadrados son nodos cuyos parámetros son ajustables, mientras que los nodos representados por círculos son nodos fijos.ANFIS implements the Takagi-Sugeno model for the structure of the If-Then rules of the fuzzy system. The architecture of ANFIS, which is represented in Figure 16, has five layers. The nodes represented with squares are nodes whose parameters are adjustable, while the nodes represented by circles are fixed nodes.
A continuación se presenta ANFIS para el caso particular de un sistema de una entrada y una salida.Next, ANFIS is presented for the particular case of a system of one input and one output.
1a Capa: En Ia primera capa se produce el emborronado. La salida de cada nodo se representa por Ol,i, donde i es el i-ésimo nodo de Ia capa I:1 a Layer: In the first layer smearing occurs. The output of each node is represented by Ol, i, where i is the i-th node of layer I:
Figure imgf000030_0002
donde f es Ia velocidad de avance que entra al nodo y A¡ es el conjunto borroso asociado al nodo. Si utilizamos una función Gaussiana como función de pertenencia borrosa obtendríamos Ia siguiente expresión, donde a¡, b¡ y d¡ son los parámetros antecedentes ajustables:
Figure imgf000030_0002
where f is the forward speed entering the node and A i is the fuzzy set associated with the node. If we use a Gaussian function as a fuzzy belonging function we would obtain the following expression, where a, b, and d, are the adjustable antecedent parameters:
Figure imgf000030_0001
Figure imgf000030_0001
2a capa: En Ia segunda capa se multiplican las señales de entrada y2 a layer: In the second layer multiply the input signals and
Ia salida es el resultado de aplicar Ia regla del máximo.The output is the result of applying the maximum rule.
3a capa: La tercera capa normaliza Ia importancia de cada regla:3 a layer: The third layer normalizes the importance of each rule:
Figure imgf000030_0003
Figure imgf000030_0003
4a capa: La cuarta capa calcula el consecuente, o Io que es Io mismo, Ia función de Takagi-Sugeno para cada regla borrosa, donde m¡ y c¡ son los parámetros consecuentes.4 a layer: The fourth layer calculates the consequent, or what is the same, the function of Takagi-Sugeno for each fuzzy rule, where m and c are the consequent parameters.
Figure imgf000031_0001
Figure imgf000031_0001
5a
Figure imgf000031_0004
capa: Por último, Ia quinta capa realiza el desemborronado computando Ia salida general como Ia suma de las señales de entrada:
5 a
Figure imgf000031_0004
layer: Finally, the fifth layer performs the undocking by computing the general output as the sum of the input signals:
Figure imgf000031_0003
Figure imgf000031_0003
ANFIS utiliza como estrategia de aprendizaje Ia retro-propagación o propagación hacia atrás de los errores para determinar el antecedente de las reglas. El consecuente de Ia regla se estima por medio del método de los mínimos cuadrados. En el primer paso o "paso hacia delante", los modelos de entrada son propagados y los consecuentes óptimos son estimados por un procedimiento iterativo de mínimos cuadrados, mientras que los antecedentes permanecen fijos. En el segundo paso o "paso hacia atrás" se utiliza el procedimiento de retropropagación de errores para modificar los antecedentes mientras los consecuentes permanecen constantes. Este procedimiento se repite hasta que se alcanza Ia condición de parada (criterio de error).ANFIS uses as a learning strategy the retro-propagation or backward propagation of errors to determine the antecedent of the rules. The consequent of the rule is estimated by means of the method of least squares. In the first step or "step forward", the input models are propagated and the optimal consequents are estimated by an iterative procedure of least squares, while the antecedents remain fixed. In the second step or "backward step", the error backpropagation procedure is used to modify the background while the consequents remain constant. This procedure is repeated until the stop condition is reached (error criterion).
Cuando los valores de los antecedentes son fijos, Ia salida general del sistema puede expresarse como una combinación lineal de los consecuentes:When the values of the antecedents are fixed, the general output of the system can be expressed as a linear combination of the following:
Figure imgf000031_0002
Por otra parte, los antecedentes son actualizados por un criterio de
Figure imgf000031_0002
On the other hand, the antecedents are updated by a criterion of
"gradiente-descendente", siendo η Ia tasa de aprendizaje para ay. Si f es una matriz invertible:"gradient-descending", where η is the learning rate for ay. If f is an invertible matrix:
Figure imgf000032_0001
Figure imgf000032_0001
Por otro lado, desde el punto de vista clásico, el control por modelo interno utiliza un esquema de control en lazo cerrado en el que intervienen tanto un modelo directo (GM) del proceso a controlar (Gt) situado en paralelo con éste, así como un modelo inverso (GM'). El retardo está representado por L y las perturbaciones por d (figura 17).On the other hand, from the classical point of view, the control by internal model uses a closed-loop control scheme in which both a direct model (G M ) of the process to be controlled (G t ) located in parallel with it, intervene. as well as an inverse model (G M '). The delay is represented by L and the disturbances by d (figure 17).
La utilización del control por modelo interno (IMC) garantiza teóricamente robustez y estabilidad del sistema de control en presencia de perturbaciones externas. Además, es posible añadir un bloque anticipativo dispuesto en paralelo con los bloques GF y GM' de Ia figura 17.The use of control by internal model (IMC) theoretically guarantees robustness and stability of the control system in the presence of external disturbances. In addition, it is possible to add a preemptive block arranged in parallel with the blocks G F and G M 'of figure 17.
El filtro Gf se incluye en el sistema de control con el objetivo de reducir Ia ganancia de alta frecuencia y mejorar Ia robustez del sistema. También sirve para suavizar los cambios rápidos y bruscos en las señales, mejorando Ia respuesta del controlador:The filter Gf is included in the control system in order to reduce the high frequency gain and improve the robustness of the system. It also serves to smooth the rapid and abrupt changes in the signals, improving the response of the controller:
Figure imgf000032_0002
Figure imgf000032_0002
donde ki y l<2 son parámetros de diseño y usualmente k1 = k 2. Un esquema de IMC puede ser implementado usando un sistema neuroborroso ANFIS. Primeramente el sistema ANFIS se entrena para que aprenda Ia dinámica del proceso por medio de datos entrada-salida. De este modo se obtiene el llamado modelo directo. Otro sistema ANFIS es entrenado para aprender Ia dinámica inversa del proceso y funcionar como controlador no lineal. De este modo se obtiene el llamado modelo inverso. A continuación describimos ambos procedimientos.where ki and l <2 are design parameters and usually k 1 = k 2 . An IMC scheme can be implemented using an ANFIS neuroborpore system. First, the ANFIS system is trained to learn the dynamics of the process through input-output data. In this way the so-called direct model is obtained. Another ANFIS system is trained to learn the inverse dynamics of the process and to function as a non-linear controller. In this way the so-called inverse model is obtained. We describe both procedures below.
En este ejemplo de realización, para el modelo directo se ha considerado Ia velocidad de avance como variable de entrada y Ia fuerza de corte media como variable de salida.In this embodiment, the forward speed has been considered as the input variable and the average cutting force as the output variable for the direct model.
Con el objetivo de realizar un mejor ajuste del modelo se crea un modelo inicial introduciendo un conjunto de datos de entrenamiento (178 datos) al sistema neuroborroso para, posteriormente, ajustar los parámetros del modelo creado inicialmente introduciendo al sistema neuroborroso un conjunto de datos de prueba (209 datos) distintos a los anteriores.In order to make a better fit of the model, an initial model is created by introducing a set of training data (178 data) to the neuroborbary system to subsequently adjust the parameters of the model initially created by introducing a set of test data into the neuroborbary system. (209 data) different from the previous ones.
Se realizan taladros, utilizando un sistema análogo al del ejemplo 1 , sobre probetas de fundición nodular GGG40, material muy utilizado en Ia industria aeroespacial. Las condiciones nominales de operación fueron velocidad de giro de 870 rpm, velocidad de avance inicial de 100 mm/min, y profundidad de corte de 15 mm.Drills are made, using a system analogous to that of Example 1, on specimens of nodular cast iron GGG40, material widely used in the aerospace industry. The nominal operating conditions were rotational speed of 870 rpm, initial speed of 100 mm / min, and depth of cut of 15 mm.
En Ia fase de obtención de los modelos son modificables ciertos parámetros tales como el número de funciones de pertenencia en el emborronado, Ia clase o tipo de dichas funciones, así como el orden de las reglas Takagi-Sugeno de desemborronado. Asimismo, se puede mejorar Ia precisión del modelo cambiando los parámetros del proceso de aprendizaje (aprendizaje híbrido o retropropagación del error, número de iteraciones, tamaño del paso, etc.). La elección de las variables correctas y los parámetros óptimos se ha realizado en base a obtener un equilibrio entre el criterio de error de Ia raíz cuadrada del error cuadrático medio (RMSE) y Ia respuesta dinámica del modelo.In the phase of obtaining the models, certain parameters are modifiable such as the number of membership functions in the smudging, the class or type of said functions, as well as the order of the Takagi-Sugeno rules of unbundling. Likewise, the accuracy of the model can be improved by changing the parameters of the learning process (hybrid learning or error backpropagation, number of iterations, step size, etc.). The choice of the correct variables and the optimal parameters has been made based on obtaining a balance between the error criterion of the square root of the mean square error (RMSE) and the dynamic response of the model.
Se han realizado diversas pruebas con sistemas Takagi-Sugeno de orden cero y de primer orden, con funciones de pertenencia gaussianas, sigmoidales, triangulares y trapezoidales, asi como con diferentes números de funciones de pertenencia, que iban desde dos hasta nueve. Del estudio realizado se obtuvo que los modelos directo e inverso que mejor ajustan Ia respuesta del sistema son los que utilizan dos funciones de pertenencia en Ia fase de emborronado, siendo dichas funciones del tipo campana de Gauss, y con reglas de Takagi-Sugeno de orden cero o constantes (figuras 18 y 19).Several tests have been carried out with Takagi-Sugeno systems of zero order and of first order, with Gaussian, sigmoidal, triangular and trapezoidal membership functions, as well as with different numbers of membership functions, ranging from two to nine. From the study carried out, it was obtained that the direct and inverse models that best adjust the response of the system are those that use two belonging functions in the smudging phase, these functions being of the Gauss bell type, and with Takagi-Sugeno rules of order zero or constants (figures 18 and 19).
Funciones Takagi-Sugeno de salida:Takagi-Sugeno output functions:
Fuerza Media (baja) = 173,8 N Fuerza Media (alta) = 931 ,5 NMedium Strength (low) = 173.8 N Medium Strength (high) = 931, 5 N
Regla 1 : Si Velocidad de Avance es "baja" entonces Fuerza Media esRule 1: If Advance Speed is "low" then Medium Strength is
"baja""low"
Regla 2: Si Velocidad de Avance es "alta" entonces Fuerza Media es "alta"Rule 2: If Advance Speed is "high" then Medium Strength is "high"
El aumento del número de funciones de pertenencia y del orden de los sistemas T-S no produce mejoras significativas en Ia precisión.The increase in the number of membership functions and the order of the T-S systems does not produce significant improvements in the accuracy.
Tal y como se ha comentado anteriormente, Ia obtención del modelo inverso no se ha realizado invirtiendo el modelo. Se ha realizado otro entrenamiento con Ia fuerza media como entrada y Ia velocidad de avance como salida. Funciones Takagi-Sugeno de salida:As mentioned previously, obtaining the inverse model has not been done by inverting the model. Another training has been carried out with the average force as input and the speed of advance as output. Takagi-Sugeno output functions:
Veloc. Avance (baja) = 12,42 mm/min Veloc. Avance (alta) = 127,4 mm/minSpeed Advance (low) = 12.42 mm / min Speed. Advance (high) = 127.4 mm / min
Regla 1 : Si Fuerza Media es "baja" entonces Velocidad de Avance esRule 1: If Medium Strength is "low" then Advance Speed is
"baja""low"
Regla 2: Si Fuerza Media es "alta" entonces Velocidad de Avance es "alta"Rule 2: If Medium Strength is "high" then Advance Speed is "high"
Los parámetros de entrenamiento fueron 100 iteraciones del algoritmo (un mayor número de iteraciones provoca un sobreentrenamiento y, como resultado de éste, picos indeseados en Ia salida del sistema), modo de entrenamiento híbrido (únicamente con retropropagación del error no se alcanza el valor de salida deseado) y tamaño del paso de 0,01 (el aumento de este valor no produce una mejora significativa de Ia salida y si un mayor cómputo de operaciones).The training parameters were 100 iterations of the algorithm (a greater number of iterations causes an overtraining and, as a result of this, unwanted peaks in the system output), hybrid training mode (only with backpropagation of the error the value of desired output) and step size of 0.01 (the increase of this value does not produce a significant improvement of the output and a greater computation of operations).
Por motivos de rapidez y sencillez, Ia obtención de los modelos se realizó por medio de una herramienta proporcionada por el conocido software Matlab. El tiempo de entrenamiento en los modelos se sitúa en torno a 0,14 segundos tanto para el modelo directo como para el inverso.For reasons of speed and simplicity, the models were obtained by means of a tool provided by the well-known Matlab software. The training time in the models is around 0.14 seconds for both the direct model and the inverse model.
Estos tiempos se obtienen en un ordenador con procesador Intel Core2These times are obtained in a computer with Intel Core2 processor
CPU 6400 - 2,13 GHz con sistema operativo Windows XP Profesional. El entrenamiento se realiza fuera de línea.CPU 6400 - 2.13 GHz with Windows XP Professional operating system. The training is done offline.
A pesar de que se han elegido modelos que, a priori, tienen un error medio cuadrático porcentual mayor que otros modelos, Ia elección se ha basado en que su comportamiento dinámico es mejor (respuestas sin oscilaciones) y son muy sencillos. Un requisito fundamental del modelo directo es que Ia respuesta transitoria sea buena por Ia influencia negativa que tiene el sobrepaso en Ia vida útil de Ia broca (6).Although we have chosen models that, a priori, have a mean square error percentage greater than other models, the choice has been based on their dynamic behavior is better (responses without oscillations) and are very simple. A fundamental requirement of the direct model is that the transient response is good because of the negative influence of the overshoot in the useful life of the bit (6).
Las respuestas de los modelos directo e inverso aparecen representadas en las figuras 20 y 21. El error medio cuadrático (RMSE) para ambos casos aparece resumido en Ia siguiente tabla:The responses of the direct and inverse models are represented in figures 20 and 21. The mean square error (RMSE) for both cases is summarized in the following table:
Figure imgf000036_0001
Figure imgf000036_0001
Ciertamente los errores son altos. Sin embargo, en Ia aplicación que nos ocupa se requieren modelos sencillos y computacionalmente eficientes en tiempo real. Además, estos modelos representan Ia dinámica del proceso de taladrado de un modo aproximado pero con menores errores que otros modelos más complejos.Certainly the errors are high. However, in the application that concerns us, simple and computationally efficient models are required in real time. In addition, these models represent the dynamics of the drilling process in an approximate way but with fewer errors than other more complex models.
Se llevan a cabo ensayos en un sistema (2) de taladrado que comprende una máquina herramienta (2) Kondia HS1000 equipada con unTests are carried out in a drilling system (2) comprising a machine tool (2) Kondia HS1000 equipped with a
CNC (3) abierto Sinumerik 840D. En los experimentos se ha utilizado una broca (6) de diámetro 10 mm. Sandvik R840-1000-30-AOA de metal duro integral con recubrimiento de TiN/TiAIN.CNC (3) open Sinumerik 840D. In the experiments, a drill bit (6) with a diameter of 10 mm was used. Sandvik R840-1000-30-AOA made of solid carbide with TiN / TiAIN coating.
El control se ha realizado a través de un PC (4) que se encuentra conectado al CNC (3) a través de una red MPI (5), como se observa en Ia figura 22. Los modelos y el esquema de control se encuentran implementados en el software Real-Time Windows Target de Simulink.The control has been carried out through a PC (4) that is connected to the CNC (3) through an MPI network (5), as shown in Figure 22. The models and the control scheme are implemented in Simulink Real-Time Windows Target software.
Para Ia lectura y escritura de datos a través de Ia red MPI (5) se ha desarrollado una aplicación en lenguaje C. En caso de fallo o pérdida de información de Ia red MPI (5), el sistema de control tiene programado un mecanismo de seguridad en el CNC (3) que mantiene Ia velocidad de avance constante sobre el proceso.For reading and writing data through the MPI network (5) it has been developed an application in C language. In case of failure or loss of information from the MPI network (5), the control system has programmed a safety mechanism in the CNC (3) that keeps the speed of advance constant on the process.
Para comprobar Ia eficacia del sistema de control desarrollado se han realizado diversos ensayos con las condiciones nominales de velocidad de avance f = 100 mm/min, velocidad de giro n = 870 rpm y 14 mm. en Ia profundidad de corte recomendadas para el GGG40. La fuerza se mide a través de una plataforma dinamométrica (8) Kistler 9257B. Los valores de velocidad de giro, velocidad de avance y demás parámetros aportados por el CNC (3) se trasmiten a través de Ia red MPI (5).In order to check the effectiveness of the control system developed, several tests have been carried out with the nominal conditions of forward speed f = 100 mm / min, speed of rotation n = 870 rpm and 14 mm. in the depth of cut recommended for the GGG40. The force is measured through a dynamometer platform (8) Kistler 9257B. The values of speed of rotation, speed of advance and other parameters contributed by the CNC (3) are transmitted through the MPI network (5).
Los resultados de los ensayos experimentales se muestran en las figuras 23 y 24. Se puede observar como a pesar de Ia exigente condición inicial y del retardo, el sistema neuroborroso IMC es capaz de cumplir los requisitos de diseño con una respuesta rápida (tiempo de establecimiento de 2 segundos) y sin sobrepaso. Con el sistema de control se consigue aumentar Ia tasa de arranque de material. Además, Ia calidad en Ia respuesta transitoria y Ia no existencia de sobrepaso y oscilaciones en Ia respuesta contribuyen desde el punto de vista industrial a un mejor aprovechamiento de Ia vida útil de Ia broca (6).The results of the experimental tests are shown in figures 23 and 24. It can be observed that despite the demanding initial condition and the delay, the neuroborbic system IMC is able to meet the design requirements with a rapid response (time of establishment of 2 seconds) and without overshoot. With the control system it is possible to increase the material removal rate. In addition, the quality in the transient response and the non-existence of overshoot and oscillations in the response contribute from the industrial point of view to a better use of the useful life of the drill (6).
La siguiente tabla muestra una comparación entre los índices de mérito obtenidas por diferentes procedimientos de control:The following table shows a comparison between the merit indices obtained by different control procedures:
Figure imgf000037_0001
Ejemplo 3: Control neuro-borroso TWINFI
Figure imgf000037_0001
Example 3: Neuro-fuzzy control TWINFI
TWNFI es el acrónimo que recoge Ia literatura para un sistema de inferencia neuro-borroso transductivo y dinámico, propuesto originalmente por Song y Kasabov, que implica Ia creación de modelos locales particulares para cada sub-espacio del problema, utilizando una modificación de Ia distancia euclídea.TWNFI is the acronym that collects the literature for a neuro-fuzzy transductive and dynamic inference system, originally proposed by Song and Kasabov, which implies the creation of particular local models for each sub-space of the problem, using a modification of the Euclidean distance .
Las entradas a este sistema se pueden expresar en distintas unidades de medida. No obstante, se recomienda Ia normalización. En este trabajo se normaliza cada uno de los datos de entrada
Figure imgf000038_0004
según:
The entries to this system can be expressed in different units of measurement. However, normalization is recommended. In this work, each of the input data is normalized
Figure imgf000038_0004
according:
Figure imgf000038_0002
Figure imgf000038_0002
donde μj es Ia media y σj es Ia desviación estándar del conjunto de datos conocidos o conjunto de entrenamiento.where μj is the average and σj is the standard deviation of the known data set or training set.
Una vez se ha llevado a cabo Ia normalización (Xj), el modelo local personalizado se crea a partir de los datos del conjunto de entrenamiento más cercanos a cada nuevo dato de entrada. Para Ia selección de este subconjunto de datos se utiliza Ia distancia euclídea ponderada:Once the normalization (Xj) has been carried out, the customized local model is created from the data of the training set closest to each new input data. For the selection of this subset of data, the weighted Euclidean distance is used:
Figure imgf000038_0001
Figure imgf000038_0001
donde P es el número de elementos del vector o datos de entrada, x es el vector de datos de entrada, es cada uno de los vectores o datos del
Figure imgf000038_0003
conjunto de entrenamiento.
where P is the number of elements of the vector or input data, x is the vector of input data, is each of the vectors or data of the
Figure imgf000038_0003
training set.
El tamaño de este subconjunto (Nq) es un parámetro del algoritmo.The size of this subset (N q ) is a parameter of the algorithm.
Los pesos (Wj) de cada componente del vector de entrada (cuyos valores están entre O y 1 ) se obtienen en un proceso posterior de ajuste del modelo y reflejan Ia importancia de cada variable. Inicialmente todos tienen como valor Ia unidad.The weights (W j ) of each component of the input vector (whose values are between 0 and 1) are obtained in a subsequent process of adjustment of the model and reflect the importance of each variable. Initially, all have the unit value.
Cuando los ejemplos ya se han seleccionado se procede a crear el modelo personalizado. El sistema de inferencia neuro-borroso utilizado porWhen the examples have already been selected, the custom model is created. The neuro-fuzzy inference system used by
TWNFI emplea un motor de inferencia tipo Mamdani cuyas funciones de pertenencia borrosas son gaussianas, tanto en los antecedentes como en los consecuentes de las reglas if-then. El hecho de que estas funciones sean derivables, permite el uso posterior de un algoritmo de propagación hacia atrás de los errores (back-propagation, en inglés), basado en mínimos cuadrados y descenso por gradiente, para optimizar sus parámetros.TWNFI employs a Mamdani inference engine whose fuzzy membership functions are Gaussian, both in the background and in the consequential if-then rules. The fact that these functions are derivable, allows the subsequent use of a backward propagation algorithm (back-propagation, in English), based on least squares and descent by gradient, to optimize its parameters.
Para crear las funciones de pertenencia y las reglas borrosas se utiliza el algoritmo de agrupamiento evolutivo (ECM) definido por Song yThe algorithm of evolutionary grouping (ECM) defined by Song and is used to create membership functions and fuzzy rules.
Kasabov en "DENFIS: Sistema de inferencia borrosa-neuronal evolutiva dinámica y su aplicación para Ia predicción de series temporales", IEEE,Kasabov in "DENFIS: Dynamic evolutionary neural-fuzzy inference system and its application for the prediction of time series", IEEE,
Transacciones en sistemas borrosos, 10, 144-154, que se incorpora al presente documento como referencia. Se trata de un algoritmo de una iteración para el agrupamiento dinámico online de un conjunto de datos.Transactions in fuzzy systems, 10, 144-154, which is incorporated herein by reference. It is an iteration algorithm for the online dynamic grouping of a data set.
Comienza con un conjunto inicial para el primer dato. Para los siguientes datos el algoritmo, a partir de las distancias euclídeas y del valor umbral de agrupamiento (Dthr), Io añade a un conjunto existente (actualizando el centro y el radio del mismo) o crea un nuevo conjunto. Los grupos o clusters resultantes son circulares y se utilizan para crear las funciones de pertenencia gaussianas. Para ello, el centro del conjunto se toma como centro de Ia función gaussiana, y el radio como anchura (figuras 25, 26 y 27).Start with an initial set for the first data. For the following data the algorithm, starting from the Euclidean distances and the grouping threshold value (D t hr), adds it to an existing set (updating the center and the radius thereof) or creates a new set. The resulting groups or clusters are circular and are used to create the Gaussian membership functions. For this, the center of the set is taken as center of the Gaussian function, and the radius as width (figures 25, 26 and 27).
Si consideramos que el sistema tiene P entradas, una salida y M reglas borrosas definidas inicialmente a través del algoritmo de agrupamiento, Ia l-ésima regla tiene Ia forma:If we consider that the system has P inputs, an output and M fuzzy rules defined initially through the grouping algorithm, the lth rule has the form:
Ri: Si Xi es Fn y X2 es F|2 y...xp es FIP, entonces y es Gi. (Cluster l)Ri: If Xi is Fn and X 2 is F | 2 y ... xp is F IP , so y is Gi. (Cluster l)
dondewhere
Figure imgf000040_0001
Figure imgf000040_0001
Aquí m y n son los centros de las funciones gaussianas para las entradas y salidas, a y δ son las anchuras, i = 1 ,2,...,Nq es el índice que representa el número de vecinos más cercanos, j = 1 ,2,..., P representa el número de variables de entrada, y I = 1 ,2,..., M representa el número de reglas borrosas.Here myn are the centers of the Gaussian functions for the inputs and outputs, a and δ are the widths, i = 1, 2, ..., N q is the index that represents the number of nearest neighbors, j = 1, 2 , ..., P represents the number of input variables, and I = 1, 2, ..., M represents the number of fuzzy rules.
Los centros m y n así como las anchuras a y δ, se obtienen como resultado del algoritmo de agrupamiento ECM, mientras que el parámetro αy se elige por diseño (inicialmente con un valor unitario) y representa el peso cada una de las funciones de pertenencia a Ia entrada. Todos estos parámetros y demás factores de importancia son ajustados posteriormente con el algoritmo de propagación hacia atrás de los errores tal y como describen Song y Kasabov.The m and n centers as well as the widths a and δ are obtained as a result of the ECM grouping algorithm, while the parameter αy is chosen by design (initially with a unit value) and represents the weight each of the functions of belonging to the input . All these parameters and other important factors are adjusted later with the algorithm of backward propagation of the errors as described by Song and Kasabov.
Usando el método del centro del área modificado como método de desemborronado, el valor de salida del sistema para un vector de entrada
Figure imgf000041_0003
se calcula del siguiente modo:
Using the center method of the modified area as the undoing method, the output value of the system for an input vector
Figure imgf000041_0003
It is calculated as follows:
Figure imgf000041_0001
Figure imgf000041_0001
Una vez obtenido el modelo, y utilizando los pares entrada-salida de los datos de entrenamiento más cercanos el sistema trata de
Figure imgf000041_0006
minimizar Ia siguiente función objetivo:
Once the model is obtained, and using the input-output pairs of the closest training data, the system deals with
Figure imgf000041_0006
minimize the following objective function:
Figure imgf000041_0002
Figure imgf000041_0002
siendo
Figure imgf000041_0004
Figure imgf000041_0005
como vector de distancias calculadas en el primer paso.
being
Figure imgf000041_0004
Figure imgf000041_0005
as vector of distances calculated in the first step.
En Ia figura 28 se pueden observar con más detalle todos los distintos pasos que sigue TWNFI para Ia creación del modelo.In Figure 28 can be seen in more detail all the different steps that follows TWNFI for the creation of the model.
Pese a que podría utilizarse un algoritmo de agrupamiento distinto a ECM, así como otro algoritmo de aprendizaje para Ia optimización de parámetros distinto de Ia propagación hacia atrás de los errores, este trabajo está basado en ECM y retro-propagación por Ia rapidez y simplicidad de ambos métodos.Although a different grouping algorithm could be used ECM, as well as another learning algorithm for the optimization of parameters other than the backwards propagation of errors, this work is based on ECM and retro-propagation by the speed and simplicity of both methods.
Por otro lado, el control por modelo interno (IMC) es una técnica muy utilizada y bien establecida en el diseño de controladores inteligentes. Este esquema de control en bucle cerrado utiliza explícitamente un modelo (GM) de Ia dinámica del proceso de taladrado a controlar situado en paralelo con ésta (Gt). Por otra parte, también contiene otro modelo de Ia inversa de Ia dinámica de Ia planta (GM') situado en serie con el proceso y que actúa como controlador.On the other hand, internal model control (IMC) is a well-used and well-established technique in the design of intelligent controllers. This closed-loop control scheme explicitly uses a model (G M ) of the dynamics of the drilling process to be controlled located in parallel with it (G t ). On the other hand, it also contains another model of the inverse of the plant dynamics (G M ') located in series with the process and acting as controller.
Una de las ventajas de este tipo de control está en que sus propiedades de estabilidad y robustez pueden ser analizadas y manipuladas de una manera clara y sencilla, incluso para sistemas no lineales. Sin embargo, Ia inversión de modelos no lineales no es una tarea fácil, y pueden no existir soluciones analíticas. En determinados casos, Ia solución puede ser imposible de implementar pese a que exista solución. Otro problema asociado es que Ia inversión del modelo del proceso puede conducir a controladores inestables cuando el sistema es de fase no mínima.One of the advantages of this type of control is that its stability and robustness properties can be analyzed and manipulated in a clear and simple way, even for non-linear systems. However, the inversion of non-linear models is not an easy task, and analytical solutions may not exist. In certain cases, the solution may be impossible to implement despite the existence of a solution. Another associated problem is that the inversion of the process model can lead to unstable controllers when the system is of a non-minimum phase.
En esta patente se utiliza el algoritmo TWNFI para crear los modelos (directo e inverso) online. Ante cada nueva entrada al esquema de control se calculan ambos modelos. Mediante esta técnica de inferencia neuro-borrosa, Ia creación del modelo inverso resulta más sencilla y siempre ofrece una solución.In this patent the TWNFI algorithm is used to create the models (direct and reverse) online. Before each new entry to the control scheme, both models are calculated. By means of this neuro-fuzzy inference technique, the creation of the inverse model is simpler and always offers a solution.
El modelo directo debe ser entrenado para aprender Ia dinámica del proceso. Para conseguirlo, se utiliza un sistema TWNFI con un conjunto de entrenamiento compuesto por datos entrada-salida, en los que las entradas corresponden a valores de velocidad de avance, mientras que como variable de salida se utiliza Ia fuerza de corte (figura 29).The direct model must be trained to learn the dynamics of the process. To achieve this, a TWNFI system is used with a set of training composed of input-output data, in which the inputs correspond to forward speed values, while the cutting force is used as the output variable (figure 29).
Para el cálculo del modelo inverso, en vez de proceder a invertir el modelo directo obtenido de un modo analítico, se utiliza otro sistema TWNFI en el que su conjunto de entrenamiento contenga datos con valores de fuerza de corte como entrada y valores de velocidad de avance como salida. De este modo, el sistema de control consigue aprender Ia dinámica inversa del proceso de taladrado de alto rendimiento (figura 30).For the calculation of the inverse model, instead of proceeding to invert the direct model obtained in an analytical mode, another TWNFI system is used in which your training set contains data with values of shear force as input and velocity values of advance as an exit. In this way, the control system manages to learn the inverse dynamics of the high-performance drilling process (figure 30).
Los datos de entrenamiento tanto del modelo directo como del modelo inverso han sido obtenidos de operaciones reales de taladrado con probetas de material GGG40 bajo las condiciones que aparecen en Ia tabla que se muestra unas páginas más abajo en el presente documento. Este conjunto de datos no tiene porque ser muy extenso ya que son suficientes valores representativos de cada región de operación.The training data of both the direct model and the inverse model have been obtained from real drilling operations with specimens of material GGG40 under the conditions that appear in the table that is shown a few pages below in this document. This set of data does not have to be very extensive since representative values of each operating region are sufficient.
Los modelos inverso GM' y directo GM son auto-regresivos y de media móvil (ARMA) ya que utilizan estados anteriores de las variables de entrada y salida para conseguir una mejor aproximación en las relaciones fuerza-avance del conjunto de entrenamiento de los algoritmos TWNFI:The inverse models G M 'and direct G M are auto-regressive and moving average (ARMA) since they use previous states of the input and output variables to get a better approximation in the force-advance relationships of the training set of the TWNFI algorithms:
Figure imgf000043_0001
Figure imgf000043_0001
donde
Figure imgf000043_0002
es Ia fuerza de corte estimada por el modelo directo y f(k) Ia velocidad de avance calculada por el modelo inverso.
where
Figure imgf000043_0002
is the shear force estimated by the direct model and f (k) the forward speed calculated by the inverse model.
El grado de exactitud de los modelos vendrá determinado por Ia elección de ciertos parámetros del algoritmo TWNFI tales como número de vecinos más próximos, número de iteraciones y tasas de aprendizaje del algoritmo de propagación de errores, valor umbral del agrupamiento de conjuntos (parámetro del algoritmo de agrupamiento utilizado), etc. A Ia hora de elegir un valor óptimo de estos parámetros se trata de buscar un equilibrio entre el error de los modelos locales con respecto al modelo teórico lineal y Ia respuesta dinámica de los mismos.The degree of accuracy of the models will be determined by Ia choice of certain parameters of the TWNFI algorithm such as number of nearest neighbors, number of iterations and learning rates of the error propagation algorithm, threshold value of the grouping of sets (parameter of the grouping algorithm used), etc. When choosing an optimal value of these parameters, the aim is to find a balance between the error of the local models with respect to the linear theoretical model and the dynamic response of them.
Una vez obtenidos los modelos, se decide incluir también en el esquema de control un filtro pasa-bajo (GF).
Figure imgf000044_0001
Once the models have been obtained, it is decided to also include a low-pass filter (G F ) in the control scheme.
Figure imgf000044_0001
donde ki y l<2 son parámetros de diseño y usualmente ki = k2 .where ki and l <2 are design parameters and usually ki = k 2 .
El filtro se incorpora al sistema de control con el objetivo de reducir Ia ganancia de alta frecuencia y mejorar Ia robustez del sistema de control. También sirve para suavizar los cambios rápidos y bruscos en las señales, mejorando Ia respuesta del controlador.The filter is incorporated into the control system in order to reduce the high frequency gain and improve the robustness of the control system. It also serves to smooth the rapid and abrupt changes in the signals, improving the response of the controller.
La figura 31 muestra el esquema de control por modelo interno en red. En ella se puede observar Ia disposición de los modelos directo e inverso GM y GM', respectivamente. Además, se muestra el filtro GF y el proceso de taladrado representado por Gt. Se incluye en el esquema el retardo (incluyendo el introducido por los distintos niveles de Ia red y el intrínseco al proceso de taladrado) a través del bloque L. Las cuestiones relacionadas con el retardo L y Ia arquitectura del sistema de control a través de un medio de red serán explicadas a continuación.Figure 31 shows the control scheme by internal network model. In it, the layout of the direct and inverse models GM and GM ', respectively, can be observed. In addition, the GF filter and the drilling process represented by G t are shown . The delay (including the one introduced by the different levels of the network and the intrinsic to the drilling process) is included in block L. The issues related to the delay L and the architecture of the control system through a network media will be explained below.
El desarrollo de las tecnologías de Ia información y las comunicaciones ha permitido el uso generalizado de sistemas de control y supervisión en red para procesos distribuidos, tanto jerárquicamente como geográficamente.The development of information technologies and Communications has allowed the widespread use of network control and supervision systems for distributed processes, both hierarchically and geographically.
Ciertamente, Ia utilización de sistemas de control en red conlleva importantes ventajas tales como fiabilidad, mejora de utilización de recursos, facilidad de mantenimiento y diagnóstico de errores, y sobre todo, Ia posibilidad de reconfiguración de sus distintos componentes. Sin embargo, es evidente que el uso de estas redes introduce una serie de retardos en los sistemas que pueden provocar inestabilidades en el proceso. De hecho, en el campo del control de procesos se suele incorporar a los modelos el retardo que introducen las propias redes (Profibus, Profinet, etc.). Tal y como se describió en Ia sección anterior, todos los retardos (propios del proceso y de Ia red) se han agrupado en este caso en el bloque L.Certainly, the use of network control systems entails important advantages such as reliability, improvement of resource utilization, ease of maintenance and diagnosis of errors, and above all, the possibility of reconfiguration of its various components. However, it is clear that the use of these networks introduces a series of delays in the systems that can cause instabilities in the process. In fact, in the field of process control, the delay introduced by the networks themselves (Profibus, Profinet, etc.) is usually incorporated into the models. As described in the previous section, all the delays (inherent to the process and the network) have been grouped in this case in block L.
Dentro de las distintas tecnologías de red existentes, los buses de campo se han consolidado como las redes de comunicación industrial más utilizadas. Estas tecnologías tienen numerosas ventajas, entre las cuales destaca su comportamiento determinístico, y por tanto es posible acotar los retardos y conocer el retardo máximo debido a Ia red. Sin embargo, entre sus inconvenientes se encuentran el alto coste del hardware y Ia dificultad de integración con otros productosWithin the different existing network technologies, field buses have been consolidated as the most used industrial communication networks. These technologies have numerous advantages, among which its deterministic behavior stands out, and therefore it is possible to limit the delays and know the maximum delay due to the network. However, among its drawbacks are the high cost of hardware and the difficulty of integration with other products
Recientemente, Ethernet está siendo utilizada en el campo de Ia automatización industrial, debido al bajo coste, disponibilidad y altas velocidades de transmisión. El principal obstáculo técnico de Ethernet en entornos industriales es su comportamiento no determinista, Io que Io hace en principio inadecuado para aplicaciones con requerimientos de tiempo real. Ethernet no consume tiempo en el arbitraje de bus, pero Ia colisión de paquetes puede provocar retrasos en el envío e incluso perdida de información. Por estas razones, a priori, es imposible predecir el retardo en el envío de información. La principal dificultad del control en red en general, y a través de Ethernet en particular, radica en que, a pesar de que el sistema de control sea robusto a las variaciones contempladas en el diseño, puede no ser del todo tolerante a retardos en las comunicaciones no modelados.Recently, Ethernet is being used in the field of industrial automation, due to the low cost, availability and high transmission speeds. The main technical obstacle of Ethernet in industrial environments is its nondeterministic behavior, which makes it in principle inappropriate for applications with real time requirements. Ethernet does not consume time in the bus arbitration, but the collision of packages can cause delays in the sending and even loss of information. For these reasons, a priori, it is impossible to predict the delay in sending information. The main difficulty of network control in general, and through Ethernet in particular, is that, although the control system is robust to the variations contemplated in the design, it may not be entirely tolerant of delays in communications not modeled
Sin embargo, el uso de Ethernet conmutada (cuyo elemento de red es el conmutador) elimina las posibles colisiones en Ia transmisión de Ia información, aumentado Ia eficiencia de Ia red. Al no producirse las colisiones, Ia red no es inestable ante altas cargas de tráfico y el retardo se reduce drásticamente. Por ello, se ha convertido en una alternativa bastante prometedora para los sistemas de control en red. Esta realización de Ia invención aborda el control del proceso de taladrado de alto rendimiento a través de Ia tecnología de red Ethernet conmutada, aunque también es válida Ia utilización de Internet u otras redes de retardos máximos similares.However, the use of switched Ethernet (whose network element is the switch) eliminates the possible collisions in the transmission of the information, increasing the efficiency of the network. As collisions do not occur, the network is not unstable due to high traffic loads and the delay is drastically reduced. Therefore, it has become a very promising alternative for network control systems. This embodiment of the invention addresses the control of the high performance drilling process through the switched Ethernet network technology, although the use of the Internet or other networks of similar maximum delays is also valid.
Por otra parte, Ia comunicación con los procesos a controlar no siempre se puede realizar directamente a través de Ethernet. Por ejemplo, ciertos fabricantes de Controladores Numéricos por Computador (CNC) sólo establecen comunicaciones a través de protocolos propietarios utilizando las herramientas software proporcionadas.On the other hand, communication with the processes to be controlled can not always be carried out directly via Ethernet. For example, certain manufacturers of Computer Numeric Controllers (CNC) only establish communications through proprietary protocols using the software tools provided.
Por esta razón, en este ejemplo se han establecido en el sistemaFor this reason, in this example they have been established in the system
(11 ) de taladrado dos niveles de red. El primer nivel de red (15) dispone de un ordenador PC1 (14) conectado al CNC (13) de arquitectura abierta del proceso a través de una red Profibus (15) y que utiliza software propietario. Desde el punto de vista técnico Ia existencia de software propietario impone restricciones en Ia conectividad a los CNC (13) de arquitectura abierta. El modelo del proceso de taladrado se obtuvo a través de esta red Profibus (15). El retardo máximo en este nivel de red Profibus (15) es de 0,4 segundos:(11) Drilling two network levels. The first network level (15) has a computer PC1 (14) connected to the CNC (13) of open process architecture through a Profibus network (15) and using proprietary software. From the technical point of view the existence of proprietary software imposes restrictions on the connectivity to the open architecture CNCs (13). The model of the drilling process was obtained through this Profibus network (15). The maximum delay at this Profibus network level (15) is 0.4 seconds:
Figure imgf000047_0001
Figure imgf000047_0001
donde τSc es el retardo en las comunicaciones del sensor al PC1 (14), TCA el retardo en el envío de Ia acción de control del PC1 (14) al CNC (13) y Taladrado el retardo intrínseco al propio proceso de taladrado realizado por Ia máquina herramienta (12).where τ S c is the delay in the communications of the sensor to PC1 (14), T CA the delay in sending the control action of PC1 (14) to the CNC (13) and Drilling the intrinsic delay to the drilling process itself performed by the machine tool (12).
Se define además un segundo nivel de red, en este caso una red Ethernet (15'), que conecta otro ordenador personal PC2 (14') al PC1 (14). El PC2 (14') incorpora software libre y un sistema intermediario de tiempo real (RT-CORBA). En este ordenador se implementa finalmente el sistema de control TWNFI-CMI. En caso de fallo en Ia red Ethernet (15'), un mecanismo de seguridad en el PC1 (14) mantiene constante Ia acción de control en el CNC (13).A second network level is also defined, in this case an Ethernet network (15 '), which connects another personal computer PC2 (14') to PC1 (14). PC2 (14 ') incorporates free software and a real-time intermediary system (RT-CORBA). The TWNFI-CMI control system is finally implemented on this computer. In case of failure in the Ethernet network (15 '), a security mechanism in PC1 (14) keeps the control action constant in the CNC (13).
Teniendo en cuenta resultados experimentales acerca de retardos en procesos de fabricación donde las máquinas herramienta están conectadas a ordenadores en redes locales por medio de Ethernet, así como estudios conocidos en Ia técnica (Figuras 32 y 33), se puede establecer como retardo máximo de Ia red Ethernet (15') un tiempo de 5x10-3 segundos:Taking into account experimental results about delays in manufacturing processes where the machine tools are connected to computers in local networks by means of Ethernet, as well as studies known in the art (Figures 32 and 33), it can be established as the maximum delay of the Ethernet network (15 ') a time of 5x10-3 seconds:
Figure imgf000047_0002
donde Ts2 es el retardo en el envío de datos al PC2 (14') y TA2 es el retardo en el envío de Ia acción de control del PC2 (14') al PC1 (14).
Figure imgf000047_0002
where Ts2 is the delay in sending data to PC2 (14 ') and T A2 is the delay in sending the control action of PC2 (14 ') to PC1 (14).
Se puede comprobar a partir de todos estos datos que el retardo que introduce Ia red Ethernet (15') es despreciable en comparación con el introducido por Ia red Profibus (15) (0,4 s >> 0,005 s).It can be verified from all these data that the delay introduced by the Ethernet network (15 ') is negligible compared to that introduced by the Profibus network (15) (0.4 s >> 0.005 s).
Suponiendo que el retardo máximo es conocido, es posible realizar control a través de Ia red Ethernet (15'), aunque se ha comprobado que es igualmente válido utilizar Internet como segundo nivel de red.Assuming that the maximum delay is known, it is possible to perform control through the Ethernet network (15 '), although it has been proven that it is equally valid to use the Internet as the second network level.
Se aplica el sistema de control obtenido a un proceso de taladrado. Con el objeto de comprobar Ia robustez del sistema de control, se han realizado distintas pruebas de taladrado sobre probetas de acero inoxidable endurecido por precipitación 17-4PH (martensílico), que es un material altamente utilizado en Ia industria naval y aeroespacial. Las condiciones óptimas recomendadas por los fabricantes de brocas para el taladrado de este material, así como otros datos de interés se presentan en Ia siguiente tabla.The control system obtained is applied to a drilling process. In order to check the robustness of the control system, different drilling tests have been performed on stainless steel specimens hardened by precipitation 17-4PH (martensilic), which is a material highly used in the naval and aerospace industry. The optimal conditions recommended by the manufacturers of drill bits for the drilling of this material, as well as other data of interest are presented in the following table.
Figure imgf000048_0001
Resulta interesante el hecho de que el algoritmo TWNFI que genera los modelos personalizados directo e inverso, únicamente posee en su conjunto de entrenamiento datos de pruebas realizadas sobre probetas de fundición nodular con grafito esférico GGG40. Se trata también de demostrar en este trabajo que el control resulta válido para otra serie de condiciones para las cuáles no ha sido entrenado. Las características a las que se opera con material GGG40 se muestran también en Ia tabla anterior con el objeto de comparar las diferencias de ambos materiales.
Figure imgf000048_0001
Interestingly, the TWNFI algorithm that generates the direct and inverse personalized models, only has in its training set data from tests performed on nodular casting specimens with GGG40 spherical graphite. It also tries to demonstrate in this work that the control is valid for another series of conditions for which it has not been trained. The characteristics that are operated with GGG40 material are also shown in the previous table in order to compare the differences of both materials.
Los ensayos reales se han llevado a cabo empleando un sistema (11 ) de taladrado de alta velocidad que comprende una máquina herramienta (12) Kondia HS1000 equipada con un CNC (13) abierto Sinumerik 840D. Por restricciones del fabricante, Ia comunicación con el CNC (13) de arquitectura abierta se debe realizar a través de un protocolo propietario basado en Ia red Profibus (15). El PC1 (14) dispone de un sistema operativo Windows 2000 y Ia aplicación para Ia lectura de variables del CNC (13) se encuentra desarrollada en Labview.The actual tests have been carried out using a high-speed drilling system (11) comprising a machine tool (12) Kondia HS1000 equipped with a CNC (13) open Sinumerik 840D. Due to manufacturer restrictions, the communication with the open architecture CNC (13) must be carried out through a proprietary protocol based on the Profibus network (15). PC1 (14) has a Windows 2000 operating system and the application for reading CNC variables (13) is developed in Labview.
La fuerza se mide a través de una plataforma dinamométrica KistlerThe force is measured through a Kistler dynamometer platform
9257B y se envía al PC1 (14). Los valores de velocidad de giro, velocidad de avance y demás parámetros aportados por el CNC (13) se transmiten también a través de Ia red Profibus (15). En este primer nivel de red se lleva a cabo el procesamiento de Ia señal de fuerza medida FM.9257B and it is sent to PC1 (14). The values of speed of rotation, speed of advance and other parameters contributed by the CNC (13) are also transmitted through the Profibus network (15). In this first network level, the processing of the measured force signal F M takes place .
El control se ha realizado desde del PC2 (14') que se encuentra conectado al PC1 (14) anteriormente comentado a través de una red Ethernet (15'). En el PC1 (14')l se encuentra propiamente el sistema de control TWNFI-CMI desarrollado en C++, realizando el control sobre una plataforma en RT-Corba y bajo el sistema operativo RT-Linux. El sistema de control TWNFI-CMI calcula Ia acción de control (f) en base a Ia medida de Ia fuerza recibida y Ia envía al PC1 (14), que posteriormente escribirá Ia variable en el CNC (13) de arquitectura abierta.The control has been carried out from the PC2 (14 ') that is connected to the PC1 (14) previously commented through an Ethernet network (15'). In the PC1 (14 ') l is the TWNFI-CMI control system developed in C ++, performing the control over a platform in RT-Corba and under the RT-Linux operating system. The TWNFI-CMI control system calculates the control action (f) based on the measurement of the received force and sends it to PC1 (14), which will later write the variable in the open architecture CNC (13).
Los parámetros del algoritmo escogidos han sido los mismos para el modelo directo y para el modelo inverso (a excepción de los conjuntos de entrenamiento que representan dinámicas distintas aunque contengan los mismos datos). Con respecto al propio algoritmo TWNFI se ha escogido un número de vecinos más cercano (Nq) de 5, un número de iteraciones del algoritmo de propagación hacia atrás de errores de 20 con una tasa de aprendizaje de 0,001. Con respecto al algoritmo ECM se ha escogido como valor umbral para Ia generación de conjuntos
Figure imgf000050_0002
The algorithm parameters chosen have been the same for the direct model and for the inverse model (with the exception of the training sets that represent different dynamics although they contain the same data). With respect to the TWNFI algorithm itself, a closer number of neighbors (N q ) of 5 has been chosen, a number of iterations of the error back propagation algorithm of 20 with a learning rate of 0.001. With respect to the ECM algorithm, it has been chosen as a threshold value for the generation of sets
Figure imgf000050_0002
En los experimentos se ha utilizado una broca de diámetro 10 mm Sandvik R840-1000-30-A0A de metal duro integral con recubrimiento de TiN/TiAIN.In the experiments, a 10 mm diameter drill Sandvik R840-1000-30-A0A of integral hard metal with TiN / TiAIN coating was used.
Para hacer un estudio más completo del sistema de control se ha realizado un estudio comparativo con Ia técnica neuro-borrosa ANFIS en un esquema de control por modelo interno. Para comparar ambos sistemas se utilizan como índices de mérito el criterio de error de Ia integral absoluta del error a través del tiempo (ITAE), Ia integral absoluta del error (IAE) y Ia integral del cuadrado del error por el tiempo (ITSE). También se incluye el sobrepaso debido a Ia gran importancia que tiene el mismo en el desgaste de Ia broca.In order to make a more complete study of the control system, a comparative study with the neuro-fuzzy ANFIS technique has been carried out in a control scheme by internal model. To compare both systems, the error criterion of the absolute integral of the error over time (ITAE), the absolute integral of the error (IAE) and the integral of the square of the error by time (ITSE) are used as indices of merit. The overshoot is also included due to the great importance that it has in the wear of the drill.
Figure imgf000050_0001
Los resultados de los ensayos experimentales se muestran en las figuras 35 y 36, así como en Ia siguiente tabla.
Figure imgf000050_0001
The results of the experimental tests are shown in figures 35 and 36, as well as in the following table.
Figure imgf000051_0001
Figure imgf000051_0001
La acción de control es más amplia en rango (debido a que toma valores extremos en el conjunto de entrenamiento) pero menos cambiante en el tiempo, Io cuál favorece el rendimiento del equipo.The control action is wider in range (because it takes extreme values in the training set) but less changeable in time, which favors the performance of the team.
Desde el punto de vista práctico Ia existencia de una condición inicial en las velocidades de avance añade a los requisitos a cumplir en Ia respuesta transitoria y en el tiempo de establecimiento una mayor dificultad.From the practical point of view the existence of an initial condition in the advance speeds adds to the requirements to be met in the transitory response and in the establishment time a greater difficulty.
Ejemplo 4: Control por bucle cerrado PIDExample 4: Control by closed loop PID
Finalmente, Ia figura 37 muestra un esquema de control correspondiente al control por bucle cerrado PID, que además incluye un filtro previo situado antes del bucle de control. Finally, Figure 37 shows a control scheme corresponding to the PID closed loop control, which also includes a previous filter located before the control loop.

Claims

R E I V I N D I C A C I O N E S
1. Procedimiento de control para procesos de taladrado realizados por una máquina-CNC (2, 3) controlada desde un medio de control (4), donde Ia máquina-CNC (2, 3) y el medio de control (4) están conectados por un medio de red (5), y siendo Lmax el retardo global máximo del proceso de taladrado, donde el esquema de control es un esquema en bucle cerrado simple cuya línea interna comprende un bloque que representa el proceso de mecanizado, un controlador borroso y unos factores de escala Ke, Kce y GC.1. Control procedure for drilling processes carried out by a CNC machine (2, 3) controlled from a control means (4), where the CNC machine (2, 3) and the control means (4) are connected by network means (5), and L max being the maximum overall delay of the drilling process, where the control scheme is a simple closed loop scheme whose internal line comprises a block representing the machining process, a fuzzy controller and scale factors K e , K ce and GC.
2. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 1 , donde el ajuste de los factores de escala Ke, Kce y GC y del controlador borroso se efectúa de modo que se minimiza un índice de mérito.2. Control procedure for drilling processes according to claim 1, wherein the adjustment of the scale factors K e , Kce and GC and the fuzzy controller is carried out in such a way that an index of merit is minimized.
3. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 2, donde el índice de mérito se elige de Ia siguiente lista: IAE, ITAE, ISE y ITSE.3. Control procedure for drilling processes according to claim 2, wherein the index of merit is chosen from the following list: IAE, ITAE, ISE and ITSE.
4. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 1 , donde el esquema de control comprende además un bloque anticipativo que relaciona el valor de entrada con el factor de escala GC.4. Control procedure for drilling processes according to claim 1, wherein the control scheme further comprises a forward block that relates the input value to the scale factor GC.
5. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 1 , donde el retardo global máximo Lmax del proceso de taladrado es mayor de 0,2 segundos.5. Control procedure for drilling processes according to claim 1, wherein the maximum overall delay L max of the drilling process is greater than 0.2 seconds.
6. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 1 , donde el retardo global máximo Lmax del proceso de taladrado es mayor de 0,4 segundos. 6. Control procedure for drilling processes according to claim 1, wherein the maximum overall delay L max of the drilling process is greater than 0.4 seconds.
7. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 1 , donde el medio de red (5) se elige de Ia siguiente lista: MPI, Profibus, Ethernet e Internet.7. Control procedure for drilling processes according to claim 1, wherein the network means (5) is chosen from the following list: MPI, Profibus, Ethernet and Internet.
8. Procedimiento de control para procesos de taladrado realizados por una máquina-CNC (2, 3) controlada desde un medio de control (4), donde Ia máquina-CNC (2, 3) y el medio de control (4) están conectados por un medio de red (5), y siendo Lmax el retardo global máximo del proceso de taladrado, donde el esquema de control es un esquema de control por modelo interno que combina controladores borrosos y controladores neuronales.8. Control procedure for drilling processes carried out by a CNC machine (2, 3) controlled from a control means (4), where the CNC machine (2, 3) and the control means (4) are connected by network means (5), and L max being the maximum overall delay of the drilling process, where the control scheme is a control scheme by internal model that combines fuzzy controllers and neural controllers.
9. Procedimiento de control de acuerdo con Ia reivindicación 8, donde el controlador neuro-borroso se ajusta de modo que se minimiza un índice de mérito.9. Control procedure according to claim 8, wherein the neuro-fuzzy controller is adjusted so that an index of merit is minimized.
10. Procedimiento de control de acuerdo con Ia reivindicación 9, donde el índice de mérito se elige de Ia siguiente lista: IAE, ITAE, ISE y ITSE.10. Control procedure according to claim 9, wherein the index of merit is chosen from the following list: IAE, ITAE, ISE and ITSE.
11. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 8, donde el retardo global máximo Lmax del proceso de taladrado es mayor de 0,2 segundos.11. Control procedure for drilling processes according to claim 8, wherein the maximum overall delay L max of the drilling process is greater than 0.2 seconds.
12. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 8, donde el retardo global máximo Lmax del proceso de taladrado es mayor de 0,4 segundos.12. Control procedure for drilling processes according to claim 8, wherein the maximum overall delay L max of the drilling process is greater than 0.4 seconds.
13. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 8, donde el medio de red (5) se elige de Ia siguiente lista: MPI, Profibus, Ethernet e Internet. 13. Control procedure for drilling processes according to claim 8, wherein the network medium (5) is chosen from the following list: MPI, Profibus, Ethernet and Internet.
14. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 8, donde el esquema de control por modelo interno es un esquema de control ANFIS.14. Control procedure for drilling processes according to claim 8, wherein the control scheme by internal model is an ANFIS control scheme.
15. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 8, donde el esquema de control por modelo interno es un esquema de control TWNFI.15. Control procedure for drilling processes according to claim 8, wherein the control scheme by internal model is a TWNFI control scheme.
16. Procedimiento de control para procesos de taladrado realizados por una máquina-CNC (2, 3) controlada desde un medio de control (4), donde Ia máquina-CNC (2, 3) y el medio de control (4) están conectados por un medio de red (5), y siendo Lmax el retardo global máximo del proceso de taladrado, donde el esquema de control es un esquema de control en bucle cerrado simple cuya línea interna comprende un bloque que representa el proceso de taladrado y un controlador PID, y que además comprende un filtro dispuesto antes del bucle de control.16. Control procedure for drilling processes carried out by a CNC machine (2, 3) controlled from a control means (4), where the CNC machine (2, 3) and the control means (4) are connected by network means (5), and L max being the maximum overall delay of the drilling process, where the control scheme is a simple closed loop control scheme whose internal line comprises a block representing the drilling process and a PID controller, and further comprising a filter arranged before the control loop.
17. Procedimiento de control de acuerdo con Ia reivindicación 16, donde el ajuste de los parámetros del bloque correspondiente al controlador PID se realiza mediante el método de Ziegler-Nichols.17. Control procedure according to claim 16, wherein the adjustment of the parameters of the block corresponding to the PID controller is carried out by means of the Ziegler-Nichols method.
18. Procedimiento de control de acuerdo con Ia reivindicación 16, donde el controlador PID y el filtro se ajustan de modo que se minimiza un índice de mérito.18. Control procedure according to claim 16, wherein the PID controller and the filter are adjusted so that an index of merit is minimized.
19. Procedimiento de control de acuerdo con Ia reivindicación 18, donde el índice de mérito se elige de Ia siguiente lista: IAE, ITAE, ISE y ITSE.19. Control procedure according to claim 18, wherein the index of merit is chosen from the following list: IAE, ITAE, ISE and ITSE.
20. Procedimiento de control de acuerdo con Ia reivindicación 16, donde el retardo global máximo Lmax del proceso de taladrado es mayor de 0,2 segundos. 20. Control procedure according to claim 16, wherein the maximum overall delay L max of the drilling process is greater than 0.2 seconds.
21. Procedimiento de control de acuerdo con Ia reivindicación 16, donde el retardo global máximo Lmax del proceso de taladrado es mayor de 0,4 segundos.21. Control procedure according to claim 16, wherein the maximum overall delay L max of the drilling process is greater than 0.4 seconds.
22. Procedimiento de control para procesos de taladrado de acuerdo con Ia reivindicación 16, donde el medio de red (5) se elige de Ia siguiente lista: MPI, Profibus, Ethernet e Internet. 22. Control procedure for drilling processes according to claim 16, wherein the network medium (5) is chosen from the following list: MPI, Profibus, Ethernet and Internet.
PCT/ES2008/070039 2008-03-03 2008-03-03 Fuzzy logic-based control methods for drilling processes WO2009109673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/070039 WO2009109673A1 (en) 2008-03-03 2008-03-03 Fuzzy logic-based control methods for drilling processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/070039 WO2009109673A1 (en) 2008-03-03 2008-03-03 Fuzzy logic-based control methods for drilling processes

Publications (1)

Publication Number Publication Date
WO2009109673A1 true WO2009109673A1 (en) 2009-09-11

Family

ID=41055573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070039 WO2009109673A1 (en) 2008-03-03 2008-03-03 Fuzzy logic-based control methods for drilling processes

Country Status (1)

Country Link
WO (1) WO2009109673A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048231A1 (en) * 2009-10-23 2011-04-28 Universidad De Burgos Intelligent device and method for compensating for ram sag in machine tools
US20210240145A1 (en) * 2020-01-30 2021-08-05 Milwaukee Electric Tool Corporation Automatic step bit detection

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"IV Convencion Internacional FIE 2006, Simposio of Control Automatico", 12 July 2006, SANTIAGO OF CUBA, article HABER-HABER R. ET AL.: "Soluciones linel and borrosa al control dthe proceso of taladrado" *
"Proceedings of the 3rd International Conference on Innovative Computing Information and Control. 2008. (ICICIC'08). IEEE Computer Society Washington, DC, USA.", ISBN: 978-0-7695-31, article HABER R.E. ET AL.: "Neurofuzzy Force-Based Control in an Ethernet- Based Application. A Case Study on a Drilling Process" *
"Proceedings of the ASME 2007 International Design Engineering Technical Conference, IDETC/CIE 2007, Sept. 4-7, 2007, Las Vegas, USA. DETC2007- 34307", article RAUL M. ET AL.: "System Identification of the High Performance Drilling Process for Network-Based Control" *
"Proceedings of the Third International Conference on Natural Computation (ICNC 2007). 2007.", IEEE COMPUTER SOCIETY., WASHINGTON, DC, USA., ISBN: 0-7695-2875-9, article HABER R.E. ET AL.: "Optimal Fuzzy Control for a Time-Delay System Using Simulated Annealing: An Application to High- Performance Drilling", pages: 639 - 643 *
GAJATE M. A. ET AL.: "Control neuroborroso in red. Aplicaci6n al proceso of taladrado of alto rendimiento", XXVIII JORNADAS AUTOMATICA., 5 September 2007 (2007-09-05), Retrieved from the Internet <URL:www.cea-ifac.es/actividades/jomadasXXVIII.htm> *
HABER R.E. ET AL.: "Fuzzy Logic-Based Torque Control System for Milling Process Optimization", IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART C: APPLICATIONS AND REVIEWS, vol. 37, no. 5, September 2007 (2007-09-01), USA, pages 941 - 950, XP011190749, doi:10.1109/TSMCC.2007.900654 *
HABER-HABER R. ET AL.: "A classic solution for the control of a high-performance drilling process", INTERNATIONAL JOURNAL OF MACHINE TOOLS AND MANUFACTURE., vol. 47, no. 15, December 2007 (2007-12-01), pages 2290 - 2297, XP022302173, doi:10.1016/j.ijmachtools.2007.06.007 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048231A1 (en) * 2009-10-23 2011-04-28 Universidad De Burgos Intelligent device and method for compensating for ram sag in machine tools
US20210240145A1 (en) * 2020-01-30 2021-08-05 Milwaukee Electric Tool Corporation Automatic step bit detection

Similar Documents

Publication Publication Date Title
Haber et al. Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process
Kovacic et al. Fuzzy controller design: theory and applications
Dovžan et al. Recursive clustering based on a Gustafson–Kessel algorithm
Zhang et al. Model predictive flocking control for second-order multi-agent systems with input constraints
Jahromi et al. Sequential fuzzy clustering based dynamic fuzzy neural network for fault diagnosis and prognosis
Potočnik et al. Nonlinear model predictive control of a cutting process
Luo et al. A laguerre neural network-based ADP learning scheme with its application to tracking control in the Internet of Things
Jia et al. Dynamic R-parameter based integrated model predictive iterative learning control for batch processes
Fathi et al. Vector optimization of laser solid freeform fabrication system using a hierarchical mutable smart bee-fuzzy inference system and hybrid NSGA-II/self-organizing map
Haber et al. An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process
Tang et al. Optimal gray PID controller design for automatic voltage regulator system via imperialist competitive algorithm
Torabi et al. A survey on artificial intelligence-based modeling techniques for high speed milling processes
Wang et al. Event-triggered-based adaptive decentralized asymptotic tracking control scheme for a class of nonlinear pure-feedback interconnected systems
WO2009109673A1 (en) Fuzzy logic-based control methods for drilling processes
Alkabaa et al. A practical type-3 Fuzzy control for mobile robots: predictive and Boltzmann-based learning
Martin et al. Internal model control based on a neurofuzzy system for network applications. a case study on the high-performance drilling process
Wang et al. Robust predefined-time platoon control of networked vehicles with uncertain disturbances
Arpaci et al. Design of adaptive fractional-order PID controller to enhance robustness by means of adaptive network fuzzy inference system
Chen et al. Neuroadaptive tracking control of affine nonlinear systems using echo state networks embedded with multiclustered structure and intrinsic plasticity
Kambale et al. Controllers used in pH neutralization process: a review
Chmielewski et al. The use of Fuzzy Logic in the control of an inverted pendulum
Sivadasan et al. Design of Cross‐Coupled Nonlinear PID Controller Using Single‐Objective Evolutionary Algorithms
Cus et al. Dynamic neural network approach for tool cutting force modelling of end milling operations
Zanil et al. Hybrid model of pH neutralization for a pilot plant
Qin et al. A distributed unscented predictive cooperation approach for networked mobile manipulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08736736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08736736

Country of ref document: EP

Kind code of ref document: A1