WO2011047908A1 - Energy source for electric current comprising a sensor device for determining a charge state of the energy source - Google Patents

Energy source for electric current comprising a sensor device for determining a charge state of the energy source Download PDF

Info

Publication number
WO2011047908A1
WO2011047908A1 PCT/EP2010/062429 EP2010062429W WO2011047908A1 WO 2011047908 A1 WO2011047908 A1 WO 2011047908A1 EP 2010062429 W EP2010062429 W EP 2010062429W WO 2011047908 A1 WO2011047908 A1 WO 2011047908A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy source
electrode
chamber
sensor device
source according
Prior art date
Application number
PCT/EP2010/062429
Other languages
German (de)
French (fr)
Inventor
Frank Dallinger
Stefan Kampmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2011047908A1 publication Critical patent/WO2011047908A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/28Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an energy source for electric current, which comprises a first electrode, a second electrode and a sensor device, wherein by means of the sensor device, the state of charge of the energy source can be detected.
  • energy sources such as batteries, which also include accumulators
  • energy sources are equipped with electronic controls which can influence the charging and / or discharging process of the energy source.
  • BMS battery management systems
  • SOC state of charge
  • the SOC is difficult to measure parameters in many applications. It is known that the SOC can be achieved via a terminal voltage, the frequency-dependent complex internal resistance of the energy source, for example by means of electrochemical impedance spectroscopy (EIS) or model-based
  • the state of charge can be determined via a quiescent voltage measurement.
  • new accumulator types such as those based on lithium iron phosphate (LiFePo) are known whose terminal voltage practically does not change when discharged. In the process, this measuring method is ruled out for these energy sources.
  • the complex internal resistance of the energy source is measured and evaluated by means of a superimposed AC voltage and back-measured alternating current at different frequencies.
  • This method is associated with a high metrological effort. In pulsed applications, which occur, for example, in vehicle converter operation or in hand tools, this method is hardly feasible due to the occurring frequency components of the load current. Meaningful economic use is eliminated.
  • observers that is, mathematical models, which measure time, voltage, current and the moments of the rest voltage, in order to determine the SOC model-based.
  • observers that is, mathematical models, which measure time, voltage, current and the moments of the rest voltage, in order to determine the SOC model-based.
  • the invention relates to an energy source for electricity, comprising a first electrode, a second electrode and a sensor device, wherein at least the first electrode is such that it changes its volume when using the power source, and the sensor device is arranged such that this one Volume change detected at least the first electrode for determining a state of charge of the power source.
  • the invention uses the effect that at least the first one is used when the energy source is used
  • Electrode possibly also the second electrode, changes in volume.
  • Use of the power source may be both a discharge and a charge of the power source.
  • a change in volume of at least the first electrode occurs, for example, when ions are deposited by this electrode or ions accumulate on this electrode, as a result of which a material change occurs at the electrode.
  • the sensor device detects this change in volume to determine the state of charge of the energy source.
  • the volume change of at least the first electrode can be detected directly or indirectly by the sensor device.
  • the energy source preferably comprises a transmission means for transmitting the volume change to the sensor device.
  • the transfer means can be formed by an electrolyte which ensures the transport of ions between the first and the second electrode.
  • the energy source preferably comprises a chamber in which at least partially at least the first electrode and the transmission means are located, wherein the chamber for the transmission means is closed.
  • a change in volume of at least the first electrode leads in this way to a change in pressure of the transmission medium located inside the chamber and / or to a deformation of the chamber.
  • the pressure change of the transmission medium and / or the deformation of the chamber indicate the state of charge of the energy source.
  • the pressure within the transmission means or the deformation of the chamber can be easily detected, for example, by means of a pressure sensor or force sensor assigned to the sensor device. Pressure sensors and force sensors enabling such measurements are well known in the art and well known to those skilled in the art.
  • the sensor device may comprise an evaluation device by means of which the measured values recorded by the pressure sensor and / or the force sensor for the determination of a state of charge are evaluated.
  • all energy sources for electric current which comprise at least a first electrode and a second electrode can be considered as the energy source, wherein at least the first electrode changes its volume when the energy source is used.
  • the energy source can be used, for example, as a battery or as a single battery cell, preferably as an accumulator, or as a capacitor, preferably as an electro-chemical double-layer capacitor, be executed.
  • FIG. 1 a cross-section through a first embodiment of a power source according to the invention, which is in a first Ladezu was, and the power source shown in Fig. 1, which is located in a second of the first different state of charge.
  • FIGS. 1 and 2 show an embodiment of a power source according to the invention in a cross-sectional view.
  • the power source 1 for electric power comprises a first electrode 2 and a second electrode 3.
  • the first electrode 2 and the second electrode 3 are disposed within a chamber 6 of the power source 1 ,
  • the first electrode 2 is electrically contactable via an external contact 7, the second electrode 3 via an external contact 8 of the power source 1.
  • the energy source 1 comprises a transmission means 5.
  • the transmission means 5 in this embodiment is a liquid electrolyte.
  • the transfer means 5 has the purpose of transporting ions between the first electrode 2 and the second electrode 3.
  • the transmission means 5 is located together with the first electrode 2 and the second electrode 3 within the
  • the transmission means 5 surrounds the first electrode 2 and the second electrode 3. The chamber 6 is closed for the transmission means 5 so that it can not escape from the chamber 6.
  • the first electrode 2 and the second electrode 3 are formed in this embodiment as an electrode winding 9, symbolically represented by a circle.
  • a separator not shown here may be provided.
  • the illustrated energy source 1 is designed in this embodiment as a lithium-ion accumulator.
  • the first electrode 2 and the second electrode 3 form a host lattice which can reversibly take up and release positive lithium ions.
  • the host lattice changes due to the incorporation or removal of lithium ions in its volume. The volume change can range from a few percent to several times the original volume.
  • FIG. 1 shows the discharged energy source 1
  • FIG. 2 shows the charged energy source 1.
  • the first electrode 2 forms an anode
  • the second electrode 3 forms a cathode.
  • an excess of electrons prevails at the anode, at the second electrode 3, the cathode, an electron deficiency. If one closes a circuit over the electrodes 2, 3, the excess electrons can migrate from the first electrode 2 to the second electrode and thereby perform electrical work.
  • the energy source 1 here the accumulator, positive lithium ions migrate by means of the transmission means 5 from the first electrode 2 to the second electrode 3. With the change of the respective storage proportion of lithium ions at the respective electrodes 2, 3, the volume of the host lattice.
  • the energy source 1 comprises a sensor device which is set up in such a way that the sensor device detects a change in volume of at least the first electrode 2 in order to determine a state of charge of the energy source 1.
  • the sensor device 4a comprises a pressure sensor, which is arranged within the chamber 6, for example on the inner wall of the chamber 6. If the positional state of the energy source 1 and thus the volume of the electrodes 2, 3 change, this leads to a pressure change of the transmission means 5 located in the chamber 6. The pressure change within the transmission means 5 can be detected by the pressure sensor of the sensor device 4a. The detected pressure change indicates the change in the state of charge of the power source 1 again.
  • the sensor device 4b comprises a force sensor.
  • the force sensor is designed such that it detects a deformation of the chamber 6.
  • the deformation of the chamber 6 is caused by a change in volume within the chamber 6, that is, by a change in volume of the electrodes 2, 3.
  • the deformation of the chamber 6 is shown in Fig. 6 by a dotted line of a deformed lateral surface of the chamber 6.
  • the force sensor of the sensor device 4b is preferably arranged in the region of maximum deformation of the chamber 6.
  • the chamber 6 is formed elastically deformable according to this embodiment. This ensures a reversible deformation of the chamber 6 even with multiple charging and discharging cycles.
  • the sensor device 4c comprises a pressure sensor.
  • the pressure sensor 4c is arranged between an outer wall of the chamber 6 and a housing receptacle 10, which is partially indicated by a dashed line.
  • a force F represented by arrows F, exerted on the pressure sensor of the sensor device 4c, which presses against the chamber receptacle 10.
  • the height of the contact pressure thus reflects the state of charge of the power source 1 again.
  • the pressure sensors and force sensors by means of which such a measurement can be carried out, are well known to the person skilled in the art.
  • the evaluation of measured values recorded with such sensors for determining a state of charge of the energy source 1 is also well known to the person skilled in the art.
  • the sensor devices 4a, 4b, 4c can comprise suitable measuring electronics for this purpose.
  • Such measuring electronics can be contacted via a separate interface.
  • a measuring signal of the sensors could be impressed as a modulation signal. This makes it possible to integrate the measuring electronics in already existing electronics, for example BMS electronics. In this way costs can be reduced.
  • the invention has been described by way of example with reference to an energy source 1, which is designed as an accumulator.
  • the energy source 1 can be designed, in particular, as an electrochemical double-layer capacitor.
  • Such a capacitor is structurally similar to the accumulator described.
  • the test setup described readily transferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to an energy source for electric current, comprising a sensor device for determining a charge state of the energy source. The energy source (1) for electric current according to the invention comprises a first electrode (2), a second electrode (3) and a sensor device (4a, 4b, 4c), wherein at least the first electrode (2) changes the volume thereof when the energy source is used. The sensor device (4a, 4b, 4c) is designed such that the sensor device (4a, 4b, 4c) detects a volume change of at least the first electrode (2) for determining a charge state of the energy source (1).

Description

Beschreibung  description
Titel title
Energiequelle für elektrischen Strom mit Sensoreinrichtung zur Ermittlung eines Ladezustandes der Energiequelle  Energy source for electric current with sensor device for determining a state of charge of the energy source
Die Erfindung betrifft eine Energiequelle für elektrischen Strom, die eine erste Elektrode, eine zweite Elektrode und eine Sensoreinrichtung umfasst, wobei mittels der Sensoreinrichtung der Ladezustand der Energiequelle erfassbar ist. Stand der Technik The invention relates to an energy source for electric current, which comprises a first electrode, a second electrode and a sensor device, wherein by means of the sensor device, the state of charge of the energy source can be detected. State of the art
Um die Lebensdauer von Energiequellen wie Batterien, zu denen hier auch Akkumulatoren gezählt werden sollen, optimal zu nutzen, werden solche Energiequellen mit elektronischen Steuerungen ausgerüstet, welche auf den Ladevor- gang und/oder Entladevorgang der Energiequelle Einfluss nehmen können. ImIn order to optimally utilize the service life of energy sources such as batteries, which also include accumulators, such energy sources are equipped with electronic controls which can influence the charging and / or discharging process of the energy source. in the
Falle von Batterien werden solche Steuerungen als„Batteriemanagement- Systeme" (BMS) bezeichnet. Im Wesentlichen messen diese Systeme einfach zu bestimmende Parameter wie Spannung, Strom und Temperatur. Von besonderem Interesse ist auch der Ladezustand (state of Charge, SOC) der Energiequel- le. In the case of batteries, such controllers are referred to as "battery management systems" (BMS) .These systems essentially measure easily determinable parameters, such as voltage, current and temperature, and of particular interest is the state of charge (SOC) of the energy source. le.
Der SOC stellt sich in vielen Anwendungen als schwierig zu messender Parameter dar. Es ist bekannt, den SOC über eine Klemmenspannung, den frequenzabhängigen komplexen Innenwiderstand der Energiequelle, beispielsweise mittels elektrochemischer Impedanzspektroskopie (EIS) oder mittels modellbasierenderThe SOC is difficult to measure parameters in many applications. It is known that the SOC can be achieved via a terminal voltage, the frequency-dependent complex internal resistance of the energy source, for example by means of electrochemical impedance spectroscopy (EIS) or model-based
Beobachtersysteme, das heißt, mathematische Modelle, im Rahmen des BMS zu bestimmen. Observer systems, that is, mathematical models, to be determined within the framework of the BMS.
Da die Klemmenspannung der Batterie in der Regel mit abnehmendem Ladezu- stand sinkt, kann über eine Ruhespannungsmessung der Ladezustand bestimmt werden. In Applikationen, welche kontinuierlich im Betrieb sind und/oder mit sehr hohen Entladeraten arbeiten, gibt es allerdings selten Möglichkeiten, die Klemmenspannung bei Nullstrom zu messen. Zudem sind neue Akkumulatortypen, wie beispielsweise auf Lithium-Eisen-Phosphat (LiFePo) basierend, bekannt, deren Klemmenspannung sich bei Entladung praktisch nicht ändert. Dabei scheidet dieses Messverfahren für diese Energiequellen aus. Since the terminal voltage of the battery generally decreases with decreasing charge state, the state of charge can be determined via a quiescent voltage measurement. In applications that are continuously in operation and / or with a lot of However, there are seldom ways to measure the terminal voltage at zero current. In addition, new accumulator types, such as those based on lithium iron phosphate (LiFePo), are known whose terminal voltage practically does not change when discharged. In the process, this measuring method is ruled out for these energy sources.
Gemäß der elektrochemischen Impedanzspektroskopie wird mittels einer überlagerten Wechselspannung und rückgemessenen Wechselstrom bei verschiedenen Frequenzen der komplexe Innenwiderstand der Energiequelle gemessen und ausgewertet. Dieses Verfahren ist mit einem hohen messtechnischen Aufwand verbunden. In gepulsten Anwendungen, die beispielsweise im Fahrzeugumrichterbetrieb oder bei Handwerkzeugen auftreten, ist dieses Verfahren durch die auftretenden Frequenzanteile des Verbraucherstromes kaum realisierbar. Eine sinnvolle wirtschaftliche Nutzung scheidet damit aus. According to the electrochemical impedance spectroscopy, the complex internal resistance of the energy source is measured and evaluated by means of a superimposed AC voltage and back-measured alternating current at different frequencies. This method is associated with a high metrological effort. In pulsed applications, which occur, for example, in vehicle converter operation or in hand tools, this method is hardly feasible due to the occurring frequency components of the load current. Meaningful economic use is eliminated.
Steht keine sinnvolle messtechnische Lösung zur Verfügung, ist es bekannt, über sog. Beobachter, das heißt, mathematische Modelle, welche Zeit, Spannung, Strom und die Momente der Ruhespannung messen, zu verwenden um modellbasiert den SOC zu bestimmen. Ein solches Verfahren ist relativ ungenau und unzuverlässig. If no meaningful metrological solution is available, it is known to use so-called observers, that is, mathematical models, which measure time, voltage, current and the moments of the rest voltage, in order to determine the SOC model-based. Such a method is relatively inaccurate and unreliable.
In vielen Applikationen steht damit kein sinnvolles physikalisches Verfahren für die Bestimmung des SOCs zur Verfügung. Offenbarung der Erfindung In many applications, there is no meaningful physical procedure for determining the SOC. Disclosure of the invention
Gegenstand der Erfindung ist eine Energiequelle für elektrischen Strom, umfassend eine erste Elektrode, eine zweite Elektrode und eine Sensoreinrichtung, wobei mindestens die erste Elektrode derart ist, dass diese bei Benutzung der Energiequelle ihr Volumen ändert, und die Sensoreinrichtung derart eingerichtet ist, dass diese eine Volumenänderung mindestens der ersten Elektrode zur Ermittlung eines Ladezustandes der Energiequelle erfasst. The invention relates to an energy source for electricity, comprising a first electrode, a second electrode and a sensor device, wherein at least the first electrode is such that it changes its volume when using the power source, and the sensor device is arranged such that this one Volume change detected at least the first electrode for determining a state of charge of the power source.
Die Erfindung nutzt für die Bestimmung des Ladezustandes der Energiequelle den Effekt aus, dass sich bei Benutzung der Energiequelle mindestes die ersteFor determining the state of charge of the energy source, the invention uses the effect that at least the first one is used when the energy source is used
Elektrode, möglicherweise auch die zweite Elektrode, in ihrem Volumen ändert. Eine Benutzung der Energiequelle kann sowohl ein Entladevorgang als auch ein Ladevorgang der Energiequelle sein. Eine Volumenänderung mindestens der ersten Elektrode tritt beispielsweise dann auf, wenn von dieser Elektrode Ionen abgeschieden werden oder Ionen sich an dieser Elektrode sich einlagern, wo- durch eine stoffliche Änderung an der Elektrode auftritt. Die Sensoreinrichtung erfasst diese Volumenänderung zur Ermittlung des Ladezustandes der Energiequelle. Electrode, possibly also the second electrode, changes in volume. Use of the power source may be both a discharge and a charge of the power source. A change in volume of at least the first electrode occurs, for example, when ions are deposited by this electrode or ions accumulate on this electrode, as a result of which a material change occurs at the electrode. The sensor device detects this change in volume to determine the state of charge of the energy source.
Die Volumenänderung mindestens der ersten Elektrode kann unmittelbar oder mittelbar durch die Sensoreinrichtung erfasst werden. Vorzugsweise umfasst die Energiequelle ein Übertragungsmittel zum Übertragen der Volumenänderung auf die Sensoreinrichtung. Das Übertragungsmittel kann insbesondere durch einen Elektrolyten gebildet sein, das für den Transport von Ionen zwischen der ersten und der zweiten Elektrode sorgt. The volume change of at least the first electrode can be detected directly or indirectly by the sensor device. The energy source preferably comprises a transmission means for transmitting the volume change to the sensor device. In particular, the transfer means can be formed by an electrolyte which ensures the transport of ions between the first and the second electrode.
Die Energiequelle umfasst vorzugsweise eine Kammer, in der sich zumindest teilweise mindestens die erste Elektrode und das Übertragungsmittel befinden, wobei die Kammer für das Übertragungsmittel geschlossen ist. Eine Volumenänderung mindestens der ersten Elektrode führt auf diese Weise zu einer Druckänderung des sich innerhalb der Kammer befindenden Übertragungsmittels und/oder zu einer Verformung der Kammer. Die Druckänderung des Übertragungsmittels und/oder die Verformung der Kammer geben den Ladezustand der Energiequelle wieder. Der Druck innerhalb des Übertragungsmittels oder die Verformung der Kammer lässt sich beispielsweise mittels eines der Sensoreinrichtung zugeordneten Drucksensors bzw. Kraftsensors einfach erfassen. Drucksensoren und Kraftsensoren, die derartige Messungen ermöglichen, sind Stand der Technik und dem Fachmann hinlänglich bekannt. The energy source preferably comprises a chamber in which at least partially at least the first electrode and the transmission means are located, wherein the chamber for the transmission means is closed. A change in volume of at least the first electrode leads in this way to a change in pressure of the transmission medium located inside the chamber and / or to a deformation of the chamber. The pressure change of the transmission medium and / or the deformation of the chamber indicate the state of charge of the energy source. The pressure within the transmission means or the deformation of the chamber can be easily detected, for example, by means of a pressure sensor or force sensor assigned to the sensor device. Pressure sensors and force sensors enabling such measurements are well known in the art and well known to those skilled in the art.
Die Sensoreinrichtung kann eine Auswerteeinrichtung umfassen, mittels der die von dem Drucksensor und/oder dem Kraftsensor aufgenommenen Messwerte für die Ermittlung eines Ladezustandes ausgewertet werden. The sensor device may comprise an evaluation device by means of which the measured values recorded by the pressure sensor and / or the force sensor for the determination of a state of charge are evaluated.
Als Energiequelle kommen grundsätzlich alle Energiequellen für elektrischen Strom in Frage, die zumindest eine erste Elektrode und eine zweite Elektrode umfassen, wobei mindestens die erste Elektrode bei Benutzung der Energiequelle ihr Volumen ändert. Die Energiequelle kann beispielsweise als Batterie oder als eine einzelne Batteriezelle, vorzugsweise als Akkumulator, oder als Kondensator, vorzugsweise als elektro-chemischer Doppelschichtkondensator, ausgeführt sein. In principle, all energy sources for electric current which comprise at least a first electrode and a second electrode can be considered as the energy source, wherein at least the first electrode changes its volume when the energy source is used. The energy source can be used, for example, as a battery or as a single battery cell, preferably as an accumulator, or as a capacitor, preferably as an electro-chemical double-layer capacitor, be executed.
Weitere vorteilhafte Ausgestaltungen der Erfindung beschreiben die abhängigen Ansprüche. Further advantageous embodiments of the invention describe the dependent claims.
Die Erfindung wird im Folgenden anhand einer Ausführungsform, die durch Zeichnungen dargestellt ist, näher erläutert. The invention is explained in more detail below with reference to an embodiment which is illustrated by drawings.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
einen Querschnitt durch eine erste Ausführungsform einer erfindungsgemäßen Energiequelle, die sich in einem ersten Ladezu stand befindet, und die in Fig. 1 gezeigte Energiequelle, die sich in einem von dem ersten unterscheidenden zweiten Ladezustand befindet. a cross-section through a first embodiment of a power source according to the invention, which is in a first Ladezu was, and the power source shown in Fig. 1, which is located in a second of the first different state of charge.
Ausführungsformen der Erfindung Die Fig. 1 und 2 zeigen eine Ausführungsform einer erfindungsgemäßen Energiequelle in einer Querschnittsansicht. EMBODIMENTS OF THE INVENTION FIGS. 1 and 2 show an embodiment of a power source according to the invention in a cross-sectional view.
Fig. 1 und Fig. 2 stellen unterschiedliche Ladezustände der Energiequelle 1 dar. Die Energiequelle 1 für elektrischen Strom umfasst eine erste Elektrode 2 und eine zweite Elektrode 3. Die erste Elektrode 2 und die zweite Elektrode 3 sind innerhalb einer Kammer 6 der Energiequelle 1 angeordnet. Die erste Elektrode 2 ist über einen Außenkontakt 7, die zweite Elektrode 3 über einen Außenkontakt 8 der Energiequelle 1 elektrisch kontaktierbar. Des Weiteren umfasst die Energiequelle 1 ein Übertragungsmittel 5. Das Übertragungsmittel 5 ist in diesem Ausführungsbeispiel ein flüssiger Elektrolyt. Das Übertragungsmittel 5 hat den Zweck, Ionen zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 zu transportieren. Das Übertragungsmittel 5 befindet sich zusammen mit der ersten Elektrode 2 und der zweiten Elektrode 3 innerhalb der1 and 2 represent different states of charge of the power source 1. The power source 1 for electric power comprises a first electrode 2 and a second electrode 3. The first electrode 2 and the second electrode 3 are disposed within a chamber 6 of the power source 1 , The first electrode 2 is electrically contactable via an external contact 7, the second electrode 3 via an external contact 8 of the power source 1. Furthermore, the energy source 1 comprises a transmission means 5. The transmission means 5 in this embodiment is a liquid electrolyte. The transfer means 5 has the purpose of transporting ions between the first electrode 2 and the second electrode 3. The transmission means 5 is located together with the first electrode 2 and the second electrode 3 within the
Kammer 6. Das Übertragungsmittel 5 umgibt die erste Elektrode 2 und die zweite Elektrode 3. Die Kammer 6 ist für das Übertragungsmittel 5 geschlossen, so dass dieses aus der Kammer 6 nicht austreten kann. Chamber 6. The transmission means 5 surrounds the first electrode 2 and the second electrode 3. The chamber 6 is closed for the transmission means 5 so that it can not escape from the chamber 6.
Die erste Elektrode 2 und die zweite Elektrode 3 sind in diesem Ausführungsbeispiel als Elektrodenwickel 9, symbolisch dargestellt durch einen Kreis, ausgebildet. Um einen direkten Kontakt zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 zu verhindern, kann ein hier nicht näher dargestellter Separator vorgesehen sein. The first electrode 2 and the second electrode 3 are formed in this embodiment as an electrode winding 9, symbolically represented by a circle. In order to prevent a direct contact between the first electrode 2 and the second electrode 3, a separator not shown here may be provided.
Die dargestellte Energiequelle 1 ist in diesem Ausführungsbeispiel als Lithium- Ionen-Akkumulator ausgeführt. Die erste Elektrode 2 und die zweite Elektrode 3 bilden ein Wirtsgitter, welches positive Lithium-Ionen reversibel aufnehmen und abgeben kann. Das Wirtsgitter verändert sich durch die Ein- bzw. Auslagerung der Lithium-Ionen in seinem Volumen. Die Volumenänderung kann von wenigen Prozenten bis zum Mehrfachen des ursprünglichen Volumens betragen. The illustrated energy source 1 is designed in this embodiment as a lithium-ion accumulator. The first electrode 2 and the second electrode 3 form a host lattice which can reversibly take up and release positive lithium ions. The host lattice changes due to the incorporation or removal of lithium ions in its volume. The volume change can range from a few percent to several times the original volume.
Die Fig. 1 zeigt die entladene Energiequelle 1 , Fig. 2 die geladene Energiequelle 1 . Die erste Elektrode 2 bildet eine Anode aus, die zweite Elektrode 3 eine Ka- thode. Im geladenen Zustand (siehe Fig. 2) herrscht an der Anode ein Über- schuss von Elektronen, an der zweiten Elektrode 3, der Kathode, ein Elektronenmangel. Schließt man einen Stromkreis über die Elektroden 2, 3, so können die überschüssigen Elektronen von der ersten Elektrode 2 zur zweiten Elektrode wandern und dabei elektrische Arbeit verrichten. Innerhalb der Energiequelle 1 , hier des Akkumulators, wandern positive Lithium-Ionen mittels des Übertragungsmittels 5 von der ersten Elektrode 2 zur zweiten Elektrode 3. Mit der Änderung des jeweiligen Einlagerungsanteils an Lithium-Ionen an den jeweiligen Elektroden 2, 3 ändert sich das Volumen der Wirtsgitter. Die Energiequelle 1 umfasst eine Sensoreinrichtung, die derart eingerichtet ist, dass die Sensoreinrichtung eine Volumenänderung mindestes der ersten Elektrode 2 zur Ermittelung eines Ladezustandes der Energiequelle 1 erfasst. FIG. 1 shows the discharged energy source 1, FIG. 2 shows the charged energy source 1. The first electrode 2 forms an anode, the second electrode 3 forms a cathode. In the charged state (see FIG. 2) an excess of electrons prevails at the anode, at the second electrode 3, the cathode, an electron deficiency. If one closes a circuit over the electrodes 2, 3, the excess electrons can migrate from the first electrode 2 to the second electrode and thereby perform electrical work. Within the energy source 1, here the accumulator, positive lithium ions migrate by means of the transmission means 5 from the first electrode 2 to the second electrode 3. With the change of the respective storage proportion of lithium ions at the respective electrodes 2, 3, the volume of the host lattice. The energy source 1 comprises a sensor device which is set up in such a way that the sensor device detects a change in volume of at least the first electrode 2 in order to determine a state of charge of the energy source 1.
Gemäß einer ersten Ausführungsform der Sensoreinrichtung 4a umfasst die Sensorvorrichtung 4a einen Drucksensor, der innerhalb der Kammer 6, beispielsweise an der Innenwand der Kammer 6, angeordnet ist. Ändert sich der Lagezustand der Energiequelle 1 und damit das Volumen der Elektroden 2, 3, führt dies zu einer Druckänderung des sich in der Kammer 6 befindenden Übertragungsmittels 5. Die Druckänderung innerhalb des Übertragungsmittels 5 ist durch den Drucksensor der Sensoreinrichtung 4a erfassbar. Die erfasste Druckänderung gibt die Änderung des Ladezustandes der Energiequelle 1 wieder. According to a first embodiment of the sensor device 4a, the sensor device 4a comprises a pressure sensor, which is arranged within the chamber 6, for example on the inner wall of the chamber 6. If the positional state of the energy source 1 and thus the volume of the electrodes 2, 3 change, this leads to a pressure change of the transmission means 5 located in the chamber 6. The pressure change within the transmission means 5 can be detected by the pressure sensor of the sensor device 4a. The detected pressure change indicates the change in the state of charge of the power source 1 again.
Gemäß einer zweiten Ausführungsform einer Sensoreinrichtung 4b umfasst die Sensoreinrichtung 4b einen Kraftsensor. Der Kraftsensor ist derart ausgebildet, dass er eine Verformung der Kammer 6 erfasst. Die Verformung der Kammer 6 wird durch eine Volumenänderung innerhalb der Kammer 6 bewirkt, das heißt, durch eine Volumenänderung der Elektroden 2, 3. Die Verformung der Kammer 6 ist in Fig. 6 durch eine Strichelung einer verformten Mantelfläche der Kammer 6 dargestellt. Der Kraftsensor der Sensoreinrichtung 4b ist vorzugsweise im Bereich maximaler Verformung der Kammer 6 angeordnet. According to a second embodiment of a sensor device 4b, the sensor device 4b comprises a force sensor. The force sensor is designed such that it detects a deformation of the chamber 6. The deformation of the chamber 6 is caused by a change in volume within the chamber 6, that is, by a change in volume of the electrodes 2, 3. The deformation of the chamber 6 is shown in Fig. 6 by a dotted line of a deformed lateral surface of the chamber 6. The force sensor of the sensor device 4b is preferably arranged in the region of maximum deformation of the chamber 6.
Vorzugsweise ist die Kammer 6 gemäß dieser Ausführungsform elastisch verformbar ausgebildet. Dies gewährleistet eine reversible Verformung der Kammer 6 auch bei mehreren Lade- und Entladezyklen. Preferably, the chamber 6 is formed elastically deformable according to this embodiment. This ensures a reversible deformation of the chamber 6 even with multiple charging and discharging cycles.
Gemäß einer dritten Ausführungsform einer Sensoreinrichtung 4c umfasst die Sensoreinrichtung 4c einen Drucksensor. Der Drucksensor 4c ist zwischen einer Außenwand der Kammer 6 und einer Gehäuseaufnahme 10, die teilweise durch eine gestrichelte Linie angedeutet ist, angeordnet. Bei einer Volumenänderung der Elektroden 2, 3, beispielsweise bei einer Volumenzunahme des Wirtsgitters, wird über das Übertragungsmittel 5 und die Kammer 6 eine Kraft F, dargestellt durch Pfeile F, auf den Drucksensor der Sensorvorrichtung 4c ausgeübt, die diesen gegen die Kammeraufnahme 10 presst. Die Höhe des Anpressdruckes spiegelt somit den Ladezustand der Energiequelle 1 wieder. Die Drucksensoren und Kraftsensoren, mittels denen eine derartige Messung durchführbar ist, sind dem Fachmann hinlänglich bekannt. Auch die Auswertung von mit solchen Sensoren aufgenommenen Messwerten zur Ermittlung eines Ladezustandes der Energiequelle 1 ist dem Fachmann hinlänglich bekannt. Die Sensoreinrichtungen 4a, 4b, 4c können zu diesem Zweck eine geeignete Messelektronik umfassen. According to a third embodiment of a sensor device 4c, the sensor device 4c comprises a pressure sensor. The pressure sensor 4c is arranged between an outer wall of the chamber 6 and a housing receptacle 10, which is partially indicated by a dashed line. With a change in volume of the electrodes 2, 3, for example, in an increase in volume of the host lattice, via the transmission means 5 and the chamber 6, a force F, represented by arrows F, exerted on the pressure sensor of the sensor device 4c, which presses against the chamber receptacle 10. The height of the contact pressure thus reflects the state of charge of the power source 1 again. The pressure sensors and force sensors, by means of which such a measurement can be carried out, are well known to the person skilled in the art. The evaluation of measured values recorded with such sensors for determining a state of charge of the energy source 1 is also well known to the person skilled in the art. The sensor devices 4a, 4b, 4c can comprise suitable measuring electronics for this purpose.
Eine solche Messelektronik kann über eine separate Schnittstelle kontaktiert werden. Alternativ oder zusätzlich ist es ebenfalls möglich, für die Übermittelung von Signalen bereits vorhandene elektrische Leitungen zu verwenden, beispielsweise Leitungen, die die Elektroden 2, 3 kontaktieren. Beispielsweise könnte ein Messsignal der Sensoren als Modulationssignal eingeprägt werden. Dies ermöglicht es, die Messelektronik in bereits vorhandener Elektronik, beispielsweise einer BMS-Elektronik, zu integrieren. Auf diese Weise können Kosten reduziert werden. Such measuring electronics can be contacted via a separate interface. Alternatively or additionally, it is also possible to use existing electrical lines for the transmission of signals, for example lines which contact the electrodes 2, 3. For example, a measuring signal of the sensors could be impressed as a modulation signal. This makes it possible to integrate the measuring electronics in already existing electronics, for example BMS electronics. In this way costs can be reduced.
Die Erfindung wurde beispielhaft anhand einer Energiequelle 1 , die als Akkumulator ausgebildet ist, beschrieben. Alternativ kann die Energiequelle 1 insbesondere auch als elektrochemischer Doppelschichtkondensator ausgebildet sein. Ein derartiger Kondensator ist strukturell ähnlich aufgebaut wie der beschriebene Akkumulator. Der beschriebene Messaufbau ohne weiteres übertragbar. The invention has been described by way of example with reference to an energy source 1, which is designed as an accumulator. Alternatively, the energy source 1 can be designed, in particular, as an electrochemical double-layer capacitor. Such a capacitor is structurally similar to the accumulator described. The test setup described readily transferable.

Claims

Ansprüche claims
1 . Energiequelle (1 ) für elektrischen Strom, umfassend eine erste Elektrode (2), eine zweite Elektrode (3) und eine Sensoreinrichtung (4a, 4b, 4c), wobei mindestens die erste Elektrode (2) derart ist, dass diese bei Benutzung der Energiequelle ihr Volumen ändert, und die Sensoreinrichtung (4a, 4b, 4c) derart eingerichtet ist, dass die Sensoreinrichtung (4a, 4b, 4c) eine Volumenänderung mindestens der ersten Elektrode (2) zur Ermittelung eines Ladezustandes der Energiequelle (1 ) erfasst. 1 . An electric current power source (1) comprising a first electrode (2), a second electrode (3) and a sensor device (4a, 4b, 4c), at least the first electrode (2) being such that when using the power source their volume changes, and the sensor device (4a, 4b, 4c) is set up such that the sensor device (4a, 4b, 4c) detects a volume change of at least the first electrode (2) for determining a state of charge of the energy source (1).
2. Energiequelle nach Anspruch 1 , zusätzlich umfassend ein Übertragungsmittel (5) zum Übertragen der Volumenänderung auf die Sensoreinrichtung (4a, 4b, 4c), wobei das Übertragungsmittel (5) ein Fluid ist. An energy source according to claim 1, further comprising transfer means (5) for transferring said volume change to said sensor means (4a, 4b, 4c), said transfer means (5) being a fluid.
3. Energiequelle nach einem der vorhergehenden Ansprüche, zusätzliche um- fassend eine Kammer (6), in der sich zumindest teilweise mindestens die erste Elektrode (2) und das Übertragungsmittel (5) befindet, wobei die Kammer (6) für das Übertragungsmittel (5) geschlossen ist, so dass eine Volumenänderung mindestens der ersten Elektrode (2) zu einer Druckänderung innerhalb des sich in der Kammer (6) befindenden Übertragungsmittels (5) und/oder zu einer Verformung der Kammer (6) führt. 3. Energy source according to one of the preceding claims, additionally comprising a chamber (6), in which at least partially at least the first electrode (2) and the transmission means (5) is located, wherein the chamber (6) for the transmission means (5 ), so that a volume change of at least the first electrode (2) leads to a pressure change within the transmission means (5) located in the chamber (6) and / or to a deformation of the chamber (6).
4. Energiequelle nach Anspruch 3, wobei die Kammer (6) elastisch verformbar ist. 4. Energy source according to claim 3, wherein the chamber (6) is elastically deformable.
5. Energiequelle nach einem der Ansprüche 3 oder 4, wobei die Sensoreinrichtung (4a, 4b) einen Drucksensor umfasst, wobei vorzugsweise der Drucksensor innerhalb der Kammer (6) zur Messung des Drucks im Übertragungsmittel oder außerhalb der Kammer (6) zur Messung eines durch die Kammer (6) ausgeübten Druckes angeordnet ist. 5. Energy source according to one of claims 3 or 4, wherein the sensor device (4a, 4b) comprises a pressure sensor, wherein preferably the pressure sensor within the chamber (6) for measuring the pressure in the transmission means or outside the chamber (6) for measuring a through the chamber (6) exerted pressure is arranged.
6. Energiequelle nach einem der Ansprüche 3 bis 5, wobei die Sensoreinrichtung (4c) einen Kraftsensor umfasst, wobei vorzugsweise der Kraftsensor eine Verformung der Kammer (6) erfasst. 6. Energy source according to one of claims 3 to 5, wherein the sensor device (4c) comprises a force sensor, wherein preferably the force sensor detects a deformation of the chamber (6).
7. Energiequelle nach einem der vorhergehenden Ansprüche, wobei das Übertragungsmittel (5) ein Trägermedium zum Transport von Ionen von einer Elektrode zur anderen Elektrode ist, insbesondere ein Elektrolyt ist. 7. Energy source according to one of the preceding claims, wherein the transfer means (5) is a carrier medium for transporting ions from one electrode to the other electrode, in particular an electrolyte.
8. Energiequelle nach einem der vorhergehenden Ansprüche, wobei die erste Elektrode (2) eine Anode der Energiequelle (1 ) ist, und die zweite Elektrode (3) eine Kathode der Energiequelle (1 ) ist. An energy source according to any one of the preceding claims, wherein the first electrode (2) is an anode of the power source (1) and the second electrode (3) is a cathode of the power source (1).
9. Energiequelle nach einem der vorhergehenden Ansprüche, wobei die Energiequelle (1 ) als Batterie, vorzugsweise als Akkumulator, oder als Kondensator, vorzugsweise als elektrochemischer Doppelschichtkondensator, ausgebildet ist. 9. Energy source according to one of the preceding claims, wherein the energy source (1) as a battery, preferably as an accumulator, or as a capacitor, preferably as an electrochemical double-layer capacitor is formed.
10. Energiequelle nach einem der Ansprüche 3 bis 9, wobei die Kammer (6) als Batteriegehäuse oder Kondensatorgehäuse ausgebildet ist. 10. Energy source according to one of claims 3 to 9, wherein the chamber (6) is designed as a battery case or capacitor housing.
PCT/EP2010/062429 2009-10-21 2010-08-26 Energy source for electric current comprising a sensor device for determining a charge state of the energy source WO2011047908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009045887.5 2009-10-21
DE102009045887A DE102009045887A1 (en) 2009-10-21 2009-10-21 Energy source for electric current with sensor device for determining a state of charge of the energy source

Publications (1)

Publication Number Publication Date
WO2011047908A1 true WO2011047908A1 (en) 2011-04-28

Family

ID=43038024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062429 WO2011047908A1 (en) 2009-10-21 2010-08-26 Energy source for electric current comprising a sensor device for determining a charge state of the energy source

Country Status (2)

Country Link
DE (1) DE102009045887A1 (en)
WO (1) WO2011047908A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088530A1 (en) * 2011-12-14 2013-06-20 Robert Bosch Gmbh Apparatus and method for transmitting information from a battery cell and battery cell
DE102012208509A1 (en) * 2012-05-22 2013-11-28 Robert Bosch Gmbh Apparatus for determining a state quantity of a cell for converting chemical energy into electrical energy, cell, cell module and method for determining a state quantity of a cell
DE102014201031A1 (en) * 2014-01-21 2015-07-23 Volkswagen Aktiengesellschaft battery unit
EP3340364A1 (en) * 2016-12-21 2018-06-27 HILTI Aktiengesellschaft State of charge determination for batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448068A1 (en) * 1974-10-09 1976-04-22 Bosch Gmbh Robert Lead-acid accumulator for motor vehicles - has pressure sensor which can respond to changes in electrode volume to indicate charge state
US5438249A (en) * 1993-06-08 1995-08-01 Valence Technology, Inc. Method of state-of-charge indication by measuring the thickness of a battery
US5567541A (en) * 1995-03-21 1996-10-22 Lockheed Idaho Technologies Company Method and apparatus for measuring the state of charge in a battery based on volume of battery components
EP1406340A1 (en) * 2001-06-05 2004-04-07 Japan Storage Battery Co., Ltd. Storage battery device and power source apparatus comprising it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448068A1 (en) * 1974-10-09 1976-04-22 Bosch Gmbh Robert Lead-acid accumulator for motor vehicles - has pressure sensor which can respond to changes in electrode volume to indicate charge state
US5438249A (en) * 1993-06-08 1995-08-01 Valence Technology, Inc. Method of state-of-charge indication by measuring the thickness of a battery
US5567541A (en) * 1995-03-21 1996-10-22 Lockheed Idaho Technologies Company Method and apparatus for measuring the state of charge in a battery based on volume of battery components
EP1406340A1 (en) * 2001-06-05 2004-04-07 Japan Storage Battery Co., Ltd. Storage battery device and power source apparatus comprising it

Also Published As

Publication number Publication date
DE102009045887A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
DE102015002061B4 (en) Electrical busbar with sensor unit
WO2013174591A1 (en) Apparatus for identifying a state variable of a cell for converting chemical energy into electrical energy, cell, cell module and method for identifying a state variable of a cell
DE102012202433A1 (en) Sensor device for a battery cell of an electrical energy storage, battery cell, method for producing the same and method for monitoring the same
EP3332434B1 (en) Method for determining a pressure inside a housing of a battery cell, and battery cell
DE19837863C1 (en) Medical implant with electric energy source
DE102014001260A1 (en) Battery and method for determining the state of aging of a battery
DE102009023564B4 (en) Procedures and system for characterizing a battery
DE102013005684A1 (en) Electrochemical cell, electrochemical energy storage and process for their preparation
DE102013010311A1 (en) Method for determining the state of individual battery cells of a high-voltage battery and system therefor
WO2011047908A1 (en) Energy source for electric current comprising a sensor device for determining a charge state of the energy source
DE102020206272A1 (en) BATTERY MANAGEMENT SYSTEM WITH MIXED ELECTRODE
EP3259789B1 (en) Monitoring a state variable of at least one battery cell of a battery
DE102012223708A1 (en) Lithium-ion battery cell for drive system of motor vehicle, has monitoring circuit designed to record measurement variable of battery cell, where monitoring circuit is directly arranged on top of battery cell housing cover
WO2015014764A2 (en) Electrochemical storage module and method for examining an electrochemical storage cell in a module
DE102019125236A1 (en) Battery cell with a diagnostic unit, method for diagnosing the condition of a battery cell, battery and motor vehicle with a battery
DE102017219847A1 (en) Differential voltage-measuring device
DE102011082288B4 (en) Energy storage device with a plurality of integrated electrical energy stores
DE102013215316A1 (en) Method for detecting the state of an energy storage
AT504698B1 (en) METHOD AND DEVICE FOR MONITORING THE OPERATING STATUS OF A BATTERY
DE112022001560T5 (en) Energy storage device and method for controlling the energy storage device
DE102013203809A1 (en) Method and device for determining an electrical capacity of an energy storage unit
DE102011120512A1 (en) Method for checking quality of e.g. lithium ion cell of battery of e.g. electric vehicle during manufacturing process, involves utilizing extension of metallic layer as reference electrode at which parameter of cell is determined
DE102015222051A1 (en) Electrode unit for a battery cell and method for examining an electrode unit
EP2393152B1 (en) Battery control device
DE102014218131A1 (en) Measuring system for battery condition determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10747621

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10747621

Country of ref document: EP

Kind code of ref document: A1