WO2011046383A2 - Wind-powered electricity generating device and a dual wind-powered electricity generating system - Google Patents

Wind-powered electricity generating device and a dual wind-powered electricity generating system Download PDF

Info

Publication number
WO2011046383A2
WO2011046383A2 PCT/KR2010/007075 KR2010007075W WO2011046383A2 WO 2011046383 A2 WO2011046383 A2 WO 2011046383A2 KR 2010007075 W KR2010007075 W KR 2010007075W WO 2011046383 A2 WO2011046383 A2 WO 2011046383A2
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
wind
power generation
pressure change
wide
Prior art date
Application number
PCT/KR2010/007075
Other languages
French (fr)
Korean (ko)
Other versions
WO2011046383A3 (en
Inventor
박정열
장형관
김대중
윤길호
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20100098884A external-priority patent/KR101198014B1/en
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2011046383A2 publication Critical patent/WO2011046383A2/en
Publication of WO2011046383A3 publication Critical patent/WO2011046383A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/185Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators using fluid streams
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/709Piezoelectric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generator for producing electricity by using wind, and more particularly, a power generation module and other kinds of power generation that can generate power by itself according to a non-contact method and can be harmonized with other power generation modules.
  • a dual wind power generation system in which modules are harmonized.
  • piezoelectric elements An example of research to harvest energy from natural energy is to use piezoelectric elements to easily convert mechanical energy into electrical energy.
  • Using piezoelectric elements requires three steps to harvest energy.
  • (a) It must be possible to create and transfer periodic stresses from the available natural energy sources to the piezoelectric element.
  • the mechanical energy is to be converted into electrical energy using the piezoelectric effect.
  • (c) be capable of processing and storing electrical energy.
  • the natural energy available in daily life is difficult to control and use its power.
  • the harvesting of energy using piezoelectric elements requires periodic stresses, but the wind has a constant velocity of velocity without significant change, making it difficult to use the force.
  • the present invention produces electricity from the piezoelectric element using the changes caused from the wind and the surrounding environment, while producing electricity without applying stress to the piezoelectric element in direct contact with a specific object, thereby preventing damage to the piezoelectric element, It does not require an initial stress value to move a specific object, providing a wind turbine that can produce electricity at low wind speeds.
  • the present invention provides a wind power generator having an optimal shape so that the piezoelectric element of the cantilever type to produce electricity by using the wind to produce high-efficiency electricity.
  • the present invention provides a dual wind power generation system that can maximize the production efficiency by producing auxiliary electricity using a propeller in addition to the piezoelectric element of the cantilever type.
  • a wind turbine generating power using wind is disposed adjacent to the pressure change means and the pressure change means arranged on the movement path of the wind to generate a pressure change over time. It is disposed includes a piezoelectric element portion for generating power by the pressure change over time.
  • the piezoelectric element portion is a structure capable of generating electric power by using piezoelectricity, in which electrical polarization occurs when a piezoelectric element is subjected to mechanical pressure such as strain, and has a single layer or a multilayer structure. It may be provided, and materials of various shapes and structures may be selected.
  • the piezoelectric phenomenon and the wind of the piezoelectric element is used.
  • the stopper is rotated by wind, and the stopper repeatedly hits the piezoelectric element repeatedly, thereby generating electric power by applying a periodic stress to the piezoelectric element.
  • This method requires a minimum initial stress that pushes the stopper in contact with the piezoelectric element, making it difficult to operate at low wind speeds, and the more damaged the piezoelectric element is due to the friction between the stopper and the piezoelectric element.
  • the wind power generator instead of applying a stress to the piezoelectric element by touching the piezoelectric element with a specific object, the wind power itself is used to apply power from the piezoelectric element by applying stress to the piezoelectric element. Produced, no initial stress is required, and the piezoelectric element is not damaged at all.
  • the piezoelectric element In order for the piezoelectric element to continuously generate power, the piezoelectric element must be repeatedly stressed.
  • the wind is used, but generally includes a pressure change means for allowing the wind having a constant velocity without a large change to have a pressure change over time.
  • the pressure changing means is disposed adjacent to the piezoelectric element portion in front of the piezoelectric element portion, so that the wind has a pressure change with time in the vicinity of the piezoelectric element portion disposed on the wind path, thereby causing vibration of the piezoelectric element portion.
  • the pressure change means is disposed in front of the piezoelectric element portion is effective to induce vibration of the piezoelectric element portion, and the pressure change means according to the rotating body having a plurality of wings, the object fluttering in the wind, the wind direction It can be a variety of physical structures, such as swinging objects.
  • the propeller may be equipped with a rotating shaft rotating together with the propeller, and an auxiliary power generation unit including a stator disposed along the periphery of the rotating shaft.
  • the auxiliary power generation unit can generate general power using a rotor and a coil, and since the power generation module using the piezoelectric element does not make physical contact with the auxiliary power generation unit, the power generation efficiency by the existing auxiliary power generation unit can be further increased.
  • the piezoelectric element may be periodically vibrated by the wind to produce power.
  • the wind power generator of the present invention is not a method of transferring a stress to the piezoelectric element by directly contacting a specific object with the piezoelectric element as in the prior art, breakage of the piezoelectric element does not occur and initial stress for moving a specific object. No value is required so electricity can be produced at low wind speeds.
  • the wind power generator of the present invention can increase the efficiency of electricity production by changing the shape of the cantilever-shaped piezoelectric element in accordance with the characteristics of the periodic wind.
  • FIG. 1 is a perspective view illustrating a wind power generator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken around the piezoelectric element unit of the wind power generator of FIG. 1.
  • 3 to 6 are diagrams illustrating piezoelectric element parts having different shapes.
  • FIG. 1 is a perspective view for explaining a wind power generator according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of the piezoelectric element of the wind power generator of FIG.
  • the wind power generator 100 includes a pressure change unit 110, a piezoelectric element unit 120, and a guide duct 130.
  • the piezoelectric element unit 120 includes a piezoelectric element 122 and a support member 124, the piezoelectric element 122 may generate electric power by generating electric polarization by a mechanical pressure such as strain (strain)
  • a mechanical pressure such as strain (strain)
  • Polyvinylidene fluoride (polyvinylidene fluoride), barium titanate, lead titanate, zirconate titanate, quartz (quartz) and the like can be prepared, and may be provided in a single layer or a multilayer structure depending on the material and the piezoelectric method. In this embodiment, it can be prepared using polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • Pressure change may occur in the rear of the propeller, the fluttering flag, and the swinging object caused by the wind, and the piezoelectric element 122 repeatedly vibrates and generates power by regular or irregular pressure changes. You can.
  • the support member 124 may be provided on one surface of the piezoelectric element 122 so as to be in close contact with the piezoelectric element 122 so as to minimize cracking due to stress.
  • the support member 124 uses a polyester film (Mylar) resistant to plastic deformation, but may also use other synthetic resins having high hardness and not easily causing plastic deformation.
  • the support member 124 may protect the piezoelectric element 122 from foreign matter mixed with the wind.
  • the support member 124 may face the piezoelectric element 122 facing the windy direction. It may be disposed on one side of, and in some cases may be disposed on both sides.
  • the piezoelectric element 122 may be provided to have a thickness of 110 ⁇ m, and the support member 124 may have a thickness of 127 ⁇ m.
  • the piezoelectric element part 122 according to the present embodiment may have a physical property value as shown in Table 1 below. It can have
  • the guide duct 130 may guide the movement path of the wind inward.
  • the guide duct 130 may be provided in the form of a funnel to guide the wind inward.
  • Five piezoelectric element parts 120 may be provided along the inner surface of the guide duct 130, and a cantilever having one end coupled to the inner surface of the guide duct 130 to vibrate effectively by wind. It may be provided as.
  • the number of the piezoelectric element units 120 may be changed, and the piezoelectric element units 120 may be connected in series to increase the magnitude of the produced voltage, and in some cases, the piezoelectric element ( The magnitude of the voltage may be adjusted by adjusting the thickness of 122).
  • the wind power generator 100 is provided with a pressure change means 110 to use the wind, but generally have a change in pressure according to the periodical time of the wind having a constant speed without significant change. .
  • the pressure changing means 110 may include a propeller 112 having a plurality of wings and a propeller coupling support 114 capable of coupling the propeller 112 to the inner surface of the guide duct 130.
  • a propeller 112 having a plurality of wings and a propeller coupling support 114 capable of coupling the propeller 112 to the inner surface of the guide duct 130.
  • the propeller may be provided in a variety of forms, such as flags, windbreaks.
  • the propeller may also have a parallel or vertical axis of rotation corresponding to the wind direction of the wind.
  • the piezoelectric element unit 120 may be located at the rear adjacent to the end of the propeller 112, and irregular wind is changed in time near the piezoelectric element unit 120 disposed on the wind path as if it is an alternating current. The vibration of the piezoelectric element unit 120 can be caused more regularly.
  • the propeller 112 may be disposed in front of the piezoelectric element unit 120 to more effectively induce regular or irregular vibration of the piezoelectric element unit 120.
  • the production efficiency of electricity may vary according to the shape of the piezoelectric element unit 120.
  • the shape of the piezoelectric element part of the wind power generator 100 described above and producing electric power using the same will be described in detail.
  • 3 to 6 are diagrams illustrating piezoelectric element parts having various shapes that may be used in the wind power generator of the present invention.
  • the piezoelectric element unit 120 illustrated in FIG. 3 may be provided in a rectangular shape.
  • the piezoelectric element part 120 having a rectangular shape is easily manufactured in the most basic shape and bonded to mass production.
  • Piezoelectric element portions of various shapes can be considered to increase the production efficiency of electricity.
  • the present inventors can use computer analysis and actual experiment in the process of determining the shape of the piezoelectric element parts of different shapes shown in FIGS. 3 to 6 and the comparative analysis of the production efficiency of electricity of each piezoelectric element part.
  • the piezoelectric element portion 120 having a rectangular shape shown in FIG. 3 is a model first given for energy harvesting.
  • a plurality of moving points are disposed on the surface of the piezoelectric element portion 120 provided two-dimensionally for computer analysis and shape optimization.
  • the moving point may be a key point for determining the shape of the piezoelectric element unit 120.
  • the two-dimensional piezoelectric element unit 120 may be three-dimensionally reconfigured as shown in FIG. 3 through ANSYS, which is a structural analysis program. Then, the energy conversion factor ( ⁇ ) is calculated through the enci. The energy conversion factor is determined by the ratio of total electric energy (Ee) to work from external energy (W), and is expressed by Equation 1 below.
  • MATLAB (Matrix Laboratory) is a programming language that provides high-performance numerical calculation and visualization of results by integrating numerical analysis, matrix operation, signal processing, and simple graphic functions into energy conversion factors calculated through NSIs. MATLAB can then move the movement point toward the direction of greatest electrical energy.
  • the shape of the piezoelectric element may be determined by disposing the moving point in the two-dimensional piezoelectric element portion and repeating the movement of the moving point in the three-dimensionally shaped piezoelectric element portion.
  • the piezoelectric element portion 120 is changed from an initially given rectangular piezoelectric element portion 120 to an optimal shape as shown in FIG. 4 through the above-described process using Nsis and MATLAB. Can be.
  • the ratio of the width and length of the piezoelectric element portion 120 of FIG. 3 used in the simulation is 1: 5
  • the thickness of the piezoelectric element 122 is 110 ⁇ m
  • the thickness of the support member 124 is 127 ⁇ m. .
  • the difference in pressure according to the wind speed (positive pressure) can be calculated from the following [Equation 2] assuming a pressure difference ⁇ P between the upper and lower ends of the propeller 112.
  • the piezoelectric element unit 120 may vibrate, and the voltage generated when resonance occurs may be simulated.
  • the piezoelectric element unit 220 may be implemented, and the total electrical energy and voltage of the piezoelectric element unit 220 of FIG. 4 may be calculated under the same conditions (lift).
  • the piezoelectric element unit 220 of FIG. 4 which is an optimal model, is 1.76 times the total electric energy / total area and the maximum voltage is 1.3 when compared to the piezoelectric element unit 120 of FIG. 3. It is confirmed that there is a fold increase.
  • the piezoelectric element 220 of FIG. 4 is provided as a cantilever including a fixed end 222 and a free end 224.
  • the first narrow portion 226 and the first wide portion 228 are formed from the fixed end 222, and the first narrow portion 226 has a smaller width than the fixed end 222, and the first wide portion 228.
  • the width is gradually decreased again while passing through the first wide portion 228, and the free end 224 is formed to have a smaller width than the first wide portion 228.
  • the width ratios of the fixed end 222, the first narrow portion 226, the first wide portion 228, and the free end 224 may be changed according to the surrounding environment, and the side surface of the piezoelectric element unit 220 may be changed. May be provided in a curved shape for a smooth change, but may also be provided in a straight form.
  • Irregular wind flow through the propeller can be converted into a regular flow as if it is an alternating current, and this regularly converted wind flow can constantly provide regular harmonic stimulation to the piezoelectric element.
  • the analysis is performed assuming that the pressure change according to the wind speed is fixed, but in the dynamic analysis described below, the analysis is performed considering that the wind flow is a harmonic stimulus.
  • Dynamic analysis takes into account the damping effect.
  • the piezoelectric element portion continuously generates electricity by the flow of air, in which two damping effects by the material and the air are affected.
  • the material damping effect due to the material is already determined and may not affect the resonance frequency.
  • the air damping effect may cause a reduction in the resonance frequency of the vibrating piezoelectric element portion.
  • the highest voltage can be obtained from a rectangular piezoelectric element having a natural frequency of 42.724 Hz.
  • the theoretical maximum voltage is obtained using the piezoelectric element portion.
  • the damping effect is not considered in the harmonic situation, the theoretical maximum voltage theoretically is infinite because the natural frequency of the piezoelectric element continuously meets the excitation frequency from the wind flow such as alternating current.
  • the piezoelectric element portion having an ideal shape can be obtained in the harmonic situation by applying the air damping ratio.
  • the piezoelectric element unit 320 illustrated in FIG. 5 is an optimal shape without considering the damping effect in a harmonic situation
  • FIG. 6 is a piezoelectric element unit 420 having an optimal shape considering the damping effect.
  • the piezoelectric element portion 320 of FIG. 5 is provided as a cantilever including a fixed end 322 and a free end 324.
  • the first wide portion 328, the first narrow portion 326, and the second wide portion 329 are formed from the fixed end 322, and the first wide portion 328 is wider than the fixed end 322.
  • the first narrow portion 326 is provided to be narrower than the first wide portion 328, and the second wide portion 329 is wider than the first narrow portion 326.
  • the width is gradually decreased again while passing through the second wide portion 329, and the free end 324 is formed to be narrower than the second wide portion 329.
  • the width ratios of the fixed end 322, the first wide part 328, the first narrow part 326, the second wide part 329, and the free end 324 may be changed according to the surrounding environment.
  • the side surface of the piezoelectric element unit 320 may be provided in a curved shape for smooth change, but may also be provided in a straight line.
  • the piezoelectric element portion 420 of FIG. 6 also includes a fixed end 422, a first wide portion 428, a first narrow portion 426, a second wide portion 429, and a free end 424, but with a width.
  • the change ratio of may be distinguished from the piezoelectric element unit 320 of FIG. 5.
  • Table 3 summarizes the electrical characteristics of the piezoelectric element parts shown in FIGS. 3, 5, and 6 in a harmonic situation.
  • the piezoelectric element is manufactured to have a thickness of 110 ⁇ m and the support member is 127 ⁇ m, and each shape follows the shape of the piezoelectric element shown in FIGS. 3, 5, and 6.
  • the manufactured piezoelectric element part is applied to the wind power generator as shown in FIG. 1, and various electrical values are measured and summarized in Table 4 below.
  • the maximum power of the piezoelectric element portion having the optimal shape in the harmonic situation shown in FIG. 6 is (maximum Power).
  • the basic rectangular piezoelectric element portion is fixed to the guide duct, as shown in Fig. 4, considering only the lift analysis in the case of fixed analysis, that is, 3.5 m / s wind. It can be seen that it is preferable to be made in the shape of a vial having a narrow portion 226 having a reduced width between the end 222 and the free end 224 opposite the fixed end 222.
  • the wind has a harmonic pressure (time-dependent pressure, such as alternating current), as shown in Figure 5, to the fixed end 322 and the fixed end 322 fixed to the guide duct
  • a harmonic pressure time-dependent pressure, such as alternating current
  • the narrow portion 326 having a reduced width between the opposite free ends 324 is manufactured in the shape of a vial bottle positioned at the center of the piezoelectric element portion 320.
  • FIG. 7 is a sectional view of a wind turbine according to another embodiment of the present invention.
  • the wind power generator 500 may include a first power generation means and a second power generation means.
  • the first power generation means includes a propeller 512 and an auxiliary power generation unit 540 for generating electricity in conjunction with the rotation axis of the propeller 512, the auxiliary power generation unit 540 is mounted to the propeller 512 as in the prior art
  • a stator 544 disposed around the rotation shaft 542 and the rotation shaft 542, and may generate electricity by the rotation of the rotation shaft 542.
  • the stator 544 may be housed in a case 546 having an interior space for accommodating the stator 544, which may be coupled to the guide duct 530 by the generator coupling support 548. have.
  • the second power generation unit may include the piezoelectric element unit 520, and may include the other piezoelectric element unit 520 described above.
  • the piezoelectric element unit 520 is composed of one set at the rear of the propeller 512, but may be provided as a plurality of sets overlapped along the movement path of the wind.
  • the amount of power generated by the auxiliary power generation unit 540 using the rotor and the stator may be higher than the amount of power generated by the piezoelectric element unit 520.
  • the piezoelectric element portion that is, the second power generation means, can further generate power by using the pressure change by the first power generation means without physically affecting the first power generation means.
  • the influence of the feedback back to the first power generation means in the power generation process by the second power generation means can be almost eliminated.
  • the first power generation means using the propeller and the second power generation means using the piezoelectric element portion can build a dual wind power generation system, and the second power generation means can add its own power generation capacity in addition to the power generation capability of the first power generation means.
  • the efficiency of electricity production of the overall power generation system can thus be increased.
  • such a wind power generation system can be usefully used in places where the power supply is not smooth. For example, it can provide continuous power to sensors mounted on large bridges or islands that are difficult to supply. Home power may not be enough, but it can effectively supply adequate power to operate sensors without changing batteries.
  • the wind power generator and the dual wind power generation system according to the present invention can be widely used in an apparatus or system capable of producing electricity using wind power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Wind Motors (AREA)

Abstract

The wind-powered electricity generating device uses the wind to generate electrical power, and comprises: a pressure-changing means which is disposed in the path of movement of the wind and creates changes in pressure over time; and a piezoelectric element which is disposed adjacent to the pressure-changing means and generates electrical power due to the changes in pressure over time.

Description

풍력발전장치 및 듀얼 풍력발전시스템Wind Turbine and Dual Wind Power System
본 발명은 바람을 이용하여 전기를 생산하는 풍력발전장치에 관한 것으로서, 보다 자세하게는, 비접촉 방식에 따라 자체적으로 전력을 발생시킬 수 있으며 다른 발전 모듈과 조화를 이를 수 있는 발전 모듈 및 다른 종류의 발전 모듈이 조화를 이루는 듀얼 풍력발전시스템에 관한 것이다.The present invention relates to a wind power generator for producing electricity by using wind, and more particularly, a power generation module and other kinds of power generation that can generate power by itself according to a non-contact method and can be harmonized with other power generation modules. A dual wind power generation system in which modules are harmonized.
최근 반도체 기술의 비약적인 발전으로 저전력 반도체 소자와 모듈의 개발이 가능하게 됨으로써, 유비쿼터스 센서네트워크(Ubiquitous Sensor Network; USN)의 상용화에 관심이 증가하고 있다. USN에 사용되는 센서노드의 크기와 가격이 감소하고 상용화 가능성이 증가함에 따라 효율적인 에너지 공급이 문제로 떠오르고 있다. 하지만 CMOS 전자 회로의 소형화가 배터리의 에너지 집약 기술보다 앞서기 때문에 크기적 제약이나 경제적인 부담으로 배터리를 이용하는 것이 쉽지 않다. 따라서, 최근에는 일상에서 쉽게 얻을 수 있는 태양열, 진동, 열, 풍력, 파력 등을 활용하여 쉽게 전기에너지를 공급할 수 있는 방법에 대한 연구가 활발히 진행 중이다.Recently, as the development of semiconductor technology enables the development of low power semiconductor devices and modules, there is increasing interest in the commercialization of a ubiquitous sensor network (USN). As the size and price of sensor nodes used in USNs decrease and the possibility of commercialization increases, efficient energy supply becomes a problem. However, because miniaturization of CMOS electronic circuits is ahead of battery-intensive technologies, it is not easy to use batteries due to size constraints or economic burden. Therefore, in recent years, research is being actively conducted on a method of easily supplying electric energy using solar heat, vibration, heat, wind power, wave power, etc., which can be easily obtained in daily life.
자연 에너지로부터 에너지를 수확하기 위한 연구의 예로, 기계적 에너지를 손쉽게 전기적 에너지로 변환하기 위해 압전 소자를 이용하는 방식이 있다. 압전 소자를 이용하여 에너지를 수확을 위해서 3가지 단계를 필요로 한다. (a) 이용 가능한 자연에너지 자원으로부터 주기적인 응력을 만들고 압전 소자로 전달 할 수 있어야 한다. (b) 압전 효과(piezoelectric effect)를 이용해 기계적 에너지를 전기적 에너지로 변환하여야 한다. (c) 전기적 에너지를 가공하고 저장할 수 있어야 한다. 하지만 일상생활에서 얻을 수 있는 자연 에너지는 그 힘을 제어하여 이용하기가 힘들다. 압전 소자를 이용하여 에너지를 수확하기 위해서는 주기적인 응력을 필요로 하지만 바람은 큰 변화 없이 일정한 세기의 속력을 가지고 있어 그 힘을 이용하기가 힘들다. 바람을 제어하기 위한 기존의 연구 예로써, 바람을 프로펠러의 축의 회전력으로 변환하고 축에 달려있는 스톱퍼(stopper)가 직접 압전 외팔보에 힘을 가하여 에너지를 수확하는 방식이 제안된 바 있다. 하지만 스톱퍼가 직접 압전 외팔보에 응력을 가해 주어야 하기 때문에 초기 응력이 필요하여 낮은 풍속에서 작동하기가 어렵고 압전 외팔보의 손상문제로 인해 추가적 비용을 필요로 한다.An example of research to harvest energy from natural energy is to use piezoelectric elements to easily convert mechanical energy into electrical energy. Using piezoelectric elements requires three steps to harvest energy. (a) It must be possible to create and transfer periodic stresses from the available natural energy sources to the piezoelectric element. (b) The mechanical energy is to be converted into electrical energy using the piezoelectric effect. (c) be capable of processing and storing electrical energy. However, the natural energy available in daily life is difficult to control and use its power. The harvesting of energy using piezoelectric elements requires periodic stresses, but the wind has a constant velocity of velocity without significant change, making it difficult to use the force. As an example of the existing research for controlling wind, a method of converting wind into rotational force of a propeller shaft and harvesting energy by applying a force to a piezoelectric cantilever directly by a stopper on the shaft is proposed. However, because the stopper must directly stress the piezoelectric cantilever, initial stress is required, making it difficult to operate at low wind speeds and additional costs due to damage problems of the piezoelectric cantilever.
본 발명은 바람 및 주변 환경으로부터 야기되는 변화를 이용하여 압전 소자로부터 전기를 생산하되, 압전 소자에 특정한 물체와의 직접적인 접촉으로 응력을 가하지 않고, 전기를 생산함으로써, 압전 소자의 손상을 방지하고, 특정한 물체를 움직이기 위한 초기의 응력 값을 요구하지 않아 낮은 풍속에서도 전기를 생산할 수 있는 풍력발전장치를 제공한다.The present invention produces electricity from the piezoelectric element using the changes caused from the wind and the surrounding environment, while producing electricity without applying stress to the piezoelectric element in direct contact with a specific object, thereby preventing damage to the piezoelectric element, It does not require an initial stress value to move a specific object, providing a wind turbine that can produce electricity at low wind speeds.
본 발명은 바람을 이용하여 전기를 생산하는 외팔보 형태의 압전 소자가 고효율의 전기를 생산할 수 있도록 최적의 형태를 갖는 풍력발전장치를 제공한다.The present invention provides a wind power generator having an optimal shape so that the piezoelectric element of the cantilever type to produce electricity by using the wind to produce high-efficiency electricity.
본 발명은 외팔보 형태의 압전 소자 외에도 프로펠러를 이용하여 보조 전기를 생산함으로써 생산 효율을 극대화할 수 있는 듀얼 풍력발전시스템을 제공한다.The present invention provides a dual wind power generation system that can maximize the production efficiency by producing auxiliary electricity using a propeller in addition to the piezoelectric element of the cantilever type.
본 발명의 예시적인 일 실시예에 따르면, 바람을 이용하여 전력을 발생시키는 풍력발전장치는, 바람의 이동경로 상에 배치되어 시간에 따른 압력변화를 발생시키는 압력변화수단 및 압력변화수단에 인접하게 배치되어 시간에 따른 압력변화에 의해서 전력을 발생시키는 압전 소자부를 포함한다.According to an exemplary embodiment of the present invention, a wind turbine generating power using wind is disposed adjacent to the pressure change means and the pressure change means arranged on the movement path of the wind to generate a pressure change over time. It is disposed includes a piezoelectric element portion for generating power by the pressure change over time.
압전 소자부는, 압전 소자(piezoelectrics)에 스트레인(strain)과 같은 기계적 압력을 주면 전기 분극(electrical polarization)이 일어나는 압전 현상(piezoelectricity)을 이용하여 전력을 발생시킬 수 있는 구조로서, 단층 또는 복층 구조로 제공될 수 있으며, 다양한 형상 및 구조의 재료가 선택될 수 있다.The piezoelectric element portion is a structure capable of generating electric power by using piezoelectricity, in which electrical polarization occurs when a piezoelectric element is subjected to mechanical pressure such as strain, and has a single layer or a multilayer structure. It may be provided, and materials of various shapes and structures may be selected.
압전 소자의 압전 현상 및 바람을 이용한 것으로서, 종래에는 스톱퍼를 바람을 이용하여 회전시키고, 스톱퍼가 반복적으로 직접 압전 소자와 부딪치도록 함으로써, 압전 소자에 주기적인 응력을 가해 주는 방식으로 전력을 생산한 것이 있다. 이러한 방식은 압전 소자에 접촉되어 있는 스톱퍼를 밀어내는 최소한의 초기 응력이 필요하여 낮은 풍속에서 작동하기가 어렵고, 사용할수록 스톱퍼와 압전 소자의 마찰에 의해서 압전 소자의 손상이 커지는 문제가 있다.The piezoelectric phenomenon and the wind of the piezoelectric element is used. Conventionally, the stopper is rotated by wind, and the stopper repeatedly hits the piezoelectric element repeatedly, thereby generating electric power by applying a periodic stress to the piezoelectric element. There is. This method requires a minimum initial stress that pushes the stopper in contact with the piezoelectric element, making it difficult to operate at low wind speeds, and the more damaged the piezoelectric element is due to the friction between the stopper and the piezoelectric element.
그러나, 본 발명에 따른 풍력발전장치에서는 특정한 물체로 압전 소자를 터치하여 압전 소자에 응력을 제공하는 방식이 아닌, 바람 자체를 이용하여, 압전 소자에 응력을 가해주는 방식으로, 압전 소자로부터 전력을 생산하여, 초기 응력이 필요하지 않으며, 압전 소자가 파손될 일이 전혀 없다.However, in the wind power generator according to the present invention, instead of applying a stress to the piezoelectric element by touching the piezoelectric element with a specific object, the wind power itself is used to apply power from the piezoelectric element by applying stress to the piezoelectric element. Produced, no initial stress is required, and the piezoelectric element is not damaged at all.
다만, 압전 소자가 지속적으로 전력을 생산하기 위해서는 반복적으로 압전 소자에 응력을 가해 주어야 한다. However, in order for the piezoelectric element to continuously generate power, the piezoelectric element must be repeatedly stressed.
이에, 본 발명에서는 바람을 이용하되, 일반적으로 큰 변화 없이 일정한 세기의 속력을 가지는 바람이 시간에 따른 압력변화를 갖도록 해주는 압력변화수단을 구비한다. Thus, in the present invention, the wind is used, but generally includes a pressure change means for allowing the wind having a constant velocity without a large change to have a pressure change over time.
압력변화수단은 압전 소자부에 전방에 인접하게 배치되어, 바람의 경로 상에 배치되는 압전 소자부 근처에서 바람이 시간에 따른 압력변화를 갖도록 함으로써, 압전 소자부의 진동을 유발시킬 수 있다. The pressure changing means is disposed adjacent to the piezoelectric element portion in front of the piezoelectric element portion, so that the wind has a pressure change with time in the vicinity of the piezoelectric element portion disposed on the wind path, thereby causing vibration of the piezoelectric element portion.
이때, 압력변화수단은 압전 소자부 전단에 배치되는 것이 압전 소자부의 진동을 유도하는데 효과적이며, 압력변화수단으로는 복수개의 날개를 가지고 회전하는 회전체, 바람에 펄럭이는 물체, 바람 방향에 따라 요동하는 물체 등 다양한 물리적 구조가 될 수 있다. At this time, the pressure change means is disposed in front of the piezoelectric element portion is effective to induce vibration of the piezoelectric element portion, and the pressure change means according to the rotating body having a plurality of wings, the object fluttering in the wind, the wind direction It can be a variety of physical structures, such as swinging objects.
또한, 압력변화수단에 의해서 시간에 따라 압력이 변화하는 바람의 진동수와 압전 소자부의 고유 진동수가 상호 일치할 경우에, 최대 값의 전력을 생산할 수 있다. In addition, when the frequency of the wind whose pressure changes with time by the pressure changing means coincides with the natural frequency of the piezoelectric element portion, it is possible to produce the maximum power.
또한, 압력변화수단으로서 프로펠러를 사용하는 경우에는 프로펠러에 프로펠러와 함께 회전하는 회전축을 장착하고, 회전축의 주변을 따라 배치되는 고정자를 포함하는 보조 발전부를 설치할 수 있다. 보조 발전부는 회전자와 코일을 이용한 일반적인 발전을 할 수 있으며, 압전 소자를 이용한 발전 모듈을 보조 발전부와는 물리적인 접촉을 형성하지 않기 때문에 기존 보조 발전부에 의한 발전 효율을 더욱 높일 수가 있다.In addition, in the case of using the propeller as the pressure change means, the propeller may be equipped with a rotating shaft rotating together with the propeller, and an auxiliary power generation unit including a stator disposed along the periphery of the rotating shaft. The auxiliary power generation unit can generate general power using a rotor and a coil, and since the power generation module using the piezoelectric element does not make physical contact with the auxiliary power generation unit, the power generation efficiency by the existing auxiliary power generation unit can be further increased.
본 발명의 풍력발전장치는 압전 소자로 제공되는 바람이 주기적으로 압력의 변화를 갖도록 해주는 압력변화수단을 이용함으로써, 바람에 의해서 압전 소자가 주기적으로 진동하여 전력을 생산할 수 있다.In the wind power generator of the present invention, by using a pressure change means for allowing the wind provided by the piezoelectric element to periodically change the pressure, the piezoelectric element may be periodically vibrated by the wind to produce power.
본 발명의 풍력발전장치는 종래와 같이 특정한 물체를 압전 소자에 직접적으로 접촉시켜 압전 소자에 응력을 전달하는 방식이 아니기 때문에, 압전 소자의 파손이 발생하지 않으며, 특정한 물체를 움직이기 위한 초기의 응력 값을 요구하지 않아 낮은 풍속에서도 전기를 생산할 수 있다.Since the wind power generator of the present invention is not a method of transferring a stress to the piezoelectric element by directly contacting a specific object with the piezoelectric element as in the prior art, breakage of the piezoelectric element does not occur and initial stress for moving a specific object. No value is required so electricity can be produced at low wind speeds.
본 발명의 풍력발전장치는 외팔보 형상의 압전 소자부의 형상을 주기적인 바람의 특성에 맞춰서 형상을 변경함으로써, 전기 생산의 효율을 높일 수 있다. The wind power generator of the present invention can increase the efficiency of electricity production by changing the shape of the cantilever-shaped piezoelectric element in accordance with the characteristics of the periodic wind.
본 발명의 풍력발전장치 보조 발전부를 더 포함하여, 압전 소자부 외에 프로펠러를 이용하여 전기 생산 효율을 높일 수 있다.In addition to the wind power generator auxiliary generator of the present invention, it is possible to increase the efficiency of electricity production using a propeller in addition to the piezoelectric element.
도 1은 본 발명의 일 실시예에 따른 풍력발전장치를 설명하기 위한 사시도이다. 1 is a perspective view illustrating a wind power generator according to an embodiment of the present invention.
도 2는 도 1의 풍력발전장치의 압전 소자부 주변을 절개한 단면도이다. 2 is a cross-sectional view taken around the piezoelectric element unit of the wind power generator of FIG. 1.
도 3 내지 도 6은 서로 다른 형상의 압전 소자부를 도시한 도면들이다.3 to 6 are diagrams illustrating piezoelectric element parts having different shapes.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다. 참고로, 본 설명에서 동일한 번호는 실질적으로 동일한 요소를 지칭하며, 이러한 규칙 하에서 다른 도면에 기재된 내용을 인용하여 설명할 수 있고, 당업자에게 자명하다고 판단되거나 반복되는 내용은 생략될 수 있다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited or limited by the embodiments. For reference, in the present description, the same numbers refer to substantially the same elements, and may be described by referring to the contents described in the other drawings under these rules, and the contents determined to be obvious to those skilled in the art or repeated may be omitted.
도 1는 본 발명의 일 실시예에 따른 풍력발전장치를 설명하기 위한 사시도이며, 도 2는 도 1의 풍력발전장치의 압전 소자부의 단면도이다.1 is a perspective view for explaining a wind power generator according to an embodiment of the present invention, Figure 2 is a cross-sectional view of the piezoelectric element of the wind power generator of FIG.
도 1 및 도 2를 참조하면, 풍력발전장치(100)는 압력변화수단(110), 압전 소자부(120), 및 가이드 덕트(130)를 포함한다.1 and 2, the wind power generator 100 includes a pressure change unit 110, a piezoelectric element unit 120, and a guide duct 130.
먼저, 압전 소자부(120)는 압전 소자(122) 및 지지 부재(124)를 포함하며, 압전 소자(122)는 스트레인(strain)과 같은 기계적 압력에 의해서 전기 분극을 일으켜 전력을 발생시킬 수 있는 폴리비닐린 불화물(polyvinylidene fluoride), 티탄산바륨, 티탄산납, 티탄산지르콘납, 수정(quartz) 등을 이용하여 제조할 수 있으며, 소재 및 압전 방식에 따라 단층 또는 복층 구조로 제공될 수가 있다. 본 실시예에서는 폴리비닐린 불화물(polyvinylidene fluoride; PVDF)을 사용하여 제조될 수 있다. First, the piezoelectric element unit 120 includes a piezoelectric element 122 and a support member 124, the piezoelectric element 122 may generate electric power by generating electric polarization by a mechanical pressure such as strain (strain) Polyvinylidene fluoride (polyvinylidene fluoride), barium titanate, lead titanate, zirconate titanate, quartz (quartz) and the like can be prepared, and may be provided in a single layer or a multilayer structure depending on the material and the piezoelectric method. In this embodiment, it can be prepared using polyvinylidene fluoride (PVDF).
바람에 의해서 회전하는 프로펠러, 펄럭이는 깃발, 요동치는 물체의 후방으로는 압력의 변화가 생길 수 있으며, 규칙적인 또는 불규칙적인 압력 변화에 의해서 압전 소자(122)는 반복적으로 진동하며, 전력을 발생시킬 수 있다. Pressure change may occur in the rear of the propeller, the fluttering flag, and the swinging object caused by the wind, and the piezoelectric element 122 repeatedly vibrates and generates power by regular or irregular pressure changes. You can.
하지만 진동이 반복되면서 압전 소자(122)에는 장시간 사용으로 인한 스트레스에 의한 균열이 발생할 수 있으며, 바람에 섞여 있는 이물질 등에 의해서 파손이 발생할 수도 있다. 이에, 압전 소자(122)가 스트레스에 의해서 균열이 생기는 것을 최소화할 수 있도록, 그 일면에는 압전 소자(122)와 밀착되도록 지지 부재(124)를 제공할 수 있다. 본 실시예에서 지지 부재(124)는 소성 변형에 강한 폴리에스테르 필름(Mylar)을 사용하나, 그 외에 경도가 높고 소성 변형이 쉽게 일어나지 않는 다른 합성수지를 사용할 수도 있다. 한편, 지지 부재(124)는 바람에 섞여 있는 이물질로부터 압전 소자(122)를 보호할 수 있도록, 도 2에 도시된 바와 같이, 지지 부재(124)가 바람이 부는 방향을 향한 압전 소자(122)의 일 면에 배치될 수 있으며, 경우에 따라서는 양 면에 모두 배치될 수도 있다. However, as the vibration is repeated, the piezoelectric element 122 may be cracked due to stress due to prolonged use, and damage may occur due to foreign matter mixed in the wind. Accordingly, the support member 124 may be provided on one surface of the piezoelectric element 122 so as to be in close contact with the piezoelectric element 122 so as to minimize cracking due to stress. In the present embodiment, the support member 124 uses a polyester film (Mylar) resistant to plastic deformation, but may also use other synthetic resins having high hardness and not easily causing plastic deformation. Meanwhile, as illustrated in FIG. 2, the support member 124 may protect the piezoelectric element 122 from foreign matter mixed with the wind. As illustrated in FIG. 2, the support member 124 may face the piezoelectric element 122 facing the windy direction. It may be disposed on one side of, and in some cases may be disposed on both sides.
본 실시예에서 압전 소자(122)는 110㎛, 지지 부재(124)는 127㎛의 두께를 갖도록 제공될 수 있으며, 본 실시예에 따른 압전 소자부(122)는 아래 [표 1]과 같은 물성치를 가질 수 있다.In the present embodiment, the piezoelectric element 122 may be provided to have a thickness of 110 μm, and the support member 124 may have a thickness of 127 μm. The piezoelectric element part 122 according to the present embodiment may have a physical property value as shown in Table 1 below. It can have
Figure PCTKR2010007075-appb-I000001
Figure PCTKR2010007075-appb-I000001
[표 1] 압전 소자부의 물성치[Table 1] Properties of Piezoelectric Element
가이드 덕트(130)는 내측으로 바람의 이동경로를 안내할 수 있다. 또한 가이드 덕트(130)는 바람을 내측으로 유도할 수 있도록 깔때기 형태로 제공될 수 있다. 상술한 압전 소자부(120)는 가이드 덕트(130)의 내측 면을 따라서 5개가 제공될 수 있으며, 바람에 의해서 효과적으로 진동하도록 일단이 가이드 덕트(130)의 내측 면에 결합되어 있는 외팔보(cantilever)로 제공될 수 있다. 참고로, 압전 소자부(120)의 개수는 변경될 수 있으며, 복수개의 압전 소자부(120)들을 직렬로 연결하여, 생산되는 전압의 크기를 높일 수도 있으며, 또한, 경우에 따라서는 압전 소자(122)의 두께를 조절하여 전압의 크기를 조절할 수도 있다. The guide duct 130 may guide the movement path of the wind inward. In addition, the guide duct 130 may be provided in the form of a funnel to guide the wind inward. Five piezoelectric element parts 120 may be provided along the inner surface of the guide duct 130, and a cantilever having one end coupled to the inner surface of the guide duct 130 to vibrate effectively by wind. It may be provided as. For reference, the number of the piezoelectric element units 120 may be changed, and the piezoelectric element units 120 may be connected in series to increase the magnitude of the produced voltage, and in some cases, the piezoelectric element ( The magnitude of the voltage may be adjusted by adjusting the thickness of 122).
한편, 압전 소자(122)에서 지속적으로 전력이 발생되도록 하기 위해서는, 반복적으로 압전 소자(122)에 응력이 전달되어야 한다. 이에, 본 발명에 따른 풍력발전장치(100)는 바람을 이용하되, 일반적으로 큰 변화 없이 일정한 세기의 속력을 가지는 바람이 주기적인 시간에 따른 압력변화를 갖도록 해주는 압력변화수단(110)을 구비한다.On the other hand, in order to continuously generate power in the piezoelectric element 122, a stress must be transmitted to the piezoelectric element 122 repeatedly. Thus, the wind power generator 100 according to the present invention is provided with a pressure change means 110 to use the wind, but generally have a change in pressure according to the periodical time of the wind having a constant speed without significant change. .
압력변화수단(110)은 복수개의 날개를 가지는 프로펠러(112) 및 프로펠러(112)를 가이드 덕트(130)의 내측 면에 결합할 수 있는 프로펠러 결합 지지대(114)를 포함할 수 있다. 물론, 상술한 바와 같이, 바람에 의해서 움직이거나 구동되며 주변에 압력 변화를 일으킬 수 있다면, 프로펠러 외에도 깃발, 방풍막 형태 등 다양하게 제공될 수 있다. 물론 프로펠러도 바람의 바람 방향에 대응하여 평행한 또는 수직한 회전축을 가질 수가 있다.The pressure changing means 110 may include a propeller 112 having a plurality of wings and a propeller coupling support 114 capable of coupling the propeller 112 to the inner surface of the guide duct 130. Of course, as described above, if it is moved or driven by the wind and can cause a pressure change in the surroundings, in addition to the propeller may be provided in a variety of forms, such as flags, windbreaks. Of course, the propeller may also have a parallel or vertical axis of rotation corresponding to the wind direction of the wind.
압전 소자부(120)는 프로펠러(112) 단부에 인접한 후방에 위치할 수 있으며, 바람의 경로 상에 배치되는 압전 소자부(120) 근처에서 불규칙적인 바람이 마치 교류와 같이 시간에 따른 압력변화를 갖도록 하여, 압전 소자부(120)의 진동을 보다 규칙적으로 유발시킬 수 있다. 본 실시예에서는 프로펠러(112)를 압전 소자부(120)의 전방에 배치하여 보다 효과적으로 압전 소자부(120)의 규칙적인 또는 불규칙적인 진동을 유발시킬 수 있다.The piezoelectric element unit 120 may be located at the rear adjacent to the end of the propeller 112, and irregular wind is changed in time near the piezoelectric element unit 120 disposed on the wind path as if it is an alternating current. The vibration of the piezoelectric element unit 120 can be caused more regularly. In this embodiment, the propeller 112 may be disposed in front of the piezoelectric element unit 120 to more effectively induce regular or irregular vibration of the piezoelectric element unit 120.
한편, 압전 소자부(120)의 형태에 따라서 전기의 생산 효율이 달라질 수 있다. 이하 상술한 풍력발전장치(100)의 압전 소자부의 형상을 변경하고, 이를 이용하여 전력을 생산하는 실험 예를 구체적으로 설명한다.Meanwhile, the production efficiency of electricity may vary according to the shape of the piezoelectric element unit 120. Hereinafter, an example of changing the shape of the piezoelectric element part of the wind power generator 100 described above and producing electric power using the same will be described in detail.
도 3 내지 도 6은 본 발명의 풍력발전장치에 사용될 수 있는 다양한 형상의 압전 소자부를 도시한 도면들이다. 3 to 6 are diagrams illustrating piezoelectric element parts having various shapes that may be used in the wind power generator of the present invention.
도 3에 도시된 압전 소자부(120)는 직사각형 형상으로 제공될 수 있다. 직사각형 형상의 압전 소자부(120)는 가장 기본적인 형상으로 제조가 용이하고 대량 생산에 접합하다. The piezoelectric element unit 120 illustrated in FIG. 3 may be provided in a rectangular shape. The piezoelectric element part 120 having a rectangular shape is easily manufactured in the most basic shape and bonded to mass production.
전기의 생산 효율을 높이기 위해서 다양한 형상의 압전 소자부가 고려될 수가 있다. 본 발명자는 도 3 내지 도 6에 도시된 서로 다른 형상의 압전 소자부들의 형상을 결정하는 과정과 각각의 압전 소자부의 전기의 생산 효율을 비교 분석하는 과정에서 컴퓨터 분석 및 실제 실험을 이용할 수 있다. Piezoelectric element portions of various shapes can be considered to increase the production efficiency of electricity. The present inventors can use computer analysis and actual experiment in the process of determining the shape of the piezoelectric element parts of different shapes shown in FIGS. 3 to 6 and the comparative analysis of the production efficiency of electricity of each piezoelectric element part.
도 3에 도시된 직사각형 형상의 압전 소자부(120)는 에너지 수확(energy harvesting)을 위해서 최초로 주어진 모델이다. 컴퓨터 분석 및 형상의 최적화를 위해서 2차원적으로 제공되는 압전 소자부(120)의 표면에 복수개의 이동 포인트를 배치한다. 이동 포인트는 압전 소자부(120)의 형상을 결정하기 위한 키 포인트가 될 수 있다. The piezoelectric element portion 120 having a rectangular shape shown in FIG. 3 is a model first given for energy harvesting. A plurality of moving points are disposed on the surface of the piezoelectric element portion 120 provided two-dimensionally for computer analysis and shape optimization. The moving point may be a key point for determining the shape of the piezoelectric element unit 120.
2차원적인 압전 소자부(120)는 구조 해석프로그램인 엔시스(ANSYS)를 통해서 도 3에 도시된 바와 같이, 3차원적으로 재구성될 수 있다. 그 후에, 엔시스를 통해서 에너지 전환 인자(conversion factor; η)를 계산한다. 에너지 전환 인자는 외부 에너지에 의한 일(work from external energy; W)에 대한 총 전기 에너지 값(electric energy; Ee)의 비로 결정되며, 아래와 같은 [수학식 1]으로 표현된다.The two-dimensional piezoelectric element unit 120 may be three-dimensionally reconfigured as shown in FIG. 3 through ANSYS, which is a structural analysis program. Then, the energy conversion factor (η) is calculated through the enci. The energy conversion factor is determined by the ratio of total electric energy (Ee) to work from external energy (W), and is expressed by Equation 1 below.
[수학식 1] 에너지 전환 인자의 계산식[Equation 1] calculation formula of the energy conversion factor
Figure PCTKR2010007075-appb-I000002
Figure PCTKR2010007075-appb-I000002
상술한 바와 같이, 엔시스를 통해서 계산된 에너지 전환 인자를 수치 해석, 행렬 연산, 신호 처리, 간편한 그래픽 기능 등을 통합하여 고성능의 수치 계산 및 결과의 가시화 기능을 제공하는 프로그래밍 언어인 MATLAB(Matrix Laboratory)에 전달하면, MATLAB은 다시 이동 포인트를 전기 에너지가 가장 큰 방향을 향하여 이동시킬 수 있다. As described above, MATLAB (Matrix Laboratory) is a programming language that provides high-performance numerical calculation and visualization of results by integrating numerical analysis, matrix operation, signal processing, and simple graphic functions into energy conversion factors calculated through NSIs. MATLAB can then move the movement point toward the direction of greatest electrical energy.
즉, 이동 포인트를 2차원적인 압전 소자부에 배치하고, 3차원적으로 형상화된 압전 소자부에서 이동 포인트를 이동시키는 과정을 반복함으로써, 압전 소자부의 형상을 결정할 수 있다. That is, the shape of the piezoelectric element may be determined by disposing the moving point in the two-dimensional piezoelectric element portion and repeating the movement of the moving point in the three-dimensionally shaped piezoelectric element portion.
이하, 압전 소자부에 의해 작용하는 양력을 고려하는 고정된 분석(static analysis)을 통해서, 압전 소자부의 전기의 생산 효율을 비교 분석하는 과정에 대해서 설명한다. Hereinafter, a process of comparatively analyzing the production efficiency of electricity of the piezoelectric element portion will be described through static analysis considering the lift force acting on the piezoelectric element portion.
먼저, 도 3에 도시된 바와 같이, 최초로 주어진 직사각형 형상의 압전 소자부(120)로부터 엔시스 및 MATLAB를 이용한 상술한 과정을 통해서 도 4에 도시된 바와 같이, 최적의 형상으로 압전 소자부의 형상을 변경할 수 있다. First, as shown in FIG. 3, the piezoelectric element portion 120 is changed from an initially given rectangular piezoelectric element portion 120 to an optimal shape as shown in FIG. 4 through the above-described process using Nsis and MATLAB. Can be.
참고로, 시뮬레이션에 사용되는 도 3의 압전 소자부(120)의 폭과 길이의 비는 1:5이고, 압전 소자(122)의 두께는 110㎛, 지지 부재(124)의 두께는 127㎛ 이다. For reference, the ratio of the width and length of the piezoelectric element portion 120 of FIG. 3 used in the simulation is 1: 5, the thickness of the piezoelectric element 122 is 110 μm, and the thickness of the support member 124 is 127 μm. .
풍속에 따른 압력을 차이(양압)는 프로펠러(112)의 윗단과 아랫단의 압력차이(△P)로 가정하여 다음 [수학식 2]로부터 계산할 수 있다.The difference in pressure according to the wind speed (positive pressure) can be calculated from the following [Equation 2] assuming a pressure difference ΔP between the upper and lower ends of the propeller 112.
[수학식 2] 양력의 계산식[Equation 2] calculation formula of lift
Figure PCTKR2010007075-appb-I000003
Figure PCTKR2010007075-appb-I000003
양력계수 Cp는 1.4, 공기의 밀도(ρ)는 상온에서 1.169 kg/m3, 유체의 속도 V는 풍속 3.5 m/s로 가정하면, 20.04 Pa의 압력 값을 계산할 수 있다. Assuming that the lift coefficient Cp is 1.4, the air density ρ is 1.169 kg / m3 at room temperature, and the fluid velocity V is wind speed 3.5 m / s, a pressure value of 20.04 Pa can be calculated.
상술한 바와 같이, 풍속에 따른 압력의 변화로 인하여, 압전 소자부(120)가 진동할 수 있으며, 공진이 일어났을 때의 발생되는 전압을 시뮬레이션 할 수 있다. As described above, due to the change in pressure according to the wind speed, the piezoelectric element unit 120 may vibrate, and the voltage generated when resonance occurs may be simulated.
엔시스를 이용한 고정된 분석을 통해서, 도 3의 압전 소자부(120)의 총 전기 에너지(total electric energy), 전압(voltage)를 계산할 수 있으며, 엔시스 및 MATLAB를 이용하여 최적의 형상으로 도 4의 압전 소자부(220)를 구현하고, 동일한 조건(양력)에서 도 4의 압전 소자부(220)의 총 전기 에너지, 전압을 계산할 수 있다. Through the fixed analysis using the encis, it is possible to calculate the total electric energy (voltage), the voltage (voltage) of the piezoelectric element unit 120 of FIG. 3, in the optimal shape using the enci and MATLAB The piezoelectric element unit 220 may be implemented, and the total electrical energy and voltage of the piezoelectric element unit 220 of FIG. 4 may be calculated under the same conditions (lift).
상술한 계산 결과는 아래의 [표 2]에 정리되며, 도 3에 도시된 최초 모델인 압전 소자부(120) 및 도 4에 도시된 최적 모델인 압전 소자부(220) 각각의 총 전기 에너지(total electric energy), 최고 전압(maximum voltage)은 압전 소자부의 총 면적(total area)이 증가하면 함께 증가하는 경향을 보이는 것으로 확인된다.The above calculation results are summarized in Table 2 below, and the total electrical energy of each of the piezoelectric element unit 120 which is the first model shown in FIG. 3 and the piezoelectric element unit 220 which is the optimal model shown in FIG. It is confirmed that the total electric energy and maximum voltage tend to increase as the total area of the piezoelectric element increases.
Figure PCTKR2010007075-appb-I000004
Figure PCTKR2010007075-appb-I000004
[표 2] 최초 모델 및 최적 모델의 비교표[Table 2] Comparison table of the first model and the best model
또한, 최적 모델인 도 4의 압전 소자부(220)는 최초 모델인 도 3의 압전 소자부(120)와 비교할 때, 면적당 총 에너지(Total electric energy/ Total area)는 1.76배, 최고 전압은 1.3배 증가된 것으로 확인된다. In addition, the piezoelectric element unit 220 of FIG. 4, which is an optimal model, is 1.76 times the total electric energy / total area and the maximum voltage is 1.3 when compared to the piezoelectric element unit 120 of FIG. 3. It is confirmed that there is a fold increase.
참고로, 도 4의 압전 소자부(220)는 고정단(222) 및 자유단(224)를 포함하는 외팔보로 제공된다. 고정단(222)에부터 제1 소폭부(226) 및 제1 광폭부(228)가 형성되며, 제1 소폭부(226)는 고정단(222)보다 폭이 좁으며, 제1 광폭부(228)는 제1 소폭부(226)보다 폭이 넓게 제공된다. 제1 광폭부(228)를 통과하면서 다시 폭을 점차 줄어들며 자유단(224)은 제1 광폭부(228)보다 폭이 좁도록 형성된다. For reference, the piezoelectric element 220 of FIG. 4 is provided as a cantilever including a fixed end 222 and a free end 224. The first narrow portion 226 and the first wide portion 228 are formed from the fixed end 222, and the first narrow portion 226 has a smaller width than the fixed end 222, and the first wide portion 228. ) Is provided wider than the first narrow portion 226. The width is gradually decreased again while passing through the first wide portion 228, and the free end 224 is formed to have a smaller width than the first wide portion 228.
물론, 주변 환경에 따라 고정단(222), 제1 소폭부(226), 제1 광폭부(228) 및 자유단(224)의 폭 비율을 변경될 수 있으며, 압전 소자부(220)의 측면은 원활한 변화를 위해 곡선 형상으로 제공될 수 있지만, 다르게는 직선 형태로도 제공되는 것도 가능하다. Of course, the width ratios of the fixed end 222, the first narrow portion 226, the first wide portion 228, and the free end 224 may be changed according to the surrounding environment, and the side surface of the piezoelectric element unit 220 may be changed. May be provided in a curved shape for a smooth change, but may also be provided in a straight form.
상술한 바와 같은 고정된 분석은 단순하면서 압전 소자부에서 에너지 수확을 계산하는 매우 편리한 방법일 수 있다. 다만, 실제적인 에너지 수확 과정에서, 바람은 지속적으로 하모닉한 자극(harmonic excitation)을 고려할 수도 있다.Fixed analysis as described above can be a simple and very convenient way of calculating the energy harvest in the piezoelectric element portion. However, in the actual energy harvesting process, the wind may continuously consider harmonic excitation.
프로펠러를 통해서 불규칙적인 바람의 흐름은 마치 교류와 같이 규칙적인 흐름으로 전환될 수 있고, 이렇게 규칙적으로 변환된 바람의 흐름은 끊임없이 압전 소자부에 규칙적인 하모닉한 자극을 제공할 수 있다. Irregular wind flow through the propeller can be converted into a regular flow as if it is an alternating current, and this regularly converted wind flow can constantly provide regular harmonic stimulation to the piezoelectric element.
즉, 앞서서 설명한 고정된 분석에서는 풍속에 따른 압력의 변화를 고정된 상태로 가정하고 분석이 수행되나, 이하 설명하는 역동적 분석에서는 바람의 흐름이 하모닉한 자극이라는 것을 고려하고 분석이 수행된다. That is, in the fixed analysis described above, the analysis is performed assuming that the pressure change according to the wind speed is fixed, but in the dynamic analysis described below, the analysis is performed considering that the wind flow is a harmonic stimulus.
역동적 분석에서는 댐핑 효과(damping effect)를 고려한다. 압전 소자부는 지속적으로 공기의 흐름에 의해서 전기를 생산하는데, 이때, 압전 소자부의 재료 및 공기에 의한 2가지의 댐핑 효과가 영향을 미친다. Dynamic analysis takes into account the damping effect. The piezoelectric element portion continuously generates electricity by the flow of air, in which two damping effects by the material and the air are affected.
먼저, 재료에 의한 댐핑 효과(material damping effect)는 이미 결정된 사항이기 때문에 공명 주파수(resonance frequency)에 영향을 미치지 못할 수 있다. 그러나, 공기에 의한 댐핑 효과(air damping effect)는 진동하는 압전 소자부의 공명 진동수의 감소를 유발할 수 있다. 공기의 댐핑 비를 사용한 공기 댐핑 효과를 고려함으로써, 공명 주파수가 변화하는 하모닉한 상황에서 최적의 모델을 구현할 수 있다.First, the material damping effect due to the material is already determined and may not affect the resonance frequency. However, the air damping effect may cause a reduction in the resonance frequency of the vibrating piezoelectric element portion. By considering the air damping effect using the damping ratio of air, an optimal model can be implemented in harmonic situations where the resonance frequency changes.
다만, 공기 댐핑 비는 압전 소자의 모양, 두께, 표면적과 같은 여러 가지 인자에 의해서 결정되기 때문에 정확한 공기 댐핑 비를 얻는 것은 매우 어렵다. 예를 들어, 실험을 통해서 0.10875의 공기 댐핑 비를 찾을 수가 있다. However, since the air damping ratio is determined by various factors such as the shape, thickness, and surface area of the piezoelectric element, it is very difficult to obtain an accurate air damping ratio. For example, experiments have found an air damping ratio of 0.10875.
구체적으로 설명하면, 먼저, 실험을 통해서 42.724Hz의 자연 주파수(natural frequency)를 거지는 직사각형 형상의 압전 소자부로부터 최고 전압을 구할 수 있다. Specifically, first, through experiments, the highest voltage can be obtained from a rectangular piezoelectric element having a natural frequency of 42.724 Hz.
다음에, 하모닉한 상황에서 압전 소자부를 사용하여 이론적인 최대 전압을 구한다. 이 과정에서 하모닉한 상황에서 댐핑 효과를 고려하지 않으면 압전 소자부의 자연 주파수는 교류와 같은 바람의 흐름으로부터 자극 주파수(excitation frequency)와 지속적으로 만나기 때문에 이론적으로 예상되는 최대 전압은 무한하다. Next, in the harmonic situation, the theoretical maximum voltage is obtained using the piezoelectric element portion. In this process, if the damping effect is not considered in the harmonic situation, the theoretical maximum voltage theoretically is infinite because the natural frequency of the piezoelectric element continuously meets the excitation frequency from the wind flow such as alternating current.
상술한 이유로, 예상되는 공기 댐핑 비를 변화시켜 적용함으로써, 실험과 이론적인 최대 전압의 차이를 제거할 수 있다. 이러한 과정을 통해서 0.1875의 공기 댐핑 비를 얻을 수 있다. For the reasons mentioned above, by varying and applying the expected air damping ratio, it is possible to eliminate the difference between the experimental and theoretical maximum voltage. This process results in an air damping ratio of 0.1875.
그 후에, 공기 댐핑 비를 적용하여 하모닉한 상황에서 이상적인 형상의 압전 소자부를 얻을 수 있다.After that, the piezoelectric element portion having an ideal shape can be obtained in the harmonic situation by applying the air damping ratio.
구체적으로, 도 5에 도시된 압전 소자부(320)는 하모닉한 상황에서 댐핑 효과를 고려하지 않은 최적의 형상이며, 도 6은 댐핑 효과를 고려한 최적의 형상의 압전 소자부(420)이다. In detail, the piezoelectric element unit 320 illustrated in FIG. 5 is an optimal shape without considering the damping effect in a harmonic situation, and FIG. 6 is a piezoelectric element unit 420 having an optimal shape considering the damping effect.
도 5의 압전 소자부(320)는 고정단(322) 및 자유단(324)를 포함하는 외팔보로 제공된다. 고정단(322)에부터 제1 광폭부(328), 제1 소폭부(326) 및 제2 광폭부(329)가 형성되며, 제1 광폭부(328)는 고정단(322)보다 폭이 넓으며, 제1 소폭부(326)는 제1 광폭부(328)보다 폭이 좁게 제공되고, 다시 제2 광폭부(329)는 제1 소폭부(326)보다 폭이 넓게 제공된다. 제2 광폭부(329)를 통과하면서 다시 폭을 점차 줄어들며 자유단(324)은 제2 광폭부(329)보다 폭이 좁도록 형성된다. The piezoelectric element portion 320 of FIG. 5 is provided as a cantilever including a fixed end 322 and a free end 324. The first wide portion 328, the first narrow portion 326, and the second wide portion 329 are formed from the fixed end 322, and the first wide portion 328 is wider than the fixed end 322. The first narrow portion 326 is provided to be narrower than the first wide portion 328, and the second wide portion 329 is wider than the first narrow portion 326. The width is gradually decreased again while passing through the second wide portion 329, and the free end 324 is formed to be narrower than the second wide portion 329.
물론, 주변 환경에 따라 고정단(322), 제1 광폭부(328), 제1 소폭부(326), 제2 광폭부(329) 및 자유단(324)의 폭 비율을 변경될 수 있으며, 압전 소자부(320)의 측면은 원활한 변화를 위해 곡선 형상으로 제공될 수 있지만, 다르게는 직선 형태로도 제공되는 것도 가능하다. Of course, the width ratios of the fixed end 322, the first wide part 328, the first narrow part 326, the second wide part 329, and the free end 324 may be changed according to the surrounding environment. The side surface of the piezoelectric element unit 320 may be provided in a curved shape for smooth change, but may also be provided in a straight line.
도 6의 압전 소자부(420)도 고정단(422), 제1 광폭부(428), 제1 소폭부(426), 제2 광폭부(429) 및 자유단(424)을 포함하지만, 폭의 변화 비율이 도 5의 압전 소자부(320)와는 구분될 수 있다. The piezoelectric element portion 420 of FIG. 6 also includes a fixed end 422, a first wide portion 428, a first narrow portion 426, a second wide portion 429, and a free end 424, but with a width. The change ratio of may be distinguished from the piezoelectric element unit 320 of FIG. 5.
아래의 [표 3]에서는 도 3, 도 5, 및 도 6에 도시된 압전 소자부들이 하모닉한 상황에서 나타내는 전기적인 특징들이 정리된다.Table 3 below summarizes the electrical characteristics of the piezoelectric element parts shown in FIGS. 3, 5, and 6 in a harmonic situation.
Figure PCTKR2010007075-appb-I000005
Figure PCTKR2010007075-appb-I000005
[표 3] 도 3, 도 5, 및 도 6에 도시된 압전 소자부들이 하모닉한 상황에서 나타내는 전기적인 특징[Table 3] Electrical characteristics of the piezoelectric element parts shown in FIGS. 3, 5, and 6 in harmonic situations
[표 3]과 같이, 하모닉한 상황에서 최상의 모델인 도 6에 도시된 압전 소자부(420)는 도 3에 도시된 직사각형 형상의 압전 소자부(120)와 비교할 때, 면적당 총 에너지(Total electric energy/ Total area)가 1.58배 증가된 것으로 확인된다. As shown in Table 3, the piezoelectric element portion 420 illustrated in FIG. 6, which is the best model in a harmonic situation, is compared with the rectangular piezoelectric element portion 120 illustrated in FIG. 3. energy / total area) has been increased by 1.58 times.
상술한 과정은 컴퓨터를 통한 분석으로부터 결정되기 때문에, 이하, 실제로 압전 소자부를 제작하여 실험한 결과를 상세하게 설명한다.Since the above-described process is determined from analysis through a computer, the results of experiments by actually manufacturing the piezoelectric element parts will be described in detail below.
실험을 위해서 압전 소자는 110㎛, 지지 부재는 127㎛의 두께를 갖도록 제작하며, 각각의 형상은 도 3, 도 5, 및 도 6에 도시된 압전 소자부의 형상을 따른다. For the experiment, the piezoelectric element is manufactured to have a thickness of 110 μm and the support member is 127 μm, and each shape follows the shape of the piezoelectric element shown in FIGS. 3, 5, and 6.
제작된 압전 소자부를 도 1에 도시된 바와 같은 풍력발전장치에 적용하고, 다양한 전기적 수치를 측정하여, 이를 아래 [표 4]에 정리한다.The manufactured piezoelectric element part is applied to the wind power generator as shown in FIG. 1, and various electrical values are measured and summarized in Table 4 below.
Figure PCTKR2010007075-appb-I000006
Figure PCTKR2010007075-appb-I000006
[표 4] 도 3, 도 5, 및 도 6에 도시된 압전 소자부들을 도 1에 도시된 풍력발전장치에 적용하여 측정한 전기적 수치[Table 4] Electrical values measured by applying the piezoelectric element parts shown in FIGS. 3, 5, and 6 to the wind power generator shown in FIG.
[표 4]와 같이, 도 6에 도시된 하모닉한 상황에서 최적의 형상을 하는 압전 소자부의 최대 파워는 (maximum Power) 도 3에 도시된 직사각형 형상의 압전 소자부(120)의 계산된 최대 파워(maximum Power)와 비교할 때, 24.17%가 증가한 것으로 확인된다. As shown in Table 4, the maximum power of the piezoelectric element portion having the optimal shape in the harmonic situation shown in FIG. 6 is (maximum Power). The calculated maximum power of the piezoelectric element portion 120 having the rectangular shape shown in FIG. Compared with the maximum power, the increase is 24.17%.
요약하면, 도 3에 도시된 바와 같이, 기본적인 직사각형 형상의 압전 소자부는 고정된 분석 즉 3.5m/s의 바람이 부는 경우 양력만을 고려할 때, 도 4에 도시된 바와 같이, 가이드 덕트에 고정되는 고정단(222)과 고정단(222)에 대향한 자유단(224) 사이에 폭이 줄어드는 소폭부(226)를 갖는 호리병과 같은 형상으로 제작되는 것이 바람직함을 알 수 있다. In summary, as shown in Fig. 3, the basic rectangular piezoelectric element portion is fixed to the guide duct, as shown in Fig. 4, considering only the lift analysis in the case of fixed analysis, that is, 3.5 m / s wind. It can be seen that it is preferable to be made in the shape of a vial having a narrow portion 226 having a reduced width between the end 222 and the free end 224 opposite the fixed end 222.
또한, 바람이 하모닉한 압력(교류와 같이 시간에 따라 달라지는 압력)을 갖는 다는 점을 고려하면, 도 5에 도시된 바와 같이, 가이드 덕트에 고정되는 고정단(322)과 고정단(322)에 대향한 자유단(324) 사이에 폭이 줄어드는 소폭부(326)가 압전 소자부(320)의 중앙에 위치하는 호리병과 같은 형상으로 제작되는 것이 바람직함을 알 수 있다. In addition, considering that the wind has a harmonic pressure (time-dependent pressure, such as alternating current), as shown in Figure 5, to the fixed end 322 and the fixed end 322 fixed to the guide duct It can be seen that it is preferable that the narrow portion 326 having a reduced width between the opposite free ends 324 is manufactured in the shape of a vial bottle positioned at the center of the piezoelectric element portion 320.
또한, 바람에 의한 공기 댐핑 효과를 고려하면, 이는 다시 도 6에 도시된 형상으로 변경되는 것이 실제적인 공기의 흐름으로부터 최상의 전기 생산 효율을 갖는 것을 확인할 수 있으며, 구체적으로, 도 6에 도시된 바와 같이, 가이드 덕트에 고정되는 고정단(422)과 고정단(422)에 대향한 자유단(424) 사이에 광폭부-소폭부-광폭부의 조합이 도 5에 도시된 경우보다 폭의 변화비율이 줄어드는 형상으로 제작되는 것이 바람직함을 알 수 있다.In addition, considering the air damping effect by the wind, it can be seen that the change to the shape shown in Figure 6 again has the best electrical production efficiency from the actual air flow, specifically, as shown in Figure 6 Similarly, the ratio of change in width between the fixed end 422 fixed to the guide duct and the free end 424 opposite to the fixed end 422 is wider than that shown in FIG. It can be seen that it is desirable to be manufactured in a reduced shape.
도 7은 본 발명의 다른 실시예에 따른 풍력발전장치의 단면도이다. 7 is a sectional view of a wind turbine according to another embodiment of the present invention.
도 7을 참조하면, 풍력발전장치(500)는 제1 발전수단 및 제2 발전수단을 포함할 수 있다. 제1 발전수단은 프로펠러(512) 및 프로펠러(512)의 회전축과 연동하여 전기를 발생시키는 보조 발전부(540)를 포함하며, 종래와 같이 보조 발전부(540)는 프로펠러(512)에 장착되어 연동하는 회전축(542), 및 회전축(542) 주변에 배치되는 고정자(544)를 포함하며, 회전축(542)의 회전에 의해서 전기를 발생시킬 수 있다. 고정자(544)는 고정자(544)를 수용할 수 있는 내부 공간을 갖는 케이스(546)에 수용될 수 있으며, 케이스(546)는 발전기 결합 지지대(548)에 의해서 가이드 덕트(530)에 결합될 수 있다. Referring to FIG. 7, the wind power generator 500 may include a first power generation means and a second power generation means. The first power generation means includes a propeller 512 and an auxiliary power generation unit 540 for generating electricity in conjunction with the rotation axis of the propeller 512, the auxiliary power generation unit 540 is mounted to the propeller 512 as in the prior art And a stator 544 disposed around the rotation shaft 542 and the rotation shaft 542, and may generate electricity by the rotation of the rotation shaft 542. The stator 544 may be housed in a case 546 having an interior space for accommodating the stator 544, which may be coupled to the guide duct 530 by the generator coupling support 548. have.
제2 발전수단은 압전 소자부(520)를 포함할 수 있으며, 상술한 다른 압전 소자부(520)를 포함할 수 있다. 본 실시예에서는 압전 소자부(520)은 프로펠러(512)의 후방에서 1개조로 이루어져 있지만, 바람의 이동 경로를 따라 복수개의 조로 중복되어 제공될 수도 있다. The second power generation unit may include the piezoelectric element unit 520, and may include the other piezoelectric element unit 520 described above. In the present embodiment, the piezoelectric element unit 520 is composed of one set at the rear of the propeller 512, but may be provided as a plurality of sets overlapped along the movement path of the wind.
일반적으로 회전자 및 고정자를 이용한 보조 발전부(540)의 발전량이 압전 소자부(520)에 의한 발전량보다 높을 수가 있다. 하지만, 본 실시예에서는 압전소자부, 즉 제2 발전수단이 제1 발전수단에 물리적으로 영향을 미치지 않으면서, 제1 발전수단에 의한 압력변화를 이용하여 추가로 발전을 진행시킬 수가 있다. 또한, 제2 발전수단에 의한 발전 과정에서 제1 발전수단으로 피드백(feed back)하는 영향도 거의 무시할 정도로 없앨 수가 있다. In general, the amount of power generated by the auxiliary power generation unit 540 using the rotor and the stator may be higher than the amount of power generated by the piezoelectric element unit 520. However, in the present embodiment, the piezoelectric element portion, that is, the second power generation means, can further generate power by using the pressure change by the first power generation means without physically affecting the first power generation means. In addition, the influence of the feedback back to the first power generation means in the power generation process by the second power generation means can be almost eliminated.
따라서 프로펠러를 이용한 제1 발전수단 및 압전 소자부를 이용한 제2 발전수단은 듀얼 풍력발전시스템을 구축할 수 있으며, 제2 발전수단은 제1 발전수단의 발전 능력에 더해 자신의 발전 능력을 추가시킬 수 있으므로 전체적인 발전시스템의 전기 생산 효율이 증가될 수 있다. Therefore, the first power generation means using the propeller and the second power generation means using the piezoelectric element portion can build a dual wind power generation system, and the second power generation means can add its own power generation capacity in addition to the power generation capability of the first power generation means. The efficiency of electricity production of the overall power generation system can thus be increased.
또한, 이러한 풍력발전시스템은 전원 공급이 원활하지 않는 장소에 유용하게 사용될 수 있다. 예를 들어, 전력 공급이 어려운 큰 다리나 섬 등에 장착된 센서에 지속적인 전력을 공급할 수 있다. 가정용 전력으로는 부족할 수 있지만, 배터리 교환 없이 센서 등을 작동시키기에는 적절한 전력을 효과적으로 공급하게 할 수가 있다. In addition, such a wind power generation system can be usefully used in places where the power supply is not smooth. For example, it can provide continuous power to sensors mounted on large bridges or islands that are difficult to supply. Home power may not be enough, but it can effectively supply adequate power to operate sensors without changing batteries.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and changed without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
본 발명에 따른 풍력발전장치 및 듀얼풍력발전시스템은 풍력을 이용하여 전기를 생산할 수 있는 장치 또는 시스템에 널리 사용될 수 있다.The wind power generator and the dual wind power generation system according to the present invention can be widely used in an apparatus or system capable of producing electricity using wind power.

Claims (19)

  1. 바람의 이동경로 상에 배치되어 시간에 따른 압력변화를 발생시키는 압력변화수단; 및Pressure change means arranged on the movement path of the wind to generate a pressure change with time; And
    상기 압력변화수단에 인접하게 배치되어 상기 시간에 따른 압력변화에 의해서 전력을 발생시키는 압전 소자부;A piezoelectric element unit disposed adjacent to the pressure change unit to generate electric power by the pressure change according to the time;
    를 구비하는 풍력발전장치.Wind power generator having a.
  2. 제1항에 있어서, The method of claim 1,
    상기 압력변화수단은 프로펠러를 포함하는 것을 특징으로 하는 풍력발전장치.The pressure change means is a wind turbine, characterized in that it comprises a propeller.
  3. 제2항에 있어서, The method of claim 2,
    상기 프로펠러는 상기 압전 소자부의 전단에 배치되는 것을 특징으로 하는 풍력발전장치.The propeller is a wind turbine, characterized in that disposed in the front end of the piezoelectric element.
  4. 제1항에 있어서, The method of claim 1,
    내측으로 상기 바람의 이동경로를 제공하는 깔때기 형태의 가이드 덕트를 포함하며, It includes a funnel-shaped guide duct that provides a path of movement of the wind inwards,
    상기 압전 소자부는 상기 가이드 덕트의 내측 면을 따라서 하나 이상 제공되는 외팔보의 형태로 제공되는 것을 특징으로 하는 풍력발전장치. The piezoelectric element portion is a wind power generator, characterized in that provided in the form of a cantilever beam provided at least one along the inner surface of the guide duct.
  5. 제1항에 있어서, The method of claim 1,
    상기 압전 소자부는 외팔보로 제공되며, 직사각형 형태로 제공되는 것을 특징으로 하는 풍력발전장치. The piezoelectric element unit is provided as a cantilever and a wind power generator, characterized in that provided in a rectangular form.
  6. 제1항에 있어서, The method of claim 1,
    상기 압전 소자부는 외팔보로 제공되며, 고정단에부터 상기 고정단보다 폭이 좁은 제1 소폭부 및 상기 제1 소폭부보다 폭이 넓은 제1 광폭부가 차례로 제공되며, 자유단은 상기 제1 광폭부보다 폭이 좁도록 형성되는 것을 특징으로 하는 풍력발전장치.The piezoelectric element portion is provided as a cantilever, and a first narrow portion narrower than the fixed end and a first wide portion wider than the first narrow portion are sequentially provided from the fixed end, and the free end is the first wide portion. Wind turbines, characterized in that formed to be narrower than the width.
  7. 제1항에 있어서, The method of claim 1,
    상기 압전 소자부는 외팔보로 제공되며, 고정단에부터 상기 고정단보다 폭이 넓은 제1 광폭부, 상기 제1 광폭부보다 폭이 좁은 제1 소폭부 및 상기 제1 소폭부보다 폭이 넓은 제2 광폭부가 차례로 제공되며, 자유단은 상기 제2 광폭부보다 폭이 좁도록 형성되는 것을 특징으로 하는 풍력발전장치.The piezoelectric element portion is provided as a cantilever and has a first wide portion wider than the fixed end from the fixed end, a first narrow portion narrower than the first wide portion, and a second wider portion than the first narrow portion. The wide section is provided in sequence, the free end is a wind power generator, characterized in that the width is formed narrower than the second wide section.
  8. 제6항 또는 제7항에 있어서, The method according to claim 6 or 7,
    상기 압전 소자부의 측면이 곡선 형상으로 제공되는 것을 특징으로 하는 풍력발전장치.Wind turbines, characterized in that the side surface of the piezoelectric element portion is provided in a curved shape.
  9. 제1항에 있어서, The method of claim 1,
    상기 압전 소자부는 상기 시간에 따른 압력변화에 의해서 전기를 생성하는 압전 소자, 및 상기 압전 소자에 접합되는 지지 부재를 포함하는 것을 특징으로 하는 풍력발전장치.The piezoelectric element unit comprises a piezoelectric element for generating electricity by the pressure change over time, and a support member bonded to the piezoelectric element.
  10. 제9항에 있어서, The method of claim 9,
    상기 압전 소자는 폴리비닐린 불화물(polyvinylidene fluoride)을 포함하며, 상기 지지 부재는 폴리에스테르 필름을 포함하는 것을 특징으로 하는 풍력발전장치. The piezoelectric element includes a polyvinylidene fluoride, and the support member comprises a polyester film.
  11. 제1항에 있어서, The method of claim 1,
    상기 압전 소자부의 고유 진동수 및 상기 시간에 따른 압력변화를 갖는 바람의 진동수를 상호 일치시키는 것을 특징으로 하는 풍력발전장치.And a natural frequency of the piezoelectric element unit and a frequency of wind having a pressure change with time.
  12. 바람의 이동경로 상에 배치되어 시간에 따른 압력변화를 발생시키며 전력을 발생시키는 제1 발전수단; 및A first power generation means arranged on the movement path of the wind to generate a pressure change with time and generate electric power; And
    상기 제1 발전수단에 인접하게 배치되어 상기 시간에 따른 압력변화에 의해서 전력을 발생시키는 제2 발전수단;을 구비하는 듀얼 풍력발전시스템.And a second power generating means disposed adjacent to the first power generating means to generate electric power by the pressure change over time.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1 발전수단은 프로펠러 및 상기 프로펠러의 회전축과 연동하여 전기를 발생시키는 보조 발전부를 포함하는 것을 특징으로 하는 듀얼 풍력발전시스템.The first power generation unit is a dual wind power generation system, characterized in that it comprises a propeller and an auxiliary power generation unit for generating electricity in conjunction with the rotating shaft of the propeller.
  14. 제12항에 있어서,The method of claim 12,
    상기 제2 발전수단은 상기 제1 발전수단에 인접하게 배치되며 상기 제1 발전수단에 의해서 형성되는 압력변화를 이용하여 전력을 발생시키는 압전 소자부를 포함하는 것을 특징으로 하는 듀얼 풍력발전시스템.And the second power generation means is disposed adjacent to the first power generation means and includes a piezoelectric element portion generating electric power by using a pressure change formed by the first power generation means.
  15. 제14항에 있어서, The method of claim 14,
    상기 압전 소자부는 상기 제1 발전수단의 후방에 위치하는 것을 특징으로 하는 듀얼 풍력발전시스템.The piezoelectric element portion is a dual wind power generation system, characterized in that located behind the first power generating means.
  16. 제12항에 있어서, The method of claim 12,
    상기 압전 소자부는 외팔보로 제공되며, 직사각형 형태로 제공되는 것을 특징으로 하는 듀얼 풍력발전시스템. The piezoelectric element unit is provided as a cantilever, dual wind power generation system, characterized in that provided in a rectangular form.
  17. 제12항에 있어서, The method of claim 12,
    상기 압전 소자부는 외팔보로 제공되며, 고정단에부터 상기 고정단보다 폭이 좁은 제1 소폭부 및 상기 제1 소폭부보다 폭이 넓은 제1 광폭부가 차례로 제공되며, 자유단은 상기 제1 광폭부보다 폭이 좁도록 형성되는 것을 특징으로 하는 듀얼 풍력발전시스템.The piezoelectric element portion is provided as a cantilever, and a first narrow portion narrower than the fixed end and a first wide portion wider than the first narrow portion are sequentially provided from the fixed end, and the free end is the first wide portion. Dual wind power generation system characterized in that the narrower than the width.
  18. 제12항에 있어서, The method of claim 12,
    상기 압전 소자부는 외팔보로 제공되며, 고정단에부터 상기 고정단보다 폭이 넓은 제1 광폭부, 상기 제1 광폭부보다 폭이 좁은 제1 소폭부 및 상기 제1 소폭부보다 폭이 넓은 제2 광폭부가 차례로 제공되며, 자유단은 상기 제2 광폭부보다 폭이 좁도록 형성되는 것을 특징으로 하는 듀얼 풍력발전시스템.The piezoelectric element portion is provided as a cantilever and has a first wide portion wider than the fixed end from the fixed end, a first narrow portion narrower than the first wide portion, and a second wider portion than the first narrow portion. The wide part is provided in sequence, the free end is dual wind power generation system, characterized in that the width is formed narrower than the second wide part.
  19. 제17항 또는 제18항에 있어서, The method of claim 17 or 18,
    상기 압전 소자부의 측면이 곡선 형상으로 제공되는 것을 특징으로 하는 듀얼 풍력발전시스템.Dual wind power generation system, characterized in that the side of the piezoelectric element portion is provided in a curved shape.
PCT/KR2010/007075 2009-10-15 2010-10-15 Wind-powered electricity generating device and a dual wind-powered electricity generating system WO2011046383A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0098000 2009-10-15
KR20090098000 2009-10-15
KR10-2010-0098884 2010-10-11
KR20100098884A KR101198014B1 (en) 2009-10-15 2010-10-11 Wind power generater and dual wind power generating system

Publications (2)

Publication Number Publication Date
WO2011046383A2 true WO2011046383A2 (en) 2011-04-21
WO2011046383A3 WO2011046383A3 (en) 2011-07-14

Family

ID=43876720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007075 WO2011046383A2 (en) 2009-10-15 2010-10-15 Wind-powered electricity generating device and a dual wind-powered electricity generating system

Country Status (1)

Country Link
WO (1) WO2011046383A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720639A (en) * 2012-07-10 2012-10-10 山东理工大学 Piezoelectric type wind power generation device
ITAN20110153A1 (en) * 2011-11-11 2013-05-12 Sauro Bianchelli SYSTEM ABLE TO PRODUCE ELECTRICITY
CN105226993A (en) * 2014-06-24 2016-01-06 欣兴电子股份有限公司 Wind power generation plant
JP5952939B1 (en) * 2015-05-12 2016-07-13 三菱電機エンジニアリング株式会社 Wind frequency component converter and vibration power generator
CN106357158A (en) * 2016-09-14 2017-01-25 长春工业大学 Micro-circulation-hole jet excitation piezoelectric power generation device for supply energy to nodes of Internet of Things
JP2021119299A (en) * 2020-01-30 2021-08-12 大成建設株式会社 Wind power generation device and wind power generation unit
CN114400926A (en) * 2021-12-28 2022-04-26 中国航天空气动力技术研究院 Flutter energy collecting device of two-degree-of-freedom wing segment and wind power generation equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303726A (en) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd Piezoelectric wind power generator
JP2002366072A (en) * 2001-06-07 2002-12-20 Nec Tokin Corp Indication device
JP2002369554A (en) * 2001-06-06 2002-12-20 Nec Tokin Corp Indicator
JP2003009551A (en) * 2001-06-25 2003-01-10 Sekisui Jushi Co Ltd Display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303726A (en) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd Piezoelectric wind power generator
JP2002369554A (en) * 2001-06-06 2002-12-20 Nec Tokin Corp Indicator
JP2002366072A (en) * 2001-06-07 2002-12-20 Nec Tokin Corp Indication device
JP2003009551A (en) * 2001-06-25 2003-01-10 Sekisui Jushi Co Ltd Display

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITAN20110153A1 (en) * 2011-11-11 2013-05-12 Sauro Bianchelli SYSTEM ABLE TO PRODUCE ELECTRICITY
CN102720639A (en) * 2012-07-10 2012-10-10 山东理工大学 Piezoelectric type wind power generation device
CN105226993A (en) * 2014-06-24 2016-01-06 欣兴电子股份有限公司 Wind power generation plant
JP5952939B1 (en) * 2015-05-12 2016-07-13 三菱電機エンジニアリング株式会社 Wind frequency component converter and vibration power generator
JP2016213999A (en) * 2015-05-12 2016-12-15 三菱電機エンジニアリング株式会社 Wind frequency component converter and vibration power generator
CN106357158A (en) * 2016-09-14 2017-01-25 长春工业大学 Micro-circulation-hole jet excitation piezoelectric power generation device for supply energy to nodes of Internet of Things
JP2021119299A (en) * 2020-01-30 2021-08-12 大成建設株式会社 Wind power generation device and wind power generation unit
JP7418226B2 (en) 2020-01-30 2024-01-19 大成建設株式会社 Wind power generation equipment and wind power generation units
CN114400926A (en) * 2021-12-28 2022-04-26 中国航天空气动力技术研究院 Flutter energy collecting device of two-degree-of-freedom wing segment and wind power generation equipment

Also Published As

Publication number Publication date
WO2011046383A3 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
WO2011046383A2 (en) Wind-powered electricity generating device and a dual wind-powered electricity generating system
Zeng et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration
Zhou et al. Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring
CN101257266A (en) Silicon based piezoelectricity cantilever beam minitype electric generating apparatus
US8102072B2 (en) Aerodynamic vibration power-generation device
CN103731065B (en) Based on the self-powered type wireless tunnel health monitoring device of vibrating power-generation
CN105515444B (en) A kind of multi-direction piezoelectric generating device of burr structure
CN102170246B (en) Vibrating type miniature wind driven generator with flexible beam structure
Le Scornec et al. Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester
He et al. Research on multi-group dual piezoelectric energy harvester driven by inertial wheel with magnet coupling and plucking
CN205545002U (en) Multi -direction piezoelectric power generating device of collar structure
CN107181427A (en) Piezoelectric energy collector and generating equipment
CN106685263A (en) Bandwidth adjustable n*3 lattice type vibration energy collector based on modal separation technology
KR101198014B1 (en) Wind power generater and dual wind power generating system
CN110427678A (en) A kind of more oscillator space type pick-ups prisoner can experimental provision and its application method
WO2019212271A1 (en) Triboelectric generator
CN206602469U (en) A kind of multi-direction piezoelectric vibration power generation machine
CN202395680U (en) Novel piezoelectric power generating device
WO2017073812A1 (en) Piezoelectric energy harvester
CN106712577B (en) A kind of multi-direction piezoelectric vibration power generation machine
CN116470791A (en) Rotary piezoelectric electromagnetic energy collector for collecting various environmental energies and preparation method thereof
CN110932593A (en) Power generation wind barrier based on friction nanometer generator
Pan et al. A piezoelectric wind energy harvesting device with right-angle cantilever beam
CN105471321B (en) A kind of cydariform piezoelectric generating device
CN208597036U (en) A kind of multi-direction piezoelectric generating device of impact type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823622

Country of ref document: EP

Kind code of ref document: A2