WO2011046185A1 - Vehicle-mounted device, travel characteristic data generation device, and vehicle-mounted information system - Google Patents

Vehicle-mounted device, travel characteristic data generation device, and vehicle-mounted information system Download PDF

Info

Publication number
WO2011046185A1
WO2011046185A1 PCT/JP2010/068083 JP2010068083W WO2011046185A1 WO 2011046185 A1 WO2011046185 A1 WO 2011046185A1 JP 2010068083 W JP2010068083 W JP 2010068083W WO 2011046185 A1 WO2011046185 A1 WO 2011046185A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
driver
travel
traffic information
characteristic data
Prior art date
Application number
PCT/JP2010/068083
Other languages
French (fr)
Japanese (ja)
Inventor
憲一郎 山根
淳輔 藤原
Original Assignee
クラリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラリオン株式会社 filed Critical クラリオン株式会社
Publication of WO2011046185A1 publication Critical patent/WO2011046185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096855Systems involving transmission of navigation instructions to the vehicle where the output is provided in a suitable form to the driver
    • G08G1/096866Systems involving transmission of navigation instructions to the vehicle where the output is provided in a suitable form to the driver where the complete route is shown to the driver

Definitions

  • the present invention relates to an in-vehicle device, a travel characteristic data generation device, and an in-vehicle information system.
  • In-vehicle devices typified by navigation systems are required to provide route guidance that avoids delays due to traffic jams, etc., so that drivers can arrive at their destinations more quickly.
  • the in-vehicle device performs guidance along the route searched by the Dijkstra method using traffic information, particularly travel time information for each road section (called a link) as a cost.
  • the travel time information expresses the travel time of the average driver
  • the accuracy is not necessarily high depending on the travel characteristics related to the driving tendency of each driver.
  • Patent Document 1 is one of the prior arts that attempts to improve the accuracy of travel time information by taking into account the driving characteristics of individual drivers.
  • the future road conditions (travel time, etc.) of the link are estimated, and the driving speed when each driver drives the vehicle under the estimated road condition is estimated as the preferred driving speed of each driver.
  • a technique for estimating the travel time of each link using the link distance and the estimated preference driving speed is described.
  • Patent Document 2 is also one of the prior arts that attempts to improve the accuracy of travel time information by taking into account the driving characteristics of individual drivers.
  • data obtained by measuring the traveling state of a vehicle is accumulated as traveling history information, and traffic information on the route is predicted based on the traveling history information and traffic information.
  • a technique for predicting an arrival time at an arbitrary point is disclosed.
  • none of the above known techniques can correct the travel time information with high accuracy in a situation where there is no driving history data of the driver or there is not a sufficient amount of driving history data. This means that when the driver uses the in-vehicle device that obtains the travel history data for the first time or when using it for the first time, none of the above-described known techniques is sufficiently effective. Furthermore, even after a lot of travel history data is acquired by the in-vehicle device, the preferred driving speed cannot be acquired for a road on which the driver has not traveled so far, so that none of the above known techniques can be applied.
  • the Dijkstra method described above is a method for searching for a route from a departure place to a destination based on travel time information of a road section (link).
  • a road section in which travel time information is not corrected, a road section that is generally free of traffic congestion such as a residential road in a residential area or a road section with a small amount of traffic, and a route searched by the Dijkstra method, This is because it may be an unnatural route including many of these road sections.
  • An object of the present invention is to solve such a problem and to correct travel time information with high accuracy in consideration of estimated travel characteristics even in a situation where there is not enough travel history data for each driver. .
  • the vehicle-mounted device is mounted on a vehicle and stores a traffic information data and map data used for route search, and a destination based on the traffic information data and the map data.
  • a traffic information data and map data used for route search, and a destination based on the traffic information data and the map data.
  • Communication means for receiving driving characteristic data for each attribute classification from the driving characteristic data generating device, and traffic information correction means for correcting traffic information data using the attribute characteristic driving characteristic data of the attribute classification to which the driver of the vehicle corresponds
  • the route search means searches for a recommended route using the traffic information data corrected by the traffic information correction means.
  • the in-vehicle device of the first aspect is based on a driver profile including driver attribute information, travel history data that is travel data for each driver, and travel history data based on the driver profile.
  • Data classification means for classifying drivers for each driver, and driving characteristic data for each driver to be corrected for each attribute classification using travel history data and traffic information data classified for each driver registered in the driver profile
  • Driving characteristic data generating means and the traffic information correcting means corrects the traffic information data using the attribute classification-specific traveling characteristic data or the driver-specific traveling characteristic data.
  • the travel characteristic data generating means is configured such that the travel history data classified for each driver is recorded more than the first predetermined number.
  • driving characteristic data for each driver for use in correcting traffic information data is generated, and when the driving characteristic data is less than the first predetermined number and greater than the second predetermined number, the driving characteristic data for each driver based on the driving characteristic data for each attribute classification Generate generate.
  • the driver profile includes the user ID of each driver
  • the travel history data includes the link number of the road link that has traveled
  • the travel on the road link The data classification means classifies the travel history data for each user ID based on the user ID included in the driver profile information, and the travel characteristic data generation means is classified. Based on the amount of travel history data for each user ID, a method for generating driver-specific travel characteristic data is determined.
  • the travel characteristic data generating means has the travel history data classified for each driver being less than the first predetermined number and greater than the second predetermined number.
  • the travel time data or the average speed of each link is compared between the travel history data and the traffic information data of the driver, and a difference obtained by subtracting the traffic information data from the travel history data is obtained.
  • the driving characteristic data for each attribute classification of the minimum attribute classification is obtained as driving characteristic data for each driver.
  • a driving characteristic data generating apparatus is a driving characteristic data generating apparatus that generates driving characteristic data for correcting traffic information data using driving history data of a plurality of drivers, and relates to driver attributes.
  • Driver profile that includes information, travel history data that accumulates travel data for each driver, data classification means that classifies travel history data for each predetermined attribute classification based on the driver profile, and travel classified for each attribute
  • a travel characteristic data generating means for generating travel characteristic data for each attribute classification for correcting the traffic information data for each attribute classification using the history data is provided.
  • the driver profile includes the user ID of each driver, and at least one of birth date, gender, license acquisition date, and cumulative driving distance.
  • the travel history data includes the link number of the travel and either the travel time or the average speed of the link, and in the data classification means, the attribute classification is information included in the driver profile and the travel history data. To be determined.
  • the driving characteristic data generating means compares the driving history data for each attribute classification of the driver with the travel time for each link in the traffic information data, A difference obtained by subtracting the traffic information from the travel history data is obtained, and an average value of the difference is obtained as travel characteristic data for each attribute classification for correcting the traffic information data of each link for each attribute classification.
  • An in-vehicle information system includes an in-vehicle device according to any one of claims 1 to 5, a traveling characteristic data generation device according to any one of claims 6 to 8, Consists of a data communication device and a communication network that connect the travel characteristic data generation device and the in-vehicle device.
  • the driving characteristic data is generated by the attribute classification based on the driving history data of another driver belonging to the same attribute classification as the driver.
  • Traffic information data can be appropriately corrected by obtaining it from the device and applying it. Further, by generating or selecting appropriate attribute classification-specific travel characteristic data according to the collection status of the driver's travel history data, the traffic information data can be appropriately corrected in consideration of the driver's driving characteristics.
  • FIG. 1 is a configuration diagram of an in-vehicle information system according to an embodiment of the present invention.
  • the in-vehicle information system 1 in FIG. 1 includes a travel characteristic data generation device 10, an automobile 13 equipped with the in-vehicle device 11 and the data communication device 12, and a communication network 14.
  • the in-vehicle device 11 is connected to the travel characteristic data generation device 10 via the communication network 14.
  • the travel characteristic data generation device 10 includes a driver attribute classification condition 100, a data classification unit 101, a travel history database 102, a travel characteristic data generation unit 103 by attribute classification, a reference traffic information database 104, a travel characteristic data 105 by attribute classification, and a driver.
  • a profile 106 is provided.
  • the driving characteristic data generation device 10 has a function of classifying individual drivers into attributes and generating driving characteristic data obtained by analyzing driving history data of various drivers based on the attributes.
  • the travel characteristic data generation device 10 is a computer device such as a personal computer (PC), a workstation, a server, a large computer, etc., and its hardware configuration includes a CPU, memory, HDD, DVD drive, display, keyboard, mouse, and the like. Composed.
  • the travel characteristic data generation device 10 is connected to the in-vehicle device 11 via the communication network 14.
  • the travel characteristic data generation device 10 receives travel history data for each driver from the in-vehicle device 11 and accumulates the travel history data in the travel history database 102.
  • working characteristic data generation apparatus 10 is explained in full detail behind.
  • the in-vehicle device 11 calculates a recommended route to the destination using map data, traffic information, and the like, and performs guidance based on the recommended route.
  • the in-vehicle device 11 has a function of accumulating travel history data of the automobile 13.
  • a functional block diagram of the in-vehicle device 11 is shown in FIG.
  • the in-vehicle device 11 includes a destination setting unit 110, a traffic information correction unit 111, a reference traffic information database 112, travel characteristics data 113 by attribute classification, a route search unit 114, a search database 115, A route guidance unit 116, a travel history storage unit 117, a travel history database 118, and a map database 119 are provided. Each part shown in FIG. 2 will be described in detail later.
  • the in-vehicle device 11 includes, as hardware configurations, an arithmetic processing unit 40, a display 41, a data storage device 42, a voice input / output device 43, an input device 44, a wheel speed sensor 45, a geomagnetic sensor 46, a gyroscope.
  • a sensor 47, a GPS (Global Positioning System) receiving device 48, and an in-vehicle LAN (Local Area Network) device 49 are provided.
  • GPS Global Positioning System
  • LAN Local Area Network
  • the in-vehicle device 11 is connected to the travel characteristic data generation device 10 via the communication network 14.
  • the in-vehicle device 11 accesses the traveling characteristic data generation device 10 in response to a request from the user via the input device 44, receives the traveling characteristic data by attribute classification from the traveling characteristic data generation device 10, and receives this by the attribute classification Stored in the travel characteristic data 113.
  • the in-vehicle device 11 transmits the driving history data of the driver from the driving history database 118 to the driving characteristic data generation device 10.
  • the data communication device 12 is connected to the in-vehicle device 11 via a communication I / F (interface) 50 and includes a modem for connecting to the communication network 14.
  • the data communication device 12 may be, for example, a communication modem that supports PHS (registered trademark) (Personal Handyphone System), DSRC (Dedicated Short Range Communication), cellular communication, short-range wireless LAN communication, or the like. It corresponds to a cellular phone or a data communication card with a built-in modem.
  • the in-vehicle device 11 can be connected to the communication network 14 by the data communication device 12 and further connected to the traveling characteristic data generation device 10 via the communication network 14.
  • the arithmetic processing unit 40 is a central unit that performs various processes.
  • One of the processes is a positioning process for calculating the current location of the automobile 13 based on information output from various sensors such as the wheel speed sensor 45, the geomagnetic sensor 46, the gyro sensor 47, and the GPS receiver 48.
  • the arithmetic processing unit 40 is a map database in which map data necessary for displaying a map around the current location on the display 41 is stored in the data storage device 42 based on the information on the current location calculated by the positioning process. A process of reading from 119 is performed.
  • the arithmetic processing unit 40 performs processing for displaying a mark (icon) indicating the current location together with the surrounding map on the display 41. Furthermore, the arithmetic processing unit 40 performs a process of searching for a recommended route connecting the destination set by the user and the current location (departure location) using the map database 119 or the like stored in the data storage device 42. The arithmetic processing unit 40 uses the voice input / output device 43 and the display 41 to perform processing for guiding the user along the recommended route. Each function of FIG. 2 is also processed by the arithmetic processing unit 40.
  • the display 41 is a unit that displays an image under the control of the arithmetic processing unit 40, and includes a CRT (Cathode Ray Ray Tube) or a liquid crystal display. Signals between the arithmetic processing unit 40 and the display 41 are generally connected by RGB signals or NTSC (National Television System Committee) signals.
  • CTR Cathode Ray Ray Tube
  • NTSC National Television System Committee
  • the data storage device 42 includes an optical storage medium such as a CD-ROM and a DVD-ROM, a magnetic storage medium such as a hard disk, a storage medium such as a nonvolatile semiconductor memory, and a reading / writing device thereof.
  • the data storage device 42 stores a reference traffic information database 112, attribute classification-specific travel characteristic data 113, a search database 115, a travel history database 118, and a map database 119, and a destination setting POI.
  • Various data such as (Point of Interests) data is also stored.
  • the map data format shown in FIG. 3 is an example in the case where map data is managed as secondary mesh information that is data in units of secondary mesh, and each “secondary mesh code” that is a mesh code of a secondary mesh.
  • the link information of each link constituting the road included in the mesh area is included.
  • the link information includes “start point coordinates” that are the coordinate information of the start node constituting each link for each “link number”, “end point coordinates” that are the coordinate information of the end node, and road type information including each link.
  • link length which is information indicating the length of each link
  • regulated speed which is information indicating the speed limit of each link
  • two nodes, a start node and an end node of each link Each contains a pointer to the link to be connected.
  • the voice input / output device 43 converts the message to the user generated by the arithmetic processing unit 40 into a voice signal and outputs it. Further, the voice input / output device 43 recognizes the voice uttered by the user and transfers the content to the arithmetic processing unit 40.
  • the input device 44 is a device that receives an instruction from the user, and includes a hard switch such as a scroll key or a scale change key, a joystick, a touch panel pasted on the display 41, a microphone for voice input, and the like.
  • the various sensors such as the wheel speed sensor 45, the geomagnetic sensor 46, and the gyro sensor 47 and the GPS receiver 48 are used by the in-vehicle device 11 to detect the current location (vehicle position).
  • the wheel speed sensor 45 measures the travel distance from the product of the wheel circumference and the measured number of rotations of the wheel, and further measures the angle bent from the difference in the number of rotations of the paired wheels.
  • the geomagnetic sensor 46 detects the earth's magnetic field and detects the direction in which the moving body is facing.
  • the gyro sensor 47 is composed of an optical fiber gyro, a vibration gyro, or the like, and detects an angle of rotation of the sensor.
  • the GPS receiver 48 receives a signal from a GPS satellite, and measures the distance between the mobile body and the GPS satellite and the rate of change of the distance with respect to three or more satellites to thereby determine the current position, traveling speed, Measure the heading and current time.
  • the in-vehicle LAN device 49 is a device for connecting to the in-vehicle LAN provided in the automobile 13 on which the in-vehicle device 11 is mounted.
  • Various information flowing through the in-vehicle LAN for example, door opening / closing information, light lighting state information , Receive engine status and failure diagnosis results.
  • Driver attribute classification condition 100 is a condition for classifying individual drivers into attributes based on the driving characteristics of the driver. It is desirable that drivers classified into the same attribute based on the driver attribute classification condition 100 have similar driving characteristics.
  • the driver attribute classification condition 100 is based on factors such as the number of years that have passed since obtaining a license and the cumulative driving distance after obtaining a license, and the age at which the body's reaction speed may be affected. It is determined in consideration of factors such as weather and brightness at the driving point. For example, consider a first example in which the driving characteristics of a driver are classified by age.
  • the younger age group is less than 30 years old
  • the attribute class is 1, 30 years old and younger than 50 years is attribute class 2, 50 years old and younger is less than 65 years old
  • the attribute classification is 3, 65.
  • elderly people over age are divided into attribute classification 4.
  • a rule for classifying drivers from attribute classification 1 to attribute classification 4 based on their age is the driver attribute classification condition 100.
  • As another method of classification other than age there may be a method related to the skill level of driving such as the number of years since the license is obtained and the cumulative driving distance after the license is obtained.
  • the driver attribute classification condition 100 may include a gender condition that may reflect a difference in action range. For example, when the classification according to the sex condition is added to the first example, the classification is, for example, a male under 30 years old, a female under 30 years old, a male between 30 and 50 years old, a female between 30 and 50 years old, and so on. It becomes a combination. Further, the driver attribute classification condition 100 may take into account road surface conditions (dry, wet, frozen) or weather (sunny, rain, snow).
  • the driver attribute classification condition 100 may take into account outdoor brightness (bright, dark) and time zones (morning, noon, evening). For example, when the classification according to the outdoor brightness is added to the first example, the outdoor situation under 30 years old is bright, the outdoor condition under 30 years is dark, the outdoor condition between 30 and 50 years old is bright, 30 It is a combination of classifications such as the situation where the outdoors is over 50 years old and under 50 years old.
  • the driver attribute classification condition 100 is stored as a data file in a data storage device such as an HDD (not shown) provided in the traveling characteristic data generation device 10.
  • the travel history database 102 stores travel history data collected from the travel history database 118 for each of the one or more automobiles 13 by the travel characteristic data generation device 10 via the data communication device 12 and the communication network 14. Similar to the driver attribute classification condition 100, the travel history database 102 is also stored in the data storage device.
  • FIG. 4 shows an example of the data format of the travel history data. A method for generating the travel history data will be described in detail in the description of the travel history storage unit 117 of the in-vehicle device 11.
  • the driver profile 106 is data including information on individual drivers.
  • the data of the driver profile 106 is stored as a data file in a data storage device such as an HDD in the driving characteristic data generation device 10 as with the driver attribute classification condition 100.
  • FIG. 5 shows an example of the data format of the driver profile 106.
  • the driver profile 106 shown in FIG. 5 is a driver ID (identical to that included in the driving history data) that is an ID for identifying each driver, the date of birth of each driver, gender, license acquisition date, cumulative driving distance. Consists of By referring to these pieces of information, each driver can be classified into attributes.
  • the driver profile 106 is created from information provided when a user who has purchased the in-vehicle device 11 performs user registration through a website or a postcard.
  • the data classification unit 101 classifies the travel history data 102 into attributes based on the driver attribute classification condition 100 and the driver profile 106. Details of the processing of the data classification unit 101 will be described later together with the processing flow.
  • the reference traffic information database 104 traffic information data used as a reference when judging the tendency of the attributed travel history data classified by the data classification unit 101 is stored as reference traffic information data.
  • the reference traffic information data is, for example, travel time data for each link provided from a traffic information center, statistical travel time data obtained by statistically processing the provided link travel time according to day of the week or time zone, and the like.
  • the reference traffic information data beta 104 is stored as a data file in a data storage device such as an HDD in the driving characteristic data generation device 10 as with the driver attribute classification condition 100.
  • FIG. 6 shows an example of the data format of the reference traffic information data.
  • the reference traffic information data in FIG. 6 includes a link number, a link length, and a reference travel time.
  • the attribute classification-specific travel data generation unit 103 compares the travel history data classified by the data classification unit 101 with the reference traffic information data having the same link number stored in the reference traffic information database 104, thereby obtaining a travel history.
  • the tendency of the data with respect to the reference traffic information data is analyzed, and the attribute characteristic-specific traveling characteristic data 105 which is a parameter for correcting the reference traffic information data is generated.
  • FIG. 7 shows an example of the data format of the travel characteristic data 105 classified by attribute classification.
  • the attribute characteristic-specific traveling characteristic data includes correction parameters for each link in each of the attributes 81 to 84 that can be classified by the driver attribute classification condition 100.
  • the correction parameter is a value for correcting the reference traffic information data.
  • the reference travel time which is the reference value in the reference traffic information data in FIG. 6, is the travel time [second] for each link
  • the correction parameter is also the amount [second] for correcting the travel time for each link.
  • the correction parameter is positive, the reference travel time increases due to the correction. If the correction parameter is negative, the reference travel time is reduced by the correction.
  • the traveling characteristic data generation device 10 generates the attribute characteristic-specific traveling characteristic data 105 which is a correction parameter for each attribute classification.
  • This attribute classification-specific traveling characteristic data 105 is transmitted to the in-vehicle device 11 via the communication network 14.
  • the in-vehicle device 11 receives the attribute classification-specific travel characteristic data 105 and stores it in the data storage device 42 as attribute-classification-specific travel characteristic data 113.
  • the in-vehicle device 11 uses the attribute-specific traveling characteristic data 113 based on the traveling history data of another driver belonging to the same attribute classification as that driver for the link in which the traveling history data of the driver of the automobile 13 does not exist.
  • the destination setting unit 110 is an HMI (Human Machine Interface) for setting a destination by the user operating the in-vehicle device 11.
  • HMI Human Machine Interface
  • the reference traffic information database 112 is a database equivalent to the reference traffic information database 104 in the travel characteristic data generation device 10.
  • the reference traffic information database 112 may download, for example, the reference traffic information database 104 of the travel characteristic data generation device 10 via the data communication device 12 and the communication network 14, or via FM multiplex broadcasting, DSRC or beacon communication. You may produce
  • the reference traffic information data 104 held in the travel characteristic data generation device 10 may be temporarily stored in a storage medium such as a DVD-ROM and copied or moved to the in-vehicle device 11 by a reading device (not shown).
  • the attribute classification-specific traveling characteristic data 113 is data equivalent to the attribute classification-specific traveling characteristic data 105 in the traveling characteristic data generation apparatus 10.
  • the attribute characteristic-specific traveling characteristic data 105 may be downloaded from the traveling characteristic data generation apparatus 10 via the data communication device 12 and the communication network 14, or may be downloaded to a storage medium such as a DVD-ROM.
  • the attribute classification-specific traveling characteristic data 105 may be temporarily stored, read by a reading device (not shown), and copied or moved to the in-vehicle device 11.
  • the traffic information correction unit 111 performs a process of correcting the reference traffic information data 112 using the attribute classification-specific traveling characteristic data 113.
  • search database 115 data other than the map data whose format is shown in FIG. 3 among the data used for route search and guidance is stored as search data.
  • search data is stored for each mesh code representing an area identification ID.
  • information on road structures (name, type, coordinate information, etc.) other than roads included in each mesh region, information on rivers, lakes, seas, etc. in addition to green zones and mountainous areas are also included. include.
  • the route search unit 114 is set by the current location obtained from the GPS receiver 48 or the departure point set by the user and the destination setting unit 110 with reference to the map database 119, the search database 115, the reference traffic information database 112, and the like. Search for the optimal route (recommended route) connecting the destination.
  • the route guidance unit 116 refers to the map database 119 and the like, and guides the user along the recommended route obtained by the route search unit 114 using the voice input / output device 43 and the display 41.
  • the travel history accumulating unit 117 includes various data of the map database 119, various information of the wheel speed sensor 45, the geomagnetic sensor 46, the gyro sensor 47, and the position information of the vehicle 13 measured by the GPS receiver 48, and the interior of the vehicle. Based on data from outside the in-vehicle device 11 obtained via the LAN device 49, travel history data is generated, the travel history data is stored in the travel history database 118, and output to the travel characteristic data generation device 10.
  • the travel history data generated by the travel history storage unit 117 follows the data format shown in FIG.
  • the generation process of the travel history data shown in the format of FIG. 4 will be described.
  • the data column in each row in FIG. 4 is called one record.
  • a travel history is recorded as data for each driver, for each link traveled, and for each date and time that passed the link.
  • Driver ID is obtained by referring to the driver ID number uniquely assigned to each vehicle-mounted device 11 stored in the data storage device 42.
  • an ID number corresponding to each driver may be referred to.
  • the “passing date and time” is the date and time when the automobile 13 passed the link, and is information in units of one second obtained from the GPS receiver 48 of the in-vehicle device 11. It is assumed that the automobile 13 passes the link when the automobile 13 passes either the link start node or the end node. It is unified for all records whether the start node or the end node is considered to have passed the link. In the following, the date and time when the link has passed the start node is recorded.
  • the “link number” is the current location of the vehicle 13 obtained from the latitude / longitude information obtained at a frequency of once or less per second from the wheel speed sensor 45, the geomagnetic sensor 46, the gyro sensor 47, and the GPS receiver 48 of the in-vehicle device.
  • the position information is specified by matching each coordinate in the link including the start node and the end node of the link included in the map database 119 stored in the data storage device 42.
  • Link length is included in the map data and can be referenced using the corresponding link number as a key.
  • the “link travel time” can be calculated from the difference between the end node passage date and time and the start node passage date and time by specifying the passage date and time of the start node and end node of the link. This value is also data in units of one second like the passage date and time. Instead of the link travel time, the link average speed obtained using the link travel time and the link length may be recorded in the travel history data.
  • “Road surface condition” and “outdoor brightness” are values obtained from the outside of the in-vehicle device 11 via the in-vehicle LAN device 49 of the in-vehicle device 11.
  • the road surface state is recognized from an in-vehicle camera and an image recognition device provided in the automobile 13, and outdoor brightness is obtained from an illuminance sensor provided in the automobile 13.
  • the travel history database 118 that accumulates the travel history data of the automobile 13 in record units in this way is collected in the travel characteristic data generation device 10 via the data communication device 12 and stored as the travel history database 102.
  • the driving characteristic data generation device 10 reads a data file of the driver attribute classification condition 100 from a data storage device (not shown).
  • the driving characteristic data generation device 10 reads the driver profile 106 from the data storage device.
  • the travel characteristic data generation device 10 reads travel history data from the travel history database 102 and reads reference traffic information data from the reference traffic information database 104 (step S51).
  • the travel characteristic data generation device 10 classifies the travel history data read in step S51 by the data classification unit 101 based on the driver attribute classification condition 100 and the driver profile 106 read in step S51.
  • the driver attribute classification condition 100 is the above-mentioned younger age group under 30 years old, the attribute class 1, 30 years old and younger than 50 years old attribute class 2, 50 years old and younger than 65 years old attribute class 3, 65 years old and older An example of using an age-based classification rule that divides the demographic group into attribute classification 4 will be described.
  • the driver profile 106 has the contents shown in FIG. 5 and the travel history data 102 is the data shown in FIG.
  • the travel characteristic data generation device 10 classifies all the records in the travel history database 102 into attributes based on the driver attribute classification condition 100 (step S52).
  • the travel characteristic data generation device 10 compares all records in the travel history database 102 classified into attributes with the reference traffic information data read in step S51 in the attribute classification-specific travel characteristic data generation unit 103. Thus, the tendency of each record with respect to the reference traffic information data is analyzed, and a correction parameter is generated.
  • the correction parameters are stored as attribute classification-specific traveling characteristic data 105 (step S53).
  • the travel time Tb of the reference traffic information is subtracted from the link travel time Th of the travel history data for all data of the same attribute classification in the same link, as shown in Equation 1 below.
  • the average value Ta of each difference (Th ⁇ Tb) is used as a correction parameter for correcting the reference traffic information data.
  • i is a data suffix in a certain link
  • n is the number of data of a link to be processed.
  • the attribute classification travel characteristic data generation unit 103 obtains the correction parameter using the travel time of the link, such as the travel time of the link history of the travel history data and the reference travel time of the reference traffic information data.
  • the average speed at the link is used as the reference value as the traffic information data
  • the average speed for each link is used instead of the travel time in Equation 1.
  • the correction parameter Ta is once generated for each link, but the parameters generated for each link are aggregated in a predetermined unit such as an area or a road type, and an average value thereof is calculated for each aggregation unit. May be used as a correction parameter.
  • a predetermined unit such as an area or a road type
  • an average value thereof is calculated for each aggregation unit.
  • an area-related code secondary mesh code
  • road type highway, general road, etc.
  • the destination is set by the HMI operation on the voice input / output device 43 or the input device 44 by the user in the destination setting unit 110 (step S 61).
  • the destination is a method of inputting a cursor moved on the map display screen as a destination, a method of selecting from a list of destinations (POI) after selecting a genre in a destination search menu, or a telephone number. This is set by a method of setting a destination by a search specifying an address or the like.
  • the in-vehicle device 11 reads the reference traffic information data from the reference traffic information database 112 in the traffic information correction unit 111, and reads the travel characteristic data 113 by attribute classification from the data storage device 42 (step S62). And the vehicle equipment 11 correct
  • the traffic information correction unit 111 corrects the reference traffic information data in the reference traffic information database 112.
  • the correction parameter for each driver attribute classification based on the driving characteristic data 113 according to attribute classification is Ta and the reference traffic information data based on the reference traffic information database 112 is Tb
  • the corrected reference traffic information data Tb ′ is expressed by the following (Equation 2). It is expressed as
  • the driving history data is based on the driving history data.
  • the traffic parameter Tb based on the reference traffic information data held in the reference traffic information database 112 by the traffic information correction unit 111 is obtained by obtaining the correction parameter Ta in the travel characteristic data 105 according to the attribute classification from the travel characteristic data generation device 10.
  • the corrected traffic information data Tb ′ with high accuracy can be obtained.
  • the correction parameter Ta in the attribute classification-specific travel characteristic data 113 is described as being generated for each link, but as described above, the attribute characteristic-specific travel characteristic data generated for each link. 113 may be aggregated in a predetermined unit such as area or road type, and an average value thereof may be used as a correction parameter in driving characteristic data by attribute classification for each aggregation unit.
  • the correction obtained for each aggregation unit Parameters (travel characteristic data) can be collectively applied to the reference traffic information data of the links corresponding to the respective aggregation units.
  • the in-vehicle device 11 uses the route searching unit 114 to determine the position information measured by the wheel speed sensor 45, the geomagnetic sensor 46, the various sensors of the gyro sensor 47, and the GPS receiver 48 of the in-vehicle device 11 as described above.
  • the search data 115 an optimum route (recommended route) that connects the current location of the vehicle 13 obtained from each of the data, or the starting point set by the user and the destination set by the destination setting unit 110 is referred to. ) Is searched (step S64).
  • the corrected traffic information data Tb ′ the shortest time route when the travel time is the cost of the link is calculated as a recommended route by the Dijkstra method.
  • the in-vehicle device 11 creates guidance data necessary for guidance from the map data stored in the data storage device 42 based on the recommended route information searched by the route search unit 114 in the route guidance unit 116.
  • This guidance data includes major intersections, intersections with complex structures, or enlarged views of intersections that need to turn right or left (referred to as guidance intersections), and detailed route information from entry to exit of the guidance intersection, Or the distance information etc. to the guidance intersection are included.
  • route guidance is performed according to the current location that is sequentially obtained (step S65).
  • the in-vehicle device 11 displays the distance from the current location to the nearest guidance intersection on the display 41 or notifies by voice. In addition, if there is a guided intersection within a predetermined distance from the current location, the in-vehicle device 11 sequentially updates the distance to the guided intersection displayed on the display 41, and "the intersection is left in the future 500m" Is guided in the direction of travel. Further, the in-vehicle device 11 calculates the total travel time to the destination by calculating the sum of the travel time of each link constituting the calculated recommended route. And the vehicle equipment 11 calculates the arrival time to the destination from the present time and the total travel time.
  • the in-vehicle device 11 calculates a value based on two types of travel times before and after the correction for the estimated arrival time at the destination.
  • FIG. 10 is a display example of the display 41 at the time of route guidance in step S65.
  • 90 indicates the current position
  • 91 indicates the current date and time
  • 92 indicates the destination set by the user in the destination setting unit 110
  • 93 indicates the recommended route calculated by the route search unit 114.
  • 94 is the estimated arrival time at the destination.
  • “standard” is a value before correction, that is, a value calculated based on the reference traffic information data
  • “correction” is corrected by the travel characteristic data 113 by attribute classification. It is a value calculated based on the traffic information. Thereby, the user can know what the correction result by the attribute classification of the driver is compared with the reference value.
  • the in-vehicle device 11 uses the travel history storage unit 117 to store various data such as map data stored in the data storage device 42 and various sensors such as the wheel speed sensor 45, the geomagnetic sensor 46, and the gyro sensor 47 as described above.
  • the travel history data is generated by measuring and processing the travel data of the vehicle from the value measured during the travel and the positioning information measured by the GPS receiver 48 to generate travel history data. (Step S66).
  • the travel history data accumulated in the travel history database 118 is transmitted to the travel characteristic data generation device 10 via the communication network 14.
  • the process of the travel history accumulating unit 117 is the process from step S61 to S65. Regardless, it is executed periodically.
  • the in-vehicle device 11 uses the attribute characteristic-specific traveling characteristic data 105 generated from the traveling history data of another driver belonging to the same attribute classification as the driver even when the driving history data of the driver does not exist, as the driving characteristic data generation device. 10 and the reference traffic information data 112 is corrected to obtain highly accurate corrected traffic information. Then, by the minimum cost route search using the corrected traffic information with high accuracy, it becomes possible to perform high-quality route guidance that avoids traffic congestion more reliably.
  • the in-vehicle device 11 has a driving characteristic by attribute classification based on the driving history data of another driver belonging to the same attribute classification as the driver even when the driving history data of the driver is not sufficiently present.
  • the accuracy of the traffic information is improved by applying the data 105 and correcting the reference traffic information data in the reference traffic information database 112. This is effective in situations where the driver has just started using the vehicle-mounted device 11 that acquires travel history data for the first time or when using it for the first time.
  • This idea is based on the idea that the driving characteristics of a driver are similar to the driving characteristics of another driver belonging to the same attribute classification. However, since the driving characteristics of the driver do not necessarily match, In a situation where the driving history data of the driver is sufficiently present after repeated use, it is considered that the accuracy is higher when the reference traffic information data is corrected using the driving history data of each driver.
  • the reference traffic information data of all roads including the untraveled road is corrected based on the respective travel history data. To consider the driving characteristics of the driver.
  • the traveling characteristic data generation device 10 in the second embodiment of the present invention is the same as that in the first embodiment.
  • FIG. 11 shows a functional block diagram of the in-vehicle device 1011 in the second embodiment.
  • the in-vehicle device 1011 generates the driving characteristic data of the driver based on the accumulated driving history data for each driver in addition to the functions of the in-vehicle device 11 described in the first embodiment. It has a function.
  • the in-vehicle device 1011 has a configuration in which attribute-specific traveling characteristic data 120, a driver profile 121, a data classification unit 122, and a driver-specific traveling characteristic data generation unit 123 are added to the in-vehicle device 11.
  • the attribute characteristic-specific travel characteristic data 120 is a parameter for correcting the reference traffic information for each attribute class as in the case of the attribute characteristic-specific travel characteristic data 105 in the travel characteristic data generation device 10, but here, the travel history for each individual driver. It also includes correction parameters generated from the data.
  • the attribute classification-specific travel characteristic data 120 is obtained from the travel characteristic data generation device 10 as in the first embodiment, and also stores correction parameters generated by the driver-specific travel characteristic data generation unit 123.
  • the driver profile 121 is data including information on individual drivers, like the driver profile 106 in the travel characteristic data generation device 10 of the first embodiment. Note that in the second embodiment, it is sufficient that the driver can be identified, so there is no problem even if there is no information other than the driver ID.
  • the data classification unit 122 performs processing for classifying the travel history data 118 based on the driver ID registered in the driver profile 121. Further, a process for determining the amount of travel history data for each classified driver ID by a predetermined method is also performed. This processing result is used in the driver-specific travel characteristic data generation unit 123. Details of the processing will be described later together with the processing flow.
  • the driving characteristic data generation unit 123 for each driver compares the driving history data for each driver ID classified by the data classification unit 122 with the reference traffic information data 112 or the driving characteristic data 120 for each attribute classification, thereby The tendency with respect to the reference traffic information data 112 is analyzed, and the attribute characteristic-specific traveling characteristic data 120 that is a parameter for correcting the reference traffic information data 112 is generated and output.
  • the data format of the attribute characteristic-specific traveling characteristic data 120 is the same as that in the first embodiment. Details of the processing will be described later together with the processing flow.
  • the in-vehicle device 1011 uses the data classification unit 122 to select a driver from the driver profile 121 that should generate the attribute characteristic-specific traveling characteristic data 120 (step S71).
  • the driver may be selected by the user by the HMI from the driver list displayed on the display 41 of the in-vehicle device 1011 or automatically selected in the ascending order of the driver ID registered in the driver profile 121. Also good.
  • the driver is not registered in the driver profile 121, it is assumed that the user newly registers by the HMI displayed on the display 41.
  • the in-vehicle device 1011 reads various data necessary for processing, such as the reference traffic information data 112, the travel history data 118, and the travel characteristic data 120 by attribute classification, from the data storage device 42 (step S72).
  • the in-vehicle device 1011 identifies the driver ID of the user profile 121 for the driver selected in step S71.
  • the in-vehicle device 1011 searches the travel history data 118 and extracts a data record corresponding to the driver ID (step S73). For example, when a driver whose driver ID is “1” is selected, a record of data whose driver ID is “1” is stored when the record of the driving history shown in FIG. (First two lines of data) are extracted.
  • the in-vehicle device 1011 analyzes the amount of travel history data extracted in the process of step S73. First, the in-vehicle device 1011 obtains the number of records of the travel history data extracted in the process of step S73. Next, the in-vehicle device 1011 compares the number of records with two threshold values ( ⁇ 1, ⁇ 2), and determines the value of the data amount determination value.
  • the threshold values ⁇ 1 and ⁇ 2 are both positive numbers and have a relationship of ⁇ 1> ⁇ 2. If the number of records is greater than ⁇ 1, it is determined that there is a sufficient amount of travel history data for the driver selected in step S71, and 1 is given as the data amount determination value.
  • step S74 If the number of records is equal to or less than ⁇ 1 and greater than ⁇ 2, it is determined that there is not a sufficient amount of travel history data for the driver selected in step S71, but a minimum amount of travel history data exists. Given. If the number of records is ⁇ 2 or less, it is determined that there is no minimum amount of travel history data for the driver selected in step S71, and 3 is given as the data amount determination value (step S74).
  • classification may be performed for each item included in the record, and determination may be made based on the number of each classification.
  • the number of records extracted in the process of step S73 is the number of “dry” records, the number of “wet” records, and the number of “freeze” records.
  • the number of records of each classification is compared with the above-described threshold value to determine the data amount determination value.
  • the data amount determination values for all road surface conditions may be the same or different data amount determination values. The same applies to the case where the records extracted in step S73 are classified by the value of “outdoor brightness”.
  • the in-vehicle device 1011 proceeds to the processing of step S75 because the travel history data amount is sufficient when 1 or 2 is given as the data amount determination value in the processing of step S74, and 3 is given as the data amount determination value. Sometimes it is determined that the amount of travel history data is not sufficient, and the process is terminated. The same applies when the data amount determination value is given for each value of “road surface condition” or “outdoor brightness”.
  • step S74 when 1 is given as the data quantity determination value, the driving characteristic data generation method 1 for each driver is selected, and when 2 is given as the data quantity determination value, the driving characteristic data generation method 2 by driver is selected. Then, the driving characteristic data generation method for each driver to be executed in step S76 is determined (step S75).
  • the driver-specific travel characteristic data generation method 1 and the driver-specific travel characteristic data generation method 2 will be described in detail later.
  • the in-vehicle device 1011 generates a correction parameter for the corresponding driver according to the driving characteristic data generation method for each driver determined in step S75, and adds it to the attribute characteristic-specific driving characteristic data 120 (step S76).
  • the driving characteristic data generation method 1 for each driver since a sufficient amount of driving history data exists for the driver selected in step S71, the driving characteristics of the driver are sufficiently reflected. That is, the correction parameter Ta is calculated based on Equation 1, where Th is the link travel time in the travel history data of the driver and Tb is the reference travel time of the reference traffic information data.
  • the Ta is an average value of the difference between the driving history data of the driver and the reference traffic information data, and is a value representing the driving characteristics of the driver.
  • the driving characteristic of the driver since the driver selected in step S71 is not sufficient but there is a minimum amount of driving history data, the driving characteristic of the driver should be sufficiently reflected.
  • the driving characteristic data by attribute classification having the closest attribute to the driving characteristic of the driver is selected. Specifically, first, the correction parameter Ta is once calculated for each link using Equation 1 with Th as the link travel time in the travel history data of the driver and Tb as the reference travel time in the reference traffic information data. Operating characteristics. Next, reference is made to the attribute classification-specific traveling characteristic data Ta ′ j for each attribute classification already stored in the attribute classification-specific traveling characteristic data 120.
  • Ta ′ j is a correction parameter for each link generated by the travel characteristic data generation device 10 from, for example, the travel history data of the driver of the age group j.
  • the degree of deviation ⁇ j between the attribute classification j and the driving characteristics of the driver is calculated according to the following expression 3.
  • k is a link that exists in common in Ta and Ta ′ j
  • m is the number of data of all the links that exist in common.
  • the in-vehicle device 1011 obtains the divergence degree for all the age groups j, and among them, the attribute classification of the age group J indicating the minimum value of the divergence degree is regarded as the closest driving characteristic for this driver. Accordingly, in this case, Ta ′ J is the attribute characteristic-specific traveling characteristic data to be selected.
  • the attribute characteristic-specific traveling characteristic data Ta and Ta ′ J are once generated for each link. However, as described in the first embodiment, they are generated for each link.
  • the attribute characteristic-specific travel characteristic data may be aggregated in a predetermined unit such as an area or road type, and the average value thereof may be used as attribute classification-specific travel characteristic data of each aggregation unit.
  • correction parameters driver-specific travel characteristic data obtained in each aggregation unit can be collectively applied to the traffic information of links belonging to the aggregation unit.
  • the in-vehicle device 1011 determines whether all users registered in the driver profile 121 have been processed (step S77). If all the users have not been processed, the process returns to step S71 to perform the process. If the processing for all users has been completed, this processing ends.
  • the in-vehicle device 1011 can calculate the correction parameter representing the driving characteristic of the driver of the automobile 13 as the driving characteristic data for each driver, and updates the driving characteristic data 120 for each attribute classification with the correction parameter. be able to. Also, by referring to the updated attribute classification-specific traveling characteristic data 120, the reference traffic information data 112 can be more appropriately corrected as in the first embodiment, and more appropriately connecting the departure place and the destination. The recommended route can be calculated.
  • driving characteristics data for each attribute classification is generated or selected according to the collection status of the driving history data of the driver, and the driving characteristics of each driver are taken into consideration. It is possible to correct the reference traffic information data in the reference traffic information database 112, thereby obtaining highly accurate corrected traffic information data. And, by the shortest time route search using the corrected traffic information with high accuracy, it becomes possible to perform high-quality route guidance that avoids traffic congestion more reliably.
  • the driving characteristic data generation device, the in-vehicle device, and the in-vehicle information system according to the present invention improve the accuracy of traffic information by correcting the traffic information data in consideration of the driving characteristics of individual drivers.
  • a vehicle navigation system such as a car navigation system installed in an automobile, or a route guidance system including an in-vehicle apparatus and a server.
  • the present invention can be applied.

Abstract

Disclosed is a vehicle-mounted device provided with: a storage means which stores traffic information data and map data that are used for a route search; a route search means which searches for a recommended route from a departure point to a destination point on the basis of the traffic information data and map data; a data communication means which receives, from a travel characteristic data generation device, attribute-category-by-attribute-category travel characteristic data for correcting traffic information with respect to each predetermined attribute category, the attribute-category-by-attribute-category travel characteristic data being obtained by classifying travel history data relating to a plurality of other drivers according to attribute categories based on the attributes of the drivers; and a traffic information correction means which corrects the traffic information data using the attribute-category-by-attribute-category travel characteristic data relating to an attribute category corresponding to the driver of a vehicle, the route search means using the traffic information data corrected by the traffic information correction means as the traffic information data.

Description

車載装置,走行特性データ生成装置,及び車載情報システムIn-vehicle device, travel characteristic data generation device, and in-vehicle information system
 本発明は、車載装置、走行特性データ生成装置、及び車載情報システムに関する。 The present invention relates to an in-vehicle device, a travel characteristic data generation device, and an in-vehicle information system.
 ナビゲーションシステムに代表される車載装置は、渋滞等による遅延を避けた経路案内を行い、ドライバーをより早く目的地に到着できるように案内することが求められている。車載装置は、交通情報、特に道路区間(リンクと呼ばれる)ごとの旅行時間情報をコストとしたダイクストラ法(Dijkstra Method)によって探索した経路に沿った案内を行う。 In-vehicle devices typified by navigation systems are required to provide route guidance that avoids delays due to traffic jams, etc., so that drivers can arrive at their destinations more quickly. The in-vehicle device performs guidance along the route searched by the Dijkstra method using traffic information, particularly travel time information for each road section (called a link) as a cost.
 しかし、旅行時間(travel time)情報は、平均的なドライバーにおける走行時間を表現したものであるため、個々のドライバーの運転傾向に関わる走行特性によっては必ずしも精度が良いものではなかった。 However, since the travel time information expresses the travel time of the average driver, the accuracy is not necessarily high depending on the travel characteristics related to the driving tendency of each driver.
 特許文献1は、個々のドライバーの走行特性を考慮することで旅行時間情報の精度を向上させようとする従来技術の一つである。特許文献1には、リンクの将来の道路状況(旅行時間等)を推定し、各ドライバーがこの推定された道路状況下で車両を運転するときの走行速度を各ドライバーの嗜好運転速度として推定し、リンクの距離と推定された嗜好運転速度とを用いて各リンクの旅行時間を推定する技術が記載されている。 Patent Document 1 is one of the prior arts that attempts to improve the accuracy of travel time information by taking into account the driving characteristics of individual drivers. In Patent Document 1, the future road conditions (travel time, etc.) of the link are estimated, and the driving speed when each driver drives the vehicle under the estimated road condition is estimated as the preferred driving speed of each driver. A technique for estimating the travel time of each link using the link distance and the estimated preference driving speed is described.
 また、特許文献2も、個々のドライバーの走行特性を考慮することで旅行時間情報の精度を向上させようとする従来技術の一つである。特許文献2には、車両の走行状態を計測したデータを走行履歴情報として蓄積し、この走行履歴情報と交通情報に基づいて経路上の交通情報を予測することで、目的地を含む経路上の任意地点への到着時刻を予測する技術が開示されている。 Patent Document 2 is also one of the prior arts that attempts to improve the accuracy of travel time information by taking into account the driving characteristics of individual drivers. In Patent Document 2, data obtained by measuring the traveling state of a vehicle is accumulated as traveling history information, and traffic information on the route is predicted based on the traveling history information and traffic information. A technique for predicting an arrival time at an arbitrary point is disclosed.
特開2002-312885号公報JP 2002-312885 A 特開2005-241519号公報JP 2005-241519 A
 しかしながら、上記いずれの公知技術も、ドライバーの走行履歴データが存在しない、あるいは十分な量の走行履歴データが存在しない状況においては、旅行時間情報を高精度に補正することができない。これは、そのドライバーが走行履歴データを取得する車載装置を初めて使う場合や数回目に使う場合には、上記いずれの公知技術も十分に効果を発揮しないことを意味する。さらに、車載装置によって多くの走行履歴データを取得した後においても、ドライバーがこれまで走行したことのない道路については嗜好運転速度を取得できないため、上記いずれの公知技術も適用できない。 However, none of the above known techniques can correct the travel time information with high accuracy in a situation where there is no driving history data of the driver or there is not a sufficient amount of driving history data. This means that when the driver uses the in-vehicle device that obtains the travel history data for the first time or when using it for the first time, none of the above-described known techniques is sufficiently effective. Furthermore, even after a lot of travel history data is acquired by the in-vehicle device, the preferred driving speed cannot be acquired for a road on which the driver has not traveled so far, so that none of the above known techniques can be applied.
 また、前述したダイクストラ法は、出発地から目的地に至るまでの経路を、道路区間(リンク)の旅行時間情報に基づいて探索する手法である。一部の道路区間の旅行時間情報に対してしか補正が適用されない状況では、ダイクストラ法により十分な品質の推奨経路を得ることは困難である。なぜなら、旅行時間情報が補正されない道路区間として、住宅地の生活道路などのように一般的に渋滞のない道路区画や、交通量の少ない道路区画が想定され、ダイクストラ法により探索された経路は、これらの道路区画を多く含んだ不自然な経路となることがあるからである。 The Dijkstra method described above is a method for searching for a route from a departure place to a destination based on travel time information of a road section (link). In a situation where correction is applied only to travel time information of some road sections, it is difficult to obtain a recommended route with sufficient quality by the Dijkstra method. This is because, as a road section in which travel time information is not corrected, a road section that is generally free of traffic congestion such as a residential road in a residential area or a road section with a small amount of traffic, and a route searched by the Dijkstra method, This is because it may be an unnatural route including many of these road sections.
 本発明は、このような課題を解決し、各ドライバーについて走行履歴データが十分に存在しない状況においても、推定される走行特性を考慮して旅行時間情報を高精度に補正することを目的とする。 An object of the present invention is to solve such a problem and to correct travel time information with high accuracy in consideration of estimated travel characteristics even in a situation where there is not enough travel history data for each driver. .
 本発明の第1の態様による車載装置は、車両に搭載され、経路探索のために用いる交通情報データと地図データを記憶した記憶手段と、当該交通情報データと地図データに基づき、出発地から目的地までの推奨経路を探索する経路探索手段と、他の複数のドライバーによる走行履歴データをドライバーの属性に基づく属性分類ごとに分類して求めた、交通情報を所定の属性分類ごとに補正するための属性分類別走行特性データを走行特性データ生成装置から受信するデータ通信手段と、当該車両のドライバーが該当する属性分類の属性分類別走行特性データを用いて交通情報データを補正する交通情報補正手段と、を備え、経路探索手段は、交通情報補正手段により補正した交通情報データを用いて推奨経路を探索する。 The vehicle-mounted device according to the first aspect of the present invention is mounted on a vehicle and stores a traffic information data and map data used for route search, and a destination based on the traffic information data and the map data. To correct the traffic information for each predetermined attribute classification, which is obtained by classifying the route search means for searching for the recommended route to the ground and the driving history data by other drivers classified for each attribute classification based on the driver attributes Communication means for receiving driving characteristic data for each attribute classification from the driving characteristic data generating device, and traffic information correction means for correcting traffic information data using the attribute characteristic driving characteristic data of the attribute classification to which the driver of the vehicle corresponds The route search means searches for a recommended route using the traffic information data corrected by the traffic information correction means.
 本発明の第2の態様によると、第1の態様の車載装置は、ドライバーの属性情報が含まれるドライバープロファイルと、ドライバーごとの走行データである走行履歴データと、ドライバープロファイルに基づき、走行履歴データをドライバーごとに分類するデータ分類手段と、ドライバープロファイルに登録されているドライバーごとに分類された走行履歴データと交通情報データを用いて属性分類ごとに補正するためのドライバー別走行特性データを生成する走行特性データ生成手段と、をさらに備え、交通情報補正手段は、属性分類別走行特性データまたはドライバー別走行特性データを用いて交通情報データを補正する。  According to the second aspect of the present invention, the in-vehicle device of the first aspect is based on a driver profile including driver attribute information, travel history data that is travel data for each driver, and travel history data based on the driver profile. Data classification means for classifying drivers for each driver, and driving characteristic data for each driver to be corrected for each attribute classification using travel history data and traffic information data classified for each driver registered in the driver profile Driving characteristic data generating means, and the traffic information correcting means corrects the traffic information data using the attribute classification-specific traveling characteristic data or the driver-specific traveling characteristic data.
 本発明の第3の態様によると、第2の態様の車載装置において、走行特性データ生成手段は、ドライバーごとに分類された走行履歴データが第1の所定数より多く記録されている場合には、交通情報データの補正に用いるためのドライバー別走行特性データを生成し、第1の所定数以下で第2の所定数より多い場合には、属性分類別走行特性データに基づきドライバー別走行特性データを生成を生成する。 According to the third aspect of the present invention, in the in-vehicle device of the second aspect, the travel characteristic data generating means is configured such that the travel history data classified for each driver is recorded more than the first predetermined number. When driving characteristic data for each driver for use in correcting traffic information data is generated, and when the driving characteristic data is less than the first predetermined number and greater than the second predetermined number, the driving characteristic data for each driver based on the driving characteristic data for each attribute classification Generate generate.
 本発明の第4の態様によると、第3の態様の車載装置において、ドライバープロファイルは、各ドライバーのユーザIDを含み、走行履歴データは、走行した道路リンクのリンク番号と、当該道路リンクにおける旅行時間または平均速度のいずれか一方とを含み、データ分類手段は、ドライバープロファイルの情報に含まれるユーザIDに基づき、該ユーザIDごとに走行履歴データを分類し、走行特性データ生成手段は、分類されたユーザIDごとの走行履歴データの分量に基づき、ドライバー別走行特性データの生成方法を決定する。 According to the fourth aspect of the present invention, in the in-vehicle device according to the third aspect, the driver profile includes the user ID of each driver, the travel history data includes the link number of the road link that has traveled, and the travel on the road link. The data classification means classifies the travel history data for each user ID based on the user ID included in the driver profile information, and the travel characteristic data generation means is classified. Based on the amount of travel history data for each user ID, a method for generating driver-specific travel characteristic data is determined.
 本発明の第5の態様によると、第4の態様の車載装置において、走行特性データ生成手段は、ドライバーごとに分類された走行履歴データが第1の所定数以下で第2の所定数より多い場合には、該ドライバーの走行履歴データと交通情報データについて各リンクにおける旅行時間または平均速度を比較し、走行履歴データから交通情報データを減算して得られる差分を求め、該差分と乖離度が最小となる属性分類の属性分類別走行特性データをドライバー別走行特性データとして求める。 According to the fifth aspect of the present invention, in the in-vehicle device according to the fourth aspect, the travel characteristic data generating means has the travel history data classified for each driver being less than the first predetermined number and greater than the second predetermined number. In the case, the travel time data or the average speed of each link is compared between the travel history data and the traffic information data of the driver, and a difference obtained by subtracting the traffic information data from the travel history data is obtained. The driving characteristic data for each attribute classification of the minimum attribute classification is obtained as driving characteristic data for each driver.
 本発明の第6の態様による走行特性データ生成装置は、複数のドライバーの走行履歴データを用いて交通情報データを補正する走行特性データを生成する走行特性データ生成装置であって、ドライバーの属性に関する情報が含まれるドライバープロファイルと、ドライバーごとの走行データを蓄積した走行履歴データと、ドライバープロファイルに基づき、走行履歴データを所定の属性分類ごとに分類するデータ分類手段と、属性ごとに分類された走行履歴データを用いて交通情報データを属性分類ごとに補正するための属性分類別走行特性データを生成する走行特性データ生成手段を備える。 A driving characteristic data generating apparatus according to a sixth aspect of the present invention is a driving characteristic data generating apparatus that generates driving characteristic data for correcting traffic information data using driving history data of a plurality of drivers, and relates to driver attributes. Driver profile that includes information, travel history data that accumulates travel data for each driver, data classification means that classifies travel history data for each predetermined attribute classification based on the driver profile, and travel classified for each attribute A travel characteristic data generating means for generating travel characteristic data for each attribute classification for correcting the traffic information data for each attribute classification using the history data is provided.
 本発明の第7の態様によると、第6の走行特性データ生成装置において、ドライバープロファイルは、各ドライバーのユーザIDを含み、更に生年月日,性別,免許取得日,累積運転距離の少なくとも一以上の情報を含み、走行履歴データは、走行したリンク番号と、リンクの旅行時間または平均速度のいずれか一方とを含み、データ分類手段において、属性分類は、ドライバープロファイル及び走行履歴データに含まれる情報に基づき決定される。 According to the seventh aspect of the present invention, in the sixth driving characteristic data generation device, the driver profile includes the user ID of each driver, and at least one of birth date, gender, license acquisition date, and cumulative driving distance. The travel history data includes the link number of the travel and either the travel time or the average speed of the link, and in the data classification means, the attribute classification is information included in the driver profile and the travel history data. To be determined.
 本発明の第8の態様によると、第6の走行特性データ生成装置において、走行特性データ生成手段は、ドライバーの属性分類ごとの走行履歴データと交通情報データにおけるリンクごとの旅行時間を比較し、走行履歴データから交通情報を減算して得られる差分を求め、該差分の平均値を各リンクの交通情報データを属性分類ごとに補正するための属性分類別走行特性データとして求める。 According to the eighth aspect of the present invention, in the sixth driving characteristic data generating device, the driving characteristic data generating means compares the driving history data for each attribute classification of the driver with the travel time for each link in the traffic information data, A difference obtained by subtracting the traffic information from the travel history data is obtained, and an average value of the difference is obtained as travel characteristic data for each attribute classification for correcting the traffic information data of each link for each attribute classification.
 本発明の第9の態様による車載情報システムは、請求項1乃至5のいずれか一項に記載の車載装置と、請求項6乃至8のいずれか一項に記載の走行特性データ生成装置と、走行特性データ生成装置と車載装置とを繋ぐデータ通信装置及び通信ネットワークと、から構成される An in-vehicle information system according to a ninth aspect of the present invention includes an in-vehicle device according to any one of claims 1 to 5, a traveling characteristic data generation device according to any one of claims 6 to 8, Consists of a data communication device and a communication network that connect the travel characteristic data generation device and the in-vehicle device.
 本発明によれば、ドライバーの走行履歴データが十分に存在しない状態であっても、そのドライバーと同じ属性分類に属する別のドライバーの走行履歴データに基づく属性分類別走行特性データを走行特性データ生成装置から入手し適用することで、交通情報データを適切に補正できる。また、ドライバーの走行履歴データの収集状況に応じて、適切な属性分類別走行特性データを生成または選択することで、ドライバーの運転特性を考慮して交通情報データを適切に補正できる。 According to the present invention, even if the driving history data of the driver does not exist sufficiently, the driving characteristic data is generated by the attribute classification based on the driving history data of another driver belonging to the same attribute classification as the driver. Traffic information data can be appropriately corrected by obtaining it from the device and applying it. Further, by generating or selecting appropriate attribute classification-specific travel characteristic data according to the collection status of the driver's travel history data, the traffic information data can be appropriately corrected in consideration of the driver's driving characteristics.
 これによって、精度の高い補正交通情報データが得られるようになる。そして、この精度の高い補正交通情報を用いた最短時間経路探索により、より確実に渋滞を避けた高品質な経路誘導を行うことができるようになる。 This makes it possible to obtain highly accurate corrected traffic information data. And, by the shortest time route search using the corrected traffic information with high accuracy, it becomes possible to perform high-quality route guidance that avoids traffic congestion more reliably.
本発明の走行特性データ生成装置及び車載装置から構成される車載情報システムの構成図である。It is a block diagram of the vehicle-mounted information system comprised from the driving | running | working characteristic data generation apparatus of this invention, and a vehicle-mounted apparatus. 本発明の第1実施形態における車載装置の機能ブロック図である。It is a functional block diagram of the vehicle-mounted apparatus in 1st Embodiment of this invention. 地図データのデータフォーマットの一例である。It is an example of the data format of map data. 走行履歴データのデータフォーマットの一例である。It is an example of the data format of driving history data. ドライバープロファイルのデータフォーマットの一例である。It is an example of the data format of a driver profile. 基準交通情報データのデータフォーマットの一例である。It is an example of the data format of reference | standard traffic information data. 属性分類別走行特性データのデータフォーマットの一例である。It is an example of the data format of driving characteristic data classified by attribute classification. 走行特性データ生成装置側の走行特性データ生成装置側メイン処理フローである。It is a driving characteristic data generation device side main processing flow on the driving characteristic data generation device side. 第1実施形態における車載装置の処理フローである。It is a processing flow of the vehicle-mounted apparatus in 1st Embodiment. 車載装置の経路誘導におけるディスプレイの表示の一例である。It is an example of the display of the display in the route | root guidance of a vehicle-mounted apparatus. 本発明の第2実施形態における車載装置の機能ブロック図である。It is a functional block diagram of the vehicle-mounted apparatus in 2nd Embodiment of this invention. 第2実施形態における車載装置側の属性分類別走行特性データ生成処理フローである。It is a driving | running | working characteristic data generation processing flow according to attribute classification by the vehicle-mounted apparatus side in 2nd Embodiment.
 以下に、図面を用いて本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施形態)
 図1は、本発明の一実施形態に係る車載情報システムの構成図である。図1の車載情報システム1は、走行特性データ生成装置10と、車載装置11及びデータ通信装置12を搭載した自動車13と、通信ネットワーク14とから構成される。車載装置11は、通信ネットワーク14を介して走行特性データ生成装置10と接続される。
(First embodiment)
FIG. 1 is a configuration diagram of an in-vehicle information system according to an embodiment of the present invention. The in-vehicle information system 1 in FIG. 1 includes a travel characteristic data generation device 10, an automobile 13 equipped with the in-vehicle device 11 and the data communication device 12, and a communication network 14. The in-vehicle device 11 is connected to the travel characteristic data generation device 10 via the communication network 14.
 走行特性データ生成装置10は、ドライバー属性分類条件100、データ分類部101、走行履歴データベース102、属性分類別走行特性データ生成部103、基準交通情報データベース104、属性分類別走行特性データ105、およびドライバープロファイル106を備える。走行特性データ生成装置10は、個々のドライバーを属性に分類して、その属性に基づいて様々なドライバーの走行履歴データを分析した走行特性データを生成する機能を有する。 The travel characteristic data generation device 10 includes a driver attribute classification condition 100, a data classification unit 101, a travel history database 102, a travel characteristic data generation unit 103 by attribute classification, a reference traffic information database 104, a travel characteristic data 105 by attribute classification, and a driver. A profile 106 is provided. The driving characteristic data generation device 10 has a function of classifying individual drivers into attributes and generating driving characteristic data obtained by analyzing driving history data of various drivers based on the attributes.
 走行特性データ生成装置10は、パーソナルコンピュータ(PC)やワークステーション,サーバー,大型計算機などのコンピュータ装置であり、そのハードウェア構成は、CPU,メモリ,HDD,DVDドライブ,ディスプレイ,キーボード,マウス等から構成される。走行特性データ生成装置10は、通信ネットワーク14を介して車載装置11と接続される。走行特性データ生成装置10は、車載装置11からドライバーごとの走行履歴データを受信し、当該走行履歴データベース102に蓄積する。走行特性データ生成装置10は、属性分類別走行特性データ105から車載装置11へ属性分類別走行特性データを送信する。走行特性データ生成装置10を構成する各部については後に詳述する。 The travel characteristic data generation device 10 is a computer device such as a personal computer (PC), a workstation, a server, a large computer, etc., and its hardware configuration includes a CPU, memory, HDD, DVD drive, display, keyboard, mouse, and the like. Composed. The travel characteristic data generation device 10 is connected to the in-vehicle device 11 via the communication network 14. The travel characteristic data generation device 10 receives travel history data for each driver from the in-vehicle device 11 and accumulates the travel history data in the travel history database 102. The travel characteristic data generation device 10 transmits the travel characteristic data classified by attribute classification from the travel characteristic data classified by attribute 105 to the in-vehicle device 11. Each part which comprises the driving | running | working characteristic data generation apparatus 10 is explained in full detail behind.
 車載装置11は、カーナビゲーションシステムに代表されるように、目的地までの推奨経路を地図データや交通情報等を用いて算出し、当該推奨経路に基づいて案内を行う。また車載装置11は、自動車13の走行履歴データを蓄積する機能を有する。車載装置11の機能ブロック図を図2に示す。図2では、車載装置11は、目的地設定部110と、交通情報補正部111と、基準交通情報データベース112と、属性分類別走行特性データ113と、経路探索部114と、探索データベース115と、経路誘導部116と、走行履歴蓄積部117と、走行履歴データベース118と、地図データベース119とを備える。図2に示す各部については後に詳述する。 As represented by the car navigation system, the in-vehicle device 11 calculates a recommended route to the destination using map data, traffic information, and the like, and performs guidance based on the recommended route. The in-vehicle device 11 has a function of accumulating travel history data of the automobile 13. A functional block diagram of the in-vehicle device 11 is shown in FIG. In FIG. 2, the in-vehicle device 11 includes a destination setting unit 110, a traffic information correction unit 111, a reference traffic information database 112, travel characteristics data 113 by attribute classification, a route search unit 114, a search database 115, A route guidance unit 116, a travel history storage unit 117, a travel history database 118, and a map database 119 are provided. Each part shown in FIG. 2 will be described in detail later.
 車載装置11は、ハードウェア構成として、演算処理部40と、ディスプレイ41と、データ記憶装置42と、音声入出力装置43と、入力装置44と、車輪速センサ45と、地磁気センサ46と、ジャイロセンサ47と、GPS(Global Positioning System)受信装置48と、車内LAN(Local Area Network)装置49とを備える。車載装置11の各ハードウェア構成については後に詳述する。 The in-vehicle device 11 includes, as hardware configurations, an arithmetic processing unit 40, a display 41, a data storage device 42, a voice input / output device 43, an input device 44, a wheel speed sensor 45, a geomagnetic sensor 46, a gyroscope. A sensor 47, a GPS (Global Positioning System) receiving device 48, and an in-vehicle LAN (Local Area Network) device 49 are provided. Each hardware configuration of the in-vehicle device 11 will be described in detail later.
 車載装置11は、通信ネットワーク14を介して走行特性データ生成装置10と接続する。車載装置11は、入力装置44によるユーザからの要求に応じて、走行特性データ生成装置10にアクセスして、走行特性データ生成装置10から属性分類別走行特性データを受信し、これを属性分類別走行特性データ113へ保存する。そして車載装置11は、走行履歴データベース118から走行特性データ生成装置10へドライバーの走行履歴データを送信する。 The in-vehicle device 11 is connected to the travel characteristic data generation device 10 via the communication network 14. The in-vehicle device 11 accesses the traveling characteristic data generation device 10 in response to a request from the user via the input device 44, receives the traveling characteristic data by attribute classification from the traveling characteristic data generation device 10, and receives this by the attribute classification Stored in the travel characteristic data 113. The in-vehicle device 11 transmits the driving history data of the driver from the driving history database 118 to the driving characteristic data generation device 10.
 データ通信装置12は、通信I/F(インタフェース)50を介して車載装置11に接続され、通信ネットワーク14に接続するためのモデムを備えている。データ通信装置12は、たとえば、PHS(登録商標)(Personal Handyphone System),DSRC(Dedicated Short Range Communication)、その他、セルラー通信あるいは近距離用無線LAN通信等に対応する通信モデム、またはこのような通信モデムを内蔵した携帯電話やデータ通信カードに相当する。車載装置11は、このデータ通信装置12により通信ネットワーク14に接続し、さらに通信ネットワーク14を介して走行特性データ生成装置10と接続することができる。 The data communication device 12 is connected to the in-vehicle device 11 via a communication I / F (interface) 50 and includes a modem for connecting to the communication network 14. The data communication device 12 may be, for example, a communication modem that supports PHS (registered trademark) (Personal Handyphone System), DSRC (Dedicated Short Range Communication), cellular communication, short-range wireless LAN communication, or the like. It corresponds to a cellular phone or a data communication card with a built-in modem. The in-vehicle device 11 can be connected to the communication network 14 by the data communication device 12 and further connected to the traveling characteristic data generation device 10 via the communication network 14.
 図1に示した車載装置11のハードウェア構成について説明する。演算処理部40は、様々な処理を行う中心的ユニットである。その処理の1つは、車輪速センサ45や、地磁気センサ46、ジャイロセンサ47などの各種センサや、GPS受信装置48から出力される情報を基に自動車13の現在地を算出する測位処理である。また、演算処理部40は、当該測位処理により算出された現在地の情報に基づいて、ディスプレイ41に現在地周辺の周辺地図を表示するために必要な地図データをデータ記憶装置42に記憶された地図データベース119から読み出す処理を行う。演算処理部40は、当該周辺地図と共に現在地を示すマーク(アイコン)を重ねてディスプレイ41へ表示する処理を行う。さらに、演算処理部40は、データ記憶装置42に記憶されている地図データベース119等を用いて、ユーザが設定した目的地と現在地(出発地)とを結ぶ推奨経路を探索する処理を行う。演算処理部40は、音声入出力装置43やディスプレイ41を用いて、ユーザに対してこの推奨経路に沿って案内する処理を行う。図2の各機能も、演算処理部40によって処理される。 The hardware configuration of the in-vehicle device 11 shown in FIG. 1 will be described. The arithmetic processing unit 40 is a central unit that performs various processes. One of the processes is a positioning process for calculating the current location of the automobile 13 based on information output from various sensors such as the wheel speed sensor 45, the geomagnetic sensor 46, the gyro sensor 47, and the GPS receiver 48. Further, the arithmetic processing unit 40 is a map database in which map data necessary for displaying a map around the current location on the display 41 is stored in the data storage device 42 based on the information on the current location calculated by the positioning process. A process of reading from 119 is performed. The arithmetic processing unit 40 performs processing for displaying a mark (icon) indicating the current location together with the surrounding map on the display 41. Furthermore, the arithmetic processing unit 40 performs a process of searching for a recommended route connecting the destination set by the user and the current location (departure location) using the map database 119 or the like stored in the data storage device 42. The arithmetic processing unit 40 uses the voice input / output device 43 and the display 41 to perform processing for guiding the user along the recommended route. Each function of FIG. 2 is also processed by the arithmetic processing unit 40.
 ディスプレイ41は、演算処理部40の制御により画像を表示するユニットであり、CRT(Cathode Ray Tube)または液晶ディスプレイなどで構成される。演算処理部40とディスプレイ41との間の信号は、RGB信号やNTSC(National Television System Committee)信号で接続するのが一般的である。 The display 41 is a unit that displays an image under the control of the arithmetic processing unit 40, and includes a CRT (Cathode Ray Ray Tube) or a liquid crystal display. Signals between the arithmetic processing unit 40 and the display 41 are generally connected by RGB signals or NTSC (National Television System Committee) signals.
 データ記憶装置42は、CD-ROM,DVD-ROMなどの光学記憶媒体や、ハードディスクなどの磁気記憶媒体、不揮発性半導体メモリといった記憶媒体およびその読み取り/書き込み装置で構成されている。データ記憶装置42には、基準交通情報データベース112と、属性分類別走行特性データ113と、探索データベース115と、走行履歴データベース118と、地図データベース119とが格納されており、目的地設定用のPOI(Point of Interests)データなどの各種データも格納されている。 The data storage device 42 includes an optical storage medium such as a CD-ROM and a DVD-ROM, a magnetic storage medium such as a hard disk, a storage medium such as a nonvolatile semiconductor memory, and a reading / writing device thereof. The data storage device 42 stores a reference traffic information database 112, attribute classification-specific travel characteristic data 113, a search database 115, a travel history database 118, and a map database 119, and a destination setting POI. Various data such as (Point of Interests) data is also stored.
 地図データベース119の地図データのフォーマットについて一例を図3に示す。図3に示す地図データフォーマットは、地図データを2次メッシュ単位のデータである2次メッシュ情報として管理している場合の例であり、2次メッシュのメッシュコードである「2次メッシュコード」ごとに、そのメッシュ領域に含まれる道路を構成する各リンクのリンク情報を含んでいる。そして、リンク情報は、「リンク番号」ごとに各リンクを構成する開始ノードの座標情報である「始点座標」、終了ノードの座標情報である「終点座標」、各リンクを含む道路の種別情報である「道路種別コード」、各リンクの長さを示す情報である「リンク長」、各リンクの制限速度を示す情報である「規制速度」、各リンクの開始ノードと終了ノードの2つのノードにそれぞれ接続するリンクのポインタなどを含んでいる。なお、ここでは、リンクを構成する2つのノードについて開始ノードと終了ノードとを区別することで、同じ道路の上り方向と下り方向とを、それぞれ別のリンクとして管理するようにしている。 An example of the map data format of the map database 119 is shown in FIG. The map data format shown in FIG. 3 is an example in the case where map data is managed as secondary mesh information that is data in units of secondary mesh, and each “secondary mesh code” that is a mesh code of a secondary mesh. The link information of each link constituting the road included in the mesh area is included. The link information includes “start point coordinates” that are the coordinate information of the start node constituting each link for each “link number”, “end point coordinates” that are the coordinate information of the end node, and road type information including each link. There is a “road type code”, “link length” which is information indicating the length of each link, “regulated speed” which is information indicating the speed limit of each link, and two nodes, a start node and an end node of each link. Each contains a pointer to the link to be connected. Here, by distinguishing the start node and the end node for the two nodes constituting the link, the upward direction and the downward direction of the same road are managed as different links.
 音声入出力装置43は、演算処理部40で生成したユーザへのメッセージを音声信号に変換し出力する。また、音声入出力装置43は、ユーザが発した音声を認識し演算処理部40にその内容を転送する。入力装置44は、ユーザからの指示を受け付ける装置であり、スクロールキーや縮尺変更キーなどのハードスイッチや、ジョイスティック、ディスプレイ41上に貼られたタッチパネル、音声入力用のマイクなどで構成される。 The voice input / output device 43 converts the message to the user generated by the arithmetic processing unit 40 into a voice signal and outputs it. Further, the voice input / output device 43 recognizes the voice uttered by the user and transfers the content to the arithmetic processing unit 40. The input device 44 is a device that receives an instruction from the user, and includes a hard switch such as a scroll key or a scale change key, a joystick, a touch panel pasted on the display 41, a microphone for voice input, and the like.
 車輪速センサ45や、地磁気センサ46、ジャイロセンサ47などの各種センサとGPS受信装置48とは、車載装置11で現在地(自車位置)を検出するために使用されるものである。車輪速センサ45は、車輪の円周と計測される車輪の回転数の積から走行距離を測定し、さらに対となる車輪の回転数の差から曲がった角度を計測する。地磁気センサ46は、地球の磁場を検知し、移動体が向いている方角を検出する。ジャイロセンサ47は、光ファイバジャイロや振動ジャイロ等で構成され、センサが回転した角度を検出するものである。GPS受信装置48は、GPS衛星からの信号を受信し、移動体とGPS衛星間の距離と距離の変化率を3基以上の衛星に対して測定することで移動体の現在位置,進行速度,進行方位、及び現在時刻を測定する。 The various sensors such as the wheel speed sensor 45, the geomagnetic sensor 46, and the gyro sensor 47 and the GPS receiver 48 are used by the in-vehicle device 11 to detect the current location (vehicle position). The wheel speed sensor 45 measures the travel distance from the product of the wheel circumference and the measured number of rotations of the wheel, and further measures the angle bent from the difference in the number of rotations of the paired wheels. The geomagnetic sensor 46 detects the earth's magnetic field and detects the direction in which the moving body is facing. The gyro sensor 47 is composed of an optical fiber gyro, a vibration gyro, or the like, and detects an angle of rotation of the sensor. The GPS receiver 48 receives a signal from a GPS satellite, and measures the distance between the mobile body and the GPS satellite and the rate of change of the distance with respect to three or more satellites to thereby determine the current position, traveling speed, Measure the heading and current time.
 車内LAN装置49は、車載装置11が搭載された自動車13に設けられた車内LANと接続するための装置であり、この車内LANを流れる様々な情報、例えばドアの開閉情報,ライトの点灯状態情報,エンジンの状況や故障診断結果などを受ける。 The in-vehicle LAN device 49 is a device for connecting to the in-vehicle LAN provided in the automobile 13 on which the in-vehicle device 11 is mounted. Various information flowing through the in-vehicle LAN, for example, door opening / closing information, light lighting state information , Receive engine status and failure diagnosis results.
 次に、図1の走行特性データ生成装置10について説明する。 Next, the driving characteristic data generation device 10 shown in FIG. 1 will be described.
 ドライバー属性分類条件100は、個々のドライバーを当該ドライバーの走行特性に基づいて属性に分類するための条件である。ドライバー属性分類条件100に基づいて同一の属性に分類されたドライバー同士は、互いにその走行特性が似ていることが望ましい。ドライバー属性分類条件100は、運転に対する習熟度に関係する可能性が高い免許取得後の経過年数や免許取得後の累積運転距離といった要因や、運転に際しての身体の反応速度に影響が考えられる年齢や走行地点の天候や明るさといった要因などを考慮して決められる。たとえば、ドライバーの走行特性を年齢で分類する第一の例を考える。第一の例では、ドライバーを当該ドライバーの年齢に基づいて、30歳未満の若年層を属性分類1、30歳以上50歳未満を属性分類2、50歳以上65歳未満を属性分類3、65歳以上の高齢者層を属性分類4に分けるとする。ドライバーをその年齢に基づいて属性分類1から属性分類4に分類するルールがドライバー属性分類条件100である。年齢以外で分類する別の方法として、免許取得後の経過年数、免許取得後の累積運転距離など運転に対する熟練度と関係のあるものでもよい。 Driver attribute classification condition 100 is a condition for classifying individual drivers into attributes based on the driving characteristics of the driver. It is desirable that drivers classified into the same attribute based on the driver attribute classification condition 100 have similar driving characteristics. The driver attribute classification condition 100 is based on factors such as the number of years that have passed since obtaining a license and the cumulative driving distance after obtaining a license, and the age at which the body's reaction speed may be affected. It is determined in consideration of factors such as weather and brightness at the driving point. For example, consider a first example in which the driving characteristics of a driver are classified by age. In the first example, based on the age of the driver, the younger age group is less than 30 years old, the attribute class is 1, 30 years old and younger than 50 years is attribute class 2, 50 years old and younger is less than 65 years old, and the attribute classification is 3, 65. Assume that elderly people over age are divided into attribute classification 4. A rule for classifying drivers from attribute classification 1 to attribute classification 4 based on their age is the driver attribute classification condition 100. As another method of classification other than age, there may be a method related to the skill level of driving such as the number of years since the license is obtained and the cumulative driving distance after the license is obtained.
 また、ドライバー属性分類条件100には、行動範囲の違いが反映される可能性のある性別条件を加味してもよい。たとえば、上記第一の例に性別条件による分類を加味する場合、30歳未満の男性,30歳未満の女性,30歳以上50歳未満の男性,30歳以上50歳未満の女性,…といった分類の組み合わせとなる。また、ドライバー属性分類条件100は、路面状態(乾燥,湿潤,凍結)または天候(晴,雨,雪)を加味してもよい。たとえば、上記第一の例に路面状態による分類を加味する場合、30歳未満の乾燥路面,30歳未満の湿潤路面,30歳以上50歳未満の乾燥路面,30歳以上50歳未満の湿潤路面,…といった分類の組み合わせになる。また、ドライバー属性分類条件100は、屋外の明るさ(明るい,暗い)や時間帯(朝,昼,晩)を加味してもよい。たとえば、上記第一の例に屋外の明るさによる分類を加味する場合、30歳未満の屋外が明るい状況,30歳未満の屋外が暗い状況,30歳以上50歳未満の屋外が明るい状況,30歳以上50歳未満の屋外が暗い状況,…といった分類の組み合わせになる。ドライバー属性分類条件100は、走行特性データ生成装置10が備える図示されていないHDDなどのデータ記憶装置にデータファイルとして格納される。 Further, the driver attribute classification condition 100 may include a gender condition that may reflect a difference in action range. For example, when the classification according to the sex condition is added to the first example, the classification is, for example, a male under 30 years old, a female under 30 years old, a male between 30 and 50 years old, a female between 30 and 50 years old, and so on. It becomes a combination. Further, the driver attribute classification condition 100 may take into account road surface conditions (dry, wet, frozen) or weather (sunny, rain, snow). For example, when the classification according to the road surface condition is added to the first example, a dry road surface under 30 years old, a wet road surface under 30 years old, a dry road surface between 30 and 50 years old, a wet road surface between 30 and 50 years old It becomes a combination of classification such as. Further, the driver attribute classification condition 100 may take into account outdoor brightness (bright, dark) and time zones (morning, noon, evening). For example, when the classification according to the outdoor brightness is added to the first example, the outdoor situation under 30 years old is bright, the outdoor condition under 30 years is dark, the outdoor condition between 30 and 50 years old is bright, 30 It is a combination of classifications such as the situation where the outdoors is over 50 years old and under 50 years old. The driver attribute classification condition 100 is stored as a data file in a data storage device such as an HDD (not shown) provided in the traveling characteristic data generation device 10.
 走行履歴データベース102には、走行特性データ生成装置10がデータ通信装置12及び通信ネットワーク14を介して、1以上の自動車13ごとの走行履歴データベース118から収集した走行履歴データが蓄積されている。走行履歴データベース102も、ドライバー属性分類条件100と同様、データ記憶装置に格納される。図4は、走行履歴データのデータフォーマットの一例を示している。走行履歴データの生成方法については、車載装置11の走行履歴蓄積部117の説明で詳述する。 The travel history database 102 stores travel history data collected from the travel history database 118 for each of the one or more automobiles 13 by the travel characteristic data generation device 10 via the data communication device 12 and the communication network 14. Similar to the driver attribute classification condition 100, the travel history database 102 is also stored in the data storage device. FIG. 4 shows an example of the data format of the travel history data. A method for generating the travel history data will be described in detail in the description of the travel history storage unit 117 of the in-vehicle device 11.
 ドライバープロファイル106は、個々のドライバーに関する情報を含むデータである。ドライバープロファイル106のデータは、走行特性データ生成装置10において、ドライバー属性分類条件100と同様にHDDなどのデータ記憶装置にデータファイルとして格納される。図5は、ドライバープロファイル106のデータフォーマットの一例を示している。図5に示すドライバープロファイル106は、個々のドライバーを識別するためのIDであるドライバーID(走行履歴データに含まれるものと同じ)、各ドライバーの生年月日,性別,免許取得日,累積運転距離から構成される。これらの情報を参照することで、各ドライバーを属性に分類できるようになる。ドライバープロファイル106は、車載装置11を購入したユーザがウェブサイトまたは郵便はがき等によりユーザ登録する際に提供された各情報から作成される。 The driver profile 106 is data including information on individual drivers. The data of the driver profile 106 is stored as a data file in a data storage device such as an HDD in the driving characteristic data generation device 10 as with the driver attribute classification condition 100. FIG. 5 shows an example of the data format of the driver profile 106. The driver profile 106 shown in FIG. 5 is a driver ID (identical to that included in the driving history data) that is an ID for identifying each driver, the date of birth of each driver, gender, license acquisition date, cumulative driving distance. Consists of By referring to these pieces of information, each driver can be classified into attributes. The driver profile 106 is created from information provided when a user who has purchased the in-vehicle device 11 performs user registration through a website or a postcard.
 データ分類部101は、ドライバー属性分類条件100及びドライバープロファイル106に基づき、走行履歴データ102を属性に分類するところである。データ分類部101の処理の詳細については、処理フローとともに後述する。 The data classification unit 101 classifies the travel history data 102 into attributes based on the driver attribute classification condition 100 and the driver profile 106. Details of the processing of the data classification unit 101 will be described later together with the processing flow.
 基準交通情報データベース104には、データ分類部101により分類された属性別の走行履歴データが持つ傾向を判断する際に基準として用いる交通情報データが基準交通情報データとして蓄積されている。基準交通情報データは、例えば、交通情報センターなどから提供されるリンクごとの旅行時間データや、提供されたリンク旅行時間を曜日や時間帯別に統計処理された統計旅行時間データ等である。基準交通情報データベータ104は、走行特性データ生成装置10において、ドライバー属性分類条件100と同様にHDDなどのデータ記憶装置にデータファイルとして格納される。図6は、基準交通情報データのデータフォーマットの一例を示している。図6の基準交通情報データは、リンク番号,リンク長、及び基準旅行時間から構成される。 In the reference traffic information database 104, traffic information data used as a reference when judging the tendency of the attributed travel history data classified by the data classification unit 101 is stored as reference traffic information data. The reference traffic information data is, for example, travel time data for each link provided from a traffic information center, statistical travel time data obtained by statistically processing the provided link travel time according to day of the week or time zone, and the like. The reference traffic information data beta 104 is stored as a data file in a data storage device such as an HDD in the driving characteristic data generation device 10 as with the driver attribute classification condition 100. FIG. 6 shows an example of the data format of the reference traffic information data. The reference traffic information data in FIG. 6 includes a link number, a link length, and a reference travel time.
 属性分類別走行データ生成部103は、データ分類部101で分類された走行履歴データを基準交通情報データベース104に蓄積されているリンク番号が同一である基準交通情報データと比較することにより、走行履歴データの基準交通情報データに対する傾向を分析し、基準交通情報データを補正するためのパラメータである属性分類別走行特性データ105を生成する。 The attribute classification-specific travel data generation unit 103 compares the travel history data classified by the data classification unit 101 with the reference traffic information data having the same link number stored in the reference traffic information database 104, thereby obtaining a travel history. The tendency of the data with respect to the reference traffic information data is analyzed, and the attribute characteristic-specific traveling characteristic data 105 which is a parameter for correcting the reference traffic information data is generated.
 図7は、属性分類別走行特性データ105のデータフォーマットの一例を示している。属性分類別走行特性データは、ドライバー属性分類条件100により分類され得る属性81~84それぞれにおける、各リンクに対する補正パラメータから構成される。なお、補正パラメータとは、基準交通情報データを補正するための値である。図7では、図6において基準交通情報データにおける基準値である基準旅行時間を、リンクごとの旅行時間[秒]としたため、補正パラメータもリンクごとの旅行時間を補正する量[秒]としている。補正パラメータが正の場合は、基準旅行時間は補正により増加する。補正パラメータが負の場合は、基準旅行時間は補正により減少する。なお、属性分類別走行データ生成部103における処理の詳細については、走行特性データ生成装置10の処理フローとともに後述する。 FIG. 7 shows an example of the data format of the travel characteristic data 105 classified by attribute classification. The attribute characteristic-specific traveling characteristic data includes correction parameters for each link in each of the attributes 81 to 84 that can be classified by the driver attribute classification condition 100. The correction parameter is a value for correcting the reference traffic information data. In FIG. 7, since the reference travel time, which is the reference value in the reference traffic information data in FIG. 6, is the travel time [second] for each link, the correction parameter is also the amount [second] for correcting the travel time for each link. When the correction parameter is positive, the reference travel time increases due to the correction. If the correction parameter is negative, the reference travel time is reduced by the correction. The details of the processing in the attribute classification-specific traveling data generation unit 103 will be described later together with the processing flow of the traveling characteristic data generation device 10.
 以上により、走行特性データ生成装置10において、属性分類ごとの補正パラメータである属性分類別走行特性データ105が生成される。この属性分類別走行特性データ105は、通信ネットワーク14を介して車載装置11に送信される。そして、車載装置11は、当該属性分類別走行特性データ105を受信して、属性分類別走行特性データ113としてデータ格納装置42に格納する。これにより、自動車13のドライバーの走行履歴データが存在しないリンクについても、そのドライバーと同じ属性分類に属する別のドライバーの走行履歴データに基づいた属性分類別走行特性データ113を車載装置11で利用し、基準交通情報データを補正することで精度の高い補正交通情報を得ることができるようになる。 As described above, the traveling characteristic data generation device 10 generates the attribute characteristic-specific traveling characteristic data 105 which is a correction parameter for each attribute classification. This attribute classification-specific traveling characteristic data 105 is transmitted to the in-vehicle device 11 via the communication network 14. The in-vehicle device 11 receives the attribute classification-specific travel characteristic data 105 and stores it in the data storage device 42 as attribute-classification-specific travel characteristic data 113. As a result, the in-vehicle device 11 uses the attribute-specific traveling characteristic data 113 based on the traveling history data of another driver belonging to the same attribute classification as that driver for the link in which the traveling history data of the driver of the automobile 13 does not exist. By correcting the reference traffic information data, highly accurate corrected traffic information can be obtained.
 次に、図2に示す車載装置11の動作を実現する各部の処理について説明する。 Next, processing of each unit that realizes the operation of the in-vehicle device 11 illustrated in FIG. 2 will be described.
 目的地設定部110は、ユーザが車載装置11を操作することによって目的地を設定するためのHMI(Human Machine Interface)である。 The destination setting unit 110 is an HMI (Human Machine Interface) for setting a destination by the user operating the in-vehicle device 11.
 基準交通情報データベース112は、走行特性データ生成装置10における基準交通情報データベース104と同等のデータベースである。基準交通情報データベース112は、たとえばデータ通信装置12及び通信ネットワーク14を介して走行特性データ生成装置10の基準交通情報データベース104をダウンロードしてもよいし、FM多重放送,DSRCまたはビーコン通信を介して交通情報センターから受信したデータに基づいて生成してもよい。あるいは、走行特性データ生成装置10に保持される基準交通情報データ104を、DVD-ROM等の記憶媒体に一旦格納し、図示されていない読取装置により車載装置11にコピーまたは移動してもよい。 The reference traffic information database 112 is a database equivalent to the reference traffic information database 104 in the travel characteristic data generation device 10. The reference traffic information database 112 may download, for example, the reference traffic information database 104 of the travel characteristic data generation device 10 via the data communication device 12 and the communication network 14, or via FM multiplex broadcasting, DSRC or beacon communication. You may produce | generate based on the data received from the traffic information center. Alternatively, the reference traffic information data 104 held in the travel characteristic data generation device 10 may be temporarily stored in a storage medium such as a DVD-ROM and copied or moved to the in-vehicle device 11 by a reading device (not shown).
 属性分類別走行特性データ113は、走行特性データ生成装置10における属性分類別走行特性データ105と同等のデータである。属性分類別走行特性データ113は、データ通信装置12及び通信ネットワーク14を介して走行特性データ生成装置10より属性分類別走行特性データ105をダウンロードしてもよいし、DVD-ROM等の記憶媒体に属性分類別走行特性データ105を一旦格納し、図示されていない読取装置により読み取って車載装置11にコピーまたは移動してもよい。 The attribute classification-specific traveling characteristic data 113 is data equivalent to the attribute classification-specific traveling characteristic data 105 in the traveling characteristic data generation apparatus 10. As the attribute characteristic-specific traveling characteristic data 113, the attribute characteristic-specific traveling characteristic data 105 may be downloaded from the traveling characteristic data generation apparatus 10 via the data communication device 12 and the communication network 14, or may be downloaded to a storage medium such as a DVD-ROM. The attribute classification-specific traveling characteristic data 105 may be temporarily stored, read by a reading device (not shown), and copied or moved to the in-vehicle device 11.
 交通情報補正部111は、属性分類別走行特性データ113を用いて基準交通情報データ112を補正する処理を行う。 The traffic information correction unit 111 performs a process of correcting the reference traffic information data 112 using the attribute classification-specific traveling characteristic data 113.
 探索データベース115には、経路探索と誘導に用いるデータのうち、図3にフォーマットを示した地図データ以外のデータが探索データとして記憶されている。探索データベース115には、探索データがエリアの識別IDを表すメッシュコードごとに格納されている。探索データベース115には、たとえば各メッシュ領域に含まれている道路以外の道路構造物の情報(名称,種別,座標情報など)や緑地帯や山岳地のほか、河川,湖沼,海などに関する情報も含まれている。 In the search database 115, data other than the map data whose format is shown in FIG. 3 among the data used for route search and guidance is stored as search data. In the search database 115, search data is stored for each mesh code representing an area identification ID. In the search database 115, for example, information on road structures (name, type, coordinate information, etc.) other than roads included in each mesh region, information on rivers, lakes, seas, etc. in addition to green zones and mountainous areas are also included. include.
 経路探索部114は、地図データベース119や探索データベース115、基準交通情報データベース112等を参照して、GPS受信装置48から得られる現在地またはユーザが設定する出発地と、目的地設定部110で設定された目的地とを結ぶ最適な経路(推奨経路)を探索する。また経路誘導部116は、地図データベース119等を参照し、音声入出力装置43やディスプレイ41を用いて、経路探索部114で求めた推奨経路に沿ってユーザを案内する。 The route search unit 114 is set by the current location obtained from the GPS receiver 48 or the departure point set by the user and the destination setting unit 110 with reference to the map database 119, the search database 115, the reference traffic information database 112, and the like. Search for the optimal route (recommended route) connecting the destination. The route guidance unit 116 refers to the map database 119 and the like, and guides the user along the recommended route obtained by the route search unit 114 using the voice input / output device 43 and the display 41.
 走行履歴蓄積部117は、地図データベース119の各種データや、走行中の車輪速センサ45,地磁気センサ46,ジャイロセンサ47の各種センサ及びGPS受信装置48で計測される自動車13の位置情報、および車内LAN装置49を介して得られた車載装置11外部からのデータに基づき、走行履歴データを生成し、走行履歴データベース118に当該走行履歴データを蓄積し、走行特性データ生成装置10へ出力する。走行履歴蓄積部117が生成する走行履歴データは、図4に示すデータフォーマットに従う。 The travel history accumulating unit 117 includes various data of the map database 119, various information of the wheel speed sensor 45, the geomagnetic sensor 46, the gyro sensor 47, and the position information of the vehicle 13 measured by the GPS receiver 48, and the interior of the vehicle. Based on data from outside the in-vehicle device 11 obtained via the LAN device 49, travel history data is generated, the travel history data is stored in the travel history database 118, and output to the travel characteristic data generation device 10. The travel history data generated by the travel history storage unit 117 follows the data format shown in FIG.
 図4のフォーマットに示した走行履歴データの生成処理について説明する。図4の各行のデータ列を1レコードと呼ぶこととする。各レコードは、ドライバー別,走行したリンク別,リンクを通過した日時別のデータとして走行履歴が記録される。 The generation process of the travel history data shown in the format of FIG. 4 will be described. The data column in each row in FIG. 4 is called one record. In each record, a travel history is recorded as data for each driver, for each link traveled, and for each date and time that passed the link.
 「ドライバーID」は、車載装置11ごとに固有に割り当てられたドライバーID番号がデータ記憶装置42に格納されており、この番号を参照することで得られる。なお、車載装置11を利用するドライバーが複数存在し夫々を識別できる場合には、各ドライバーに対応したID番号を参照するようにしてもよい。 “Driver ID” is obtained by referring to the driver ID number uniquely assigned to each vehicle-mounted device 11 stored in the data storage device 42. In addition, when there are a plurality of drivers using the in-vehicle device 11 and each can be identified, an ID number corresponding to each driver may be referred to.
 「通過日時」は、自動車13がリンクを通過した日時であって、車載装置11のGPS受信装置48から得られる1秒単位の情報である。自動車13がリンクの開始ノードおよび終了ノードのいずれかを通過したとき、自動車13がリンクを通過したとする。開始ノードおよび終了ノードのいずれを通過したときをリンクを通過したとみなすかはすべてのレコードについて統一する。以下ではリンクの開始ノードを通過した日時を記録するものとする。 The “passing date and time” is the date and time when the automobile 13 passed the link, and is information in units of one second obtained from the GPS receiver 48 of the in-vehicle device 11. It is assumed that the automobile 13 passes the link when the automobile 13 passes either the link start node or the end node. It is unified for all records whether the start node or the end node is considered to have passed the link. In the following, the date and time when the link has passed the start node is recorded.
 「リンク番号」は、車載装置の車輪速センサ45,地磁気センサ46,ジャイロセンサ47、及びGPS受信装置48から毎秒1回以下の頻度で得られる緯度・経度の情報により求めた自動車13の現在地の位置情報を、データ記憶装置42に格納される地図データベース119に含まれるリンクの開始ノード及び終了ノードを含むリンク内各座標とマッチングすることによって特定される。 The “link number” is the current location of the vehicle 13 obtained from the latitude / longitude information obtained at a frequency of once or less per second from the wheel speed sensor 45, the geomagnetic sensor 46, the gyro sensor 47, and the GPS receiver 48 of the in-vehicle device. The position information is specified by matching each coordinate in the link including the start node and the end node of the link included in the map database 119 stored in the data storage device 42.
 「リンク長」は、地図データに含まれており、対応するリンク番号をキーにして参照することができる。 "Link length" is included in the map data and can be referenced using the corresponding link number as a key.
 「リンク旅行時間」は、リンクの開始ノード及び終了ノードの通過日時を特定し、終了ノード通過日時と開始ノード通過日時との差から算出することができる。この値も通過日時と同様に、1秒単位のデータである。なお、リンク旅行時間の代わりに、リンク旅行時間とリンク長を用いて得られるリンク平均速度を走行履歴データに記録するようにしてもよい。 The “link travel time” can be calculated from the difference between the end node passage date and time and the start node passage date and time by specifying the passage date and time of the start node and end node of the link. This value is also data in units of one second like the passage date and time. Instead of the link travel time, the link average speed obtained using the link travel time and the link length may be recorded in the travel history data.
 「路面状態」と「屋外の明るさ」は、車載装置11の車内LAN装置49を介して、車載装置11の外部から得られる値である。路面状態は、自動車13に備えられた車載カメラ及び画像認識装置から認識され、屋外の明るさは、自動車13に備えられた照度センサから得られる。 “Road surface condition” and “outdoor brightness” are values obtained from the outside of the in-vehicle device 11 via the in-vehicle LAN device 49 of the in-vehicle device 11. The road surface state is recognized from an in-vehicle camera and an image recognition device provided in the automobile 13, and outdoor brightness is obtained from an illuminance sensor provided in the automobile 13.
 このようにして自動車13の走行履歴データをレコード単位で蓄積した走行履歴データベース118は、データ通信装置12を介して走行特性データ生成装置10に集められ、走行履歴データベース102として蓄積される。 The travel history database 118 that accumulates the travel history data of the automobile 13 in record units in this way is collected in the travel characteristic data generation device 10 via the data communication device 12 and stored as the travel history database 102.
 次に、図8を用いて、本発明に関わる走行特性データ生成装置10の処理について説明する。 Next, processing of the travel characteristic data generation apparatus 10 according to the present invention will be described with reference to FIG.
 はじめに、走行特性データ生成装置10は、その図示されていないデータ記憶装置からドライバー属性分類条件100のデータファイルを読み込む。また、走行特性データ生成装置10は、そのデータ記憶装置からドライバープロファイル106を読み込む。走行特性データ生成装置10は、走行履歴データベース102から走行履歴データを読み込み、基準交通情報データベース104から基準交通情報データを読み込む(ステップS51)。 First, the driving characteristic data generation device 10 reads a data file of the driver attribute classification condition 100 from a data storage device (not shown). The driving characteristic data generation device 10 reads the driver profile 106 from the data storage device. The travel characteristic data generation device 10 reads travel history data from the travel history database 102 and reads reference traffic information data from the reference traffic information database 104 (step S51).
 次に、走行特性データ生成装置10は、データ分類部101にて、ステップS51において読み込んだドライバー属性分類条件100及びドライバープロファイル106に基づき、ステップS51において読み込んだ走行履歴データを分類する。ここで、ドライバー属性分類条件100が前述した年齢30歳未満の若年層を属性分類1、30歳以上50歳未満を属性分類2、50歳以上65歳未満を属性分類3、65歳以上の高齢者層を属性分類4に分けるという年齢に基づく分類ルールを用いる場合の例を述べる。この時、ドライバープロファイル106が図5に示す内容であって、走行履歴データ102が図4に示すデータである場合には、ドライバーIDが1及び2のドライバーの生年月日と現在の日時(2009年1月10日とする)から、ドライバーの年齢はそれぞれ33歳,30歳と分かり、共に30歳以上50歳未満であることから属性分類2に属することになる。したがって、ドライバーIDが1及び2のドライバーに関わる走行履歴データは、全て属性分類2に属すると分類する。このように、走行特性データ生成装置10は、走行履歴データベース102の全レコードについて、ドライバー属性分類条件100に基づき属性に分類する(ステップS52)。 Next, the travel characteristic data generation device 10 classifies the travel history data read in step S51 by the data classification unit 101 based on the driver attribute classification condition 100 and the driver profile 106 read in step S51. Here, the driver attribute classification condition 100 is the above-mentioned younger age group under 30 years old, the attribute class 1, 30 years old and younger than 50 years old attribute class 2, 50 years old and younger than 65 years old attribute class 3, 65 years old and older An example of using an age-based classification rule that divides the demographic group into attribute classification 4 will be described. At this time, if the driver profile 106 has the contents shown in FIG. 5 and the travel history data 102 is the data shown in FIG. 4, the date of birth and current date and time (2009) of the drivers whose driver IDs are 1 and 2 The driver's age is 33 years old and 30 years old, and both belong to attribute classification 2 because they are both 30 years old and younger than 50 years old. Therefore, all the travel history data related to the drivers with driver IDs 1 and 2 are classified as belonging to attribute classification 2. As described above, the travel characteristic data generation device 10 classifies all the records in the travel history database 102 into attributes based on the driver attribute classification condition 100 (step S52).
 次に、走行特性データ生成装置10は、属性分類別走行特性データ生成部103において、属性に分類された走行履歴データベース102の全レコードと、ステップS51において読み込んだ基準交通情報データとを比較することにより、各レコードの当該基準交通情報データに対する傾向を分析し、補正パラメータを生成する。当該補正パラメータは、属性分類別走行特性データ105として格納される(ステップS53)。 Next, the travel characteristic data generation device 10 compares all records in the travel history database 102 classified into attributes with the reference traffic information data read in step S51 in the attribute classification-specific travel characteristic data generation unit 103. Thus, the tendency of each record with respect to the reference traffic information data is analyzed, and a correction parameter is generated. The correction parameters are stored as attribute classification-specific traveling characteristic data 105 (step S53).
 ここで、データ分類部101により走行履歴データベース102の全レコードが図4に示すように分類され、基準交通情報データが図6に示す値であった場合に、同一リンク番号のリンクにおけるリンク旅行時間と基準旅行時間を比較すると、図4におけるリンク旅行時間の方が図6における基準旅行時間よりも旅行時間が短いことが分かる。これを速度に換算して言えば、図4の走行履歴データに残る各ドライバーの運転が図6の基準交通情報データ104よりも高速走行の傾向にあることがわかる。 Here, when all records in the travel history database 102 are classified as shown in FIG. 4 by the data classification unit 101 and the reference traffic information data has the values shown in FIG. And the reference travel time are compared, it can be seen that the link travel time in FIG. 4 is shorter than the reference travel time in FIG. If this is converted into speed, it can be seen that the driving of each driver remaining in the travel history data of FIG. 4 tends to travel at a higher speed than the reference traffic information data 104 of FIG.
 このような傾向分析により、以下に示す式1のように、同一リンクにおける同一の属性分類の全てのデータに関して、走行履歴データのリンク旅行時間Thから基準交通情報の旅行時間Tbを減算し、この差分(Th-Tb)それぞれの平均値Taを基準交通情報データを補正するための補正パラメータとする。 By such trend analysis, the travel time Tb of the reference traffic information is subtracted from the link travel time Th of the travel history data for all data of the same attribute classification in the same link, as shown in Equation 1 below. The average value Ta of each difference (Th−Tb) is used as a correction parameter for correcting the reference traffic information data.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式1において、iはあるリンクにおけるデータのサフィクスであり、nは処理対象とするリンクのデータ数である。 In Expression 1, i is a data suffix in a certain link, and n is the number of data of a link to be processed.
 本例では、走行履歴データのリンク旅行時間及び基準交通情報データにおける基準旅行時間のように、属性分類走行特性データ生成部103はリンクの旅行時間を使用して補正パラメータを求めているが、基準交通情報データとしてリンクにおける平均速度を基準値としている場合、式1における旅行時間の代わりにリンクごとの平均速度を用いることになる。 In this example, the attribute classification travel characteristic data generation unit 103 obtains the correction parameter using the travel time of the link, such as the travel time of the link history of the travel history data and the reference travel time of the reference traffic information data. When the average speed at the link is used as the reference value as the traffic information data, the average speed for each link is used instead of the travel time in Equation 1.
 また、ここで説明した例では、補正パラメータTaは一旦リンクごとに生成されるが、リンクごとに生成されるパラメータをエリアや道路種別など所定の単位で集計し、それらの平均値を各集計単位についての補正パラメータとして用いてもよい。例えば図3に示すフォーマットの地図データにおいては、個々のリンクに関して、エリアに関するコード(2次メッシュコード)や道路種別(高速道路,一般道路など)が関連付けられており、これらを参照することで属性分類走行特性データ生成部103は、集計単位ごとの補正パラメータを算出することができる。 Further, in the example described here, the correction parameter Ta is once generated for each link, but the parameters generated for each link are aggregated in a predetermined unit such as an area or a road type, and an average value thereof is calculated for each aggregation unit. May be used as a correction parameter. For example, in the map data in the format shown in FIG. 3, an area-related code (secondary mesh code) and road type (highway, general road, etc.) are associated with each link. The classified travel characteristic data generation unit 103 can calculate a correction parameter for each aggregation unit.
 次に、図9を用いて、本発明に関わる車載装置11の処理を説明する。 Next, the processing of the in-vehicle device 11 according to the present invention will be described with reference to FIG.
 はじめに、車載装置11は、目的地設定部110において、ユーザの音声入出力装置43あるいは入力装置44に対するHMI操作によって目的地が設定される(ステップS61)。ここで目的地は、地図表示画面上で移動させたカーソルを目的地として入力する方法、または、目的地検索メニューにて、ジャンル選択後の目的地(POI)一覧から選択する方法、あるいは電話番号,住所等を指定した検索によって目的地を設定する方法により設定される。 First, in the in-vehicle device 11, the destination is set by the HMI operation on the voice input / output device 43 or the input device 44 by the user in the destination setting unit 110 (step S 61). Here, the destination is a method of inputting a cursor moved on the map display screen as a destination, a method of selecting from a list of destinations (POI) after selecting a genre in a destination search menu, or a telephone number. This is set by a method of setting a destination by a search specifying an address or the like.
 次に、車載装置11は、交通情報補正部111において、基準交通情報データベース112から基準交通情報データを読み込み、データ記憶装置42から属性分類別走行特性データ113を読み込む(ステップS62)。そして、車載装置11は、交通情報補正部111において、当該属性分類別走行特性データ113を用いて当該基準交通情報データの交通情報を補正する(ステップS63)。 Next, the in-vehicle device 11 reads the reference traffic information data from the reference traffic information database 112 in the traffic information correction unit 111, and reads the travel characteristic data 113 by attribute classification from the data storage device 42 (step S62). And the vehicle equipment 11 correct | amends the traffic information of the said reference | standard traffic information data in the traffic information correction | amendment part 111 using the said attribute classification driving | running | working characteristic data 113 (step S63).
 交通情報補正部111が基準交通情報データベース112の基準交通情報データを補正する処理について説明する。属性分類別走行特性データ113によるドライバーの属性分類ごとの補正パラメータをTa、基準交通情報データベース112による基準交通情報データをTbとすると、補正された基準交通情報データTb′は次の(式2)のように表される。 A process in which the traffic information correction unit 111 corrects the reference traffic information data in the reference traffic information database 112 will be described. Assuming that the correction parameter for each driver attribute classification based on the driving characteristic data 113 according to attribute classification is Ta and the reference traffic information data based on the reference traffic information database 112 is Tb, the corrected reference traffic information data Tb ′ is expressed by the following (Equation 2). It is expressed as
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このようにして対象ドライバーの走行履歴データが十分に存在しなくても、そのドライバーと同じ属性分類に属する別のドライバーから収集された走行履歴データが十分に存在すれば、その走行履歴データに基づいた属性分類別走行特性データ105における補正パラメータTaを走行特性データ生成装置10から入手することで、交通情報補正部111が基準交通情報データベース112に保持している基準交通情報データによる交通情報Tbを補正し、精度の高い補正交通情報データTb′を得ることができる。 In this way, even if there is not enough driving history data for the target driver, if there is enough driving history data collected from another driver belonging to the same attribute classification as the driver, the driving history data is based on the driving history data. The traffic parameter Tb based on the reference traffic information data held in the reference traffic information database 112 by the traffic information correction unit 111 is obtained by obtaining the correction parameter Ta in the travel characteristic data 105 according to the attribute classification from the travel characteristic data generation device 10. The corrected traffic information data Tb ′ with high accuracy can be obtained.
 ここで、本例では、属性分類別走行特性データ113における補正パラメータTaは、リンクごとに生成されるものとして説明しているが、前述のようにリンクごとに生成された属性分類別走行特性データ113をエリアや道路種別など所定の単位で集計し、それらの平均値を各集計単位についての属性分類別走行特性データにおける補正パラメータとして用いてもよく、その場合には各集計単位に求めた補正パラメータ(走行特性データ)をそれぞれの集計単位に該当するリンクの基準交通情報データに対して一括適用することができる。 Here, in this example, the correction parameter Ta in the attribute classification-specific travel characteristic data 113 is described as being generated for each link, but as described above, the attribute characteristic-specific travel characteristic data generated for each link. 113 may be aggregated in a predetermined unit such as area or road type, and an average value thereof may be used as a correction parameter in driving characteristic data by attribute classification for each aggregation unit. In this case, the correction obtained for each aggregation unit Parameters (travel characteristic data) can be collectively applied to the reference traffic information data of the links corresponding to the respective aggregation units.
 次に、車載装置11は、経路探索部114において、前述したように、車載装置11の車輪速センサ45,地磁気センサ46,ジャイロセンサ47の各種得センサ及びGPS受信装置48で計測された位置情報の各データから求めた自動車13の現在地、またはユーザが設定する出発地、及び目的地設定部110で設定された目的地とを結ぶ経路を、探索データ115を参照して最適な経路(推奨経路)を探索する(ステップS64)。この時、補正された交通情報データTb′を用いて、ダイクストラ法によって旅行時間をリンクのコストとしたときの最短時間経路が推奨経路として算出される。 Next, the in-vehicle device 11 uses the route searching unit 114 to determine the position information measured by the wheel speed sensor 45, the geomagnetic sensor 46, the various sensors of the gyro sensor 47, and the GPS receiver 48 of the in-vehicle device 11 as described above. Referring to the search data 115, an optimum route (recommended route) that connects the current location of the vehicle 13 obtained from each of the data, or the starting point set by the user and the destination set by the destination setting unit 110 is referred to. ) Is searched (step S64). At this time, using the corrected traffic information data Tb ′, the shortest time route when the travel time is the cost of the link is calculated as a recommended route by the Dijkstra method.
 次に、車載装置11は、経路誘導部116において、経路探索部114により探索された推奨経路の情報に基づき、データ記憶装置42に格納される地図データから誘導に必要な誘導データを作成する。この誘導データには、主要な交差点,構造が複雑な交差点、あるいは右折または左折が必要な交差点(これらを誘導交差点と呼ぶ)に関する拡大図、及び誘導交差点の進入から脱出に至る詳細な経路情報、または誘導交差点までの距離情報等が含まれる。そして、作成した誘導データを基に、逐次求められる現在地に応じて、経路案内を行う(ステップS65)。 Next, the in-vehicle device 11 creates guidance data necessary for guidance from the map data stored in the data storage device 42 based on the recommended route information searched by the route search unit 114 in the route guidance unit 116. This guidance data includes major intersections, intersections with complex structures, or enlarged views of intersections that need to turn right or left (referred to as guidance intersections), and detailed route information from entry to exit of the guidance intersection, Or the distance information etc. to the guidance intersection are included. Then, based on the created guidance data, route guidance is performed according to the current location that is sequentially obtained (step S65).
 例えば、車載装置11は、ステップS65において、現在地から一番近い誘導交差点までの距離をディスプレイ41に表示したり、音声で通知したりする。また、現在地から所定距離の範囲内に誘導交差点があれば、車載装置11は、ディスプレイ41に表示される誘導交差点までの距離を逐次更新するとともに、「この先500mで○○交差点を左方向です」といった音声により、進行方向へ誘導する。また、車載装置11は、算出された推奨経路を構成する各リンクの旅行時間の和を算出することによって目的地までの総旅行時間を算出する。そして、車載装置11は、現在時刻と総旅行時間から目的地への到着予想時刻を算出する。ここで、各リンクの旅行時間は、補正前、すなわち基準交通情報データの旅行時間と、補正後の旅行時間の2種類が存在する。ただし、補正後の旅行時間が存在しない場合には補正前の旅行時間で代用するものとする。従って、車載装置11は、目的地への到着予想時刻について、補正前後2種類の旅行時間に基づく値を計算する。 For example, in step S65, the in-vehicle device 11 displays the distance from the current location to the nearest guidance intersection on the display 41 or notifies by voice. In addition, if there is a guided intersection within a predetermined distance from the current location, the in-vehicle device 11 sequentially updates the distance to the guided intersection displayed on the display 41, and "the intersection is left in the future 500m" Is guided in the direction of travel. Further, the in-vehicle device 11 calculates the total travel time to the destination by calculating the sum of the travel time of each link constituting the calculated recommended route. And the vehicle equipment 11 calculates the arrival time to the destination from the present time and the total travel time. Here, there are two types of travel time for each link: before the correction, that is, the travel time of the reference traffic information data, and the travel time after the correction. However, when the travel time after correction does not exist, the travel time before correction is substituted. Therefore, the in-vehicle device 11 calculates a value based on two types of travel times before and after the correction for the estimated arrival time at the destination.
 図10は、ステップS65の経路誘導時におけるディスプレイ41の表示例である。この図において、90は現在位置、91は現在の日時、92は目的地設定部110にてユーザによって設定された目的地、93は経路探索部114によって計算された推奨経路を示す。94は目的地への到着予想時刻であり、そのうち、「標準」は補正前、すなわち基準交通情報データに基づいて算出された値であり、「補正」は属性分類別走行特性データ113により補正された交通情報に基づいて算出された値である。これにより、ユーザはドライバーの属性分類による補正結果が基準値に比べていかなるものであるかを知ることができる。 FIG. 10 is a display example of the display 41 at the time of route guidance in step S65. In this figure, 90 indicates the current position, 91 indicates the current date and time, 92 indicates the destination set by the user in the destination setting unit 110, and 93 indicates the recommended route calculated by the route search unit 114. 94 is the estimated arrival time at the destination. Among them, “standard” is a value before correction, that is, a value calculated based on the reference traffic information data, and “correction” is corrected by the travel characteristic data 113 by attribute classification. It is a value calculated based on the traffic information. Thereby, the user can know what the correction result by the attribute classification of the driver is compared with the reference value.
 次に、車載装置11は、走行履歴蓄積部117において、前述したように、データ記憶装置42に格納された地図データ等の各種データや車輪速センサ45,地磁気センサ46,ジャイロセンサ47の各種センサで計測される走行中の値及びGPS受信装置48で計測される位置情報に基づき求めた測位結果から、車両の走行データを計測,処理することで、走行履歴データを生成し、走行履歴データベース118に蓄積する(ステップS66)。走行履歴データベース118に蓄積された走行履歴データは、通信ネットワーク14を介して走行特性データ生成装置10に送信される。なお、自動車13のエンジンが始動し、車載装置11が始動した後であれば、車両の走行データを計測,処理できるため、この走行履歴蓄積部117の処理は、ステップS61~S65までの処理に関わらず定期的に実行される。 Next, the in-vehicle device 11 uses the travel history storage unit 117 to store various data such as map data stored in the data storage device 42 and various sensors such as the wheel speed sensor 45, the geomagnetic sensor 46, and the gyro sensor 47 as described above. The travel history data is generated by measuring and processing the travel data of the vehicle from the value measured during the travel and the positioning information measured by the GPS receiver 48 to generate travel history data. (Step S66). The travel history data accumulated in the travel history database 118 is transmitted to the travel characteristic data generation device 10 via the communication network 14. It should be noted that, since the vehicle travel data can be measured and processed after the engine of the automobile 13 is started and the in-vehicle device 11 is started, the process of the travel history accumulating unit 117 is the process from step S61 to S65. Regardless, it is executed periodically.
 これにより車載装置11は、ドライバーの走行履歴データが存在しない場合でも、そのドライバーと同じ属性分類に属する別のドライバーの走行履歴データから生成された属性分類別走行特性データ105を走行特性データ生成装置10から入手し、基準交通情報データ112を補正することで精度の高い補正交通情報を得ることができるようになる。そして、この精度の高い補正交通情報を用いた最小コスト経路探索により、より確実に渋滞を避けた高品質な経路誘導を行うことができるようになる。 As a result, the in-vehicle device 11 uses the attribute characteristic-specific traveling characteristic data 105 generated from the traveling history data of another driver belonging to the same attribute classification as the driver even when the driving history data of the driver does not exist, as the driving characteristic data generation device. 10 and the reference traffic information data 112 is corrected to obtain highly accurate corrected traffic information. Then, by the minimum cost route search using the corrected traffic information with high accuracy, it becomes possible to perform high-quality route guidance that avoids traffic congestion more reliably.
(第2実施形態)
 第1実施形態においては、車載装置11は、ドライバーの走行履歴データが十分に存在しない状態であっても、そのドライバーと同じ属性分類に属する別のドライバーの走行履歴データに基づく属性分類別走行特性データ105を適用して、基準交通情報データベース112の基準交通情報データを補正することで交通情報の精度を向上させていた。これは、ドライバーが走行履歴データを取得する車載装置11を初めて使う場合や数回目に使う場合など使い始めて間もない状況において有効である。
(Second Embodiment)
In the first embodiment, the in-vehicle device 11 has a driving characteristic by attribute classification based on the driving history data of another driver belonging to the same attribute classification as the driver even when the driving history data of the driver is not sufficiently present. The accuracy of the traffic information is improved by applying the data 105 and correcting the reference traffic information data in the reference traffic information database 112. This is effective in situations where the driver has just started using the vehicle-mounted device 11 that acquires travel history data for the first time or when using it for the first time.
 この考えは、ドライバーの走行特性が同じ属性分類に属する別のドライバーの走行特性と類似するという考えに基づくものであるが、ドライバーの走行特性が必ずしも一致するものではないことから、車載装置11の利用を重ねた後など該ドライバーの走行履歴データが十分に存在する状況においては、それぞれのドライバーによる走行履歴データを用いて基準交通情報データを補正する方が精度はより高くなると考えられる。 This idea is based on the idea that the driving characteristics of a driver are similar to the driving characteristics of another driver belonging to the same attribute classification. However, since the driving characteristics of the driver do not necessarily match, In a situation where the driving history data of the driver is sufficiently present after repeated use, it is considered that the accuracy is higher when the reference traffic information data is corrected using the driving history data of each driver.
 そこで、本発明の第2実施形態においては、ドライバーによる所定量以上の走行履歴データが存在する場合において、各自の走行履歴データに基づいて未走行道路を含む全ての道路の基準交通情報データを補正することによって、当該ドライバーの走行特性を考慮する。 Therefore, in the second embodiment of the present invention, when there is a travel history data exceeding a predetermined amount by the driver, the reference traffic information data of all roads including the untraveled road is corrected based on the respective travel history data. To consider the driving characteristics of the driver.
 本発明の第2実施形態における走行特性データ生成装置10は、第1実施形態と同じである。 The traveling characteristic data generation device 10 in the second embodiment of the present invention is the same as that in the first embodiment.
 しかし、車載装置は第1実施形態と異なる。図11は、第2実施形態における車載装置1011の機能ブロック図を示している。車載装置1011は、図11に示す機能ブロック図のように、第1実施形態で説明した車載装置11の機能に加え、蓄積したドライバーごとの走行履歴データを基にドライバーの走行特性データを生成する機能を有する。このため、車載装置1011は、車載装置11に、属性分類別走行特性データ120,ドライバープロファイル121,データ分類部122、及びドライバー別走行特性データ生成部123が追加された構成となっている。 However, the in-vehicle device is different from the first embodiment. FIG. 11 shows a functional block diagram of the in-vehicle device 1011 in the second embodiment. As shown in the functional block diagram of FIG. 11, the in-vehicle device 1011 generates the driving characteristic data of the driver based on the accumulated driving history data for each driver in addition to the functions of the in-vehicle device 11 described in the first embodiment. It has a function. For this reason, the in-vehicle device 1011 has a configuration in which attribute-specific traveling characteristic data 120, a driver profile 121, a data classification unit 122, and a driver-specific traveling characteristic data generation unit 123 are added to the in-vehicle device 11.
 次に、図11の車載装置1011を構成する各部の処理について説明する。なお、第1実施形態における車載装置11と同じ部分についての説明は省略する。 Next, processing of each part constituting the in-vehicle device 1011 in FIG. 11 will be described. In addition, description about the same part as the vehicle-mounted apparatus 11 in 1st Embodiment is abbreviate | omitted.
 属性分類別走行特性データ120は、走行特性データ生成装置10における属性分類別走行特性データ105と同様に属性分類ごとに基準交通情報を補正するパラメータであるが、ここでは個々のドライバーごとの走行履歴データから生成された補正パラメータも含む。属性分類別走行特性データ120は、第1実施形態と同様に走行特性データ生成装置10より得られる他、ドライバー別走行特性データ生成部123によって生成される補正パラメータも記憶される。 The attribute characteristic-specific travel characteristic data 120 is a parameter for correcting the reference traffic information for each attribute class as in the case of the attribute characteristic-specific travel characteristic data 105 in the travel characteristic data generation device 10, but here, the travel history for each individual driver. It also includes correction parameters generated from the data. The attribute classification-specific travel characteristic data 120 is obtained from the travel characteristic data generation device 10 as in the first embodiment, and also stores correction parameters generated by the driver-specific travel characteristic data generation unit 123.
 ドライバープロファイル121は、第1実施形態の走行特性データ生成装置10におけるドライバープロファイル106と同様に、個々のドライバーに関する情報を含むデータである。なお、第2実施形態においては、ドライバーを識別できればよいので、ドライバーID以外の情報はなくても差し支えない。 The driver profile 121 is data including information on individual drivers, like the driver profile 106 in the travel characteristic data generation device 10 of the first embodiment. Note that in the second embodiment, it is sufficient that the driver can be identified, so there is no problem even if there is no information other than the driver ID.
 データ分類部122は、ドライバープロファイル121に登録されているドライバーIDに基づき、走行履歴データ118を分類する処理を行う。また、分類されたドライバーIDごとの走行履歴データの分量について、所定の方法によって判定する処理も行う。この処理結果は、ドライバー別走行特性データ生成部123において利用される。処理の詳細については、処理フローとともに後述する。 The data classification unit 122 performs processing for classifying the travel history data 118 based on the driver ID registered in the driver profile 121. Further, a process for determining the amount of travel history data for each classified driver ID by a predetermined method is also performed. This processing result is used in the driver-specific travel characteristic data generation unit 123. Details of the processing will be described later together with the processing flow.
 ドライバー別走行特性データ生成部123は、データ分類部122で分類されたドライバーIDごとの走行履歴データを、基準交通情報データ112または属性分類別走行特性データ120と比較することにより、走行履歴データの基準交通情報データ112に対する傾向を分析し、基準交通情報データ112を補正するためのパラメータである属性分類別走行特性データ120を生成し出力する処理を行う。この属性分類別走行特性データ120のデータフォーマットも、第1実施形態と同様である。処理の詳細については、処理フローとともに後述する。 The driving characteristic data generation unit 123 for each driver compares the driving history data for each driver ID classified by the data classification unit 122 with the reference traffic information data 112 or the driving characteristic data 120 for each attribute classification, thereby The tendency with respect to the reference traffic information data 112 is analyzed, and the attribute characteristic-specific traveling characteristic data 120 that is a parameter for correcting the reference traffic information data 112 is generated and output. The data format of the attribute characteristic-specific traveling characteristic data 120 is the same as that in the first embodiment. Details of the processing will be described later together with the processing flow.
 次に、図12を用いて、本発明に関わる車載装置1011における属性分類別走行特性データ120の生成処理について説明する。 Next, with reference to FIG. 12, a description will be given of the generation processing of attribute-specific traveling characteristic data 120 in the in-vehicle device 1011 according to the present invention.
 はじめに、車載装置1011は、データ分類部122において、属性分類別走行特性データ120を生成すべきドライバーをドライバープロファイル121から選択する(ステップS71)。ドライバーは、車載装置1011のディスプレイ41に表示されるドライバー一覧表よりHMIによってユーザが選択してもよいし、ドライバープロファイル121に登録されているドライバーIDの昇順に自動的に選択されることにしてもよい。なお、ドライバーがドライバープロファイル121に登録されていない場合には、ディスプレイ41に表示されるHMIによってユーザが新規で登録を行うものとする。 First, the in-vehicle device 1011 uses the data classification unit 122 to select a driver from the driver profile 121 that should generate the attribute characteristic-specific traveling characteristic data 120 (step S71). The driver may be selected by the user by the HMI from the driver list displayed on the display 41 of the in-vehicle device 1011 or automatically selected in the ascending order of the driver ID registered in the driver profile 121. Also good. When the driver is not registered in the driver profile 121, it is assumed that the user newly registers by the HMI displayed on the display 41.
 次に、車載装置1011は、基準交通情報データ112,走行履歴データ118,属性分類別走行特性データ120など、処理に必要な各種データをデータ記憶装置42から読み込む(ステップS72)。 Next, the in-vehicle device 1011 reads various data necessary for processing, such as the reference traffic information data 112, the travel history data 118, and the travel characteristic data 120 by attribute classification, from the data storage device 42 (step S72).
 次に、車載装置1011は、ステップS71の処理で選択されたドライバーについてユーザプロファイル121のドライバーIDを特定する。車載装置1011は、走行履歴データ118を検索して当該ドライバーIDに該当するデータレコードを抽出する(ステップS73)。例えば、ドライバーIDが“1”であるドライバーが選択された場合には、走行履歴データ118に図4に示す走行履歴のレコードが蓄積されている場合、ドライバーIDが“1”であるデータのレコード(はじめの2行分のデータ)が抽出される。 Next, the in-vehicle device 1011 identifies the driver ID of the user profile 121 for the driver selected in step S71. The in-vehicle device 1011 searches the travel history data 118 and extracts a data record corresponding to the driver ID (step S73). For example, when a driver whose driver ID is “1” is selected, a record of data whose driver ID is “1” is stored when the record of the driving history shown in FIG. (First two lines of data) are extracted.
 次に、車載装置1011は、ステップS73の処理で抽出された走行履歴データの分量を解析する。初めに、車載装置1011は、ステップS73の処理で抽出された走行履歴データのレコード数を求める。次に、車載装置1011は、当該レコード数と2つの閾値(ε1,ε2)とを比較し、データ分量判定値の値を決定する。閾値ε1,ε2はともに正の数であり、ε1>ε2の関係がある。当該レコード数がε1よりも大きい場合は、ステップS71で選択されたドライバーについては十分な量の走行履歴データが存在すると判定され、データ分量判定値として1が与えられる。当該レコード数がε1以下、かつε2よりも大きければ、ステップS71で選択されたドライバーについては十分な量ではないが最低限の量の走行履歴データが存在すると判定され、データ分量判定値として2が与えられる。そして、当該レコード数がε2以下であれば、ステップS71で選択されたドライバーについては最低限の量の走行履歴データも存在しないと判定され、データ分量判定値として3が与えられる(ステップS74)。 Next, the in-vehicle device 1011 analyzes the amount of travel history data extracted in the process of step S73. First, the in-vehicle device 1011 obtains the number of records of the travel history data extracted in the process of step S73. Next, the in-vehicle device 1011 compares the number of records with two threshold values (ε1, ε2), and determines the value of the data amount determination value. The threshold values ε1 and ε2 are both positive numbers and have a relationship of ε1> ε2. If the number of records is greater than ε1, it is determined that there is a sufficient amount of travel history data for the driver selected in step S71, and 1 is given as the data amount determination value. If the number of records is equal to or less than ε1 and greater than ε2, it is determined that there is not a sufficient amount of travel history data for the driver selected in step S71, but a minimum amount of travel history data exists. Given. If the number of records is ε2 or less, it is determined that there is no minimum amount of travel history data for the driver selected in step S71, and 3 is given as the data amount determination value (step S74).
 ここでは、ステップS73の処理で抽出されたレコードの個数で判定する方法を例示したが、当該レコードに含まれる項目ごとに分類し、各分類の個数に基づいて判定してもよい。たとえば、図4に示す走行履歴データのデータフォーマットの場合、「路面状態」や「屋外の明るさ」の値ごとのレコード数で判定することも考えられる。たとえば、「路面状態」で分類した場合は、“乾燥”,“湿潤”,“凍結”に分類できる。また、「屋外の明るさ」で分類した場合は、“明るい”,“暗い”に分類できる。ここで、レコードを「路面状態」の値で分ける場合の例では、ステップS73の処理で抽出されたレコード数を“乾燥”のレコード数,“湿潤”のレコード数、及び“凍結”のレコード数に分類し、各分類のレコード数に対して、前述の閾値との比較を行いデータ分量判定値の値を決定すればよい。この場合、走行履歴データによっては、全ての路面状態のデータ分量判定値が同じになることもあれば、異なるデータ分量判定値になることもある。ステップS73の処理で抽出されたレコードを「屋外の明るさ」の値で分類する場合も同様である。 Here, although the method of determining based on the number of records extracted in the process of step S73 is illustrated, classification may be performed for each item included in the record, and determination may be made based on the number of each classification. For example, in the case of the data format of the travel history data shown in FIG. For example, when classified by “road surface condition”, it can be classified into “dry”, “wet”, and “freeze”. In addition, when classified according to “outdoor brightness”, it can be classified into “bright” and “dark”. Here, in the example in which the records are separated by the value of “road surface condition”, the number of records extracted in the process of step S73 is the number of “dry” records, the number of “wet” records, and the number of “freeze” records. And the number of records of each classification is compared with the above-described threshold value to determine the data amount determination value. In this case, depending on the travel history data, the data amount determination values for all road surface conditions may be the same or different data amount determination values. The same applies to the case where the records extracted in step S73 are classified by the value of “outdoor brightness”.
 車載装置1011は、ステップS74の処理において、データ分量判定値として1または2が与えられた時には走行履歴データ量が十分であるとしてステップS75の処理に進み、データ分量判定値として3が与えられた時には走行履歴データ量が十分ではなかったものと判断して処理を終了する。データ分量判定値が「路面状態」または「屋外の明るさ」の値ごとに与えられる場合も同様である。 The in-vehicle device 1011 proceeds to the processing of step S75 because the travel history data amount is sufficient when 1 or 2 is given as the data amount determination value in the processing of step S74, and 3 is given as the data amount determination value. Sometimes it is determined that the amount of travel history data is not sufficient, and the process is terminated. The same applies when the data amount determination value is given for each value of “road surface condition” or “outdoor brightness”.
 次に、車載装置1011は、ドライバー別走行特性データ生成部123の処理に移る。ステップS74の処理において、データ分量判定値として1が与えられた時には、ドライバー別走行特性データ生成方法1が、データ分量判定値として2が与えられた時には、ドライバー別走行特性データ生成方法2が選択され、ステップS76で実行されるドライバー別走行特性データ生成方法が決定される(ステップS75)。ドライバー別走行特性データ生成方法1及びドライバー別走行特性データ生成方法2については、後で詳述する。 Next, the in-vehicle device 1011 proceeds to the processing of the driver-specific travel characteristic data generation unit 123. In the process of step S74, when 1 is given as the data quantity determination value, the driving characteristic data generation method 1 for each driver is selected, and when 2 is given as the data quantity determination value, the driving characteristic data generation method 2 by driver is selected. Then, the driving characteristic data generation method for each driver to be executed in step S76 is determined (step S75). The driver-specific travel characteristic data generation method 1 and the driver-specific travel characteristic data generation method 2 will be described in detail later.
 次に、車載装置1011は、ステップS75で決定されたドライバー別走行特性データ生成方法に従って、該当するドライバーについての補正パラメータが生成され、属性分類別走行特性データ120に追加される(ステップS76)。 Next, the in-vehicle device 1011 generates a correction parameter for the corresponding driver according to the driving characteristic data generation method for each driver determined in step S75, and adds it to the attribute characteristic-specific driving characteristic data 120 (step S76).
 ここで、ドライバー別走行特性データ生成方法1及びドライバー別走行特性データ生成方法2の例について説明する。ドライバー別走行特性データ生成方法1では、ステップS71で選択されたドライバーについては十分な量の走行履歴データが存在する状況であるため、当該ドライバーの運転特性を十分に反映させる。即ち、当該ドライバーの走行履歴データにおけるリンク旅行時間をTh、基準交通情報データの基準旅行時間をTbとすると、式1に基づいて補正パラメータTaが算出される。当該Taは、当該ドライバー個人の走行履歴データと基準交通情報データとの差分の平均値であり、当該ドライバーの運転特性を表した値である。 Here, examples of the driving characteristic data generation method 1 for each driver and the driving characteristic data generation method 2 for each driver will be described. In the driving characteristic data generation method 1 for each driver, since a sufficient amount of driving history data exists for the driver selected in step S71, the driving characteristics of the driver are sufficiently reflected. That is, the correction parameter Ta is calculated based on Equation 1, where Th is the link travel time in the travel history data of the driver and Tb is the reference travel time of the reference traffic information data. The Ta is an average value of the difference between the driving history data of the driver and the reference traffic information data, and is a value representing the driving characteristics of the driver.
 ドライバー別走行特性データ生成方法2では、ステップS71で選択されたドライバーについては十分ではないが最低限の量の走行履歴データが存在する状況であるため、このドライバーの運転特性を十分に反映させることはできないが、当該ドライバーの運転特性にもっとも近い属性の属性分類別走行特性データを選択する。具体的には、まず、当該ドライバーの走行履歴データにおけるリンク旅行時間をTh、基準交通情報データにおける基準旅行時間をTbとして、式1により補正パラメータTaを一旦リンクごとに算出し、これを該当ドライバーの運転特性とする。次に、属性分類別走行特性データ120に既に保存されている属性分類別の属性分類別走行特性データTa′jを参照する。ここで、Ta′jは、第1実施形態において説明したように、走行特性データ生成装置10により、例えば年齢層jのドライバーの走行履歴データから生成されたリンクごとの補正パラメータである。次に、以下の式3によって、属性分類jと該ドライバーの運転特性との乖離度δjを算出する。ここに、kはTaとTa′jにおいて共通に存在するリンクであり、mは共通に存在する全リンクのデータ数である。 In the driving characteristic data generation method 2 by driver, since the driver selected in step S71 is not sufficient but there is a minimum amount of driving history data, the driving characteristic of the driver should be sufficiently reflected. However, the driving characteristic data by attribute classification having the closest attribute to the driving characteristic of the driver is selected. Specifically, first, the correction parameter Ta is once calculated for each link using Equation 1 with Th as the link travel time in the travel history data of the driver and Tb as the reference travel time in the reference traffic information data. Operating characteristics. Next, reference is made to the attribute classification-specific traveling characteristic data Ta ′ j for each attribute classification already stored in the attribute classification-specific traveling characteristic data 120. Here, as described in the first embodiment, Ta ′ j is a correction parameter for each link generated by the travel characteristic data generation device 10 from, for example, the travel history data of the driver of the age group j. Next, the degree of deviation δ j between the attribute classification j and the driving characteristics of the driver is calculated according to the following expression 3. Here, k is a link that exists in common in Ta and Ta ′ j , and m is the number of data of all the links that exist in common.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 車載装置1011は、全ての年齢層jについて乖離度を求め、その中で乖離度の最小値を示す年齢層Jの属性分類がこのドライバーにとって運転特性がもっとも近いとみなす。従って、この場合、Ta′Jが、選択されるべき属性分類別走行特性データということになる。 The in-vehicle device 1011 obtains the divergence degree for all the age groups j, and among them, the attribute classification of the age group J indicating the minimum value of the divergence degree is regarded as the closest driving characteristic for this driver. Accordingly, in this case, Ta ′ J is the attribute characteristic-specific traveling characteristic data to be selected.
 ここで、本例では、属性分類別走行特性データTa及びTa′Jは一旦リンクごとに生成されているものとして説明しているが、第1実施形態で説明したように、リンクごとに生成される属性分類別走行特性データをエリアや道路種別など所定の単位で集計し、それらの平均値を各集計単位の属性分類別走行特性データとして用いられてもよい。この場合には各集計単位で求められた補正パラメータ(ドライバー別走行特性データ)を、集計単位に属するリンクの交通情報に対して一括適用することができる。 Here, in this example, it is described that the attribute characteristic-specific traveling characteristic data Ta and Ta ′ J are once generated for each link. However, as described in the first embodiment, they are generated for each link. The attribute characteristic-specific travel characteristic data may be aggregated in a predetermined unit such as an area or road type, and the average value thereof may be used as attribute classification-specific travel characteristic data of each aggregation unit. In this case, correction parameters (driver-specific travel characteristic data) obtained in each aggregation unit can be collectively applied to the traffic information of links belonging to the aggregation unit.
 次に、車載装置1011は、ドライバープロファイル121に登録されている全ユーザの処理が終了しているかを判定する(ステップS77)。全ユーザの処理が終了していなければ、ステップS71に戻って処理を行う。全ユーザの処理が終了していれば、本処理を終了する。 Next, the in-vehicle device 1011 determines whether all users registered in the driver profile 121 have been processed (step S77). If all the users have not been processed, the process returns to step S71 to perform the process. If the processing for all users has been completed, this processing ends.
 以上のようにして、車載装置1011は、自動車13のドライバーの運転特性を表した補正パラメータをドライバー別走行特性データとして算出することができ、当該補正パラメータで属性分類別走行特性データ120を更新することができる。また、更新された属性分類別走行特性データ120を参照することで、第1実施形態と同様に、基準交通情報データ112をより適切に補正でき、また、出発地と目的地を結ぶより適切な推奨経路を算出することができるようになる。 As described above, the in-vehicle device 1011 can calculate the correction parameter representing the driving characteristic of the driver of the automobile 13 as the driving characteristic data for each driver, and updates the driving characteristic data 120 for each attribute classification with the correction parameter. be able to. Also, by referring to the updated attribute classification-specific traveling characteristic data 120, the reference traffic information data 112 can be more appropriately corrected as in the first embodiment, and more appropriately connecting the departure place and the destination. The recommended route can be calculated.
 以上のように本発明の第2実施形態によって、ドライバーの走行履歴データの収集状況に応じて、適切な属性分類別走行特性データを生成または選択することで、各ドライバーの運転特性を考慮して基準交通情報データベース112の基準交通情報データを補正することができ、これによって精度の高い補正交通情報データが得ることができるようになる。そして、この精度の高い補正交通情報を用いた最短時間経路探索により、より確実に渋滞を避けた高品質な経路誘導を行うことができるようになる。 As described above, according to the second embodiment of the present invention, driving characteristics data for each attribute classification is generated or selected according to the collection status of the driving history data of the driver, and the driving characteristics of each driver are taken into consideration. It is possible to correct the reference traffic information data in the reference traffic information database 112, thereby obtaining highly accurate corrected traffic information data. And, by the shortest time route search using the corrected traffic information with high accuracy, it becomes possible to perform high-quality route guidance that avoids traffic congestion more reliably.
 以上のように、本発明にかかる走行特性データ生成装置,車載装置及び車載情報システムは、個々のドライバーの走行特性を考慮して交通情報データを補正することによって交通情報の精度を向上し、補正された交通情報を用いて計算される経路の品質を向上するという効果を有し、例えば、自動車に搭載されるカーナビゲーションシステムなどの車載装置、あるいは車載装置とサーバーから成る経路案内システムに対して、本発明を適用することができる。 As described above, the driving characteristic data generation device, the in-vehicle device, and the in-vehicle information system according to the present invention improve the accuracy of traffic information by correcting the traffic information data in consideration of the driving characteristics of individual drivers. For example, for a vehicle navigation system such as a car navigation system installed in an automobile, or a route guidance system including an in-vehicle apparatus and a server. The present invention can be applied.
10 走行特性データ生成装置
11,1011 車載装置
12 データ通信装置
13 自動車
14 通信ネットワーク
40 演算処理部
41 ディスプレイ
42 データ記憶装置
43 音声入出力装置
44 入力装置
45 車輪速センサ
46 地磁気センサ
47 ジャイロセンサ
48 GPS受信装置
49 車内LAN装置
50 通信I/F
101,122 データ分類部
102,118 走行履歴データベース
103 属性分類別走行特性データ生成部
104,112 基準交通情報データベース
105,113,120 属性分類別走行特性データ
106,121 ドライバープロファイル
111 交通情報補正部
123 ドライバー別走行特性データ生成部
DESCRIPTION OF SYMBOLS 10 Running characteristic data generation apparatus 11, 1011 In-vehicle apparatus 12 Data communication apparatus 13 Car 14 Communication network 40 Operation processing part 41 Display 42 Data storage apparatus 43 Voice input / output apparatus 44 Input apparatus 45 Wheel speed sensor 46 Geomagnetic sensor 47 Gyro sensor 48 GPS Receiver 49 Vehicle LAN device 50 Communication I / F
101, 122 Data classification unit 102, 118 Travel history database 103 Attribute classification-specific travel characteristic data generation unit 104, 112 Reference traffic information database 105, 113, 120 Attribute classification-specific travel characteristic data 106, 121 Driver profile 111 Traffic information correction unit 123 Driver-specific travel characteristics data generator

Claims (9)

  1.  車両に搭載され、経路探索のために用いる交通情報データと地図データを記憶した記憶手段と、
     当該交通情報データと地図データに基づき、出発地から目的地までの推奨経路を探索する経路探索手段と、
     他の複数のドライバーによる走行履歴データをドライバーの属性に基づく属性分類ごとに分類して求めた、前記交通情報を所定の属性分類ごとに補正するための属性分類別走行特性データを走行特性データ生成装置から受信するデータ通信手段と、
     当該車両のドライバーが該当する属性分類の属性分類別走行特性データを用いて前記交通情報データを補正する交通情報補正手段と、を備え、
     前記経路探索手段は、前記交通情報補正手段により補正した交通情報データを用いて推奨経路を探索する車載装置。
    A storage means mounted on the vehicle for storing traffic information data and map data used for route search;
    A route search means for searching for a recommended route from the departure point to the destination based on the traffic information data and the map data;
    Generate travel characteristic data by attribute classification for correcting the traffic information for each predetermined attribute classification, which is obtained by classifying the driving history data by other drivers for each attribute classification based on the driver attributes. Data communication means for receiving from the device;
    Traffic information correction means for correcting the traffic information data using attribute classification-specific travel characteristic data of the attribute classification to which the driver of the vehicle corresponds,
    The route search means is an in-vehicle device that searches for a recommended route using the traffic information data corrected by the traffic information correction means.
  2.  請求項1に記載の車載装置において、
     ドライバーの属性情報が含まれるドライバープロファイルと、
     ドライバーごとの走行データである走行履歴データと、
     前記ドライバープロファイルに基づき、前記走行履歴データをドライバーごとに分類するデータ分類手段と、
     前記ドライバープロファイルに登録されているドライバーごとに分類された前記走行履歴データと前記交通情報データを用いて前記属性分類ごとに補正するためのドライバー別走行特性データを生成する走行特性データ生成手段と、
    をさらに備え、
     前記交通情報補正手段は、前記属性分類別走行特性データまたは前記ドライバー別走行特性データを用いて前記交通情報データを補正する。
    The in-vehicle device according to claim 1,
    A driver profile that contains driver attribute information,
    Driving history data that is driving data for each driver,
    Data classification means for classifying the travel history data for each driver based on the driver profile;
    Driving characteristic data generating means for generating driving characteristic data for each driver for correcting for each attribute classification using the driving history data and the traffic information data classified for each driver registered in the driver profile;
    Further comprising
    The traffic information correction means corrects the traffic information data using the attribute classification-specific travel characteristic data or the driver-specific travel characteristic data.
  3.  請求項2に記載の車載装置において、
     前記走行特性データ生成手段は、ドライバーごとに分類された前記走行履歴データが第1の所定数より多く記録されている場合には、前記交通情報データの補正に用いるためのドライバー別走行特性データを生成し、第1の所定数以下で第2の所定数より多い場合には、前記属性分類別走行特性データに基づきドライバー別走行特性データを生成を生成する。
    The in-vehicle device according to claim 2,
    When the travel history data classified for each driver is recorded more than the first predetermined number, the travel characteristic data generation means generates driver-specific travel characteristic data for use in correcting the traffic information data. If it is generated and is greater than or equal to the second predetermined number and less than the first predetermined number, generation of driver-specific traveling characteristic data is generated based on the attribute classification-specific traveling characteristic data.
  4.  請求項3に記載の車載装置において、
     前記ドライバープロファイルは、各ドライバーのユーザIDを含み、
     前記走行履歴データは、走行した道路リンクのリンク番号と、当該道路リンクにおける旅行時間または平均速度のいずれか一方とを含み、
     前記データ分類手段は、前記ドライバープロファイルの情報に含まれるユーザIDに基づき、該ユーザIDごとに前記走行履歴データを分類し、
     前記走行特性データ生成手段は、分類されたユーザIDごとの走行履歴データの分量に基づき、前記ドライバー別走行特性データの生成方法を決定する。
    The in-vehicle device according to claim 3,
    The driver profile includes a user ID of each driver,
    The travel history data includes a link number of a road link that has traveled, and either one of travel time or average speed on the road link,
    The data classification means classifies the travel history data for each user ID based on the user ID included in the driver profile information,
    The driving characteristic data generating means determines a method of generating the driving characteristic data for each driver based on the amount of driving history data for each classified user ID.
  5.  請求項4に記載の車載装置において、
     前記走行特性データ生成手段は、
     ドライバーごとに分類された前記走行履歴データが前記第1の所定数以下で前記第2の所定数より多い場合には、該ドライバーの走行履歴データと前記交通情報データについて各リンクにおける旅行時間または平均速度を比較し、前記走行履歴データから前記交通情報データを減算して得られる差分を求め、該差分と乖離度が最小となる属性分類の前記属性分類別走行特性データをドライバー別走行特性データとして求める。
    The in-vehicle device according to claim 4,
    The running characteristic data generating means includes
    When the travel history data classified for each driver is less than or equal to the first predetermined number and greater than the second predetermined number, the travel time or average for each link for the travel history data and the traffic information data of the driver The speed is compared, the difference obtained by subtracting the traffic information data from the travel history data is obtained, and the attribute characteristic travel characteristic data of the attribute class that minimizes the difference from the difference is used as the driver characteristic travel characteristic data. Ask.
  6.  複数のドライバーの走行履歴データを用いて交通情報データを補正する走行特性データを生成する走行特性データ生成装置であって、
     ドライバーの属性に関する情報が含まれるドライバープロファイルと、
     ドライバーごとの走行データを蓄積した走行履歴データと、
     前記ドライバープロファイルに基づき、前記走行履歴データを所定の属性分類ごとに分類するデータ分類手段と、
     前記属性ごとに分類された前記走行履歴データを用いて前記交通情報データを属性分類ごとに補正するための属性分類別走行特性データを生成する走行特性データ生成手段を備える走行特性データ生成装置。
    A driving characteristic data generating device that generates driving characteristic data for correcting traffic information data using driving history data of a plurality of drivers,
    A driver profile that contains information about the attributes of the driver, and
    Driving history data that accumulates driving data for each driver,
    Data classification means for classifying the travel history data for each predetermined attribute classification based on the driver profile;
    A travel characteristic data generating device comprising travel characteristic data generating means for generating attribute characteristic-specific travel characteristic data for correcting the traffic information data for each attribute class using the travel history data classified for each attribute.
  7.  請求項6に記載の走行特性データ生成装置において、
     前記ドライバープロファイルは、各ドライバーのユーザIDを含み、更に生年月日,性別,免許取得日,累積運転距離の少なくとも一以上の情報を含み、
     前記走行履歴データは、走行したリンク番号と、前記リンクの旅行時間または平均速度のいずれか一方とを含み、
     前記データ分類手段において、前記属性分類は、前記ドライバープロファイル及び前記走行履歴データに含まれる情報に基づき決定される。
    In the travel characteristic data generation device according to claim 6,
    The driver profile includes a user ID of each driver, and further includes at least one information of date of birth, sex, date of license acquisition, cumulative driving distance,
    The travel history data includes a traveled link number and either the travel time or the average speed of the link,
    In the data classification means, the attribute classification is determined based on information included in the driver profile and the travel history data.
  8.  請求項6に記載の走行特性データ生成装置において、
     前記走行特性データ生成手段は、
     前記ドライバーの属性分類ごとの前記走行履歴データと前記交通情報データにおけるリンクごとの旅行時間を比較し、前記走行履歴データから前記交通情報を減算して得られる差分を求め、該差分の平均値を各リンクの交通情報データを属性分類ごとに補正するための属性分類別走行特性データとして求める。
    In the travel characteristic data generation device according to claim 6,
    The running characteristic data generating means includes
    The travel history data for each attribute classification of the driver is compared with the travel time for each link in the traffic information data, a difference obtained by subtracting the traffic information from the travel history data is obtained, and an average value of the differences is obtained. The traffic information data of each link is obtained as attribute characteristic-specific travel characteristic data for correcting for each attribute class.
  9.  請求項1乃至5のいずれか一項に記載の車載装置と、
     請求項6乃至8のいずれか一項に記載の走行特性データ生成装置と、
     前記走行特性データ生成装置と前記車載装置とを繋ぐデータ通信装置及び通信ネットワークと、から構成される車載情報システム。
    The in-vehicle device according to any one of claims 1 to 5,
    The travel characteristic data generation device according to any one of claims 6 to 8,
    An in-vehicle information system including a data communication device and a communication network that connect the travel characteristic data generation device and the in-vehicle device.
PCT/JP2010/068083 2009-10-14 2010-10-14 Vehicle-mounted device, travel characteristic data generation device, and vehicle-mounted information system WO2011046185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009236781A JP2011085431A (en) 2009-10-14 2009-10-14 Device for generating travel-characteristic-data, onboard device, and onboard information system
JP2009-236781 2009-10-14

Publications (1)

Publication Number Publication Date
WO2011046185A1 true WO2011046185A1 (en) 2011-04-21

Family

ID=43876234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068083 WO2011046185A1 (en) 2009-10-14 2010-10-14 Vehicle-mounted device, travel characteristic data generation device, and vehicle-mounted information system

Country Status (2)

Country Link
JP (1) JP2011085431A (en)
WO (1) WO2011046185A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250167A (en) * 2012-05-31 2013-12-12 Pioneer Electronic Corp Distance measuring device, distance correction method, distance correction program, and recording medium
CN112513950A (en) * 2018-08-27 2021-03-16 日立汽车系统株式会社 Update system and electronic control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI428249B (en) * 2011-08-23 2014-03-01 Ind Tech Res Inst Telematics apparatus for driving assistance, system of the same, and method of the same
US10160458B2 (en) 2015-06-02 2018-12-25 Mitsubishi Electric Corporation Driving characteristic measurement apparatus
JP6506142B2 (en) * 2015-09-01 2019-04-24 本田技研工業株式会社 Navi server and navigation system
US11313692B2 (en) * 2015-09-01 2022-04-26 Honda Motor Co., Ltd. Navigation server and navigation system
KR20180095919A (en) * 2015-12-25 2018-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Compound, light-emitting device, display device, electronic device, and lighting device
WO2017213064A1 (en) * 2016-06-09 2017-12-14 日本電気株式会社 Vehicle control system, vehicle control method, and program recording medium
JP7102320B2 (en) * 2018-11-15 2022-07-19 株式会社日立製作所 Data management system and method
FR3096860B1 (en) * 2019-06-03 2022-04-22 Psa Automobiles Sa Method and device for communicating information relating to one or more routes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217121A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Information provision device
JP2009042051A (en) * 2007-08-08 2009-02-26 Xanavi Informatics Corp Route searching method, route searching system and navigation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217121A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Information provision device
JP2009042051A (en) * 2007-08-08 2009-02-26 Xanavi Informatics Corp Route searching method, route searching system and navigation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250167A (en) * 2012-05-31 2013-12-12 Pioneer Electronic Corp Distance measuring device, distance correction method, distance correction program, and recording medium
CN112513950A (en) * 2018-08-27 2021-03-16 日立汽车系统株式会社 Update system and electronic control device

Also Published As

Publication number Publication date
JP2011085431A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
WO2011046185A1 (en) Vehicle-mounted device, travel characteristic data generation device, and vehicle-mounted information system
US7590488B2 (en) Route condition evaluation method and apparatus for navigation system
US8694242B2 (en) Traveling information creating device, traveling information creating method and program
JP4773823B2 (en) Traffic situation prediction method, apparatus and program thereof
US9965950B2 (en) Method and apparatus for classifying a traffic jam from probe data
US8296062B2 (en) Method for displaying traffic information and navigation system
US8706408B2 (en) Navigation system and route search method
JP5096396B2 (en) Traffic information management server, navigation terminal and method
US11022457B2 (en) Method, apparatus, and computer program product for lane-level route guidance
US20090234572A1 (en) Surrounding Search Data Generating System, Surrounding Search System, Surrounding Search Data Generating Method, Surrounding Search Method, and Navigation Apparatus
US7477990B2 (en) Navigation apparatus
US20040039523A1 (en) Navigation system and program for navigation system setup
JP2007178126A (en) Travel link specification system
JP5892004B2 (en) Route search system, route search device, route search method, and computer program
US10982969B2 (en) Method, apparatus, and computer program product for lane-level route guidance
US11537944B2 (en) Method and system to generate machine learning model for evaluating quality of data
US10497256B1 (en) Method, apparatus, and system for automatic evaluation of road closure reports
JP2009216400A (en) Navigation system and navigation program
JP2010151477A (en) Navigation system
JP2010026803A (en) Traffic jam prediction device, route search device, traffic jam prediction method, route search method, traffic jam prediction program, route search program, and computer-readable recording medium
JP4761582B2 (en) Route search system, route search server, and route guidance method
CN117222863A (en) Method and system for determining estimated travel time through a navigable network
JP2003279365A (en) Navigation system, navigation program, recording medium, and high-speed road information forming method
US20090105936A1 (en) Route guidance apparatus, route guidance method, route guidance program and computer-readable recording medium
JP4466362B2 (en) Traffic condition providing system and traffic condition providing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823453

Country of ref document: EP

Kind code of ref document: A1