WO2011046111A1 - Method and device for manufacturing hydrogen - Google Patents

Method and device for manufacturing hydrogen Download PDF

Info

Publication number
WO2011046111A1
WO2011046111A1 PCT/JP2010/067863 JP2010067863W WO2011046111A1 WO 2011046111 A1 WO2011046111 A1 WO 2011046111A1 JP 2010067863 W JP2010067863 W JP 2010067863W WO 2011046111 A1 WO2011046111 A1 WO 2011046111A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
container
aluminum
hydrogen
sodium hydroxide
Prior art date
Application number
PCT/JP2010/067863
Other languages
French (fr)
Japanese (ja)
Inventor
利春 深井
Original Assignee
Fukai Toshiharu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukai Toshiharu filed Critical Fukai Toshiharu
Priority to JP2010544495A priority Critical patent/JP4728452B2/en
Priority to TW099134887A priority patent/TW201132582A/en
Publication of WO2011046111A1 publication Critical patent/WO2011046111A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen production method and a hydrogen production apparatus for generating hydrogen using special water and aluminum.
  • Patent Document 3 A method for producing hydrogen in which hydrogen is generated by bringing aluminum or magnesium into contact with water is known (Patent Document 3).
  • Patent Document 3 In the method for producing water shown in Patent Document 3, non-freezing water having a pH of 4 to 10 is used as water, and hydrogen is generated even at 0 ° C. or lower.
  • hydrogen is generated by the reaction between aluminum and water.
  • the reaction is performed at a low temperature of 0 ° C. or less, a large amount of hydrogen cannot be generated at a low temperature, and hydrogen is generated with high economic efficiency. Can not occur.
  • the present invention relates to a hydrogen production method capable of producing hydrogen by bringing special water and aluminum into contact with each other, and a hydrogen production apparatus for efficiently producing hydrogen by bringing special water and aluminum into contact with each other.
  • the purpose is to provide.
  • water is first passed through an ion exchange resin, and then either tourmaline or rock containing 65 to 76% silicon dioxide composed of at least one of rhyolite or granite.
  • the water produced by passing the other first is made into special water, and the temperature in the container is 30 ° C. or more in the state where the special water and aluminum are put in the container and contacted in the container.
  • the temperature in the container is kept between 80 ° C. or more and less than the boiling point of the special water.
  • the aluminum is powdered
  • the special water is made alkaline (alkaline special water) by generating hydrogen by setting the temperature in the container to 80 ° C. or higher and lower than the boiling point of the special water
  • the temperature in the container is maintained between 80 ° C and below the boiling point of the special water without heating by heating means to generate hydrogen. It is characterized by making it.
  • the present invention is characterized in that when the temperature in the container is 30 ° C. or higher and lower than 80 ° C., the temperature in the container is continuously increased by a heating means.
  • the ion exchange resin is a strongly acidic cation exchange resin (RzSO 3 Na).
  • the present invention is characterized in that the tourmaline for producing the special water is mixed with at least one metal of aluminum, stainless steel, and silver.
  • the present invention is characterized in that the rhyolite is a rock composed of at least one of obsidian, pearlite, or pine stone.
  • the present invention is characterized in that the aluminum is 5 weight or more with respect to 100 weight of the special water.
  • the present invention is characterized in that the weight of the aluminum is 10 weight or more.
  • the present invention is characterized in that a sodium hydroxide aqueous solution obtained by adding sodium hydroxide to the special water is brought into contact with aluminum in the container.
  • the present invention is characterized in that the temperature in the container is raised to 30 ° C.
  • the present invention is characterized in that the temperature in the container is set to 80 ° C. or higher by the reaction heat between the aqueous sodium hydroxide solution and the aluminum.
  • the present invention is characterized in that the concentration of sodium hydroxide in the aqueous sodium hydroxide solution is 0.1% or more.
  • the present invention is characterized in that the concentration of the sodium hydroxide is 3% or more.
  • the present invention is characterized in that the aluminum is provided at the bottom of the container, and the liquid level of the aqueous sodium hydroxide solution is higher than the highest level of the aluminum.
  • the hydrogen production apparatus of the present invention first passes water through an ion exchange resin, and then contains 65 to 76% of tourmaline and silicon dioxide comprising at least one of rhyolite or granite.
  • An aluminum charging means for charging the aluminum, and the aluminum charged in the container from the aluminum charging means is placed on the aluminum dropping means, and a residue in which the aluminum is melted is dropped below the container from the mesh.
  • a mesh member disposed higher than the bottom of the container, and communicates with the interior of the container.
  • Supplying the alkaline special water to the liquid charging means and storing the alkaline special water taken out from the liquid taking-out means It is characterized in that it has a tank, a.
  • the liquid take-out means includes a first pump and a first valve provided on a side close to a position where the alkaline special water is discharged from the container, and the liquid input means is provided in the container.
  • the second pump and the second valve provided on the near side where the special alkaline water is introduced, and a tank are provided, and the residue capturing means is provided upstream of the first pump in the middle of the liquid circulation passage.
  • the tank is provided downstream of the first pump.
  • the present invention is characterized in that the special alkaline water is produced by generating hydrogen from the special water and aluminum at a temperature of 30 ° C. or higher in a container. Is.
  • the present invention is characterized in that the alkaline special water is obtained by mixing sodium hydroxide into the special water so that the concentration of sodium hydroxide is 0.1% or more. It is.
  • the present invention is characterized in that the concentration of the sodium hydroxide is 3% or more.
  • the material used in claim 1 of the method for producing hydrogen of the present invention uses only two kinds of materials of commercially available aluminum and special water (creation water), and the temperature in the container is 30. Hydrogen is generated when the temperature is higher than or equal to ° C. In the present invention, hydrogen can be produced at a very low cost using only aluminum and special water (generation water) without using a chemical agent or a metal other than aluminum as a main material.
  • the special water used in the present invention contains a large amount of hydrogen atoms such as hydroxyl ion (H 3 O 2 ⁇ ), hydroxide ion (OH ⁇ ), and hydrogen ion (H + ).
  • hydrogen atoms such as hydroxyl ion (H 3 O 2 ⁇ ), hydroxide ion (OH ⁇ ), and hydrogen ion (H + ).
  • aluminum is an electrode amphoteric element, when the temperature of special water reaches 30 ° C or higher, many positive and negative electrodes appear in aluminum, and the positive and negative electrodes generate weak currents. It is presumed to promote the electrolysis of special water in the container and generate a large amount of hydrogen from the special water. Furthermore, since the time for generating hydrogen from special water is long, a large amount of hydrogen can be generated. It is presumed that the present invention has an effect of delaying the stretching of the film on the surface of aluminum by hydroxyl ions (H 3 O 2 ⁇ ) contained in special water.
  • the heating temperature of the container is 30 ° C. or higher and lower than the boiling point of special water. Can be done by heating. Since heating is performed under atmospheric pressure, hydrogen is generated using a simple and inexpensive device without the need for special equipment such as conventional thermal decomposition of water at 3,000 ° C to 5,000 ° C. Can be made. In the case where the heating means is used to heat aluminum and the creation water in the container, the generation of hydrogen can be stopped by stopping the heating. Therefore, it is possible to quickly generate and stop hydrogen, and it can be applied to various devices that use hydrogen as fuel.
  • Aluminum is put in the bottom of the container, and the uppermost layer of aluminum is covered with creation water (or a sodium hydroxide aqueous solution described later). That is, if aluminum is immersed in the creation water or sodium hydroxide aqueous solution, the generation of an oxide film on the surface of the aluminum is delayed by hydroxyl ions (H 3 O 2 ⁇ ) contained in the creation water. The generation time of hydrogen can be increased.
  • a sodium hydroxide aqueous solution in which sodium hydroxide is mixed with special water may be used.
  • reaction heat is generated by bringing the sodium hydroxide aqueous solution and aluminum into contact with each other in the container.
  • the reaction heat can raise the temperature in the container to 30 ° C. or more by self-heating, and hydrogen can be generated in the container without using a heating means for applying heat from the outside of the container.
  • the reaction heat of the aluminum and the sodium hydroxide aqueous solution causes the temperature in the container to be 80 ° C.
  • the temperature of the heating means for applying heat from the outside of the conventional container is 600 ° C. to 5,000 ° C., requiring expensive equipment, but in the present invention, the heating means for applying heat from the outside of the container can be omitted, It uses only a sodium hydroxide aqueous solution obtained by adding sodium hydroxide to special water and aluminum, and can produce hydrogen at a low cost.
  • the present invention generates hydrogen by self-temperature rise by reaction heat, and does not use a heating means for applying heat from the outside of the container or heat from electricity. It becomes possible to mount in etc.
  • the amount of hydrogen generated is increased and oxygen is generated compared to the case of using only special water.
  • the amount can be greatly reduced.
  • a method for separating oxygen from a gas containing hydrogen and oxygen can be simplified, and the cost for producing hydrogen can be reduced.
  • the hydrogen generator of the present invention uses alkaline special water that generates hydrogen only by contacting with aluminum without using heating means.
  • water that generates hydrogen just by contacting with aluminum water after special hydrogen and aluminum are contacted and heated to 80 ° C or higher to generate hydrogen (becomes alkaline) or special Any one of aqueous sodium hydroxide mixed with water and sodium hydroxide is used.
  • a placing member for placing aluminum is housed in a container for housing special alkaline water and aluminum, and the placing member is placed in the container so as to be above the bottom surface in the container.
  • the aluminum on the mounting member melts by reacting with alkaline special water to form extremely small particles or paste-like debris, falls down through the mesh of the mesh member, and falls to the bottom in the container.
  • a special charging water or a liquid charging means for supplying sodium hydroxide aqueous solution inside, the aluminum residue accumulated in the container is automatically discharged to the outside by circulating the alkaline special water. It is possible to supply special alkaline water into the container at any time.
  • a known aluminum charging means capable of supplying aluminum at any time without opening the container lid can be used, the aluminum can be charged and the residue discharged from the container can be discharged without opening the container.
  • Hydrogen can be continuously generated. Since hydrogen can be continuously generated, the present invention can be applied to automobiles that are driven for a long time.
  • FIG. 1 It is a block diagram which shows an example of the manufacturing apparatus which produces the special water (creation water) used for the manufacturing method of hydrogen which concerns on this invention. It is sectional drawing of the water generator used for the manufacturing apparatus shown in FIG. It is principal part sectional drawing of the ion generator used for the manufacturing apparatus shown in FIG. It is a block diagram which shows the other example of the manufacturing apparatus which produces the special water used for the manufacturing method of hydrogen which concerns on this invention. It is sectional drawing which shows an example of the apparatus which generate
  • production% of hydrogen in a container in the state which put 100 weight alkali ion water and 10 weight aluminum powder in a container and made the temperature in a container 30 degreeC or more is shown.
  • FIG. 13 is a measurement analysis report showing the generation percentage of hydrogen generated by heating with heating means using creation water and aluminum in the apparatus of FIG. 12.
  • FIG. 14 is a measurement analysis report showing the generation percentage of hydrogen generated by heating sodium hydroxide aqueous solution in which sodium hydroxide is added to creation water and aluminum with heating means in the apparatus of FIG. 13. It is sectional drawing which shows the other example of the apparatus which generate
  • FIG. 13 is a measurement analysis report showing the generation percentage of hydrogen generated by heating with heating means using creation water and aluminum in the apparatus of FIG. 12.
  • FIG. 14 is a measurement analysis report showing the generation percentage of hydrogen generated by heating sodium hydroxide aqueous solution in which sodium hydroxide is added to creation water and aluminum with heating means in the apparatus of FIG. 13.
  • FIG. 13 is a measurement analysis report showing the generation percentage of hydrogen generated by heating sodium hydroxide aqueous solution in which sodium hydroxide is added to creation water and aluminum with heating means in the apparatus of FIG. 13.
  • FIG. 16 is a first measurement / analysis report showing hydrogen generation% generated when the sodium hydroxide concentration in the hydrogen generator of FIG. 15 is 5%.
  • FIG. 16 is a second measurement / analysis result report showing the generation percentage of hydrogen generated when the sodium hydroxide concentration in the hydrogen generator of FIG. 15 is 10%.
  • FIG. 16 is a third measurement analysis report showing the generation percentage of hydrogen generated when the sodium hydroxide concentration in the hydrogen generator of FIG. 15 is 15%. It is a table showing the reaction start time and reaction duration of hydrogen generation when reacting with various waters (alkali ion water and natural water) having a sodium hydroxide concentration of 5%, 10% and 15% and aluminum. is there.
  • FIG. 19 and FIG. 20 A table showing the reaction start time and reaction duration of hydrogen generation in the case of reacting with various waters (creative water and tap water) having a sodium hydroxide concentration of 5%, 10% and 15% and aluminum. is there.
  • the table shown in FIG. 19 and FIG. 20 is graphed, and the sodium hydroxide concentration is 5%.
  • FIG. 21 corresponds to the tables shown in FIG. 19 and FIG. 20 and is a graph in which the sodium hydroxide concentration is 10%.
  • FIG. 25 is a graph showing a reaction start time and reaction duration table for hydrogen generation using sodium hydroxide aqueous solutions having a sodium hydroxide concentration of 1% and 3% shown in FIG.
  • surface which shows the reaction start time and reaction duration of hydrogen generation at the time of using sodium hydroxide aqueous solution and aluminum powder whose sodium hydroxide concentration is 0%, 1%, and 3%.
  • FIG. 27 is a graph showing a table of hydrogen generation reaction start time and reaction duration when sodium hydroxide aqueous solutions having a sodium hydroxide concentration of 1% and 3% shown in FIG. 26 are used.
  • the Example of the hydrogen generator of this invention is shown, It is sectional drawing of the hydrogen generator which can supply aluminum suitably. It is the structure which takes out only hydrogen from the gas which generate
  • FIG. 5 is a system diagram of a hydrogen generator that can supply appropriately created water made alkaline, showing another embodiment of the hydrogen generator of the present invention.
  • hydrogen is generated by bringing special water and aluminum into contact with each other within a predetermined temperature range (30 ° C. or more and less than the boiling point of special water).
  • FIG. 1 is a configuration diagram showing an embodiment of a device for producing fresh water.
  • the first soft water generator 10, the second soft water generator 12, the ion generator 14, and the rock storage container 16 are sequentially connected in series via connecting pipes 18 a, 18 b, and 18 c.
  • water having a pressure such as tap water is introduced from the water supply pipe 20 into the inside through the communication pipe 22.
  • An inlet opening / closing valve 24 such as a faucet is provided between the water supply pipe 20 and the communication pipe 22, and a check valve 26 is provided in the middle of the communication pipe 22.
  • a discharge pipe 28 is attached to the outlet side of the rock container 16, and an outlet opening / closing valve 30 is provided at the tip or middle of the discharge pipe 28.
  • the water fed from the water supply pipe 20 passes through the first soft water generator 10, the second soft water generator 12, the ion generator 14, and the rock storage container 16 in this order, and the outlet opening / closing valve 30. Is taken out from the discharge pipe 28 by opening.
  • the water stored in the water tank is introduced into the first soft water generator 10 via the water supply pipe 20 by a pump. In this case, a check valve 26 is provided between the pump and the first soft water generator 10.
  • the first soft water generator 10 and the second soft water generator 12 contain a large amount of granular ion exchange resin 32 therein, and a cross-sectional view thereof is shown in FIG.
  • the main bodies 34 of the soft water generators 10 and 12 have a cylindrical shape, and have water inlets 36a and 36b on the upper and lower ends of the cylindrical shape.
  • shield members 38a and 38b each having a hole in the center are provided on the inner wall at a position slightly away from the upper and lower end surfaces. Between the pair of shield members 38a, 38b, the ion exchange resin 32 is stored in a fine mesh 40.
  • the shield member 38 having a hole in the center is provided on the inner wall at a position slightly apart from the upper and lower entrances 36a, 36b.
  • the net 40 containing the ion exchange resin 32 is disposed between the pair of shield members 38. This is because the spaces 42a and 42b are formed in the vicinity of the entrances 36a and 36b.
  • the reason why the water is allowed to enter and exit from the central hole of the shield members 38 a and 38 b is that the water always contacts the ion exchange resin 32.
  • the reason why the ion exchange resin 32 is put into the net 40 is that the granular ion exchange resin 32 can be taken out together with the net 40 when the granular ion exchange resin 32 is taken out for cleaning.
  • the first soft water generator 10 and the second soft water generator 12 have a height of, for example, 80 cm and an inner diameter of 10 cm.
  • the storage height of the ion exchange resin 32 is set to 70 cm (the spaces 42 a and 42 b exist above and below). At this time, the storage height of the ion exchange resin 32 needs to be high enough to sufficiently perform ion exchange with water.
  • the storage height of the ion exchange resin 32 becomes too high (for example, when the storage height of the ion exchange resin 32 is about 200 cm or more), the ion exchange resin 32 becomes a resistance of water, and the inside of the soft water generator.
  • the storage height of the ion exchange resin 32 is set to a height at which the flow rate does not decrease.
  • the container for storing the ion exchange resin 32 is divided into two because the height of the first soft water generator 10 and the second soft water generator 12 is as high as the ion generator 14 and the rock container 16. This is to keep the pressure low and to prevent the flow rate from decreasing due to the pressure loss of water passing therethrough. It is also possible to combine the two soft water generators 10 and 12 into one soft water generator.
  • the ion exchange resin 32 is for removing metal ions such as Ca 2+ , Mg 2+, and Fe 2+ contained in water to soften the water. In particular, the water hardness is reduced to zero. It is for lowering to a near extent.
  • a strongly acidic cation exchange resin (RzSO 3 Na) obtained by uniformly sulfonating a spherical copolymer of styrene / divinylbenzene is used. This ion exchange resin 32 causes the following ion exchange reaction with metal ions such as Ca 2+ , Mg 2+ and Fe 2+ contained in water.
  • the ion exchange resin 32 a material other than Na + may be generated, but it is desirable to use a material that generates Na + , for example, a strongly acidic cation exchange resin (RzSO 3 Na).
  • a strongly acidic cation exchange resin RzSO 3 Na
  • the tap water contains chlorine in addition to metal ions such as Ca 2+ , Mg 2+, and Fe 2+, but the tap water passes through the ion exchange resin 32. As a result, no change occurs in this chlorine.
  • the metal ions such as Ca 2+ , Mg 2+, and Fe 2+ are removed from the water by passing through the ion exchange resin 32 to become soft water. Further, by passing through the ion exchange resin 32, Na + , OH ⁇ , and hydronium ions (H 3 O + ) are generated in the water. However, chlorine (Cl) contained in tap water passes through without being ionized.
  • FIG. 1 a partial cross-sectional view of the ion generator 14 is shown in FIG.
  • the ion generator 14 is configured such that a plurality of cartridges 44 are connected in series in the vertical direction in the same arrangement.
  • Each cartridge 44 contains either granular tourmaline 46 or a mixture of granular tourmaline 46 and plate-like metal 48.
  • Tourmaline has a positive electrode and a negative electrode.
  • the positive electrode and the negative electrode allow water to have an electromagnetic wave having a wavelength of 4 to 14 microns, and cut water clusters to hydronium. This is for generating ions (H 3 O + ).
  • the energy of the electromagnetic wave having a wavelength of 4 to 14 microns is 0.004 watt / cm 2 .
  • the tourmaline 46 may be a product obtained by finely pulverizing tourmaline stones, but is commercially available with a weight ratio of tourmaline, ceramic, and aluminum oxide (including silver) of about 10:80:10. It may be a tourmaline mixture called tourmaline pellets. The ceramic contained in this tourmaline pellet acts to separate the positive and negative electrodes.
  • tourmaline 46 disappears in a predetermined period (for example, about 3 months with a diameter of 4 mm) by stirring water by mixing tourmaline 46 at a ratio of 10% or more by weight with respect to ceramic and heating at 800 ° C. or higher. 46 can be made.
  • the tourmaline 46 is increased in strength by heating, and the wear resistance period can be extended.
  • the ion exchange resin 32 is passed to make the water soft water whose hardness is close to zero, and the tourmalines 46 are rubbed together in the soft water. With soft water whose hardness is close to zero, it is possible to prevent magnesium ions and calcium ions from adhering to the negative electrode of the tourmaline 46, and to prevent the tourmaline 46 from functioning as a positive and negative electrode. .
  • the metal 48 at least one kind of metal such as aluminum, stainless steel, or silver is used.
  • the metal 48 is preferably a metal that does not generate rust or dissolve in water.
  • aluminum has a bleaching action as well as a bactericidal action and an antibacterial action
  • stainless steel has a bactericidal action and an antibacterial action
  • a cleaning improvement action
  • silver has a bactericidal action and an antibacterial action. Yes.
  • copper and lead cannot be used because they have toxicity. Also, expensive materials such as gold cannot be used because of cost.
  • the weight ratio of the tourmaline 46 and the metal 48 is preferably 10: 1 to 1:10. Beyond that range, there is too much material on one side, and the effects of both materials cannot be demonstrated simultaneously.
  • the cartridge 44 has a cylindrical shape with one end open, and a plurality of holes 52 are provided on the bottom surface 50 thereof.
  • the size of the hole 52 is set so that the tourmaline 46 and the metal 48 do not pass through the hole 52 of the bottom surface 50.
  • each cartridge 44 has a bottom surface 50 provided with a large number of holes 52 on the lower side, and a tourmaline 46 and a metal 48 are placed on the bottom surface 50. And it sets so that the inside of each cartridge 44 may flow from lower to higher.
  • each cartridge 44 the water that has passed through the numerous holes 52 in the bottom surface 50 is set so as to be sprayed onto the tourmaline 46 and the metal 48 from the bottom to the top.
  • the tap water has a high water pressure
  • the water having the water pressure collides with the tourmaline 46 and the metal 48 in the cartridge 44 vigorously, and the tourmaline 46 and the metal 48 are agitated in the cartridge 44 by the power of the water.
  • the size and number of the holes 52 are set.
  • the cartridges 44 having an inner diameter of 5 cm and a storage volume of 7 cm in depth are stacked in four stages, and the tourmaline 46 and the metal 48 are sufficiently stored in the cartridge 44.
  • the number of cartridges 44 may be increased or decreased, or a single cartridge 44 with a larger storage volume may be used.
  • the tourmaline 46 and the metal 48 are dispersed in the plurality of cartridges 44 having a small accommodation volume, and the plurality of cartridges 44 are connected, so that the stirring efficiency of the tourmaline 46 and the metal 48 is increased by the momentum of water. Can be increased.
  • each cartridge 44 can be easily attached and detached by means of, for example, screwing, and the tourmaline 46 is easily refilled in each cartridge 44. It can be so.
  • the metal 48 does not dissolve in water and need not be replenished. However, the entire cartridge 44 containing the tourmaline 46 and the metal 48 can be replaced.
  • the accommodation volume of the cartridge 44 may be changed according to the flow rate of use.
  • the tourmaline 46 rubs against each other to generate a positive electrode and a negative electrode, and when the water contacts the tourmaline 46, the increase in negative ions is increased. Can be achieved. Further, in order to cut the water cluster and generate a large amount of hydronium ions (H 3 O + ), only the tourmaline 46 may be accommodated in the cartridge 44. However, by mixing the metal 48 with the tourmaline 46, the negative ions generated in the tourmaline 46 when they come into contact with each other can be further increased.
  • tourmaline 46 has a plus electrode and a minus electrode
  • water (H 2 O) is dissociated into hydrogen ions (H + ) and hydroxide ions (OH ⁇ ).
  • H 2 O ⁇ H + + + OH - > (1)
  • hydronium ions (H 3 O + ) having a surface active action are generated by hydrogen ions (H + ) and water (H 2 O).
  • the amount of hydronium ions (H 3 O + ) generated is much larger than the amount generated by the ion exchange resin 32.
  • a part of the hydronium ion (H 3 O + ) is combined with water (H 2 O) to become a hydroxyl ion (H 3 O 2 ⁇ ) and a hydrogen ion (H + ).
  • the water that has passed through the ion generator 14 is then allowed to pass through the inside of the rock container 16 that stores rocks containing a large amount of silicon dioxide (rocks containing approximately 65 to 76% silicon dioxide) among the igneous rocks.
  • the igneous rocks (divided into volcanic rocks and plutonic rocks), as rocks 54 containing a large amount of silicon dioxide, volcanic rocks include rhyolite such as obsidian, pearlite, and pine sebite, and plutonic rocks include granite.
  • the rock container 16 stores at least one kind of rocks such as obsidian, pearlite, pinestone, and granite.
  • Rhyolite such as obsidian, pearlite and pine stone, or granite has negative electrons.
  • rhyolite and granite such as obsidian, pearlite and pinestone are acid rocks. Rhyolite has the same chemical composition as granite.
  • rock containing about 65-76% silicon dioxide (Rhyolite such as obsidian, pearlite and pinestone, or plutonic rocks such as granite) are -20 to -240 mV of redox. Has a potential.
  • the rock 54 excludes what dissolves in water.
  • the rock container 16 is, for example, a cylinder having an inner diameter of 10 cm and a height of 80 cm, and a rock 54 containing a large amount of silicon dioxide among igneous rocks having a size of, for example, about 5 mm to 50 mm in the inside thereof, Accommodates an amount that does not drop.
  • water first passes through the ion exchange resin, then passes through tourmaline 46 (or a mixture of tourmaline 46 and metal 48), and then passes through the rock container 16.
  • Things are special water (creative water).
  • the creation water includes Na + , Cl ⁇ , H + , OH ⁇ , H 2 , hydronium ion (H 3 O + ), hydroxyl ion (H 3 O 2 ⁇ ), and active hydrogen. And a large amount of dissolved oxygen.
  • the energy of this water has an electromagnetic wave with a wavelength of 4 to 14 microns, which is 0.004 watt / cm 2 , and has a redox potential of ⁇ 20 to ⁇ 240 mV.
  • water used in the method for producing hydrogen according to the present invention use is made of water created by passing water through ion exchange resin 32, tourmaline 46 (or a mixture of tourmaline 46 and metal 48), and rock 54 in this order.
  • water is passed in the order of ion exchange resin 32, tourmaline 46 (or a mixture of tourmaline 46 and metal 48), and rock 54, but water is passed in this order, but water is passed through ion exchange resin 32, rock 54, tourmaline 46 (or You may use what passed the order of tourmaline 46 and the metal 48). That is, as shown in FIG. 4, water may be passed through the first soft water generator 10, the second soft water generator 12, the rock container 16, and the ion generator 14 in this order.
  • the water passed through the rock 54 has an oxidation-reduction potential of ⁇ 20 to ⁇ 240 mV. If hot water is used instead of water, the negative redox potential is further stabilized. Furthermore, the water that has passed through the rock 54 contains a large amount of dissolved oxygen and active hydrogen.
  • Creation water has many characteristics listed below.
  • Tourmaline emits weak energy (electromagnetic waves with a wavelength of 4 to 14 microns). This weak energy cuts a large cluster of water and releases toxic gases and heavy metals contained in the cluster to the outside from the water. (d) It has a redox potential of ⁇ 20 to ⁇ 240 mV. (e) Contains dissolved oxygen and active hydrogen. (f) Soft water from which calcium ions and magnesium ions have been removed. By passing tap water or the like through the ion exchange resin, calcium ions and magnesium ions contained in the water can be removed.
  • the manufacturing apparatus includes a container 60 and a lid 61 of the container, and the container 60 is normally used in a state of being closed by the lid 61.
  • the lid 61 is provided with a nozzle 64 having a communication passage 65 formed therein for connecting the inside of the container and the outside of the container.
  • An opening / closing valve 68 for opening and closing the communication passage 65 is provided in the middle of the nozzle 64. Yes.
  • a barometer 71 that measures the pressure inside the container 60 and a thermometer 73 that measures the temperature inside the container 60 are attached to the top of the container 60.
  • the upper shape of the container 60 is preferably a conical shape or a pyramid shape such that the horizontal cross section gradually narrows toward the lid 61. This is to make it easy to collect light hydrogen gas generated in the container 60 above the container 60 and to take out the hydrogen gas from the container 60 to the outside.
  • a heating means 69 for heating the container 60 is provided below the bottom surface of the container 60.
  • the heating means 69 is not limited to thermal power, and may be solar light, an electric heater, or the like. Further, the arrangement position of the heating means 69 is not limited to the position below the bottom surface of the container 60.
  • special water (creating water) 75 and aluminum powder 77 are placed in the container 60, and the creating water 75 and the aluminum powder 77 are heated by the heating means 69.
  • the amount of the creation water 75 is made sufficiently large relative to the amount of the aluminum powder 77 so that the aluminum powder 77 is sufficiently immersed in the creation water 75.
  • the only two materials used to generate hydrogen are the created water 75 and the aluminum powder 77. That is, no metal or chemical substance other than aluminum is contained in the container 60, and hydrogen is generated only by heating the creation water 75 and the aluminum powder 77 in the container 60.
  • Example 1 will be described based on aluminum powder.
  • a commercially available powder of this aluminum is used.
  • the aluminum powder is commercially available from Yamato Metal Powder Industry Co., Ltd., located in Nishi-12, Nishi-ku, Osaka.
  • 1 liter of fresh water 75 and 100 g of aluminum powder 77 are placed in the container 60, and the fresh water 75 and the aluminum powder 77 in the container 60 are heated by the heating means 69. That is, the weight ratio of the creation water 75 and aluminum is 10 weights of aluminum with respect to 100 weights of creation water.
  • Heating in the container 60 by the heating means 69 starts from normal temperature (for example, 20 ° C.), and heats the temperature in the container 60 to 30 ° C. or higher.
  • Hydrogen begins to be generated at a temperature slightly lower than 30 ° C., but a large amount of hydrogen is generated in the container 60 at 30 ° C. or higher.
  • FIG. 6 shows a measurement analysis report as the analysis result.
  • the measurement analysis report shown in FIG. 6 and the subsequent figures according to the present invention was prepared by Shinano pollution research institute (telephone 0267-56-2189) located in 1835 Tateshina-machi, Kitasaku-gun, Nagano, Japan. Is.
  • FIG. 6 shows that fresh water 75 and aluminum powder 77 are put in a container 60, the temperature in the container 60 is heated to 30 ° C. or higher by the heating means 69, and the air in the container 60 is cooled by a 10 liter bag. It is collected.
  • hydrogen is generated while the container 60 is heated by the heating means 69.
  • heating by the heating means 69 is stopped, hydrogen is not generated after a while. From 30 ° C. to less than 80 ° C., heating to generate hydrogen is to gradually and gradually raise the temperature in the container 60.
  • the hydrogen generated in the container 60 is collected with a 10 liter bag (not shown) attached to the tip of the nozzle 64.
  • the air collected from the container 60 is bubbled before measurement. Bubbling means that the collected air is submerged in water contained in a container (not shown). Bubbling the collected air has the effect of removing moisture contained in the collected air (performing air-water separation) and cooling the air.
  • the result of measuring the air after bubbling the air collected at a temperature of 30 ° C. or higher is the measurement analysis result document of FIG. As shown in FIG. 6, the air heated to gradually increase the temperature continuously at 30 ° C. or higher contained 75% hydrogen and 5.2% oxygen.
  • the heating temperature is a temperature that gradually increases gradually at 30 ° C. or higher, in the experiment of FIG. 6, the pressure in the container 60 is atmospheric pressure (1 atm).
  • the temperature in the container 60 is gradually increased from 30 ° C. to 80 ° C., and when the temperature reaches 80 ° C., the temperature in the container 60 is maintained at a temperature between 80 ° C. and below the boiling point of the created water. .
  • the temperature of the boiling point of the fresh water is 102-104 ° C.
  • hydrogen is generated simply by keeping the temperature.
  • the temperature in the container 60 is 80 ° C. or higher and lower than the boiling point of the created water, it is not necessary to continuously increase the temperature.
  • the pressure in the container 60 in FIG. 7 is atmospheric pressure (1 atm).
  • the temperature in the container 60 It is not necessary to continuously increase the temperature in the container 60 at a temperature in the container 60 that is 80 ° C. or higher and before the boiling point of the created water, but the temperature in the container 60 is kept at 80 ° C. or higher. There is a need. That is, the heating state must be performed intermittently. When the heating state is stopped and the temperature is 80 ° C. or lower, hydrogen is not generated. Therefore, a large amount of hydrogen can be generated if the temperature in the container 60 is kept at 80 ° C. or higher and below the boiling point of the created water. In addition, when the generation of hydrogen is stopped, the temperature and heating of the container 60 may be stopped and the temperature may be set to 80 ° C. or lower. From this, it is possible to easily generate and stop hydrogen.
  • the content ratio of hydrogen contained in the collected air gradually increases. This is apparent from the fact that the hydrogen content at a temperature of 30 ° C. or higher is 75% and the hydrogen content at a temperature of 80 ° C. is 98%. Since the hydrogen content at a temperature of 30 ° C. or higher is 75%, it is considered that the amount of hydrogen generated is sufficiently large. From 1 liter of fresh water 75 and 100 g of aluminum powder 77, hydrogen was generated for about 40 to 50 minutes. In Example 1, about 2.0 liters of hydrogen was produced per 1 g of the aluminum powder 77.
  • the creation water contains hydronium ions (H 3 O + ), hydroxyl ions (H 3 O 2 ⁇ ), hydrogen ions (H + ), hydroxide ions (OH ⁇ ), and the like. Since hydrogen gas is generated from nium ions (H 3 O + ), hydroxyl ions (H 3 O 2 ⁇ ), hydrogen ions (H + ), and hydroxide ions (OH ⁇ ), It is considered that more hydrogen can be generated than water such as natural water or alkali ion water.
  • Hydrogen is generated by reacting the creation water with aluminum, but aluminum reacts with the creation water to generate hydrogen, so that the oxide film covers the surface of the aluminum, and the generation of hydrogen is stopped by the oxide film. .
  • Hydrogen is generated from the creation water 75 and the aluminum powder 77 for 40 to 50 minutes. When tap water or the like is used instead of the fresh water, the generation time of hydrogen due to the reaction with aluminum is zero or sufficiently short. From this, it can be seen that by using the creation water 75, the time during which an oxide film is generated on the surface of aluminum can be significantly delayed.
  • the weight of the aluminum powder 77 put in the container 60 is 5 weights or more with respect to 100 weights of the creation water (50 grams or more of the aluminum powder 77 with respect to 1 liter of creation water). If the weight of the aluminum powder 77 placed in the container 60 is less than 5 weights, the amount of hydrogen generated is very small, so that it is not suitable for practical use.
  • the best weight range of the aluminum powder 77 is the weight from 10 weight or more (100 g or more of the aluminum powder 77 to 1 liter of the created water) to the aluminum powder 77 reaching the level of the created water. If the aluminum powder 77 is less than 10 weight, the amount of hydrogen generated is less than the amount of hydrogen generated at 10 weight. When the aluminum powder 77 exceeds 30 weights, the amount of hydrogen generated is almost the same as when it is 30 weights, and the cost 77 of the aluminum powder is high, so the aluminum powder is preferably 10 to 30 weights.
  • hydrogen can be generated by setting the temperature in the container 60 containing the created water 75 and the aluminum powder 77 to 30 ° C. or higher.
  • either the container 60 may be heated by the heating means 69 or the heated creation water may be added.
  • the temperature at which the inside of the container 60 is heated is 30 ° C. or more and less than 80 ° C., it is necessary to continuously increase the temperature when the inside of the container 60 is heated.
  • the temperature at which the inside of the container 60 is heated does not necessarily require a continuous temperature rise, and can be kept at a temperature between 80 ° C. and below the boiling point of the generated water. Easy to adjust. Furthermore, the amount of hydrogen generated between 80 ° C.
  • hydrogen is generated by using the created water 75 and the aluminum powder 77 as materials and heating them in the container 60 under atmospheric pressure, so that a device capable of withstanding high pressure is not required. Therefore, the apparatus is inexpensive and a large amount of hydrogen can be obtained.
  • 1 liter of fresh water 75 and 100 g of aluminum powder 77 are first placed in a container 60 and heated to 80 ° C. or higher and lower than the boiling point of the generated water to 80 ° C. or higher.
  • hydrogen is released for 40 to 50 minutes.
  • an oxide film is formed on the aluminum powder 77 in the container 60, and the function of hydrogen generation by the aluminum powder 77 is deteriorated.
  • a large amount of creation water 75 exists in the container 60. To do. Therefore, in order to generate more hydrogen, whether new hydrogen powder 77 is added in the container 60 at a temperature of 80 ° C. or higher, for example, in a state where hydrogen is no longer generated or in a state where hydrogen is continuously generated.
  • the water 75 reacts with the newly added aluminum powder 77 to generate hydrogen again.
  • the oxide film is formed on the aluminum powder 77 and hydrogen is not generated, so that the operation of the apparatus is stopped and the hydrogen generation operation is resumed the next day.
  • the temperature of the created water in the container 60 is lowered to the outside air temperature (for example, 10 ° C. to 20 ° C.).
  • the temperature in the container 60 is the outside air temperature
  • the aluminum powder 77 reacts with the created water in the container 60 and is not heated by the heating means 69.
  • the temperature in the container 60 rises to 80 ° C. to 90 ° C.
  • the temperature in the container 60 is maintained at 80 ° C. to 90 ° C., and hydrogen is generated.
  • the temperature in the container 60 can be raised to 80 ° C. to 90 ° C. and maintained at that temperature simply by adding aluminum (without heating by the heating means 69). Is only aluminum powder.
  • the temperature in the container 60 must always be heated to a temperature not lower than 80 ° C. and not higher than the boiling point of the created water by the heating means 69.
  • the inside of the container 60 must be heated again by the heating means 69 from the beginning.
  • the heating means 69 when newly created water is added in a state where the created water remains in the container 60, the inside of the container 60 may not be heated by the heating means 69 in the case of the aluminum powder 77.
  • FIG. 8 is a measurement certificate of the generated water before generating hydrogen
  • FIG. 9 is a measurement certificate of the generated water after reacting with the aluminum powder 77 to generate hydrogen. It is the pH that changes greatly. As shown in FIG. 8, the pH of the created water before reacting with the aluminum powder 77 is 7.4 (neutral).
  • the pH of the created water after reacting the created water with the aluminum powder 77 to generate hydrogen was 9.8 as shown in FIG. 9, and the created water was alkaline. That is, the water after the creation water 75 and the aluminum powder 77 react to generate hydrogen becomes alkaline creation water. Even if the hydrogen is generated using not only the aluminum powder 77 but also granular or small pieces, the creation water becomes alkaline creation water.
  • the sodium ion contained in the creation water is 26 mg / L, but the wound ion in the container 60 after generating hydrogen using the creation water and the aluminum powder 77 is used. Sodium ions contained in the raw water slightly increased to 35 mg / L. As can be seen from FIGS. 8 and 9, the neutral created water becomes alkaline after reacting with the aluminum powder 77 to generate hydrogen.
  • the temperature in the container 60 rises to 80 ° C. to 90 ° C. Thereafter, the temperature in the container 60 is kept at 80 ° C. to 90 ° C. without heating the container 60 with heating means. If new creation water is added while the creation water remains in the container 60, the temperature in the container 60 will be reduced within a short period of time, depending on the capacity of the container 60 and the amount of creation water to be added. Rises to 80 ° C. to 90 ° C., and then the temperature in the container 60 is maintained at 80 ° C. to 90 ° C. without heating the container 60. If the temperature of the creation water to be added is hot water heated to, for example, 80 ° C. or higher, the temperature in the container 60 is not lowered once, so that the generation of hydrogen can be continued efficiently.
  • the amount of hydrogen generated by the reaction between the creation water 75 and the aluminum powder 77 is sufficiently larger than the amount of hydrogen generated by the reaction between the alkaline ionized water and the aluminum powder 77. Therefore, the generation amount of hydrogen is greatly different between alkaline creation water and alkaline ionized water.
  • FIG. 12 is a sectional view showing an embodiment of an apparatus showing a method for producing hydrogen according to the present invention.
  • the container 60 is made of, for example, stainless steel, but is not limited to stainless steel.
  • a multistage shelf 62 is provided inside the container 60 on the top and bottom, and a large number of small granular or small pieces of aluminum 66 are placed on each shelf 62.
  • Many shelves 62 are provided with a number of holes (not shown) that are large enough to allow water or air to pass therethrough so that the aluminum 66 does not fall downward.
  • the multistage shelf 62 provided in the container 60 is taken in and out from a door (not shown) provided on the side surface of the container 60.
  • the bottom of the container 60 is also provided with a large number of small granular or small pieces of aluminum 66 (which may be aluminum powder).
  • a gas discharge passage 65 is provided in the upper portion of the container 60, and a gas such as hydrogen generated in the container 60 is discharged to the outside through the gas discharge passage 65.
  • the gas discharge passage 65 is opened and closed by an opening / closing valve 68.
  • Heating is performed from the outside of the container 60 by a heating means 69 such as a heater.
  • the heating means 69 for heating the inside of the container 60 from the outside of the container 60 may use a thermal power such as a gas other than the heater.
  • the heating means 69 is an electric heater, the outside of the heater is covered with a heat insulating material 76 to prevent the temperature in the container 60 from decreasing toward the atmospheric temperature.
  • a water injection means 70 is provided above the uppermost shelf 62 in the container 60 for spraying and spraying water on the entire area of the uppermost shelf 62 like a shower.
  • the “water” to be put in the container 60 is either creation water or a sodium hydroxide aqueous solution in which sodium hydroxide is added to the creation water.
  • sodium hydroxide aqueous solution refers to “an aqueous solution in which creation water and sodium hydroxide are mixed”. This aqueous sodium hydroxide solution is alkaline (alkaline creation water).
  • the water injection means 70 is supplied with fresh water or an aqueous sodium hydroxide solution through a water supply passage 72, and a water amount adjustment means 74 for adjusting the amount of supply water is provided in the middle of the water supply passage 72. .
  • Fresh water or sodium hydroxide aqueous solution is jetted downward from the water jet means 70 in the upper part of the container 60 like a shower.
  • the fresh water or the sodium hydroxide aqueous solution sprayed from the water spraying means 70 reaches the next shelf 62 through the aluminum 66 on the uppermost shelf 62, and sequentially reaches the shelf 62 below, Eventually, the bottom of the container 60 is reached.
  • fresh water or aqueous sodium hydroxide solution is used as the water sprayed from the water jetting means 70 into the container 60. That is, in the invention of Example 2, it is assumed that fresh water is used.
  • fresh water is used.
  • hydrogen is generated when the temperature is 30 ° C. or higher, and the amount of hydrogen generated increases as the temperature in the container 60 increases from 30 ° C. to 80 ° C.
  • the temperature in the container 60 is 80 ° C. or higher, the amount of hydrogen generated increases abruptly compared to less than 80 ° C.
  • Sodium hydroxide has the effect of increasing the amount of hydrogen generated from water and the amount of oxygen generated from water.
  • concentration of sodium hydroxide should be 0.1% or more, but the concentration of sodium hydroxide is about 1% to 15%, It is desirable because of the large amount and the short start time of hydrogen generation.
  • concentration of sodium hydroxide may be 15% or more, but the result is almost the same as the sodium hydroxide concentration of about 1% to 15%.
  • the water sprayed and sprayed from the water injection means 70 into the container 60 is created water, sodium hydroxide is provided on the shelf 62 in addition to the aluminum 66, and the created water falling from above comes into contact with sodium hydroxide.
  • a sodium hydroxide aqueous solution may be used. That is, if the water in contact with the aluminum 66 in the container 60 is a sodium hydroxide aqueous solution (an aqueous solution in which creation water and sodium hydroxide are mixed), the “sodium hydroxide aqueous solution” in the present invention is used. .
  • Example 2 of the present invention the fresh water or sodium hydroxide aqueous solution and aluminum 66 are put in the container 60, and the inside of the container 60 is heated to 30 ° C. or more by the heating means 69 from the outside of the container 60.
  • the temperature in the container 60 may be set to 80 ° C. or higher.
  • the amount of hydrogen generated can be adjusted by the temperature in the container 60 and the concentration of sodium hydroxide in a sodium hydroxide aqueous solution described later.
  • Example 2 the experimental result (measurement analysis report) in Example 2 will be described based on the measurement analysis report shown in FIGS.
  • FIG. 13 what is put in the container 60 is the creation water
  • FIG. 14 what is put in the container 60 is the sodium hydroxide aqueous solution in which the creation water and sodium hydroxide are mixed. is there.
  • the contents common to the “sample name” in FIGS. 13 and 14 are “creating water 100%, no tourmaline, 100% aluminum, heating (with heating means), 93 ° C., 0.075 MPa”. 13 and 14 are also prepared by the aforementioned Shinano pollution research institute.
  • FIGS. 13 and 14 Prior to achieving the present invention, water such as tap water was put in a container, and tourmaline was put together with aluminum 66 to generate hydrogen. As a result of various experiments related to this, the creation water or the sodium hydroxide aqueous solution and the aluminum 66 only (without the tourmaline 76) are brought into contact with each other, and the creation water or the hydroxylation in a state of being in contact with the aluminum 66 is contacted. It was found that hydrogen was generated when the aqueous sodium solution was heated to 30 ° C. or higher.
  • the measurement analysis report using the created water (FIG. 13) and the measurement analysis report using the sodium hydroxide aqueous solution (FIG. 14) will be compared.
  • the generated gases hydrogen was 83%, oxygen was 3.8%, and the total amount of hydrogen was 2.1 liters.
  • the generated gas was 98% hydrogen, 0.3% oxygen, and the total amount of hydrogen was 11.2 liters.
  • a container 60 is provided with a large number of shelves 62 above and below, a large number of granular or small pieces of aluminum 66 are provided on the shelves 62, and a fresh water or a sodium hydroxide aqueous solution from above to below. Was dropped.
  • the shelf 60 is not provided in the container 60, but granular or small pieces of aluminum 66 (powder may be used) are provided at the bottom of the container 60. You may make it enter to the height which covers.
  • the aluminum 66 is exposed to air when hydrogen is generated, a black oxide film is generated on the surface of the aluminum 66, and the hydrogen generation rate decreases with the passage of time. By immersing in aluminum, generation of an oxide film of aluminum 66 is suppressed.
  • the aluminum 66 When generating a large amount of hydrogen, the aluminum 66 reacts with the sodium hydroxide aqueous solution and continues to generate reaction heat. By this reaction, the aluminum 66 is gradually dissolved into a residue (80 to 90% is aluminum hydroxide and 10 to 20% is sodium carbonate). When the aluminum 66 melts and becomes a residue, the reaction heat is not generated, so the residue on the shelf 62 and the new aluminum 66 must be replaced.
  • FIG. 15 is a sectional view of Example 3 of an apparatus used in the method for producing hydrogen according to the present invention.
  • FIG. 15 differs from FIG. 12 (Example 2) in that the heating means 69 provided in Example 2 is omitted.
  • the heating means 69 provided outside the container 60 was used to heat the creation water and the sodium hydroxide aqueous solution in the container 60.
  • the heating means outside the container was omitted.
  • the temperature of the aqueous sodium hydroxide solution in the container 60 is raised to 30 ° C. or higher at which hydrogen is generated by the reaction heat in the container 60.
  • Example 3 In order to obtain hydrogen from water, water is thermally decomposed using a heating means, but in Example 3, no heating means is used.
  • the sodium hydroxide aqueous solution and aluminum are brought into contact with each other in the container 60, and the temperature in the container 60 is set to the evaporation temperature of the created water (about 104 ° C.) Can be raised to near. Since the temperature in the container 60 becomes equal to or higher than the temperature (30 ° C.) at which a large amount of hydrogen is generated from the generated water in contact with the aluminum 66 due to the reaction heat, hydrogen can be generated in the container 60. it can. This heat of reaction can raise the temperature in the container 60 to 80 ° C. or higher at which a large amount of hydrogen is generated. As a result, in the invention of Example 3, hydrogen can be generated without using an external heating means.
  • the concentration of sodium hydroxide in the sodium hydroxide aqueous solution is not particularly limited as long as it is 0.1% or more.
  • the concentration of sodium hydroxide is economically desirable, for example, from 1 to 15%.
  • the sodium hydroxide concentration may be 15% or more, but the effect is the same even if the sodium hydroxide concentration is high.
  • the amount of hydrogen generated can be adjusted by the temperature in the container 60 and the concentration of sodium hydroxide in the aqueous sodium hydroxide solution. In general, when the concentration of sodium hydroxide is about 0.1% to about 5%, the hydrogen generation amount gradually increases as the concentration increases.
  • the sodium hydroxide aqueous solution sprayed from the water spraying means 70 disposed above the container 60.
  • the amount of sodium hydroxide aqueous solution sprayed from the water spraying means 70 is controlled by a control means (not shown) so that almost all of it evaporates when it reaches the aluminum 66 at the bottom of the container 60.
  • the water sprayed from above in the container 60 evaporates before and after reaching the bottom of the container 60, and the evaporation efficiency of the sodium hydroxide aqueous solution sprayed into the container 60 is good.
  • a container 60 is provided with a large number of shelves 62 above and below, a large number of granular or small pieces of aluminum 66 are provided on the shelves 62, and an aqueous sodium hydroxide solution is dropped from above to below.
  • the shelf 60 is not provided in the container 60, but granular, small pieces, or powdered aluminum 66 is placed in the bottom of the container 60, and the sodium hydroxide aqueous solution is placed to a height that covers the aluminum 66. good.
  • the content common to the “sample name” in FIGS. 16 to 18 is “the pressure in the container is 0.007 MPa (this is considered to be an error of 0.07 MPa), the temperature is 93 ° C., no tourmaline, aluminum shot, “Bubbling with 100% fresh water, no heating means.”
  • the description of “no tourmaline” in the “sample name” is for the purpose of clarifying that only the aluminum 66 is present except for the sodium hydroxide aqueous solution to be put in the container 60 in the present invention, and no tourmaline is added.
  • Al shot is used.
  • the aluminum shot is a lump or small piece of aluminum material before being formed into something, and the purity of the aluminum itself is high.
  • the aluminum ball is formed into a ball shape and is made easy to form by adding iron or the like, and the purity of the aluminum itself is lower than that of the aluminum shot.
  • hydrogen is 98% by self-heating due to heat of reaction between aluminum 66 and sodium hydroxide aqueous solution without using heating means for heating the container from the outside of the container. It can be seen that a large amount is generated at about 99%, and an extremely small amount of oxygen is generated at about 0.2% to 0.3%. That is, in the present invention, the temperature of the sodium hydroxide aqueous solution is raised to the hydrogen generation temperature (30 ° C.) or higher of the created water by the self-heating of the reaction heat without applying heat by the heating means from the outside of the container. Hydrogen can be generated from the created water. In addition, in sodium hydroxide aqueous solution, when temperature is 80 degreeC or more, hydrogen can be generated in large quantities.
  • FIG. 19 to FIG. 23 show the results of comparing the water to be mixed with sodium hydroxide using the fresh water and other water.
  • the results of FIGS. 19 to 23 show that a lot of granular or small pieces of aluminum are put in the bottom of the container, and the liquid level of a mixture of sodium hydroxide and various kinds of soot is put to a height higher than the top of the aluminum. The experiment was carried out in the state.
  • 19 and 20 are tables in which six types of experiments were performed on four types of water, namely, fresh water, tap water, alkaline ionized water, and natural water.
  • Six types of experiments are: 5% sodium hydroxide concentration with aluminum shot and aluminum ball (2 types), 10% sodium hydroxide concentration with aluminum shot And aluminum balls are used (2 types), sodium hydroxide concentration is 15%, aluminum shot is used, and aluminum balls are used (2 types).
  • FIGS. 21 to 23 are graphs based on the numerical values in the tables of FIGS. 19 and 20.
  • the left graph in FIG. 21 is obtained by using aluminum shot at a sodium hydroxide concentration of 5%.
  • alkali ion water, natural water, and tap water do not generate hydrogen.
  • the generation water took 15 minutes to generate hydrogen, but after generating hydrogen, hydrogen continued to be generated until the aqueous sodium hydroxide solution disappeared.
  • FIG. 20 there are 120 minutes or more in the column of the created water at the end of the reaction (stop), which means that the sodium hydroxide aqueous solution is exhausted.
  • the graph on the right side of FIG. 21 is obtained by using aluminum balls at a sodium hydroxide concentration of 5%.
  • alkali ion water, natural water, and tap water take 13 minutes, 5 minutes, and 8 minutes to generate hydrogen, and the time to continue generating hydrogen is 40 minutes. 33 minutes and 28 minutes.
  • the fresh water is much shorter than other water until hydrogen is generated, and the time during which hydrogen is continuously generated is longer than that of other water.
  • the graph on the left of FIG. 22 shows a case where the concentration of sodium hydroxide is 10% and aluminum shot is used. From this graph and FIGS. 19 and 20, alkaline ionized water, natural water, and tap water take 27 minutes, 26 minutes, and 20 minutes to generate hydrogen, and the time that hydrogen is continuously generated is 80 minutes. 90 minutes and 45 minutes. On the other hand, the generation water took 10 minutes to generate hydrogen, and continued to generate hydrogen until the aqueous sodium hydroxide solution disappeared. Thus, from the tables of FIG. 19 and FIG. 20 and the left graph of FIG. 22, it is desirable to use the created water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand.
  • the graph on the right side of FIG. 22 is obtained by using an aluminum ball with a sodium hydroxide concentration of 10%. From this graph and FIGS. 19 and 20, alkaline ionized water, natural water, and tap water take 3 minutes, 3 minutes, and 4 minutes to generate hydrogen, and the time to continue generating hydrogen is 27 minutes. 27 minutes and 30 minutes. On the other hand, it was 50 seconds until the generation water generated hydrogen, and the duration of generation of hydrogen was 75 minutes. Thus, from the tables of FIGS. 19 and 20 and the graph on the right side of FIG. 22, it is desirable to use the created water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand that.
  • the graph on the left side of FIG. 23 is obtained by using aluminum shot at a sodium hydroxide concentration of 15%. From this graph and FIGS. 19 and 20, alkaline ionized water, natural water, and tap water take 12 minutes, 6 minutes, and 12 minutes to generate hydrogen, and the time to continue generating hydrogen is 37 minutes. 45 minutes and 26 minutes. On the other hand, the generation water required 3 minutes to generate hydrogen, and the duration of hydrogen generation was until the sodium hydroxide aqueous solution disappeared. Thus, from the tables of FIG. 19 and FIG. 20 and the left graph of FIG. 23, it is desirable to use the creation water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand.
  • the graph on the right side of FIG. 23 shows a case where an aluminum ball is used at a sodium hydroxide concentration of 15%. From this graph and FIGS. 19 and 20, it takes 2 minutes, 1 minute, and 2 minutes for alkali ion water, natural water, and tap water to generate hydrogen, and the time to continue generating hydrogen is 25 minutes. 28 minutes and 20 minutes. On the other hand, it was 20 seconds until the generation water generated hydrogen, and the time for generating hydrogen was 43 minutes. Thus, from the tables of FIGS. 19 and 20 and the graph on the right side of FIG. 22, it is desirable to use the created water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand that. As described above, it is clear from the tables of FIGS. 19 and 20 and the graphs of FIGS. 21 to 23 that it is clear that the time until hydrogen is generated and the duration of hydrogen generation is long. It is desirable to use raw water.
  • the water to be used is four types of water, fresh water, tap water, alkaline ionized water, and natural water, and the sodium hydroxide concentration is 0%, 1%, 3%,
  • Aluminum was experimented with two types of aluminum shot and aluminum powder. The experimental results are shown in FIGS. FIG. 24 to FIG. 27 show the results of experiments in a state where granular or small pieces of aluminum or aluminum powder are put in the bottom of the container, and a sodium hydroxide aqueous solution is put up to a height that covers the aluminum.
  • FIG. 24 aluminum shots are used, and the concentrations of sodium hydroxide are 0%, 1%, and 3%, and the water is created water, tap water, alkaline ionized water, and natural water 4 It is a table
  • FIG. 25 is a graph showing a part of the table of FIG.
  • the graph on the left side of FIG. 25 is obtained by using aluminum shot at a sodium hydroxide concentration of 1%. From this graph and the table in FIG. 24, when the concentration of sodium hydroxide is 1% and aluminum shot is used, hydrogen gas is generated in each of four types of fresh water, tap water, alkaline ionized water, and natural water. It never occurred.
  • the graph on the right side of FIG. 25 is obtained by using aluminum shot at a sodium hydroxide concentration of 3%. From this graph and the table of FIG. 24, it can be seen that tap water, alkali ion water, and natural water do not generate hydrogen. On the other hand, it took 40 minutes for generation water to generate hydrogen, but after generating hydrogen, it continued to generate hydrogen until the aqueous sodium hydroxide solution disappeared.
  • FIG. 27 is a graph showing a part of the table of FIG.
  • the graph on the left of FIG. 27 shows the case where the concentration of sodium hydroxide is 1% and aluminum powder is used. From this graph and the table of FIG. 26, tap water, alkaline ionized water, and natural water take reaction time of 30 seconds and 60 seconds until hydrogen is generated, and the time for which hydrogen is continuously generated is determined as follows. 6 minutes and 4 minutes. On the other hand, the generation water was 10 seconds until hydrogen was generated, and the time during which hydrogen was continuously generated was 10 minutes. As shown in the graph on the left side of FIG. 27, the time during which hydrogen is continuously generated is 10 minutes, which is generated until the sodium hydroxide aqueous solution in the container is exhausted. This experiment is an experiment in which a sodium hydroxide aqueous solution is put in a container.
  • the time when the sodium hydroxide aqueous solution in the container disappears is 10 minutes. If the container is large, the time during which hydrogen is continuously generated is 10 minutes or more. It is clear. Thus, it can be seen from the table of FIG. 26 and the left graph of FIG. 27 that it is preferable to use the created water as tap water, alkaline ionized water or natural water as water for generating hydrogen.
  • concentration of sodium hydroxide is 1%
  • hydrogen is generated until the sodium hydroxide aqueous solution disappears.
  • the concentration of sodium hydroxide is 0.1% or more, hydrogen is generated. Will occur.
  • the graph on the right side of FIG. 27 is obtained by using aluminum powder at a sodium hydroxide concentration of 3%. From this graph and FIG. 26, tap water, alkaline ionized water, and natural water take 30 seconds, 15 seconds, and 15 seconds to generate hydrogen, and the time that hydrogen is continuously generated is 40 minutes, 45 seconds. Minutes, 45 minutes. In contrast, the generation water was instantaneous until hydrogen was generated, and the time during which hydrogen was continuously generated was 90 minutes. As shown in the graph on the right side of FIG. 27, the time during which hydrogen is continuously generated is 90 minutes, which is that hydrogen is generated until the sodium hydroxide aqueous solution is used up. This experiment is an experiment in which a sodium hydroxide aqueous solution is put in a container.
  • the time when the sodium hydroxide aqueous solution in the container disappears is 90 minutes. If the container is large, the time during which hydrogen is continuously generated is 90 minutes or more. It is clear. Since hydrogen is instantaneously generated when the concentration of sodium hydroxide is 3% or more, an aqueous sodium hydroxide solution using creation water is optimal when instantaneous hydrogen generation is required.
  • the sodium hydroxide aqueous solution using the created water is compared with the sodium hydroxide aqueous solution using alkali ion water, natural water or tap water.
  • the sodium hydroxide aqueous solution using the generated water instantaneously generates hydrogen.
  • it can be seen that it is better to use the created water as water for generating hydrogen than alkali ion water, natural water or tap water.
  • aluminum is powdered and the sodium hydroxide concentration is 3% or more, hydrogen can be generated instantaneously and hydrogen can be generated for a long time.
  • Aluminum 66 reacts with the aqueous sodium hydroxide solution to generate reaction heat, which generates hydrogen from the generated water in the aqueous sodium hydroxide solution, and the aqueous sodium hydroxide solution gradually decreases. On the other hand, the aluminum 66 melts and becomes a residue. The residue is 80-90% aluminum hydroxide. If the aluminum 66 melts and becomes a residue and heat of reaction cannot be obtained, the residue on the shelf 62 and the new aluminum 66 must be replaced.
  • Example 4 of the hydrogen production apparatus of the present invention will be described.
  • the aluminum 66 is melted and the residue in the container 60 is removed. It will remain.
  • the residue must be taken out from the container 60, and new aluminum 66 must be put in the container 60. It cannot be generated.
  • hydrogen is used as a fuel for an automobile, if the hydrogen cannot be generated without interruption, the automobile may not be able to travel on the way.
  • the hydrogen production apparatus of Example 4 will be described with reference to FIGS.
  • This Example 4 is an apparatus for making it possible to generate hydrogen permanently.
  • the water used in this Example 4 is alkaline created water in which the created water is made alkaline.
  • the alkaline creation water may be a creation water obtained by reacting a neutral creation water with the aluminum powder 77 to generate hydrogen, or a sodium hydroxide aqueous solution in which sodium hydroxide is mixed with the creation water.
  • the container 78 contains an aqueous sodium hydroxide solution and aluminum 66 therein.
  • the container 78 has a cup shape with an upper opening, and the upper opening is closed by a funnel-shaped lid 82 (considered as a part of the container 78).
  • a first valve means 84 is attached above the funnel-shaped lid 82, and a tubular communication pipe 86 is attached on the first valve means 84.
  • a two-valve means 88 is mounted on which a hopper 90 for storing a large amount of granular or small pieces of aluminum 66 is mounted.
  • the first valve means 84 communicates and cuts off the internal space of the lid 82 and the internal space of the connecting pipe 86, and the second valve means 88 cuts off the communication between the internal space of the connecting pipe 86 and the inside of the hopper 90. To do.
  • the first valve means 84 is actuated by the first motor 92 and the second valve means 88 is actuated by the second motor 94.
  • the lid 82 and the hopper 90 are fixed to a member (not shown), and the container 78 can be attached to and detached from the lid 82 by attaching / detaching means such as screwing.
  • a rigid net member 96 having a bottomed cylindrical shape is attached to the inside of the container 78, and the bottom of the net member 96 is disposed at a slightly deeper position inside the container 78.
  • the net member 96 is made of a metal or a synthetic resin that is not eroded by sodium hydroxide.
  • the mesh size of the mesh member 96 is such that the granular or small pieces of aluminum 66 do not pass through and the residue, which is residue after the aluminum 66 has melted, falls downward, for example about 3 to 4 mm. Although the size is desirable, the size of the mesh is not limited to this.
  • a cooling pipe 98 as a cooling means is provided in the inner space of the funnel-shaped lid 82 (inner space of the container 60), and both ends of the cooling pipe 98 reach the outside of the lid 82.
  • the cooling pipe 98 is preferably coiled in the internal space of the lid 82. Both ends of the cooling pipe 98 communicate with, for example, an automobile radiator, and a fluid such as a cooling liquid or gas passes through the cooling pipe 98 to cool the gas (hydrogen) in the internal space of the lid 82.
  • a gas discharge passage 100 for taking out the hydrogen generated in the container 78 to the outside is attached above the attachment position of the cooling pipe 98 in the lid 82.
  • the internal space of the container surrounded by the container 78 and its lid 82 communicates only with the internal space of the connecting pipe 86 opened and closed by the first valve means 84 and the gas discharge passage 100.
  • the aluminum charging means for charging the aluminum 66 in the hopper 90 into the container 78 includes a first valve means 84, a second valve means 88, a connecting pipe 86 and a hopper 90.
  • the constituent members of the aluminum charging means are not limited to these configurations.
  • the liquid level 102 of the alkaline creation water in the container 78 is set to be higher than the upper surface of the aluminum 66 put into the bottom of the net member 96.
  • FIG. 28 An apparatus for extracting hydrogen from the gas generated in the container 78 is shown in FIG.
  • a large amount of hydrogen is produced in the container 78, and water and a small amount of oxygen are contained together with the hydrogen.
  • a gas containing a large amount of hydrogen is discharged from the container 78 to the outside through the gas discharge passage 100 (FIG. 28).
  • the gas discharged from the gas discharge passage 100 communicates with a cooling pipe 106 provided inside the cooler 104 as shown in FIG.
  • a cooling liquid (cooling fluid) 108 is provided in the cooler 104, and the cooling liquid 108 is discharged to the outside of the cooler 104 and cooled from the outside by a circulation system (not shown) such as an automobile radiator. Inflow into 104 is performed.
  • the cooling pipe 98 is provided in the internal space of the lid 82. However, either one of the cooling pipe 98 and the cooler 104 or both may be provided. .
  • a liquid tank 110 is provided in the vicinity of the cooler 104.
  • the other end of the cooling pipe 106 communicates with one end of the connecting pipe 112 outside the cooler 104, and the other end of the connecting pipe 112 is inserted into the liquid tank 110.
  • a large number of holes (not shown) for discharging gas to the outside are formed in the connecting pipe 112 at a position inserted into the liquid tank 110.
  • creation water or a sodium hydroxide aqueous solution (an aqueous solution composed of the creation water and sodium hydroxide) is placed in the liquid tank 110.
  • the upper part of the liquid tank 110 is closed with a lid, and the upper part inside the liquid tank 110 communicates with the outside through one end of the communication pipe 114.
  • a dryer 116 is provided adjacent to the liquid tank 110.
  • a large number of desiccants 118 such as silica gel are accommodated in the drier 116.
  • the other end of the connecting pipe 114 is horizontally disposed near the bottom of the dryer 116, and a plurality of holes (not shown) are provided at positions where the connecting pipe 114 is horizontally disposed near the bottom of the dryer 116. Is formed.
  • a hydrogen take-out pipe 120 that communicates the inside and the outside is provided at the top of the dryer 116.
  • the gas (high temperature) generated in the container 78 is mostly hydrogen as shown in FIGS. 16 and 17, but contains some water vapor and some oxygen.
  • the hot gas is cooled by the cooler 104, and then the cooled gas is passed through the liquid tank 110.
  • Water vapor contained in the gas is absorbed by the liquid tank 110.
  • Some oxygen contained in the gas is absorbed by the creation water or the aqueous sodium hydroxide solution.
  • the water vapor and some oxygen are liquids in the liquid tank 110 containing the created water and the sodium hydroxide aqueous solution. By passing through it, it can be removed to only hydrogen.
  • the gas from which water vapor and oxygen have been removed in the liquid tank 110 is only hydrogen. Thereafter, hydrogen is introduced into the dryer 116, passes through a desiccant 118 such as silica gel, and moisture (water when passing through the sodium hydroxide aqueous solution in the liquid tank 110) is removed. To be taken out.
  • a desiccant 118 such as silica gel
  • an apparatus for removing the residue accumulated in the container 78 from the container 78 without stopping the generation of hydrogen will be described with reference to FIG.
  • alkaline creation water in which the creation water is made alkaline as described above is used.
  • annular liquid circulation passage 122 communicating with the container 78 at two locations is provided near the bottom of the container 78.
  • a connection point with one of the containers 78 in the liquid circulation passage 122 is a first connection point 124
  • a connection point with the other of the containers 78 in the liquid circulation passage 122 is a second connection point 126.
  • a first electromagnetic valve 128, a filter 130 as a residue capturing means In the middle of the liquid circulation passage 122 from the first contact point 124 to the second contact point 126, in order from the position close to the first contact point 124, a first electromagnetic valve 128, a filter 130 as a residue capturing means, The 1st pump 132, the tank 134 which accommodates alkaline creation water, the 2nd pump 136, and the 2nd solenoid valve 138 are provided. The positions of the second pump 136 and the second electromagnetic valve 138 may be moved back and forth. It is assumed that alkaline creation water flows in the liquid circulation passage 122 from the first connection point 124 toward the second connection point 126.
  • the liquid input means for supplying the alkaline creation water to the container 78 the second pump 136 and the second electromagnetic valve 138 for introducing the alkaline creation water from the tank 134 into the container 78, Consists of.
  • the liquid input means is not limited to this configuration.
  • the liquid removal means for removing the alkaline creation water and the residue from the container 78 includes a first electromagnetic valve 128 and a first pump 132.
  • the liquid take-out means is not limited to this configuration.
  • the first electromagnetic valve 128 is closed and the second electromagnetic valve 138 is opened, and the second pump 136 is operated.
  • new alkaline creation water is taken out from the tank 134, and the alkaline creation water is supplied into the container 78 through the liquid circulation passage 122.
  • the aluminum 66 put into the mesh member 96 in the container 78 reacts with the alkaline creation water, melts and becomes small, falls downward from the mesh of the mesh member 96, and remains as a residue on the bottom in the container 78. Accumulate. A procedure for removing the residue from the container 78 will be described.
  • the first electromagnetic valve 128 is opened and the first pump 132 is operated. The suction force of the first pump 132 extends into the container 78 through the liquid circulation passage 122, and the residue is taken out of the container 78 together with the alkaline creation water from the container 78.
  • the residue is captured by the filter 130 which is a residue capturing means, and the alkaline creation water is removed from the dust by the filter 130 and stored in the tank. 134 and accumulated in the tank 134.
  • the residue taken out from the container 78 is captured by the filter 130, and the residue is removed by replacing the filter 130.
  • the second electromagnetic valve 138 is opened and the second pump 136 is operated. By doing so, fresh alkaline water is supplied into the container 78.
  • the pH concentration is always checked, and sodium hydroxide may be supplied as necessary.
  • the aluminum 66 is held by the net member 96, and the residue of the aluminum 66 is accumulated at the bottom of the container 78. Therefore, by providing a circulation structure of alkaline creation water that passes near the bottom of the container 78. The residue can be discharged from the inside of the container 78, and a new alkaline creation water can be supplied into the container 78. The discharge of the residue from the container 78 and the supply of new alkaline creation water into the container 78 can be performed without stopping the generation of hydrogen from the container 78. Therefore, hydrogen can be continuously generated, and it is suitable for use as a fuel for automobiles without interruption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Provided are a method and a device that can easily extract hydrogen from a particular type of water and aluminum. The particular type of water and the aluminum (66) are brought into contact inside a container (60), and a heating means (69) heats the interior of the container (60) to at least 30°C. By bringing the particular type of water into contact with aluminum (66) at a temperature of 30°C or greater, hydrogen can be generated inside the container (60). If the temperature inside the container (60) is brought to at least 80°C, a larger quantity of hydrogen can be generated.

Description

水素の製造方法及び水素の製造装置Hydrogen production method and hydrogen production apparatus
 本発明は、特殊な水とアルミニウムとを用いて水素を発生させるための水素製造方法及び水素製造装置に関するものである。 The present invention relates to a hydrogen production method and a hydrogen production apparatus for generating hydrogen using special water and aluminum.
 燃料ガスとして水素を使用することが従来から知られている。水素を製造する製造方法として、多くの発明が提供されている。例えば水100%を熱分解して水素を得る方法や、硫酸を熱分解し、ヨウ素水を用いて水素を取り出すIS法(Iodine-Sulfe)法等が知られている。IS法は、ブンゼン反応工程と、ヨウ化水素濃縮分解行程と、硫酸濃縮分解行程による3つの行程を経て、水から水素と酸素とを分解して取り出すもの(特許文献1)である。その他に、金属亜鉛とマグネタイトと水とを反応させ、反応生成物として水素を発生させる水の分解方法が知られている(特許文献2)。 It is conventionally known to use hydrogen as a fuel gas. Many inventions have been provided as production methods for producing hydrogen. For example, a method of thermally decomposing 100% water to obtain hydrogen, an IS method (Iodine-Sulf) method in which sulfuric acid is thermally decomposed and hydrogen is extracted using iodine water are known. The IS method is one in which hydrogen and oxygen are decomposed and taken out from water through a bunsen reaction step, a hydrogen iodide concentration decomposition step, and a sulfuric acid concentration decomposition step (Patent Document 1). In addition, a method for decomposing water in which metal zinc, magnetite, and water are reacted to generate hydrogen as a reaction product is known (Patent Document 2).
 アルミニウムやマグネシウムと水とを接触させることで、水素を発生させる水素の製造方法が知られている(特許文献3)。 A method for producing hydrogen in which hydrogen is generated by bringing aluminum or magnesium into contact with water is known (Patent Document 3).
特開2005-41764JP-A-2005-41764 特開2001-270701JP 2001-270701 A 特開2007-290888JP2007-290888
 水100%を熱分解して水素を得る方法では、水は水素と酸素との結びつきが強いため、理論上3,000℃~5,000℃の温度を与えないと、水素と酸素に分解しないと言われている。3,000℃以上の温度で水を熱分解して水素を得る方法では、3,000℃以上の高温を得る実質的な方法が得られないことや、そのような高温状態の空間を外界から保つための設備を安価に作れないことや、高温の空間内に連続的に水を供給する手段が考えられないこと等、多くの問題を含んでいることから、水の熱分解による水素の生成は実現には至っていない。 In a method in which hydrogen is obtained by thermally decomposing 100% water, water has a strong bond between hydrogen and oxygen, so theoretically it does not decompose into hydrogen and oxygen unless a temperature of 3,000 ° C to 5,000 ° C is given. It is said. In the method of obtaining hydrogen by thermally decomposing water at a temperature of 3,000 ° C. or higher, it is not possible to obtain a substantial method for obtaining a high temperature of 3,000 ° C. or higher, and such a high-temperature space from the outside Hydrogen generation by thermal decomposition of water because there are many problems such as inability to make equipment to maintain low cost and inconceivable means to supply water continuously in a high temperature space Has not been realized.
 特許文献1に示すIS法では、900℃程度の高熱を必要とするため、熱源として、高温ガス炉等を用いなければならない。この高温ガス炉は製造コストが高く、しかも3つの工程を経て水素を製造することになり、水素を製造するためのコストが非常に高いものとなっていた。 Since the IS method shown in Patent Document 1 requires a high heat of about 900 ° C., a high temperature gas furnace or the like must be used as a heat source. This high temperature gas furnace has a high manufacturing cost, and hydrogen is manufactured through three steps, and the cost for manufacturing hydrogen is very high.
 特許文献2に示す水の分解方法では、金属亜鉛とマグネタイトと600℃で水蒸気と反応させることで水素を製造するものであり、600℃の水蒸気を作るための加熱手段を備えなければならない。 In the method for decomposing water shown in Patent Document 2, hydrogen is produced by reacting metal zinc and magnetite with water vapor at 600 ° C., and a heating means for producing 600 ° C. water vapor must be provided.
 特許文献3に示す水の製造方法では、水としてpHが4~10の不凍水を使用するもので、0℃以下でも水素を発生させるものである。この特許文献3では、アルミニウムと水との反応によって水素を発生するが、0℃以下の低温で反応を行なうことから、低温では水素を大量に発生することはでず、高い経済効率で水素を発生することができない。 In the method for producing water shown in Patent Document 3, non-freezing water having a pH of 4 to 10 is used as water, and hydrogen is generated even at 0 ° C. or lower. In Patent Document 3, hydrogen is generated by the reaction between aluminum and water. However, since the reaction is performed at a low temperature of 0 ° C. or less, a large amount of hydrogen cannot be generated at a low temperature, and hydrogen is generated with high economic efficiency. Can not occur.
 本発明は、特殊な水とアルミニウムとを接触させることで水素を製造することができる水素の製造方法と、特殊な水とアルミニウムとを接触させることで効率良く水素を製造するための水素製造装置とを提供することを目的とするものである。 The present invention relates to a hydrogen production method capable of producing hydrogen by bringing special water and aluminum into contact with each other, and a hydrogen production apparatus for efficiently producing hydrogen by bringing special water and aluminum into contact with each other. The purpose is to provide.
 本発明の水素の製造方法は、水を最初にイオン交換樹脂に通過させ、その後にトルマリンと、流紋岩または花崗岩の少なくとも1つからなる二酸化珪素を65~76%含む岩石とのどちらか一方を先に他方を後に通過させることによって生成するものを特殊な水とし、前記特殊な水とアルミニウムとを容器内に入れて前記容器内で接触させた状態で前記容器内の温度を30℃以上前記特殊な水の沸点未満とすることで、前記特殊な水と前記アルミニウムとを反応させて水素を発生させることを特徴とするものである。本発明は、前記容器内の温度を80℃以上前記特殊な水の沸点未満の間に保つことを特徴とするものである。本発明は、前記アルミニウムを粉末とし、前記容器内の温度を80℃以上前記特殊な水の沸点未満にして水素を発生させることで前記特殊な水をアルカリ性(アルカリ性の特殊な水)とし、前記容器内のアルカリ性の特殊な水に新たなアルミニウム粉末を供給することで、加熱手段による加熱無しに前記容器内の温度を80℃以上前記特殊な水の沸点未満の間に保持して水素を発生させることを特徴とするものである。本発明は、前記容器内の温度が30℃以上で80℃未満の場合に、前記容器内の温度を加熱手段によって継続的に上昇させることを特徴とするものである。本発明は、前記イオン交換樹脂を強酸性カチオン交換樹脂(RzSO3Na)としたことを特徴とするものである。本発明は、前記特殊な水を生成するためのトルマリンにアルミニウム、ステンレス、銀の少なくとも1種類の金属を混合させたことを特徴とするものである。本発明は、前記流紋岩を黒曜石,真珠岩,松脂岩のうち少なくとも1つからなる岩石としたことを特徴とするものである。本発明は、前記特殊な水の100重量に対して、前記アルミニウムを5重量以上とすることを特徴とするものである。本発明は、前記アルミニウムの重量を10重量以上としたことを特徴とするものである。本発明は、前記特殊な水に水酸化ナトリウムを加えた水酸化ナトリウム水溶液を前記容器内でアルミニウムと接触させることを特徴とするものである。本発明は、前記容器の外部からの熱を加える加熱手段を用いずに、前記水酸化ナトリウム水溶液と前記アルミニウムとの反応熱によって前記容器内の温度を30℃以上にすることを特徴とするものである。本発明は、水酸化ナトリウム水溶液と前記アルミニウムとの反応熱によって前記容器内の温度を80℃以上にすることを特徴とするものである。本発明は、前記水酸化ナトリウム水溶液における水酸化ナトリウムの濃度を0.1%以上とすることを特徴とするものである。本発明は、前記水酸化ナトリウムの濃度を3%以上とすることを特徴とするものである。本発明は、前記容器の底に前記アルミニウムを備え、そのアルミニウムの最上位よりも前記水酸化ナトリウム水溶液の液面を上位とすることを特徴とするものである。 In the method for producing hydrogen of the present invention, water is first passed through an ion exchange resin, and then either tourmaline or rock containing 65 to 76% silicon dioxide composed of at least one of rhyolite or granite. The water produced by passing the other first is made into special water, and the temperature in the container is 30 ° C. or more in the state where the special water and aluminum are put in the container and contacted in the container. By making the boiling point less than the special water, hydrogen is generated by reacting the special water with the aluminum. The present invention is characterized in that the temperature in the container is kept between 80 ° C. or more and less than the boiling point of the special water. In the present invention, the aluminum is powdered, the special water is made alkaline (alkaline special water) by generating hydrogen by setting the temperature in the container to 80 ° C. or higher and lower than the boiling point of the special water, By supplying new aluminum powder to the alkaline special water in the container, the temperature in the container is maintained between 80 ° C and below the boiling point of the special water without heating by heating means to generate hydrogen. It is characterized by making it. The present invention is characterized in that when the temperature in the container is 30 ° C. or higher and lower than 80 ° C., the temperature in the container is continuously increased by a heating means. The present invention is characterized in that the ion exchange resin is a strongly acidic cation exchange resin (RzSO 3 Na). The present invention is characterized in that the tourmaline for producing the special water is mixed with at least one metal of aluminum, stainless steel, and silver. The present invention is characterized in that the rhyolite is a rock composed of at least one of obsidian, pearlite, or pine stone. The present invention is characterized in that the aluminum is 5 weight or more with respect to 100 weight of the special water. The present invention is characterized in that the weight of the aluminum is 10 weight or more. The present invention is characterized in that a sodium hydroxide aqueous solution obtained by adding sodium hydroxide to the special water is brought into contact with aluminum in the container. The present invention is characterized in that the temperature in the container is raised to 30 ° C. or higher by the reaction heat between the aqueous sodium hydroxide solution and the aluminum without using a heating means for applying heat from the outside of the container. It is. The present invention is characterized in that the temperature in the container is set to 80 ° C. or higher by the reaction heat between the aqueous sodium hydroxide solution and the aluminum. The present invention is characterized in that the concentration of sodium hydroxide in the aqueous sodium hydroxide solution is 0.1% or more. The present invention is characterized in that the concentration of the sodium hydroxide is 3% or more. The present invention is characterized in that the aluminum is provided at the bottom of the container, and the liquid level of the aqueous sodium hydroxide solution is higher than the highest level of the aluminum.
 上記目的を達成するために本発明の水素の製造装置は、水を最初にイオン交換樹脂に通過させ、その後にトルマリンと、流紋岩または花崗岩の少なくとも1つからなる二酸化珪素を65~76%含む岩石とのどちらか一方を先に他方を後に通過させることによって生成した特殊な水をアルカリ性としたもの(アルカリ性の特殊な水)と、アルミニウムとを収容するための容器と、前記容器にアルミニウムを投入するためのアルミニウム投入手段と、前記アルミニウム投入手段から前記容器内に投入されたアルミニウムをその上に載せると共に前記アルミニウムが溶けた残留物を網目より前記容器の下方に落下させるためのものであって前記容器の底よりも高位に配置される網部材と、前記容器の内部と連絡するものであって前記容器内にアルカリ性の特殊な水を導入すると共にそのアルカリ性の特殊な水を前記容器内から排出するための液体循環通路と、前記液体循環通路の途中に備えられるものであって前記容器内に前記アルカリ性の特殊な水を供給するための液体投入手段と、前記液体循環通路の途中に備えられるものであって前記容器内から前記アルカリ性の特殊な水を取出するための液体取り出し手段と、前記液体循環通路の途中に備えられるものであって前記容器内から取出される前記アルカリ性の特殊な水と共に取り出される残留物を捕捉するための残留物捕捉手段と、前記液体循環通路の途中に備えられるものであって前記液体投入手段に前記アルカリ性の特殊な水を供給すると共に液体取り出し手段からの取り出された前記アルカリ性の特殊な水を収容するためのタンクと、を有することを特徴とするものである。本発明は、前記液体取り出し手段が、前記容器から前記アルカリ性の特殊な水が排出される位置に近い側に備えられる第1ポンプ並びに第1弁とから成り、前記液体投入手段が前記容器に前記アルカリ性の特殊な水が導入される近い側に備えられる第2ポンプ並びに第2弁と、タンクとから成り、前記液体循環通路の途中の前記第1ポンプの上流側に前記残留物捕捉手段を備え、前記第1ポンプの下流側に前記タンクを備えたことを特徴とするものである。本発明は、前記アルカリ性の特殊な水を特殊な水は、前記特殊な水とアルミニウムとを容器内で温度を30℃以上にして水素を発生させることで生成したものであることを特徴とするものである。本発明は、前記アルカリ性の特殊な水を特殊な水は、前記特殊な水に水酸化ナトリウムを混合して水酸化ナトリウムの濃度を0.1%以上としたものであることを特徴とするものである。本発明は、前記水酸化ナトリウムの濃度を3%以上とすることを特徴とするものである。 In order to achieve the above object, the hydrogen production apparatus of the present invention first passes water through an ion exchange resin, and then contains 65 to 76% of tourmaline and silicon dioxide comprising at least one of rhyolite or granite. A container for containing special water produced by passing either one of the included rocks first and the other later and making the water alkaline (alkaline special water), and aluminum in the container An aluminum charging means for charging the aluminum, and the aluminum charged in the container from the aluminum charging means is placed on the aluminum dropping means, and a residue in which the aluminum is melted is dropped below the container from the mesh. A mesh member disposed higher than the bottom of the container, and communicates with the interior of the container. A liquid circulation path for introducing caustic special water and discharging the alkaline special water from the container; and a liquid circulation path provided in the middle of the liquid circulation path, wherein the alkaline water is provided in the container. Liquid supply means for supplying special water, liquid take-out means for taking out the alkaline special water from the container, provided in the middle of the liquid circulation passage, and the liquid circulation passage In the middle of the liquid circulation passage, and in the middle of the liquid circulation passage, the residue catching means for catching the residue taken out together with the alkaline special water taken out from the container. Supplying the alkaline special water to the liquid charging means and storing the alkaline special water taken out from the liquid taking-out means It is characterized in that it has a tank, a. In the present invention, the liquid take-out means includes a first pump and a first valve provided on a side close to a position where the alkaline special water is discharged from the container, and the liquid input means is provided in the container. The second pump and the second valve provided on the near side where the special alkaline water is introduced, and a tank are provided, and the residue capturing means is provided upstream of the first pump in the middle of the liquid circulation passage. The tank is provided downstream of the first pump. The present invention is characterized in that the special alkaline water is produced by generating hydrogen from the special water and aluminum at a temperature of 30 ° C. or higher in a container. Is. The present invention is characterized in that the alkaline special water is obtained by mixing sodium hydroxide into the special water so that the concentration of sodium hydroxide is 0.1% or more. It is. The present invention is characterized in that the concentration of the sodium hydroxide is 3% or more.
 本発明の水素の製造方法の請求項1で使用する材料は、市販のアルミニウムと特殊な水(創生水)との2種類の材料のみを用いるものであり、それらを容器内の温度を30℃以上にすることで水素を発生させるものである。本発明では、材料として化学剤やアルミニウム以外の金属を主要材料としなくても、アルミニウムと特殊な水(創生水)のみを用いて、非常に安価なコストで水素を製造することができる。 The material used in claim 1 of the method for producing hydrogen of the present invention uses only two kinds of materials of commercially available aluminum and special water (creation water), and the temperature in the container is 30. Hydrogen is generated when the temperature is higher than or equal to ° C. In the present invention, hydrogen can be produced at a very low cost using only aluminum and special water (generation water) without using a chemical agent or a metal other than aluminum as a main material.
 本発明で使用する特殊な水は、ヒドロキシルイオン(H32 -)や水酸化イオン(OH-)や水素イオン(H+)等の水素原子を大量に含んでいるものである。アルミニウムは電極両性元素であることから、特殊な水が30℃以上の温度になるとアルミニウムに多くのプラスの電極とマイナスの電極が現れ、そのプラスの電極とマイナスの電極が微弱電流を発生して容器内の特殊な水の電気分解を促進させ、特殊な水から水素を大量に発生させると推測される。更に、特殊な水から水素を発生させる時間が長いので、大量の水素を発生することができる。それは、本発明は、特殊な水に含まれるヒドロキシルイオン(H32 -)によって、アルミニウムの表面に膜が張るのを遅らせる効果があるのではないかと推測される。 The special water used in the present invention contains a large amount of hydrogen atoms such as hydroxyl ion (H 3 O 2 ), hydroxide ion (OH ), and hydrogen ion (H + ). Since aluminum is an electrode amphoteric element, when the temperature of special water reaches 30 ° C or higher, many positive and negative electrodes appear in aluminum, and the positive and negative electrodes generate weak currents. It is presumed to promote the electrolysis of special water in the container and generate a large amount of hydrogen from the special water. Furthermore, since the time for generating hydrogen from special water is long, a large amount of hydrogen can be generated. It is presumed that the present invention has an effect of delaying the stretching of the film on the surface of aluminum by hydroxyl ions (H 3 O 2 ) contained in special water.
 本発明において、特殊な水とアルミニウムとを容器内で接触させて水素を発生させる場合、容器の加熱温度は30℃以上で特殊な水の沸点未満であるため、大気圧の下での容器の加熱で済ませることができる。大気圧の下での加熱であるので、従来の水の熱分解のような3,000℃~5,000℃のような特別な装置を必要とせずに、安価で簡単な装置で水素を発生させることができる。加熱手段を使用して容器内のアルミニウムと創生水とを加熱する場合には、加熱の停止によって、水素の発生を停止することができる。よって、水素の発生と停止とを速やかに行なうことが可能となり、水素を燃料として使用する種々の装置に応用することができる。 In the present invention, when hydrogen is generated by bringing special water and aluminum into contact with each other in the container, the heating temperature of the container is 30 ° C. or higher and lower than the boiling point of special water. Can be done by heating. Since heating is performed under atmospheric pressure, hydrogen is generated using a simple and inexpensive device without the need for special equipment such as conventional thermal decomposition of water at 3,000 ° C to 5,000 ° C. Can be made. In the case where the heating means is used to heat aluminum and the creation water in the container, the generation of hydrogen can be stopped by stopping the heating. Therefore, it is possible to quickly generate and stop hydrogen, and it can be applied to various devices that use hydrogen as fuel.
 特殊な水とアルミニウムとを入れた容器を一旦80℃以上に加熱して水素を発生した後の特殊な水に、新たなアルミニウムを接触させれば(容器内に入れれば)、水素を発生した後の特殊な水と新たなアルミニウムとの接触によって、加熱手段で加熱しなくても、容器内の温度は80℃以上に保持され、水素が継続して発生する。加熱手段を用いなくても水素を継続して発生するので、加熱にかかる燃料コストを省くことができる。これは、中性の特殊な水はアルミニウムと反応して水素を一部発生した後、特殊な水はアルカリ性となり、加熱手段による加熱をしなくても、この容器内のアルカリ性の特殊な水が新たに加えたアルミニウムと反応して、容器内の温度は80℃以上に保持され、水素が継続して発生する。なお、アルミニウムを粉末とした場合に、発生する水素の量が大幅に増加する。 When a container containing special water and aluminum is heated to 80 ° C or higher once to generate hydrogen, if new aluminum is brought into contact with the special water (into the container), hydrogen is generated. Due to the subsequent contact between special water and new aluminum, the temperature in the container is maintained at 80 ° C. or higher without heating by heating means, and hydrogen is continuously generated. Since hydrogen is continuously generated without using a heating means, the fuel cost for heating can be saved. This is because neutral special water reacts with aluminum to generate a part of hydrogen, and then the special water becomes alkaline, so that the alkaline special water in this container is not heated by heating means. By reacting with newly added aluminum, the temperature in the container is maintained at 80 ° C. or higher, and hydrogen is continuously generated. In addition, when aluminum is used as a powder, the amount of hydrogen generated greatly increases.
 容器の底にアルミニウムを入れ、創生水(あるいは後述する水酸化ナトリウム水溶液)でアルミニウムの最上位を覆う。即ち、アルミニウムを創生水や水酸化ナトリウム水溶液の中に浸漬させるようにすれば、創生水に含まれるヒドロキシルイオン(H32 -)によって、アルミニウムの表面への酸化被膜の発生を遅らせることができ、水素の発生時間を長くすることができる。 Aluminum is put in the bottom of the container, and the uppermost layer of aluminum is covered with creation water (or a sodium hydroxide aqueous solution described later). That is, if aluminum is immersed in the creation water or sodium hydroxide aqueous solution, the generation of an oxide film on the surface of the aluminum is delayed by hydroxyl ions (H 3 O 2 ) contained in the creation water. The generation time of hydrogen can be increased.
 特殊な水のみに代えて、特殊な水に水酸化ナトリウムを混合した水酸化ナトリウム水溶液を用いても良い。特殊な水に水酸化ナトリウムを混合した水酸化ナトリウム水溶液を用いた場合には、水酸化ナトリウム水溶液とアルミニウムとを容器内で接触させることで反応熱が発生する。その反応熱は自己昇温によって容器内の温度を30℃以上にすることができ、容器の外部から熱を加える加熱手段を用いなくても、容器内に水素を発生させることができる。アルミニウムと水酸化ナトリウム水溶液とによる反応熱によって、容器内の温度が水素がより大量に発生する80℃以上になるので、大量に水素を発生させたい場合にも適応することができる。従来の容器の外部から熱を加える加熱手段の温度は600℃~5,000℃であり、高価な設備を必要としたが、本発明では容器の外部からの熱を加える加熱手段を省略でき、特殊な水に水酸化ナトリウムを加えた水酸化ナトリウム水溶液とアルミニウムのみを使用するものであり、低コストで水素を製造することができる。本発明は、反応熱による自己昇温によって水素を発生させるものであり、容器の外部からの火や電気による熱を加える加熱手段を用いないものであるので、この水素発生方法に係る装置を自動車等に搭載することが可能となる。 Instead of only special water, a sodium hydroxide aqueous solution in which sodium hydroxide is mixed with special water may be used. When a sodium hydroxide aqueous solution in which sodium hydroxide is mixed with special water is used, reaction heat is generated by bringing the sodium hydroxide aqueous solution and aluminum into contact with each other in the container. The reaction heat can raise the temperature in the container to 30 ° C. or more by self-heating, and hydrogen can be generated in the container without using a heating means for applying heat from the outside of the container. The reaction heat of the aluminum and the sodium hydroxide aqueous solution causes the temperature in the container to be 80 ° C. or higher at which hydrogen is generated in a large amount, so that it can be applied to a case where a large amount of hydrogen is desired to be generated. The temperature of the heating means for applying heat from the outside of the conventional container is 600 ° C. to 5,000 ° C., requiring expensive equipment, but in the present invention, the heating means for applying heat from the outside of the container can be omitted, It uses only a sodium hydroxide aqueous solution obtained by adding sodium hydroxide to special water and aluminum, and can produce hydrogen at a low cost. The present invention generates hydrogen by self-temperature rise by reaction heat, and does not use a heating means for applying heat from the outside of the container or heat from electricity. It becomes possible to mount in etc.
 本発明の水素の製造方法において、特殊な水に水酸化ナトリウムを混合した水酸化ナトリウム水溶液を用いることによって、特殊な水のみの場合と比べて、水素の発生量を増加させると共に、酸素の発生量を大幅に減少させることができる。酸素の発生比率を限りなく低くした場合には、水素と酸素を含む気体から酸素を分離する方法を簡単なものとすることができ、水素を製造するコストを低減することができる。 In the method for producing hydrogen of the present invention, by using a sodium hydroxide aqueous solution in which sodium hydroxide is mixed with special water, the amount of hydrogen generated is increased and oxygen is generated compared to the case of using only special water. The amount can be greatly reduced. When the generation ratio of oxygen is lowered as much as possible, a method for separating oxygen from a gas containing hydrogen and oxygen can be simplified, and the cost for producing hydrogen can be reduced.
 本発明の水素発生装置では、加熱手段を用いなくてもアルミニウムと接触させるだけで水素を発生するアルカリ性の特殊な水を用いる。アルミニウムと接触させるだけで水素を発生する水としては、特殊な水とアルミニウムとを接触させて、一旦80℃以上に加熱して水素を発生した後の水(アルカリ性となっている)か、特殊な水と水酸化ナトリウムを混合した水酸化ナトリウム水溶液かのいずれかを用いる。アルカリ性の特殊な水とアルミニウムとを収容するための容器内に、アルミニウムを載せるための載置部材を収容し、その載置部材を容器内の底面より上方となるよう容器内に配置する。載置部材の上のアルミニウムは、アルカリ性の特殊な水と反応することによって溶けて、極小さい粒かまたはペースト状のカスとなり、網部材の網目を通過して下方に落下し、容器内の底に残留物として蓄積するようにする。容器の下部に液体循環通路を連絡させ、その液体循環通路の途中に残留物を容器内から排出する液体取出し手段と、容器内から排出した残留物を捕捉するための残留物捕捉手段と、容器内にアルカリ性の特殊な水または水酸化ナトリウム水溶液を供給する液体投入手段とを設けることで、この容器内に蓄積したアルミニウムの残留物をアルカリ性の特殊な水の循環によって自動的に外部に排出することができると共に、いつでも容器内にアルカリ性の特殊な水を供給する。この装置では、容器の蓋を開けずにアルミニウムをいつでも供給できる既知のアルミニウム投入手段を用いれば、アルミニウムの投入と、容器内からの残留物の排出とを容器を開けずに行うことができ、継続的に水素を発生させることができる。継続的に水素を発生させることができることから、長時間駆動する自動車等に適用することができる。 The hydrogen generator of the present invention uses alkaline special water that generates hydrogen only by contacting with aluminum without using heating means. As water that generates hydrogen just by contacting with aluminum, water after special hydrogen and aluminum are contacted and heated to 80 ° C or higher to generate hydrogen (becomes alkaline) or special Any one of aqueous sodium hydroxide mixed with water and sodium hydroxide is used. A placing member for placing aluminum is housed in a container for housing special alkaline water and aluminum, and the placing member is placed in the container so as to be above the bottom surface in the container. The aluminum on the mounting member melts by reacting with alkaline special water to form extremely small particles or paste-like debris, falls down through the mesh of the mesh member, and falls to the bottom in the container. To accumulate as a residue. A liquid circulation passage communicating with a lower portion of the container, and a liquid take-out means for discharging the residue from the container in the middle of the liquid circulation passage; a residue catching means for catching the residue discharged from the container; and the container By installing a special charging water or a liquid charging means for supplying sodium hydroxide aqueous solution inside, the aluminum residue accumulated in the container is automatically discharged to the outside by circulating the alkaline special water. It is possible to supply special alkaline water into the container at any time. In this apparatus, if a known aluminum charging means capable of supplying aluminum at any time without opening the container lid can be used, the aluminum can be charged and the residue discharged from the container can be discharged without opening the container. Hydrogen can be continuously generated. Since hydrogen can be continuously generated, the present invention can be applied to automobiles that are driven for a long time.
本発明に係る水素の製造方法に使用する特殊な水(創生水)を作る製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus which produces the special water (creation water) used for the manufacturing method of hydrogen which concerns on this invention. 図1に示す製造装置に用いる水生成器の断面図である。It is sectional drawing of the water generator used for the manufacturing apparatus shown in FIG. 図1に示す製造装置に用いるイオン生成器の要部断面図である。It is principal part sectional drawing of the ion generator used for the manufacturing apparatus shown in FIG. 本発明に係る水素の製造方法に使用する特殊な水を作る製造装置の他の例を示す構成図である。It is a block diagram which shows the other example of the manufacturing apparatus which produces the special water used for the manufacturing method of hydrogen which concerns on this invention. 本発明の水素を発生させる装置の一例を示す断面図である。It is sectional drawing which shows an example of the apparatus which generate | occur | produces hydrogen of this invention. 100重量の特殊な水(創生水)と10重量のアルミニウムの粉末を容器内に入れて、容器内の温度を30℃以上にした状態の容器内の水素の発生%を示す測定分析成績書を示すものである。Measurement analysis report showing the percentage of hydrogen generated in the container with 100 weight special water (creative water) and 10 weight aluminum powder in the container, and the container temperature is 30 ° C or higher. Is shown. 100重量の創生水と10重量のアルミニウムの粉末を容器内に入れて容器内の温度を80℃以上に保った状態の容器内の水素の発生%を示す測定分析成績書を示すものである。A measurement analysis report showing the generation percentage of hydrogen in a container in a state where 100 weight of fresh water and 10 weight of aluminum powder are put in the container and the temperature in the container is kept at 80 ° C. or higher. . 創生水のpH値を示す計量証明書である。It is a measurement certificate which shows the pH value of creation water. 創生水とアルミニウムとで一旦水素を発生させた後の創生水のpH値を示す計量証明書である。It is a measurement certificate which shows the pH value of the creation water after hydrogen was once generated with the creation water and aluminum. 100重量のアルカリイオン水と10重量のアルミニウム粉末を容器内に入れて容器内の温度を30℃以上にした状態の容器内の水素の発生%を示す測定分析成績書を示すものである。The measurement analysis result document which shows generation | occurrence | production% of hydrogen in a container in the state which put 100 weight alkali ion water and 10 weight aluminum powder in a container and made the temperature in a container 30 degreeC or more is shown. 100重量のアルカリイオン水と10重量のアルミニウム粉末を容器内に入れて容器内の温度を80℃に保った状態の容器内の水素の発生%を示す測定分析成績書を示すものである。The measurement analysis result document which shows generation | occurrence | production% of hydrogen in a container in the state which put 100 weight alkali ion water and 10 weight aluminum powder in a container and kept the temperature in a container at 80 degreeC is shown. 本発明の水素を発生させる装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the apparatus which generates the hydrogen of this invention. 図12の装置において、創生水とアルミニウムを使用して加熱手段で加熱して発生した水素の発生%を示す測定分析成績書である。FIG. 13 is a measurement analysis report showing the generation percentage of hydrogen generated by heating with heating means using creation water and aluminum in the apparatus of FIG. 12. 図13の装置において、創生水に水酸化ナトリウムを加えた水酸化ナトリウム水溶液とアルミニウムを加熱手段で加熱して発生した水素の発生%を示す測定分析成績書である。FIG. 14 is a measurement analysis report showing the generation percentage of hydrogen generated by heating sodium hydroxide aqueous solution in which sodium hydroxide is added to creation water and aluminum with heating means in the apparatus of FIG. 13. 本発明の水素を発生させる装置のその他の例を示す断面図である。It is sectional drawing which shows the other example of the apparatus which generate | occur | produces hydrogen of this invention. 図15の水素発生装置内の水酸化ナトリウム濃度を5%として発生した水素の発生%を示す第1の測定分析成績書である。FIG. 16 is a first measurement / analysis report showing hydrogen generation% generated when the sodium hydroxide concentration in the hydrogen generator of FIG. 15 is 5%. 図15の水素発生装置内の水酸化ナトリウム濃度を10%として発生した水素の発生%を示す第2の測定分析成績書である。FIG. 16 is a second measurement / analysis result report showing the generation percentage of hydrogen generated when the sodium hydroxide concentration in the hydrogen generator of FIG. 15 is 10%. 図15の水素発生装置内の水酸化ナトリウム濃度を15%として発生した水素の発生%を示す第3の測定分析成績書である。FIG. 16 is a third measurement analysis report showing the generation percentage of hydrogen generated when the sodium hydroxide concentration in the hydrogen generator of FIG. 15 is 15%. 水酸化ナトリウム濃度5%、10%、15%の種々の水(アルカリイオン水と天然水)とアルミニウムとを使用して反応させた場合の水素発生の反応開始時間と反応持続時間を示す表である。It is a table showing the reaction start time and reaction duration of hydrogen generation when reacting with various waters (alkali ion water and natural water) having a sodium hydroxide concentration of 5%, 10% and 15% and aluminum. is there. 水酸化ナトリウム濃度5%、10%、15%の種々の水(創生水と水道水)とアルミニウムとを使用して反応させた場合の水素発生の反応開始時間と反応持続時間を示す表である。A table showing the reaction start time and reaction duration of hydrogen generation in the case of reacting with various waters (creative water and tap water) having a sodium hydroxide concentration of 5%, 10% and 15% and aluminum. is there. 図19や図20に示した表をグラフにしたもので、水酸化ナトリウム濃度を5%としたものである。The table shown in FIG. 19 and FIG. 20 is graphed, and the sodium hydroxide concentration is 5%. 図19や図20に示した表に対応するもので、水酸化ナトリウム濃度を10%としたグラフである。FIG. 21 corresponds to the tables shown in FIG. 19 and FIG. 20 and is a graph in which the sodium hydroxide concentration is 10%. 図19や図20に示した表に対応するもので、水酸化ナトリウム濃度を15%としたグラフである。This corresponds to the tables shown in FIG. 19 and FIG. 20, and is a graph in which the sodium hydroxide concentration is 15%. 水酸化ナトリウム濃度が0%、1%、3%の水酸化ナトリウム水溶液とアルミニウム(ショット)を使用した場合の水素発生の反応開始時間と反応持続時間を示す表である。It is a table | surface which shows the reaction start time and reaction duration of hydrogen generation at the time of using sodium hydroxide aqueous solution and aluminum (shot) whose sodium hydroxide concentration is 0%, 1%, and 3%. 図24に示した水酸化ナトリウム濃度が1%と3%の水酸化ナトリウム水溶液を使用した水素発生の反応開始時間と反応持続時間の表をグラフにしたものである。FIG. 25 is a graph showing a reaction start time and reaction duration table for hydrogen generation using sodium hydroxide aqueous solutions having a sodium hydroxide concentration of 1% and 3% shown in FIG. 水酸化ナトリウム濃度が0%、1%、3%の水酸化ナトリウム水溶液とアルミニウム粉末を使用した場合の水素発生の反応開始時間と反応持続時間を示す表である。It is a table | surface which shows the reaction start time and reaction duration of hydrogen generation at the time of using sodium hydroxide aqueous solution and aluminum powder whose sodium hydroxide concentration is 0%, 1%, and 3%. 図26に示した水酸化ナトリウム濃度が1%と3%の水酸化ナトリウム水溶液を使用した場合の水素発生の反応開始時間と反応持続時間の表をグラフにしたものである。FIG. 27 is a graph showing a table of hydrogen generation reaction start time and reaction duration when sodium hydroxide aqueous solutions having a sodium hydroxide concentration of 1% and 3% shown in FIG. 26 are used. 本発明の水素発生装置の実施例を示すもので、アルミニウムを適宜供給できる水素発生装置の断面図である。The Example of the hydrogen generator of this invention is shown, It is sectional drawing of the hydrogen generator which can supply aluminum suitably. 図28に示した水素発生装置で発生する気体から水素のみを取り出す構造である。It is the structure which takes out only hydrogen from the gas which generate | occur | produces with the hydrogen generator shown in FIG. 本発明の水素発生装置の他の実施例を示すもので、アルカリ性にした創生水を適宜供給できる水素発生装置のシステム図である。FIG. 5 is a system diagram of a hydrogen generator that can supply appropriately created water made alkaline, showing another embodiment of the hydrogen generator of the present invention.
 10  第1軟水生成器
 12  第2軟水生成器
 14  イオン生成器
 16  岩石収納器
 32  イオン交換樹脂
 46  トルマリン
 48  金属
 54  岩石
 60  容器
 66  アルミニウム
 69  加熱手段
 75  創生水
 77  アルミニウム粉末
 78  容器
 82  蓋
 84  第一弁手段
 86  連絡管
 88  第二弁手段
 96  網部材
 98  冷却管
 104 冷却器
 106 冷却管
 122 液体循環通路
 128 第一電磁弁
 130 フィルタ
 132 第一ポンプ
 134 タンク
 136 第二ポンプ
 138 第2電磁弁
DESCRIPTION OF SYMBOLS 10 1st soft water generator 12 2nd soft water generator 14 Ion generator 16 Rock container 32 Ion exchange resin 46 Tourmaline 48 Metal 54 Rock 60 Container 66 Aluminum 69 Heating means 75 Creation water 77 Aluminum powder 78 Container 82 Cover 84 84 One valve means 86 Communication pipe 88 Second valve means 96 Net member 98 Cooling pipe 104 Cooler 106 Cooling pipe 122 Liquid circulation passage 128 First electromagnetic valve 130 Filter 132 First pump 134 Tank 136 Second pump 138 Second electromagnetic valve
 本発明の水素の製造方法は、特殊な水とアルミニウムとを所定の温度範囲内(30℃以上特殊な水の沸点未満)で接触させることで水素を発生させるものである。 In the method for producing hydrogen according to the present invention, hydrogen is generated by bringing special water and aluminum into contact with each other within a predetermined temperature range (30 ° C. or more and less than the boiling point of special water).
 本発明の水素の製造方法について説明する前に、先ず、本発明で使用する特殊な水(以下、「創生水」とする)について、図1乃至図3に基づいて説明する。図1は創生水の製造装置の一実施例を示す構成図である。第1の軟水生成器10と第2の軟水生成器12とイオン生成器14と岩石収納器16とを、連絡管18a,18b,18cを介して、順に直列に連結する。第1の軟水生成器10には、例えば水道のような圧力のある水が水供給管20から連絡管22を介して内部に導入される。水供給管20と連絡管22との間には、蛇口のような入口用開閉弁24が備えられ、連絡管22の途中には逆止弁26が備えられる。岩石収納器16の出口側には吐出管28が取り付けられ、吐出管28の先端または途中に出口用開閉弁30が備えられる。 Before describing the method for producing hydrogen according to the present invention, first, special water used in the present invention (hereinafter referred to as “creation water”) will be described with reference to FIGS. FIG. 1 is a configuration diagram showing an embodiment of a device for producing fresh water. The first soft water generator 10, the second soft water generator 12, the ion generator 14, and the rock storage container 16 are sequentially connected in series via connecting pipes 18 a, 18 b, and 18 c. In the first soft water generator 10, water having a pressure such as tap water is introduced from the water supply pipe 20 into the inside through the communication pipe 22. An inlet opening / closing valve 24 such as a faucet is provided between the water supply pipe 20 and the communication pipe 22, and a check valve 26 is provided in the middle of the communication pipe 22. A discharge pipe 28 is attached to the outlet side of the rock container 16, and an outlet opening / closing valve 30 is provided at the tip or middle of the discharge pipe 28.
 水道水の場合、水供給管20から送り出される水は、第1の軟水生成器10と第2の軟水生成器12とイオン生成器14と岩石収納器16の順を経て、出口用開閉弁30を開くことによって吐出管28から取り出される。水道水以外の場合は、図示しないが、水槽に溜めた水をポンプによって、水供給管20を経由して第1の軟水生成器10に導入する。この場合、ポンプと第1の軟水生成器10との間に逆止弁26を備える。 In the case of tap water, the water fed from the water supply pipe 20 passes through the first soft water generator 10, the second soft water generator 12, the ion generator 14, and the rock storage container 16 in this order, and the outlet opening / closing valve 30. Is taken out from the discharge pipe 28 by opening. In the case other than tap water, although not shown, the water stored in the water tank is introduced into the first soft water generator 10 via the water supply pipe 20 by a pump. In this case, a check valve 26 is provided between the pump and the first soft water generator 10.
 第1の軟水生成器10と第2の軟水生成器12は、その内部に粒状のイオン交換樹脂32を大量に収納するもので、その断面図を図2に示す。軟水生成器10,12の本体34は筒状をしており、その筒状の上下端面に水の出入口36a,36bを有する。筒状の本体34の内部には、上下の端面からやや離れた位置の内壁に、それぞれ中央に穴を開けたシールド部材38a,38bを備える。その一対のシールド部材38a,38bの間に、イオン交換樹脂32を細かい網40に入れた状態で収納する。上下の出入口36a,36bからやや離れた位置の内壁に、中央に穴を開けたシールド部材38を備えるのは、イオン交換樹脂32を入れた網40を一対のシールド部材38の間に配置し、出入口36a,36b付近に空間42a,42bを形成させるためである。また、シールド部材38a,38bの中央の穴から水を出入りさせるようにしたのは、水がイオン交換樹脂32に必ず接触させるためである。イオン交換樹脂32を網40に入れるのは、粒状のイオン交換樹脂32を洗浄するために取り出す際に、網40ごと粒状のイオン交換樹脂32を取り出せるようにしたものである。 The first soft water generator 10 and the second soft water generator 12 contain a large amount of granular ion exchange resin 32 therein, and a cross-sectional view thereof is shown in FIG. The main bodies 34 of the soft water generators 10 and 12 have a cylindrical shape, and have water inlets 36a and 36b on the upper and lower ends of the cylindrical shape. Inside the cylindrical main body 34, shield members 38a and 38b each having a hole in the center are provided on the inner wall at a position slightly away from the upper and lower end surfaces. Between the pair of shield members 38a, 38b, the ion exchange resin 32 is stored in a fine mesh 40. The shield member 38 having a hole in the center is provided on the inner wall at a position slightly apart from the upper and lower entrances 36a, 36b. The net 40 containing the ion exchange resin 32 is disposed between the pair of shield members 38. This is because the spaces 42a and 42b are formed in the vicinity of the entrances 36a and 36b. The reason why the water is allowed to enter and exit from the central hole of the shield members 38 a and 38 b is that the water always contacts the ion exchange resin 32. The reason why the ion exchange resin 32 is put into the net 40 is that the granular ion exchange resin 32 can be taken out together with the net 40 when the granular ion exchange resin 32 is taken out for cleaning.
 第1の軟水生成器10と第2の軟水生成器12は、その高さを例えば80cmとし、内径を10cmとする。そして、例えばイオン交換樹脂32の収納高さを70cmとし(上下に空間42a,42bを存在させる)。この際、イオン交換樹脂32の収納高さは、水にイオン交換が充分行なえるような高さが必要である。一方、イオン交換樹脂32の収納高さが高くなりすぎると(例えばイオン交換樹脂32の収納高さが約200cm以上になると)、イオン交換樹脂32が水の抵抗となって軟水生成器の内部を通過する流量が減少するため、イオン交換樹脂32の収納高さを流量が減少しない高さにする。イオン交換樹脂32を収納する容器を2つに分けたのは、第1の軟水生成器10や第2の軟水生成器12の高さをイオン生成器14や岩石収納器16と同じ程度の高さに低く押えるためと、そこを通過する水の圧損失によって流量が減少することを避けるためである。また、2つの軟水生成器10,12を1つにまとめて、1つの軟水生成器にすることも可能である。 The first soft water generator 10 and the second soft water generator 12 have a height of, for example, 80 cm and an inner diameter of 10 cm. For example, the storage height of the ion exchange resin 32 is set to 70 cm (the spaces 42 a and 42 b exist above and below). At this time, the storage height of the ion exchange resin 32 needs to be high enough to sufficiently perform ion exchange with water. On the other hand, when the storage height of the ion exchange resin 32 becomes too high (for example, when the storage height of the ion exchange resin 32 is about 200 cm or more), the ion exchange resin 32 becomes a resistance of water, and the inside of the soft water generator. Since the passing flow rate decreases, the storage height of the ion exchange resin 32 is set to a height at which the flow rate does not decrease. The container for storing the ion exchange resin 32 is divided into two because the height of the first soft water generator 10 and the second soft water generator 12 is as high as the ion generator 14 and the rock container 16. This is to keep the pressure low and to prevent the flow rate from decreasing due to the pressure loss of water passing therethrough. It is also possible to combine the two soft water generators 10 and 12 into one soft water generator.
 イオン交換樹脂32は、水に含まれているCa2+やMg2+やFe2+等の金属イオンを除去して、水を軟水にするためのものであり、特に水の硬度をゼロに近い程度に低くするためのものである。イオン交換樹脂32としては、例えば、スチレン・ジビニルベンゼンの球状の共重合体を均一にスルホン化した強酸性カチオン交換樹脂(RzSO3Na)を用いる。このイオン交換樹脂32は、水に含まれているCa2+やMg2+やFe2+等の金属イオンとは、以下のイオン交換反応を生じる。
   2RzSO3Na + Ca2+ → (RzSO3)2Ca + 2Na+
   2RzSO3Na + Mg2+ → (RzSO3)2Mg + 2Na+
   2RzSO3Na + Fe2+ → (RzSO3)2Fe + 2Na+
 即ち、イオン交換樹脂32を通すことによって、水に含まれているCa2+やMg2+やFe2+等を除去することができる。イオン交換樹脂32として強酸性カチオン交換樹脂(RzSO3Na)を用いることによって、ナトリウムイオン(Na+)が発生する。イオン交換樹脂32としては、Na+以外のものが発生するものであっても構わないが、Na+を発生させるもの、例えば強酸性カチオン交換樹脂(RzSO3Na)を用いることが望ましい。水が水道水であれば、その水道水の中にはCa2+やMg2+やFe2+等の金属イオンの他に塩素が含まれているが、水道水がイオン交換樹脂32を通ることによって、この塩素には何も変化が生じない。
The ion exchange resin 32 is for removing metal ions such as Ca 2+ , Mg 2+, and Fe 2+ contained in water to soften the water. In particular, the water hardness is reduced to zero. It is for lowering to a near extent. As the ion exchange resin 32, for example, a strongly acidic cation exchange resin (RzSO 3 Na) obtained by uniformly sulfonating a spherical copolymer of styrene / divinylbenzene is used. This ion exchange resin 32 causes the following ion exchange reaction with metal ions such as Ca 2+ , Mg 2+ and Fe 2+ contained in water.
2RzSO 3 Na + Ca 2+ → (RzSO 3 ) 2 Ca + 2Na +
2RzSO 3 Na + Mg 2+ → (RzSO 3 ) 2 Mg + 2Na +
2RzSO 3 Na + Fe 2+ → (RzSO 3 ) 2 Fe + 2Na +
That is, by passing the ion exchange resin 32, Ca 2+ , Mg 2+ , Fe 2+ and the like contained in water can be removed. By using a strongly acidic cation exchange resin (RzSO 3 Na) as the ion exchange resin 32, sodium ions (Na + ) are generated. As the ion exchange resin 32, a material other than Na + may be generated, but it is desirable to use a material that generates Na + , for example, a strongly acidic cation exchange resin (RzSO 3 Na). If the water is tap water, the tap water contains chlorine in addition to metal ions such as Ca 2+ , Mg 2+, and Fe 2+, but the tap water passes through the ion exchange resin 32. As a result, no change occurs in this chlorine.
 一方、水(H2O)がイオン交換樹脂32を通ることによって、以下のように変化する。
   H2O → H+ + OH-  ……(1)
   H2O + H+ → H3+  ……(2)
 即ち、(1)(2)に示すように、イオン交換樹脂32を通ることによって、水からは水酸化イオン(OH-)とヒドロニウムイオン(H3+)とが発生する。
On the other hand, when water (H 2 O) passes through the ion exchange resin 32, it changes as follows.
H 2 O → H + + OH - ...... (1)
H 2 O + H + → H 3 O + (2)
That is, as shown in (1) and (2), hydroxide ions (OH ) and hydronium ions (H 3 O + ) are generated from water by passing through the ion exchange resin 32.
 このように、水が硬水であった場合に、イオン交換樹脂32を通過することによって、水からCa2+やMg2+やFe2+等の金属イオンが除去されて軟水となる。また、イオン交換樹脂32を通過することによって、水の中にNa+とOH-とヒドロニウムイオン(H3+)とが発生する。しかし、水道水に含まれている塩素(Cl)はイオン化しないでそのまま通過する。 As described above, when the water is hard water, the metal ions such as Ca 2+ , Mg 2+, and Fe 2+ are removed from the water by passing through the ion exchange resin 32 to become soft water. Further, by passing through the ion exchange resin 32, Na + , OH −, and hydronium ions (H 3 O + ) are generated in the water. However, chlorine (Cl) contained in tap water passes through without being ionized.
 次に、前記イオン生成器14の部分断面図を図3に示す。イオン生成器14は、複数個のカートリッジ44を同じ配置で上下に連続して直列に連結したものである。各カートリッジ44の内部に、粒状のトルマリン46のみか、粒状のトルマリン46と板状の金属48との混合物かのいずれかを収納する。トルマリンは、プラスの電極とマイナスの電極とを有するもので、このプラスの電極とマイナスの電極によって、水に4~14ミクロンの波長の電磁波を持たせ、かつ水のクラスターを切断してヒドロニウムイオン(H3+)を発生させるためのものである。その4~14ミクロンの波長の電磁波が持つエネルギは0.004watt/cm2である。ここで、トルマリン46とは、トルマリン石を細かく砕いたものであっても良いが、トルマリンとセラミックと酸化アルミニウム(銀を含むものもある)との重量比を約10:80:10とする市販のトルマリンペレットと呼ばれるトルマリン混合物であっても良い。このトルマリンペレットに含まれるセラミックは、プラスの電極とマイナスの電極を分離しておく作用をする。ここで、トルマリン46をセラミックに対し重量比10%以上の割合で混合させて800°C以上で加熱することによって、水の攪拌によって所定の期間(例えば直径4mmで約3ヶ月)で消滅するトルマリン46を作ることができる。トルマリン46は、加熱によって強度が増し、耐摩滅期間を長くすることができる。イオン交換樹脂32を通過させて水を硬度がゼロに近い軟水にして、その軟水の中でトルマリン46同士をこすり合わせる。硬度がゼロに近い軟水では、トルマリン46のマイナスの電極にマグネシウムイオンやカルシウムイオンが付着するのを防ぐことができ、トルマリン46のプラスとマイナスの電極としての働きを低下させることを防ぐことができる。 Next, a partial cross-sectional view of the ion generator 14 is shown in FIG. The ion generator 14 is configured such that a plurality of cartridges 44 are connected in series in the vertical direction in the same arrangement. Each cartridge 44 contains either granular tourmaline 46 or a mixture of granular tourmaline 46 and plate-like metal 48. Tourmaline has a positive electrode and a negative electrode. The positive electrode and the negative electrode allow water to have an electromagnetic wave having a wavelength of 4 to 14 microns, and cut water clusters to hydronium. This is for generating ions (H 3 O + ). The energy of the electromagnetic wave having a wavelength of 4 to 14 microns is 0.004 watt / cm 2 . Here, the tourmaline 46 may be a product obtained by finely pulverizing tourmaline stones, but is commercially available with a weight ratio of tourmaline, ceramic, and aluminum oxide (including silver) of about 10:80:10. It may be a tourmaline mixture called tourmaline pellets. The ceramic contained in this tourmaline pellet acts to separate the positive and negative electrodes. Here, tourmaline 46 disappears in a predetermined period (for example, about 3 months with a diameter of 4 mm) by stirring water by mixing tourmaline 46 at a ratio of 10% or more by weight with respect to ceramic and heating at 800 ° C. or higher. 46 can be made. The tourmaline 46 is increased in strength by heating, and the wear resistance period can be extended. The ion exchange resin 32 is passed to make the water soft water whose hardness is close to zero, and the tourmalines 46 are rubbed together in the soft water. With soft water whose hardness is close to zero, it is possible to prevent magnesium ions and calcium ions from adhering to the negative electrode of the tourmaline 46, and to prevent the tourmaline 46 from functioning as a positive and negative electrode. .
 前記金属48としては、アルミニウム、ステンレス、銀の少なくとも1種類の金属を用いる。この金属48としては、水中で錆を発生させたり水に溶けたりしない金属が望ましい。この金属48のうち、アルミニウムは殺菌作用や抗菌作用と共に漂白作用を有しており、ステンレスは殺菌作用や抗菌作用と共に洗浄向上作用を有しており、銀は殺菌作用や抗菌作用を有している。金属48としては、銅や鉛は毒性を有しているので採用することができない。また、金等の高価な素材はコスト上からも採用することができない。前記トルマリン46と金属48との重量比は、10:1~1:10が望ましい。その範囲を超えると、一方の素材が多くなりすぎ、両方の素材の効果を同時に発揮することができない。 As the metal 48, at least one kind of metal such as aluminum, stainless steel, or silver is used. The metal 48 is preferably a metal that does not generate rust or dissolve in water. Of these metals 48, aluminum has a bleaching action as well as a bactericidal action and an antibacterial action, stainless steel has a bactericidal action and an antibacterial action, and a cleaning improvement action, and silver has a bactericidal action and an antibacterial action. Yes. As the metal 48, copper and lead cannot be used because they have toxicity. Also, expensive materials such as gold cannot be used because of cost. The weight ratio of the tourmaline 46 and the metal 48 is preferably 10: 1 to 1:10. Beyond that range, there is too much material on one side, and the effects of both materials cannot be demonstrated simultaneously.
 カートリッジ44は一端を開放した筒状をしており、その底面50に多数の穴52が設けられている。カートリッジ44の内部にトルマリン46と金属48とを入れた場合に、底面50の穴52をトルマリン46や金属48が通過しないように穴52の大きさを設定する。図3に示すように、各カートリッジ44は多数の穴52を設けた底面50を下側にし、その底面50の上にトルマリン46や金属48を載せる。そして、各カートリッジ44の内部を下位から上位に向かって流れるように設定する。即ち、各カートリッジ44においては、底面50の多数の穴52を通過した水が、下から上に向けてトルマリン46と金属48とに噴射するように設定されている。ここで、水道水は高い水圧を有するので、その水圧を有する水がカートリッジ44内のトルマリン46と金属48に勢いよく衝突し、その水の勢いでトルマリン46と金属48とがカートリッジ44内で攪拌されるように、穴52の大きさ並びに個数を設定する。水をトルマリンに噴射してトルマリンを攪拌するのは、その攪拌によってトルマリンと水とに摩擦が生じ、トルマリンからプラスとマイナスの電極が水に溶け出して水のクラスターを切断し、ヒドロニウムイオン(H3+)を大量に発生させるためである。 The cartridge 44 has a cylindrical shape with one end open, and a plurality of holes 52 are provided on the bottom surface 50 thereof. When the tourmaline 46 and the metal 48 are put in the cartridge 44, the size of the hole 52 is set so that the tourmaline 46 and the metal 48 do not pass through the hole 52 of the bottom surface 50. As shown in FIG. 3, each cartridge 44 has a bottom surface 50 provided with a large number of holes 52 on the lower side, and a tourmaline 46 and a metal 48 are placed on the bottom surface 50. And it sets so that the inside of each cartridge 44 may flow from lower to higher. That is, in each cartridge 44, the water that has passed through the numerous holes 52 in the bottom surface 50 is set so as to be sprayed onto the tourmaline 46 and the metal 48 from the bottom to the top. Here, since the tap water has a high water pressure, the water having the water pressure collides with the tourmaline 46 and the metal 48 in the cartridge 44 vigorously, and the tourmaline 46 and the metal 48 are agitated in the cartridge 44 by the power of the water. As described above, the size and number of the holes 52 are set. Stirring the tourmaline by injecting water into the tourmaline causes friction between the tourmaline and the water due to the agitation, and positive and negative electrodes from the tourmaline dissolve in the water, cutting the water cluster and hydronium ions ( This is because a large amount of (H 3 O + ) is generated.
 実際の設置例としては、内径5cmで深さが7cmの収容容積を有するカートリッジ44を4段に重ね、そのカートリッジ44内にトルマリン46と金属48とを充分収納するが、トルマリン46と金属48とがカートリッジ44内で水の勢いによって自由に移動できるような分量とする。カートリッジ44の段数を増減しても構わないし、収容容積を大きくした1個のカートリッジ44にしても良い。このように、トルマリン46と金属48を収容容積を小さくした複数のカートリッジ44に分散させて、それらの複数のカートリッジ44を接続させることで、水の勢いによってトルマリン46と金属48との撹拌効率を高めることができる。カートリッジ44内に収納したトルマリン46は、水に溶けて数ヶ月で消滅するので、各カートリッジ44は例えば螺合等の手段によって容易に着脱出来るようにし、各カートリッジ44内にトルマリン46を容易に補充できるようにする。なお、金属48は水に溶けないので補充する必要がないが、トルマリン46と金属48とを入れたカートリッジ44全体を取替えることも可能である。カートリッジ44は使用流量の大小に応じてその収容容積を変えるようにしても良い。 As an actual installation example, the cartridges 44 having an inner diameter of 5 cm and a storage volume of 7 cm in depth are stacked in four stages, and the tourmaline 46 and the metal 48 are sufficiently stored in the cartridge 44. Of the cartridge 44 can be freely moved by the momentum of water in the cartridge 44. The number of cartridges 44 may be increased or decreased, or a single cartridge 44 with a larger storage volume may be used. As described above, the tourmaline 46 and the metal 48 are dispersed in the plurality of cartridges 44 having a small accommodation volume, and the plurality of cartridges 44 are connected, so that the stirring efficiency of the tourmaline 46 and the metal 48 is increased by the momentum of water. Can be increased. Since the tourmaline 46 stored in the cartridge 44 dissolves in water and disappears in a few months, each cartridge 44 can be easily attached and detached by means of, for example, screwing, and the tourmaline 46 is easily refilled in each cartridge 44. It can be so. The metal 48 does not dissolve in water and need not be replenished. However, the entire cartridge 44 containing the tourmaline 46 and the metal 48 can be replaced. The accommodation volume of the cartridge 44 may be changed according to the flow rate of use.
 カートリッジ44を通過する水に加えるマイナスイオンを増やすためには、トルマリン46同士がこすり合うことでプラスの電極とマイナスの電極が発生し、そのトルマリン46に水が接触することで、マイナスイオンの増加が達成できる。また、水のクラスターを切断し、ヒドロニウムイオン(H3+)を大量に発生させるためには、カートリッジ44内にトルマリン46のみを収容すれば良い。しかし、金属48をトルマリン46と混合させることによって、それらが接触し合ってトルマリン46に発生するマイナスイオンをより増加させることができる。 In order to increase the negative ions added to the water passing through the cartridge 44, the tourmaline 46 rubs against each other to generate a positive electrode and a negative electrode, and when the water contacts the tourmaline 46, the increase in negative ions is increased. Can be achieved. Further, in order to cut the water cluster and generate a large amount of hydronium ions (H 3 O + ), only the tourmaline 46 may be accommodated in the cartridge 44. However, by mixing the metal 48 with the tourmaline 46, the negative ions generated in the tourmaline 46 when they come into contact with each other can be further increased.
 トルマリン46にはプラス電極とマイナス電極とを有するため、トルマリンが水で攪拌されると、水(H2O)は水素イオン(H+)と水酸化イオン(OH-)とに解離する。
   H2O → H+ + OH-  ……(1)
 更に、水素イオン(H+)と水(H2O)とによって、界面活性作用を有するヒドロニウムイオン(H3+)が発生する。このヒドロニウムイオン(H3+)の発生量は、前記イオン交換樹脂32によって発生する量よりはるかに多い量である。
   H2O + H+ → H3+  ……(2)
 このヒドロニウムイオン(H3+)の一部は、水(H2O)と結びついてヒドロキシルイオン(H32 -)と水素イオン(H+)になる。
   H3+ + H2O → H32 - + 2H+  ……(3)
Since tourmaline 46 has a plus electrode and a minus electrode, when tourmaline is stirred with water, water (H 2 O) is dissociated into hydrogen ions (H + ) and hydroxide ions (OH ).
H 2 O → H + + OH - ...... (1)
Further, hydronium ions (H 3 O + ) having a surface active action are generated by hydrogen ions (H + ) and water (H 2 O). The amount of hydronium ions (H 3 O + ) generated is much larger than the amount generated by the ion exchange resin 32.
H 2 O + H + → H 3 O + (2)
A part of the hydronium ion (H 3 O + ) is combined with water (H 2 O) to become a hydroxyl ion (H 3 O 2 ) and a hydrogen ion (H + ).
H 3 O + + H 2 O → H 3 O 2 + 2H + (3)
 イオン交換樹脂32を通過した水を、イオン生成器14を通過させることによって、水の内部にヒドロニウムイオン(H3+)とヒドロキシルイオン(H32 -)とH+とOH-とが発生する。なお、イオン交換樹脂32を通過した塩素(Cl)と、イオン交換樹脂32で発生したNa+とは、反応することなくそのままイオン生成器14を通過する。 By passing the water that has passed through the ion exchange resin 32 through the ion generator 14, hydronium ions (H 3 O + ), hydroxyl ions (H 3 O 2 ), H +, and OH Will occur. Note that chlorine (Cl) that has passed through the ion exchange resin 32 and Na + generated in the ion exchange resin 32 pass through the ion generator 14 without reacting.
 イオン生成器14を通過した水を、次に、火成岩のうち二酸化珪素を多く含む岩石(二酸化珪素を約65~76%含む岩石)54を収納する岩石収納器16の内部を通過させる。火成岩(火山岩と深成岩とに分けられる)のうち二酸化珪素を多く含む岩石54としては、火山岩には黒曜石や真珠岩や松脂岩等の流紋岩があり、深成岩には花崗岩がある。岩石収納器16の内部には、黒曜石,真珠岩,松脂岩,花崗岩の岩石のうちの少なくとも1種類以上の岩石を収納する。黒曜石や真珠岩や松脂岩等の流紋岩、あるいは花崗岩はマイナス電子を帯びている。更に、黒曜石や真珠岩や松脂岩等の流紋岩や花崗岩は酸性岩である。流紋岩は花崗岩と同じ化学組成を持つものである。 The water that has passed through the ion generator 14 is then allowed to pass through the inside of the rock container 16 that stores rocks containing a large amount of silicon dioxide (rocks containing approximately 65 to 76% silicon dioxide) among the igneous rocks. Among the igneous rocks (divided into volcanic rocks and plutonic rocks), as rocks 54 containing a large amount of silicon dioxide, volcanic rocks include rhyolite such as obsidian, pearlite, and pine sebite, and plutonic rocks include granite. The rock container 16 stores at least one kind of rocks such as obsidian, pearlite, pinestone, and granite. Rhyolite such as obsidian, pearlite and pine stone, or granite has negative electrons. Furthermore, rhyolite and granite such as obsidian, pearlite and pinestone are acid rocks. Rhyolite has the same chemical composition as granite.
 これら火成岩のうちの二酸化珪素を約65~76%を含む岩石(黒曜石や真珠岩や松脂岩等の流紋岩、あるいは花崗岩等の深成岩)は、原石の状態で-20~-240mVの酸化還元電位を有する。但し、岩石54は水に溶けるものを除く。岩石収納器16は例えば内径を10cmとし、高さを80cmの筒とし、その内部に例えば5mm~50mm粒程度の大きさの火成岩のうちの二酸化珪素を多く含む岩石54を、水の通過流量を落とさない程度の量を収容する。 Of these igneous rocks, rocks containing about 65-76% silicon dioxide (Rhyolite such as obsidian, pearlite and pinestone, or plutonic rocks such as granite) are -20 to -240 mV of redox. Has a potential. However, the rock 54 excludes what dissolves in water. The rock container 16 is, for example, a cylinder having an inner diameter of 10 cm and a height of 80 cm, and a rock 54 containing a large amount of silicon dioxide among igneous rocks having a size of, for example, about 5 mm to 50 mm in the inside thereof, Accommodates an amount that does not drop.
 この岩石収納器16の内部に、イオン生成器14を通過した水を通過させると、水にe-(マイナス電子)が加えられる。この結果、水道水に含まれている塩素(Cl)はマイナス電子によって、塩素イオンとなる。
   Cl + e- → Cl-  ……(4)
 このCl-と前記Na+とはイオンとして安定した状態になる。安定した状態とは、蒸発することなくイオン状態が長期間保たれることを意味する。また、前記ヒドロキシルイオン(H32 -)もイオンとして安定した状態になる。水が岩石54を通過することによって、イオン生成器14を通過した水と比べて、ヒドロニウムイオン(H3+)が更に発生し、かつヒドロキシルイオン(H32 -)も水素イオン(H+)も更に発生する。
   H2O + H+ → H3+  ……(2)
   H3+ + H2O → H32 - + 2H+  ……(3)
 水が岩石54を通過することによって、その他に、以下の反応も発生する。
   OH- + H+ → H2O  ……(5)
   2H+ + 2e- → 2H2  ……(6)
 更に、水が岩石収納器16を通過すると、岩石54のマイナス電子によって、水の酸化還元電位が+340mVから-20~-240mVになる。水に代えてお湯を使うと、マイナスの酸化還元電位がより安定する。更に、岩石54を通過した水は、溶存酸素や活性水素を大量に含む。
When the water that has passed through the ion generator 14 is allowed to pass through the rock container 16, e (minus electrons) is added to the water. As a result, chlorine (Cl) contained in tap water becomes chlorine ions due to negative electrons.
Cl + e - → Cl - ...... (4)
This Cl and the Na + are in a stable state as ions. The stable state means that the ionic state is maintained for a long time without evaporating. The hydroxyl ion (H 3 O 2 ) is also stable as an ion. By passing the water through the rock 54, hydronium ions (H 3 O + ) are further generated and the hydroxyl ions (H 3 O 2 ) are also hydrogen ions (H H + ) is also generated.
H 2 O + H + → H 3 O + (2)
H 3 O + + H 2 O → H 3 O 2 + 2H + (3)
In addition to the passage of water through the rock 54, the following reactions also occur.
OH + H + → H 2 O (5)
2H + + 2e → 2H 2 (6)
Further, when water passes through the rock container 16, the redox potential of the water changes from +340 mV to −20 to −240 mV due to the negative electrons of the rock 54. If hot water is used instead of water, the negative redox potential becomes more stable. Furthermore, the water that has passed through the rock 54 contains a large amount of dissolved oxygen and active hydrogen.
 図1に示すように、水が、最初にイオン交換樹脂を通過し、次にトルマリン46(またはトルマリン46と金属48とを混合させたもの)に通過し、その後に岩石収納器16を通過したものが特殊な水(創生水)である。創生水には、Na+と、Cl-と、H+と、OH-と、H2と、ヒドロニウムイオン(H3+)と、ヒドロキシルイオン(H32 -)と、活性水素と、溶存酸素とを多く含む。この水のエネルギは0.004watt/cm2である4~14ミクロンの波長の電磁波を有し、-20~-240mVの酸化還元電位を有する。 As shown in FIG. 1, water first passes through the ion exchange resin, then passes through tourmaline 46 (or a mixture of tourmaline 46 and metal 48), and then passes through the rock container 16. Things are special water (creative water). The creation water includes Na + , Cl , H + , OH , H 2 , hydronium ion (H 3 O + ), hydroxyl ion (H 3 O 2 ), and active hydrogen. And a large amount of dissolved oxygen. The energy of this water has an electromagnetic wave with a wavelength of 4 to 14 microns, which is 0.004 watt / cm 2 , and has a redox potential of −20 to −240 mV.
 本発明に係る水素の製造方法に使用する水としては、水をイオン交換樹脂32,トルマリン46(またはトルマリン46と金属48とを混合したもの),岩石54の順に通過させた創生水を使用する。図1では、水をイオン交換樹脂32,トルマリン46(またはトルマリン46と金属48とを混合したもの),岩石54の順に通過させたが、水をイオン交換樹脂32,岩石54,トルマリン46(またはトルマリン46と金属48とを混合したもの)の順に通過させたものを使用しても良い。即ち、図4に示すように、水を第1の軟水生成器10と第2の軟水生成器12と岩石収納器16とイオン生成器14の順に通過させるようにしてもよい。 As water used in the method for producing hydrogen according to the present invention, use is made of water created by passing water through ion exchange resin 32, tourmaline 46 (or a mixture of tourmaline 46 and metal 48), and rock 54 in this order. To do. In FIG. 1, water is passed in the order of ion exchange resin 32, tourmaline 46 (or a mixture of tourmaline 46 and metal 48), and rock 54, but water is passed in this order, but water is passed through ion exchange resin 32, rock 54, tourmaline 46 (or You may use what passed the order of tourmaline 46 and the metal 48). That is, as shown in FIG. 4, water may be passed through the first soft water generator 10, the second soft water generator 12, the rock container 16, and the ion generator 14 in this order.
 この図4においては、イオン交換樹脂32を通過した水は、次に岩石54を通過する。この岩石54によって、水の内部にe- (マイナス電子)が発生する。この結果、水道水に含まれている塩素はマイナス電子によって、塩素イオンとなる。
   Cl + e- → Cl-  ……(4)
 このCl-とイオン交換樹脂32によって発生したNa+とはイオンとして安定した状態になる。なお、イオン交換樹脂32を通過した水であっても、Na+を含まない場合もある。
 イオン交換樹脂32を通過した水には、前記(1)(2)に示すように、H+とOH-とヒドロニウムイオン(H3+)とが存在する。イオン交換樹脂32を通過した水が、その後、岩石54を通過することによって、以下の反応も発生する。
   OH- + H+ → H2O  ……(5)
   H2O + H+ → H3+  ……(2)
   2H+ + 2e- → 2H2  ……(6)
 この反応においては、ヒドロニウムイオン(H3+)が、イオン交換樹脂32によって発生する量よりも更に多くの量が発生する。
 以上のように、イオン交換樹脂32の後に岩石54を通過することによって、水の中に従来から存在したNa+とOH-と、新たに発生するCl-とヒドロニウムイオン(H3+)とが存在することになる。また、岩石54を通過させた水は、酸化還元電位が-20~-240mVになる。水に代えてお湯を使うと、マイナスの酸化還元電位が更に安定する。更に、岩石54を通過した水は、溶存酸素や活性水素を大量に含む。
In FIG. 4, the water that has passed through the ion exchange resin 32 then passes through the rock 54. The rock 54 generates e (minus electrons) in the water. As a result, chlorine contained in tap water becomes chlorine ions due to negative electrons.
Cl + e - → Cl - ...... (4)
This Cl and Na + generated by the ion exchange resin 32 are in a stable state as ions. Even water that has passed through the ion exchange resin 32 may not contain Na + .
The water that has passed through the ion exchange resin 32 contains H + , OH −, and hydronium ions (H 3 O + ), as shown in the above (1) and (2). When the water that has passed through the ion exchange resin 32 subsequently passes through the rock 54, the following reaction also occurs.
OH + H + → H 2 O (5)
H 2 O + H + → H 3 O + (2)
2H + + 2e → 2H 2 (6)
In this reaction, a larger amount of hydronium ions (H 3 O + ) than that generated by the ion exchange resin 32 is generated.
As described above, by passing through the rock 54 after the ion exchange resin 32, Na + and OH which have been conventionally present in the water, and newly generated Cl and hydronium ions (H 3 O + ). Will exist. Further, the water passed through the rock 54 has an oxidation-reduction potential of −20 to −240 mV. If hot water is used instead of water, the negative redox potential is further stabilized. Furthermore, the water that has passed through the rock 54 contains a large amount of dissolved oxygen and active hydrogen.
 この岩石54を通過した水を、次にトルマリン46と金属48を内蔵するイオン生成器14の内部を通過させる。これによって、以下の反応が生じる。
   H2O → H+ + OH-  ……(1)
   H2O + H+ → H3+  ……(2)
 このヒドロニウムイオン(H3+)は大量に発生する。またヒドロニウムイオン(H3+)の一部はヒドロキシルイオン(H32 -)になる。
   H3+ + H2O → H32 - + 2H+  ……(3)
 この結果、トルマリン46と金属48を通過させた水には、ヒドロニウムイオン(H3+)と、ヒドロキシルイオン(H32 -)と、OH-と、H+とが増加する。
The water that has passed through the rock 54 is then passed through the inside of the ion generator 14 containing the tourmaline 46 and the metal 48. This causes the following reaction.
H 2 O → H + + OH - ...... (1)
H 2 O + H + → H 3 O + (2)
This hydronium ion (H 3 O + ) is generated in large quantities. A part of the hydronium ion (H 3 O + ) becomes a hydroxyl ion (H 3 O 2 ).
H 3 O + + H 2 O → H 3 O 2 + 2H + (3)
As a result, hydronium ions (H 3 O + ), hydroxyl ions (H 3 O 2 ), OH , and H + increase in water that has passed through the tourmaline 46 and the metal 48.
 図4に示すように、水をイオン交換樹脂32,岩石54,トルマリン46(またはトルマリン46と金属48とを混合したもの)の順に通過させたものは、Na+と、Cl-と、OH-と、ヒドロニウムイオン(H3+)と、ヒドロキシルイオン(H32 -)と、H+と、溶存酸素と、活性水素とを含み、図1で創り出した創生水と同じ成分を含む。更に、0.004watt/cm2のエネルギを有する4~14ミクロンの電磁波と、-20~-240mVの酸化還元電位を有する。この結果、図4で創り出した水と図1で創り出した創生水とは、同じ効果を有する。図4の装置で生成する水は、図1で生成する創生水と、水に含むものは結果的に同じであるので、図4の装置で生成する水も創生水とする。 As shown in FIG. 4, when water is passed in the order of ion exchange resin 32, rock 54, and tourmaline 46 (or a mixture of tourmaline 46 and metal 48), Na + , Cl , and OH are passed. And hydronium ions (H 3 O + ), hydroxyl ions (H 3 O 2 ), H + , dissolved oxygen, and active hydrogen, and the same components as the created water created in FIG. Including. Furthermore, it has an electromagnetic wave of 4 to 14 microns having an energy of 0.004 watt / cm 2 and an oxidation-reduction potential of −20 to −240 mV. As a result, the water created in FIG. 4 and the created water created in FIG. 1 have the same effect. The water generated by the apparatus of FIG. 4 is the same as the generated water generated in FIG. 1 and the water contained in the water as a result, so the water generated by the apparatus of FIG.
 この創生水の水質検査結果を、以下に示す。この創生水と比較する水道水の値をカッコ内に示す。但し、水道水において創生水と同じ値は、「同じ」とする。亜硝酸性窒素及び硝酸性窒素:1.8mg/l(同じ)、塩素イオン:6.8mg/l(9.0mg/l)、一般細菌:0個/ml (同じ)、シアンイオン0.01mg/l未満(同じ)、水銀:0.0005mg/l未満(同じ)、有機リン:0.1mg/l未満(同じ)、銅:0.01mg/l未満(同じ)、鉄:0.05mg/l未満(0.08mg/l未満)、マンガン:0.01mg/l未満(同じ)、亜鉛:0.005mg/l未満(0.054mg/l未満)、鉛:0.01mg/l未満(同じ)、六価クロム:0.02mg/l未満(同じ)、カドミウム:0.005mg/l未満(同じ)、ヒ素:0.005mg/l未満(同じ)、フッ素:0.15mg/l未満(同じ)、カルシウムイオン・マグネシウムイオン等(硬度):1.2mg/l(49.0mg/l)、フェノール類:0.005mg/l未満(同じ)、陰イオン海面活性剤0.2mg/l未満(同じ)、pH値:6.9(同じ)、臭気:異臭なし(同じ)、味:異味なし(同じ)、色度:2度(同じ)、濁度:0度(1度) The results of water quality inspection for this creation water are shown below. The value of tap water to be compared with this fresh water is shown in parentheses. However, the same value as tap water in tap water shall be “same”. Nitrite nitrogen and nitrate nitrogen: 1.8 mg / l (same), chloride ion: 6.8 mg / l (9.0 mg / l), general bacteria: 0 / ml (same), cyanide 0.01 mg less than / l (same), mercury: less than 0.0005 mg / l (same), organic phosphorus: less than 0.1 mg / l (same), copper: less than 0.01 mg / l (same), iron: 0.05 mg / l Less than l (less than 0.08 mg / l), Manganese: Less than 0.01 mg / l (same), Zinc: Less than 0.005 mg / l (less than 0.054 mg / l), Lead: Less than 0.01 mg / l (same ), Hexavalent chromium: less than 0.02 mg / l (same), cadmium: less than 0.005 mg / l (same), arsenic: less than 0.005 mg / l (same), fluorine: less than 0.15 mg / l (same) ), Calcium ions / magnesium ions, etc. (hardness): 1.2 mg / l (49.0 mg / l), phenols: less than 0.005 mg / l (same), anionic sea surface active agent 0. Less than 2 mg / l (same), pH value: 6.9 (same), odor: no off-flavor (same), taste: no off-flavor (same), chromaticity: 2 degrees (same), turbidity: 0 degrees (1 Every time)
 創生水は、以下に列挙する多くの特徴を有する。
(a)ヒドロニウムイオン(H3+)と、ヒドロキシルイオン(H32 -)と、水素イオン(H+)と、水素と、水酸基(OH-)と、硫酸イオン(SO4 2-)と、炭酸水素イオン(HCO3 -)と、炭酸イオン(CO3 2-)と、メタケイ酸(H2SiO3)と、遊離二酸化炭素(CO2)とを含んでいる。
(b)界面活性作用がある。
 界面活性作用(OW型創生水乳化作用)を有する。
(c)微弱エネルギ(育成光線)作用がある。
 トルマリンは微弱エネルギ(4~14ミクロンの波長の電磁波)を放出する。この微弱エネルギは水の大きいクラスターを切断して、クラスター内に抱えこまれていた有毒ガスや重金属類を水から外部に放出する。
(d)-20~-240mVの酸化還元電位を有している。
(e)溶存酸素や活性水素を含んでいる。
(f)カルシウムイオンやマグネシウムイオンを除去した軟水である。
 イオン交換樹脂に水道水等を通すことによって、水に含まれているカルシウムイオン及びマグネシウムイオンを除去することができる。
Creation water has many characteristics listed below.
(a) Hydronium ion (H 3 O + ), hydroxyl ion (H 3 O 2 ), hydrogen ion (H + ), hydrogen, hydroxyl group (OH ), sulfate ion (SO 4 2− ), Hydrogen carbonate ions (HCO 3 ), carbonate ions (CO 3 2− ), metasilicic acid (H 2 SiO 3 ), and free carbon dioxide (CO 2 ).
(b) There is a surface active action.
It has a surface active action (OW-type fresh water emulsifying action)
(c) There is a weak energy (nurturing light) effect.
Tourmaline emits weak energy (electromagnetic waves with a wavelength of 4 to 14 microns). This weak energy cuts a large cluster of water and releases toxic gases and heavy metals contained in the cluster to the outside from the water.
(d) It has a redox potential of −20 to −240 mV.
(e) Contains dissolved oxygen and active hydrogen.
(f) Soft water from which calcium ions and magnesium ions have been removed.
By passing tap water or the like through the ion exchange resin, calcium ions and magnesium ions contained in the water can be removed.
 次に、本発明に係る水素ガスの製造方法を図5に基づいて説明する。本発明の水素ガスの製造方法を説明する前に、その製造装置の一例について説明する。製造装置は、容器60とその容器の蓋61とを有し、容器60は通常は蓋61で閉鎖された状態で使用する。蓋61には、容器内部と容器外部とを連絡する連絡通路65を内部に形成したノズル64が取り付けられており、ノズル64の途中には、連絡通路65を開閉する開閉バルブ68が備えられている。容器60の上部には、容器60の内部の気圧を測定する気圧計71と、容器60の内部の温度を測定する温度計73とが取り付けられている。容器60の上方の形状は、蓋61に向けて水平断面が徐々に狭くなるような円錐形状や角錐形状にするのが望ましい。これは、容器60内で生成した軽い水素ガスを容器60の上方に溜め、水素ガスを容器60から外部に取り出すのを容易にするためである。容器60の底面の下方には、容器60を加熱するための加熱手段69を備える。なお、加熱手段69は火力に限るものではなく、太陽光や電気ヒーター等によるものであっても良い。また、加熱手段69の配置位置は容器60の底面の下方に限るものではない。 Next, a method for producing hydrogen gas according to the present invention will be described with reference to FIG. Before explaining the method for producing hydrogen gas of the present invention, an example of the production apparatus will be explained. The manufacturing apparatus includes a container 60 and a lid 61 of the container, and the container 60 is normally used in a state of being closed by the lid 61. The lid 61 is provided with a nozzle 64 having a communication passage 65 formed therein for connecting the inside of the container and the outside of the container. An opening / closing valve 68 for opening and closing the communication passage 65 is provided in the middle of the nozzle 64. Yes. A barometer 71 that measures the pressure inside the container 60 and a thermometer 73 that measures the temperature inside the container 60 are attached to the top of the container 60. The upper shape of the container 60 is preferably a conical shape or a pyramid shape such that the horizontal cross section gradually narrows toward the lid 61. This is to make it easy to collect light hydrogen gas generated in the container 60 above the container 60 and to take out the hydrogen gas from the container 60 to the outside. A heating means 69 for heating the container 60 is provided below the bottom surface of the container 60. The heating means 69 is not limited to thermal power, and may be solar light, an electric heater, or the like. Further, the arrangement position of the heating means 69 is not limited to the position below the bottom surface of the container 60.
 本発明では、容器60内に、特殊な水(創生水)75とアルミニウム粉末77とを入れて、加熱手段69で創生水75とアルミニウム粉末77とを加熱する。アルミニウム粉末77は創生水75に充分浸漬されるように、創生水75の量をアルミニウム粉末77の量に対して充分多くする。水素を発生するために使用するものは、創生水75とアルミニウム粉末77の2つの材料のみである。即ち、容器60内には、アルミニウム以外の金属や化学物質を入れないものであり、容器60内の創生水75とアルミニウム粉末77とを加熱するだけで水素を発生させるものである。 In the present invention, special water (creating water) 75 and aluminum powder 77 are placed in the container 60, and the creating water 75 and the aluminum powder 77 are heated by the heating means 69. The amount of the creation water 75 is made sufficiently large relative to the amount of the aluminum powder 77 so that the aluminum powder 77 is sufficiently immersed in the creation water 75. The only two materials used to generate hydrogen are the created water 75 and the aluminum powder 77. That is, no metal or chemical substance other than aluminum is contained in the container 60, and hydrogen is generated only by heating the creation water 75 and the aluminum powder 77 in the container 60.
 実施例1では、アルミニウムの粉末に基づいて説明する。このアルミニウムの粉末は、市販のものを使用する。アルミニウムの粉末は、大阪市西区立売堀1-2-12所在の大和金属粉工業株式会社から市販されているものを使用する。この実施例1では、容器60内に、1リットルの創生水75と100gのアルミニウム粉末77を入れて、加熱手段69によって容器60内の創生水75とアルミニウム粉末77とを加熱する。即ち、創生水75とアルミニウムの重量比は、創生水100重量に対して、アルミニウム10重量である。加熱手段69による容器60内の加熱は、常温(例えば20℃)より加熱を開始し、容器60内の温度を30℃またはそれ以上まで加熱する。30℃よりやや低い温度で水素が発生し始めるが、30℃またはそれ以上になると容器60内に水素が大量に発生する。 Example 1 will be described based on aluminum powder. A commercially available powder of this aluminum is used. The aluminum powder is commercially available from Yamato Metal Powder Industry Co., Ltd., located in Nishi-12, Nishi-ku, Osaka. In the first embodiment, 1 liter of fresh water 75 and 100 g of aluminum powder 77 are placed in the container 60, and the fresh water 75 and the aluminum powder 77 in the container 60 are heated by the heating means 69. That is, the weight ratio of the creation water 75 and aluminum is 10 weights of aluminum with respect to 100 weights of creation water. Heating in the container 60 by the heating means 69 starts from normal temperature (for example, 20 ° C.), and heats the temperature in the container 60 to 30 ° C. or higher. Hydrogen begins to be generated at a temperature slightly lower than 30 ° C., but a large amount of hydrogen is generated in the container 60 at 30 ° C. or higher.
 容器60内の創生水75とアルミニウム粉末77とを30℃またはそれ以上に加熱すると、水素が発生することが判明したが、客観性を持たせるために、第三者に実験結果の測定分析を依頼した。その分析結果である測定分析成績書を図6に示す。本発明に係る図6やそれ以降の図に示す測定分析成績書は、日本国長野県北佐久郡立科町芦田1835所在の株式会社信濃公害研究所(電話0267-56-2189)によって、作成されたものである。 It has been found that hydrogen is generated when the creation water 75 and the aluminum powder 77 in the container 60 are heated to 30 ° C. or higher. However, in order to provide objectivity, a measurement analysis of the experimental results is performed by a third party. Was requested. FIG. 6 shows a measurement analysis report as the analysis result. The measurement analysis report shown in FIG. 6 and the subsequent figures according to the present invention was prepared by Shinano pollution research institute (telephone 0267-56-2189) located in 1835 Tateshina-machi, Kitasaku-gun, Nagano, Japan. Is.
 図6の測定分析成績書について説明する。図6は、容器60内に創生水75とアルミニウム粉末77を入れて、加熱手段69で容器60内の温度を30℃またはそれ以上に加熱して、容器60内の空気を10リットルバッグで採取したものである。創生水75とアルミニウム粉末77との反応では、容器60を加熱手段69で加熱している間は水素が発生するが、加熱手段69による加熱を停止するとしばらくして水素は発生しなくなる。30℃以上で80℃未満までは、水素を発生する加熱は、容器60内の温度を継続的に徐々に上昇させることである。同一温度を保持する加熱の場合は、しばらくは水素を発生し続けるが、途中で水素の発生は停止する。このため、水素を発生する温度である30℃からは、容器60内の温度を継続的に徐々に上昇するように、弱火で加熱する。このことから、容器60内の温度が30℃以上80℃未満の間は、水素の発生や停止を容易に行わせることができる。 The measurement analysis report shown in Fig. 6 will be described. FIG. 6 shows that fresh water 75 and aluminum powder 77 are put in a container 60, the temperature in the container 60 is heated to 30 ° C. or higher by the heating means 69, and the air in the container 60 is cooled by a 10 liter bag. It is collected. In the reaction between the creation water 75 and the aluminum powder 77, hydrogen is generated while the container 60 is heated by the heating means 69. However, when heating by the heating means 69 is stopped, hydrogen is not generated after a while. From 30 ° C. to less than 80 ° C., heating to generate hydrogen is to gradually and gradually raise the temperature in the container 60. In the case of heating at the same temperature, hydrogen continues to be generated for a while, but the generation of hydrogen stops halfway. For this reason, from 30 degreeC which is the temperature which generate | occur | produces hydrogen, it heats with a low heat so that the temperature in the container 60 may rise gradually gradually. From this, generation | occurrence | production and a stop of hydrogen can be easily performed while the temperature in the container 60 is 30 degreeC or more and less than 80 degreeC.
 容器60内で発生する水素は、ノズル64の先端に取付けた10リットルバッグ(図示せず)で採取する。容器60内から採取した空気は、測定前にバブリングを行なう。バブリングとは、採取した空気を容器(図示せず)内に入れた水に潜らせることである。採取した空気をバブリングさせることは、採取した空気に含まれる水分を除去する(気水分離を行なう)と共に、空気を冷却させる効果がある。30℃またはそれ以上の温度で採取した空気にバブリングを行なった後の空気を測定した結果が、図6の測定分析成績書である。図6に示すように、30℃またはそれ以上の温度で継続的に徐々に温度を上昇させるように加熱した空気には、水素が75%、酸素が5.2%含まれていた。即ち、アルミニウム粉末77と創生水とを入れた容器60を30℃またはそれ以上の温度で継続的に徐々に温度を上昇させるように加熱すると、水素が大量に発生することが分かった。加熱温度が30℃またはそれ以上で継続的に徐々に上昇させる温度であることから、図6の実験では、容器60内の圧力は大気圧(1気圧)である。 The hydrogen generated in the container 60 is collected with a 10 liter bag (not shown) attached to the tip of the nozzle 64. The air collected from the container 60 is bubbled before measurement. Bubbling means that the collected air is submerged in water contained in a container (not shown). Bubbling the collected air has the effect of removing moisture contained in the collected air (performing air-water separation) and cooling the air. The result of measuring the air after bubbling the air collected at a temperature of 30 ° C. or higher is the measurement analysis result document of FIG. As shown in FIG. 6, the air heated to gradually increase the temperature continuously at 30 ° C. or higher contained 75% hydrogen and 5.2% oxygen. That is, it was found that a large amount of hydrogen is generated when the container 60 containing the aluminum powder 77 and the fresh water is heated at a temperature of 30 ° C. or higher so as to gradually increase the temperature. Since the heating temperature is a temperature that gradually increases gradually at 30 ° C. or higher, in the experiment of FIG. 6, the pressure in the container 60 is atmospheric pressure (1 atm).
 次に、図7の測定分析成績書について説明する。容器60内の温度を30℃から80℃までに徐々に上昇させ、温度が80℃に達したら、80℃以上で創生水の沸点未満までの間の温度で容器60内の温度を保持する。創生水の沸点の温度は、102~104℃である。80℃以上創生水の沸点未満の温度では、保温するだけで水素が発生する。容器60内の温度が80℃以上創生水の沸点未満の温度では、温度を継続的に上昇させる必要は無い。図7の測定分析成績書は、容器60内の空気を80℃以上創生水の沸点未満の温度で、容器60内の空気を10リットルバッグに採取したものである。採取した空気をバブリングして測定した結果では、水素が98%で、酸素が0.3%含まれていた。加熱温度が80℃以上創生水の沸点以下であることから、図7の容器60内の圧力は、大気圧(1気圧)である。 Next, the measurement analysis report shown in FIG. 7 will be described. The temperature in the container 60 is gradually increased from 30 ° C. to 80 ° C., and when the temperature reaches 80 ° C., the temperature in the container 60 is maintained at a temperature between 80 ° C. and below the boiling point of the created water. . The temperature of the boiling point of the fresh water is 102-104 ° C. At a temperature of 80 ° C. or higher and lower than the boiling point of the generated water, hydrogen is generated simply by keeping the temperature. When the temperature in the container 60 is 80 ° C. or higher and lower than the boiling point of the created water, it is not necessary to continuously increase the temperature. The measurement analysis report in FIG. 7 is obtained by collecting the air in the container 60 in a 10-liter bag at a temperature of 80 ° C. or higher and lower than the boiling point of the created water. As a result of measurement by bubbling the collected air, hydrogen was 98% and oxygen was 0.3%. Since the heating temperature is 80 ° C. or higher and lower than the boiling point of the created water, the pressure in the container 60 in FIG. 7 is atmospheric pressure (1 atm).
 容器60内の温度が80℃以上で創生水の沸点の手前までの温度では、容器60内の温度を継続的に上昇させる必要はないが、容器60内の温度を80℃以上に保温する必要がある。即ち、加熱状態は断続的に行わなければならない。加熱状態を停止させて80℃以下になると、水素が発生しなくなる。従って、容器60内の温度が80℃以上で創生水の沸点未満までの間で温度を保持しておけば、水素を大量に発生させることができる。また、水素の発生を停止させる場合には、容器60の保温や加熱を停止させて、80℃以下にすれば良い。このことから、水素の発生や停止を容易に行わせることができる。 It is not necessary to continuously increase the temperature in the container 60 at a temperature in the container 60 that is 80 ° C. or higher and before the boiling point of the created water, but the temperature in the container 60 is kept at 80 ° C. or higher. There is a need. That is, the heating state must be performed intermittently. When the heating state is stopped and the temperature is 80 ° C. or lower, hydrogen is not generated. Therefore, a large amount of hydrogen can be generated if the temperature in the container 60 is kept at 80 ° C. or higher and below the boiling point of the created water. In addition, when the generation of hydrogen is stopped, the temperature and heating of the container 60 may be stopped and the temperature may be set to 80 ° C. or lower. From this, it is possible to easily generate and stop hydrogen.
 30℃から80℃までに温度が上昇するにつれて、採取した空気に含まれる水素の含有比率は徐々に大きくなるものである。これは、30℃以上の温度における水素の含有率は75%であり、80℃の温度における水素の含有率は98%であることから、明らかである。30℃以上の温度での水素の含有率は75%もあるので、水素の発生量は充分多い量であるとであると考えられる。1リットルの創生水75と100gのアルミニウム粉末77からは、水素は約40分から50分発生した。なお、この実施例1では、アルミニウム粉末77の1g当り、約2.0リットルの水素を生成した。 As the temperature increases from 30 ° C. to 80 ° C., the content ratio of hydrogen contained in the collected air gradually increases. This is apparent from the fact that the hydrogen content at a temperature of 30 ° C. or higher is 75% and the hydrogen content at a temperature of 80 ° C. is 98%. Since the hydrogen content at a temperature of 30 ° C. or higher is 75%, it is considered that the amount of hydrogen generated is sufficiently large. From 1 liter of fresh water 75 and 100 g of aluminum powder 77, hydrogen was generated for about 40 to 50 minutes. In Example 1, about 2.0 liters of hydrogen was produced per 1 g of the aluminum powder 77.
 創生水には、ヒドロニウムイオン(H3+)やヒドロキシルイオン(H32 -)や水素イオン(H+)や水酸化イオン(OH-)等が含まれており、それらのヒドロニウムイオン(H3+)やヒドロキシルイオン(H32 -)や水素イオン(H+)や水酸化イオン(OH-)等から水素ガスが生成されるため、創生水は水道水や天然水やアルカリイオン水等の水に比べて、水素を多く発生させることができると考えられる。 The creation water contains hydronium ions (H 3 O + ), hydroxyl ions (H 3 O 2 ), hydrogen ions (H + ), hydroxide ions (OH ), and the like. Since hydrogen gas is generated from nium ions (H 3 O + ), hydroxyl ions (H 3 O 2 ), hydrogen ions (H + ), and hydroxide ions (OH ), It is considered that more hydrogen can be generated than water such as natural water or alkali ion water.
 創生水とアルミニウムとを反応させて水素を発生させるが、アルミニウムが創生水と反応して水素を発生することによってアルミニウムの表面を酸化被膜が覆い、その酸化被膜によって水素の発生が停止する。創生水75とアルミニウム粉末77とから40分~50分間水素を発生させる。創生水に代えて、水道水等を用いた場合には、アルミニウムとの反応による水素の発生時間はゼロか充分短い。このことから、創生水75を使用することで、アルミニウムの表面に酸化被膜が発生する時間を著しく遅らせることができるということが分かる。アルミニウム粉末77の表面への酸化被膜の発生を著しく遅らせる理由は、明確ではないが、ヒドロキシルイオン(H32 -)が、アルミニウム粉末77の表面への酸化被膜の付着を長時間防いでいるのではないかと推測される。アルミニウムの表面に酸化被膜が張って、水素を発生しなくなった場合には、創生水75が容器60内に残っていれば、アルミニウム粉末77を容器60から排出しても排出しなくても、新たなアルミニウム粉末77を容器60内に追加すれば、水素が再び発生する。 Hydrogen is generated by reacting the creation water with aluminum, but aluminum reacts with the creation water to generate hydrogen, so that the oxide film covers the surface of the aluminum, and the generation of hydrogen is stopped by the oxide film. . Hydrogen is generated from the creation water 75 and the aluminum powder 77 for 40 to 50 minutes. When tap water or the like is used instead of the fresh water, the generation time of hydrogen due to the reaction with aluminum is zero or sufficiently short. From this, it can be seen that by using the creation water 75, the time during which an oxide film is generated on the surface of aluminum can be significantly delayed. The reason for significantly delaying the generation of the oxide film on the surface of the aluminum powder 77 is not clear, but hydroxyl ions (H 3 O 2 ) prevent the oxide film from adhering to the surface of the aluminum powder 77 for a long time. It is guessed that. If an oxide film is stretched on the surface of aluminum and hydrogen is no longer generated, the aluminum powder 77 may or may not be discharged from the container 60 as long as the generated water 75 remains in the container 60. If new aluminum powder 77 is added to the container 60, hydrogen is generated again.
 容器60に入れるアルミニウム粉末77の重量は、創生水100重量に対して、5重量以上(創生水1リットルに対して、アルミニウム粉末77を50g以上)とする。容器60に入れるアルミニウム粉末77の重量が5重量未満であれば、水素の発生量が非常に少ないので、実用には適さない。アルミニウム粉末77の最良の重量範囲は、10重量以上(創生水1リットルに対して、アルミニウム粉末77を100g以上)からアルミニウム粉末77が創生水の液面に至るまでの重量である。アルミニウム粉末77が10重量未満なら水素の発生量が10重量の時の水素発生量より少ない。アルミニウム粉末77が30重量を越えた場合には、水素発生量は30重量の場合とほぼ変わらないことと、アルミニウム粉末のコスト77がかかることとから、アルミニウム粉末は10重量~30重量が望ましい。 The weight of the aluminum powder 77 put in the container 60 is 5 weights or more with respect to 100 weights of the creation water (50 grams or more of the aluminum powder 77 with respect to 1 liter of creation water). If the weight of the aluminum powder 77 placed in the container 60 is less than 5 weights, the amount of hydrogen generated is very small, so that it is not suitable for practical use. The best weight range of the aluminum powder 77 is the weight from 10 weight or more (100 g or more of the aluminum powder 77 to 1 liter of the created water) to the aluminum powder 77 reaching the level of the created water. If the aluminum powder 77 is less than 10 weight, the amount of hydrogen generated is less than the amount of hydrogen generated at 10 weight. When the aluminum powder 77 exceeds 30 weights, the amount of hydrogen generated is almost the same as when it is 30 weights, and the cost 77 of the aluminum powder is high, so the aluminum powder is preferably 10 to 30 weights.
 以上のように、本発明では、創生水75とアルミニウム粉末77とを入れた容器60内の温度を30℃またはそれ以上の温度にすることで、水素を発生させることができる。容器60内の温度を高めるには、容器60を加熱手段69で加熱しても、加熱した創生水を加えるようにしてどちらでも良い。容器60内を加熱する温度が30℃以上80℃未満までは、容器60内を加熱する際に継続的な温度上昇を必要とするが、80℃以上で創生水の沸点未満までの間は、容器60内を加熱する温度は、必ずしも継続的な温度上昇を必要とせず、80℃以上で創生水の沸点未満までの間の温度での保温で済ますことができ、加熱手段69による温度調整が簡単である。更に、80℃以上で創生水の沸点未満までの間で発生する水素の量は、30℃以上80℃未満の温度での水素の発生量と比べて非常に多いものである。本発明の実施例1は、創生水75とアルミニウム粉末77とを材料として、それらを容器60内で大気圧の下で加熱して水素が発生するので、高圧に耐える装置を必要としないことから装置が安価であり、しかも大量の水素を得ることができる。 As described above, in the present invention, hydrogen can be generated by setting the temperature in the container 60 containing the created water 75 and the aluminum powder 77 to 30 ° C. or higher. In order to raise the temperature in the container 60, either the container 60 may be heated by the heating means 69 or the heated creation water may be added. When the temperature at which the inside of the container 60 is heated is 30 ° C. or more and less than 80 ° C., it is necessary to continuously increase the temperature when the inside of the container 60 is heated. The temperature at which the inside of the container 60 is heated does not necessarily require a continuous temperature rise, and can be kept at a temperature between 80 ° C. and below the boiling point of the generated water. Easy to adjust. Furthermore, the amount of hydrogen generated between 80 ° C. and below the boiling point of the created water is much larger than the amount of hydrogen generated at a temperature of 30 ° C. and below 80 ° C. In the first embodiment of the present invention, hydrogen is generated by using the created water 75 and the aluminum powder 77 as materials and heating them in the container 60 under atmospheric pressure, so that a device capable of withstanding high pressure is not required. Therefore, the apparatus is inexpensive and a large amount of hydrogen can be obtained.
 図5に示す装置で、容器60内に最初に1リットルの創生水75と100gのアルミニウム粉末77とを入れ、80℃以上で創生水の沸点未満までの間まで加熱して80℃以上の温度を保った場合、40分~50分間水素が出る。水素が出なくなった状態では、容器60内のアルミニウム粉末77には酸化被膜が形成されて、アルミニウム粉末77による水素発生の働きが悪くなるが、容器60内には大量の創生水75が存在する。従って、更に水素を出すためには、水素が出なくなった状態でも、水素が出続けている状態でも、例えば80℃以上の温度の容器60内に新たなアルミニウム粉末77を追加すれば、創生水75と新たに追加したアルミニウム粉末77とが反応して再び水素を発生する。 In the apparatus shown in FIG. 5, 1 liter of fresh water 75 and 100 g of aluminum powder 77 are first placed in a container 60 and heated to 80 ° C. or higher and lower than the boiling point of the generated water to 80 ° C. or higher. When the temperature is maintained, hydrogen is released for 40 to 50 minutes. In the state where hydrogen is not emitted, an oxide film is formed on the aluminum powder 77 in the container 60, and the function of hydrogen generation by the aluminum powder 77 is deteriorated. However, a large amount of creation water 75 exists in the container 60. To do. Therefore, in order to generate more hydrogen, whether new hydrogen powder 77 is added in the container 60 at a temperature of 80 ° C. or higher, for example, in a state where hydrogen is no longer generated or in a state where hydrogen is continuously generated. The water 75 reacts with the newly added aluminum powder 77 to generate hydrogen again.
 アルミニウム粉末77に酸化被膜が形成されて水素が発生しなくなった状態で、装置の稼動を停止し、翌日、水素の発生作業を再開すると仮定する。翌日には、容器60内の創生水の温度は外気温度(例えば10℃~20℃)に下がっている。容器60内の温度は外気温度であるが、新たなアルミニウム粉末77を容器60内に入れると、アルミニウム粉末77は容器60内の創生水と反応して、加熱手段69による加熱をしなくても、容器60内の温度が80℃~90℃に上がる。その後、容器60内を加熱しなくても、容器60内の温度が80℃~90℃に保たれ、水素が発生する。 Suppose that the oxide film is formed on the aluminum powder 77 and hydrogen is not generated, so that the operation of the apparatus is stopped and the hydrogen generation operation is resumed the next day. On the next day, the temperature of the created water in the container 60 is lowered to the outside air temperature (for example, 10 ° C. to 20 ° C.). Although the temperature in the container 60 is the outside air temperature, when a new aluminum powder 77 is put in the container 60, the aluminum powder 77 reacts with the created water in the container 60 and is not heated by the heating means 69. However, the temperature in the container 60 rises to 80 ° C. to 90 ° C. Thereafter, even if the inside of the container 60 is not heated, the temperature in the container 60 is maintained at 80 ° C. to 90 ° C., and hydrogen is generated.
 容器60内のアルミニウムの働きが無くなった場合に、アルミニウムを追加するだけで(加熱手段69による加熱無しに)、容器60内の温度が80℃~90℃に上昇してその温度に保持できるのは、アルミニウムの粉末だけである。アルミニウムが粒状とか小片の場合には、加熱手段69で容器60内の温度を常に80℃以上創生水の沸点以下の温度に加熱しておかなければならない。なお、容器60内の創生水が無くなって新しい創生水を入れた場合には、改めて、容器60内を加熱手段69で最初から加熱しなければならない。しかし、容器60内に創生水が残っている状態で新たに創生水を追加する場合には、アルミニウム粉末77の場合には容器60内を加熱手段69で加熱しなくても良い。 When the function of aluminum in the container 60 is lost, the temperature in the container 60 can be raised to 80 ° C. to 90 ° C. and maintained at that temperature simply by adding aluminum (without heating by the heating means 69). Is only aluminum powder. When the aluminum is granular or small pieces, the temperature in the container 60 must always be heated to a temperature not lower than 80 ° C. and not higher than the boiling point of the created water by the heating means 69. In addition, when there is no creation water in the container 60 and new creation water is added, the inside of the container 60 must be heated again by the heating means 69 from the beginning. However, when newly created water is added in a state where the created water remains in the container 60, the inside of the container 60 may not be heated by the heating means 69 in the case of the aluminum powder 77.
 ここで、創生水75が残っている容器60内に新たなアルミニウム粉末77を入れた時に、加熱手段69による加熱をしなくても、容器60内の温度が80℃~90℃に上がって、水素が発生する理由について説明する。その前に、創生水自体と、アルミニウム粉末77と反応して水素を発生した後の創生水とのpHの変化について説明する。図8は水素を発生する前の創生水の計量証明書であり、図9はアルミニウム粉末77と反応して水素を発生した後の創生水の計量証明書である。大きな変化をするものは、pHである。図8に示すように、アルミニウム粉末77と反応させる前の創生水のpHは、7.4(中性)である。創生水とアルミニウム粉末77とを反応させて水素を発生させた後の創生水のpHは、図9にあるように9.8であり、創生水はアルカリ性になっていた。即ち、創生水75とアルミニウム粉末77とが反応して水素を発生した後の水は、アルカリ性の創生水となる。アルミニウム粉末77だけでなく、粒状や小片のものを用いて水素を発生したものでも、創生水は、アルカリ性の創生水となる。その他に、図8に示すように、創生水に含まれるナトリウムイオンは、26mg/Lであるが、創生水とアルミニウム粉末77を使用して水素を発生させた後の容器60内の創生水に含まれるナトリウムイオンは、35mg/Lに若干上昇していた。この図8と図9とから分かるように、中性の創生水は、アルミニウム粉末77と反応して水素を発生した後にはアルカリ性になる。 Here, when new aluminum powder 77 is put into the container 60 where the fresh water 75 remains, the temperature in the container 60 rises to 80 ° C. to 90 ° C. without heating by the heating means 69. The reason why hydrogen is generated will be described. Before that, the pH change between the created water itself and the created water after reacting with the aluminum powder 77 to generate hydrogen will be described. FIG. 8 is a measurement certificate of the generated water before generating hydrogen, and FIG. 9 is a measurement certificate of the generated water after reacting with the aluminum powder 77 to generate hydrogen. It is the pH that changes greatly. As shown in FIG. 8, the pH of the created water before reacting with the aluminum powder 77 is 7.4 (neutral). The pH of the created water after reacting the created water with the aluminum powder 77 to generate hydrogen was 9.8 as shown in FIG. 9, and the created water was alkaline. That is, the water after the creation water 75 and the aluminum powder 77 react to generate hydrogen becomes alkaline creation water. Even if the hydrogen is generated using not only the aluminum powder 77 but also granular or small pieces, the creation water becomes alkaline creation water. In addition, as shown in FIG. 8, the sodium ion contained in the creation water is 26 mg / L, but the wound ion in the container 60 after generating hydrogen using the creation water and the aluminum powder 77 is used. Sodium ions contained in the raw water slightly increased to 35 mg / L. As can be seen from FIGS. 8 and 9, the neutral created water becomes alkaline after reacting with the aluminum powder 77 to generate hydrogen.
 このように、pHがアルカリ性となった創生水に、新たなアルミニウム粉末77を追加することで、容器60内の温度が80℃~90℃に上昇する。その後は、容器60を加熱手段で加熱しなくても、容器60内の温度が80℃~90℃に保たれる。容器60内に創生水が残っているうちに、新たな創生水を加えれば、容器60の容量や追加する創生水の量にもよるが、短時間のうちに容器60内の温度が80℃~90℃に上昇し、その後、容器60を加熱しなくても、容器60内の温度が80℃~90℃に保たれる。追加する創生水の温度が、例えば80℃以上に加熱したお湯であれば、容器60内の温度を一旦低下させることがないので、水素の発生を効率よく継続することができる。 Thus, by adding new aluminum powder 77 to the created water whose pH has become alkaline, the temperature in the container 60 rises to 80 ° C. to 90 ° C. Thereafter, the temperature in the container 60 is kept at 80 ° C. to 90 ° C. without heating the container 60 with heating means. If new creation water is added while the creation water remains in the container 60, the temperature in the container 60 will be reduced within a short period of time, depending on the capacity of the container 60 and the amount of creation water to be added. Rises to 80 ° C. to 90 ° C., and then the temperature in the container 60 is maintained at 80 ° C. to 90 ° C. without heating the container 60. If the temperature of the creation water to be added is hot water heated to, for example, 80 ° C. or higher, the temperature in the container 60 is not lowered once, so that the generation of hydrogen can be continued efficiently.
 ここで、創生水に代えて、アルカリイオン水を使用すれば、同じ結果が得られるのではないかとの推定に基づいて、アルカリイオン水を用いて、創生水と同じ実験をした。先ず、容器60内にアルミニウム粉末とアルカリイオン水を入れて加熱手段で容器60内を30℃以上に加熱した。この結果を図10に示す。図10に示すように、水素17%、酸素18%が含まれていた。次に、容器60内にアルミニウム粉末とアルカリイオン水を入れて加熱手段で容器60内を80℃以上に加熱し、図11に示す結果を得た。図11に示すように、水素13%、酸素19%が含まれていた。以上の結果から分かるように、創生水75とアルミニウム粉末77との反応による水素の発生量は、アルカリイオン水とアルミニウム粉末77との反応による水素の発生量より充分多いものである。従って、アルカリ性の創生水と、アルカリイオン水とでは、水素の発生量が大いに異なるものである。 Here, based on the estimation that the same result could be obtained if alkaline ion water was used instead of the fresh water, the same experiment as the fresh water was performed using the alkaline ion water. First, aluminum powder and alkali ion water were put in the container 60, and the inside of the container 60 was heated to 30 ° C. or higher by a heating means. The result is shown in FIG. As shown in FIG. 10, 17% hydrogen and 18% oxygen were contained. Next, aluminum powder and alkaline ionized water were put in the container 60, and the inside of the container 60 was heated to 80 ° C. or higher by a heating means, and the result shown in FIG. 11 was obtained. As shown in FIG. 11, 13% hydrogen and 19% oxygen were contained. As can be seen from the above results, the amount of hydrogen generated by the reaction between the creation water 75 and the aluminum powder 77 is sufficiently larger than the amount of hydrogen generated by the reaction between the alkaline ionized water and the aluminum powder 77. Therefore, the generation amount of hydrogen is greatly different between alkaline creation water and alkaline ionized water.
 次に、本発明の実施例2を図12に基づいて説明する。図12は本発明に係る水素の製造方法を示す装置の一実施例を示す断面図である。容器60は、その素材を例えばステンレスとするが、ステンレスに限るものではない。この容器60の内部には上下に多段の棚62を備え、各棚62の上に多数の小さい粒状か小片のアルミニウム66を載せる。多数の各棚62には、アルミニウム66が下方に落下せず、水や空気が通過する程度の大きさの孔(図示せず)を多数設ける。容器60内に備える多段の棚62は、容器60の側面に備えられた扉(図示せず)から出し入れされる。容器60の底にも小さい粒状か小片の多数のアルミニウム66(アルミニウムの粉でも可)を備える。容器60の上部には気体排出通路65が設けられ、容器60内で発生した水素等の気体を気体排出通路65経由して外部に排出する。気体排出通路65は開閉弁68で開閉される。容器60の外側からヒーター等の加熱手段69で加熱する。なお、容器60の外側から容器60の内部を加熱する加熱手段69は、ヒーター以外にガス等の火力を用いても良い。加熱手段69を電気ヒーターとした場合、ヒーターの外側を断熱材76で覆い、容器60内の温度が大気温度に向けて低下するのを防止する。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 12 is a sectional view showing an embodiment of an apparatus showing a method for producing hydrogen according to the present invention. The container 60 is made of, for example, stainless steel, but is not limited to stainless steel. A multistage shelf 62 is provided inside the container 60 on the top and bottom, and a large number of small granular or small pieces of aluminum 66 are placed on each shelf 62. Many shelves 62 are provided with a number of holes (not shown) that are large enough to allow water or air to pass therethrough so that the aluminum 66 does not fall downward. The multistage shelf 62 provided in the container 60 is taken in and out from a door (not shown) provided on the side surface of the container 60. The bottom of the container 60 is also provided with a large number of small granular or small pieces of aluminum 66 (which may be aluminum powder). A gas discharge passage 65 is provided in the upper portion of the container 60, and a gas such as hydrogen generated in the container 60 is discharged to the outside through the gas discharge passage 65. The gas discharge passage 65 is opened and closed by an opening / closing valve 68. Heating is performed from the outside of the container 60 by a heating means 69 such as a heater. The heating means 69 for heating the inside of the container 60 from the outside of the container 60 may use a thermal power such as a gas other than the heater. When the heating means 69 is an electric heater, the outside of the heater is covered with a heat insulating material 76 to prevent the temperature in the container 60 from decreasing toward the atmospheric temperature.
 容器60内の最上部の棚62の上方に、シャワーのように最上部の棚62の全域に水を平均的に噴射散布するための水噴射手段70を設ける。容器60内に入れられる「水」は、創生水または創生水に水酸課ナトリウムを加えた水酸化ナトリウム水溶液のいずれかである。本発明で「水酸化ナトリウム水溶液」は、「創生水と水酸化ナトリウムとを混合した水溶液」のことを指す。この水酸化ナトリウム水溶液は、アルカリ性(アルカリ性の創生水)である。水噴射手段70へは、水供給通路72を介して創生水または水酸化ナトリウム水溶液を供給するものであり、その水供給通路72の途中に供給水量を調整するための水量調整手段74を設ける。容器60内の上部の水噴射手段70からシャワーのように創生水か水酸化ナトリウム水溶液を下方に向けて噴射させる。水噴射手段70から噴射された創生水か水酸化ナトリウム水溶液は、最上部の棚62の上のアルミニウム66を経由して、次の段の棚62に至り、順次下方の棚62に至り、最終的には、容器60の底に至る。 A water injection means 70 is provided above the uppermost shelf 62 in the container 60 for spraying and spraying water on the entire area of the uppermost shelf 62 like a shower. The “water” to be put in the container 60 is either creation water or a sodium hydroxide aqueous solution in which sodium hydroxide is added to the creation water. In the present invention, “sodium hydroxide aqueous solution” refers to “an aqueous solution in which creation water and sodium hydroxide are mixed”. This aqueous sodium hydroxide solution is alkaline (alkaline creation water). The water injection means 70 is supplied with fresh water or an aqueous sodium hydroxide solution through a water supply passage 72, and a water amount adjustment means 74 for adjusting the amount of supply water is provided in the middle of the water supply passage 72. . Fresh water or sodium hydroxide aqueous solution is jetted downward from the water jet means 70 in the upper part of the container 60 like a shower. The fresh water or the sodium hydroxide aqueous solution sprayed from the water spraying means 70 reaches the next shelf 62 through the aluminum 66 on the uppermost shelf 62, and sequentially reaches the shelf 62 below, Eventually, the bottom of the container 60 is reached.
 実施例2の発明では、水噴射手段70から容器60内に噴射散布する水には、創生水か水酸化ナトリウム水溶液を用いる。即ち、実施例2の発明では、必ず創生水を用いるものとする。創生水は、アルミニウム66と接触させることによって、30℃以上になると水素が発生し、30℃から80℃にかけては、容器60内の温度の上昇に伴って発生する水素量が増大する。容器60内の温度が80℃以上になると、80℃未満と比べて水素の発生量が急に増大する。 In the invention of the second embodiment, fresh water or aqueous sodium hydroxide solution is used as the water sprayed from the water jetting means 70 into the container 60. That is, in the invention of Example 2, it is assumed that fresh water is used. When the created water is brought into contact with the aluminum 66, hydrogen is generated when the temperature is 30 ° C. or higher, and the amount of hydrogen generated increases as the temperature in the container 60 increases from 30 ° C. to 80 ° C. When the temperature in the container 60 is 80 ° C. or higher, the amount of hydrogen generated increases abruptly compared to less than 80 ° C.
 水酸化ナトリウムは、水から発生する水素量を増加させる効果と水から発生する酸素量を減少させるための効果がある。水酸化ナトリウム水溶液を用いる場合には、水酸化ナトリウムの濃度は、0.1%以上であれば良いが、水酸化ナトリウムの濃度が1%~15%程度であることが、水素の発生量が多いことや水素の発生開始時間が短いことから望ましい。水酸化ナトリウムの濃度は15%以上であっても良いが、結果は1%~15%程度の水酸化ナトリウム濃度とほぼ変わらない。 Sodium hydroxide has the effect of increasing the amount of hydrogen generated from water and the amount of oxygen generated from water. When an aqueous sodium hydroxide solution is used, the concentration of sodium hydroxide should be 0.1% or more, but the concentration of sodium hydroxide is about 1% to 15%, It is desirable because of the large amount and the short start time of hydrogen generation. The concentration of sodium hydroxide may be 15% or more, but the result is almost the same as the sodium hydroxide concentration of about 1% to 15%.
 水噴射手段70から容器60内に噴射散布する水を創生水とし、棚62の上にアルミニウム66の他に水酸化ナトリウムを備え、上から落下する創生水が水酸化ナトリウムと接触して水酸化ナトリウム水溶液となるようにしても良い。即ち、容器60内でアルミニウム66に接触する水が、結果的に水酸化ナトリウム水溶液(創生水と水酸化ナトリウムとを混合した水溶液)であれば、本発明における「水酸化ナトリウム水溶液」とする。 The water sprayed and sprayed from the water injection means 70 into the container 60 is created water, sodium hydroxide is provided on the shelf 62 in addition to the aluminum 66, and the created water falling from above comes into contact with sodium hydroxide. A sodium hydroxide aqueous solution may be used. That is, if the water in contact with the aluminum 66 in the container 60 is a sodium hydroxide aqueous solution (an aqueous solution in which creation water and sodium hydroxide are mixed), the “sodium hydroxide aqueous solution” in the present invention is used. .
 本発明の実施例2では、容器60内に、創生水または水酸化ナトリウム水溶液とアルミニウム66とを入れ、容器60の外部から加熱手段69で容器60内を30℃以上に加熱する。水素を大量に発生させる場合には、容器60内の温度を80℃以上にすれば良いが、水素の発生を急に停止できない場合もあることから、少量の水素発生量のものを使用する場合も考えられる。このため、容器60内の温度が30℃~80℃で、水素の発生量が少量の場合も産業上利用することができる。なお、水素の発生量は、容器60内の温度と、後述する水酸化ナトリウム水溶液の水酸化ナトリウムの濃度によって調節することができる。 In Example 2 of the present invention, the fresh water or sodium hydroxide aqueous solution and aluminum 66 are put in the container 60, and the inside of the container 60 is heated to 30 ° C. or more by the heating means 69 from the outside of the container 60. When a large amount of hydrogen is generated, the temperature in the container 60 may be set to 80 ° C. or higher. However, since hydrogen generation may not be stopped suddenly, a small amount of hydrogen generated is used. Is also possible. Therefore, even when the temperature in the container 60 is 30 ° C. to 80 ° C. and the amount of generated hydrogen is small, it can be used industrially. Note that the amount of hydrogen generated can be adjusted by the temperature in the container 60 and the concentration of sodium hydroxide in a sodium hydroxide aqueous solution described later.
 ここで、実施例2における実験結果(測定分析成績書)を、図13及び図14に示す測定分析成績書に基づいて説明する。図13では容器60内に入れるものは創生水であり、図14では容器60内に入れるものは創生水と水酸化ナトリウムとを混合した水酸化ナトリウム水溶液であり、これ以外は同じ条件である。図13及び図14の「試料名」に共通の内容は、「創生水100%、トルマリン無し、アルミニウム100%、(加熱手段で)加熱、93℃、0.075MPa」である。この図13及び図14の測定分析成績書も前述の株式会社信濃公害研究所によって作成されたものである。 Here, the experimental result (measurement analysis report) in Example 2 will be described based on the measurement analysis report shown in FIGS. In FIG. 13, what is put in the container 60 is the creation water, and in FIG. 14, what is put in the container 60 is the sodium hydroxide aqueous solution in which the creation water and sodium hydroxide are mixed. is there. The contents common to the “sample name” in FIGS. 13 and 14 are “creating water 100%, no tourmaline, 100% aluminum, heating (with heating means), 93 ° C., 0.075 MPa”. 13 and 14 are also prepared by the aforementioned Shinano pollution research institute.
 ここで、図13及び図14の「トルマリン無し、アルミニウム100%」について説明する。本発明に達成する前に、容器内には、水道水等の水を入れ、アルミニウム66と共にトルマリンを入れて、水素を生成する実験を行った。これに関連して各種実験を進めた結果、創生水または水酸化ナトリウム水溶液と、アルミニウム66のみ(トルマリン76をしない)とを接触させて、アルミニウム66と接触した状態の創生水や水酸化ナトリウム水溶液を30℃以上にすれば、水素を発生させることが判明した。なお、アルミニウム66と接触した状態の創生水や水酸化ナトリウム水溶液では、容器内の温度が30℃以上で水素が発生するが、創生水とアルミニウム66とで水素を大量に発生することを証明するため、容器内の温度を93℃(80℃以上)で実験した。「創生水100%、トルマリン無し、アルミニウム100%、(加熱手段で)加熱、温度が93℃、容器内の圧力は0.075MPa」という内容で実験を行なった結果の測定分析成績書が図13及び図14である。これらの実験から、温度は創生水の沸点以下であるので、大気圧で水素が大量に発生することが分かる。各種実験によれば、水として例えば水道水を使用した場合に、容器内でアルミニウム66と接触しても、水素は発生しなかった。 Here, “No tourmaline, 100% aluminum” in FIGS. 13 and 14 will be described. Prior to achieving the present invention, water such as tap water was put in a container, and tourmaline was put together with aluminum 66 to generate hydrogen. As a result of various experiments related to this, the creation water or the sodium hydroxide aqueous solution and the aluminum 66 only (without the tourmaline 76) are brought into contact with each other, and the creation water or the hydroxylation in a state of being in contact with the aluminum 66 is contacted. It was found that hydrogen was generated when the aqueous sodium solution was heated to 30 ° C. or higher. It should be noted that in the generation water or sodium hydroxide aqueous solution in contact with the aluminum 66, hydrogen is generated when the temperature in the container is 30 ° C. or higher. However, the generation water and the aluminum 66 generate a large amount of hydrogen. In order to prove, the temperature in the container was experimented at 93 ° C. (80 ° C. or higher). Figure shows a measurement and analysis report of the results of an experiment conducted with the contents of "100% fresh water, no tourmaline, 100% aluminum, heating (with heating means), temperature 93 ° C, pressure in the container 0.075 MPa" 13 and FIG. From these experiments, it can be seen that a large amount of hydrogen is generated at atmospheric pressure because the temperature is below the boiling point of the created water. According to various experiments, when, for example, tap water is used as the water, no hydrogen is generated even if it comes into contact with the aluminum 66 in the container.
 ここで、創生水を使用した測定分析成績書(図13)と、水酸化ナトリウム水溶液を使用した測定分析成績書(図14)とを比較検討する。創生水を使用した測定分析成績書(図13)では、発生する気体のうち、水素が83%で、酸素が3.8%で、水素総量が2.1リットルであった。水酸化ナトリウム水溶液を使用した測定分析成績書(図14)では、発生する気体のうち、水素が98%で、酸素が0.3%で、水素総量が11.2リットルであった。 Here, the measurement analysis report using the created water (FIG. 13) and the measurement analysis report using the sodium hydroxide aqueous solution (FIG. 14) will be compared. In the measurement analysis report using the created water (FIG. 13), among the generated gases, hydrogen was 83%, oxygen was 3.8%, and the total amount of hydrogen was 2.1 liters. In the measurement analysis report (FIG. 14) using an aqueous sodium hydroxide solution, the generated gas was 98% hydrogen, 0.3% oxygen, and the total amount of hydrogen was 11.2 liters.
 図13と図14とを比較すると、図13の創生水を使用するものでは、水素が83%で、酸素が3.8%であるのに対し、図14の水酸化ナトリウム溶液を使用するものでは、水素が99%で、酸素が0.3%であった。以上のことから、水酸化ナトリウムは、水素の発生比率を高めると共に、酸素の発生比率を低下させる働きをすることが分かる。特に、図13の水素総量が2.1リットルであるのに対し、図14の水素総量が11.2リットルであることから、創生水に水酸化ナトリウムを混合させることによって、水素発生量が大幅に増加することが分る。 Comparing FIG. 13 and FIG. 14, in the case of using the created water of FIG. 13, hydrogen is 83% and oxygen is 3.8%, whereas the sodium hydroxide solution of FIG. 14 is used. In the case, hydrogen was 99% and oxygen was 0.3%. From the above, it can be seen that sodium hydroxide functions to increase the hydrogen generation ratio and reduce the oxygen generation ratio. In particular, the total amount of hydrogen in FIG. 13 is 2.1 liters, whereas the total amount of hydrogen in FIG. 14 is 11.2 liters. It can be seen that it increases significantly.
 これは、水酸化ナトリウムを加えることで、水素の発生量が多くなると共に、酸素の発生量が低下するが、それは、水酸化ナトリウムとアルミニウム66とが反応した際に、水酸化ナトリウムから水素が発生し、水酸化ナトリウムの酸素はアルミニウムと結合して、酸化アルミニウムになるものと考えられる。 This is because, by adding sodium hydroxide, the amount of hydrogen generated increases and the amount of oxygen generated decreases. However, when sodium hydroxide reacts with aluminum 66, hydrogen is removed from sodium hydroxide. It is thought that oxygen of sodium hydroxide is combined with aluminum to become aluminum oxide.
 なお、図12においては、容器60内に上下に多数の棚62を備え、その棚62の上に粒状または小片のアルミニウム66を多数備え、上方から下方に向けて創生水または水酸化ナトリウム水溶液を落下させた。これに代えて、容器60内に棚62を備えないで、容器60内の底に粒状または小片状のアルミニウム66(粉でも可)を備え、創生水または水酸化ナトリウム水溶液をアルミニウム66で覆う高さまで入れるようにしても良い。アルミニウム66は水素を発生する際に空気に露出するとアルミニウム66の表面に黒い酸化膜が発生して、時間の経過と共に水素発生率が低下するが、アルミニウム66を創生水または水酸化ナトリウム水溶液内に浸漬させることで、アルミニウム66の酸化膜の発生が抑制される。 In FIG. 12, a container 60 is provided with a large number of shelves 62 above and below, a large number of granular or small pieces of aluminum 66 are provided on the shelves 62, and a fresh water or a sodium hydroxide aqueous solution from above to below. Was dropped. Instead of this, the shelf 60 is not provided in the container 60, but granular or small pieces of aluminum 66 (powder may be used) are provided at the bottom of the container 60. You may make it enter to the height which covers. When the aluminum 66 is exposed to air when hydrogen is generated, a black oxide film is generated on the surface of the aluminum 66, and the hydrogen generation rate decreases with the passage of time. By immersing in aluminum, generation of an oxide film of aluminum 66 is suppressed.
 水素を大量に発生させる際に、アルミニウム66と水酸化ナトリウム水溶液とが反応して反応熱を出し続ける。この反応によって、アルミニウム66は徐々に溶けて残留物(80~90%が水酸化アルミニウムであり、10~20%が炭酸ナトリウムである)となる。アルミニウム66が溶けて残留物になると、反応熱を出さなくなるので、棚62の上の残留物と新しいアルミニウム66とを入れ替えなければならない。 When generating a large amount of hydrogen, the aluminum 66 reacts with the sodium hydroxide aqueous solution and continues to generate reaction heat. By this reaction, the aluminum 66 is gradually dissolved into a residue (80 to 90% is aluminum hydroxide and 10 to 20% is sodium carbonate). When the aluminum 66 melts and becomes a residue, the reaction heat is not generated, so the residue on the shelf 62 and the new aluminum 66 must be replaced.
 図15は本発明に係る水素の製造方法に用いる装置の実施例3の断面図である。図15(実施例3)が図12(実施例2)と異なる点は、実施例2で設けた加熱手段69を省略した点である。実施例2では容器60の外部に備えた加熱手段69で、容器60内の創生水や水酸化ナトリウム水溶液を加熱していたが、この実施例3では容器の外部の加熱手段を省略して、容器60内の反応熱によって、容器60内の水酸化ナトリウム水溶液を、水素が発生する30℃以上に昇温させるものである。 FIG. 15 is a sectional view of Example 3 of an apparatus used in the method for producing hydrogen according to the present invention. FIG. 15 (Example 3) differs from FIG. 12 (Example 2) in that the heating means 69 provided in Example 2 is omitted. In Example 2, the heating means 69 provided outside the container 60 was used to heat the creation water and the sodium hydroxide aqueous solution in the container 60. However, in Example 3, the heating means outside the container was omitted. The temperature of the aqueous sodium hydroxide solution in the container 60 is raised to 30 ° C. or higher at which hydrogen is generated by the reaction heat in the container 60.
 従来から、水から水素を得るためには、加熱手段を用いて水を加熱分解するものであるが、この実施例3では、加熱手段を用いないものである。容器60内が30℃以上の温度にするために、容器60内で水酸化ナトリウム水溶液とアルミニウムとを接触させて反応熱によって、容器60内の温度を創生水の蒸発温度(約104℃)近くまで上昇させることができる。容器60内の温度は、反応熱によって、アルミニウム66と接触した状態の創生水から大量の水素を発生する温度(30℃)以上になることから、容器60内には水素を発生させることができる。この反応熱は、水素が大量に発生する80℃以上に容器60内の温度を高めることができる。この結果、実施例3の発明では外部の加熱手段を用いなくても、水素を発生させることができる。 Conventionally, in order to obtain hydrogen from water, water is thermally decomposed using a heating means, but in Example 3, no heating means is used. In order to set the temperature in the container 60 to 30 ° C. or higher, the sodium hydroxide aqueous solution and aluminum are brought into contact with each other in the container 60, and the temperature in the container 60 is set to the evaporation temperature of the created water (about 104 ° C.) Can be raised to near. Since the temperature in the container 60 becomes equal to or higher than the temperature (30 ° C.) at which a large amount of hydrogen is generated from the generated water in contact with the aluminum 66 due to the reaction heat, hydrogen can be generated in the container 60. it can. This heat of reaction can raise the temperature in the container 60 to 80 ° C. or higher at which a large amount of hydrogen is generated. As a result, in the invention of Example 3, hydrogen can be generated without using an external heating means.
 水酸化ナトリウム水溶液の水酸化ナトリウムの濃度は、0.1%以上であればどれだけでも良い。水酸化ナトリウムの濃度は例えば1~15%が経済的に望ましい。水酸化ナトリウム濃度が15%以上であっても良いが、水酸化ナトリウム濃度が高くても効果は同じである。水素の発生量は、容器60内の温度と、水酸化ナトリウム水溶液の水酸化ナトリウムの濃度によって調節することができる。水酸化ナトリウムの濃度が0.1%から5%程度までは、一般には濃度が濃くなると、水素の発生量が徐々に増加する。 The concentration of sodium hydroxide in the sodium hydroxide aqueous solution is not particularly limited as long as it is 0.1% or more. The concentration of sodium hydroxide is economically desirable, for example, from 1 to 15%. The sodium hydroxide concentration may be 15% or more, but the effect is the same even if the sodium hydroxide concentration is high. The amount of hydrogen generated can be adjusted by the temperature in the container 60 and the concentration of sodium hydroxide in the aqueous sodium hydroxide solution. In general, when the concentration of sodium hydroxide is about 0.1% to about 5%, the hydrogen generation amount gradually increases as the concentration increases.
 創生水と水酸化ナトリウムとアルミニウム66との反応熱によって容器60内の温度は100℃付近の温度になるので、容器60の上方に配置された水噴射手段70から噴射された水酸化ナトリウム水溶液が容器60の底のアルミニウム66に到達する時点でほぼ全部が蒸発するように、水噴射手段70からの水酸化ナトリウム水溶液の噴射量を図示しない制御手段によって制御する。これによって、容器60内において上方から噴射された水は、容器60の底に落下到達する前後に蒸発することになり、容器60内に噴射される水酸化ナトリウム水溶液の蒸発効率が良い。 Since the temperature in the container 60 becomes a temperature around 100 ° C. due to the reaction heat between the created water, sodium hydroxide and the aluminum 66, the sodium hydroxide aqueous solution sprayed from the water spraying means 70 disposed above the container 60. The amount of sodium hydroxide aqueous solution sprayed from the water spraying means 70 is controlled by a control means (not shown) so that almost all of it evaporates when it reaches the aluminum 66 at the bottom of the container 60. As a result, the water sprayed from above in the container 60 evaporates before and after reaching the bottom of the container 60, and the evaporation efficiency of the sodium hydroxide aqueous solution sprayed into the container 60 is good.
 なお、図15においては、容器60内に上下に多数の棚62を備え、その棚62の上に粒状または小片のアルミニウム66を多数備え、上方から下方に向けて水酸化ナトリウム水溶液を落下させた。これに代えて、容器60内に棚62を備えないで、容器60内の底に粒状や小片や粉状のアルミニウム66を入れ、アルミニウム66を覆う高さまで水酸化ナトリウム水溶液を入れるようにしても良い。 In FIG. 15, a container 60 is provided with a large number of shelves 62 above and below, a large number of granular or small pieces of aluminum 66 are provided on the shelves 62, and an aqueous sodium hydroxide solution is dropped from above to below. . Instead of this, the shelf 60 is not provided in the container 60, but granular, small pieces, or powdered aluminum 66 is placed in the bottom of the container 60, and the sodium hydroxide aqueous solution is placed to a height that covers the aluminum 66. good.
 次に、図15の装置を使用して、アルミニウム66と水酸化ナトリウム水溶液(創生水と水酸化ナトリウムとを混合した水溶液)とを接触させて水素を発生させる実験結果を図16乃至図18に示す。図16乃至図18は、水酸化ナトリウムの濃度が5%(図16)、10%(図17)、15%(図18)についての結果である。 Next, using the apparatus shown in FIG. 15, experimental results for generating hydrogen by bringing aluminum 66 into contact with an aqueous sodium hydroxide solution (an aqueous solution obtained by mixing creation water and sodium hydroxide) are shown in FIGS. Shown in 16 to 18 show the results when the concentration of sodium hydroxide is 5% (FIG. 16), 10% (FIG. 17), and 15% (FIG. 18).
 図16乃至図18の「試料名」における共通内容は、「容器内の気圧は0.007MPa(これは0.07MPaの誤りであると考えられる)、温度は93℃、トルマリン無し、アルミニウムショット、創生水100%でバブリング、加熱手段なし。」である。「試料名」の「トルマリン無し」の記載は、本発明で容器60内に入れる水酸化ナトリウム水溶液以外のものは、アルミニウム66のみであり、トルマリンを入れていないことを明確にするためである。 The content common to the “sample name” in FIGS. 16 to 18 is “the pressure in the container is 0.007 MPa (this is considered to be an error of 0.07 MPa), the temperature is 93 ° C., no tourmaline, aluminum shot, “Bubbling with 100% fresh water, no heating means.” The description of “no tourmaline” in the “sample name” is for the purpose of clarifying that only the aluminum 66 is present except for the sodium hydroxide aqueous solution to be put in the container 60 in the present invention, and no tourmaline is added.
 「試料名」の「アルミニウムショット」の記載について説明する。アルミニウムには、アルミニウムショットとアルミニウムボールを使用して実験を行なった。図16乃至図18では、アルミニウムショットを使用した。アルミニウムショットは、何かに成形する前のアルミニウム素材の塊または小片であり、アルミニウム自体の純度が高いものである。アルミニウムボールは、ボール形状に成形されたもので、鉄分等を入れて成形し易くしたもので、アルミニウム自体の純度が、アルミニウムショットより低いものである。 Explain the description of “Aluminum shot” in “Sample name”. For aluminum, experiments were performed using aluminum shots and aluminum balls. In FIGS. 16 to 18, aluminum shot is used. The aluminum shot is a lump or small piece of aluminum material before being formed into something, and the purity of the aluminum itself is high. The aluminum ball is formed into a ball shape and is made easy to form by adding iron or the like, and the purity of the aluminum itself is lower than that of the aluminum shot.
 「試料名」の「創生水100%でバブリング」の記載は、「容器内で発生した水素等の気体を容器から取り出した後、創生水100%の内部を通過させること」を意味する。容器内で発生した水素等の気体を創生水100%の内部を通過させることで、気体に含まれる水分を除去し、各種気体の比率の精度をより高めるものである。 The description “Bubbling with 100% creation water” in “Sample name” means that “gas such as hydrogen generated in the container is taken out of the container and then passed through 100% creation water”. . By passing a gas such as hydrogen generated in the container through 100% of the created water, moisture contained in the gas is removed, and the accuracy of the ratio of various gases is further increased.
 図16乃至図18の測定分析成績書によれば、水酸化ナトリウム濃度5%の水酸化ナトリウム水溶液の場合(図16)では水素98%、酸素0.3%、水素総量12.1リットルである。水酸化ナトリウム濃度10%の水酸化ナトリウム水溶液の場合(図17)では水素99%、酸素0.2%、水素総量12.5リットルである。水酸化ナトリウム濃度15%の水酸化ナトリウム水溶液の場合(図18)では水素99%、酸素0.3%、で水素総量12、3リットルである。これらの測定分析成績書によれば、容器の外部から容器に熱を加えるための加熱手段を用いなくても、アルミニウム66と水酸化ナトリウム水溶液との反応熱による自己昇温によって、水素が98%~99%程度に大量に発生し、酸素は0.2%~0.3%程度に極少量しか発生しないことが分かる。即ち、本発明では、容器の外部からの加熱手段による熱を加えなくても、反応熱による自己昇温によって、創生水の水素発生温度(30℃)以上に水酸化ナトリウム水溶液の温度を上昇させ、創生水から水素を発生させることができる。なお、水酸化ナトリウム水溶液では、温度を80℃以上にすると、水素を大量に発生させることができる。 According to the measurement analysis report shown in FIGS. 16 to 18, in the case of a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 5% (FIG. 16), hydrogen is 98%, oxygen is 0.3%, and the total amount of hydrogen is 12.1 liters. . In the case of a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 10% (FIG. 17), the hydrogen is 99%, oxygen is 0.2%, and the total amount of hydrogen is 12.5 liters. In the case of a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 15% (FIG. 18), the total amount of hydrogen is 12 and 3 liters with 99% hydrogen and 0.3% oxygen. According to these measurement analysis reports, hydrogen is 98% by self-heating due to heat of reaction between aluminum 66 and sodium hydroxide aqueous solution without using heating means for heating the container from the outside of the container. It can be seen that a large amount is generated at about 99%, and an extremely small amount of oxygen is generated at about 0.2% to 0.3%. That is, in the present invention, the temperature of the sodium hydroxide aqueous solution is raised to the hydrogen generation temperature (30 ° C.) or higher of the created water by the self-heating of the reaction heat without applying heat by the heating means from the outside of the container. Hydrogen can be generated from the created water. In addition, in sodium hydroxide aqueous solution, when temperature is 80 degreeC or more, hydrogen can be generated in large quantities.
 図16乃至図18の測定分析成績書にあるように、5%、10%、15%の濃度の創生水に水酸化ナトリウムを溶かした水酸化ナトリウム水溶液を用いた場合に、98%~99%の水素を得た。ここで、水酸化ナトリウムを混合させる水を、創生水とそれ以外の水とを用いて比較した結果を図19乃至図23に示す。図19乃至図23の結果は、容器内の底に粒状または小片のアルミニウムを多数入れ、水酸化ナトリウムと各種のみすとを混合したものの液面をアルミニウムの最上位よりも上位となる高さまで入れた状態で実験したものである。 As shown in the measurement analysis report shown in FIGS. 16 to 18, when a sodium hydroxide aqueous solution in which sodium hydroxide is dissolved in 5%, 10%, and 15% concentration of fresh water is used, 98% to 99%. % Hydrogen was obtained. Here, FIG. 19 to FIG. 23 show the results of comparing the water to be mixed with sodium hydroxide using the fresh water and other water. The results of FIGS. 19 to 23 show that a lot of granular or small pieces of aluminum are put in the bottom of the container, and the liquid level of a mixture of sodium hydroxide and various kinds of soot is put to a height higher than the top of the aluminum. The experiment was carried out in the state.
 図19及び図20は、創生水と、水道水と、アルカリイオン水と、天然水の4種類の水に関して、6種類の実験を行なった表である。6種類の実験とは、水酸化ナトリウムの濃度が5%で、アルミニウムショットを使用した場合とアルミニウムボールを使用した場合(2種類)と、水酸化ナトリウムの濃度が10%で、アルミニウムショットを使用した場合とアルミニウムボールを使用した場合(2種類)と、水酸化ナトリウムの濃度が15%で、アルミニウムショットを使用した場合とアルミニウムボールを使用した場合(2種類)である。4種類の水に関し、水酸化ナトリウムの濃度(3種類)とアルミニウム(2種類)の組み合わせで、水素発生までの時間(「未反応」とあるのは、実験開始から水素発生までどれだけの時間未反応であったかということ)と、水素発生してからどれだけの時間水素を発生し続けたか(「反応終了(停止)」とあるのは、水素発生を発生し続けた時間)とを測定した。 19 and 20 are tables in which six types of experiments were performed on four types of water, namely, fresh water, tap water, alkaline ionized water, and natural water. Six types of experiments are: 5% sodium hydroxide concentration with aluminum shot and aluminum ball (2 types), 10% sodium hydroxide concentration with aluminum shot And aluminum balls are used (2 types), sodium hydroxide concentration is 15%, aluminum shot is used, and aluminum balls are used (2 types). Regarding the four types of water, the time from hydrogen generation by the combination of sodium hydroxide concentration (3 types) and aluminum (2 types). It was measured whether it was unreacted) and how long the hydrogen had been generated since the hydrogen was generated (the “reaction completed (stopped)” is the time during which the hydrogen generation was continued). .
 図19及び図20の表の数値に基づいてグラフにしたのが図21乃至図23である。図21の左のグラフは、水酸化ナトリウムの濃度が5%でアルミニウムショットを使用したものである。このグラフでは、アルカリイオン水も天然水も水道水も水素を発生しない。これに対し、創生水は、水素を発生するまでに15分かかったが、水素を発生した後は水酸化ナトリウム水溶液が無くなるまで、水素を発生し続けた。図20で、反応終了(停止)の創生水の欄に120分以上とあるが、これは水酸化ナトリウム水溶液が無くなるまでのことを意味している。 FIGS. 21 to 23 are graphs based on the numerical values in the tables of FIGS. 19 and 20. The left graph in FIG. 21 is obtained by using aluminum shot at a sodium hydroxide concentration of 5%. In this graph, alkali ion water, natural water, and tap water do not generate hydrogen. In contrast, the generation water took 15 minutes to generate hydrogen, but after generating hydrogen, hydrogen continued to be generated until the aqueous sodium hydroxide solution disappeared. In FIG. 20, there are 120 minutes or more in the column of the created water at the end of the reaction (stop), which means that the sodium hydroxide aqueous solution is exhausted.
 図21の右のグラフは、水酸化ナトリウムの濃度が5%でアルミニウムボールを使用したものである。このグラフと図19及び図20から、アルカリイオン水や天然水や水道水は、水素を発生するまでに、13分、5分、8分の時間がかかり、水素を発生し続ける時間は40分、33分、28分であった。これに対し、創生水は、水素を発生するまでが1分であり、水素を発生し続ける時間は90分であった。即ち、創生水は、水素を発生するまでが他の水と比べて非常に短く、水素を発生し続ける時間は他の水と比べて長いものである。このように、図19及び図20の表と、図21のグラフから、水素を発生するための水として、アルカリイオン水や天然水や水道水より、創生水を使用することが望ましいことが分かる。 The graph on the right side of FIG. 21 is obtained by using aluminum balls at a sodium hydroxide concentration of 5%. From this graph and FIGS. 19 and 20, alkali ion water, natural water, and tap water take 13 minutes, 5 minutes, and 8 minutes to generate hydrogen, and the time to continue generating hydrogen is 40 minutes. 33 minutes and 28 minutes. On the other hand, it was 1 minute until the generation water generated hydrogen, and the time for generating hydrogen was 90 minutes. In other words, the fresh water is much shorter than other water until hydrogen is generated, and the time during which hydrogen is continuously generated is longer than that of other water. Thus, from the tables of FIG. 19 and FIG. 20 and the graph of FIG. 21, it is desirable to use the created water as the water for generating hydrogen rather than alkaline ionized water, natural water or tap water. I understand.
 図22の左のグラフは、水酸化ナトリウムの濃度が10%でアルミニウムショットを使用したものである。このグラフと図19及び図20から、アルカリイオン水や天然水や水道水は、水素を発生するまでに、27分、26分、20分の時間がかかり、水素を発生し続ける時間は80分、90分、45分であった。これに対し、創生水は、水素を発生するまでが10分であり、水酸化ナトリウム水溶液が無くなるまで水素を発生し続けた。このように、図19及び図20の表と、図22の左グラフから、水素を発生するための水として、アルカリイオン水や天然水や水道水より、創生水を使用することが望ましいことが分かる。 The graph on the left of FIG. 22 shows a case where the concentration of sodium hydroxide is 10% and aluminum shot is used. From this graph and FIGS. 19 and 20, alkaline ionized water, natural water, and tap water take 27 minutes, 26 minutes, and 20 minutes to generate hydrogen, and the time that hydrogen is continuously generated is 80 minutes. 90 minutes and 45 minutes. On the other hand, the generation water took 10 minutes to generate hydrogen, and continued to generate hydrogen until the aqueous sodium hydroxide solution disappeared. Thus, from the tables of FIG. 19 and FIG. 20 and the left graph of FIG. 22, it is desirable to use the created water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand.
 図22の右のグラフは、水酸化ナトリウムの濃度が10%でアルミニウムボールを使用したものである。このグラフと図19及び図20から、アルカリイオン水や天然水や水道水は、水素を発生するまでに、3分、3分、4分の時間がかかり、水素を発生し続ける時間は27分、27分、30分であった。これに対し、創生水は、水素を発生するまでが50秒であり、水素を発生し続ける時間は75分であった。このように、図19及び図20の表と、図22の右のグラフから、水素を発生するための水として、アルカリイオン水や天然水や水道水より、創生水を使用することが望ましいことが分かる。 The graph on the right side of FIG. 22 is obtained by using an aluminum ball with a sodium hydroxide concentration of 10%. From this graph and FIGS. 19 and 20, alkaline ionized water, natural water, and tap water take 3 minutes, 3 minutes, and 4 minutes to generate hydrogen, and the time to continue generating hydrogen is 27 minutes. 27 minutes and 30 minutes. On the other hand, it was 50 seconds until the generation water generated hydrogen, and the duration of generation of hydrogen was 75 minutes. Thus, from the tables of FIGS. 19 and 20 and the graph on the right side of FIG. 22, it is desirable to use the created water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand that.
 図23の左のグラフは、水酸化ナトリウムの濃度が15%でアルミニウムショットを使用したものである。このグラフと図19及び図20から、アルカリイオン水や天然水や水道水は、水素を発生するまでに、12分、6分、12分の時間がかかり、水素を発生し続ける時間は37分、45分、26分であった。これに対し、創生水は、水素を発生するまでが3分であり、水素を発生し続ける時間は水酸化ナトリウム水溶液が無くなるまでであった。このように、図19及び図20の表と、図23の左グラフから、水素を発生するための水として、アルカリイオン水や天然水や水道水より、創生水を使用することが望ましいことが分かる。 The graph on the left side of FIG. 23 is obtained by using aluminum shot at a sodium hydroxide concentration of 15%. From this graph and FIGS. 19 and 20, alkaline ionized water, natural water, and tap water take 12 minutes, 6 minutes, and 12 minutes to generate hydrogen, and the time to continue generating hydrogen is 37 minutes. 45 minutes and 26 minutes. On the other hand, the generation water required 3 minutes to generate hydrogen, and the duration of hydrogen generation was until the sodium hydroxide aqueous solution disappeared. Thus, from the tables of FIG. 19 and FIG. 20 and the left graph of FIG. 23, it is desirable to use the creation water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand.
 図23の右のグラフは、水酸化ナトリウムの濃度が15%でアルミニウムボールを使用したものである。このグラフと図19及び図20から、アルカリイオン水や天然水や水道水は、水素を発生するまでに、2分、1分、2分の時間がかかり、水素を発生し続ける時間は25分、28分、20分であった。これに対し、創生水は、水素を発生するまでが20秒であり、水素を発生し続ける時間は43分であった。このように、図19及び図20の表と、図22の右のグラフから、水素を発生するための水として、アルカリイオン水や天然水や水道水より、創生水を使用することが望ましいことが分かる。以上のように、図19並びに図20の表と、図21乃至図23のグラフとから、水素を発生させるまでの時間が短く、水素の発生継続時間が長いことが明らかであり、水として創生水を使用することが望ましいものである。 The graph on the right side of FIG. 23 shows a case where an aluminum ball is used at a sodium hydroxide concentration of 15%. From this graph and FIGS. 19 and 20, it takes 2 minutes, 1 minute, and 2 minutes for alkali ion water, natural water, and tap water to generate hydrogen, and the time to continue generating hydrogen is 25 minutes. 28 minutes and 20 minutes. On the other hand, it was 20 seconds until the generation water generated hydrogen, and the time for generating hydrogen was 43 minutes. Thus, from the tables of FIGS. 19 and 20 and the graph on the right side of FIG. 22, it is desirable to use the created water as the water for generating hydrogen from the alkaline ionized water, natural water or tap water. I understand that. As described above, it is clear from the tables of FIGS. 19 and 20 and the graphs of FIGS. 21 to 23 that it is clear that the time until hydrogen is generated and the duration of hydrogen generation is long. It is desirable to use raw water.
 次に、使用する水を、創生水と、水道水と、アルカリイオン水と、天然水の4種類の水とし、水酸化ナトリウムの濃度を0%、1%、3%の3種類で、アルミニウムをアルミニウムショットとアルミニウム粉末の2種類として実験した。その実験結果を図24乃至図27に示す。図24乃至図27は、容器内の底に粒状または小片のアルミニウムまたはアルミニウムの粉を入れ、水酸化ナトリウム水溶液をアルミニウムを覆う高さ以上まで入れた状態で実験した結果である。 Next, the water to be used is four types of water, fresh water, tap water, alkaline ionized water, and natural water, and the sodium hydroxide concentration is 0%, 1%, 3%, Aluminum was experimented with two types of aluminum shot and aluminum powder. The experimental results are shown in FIGS. FIG. 24 to FIG. 27 show the results of experiments in a state where granular or small pieces of aluminum or aluminum powder are put in the bottom of the container, and a sodium hydroxide aqueous solution is put up to a height that covers the aluminum.
 図24は、アルミニウムショットを使用して、水酸化ナトリウムの濃度を0%、1%、3%の3種類とし、水を創生水と、水道水と、アルカリイオン水と、天然水の4種類とした実験結果を示す表である。図25は図24の表の一部を示すグラフである。 In FIG. 24, aluminum shots are used, and the concentrations of sodium hydroxide are 0%, 1%, and 3%, and the water is created water, tap water, alkaline ionized water, and natural water 4 It is a table | surface which shows the experimental result made into the kind. FIG. 25 is a graph showing a part of the table of FIG.
 図25の左のグラフは、水酸化ナトリウムの濃度が1%でアルミニウムショットを使用したものである。このグラフと図24の表から、水酸化ナトリウムの濃度が1%でアルミニウムショットを使用したものでは、創生水と、水道水と、アルカリイオン水と、天然水の4種類共、水素ガスを発生することはなかった。 The graph on the left side of FIG. 25 is obtained by using aluminum shot at a sodium hydroxide concentration of 1%. From this graph and the table in FIG. 24, when the concentration of sodium hydroxide is 1% and aluminum shot is used, hydrogen gas is generated in each of four types of fresh water, tap water, alkaline ionized water, and natural water. It never occurred.
 図25の右のグラフは、水酸化ナトリウムの濃度が3%でアルミニウムショットを使用したものである。このグラフと図24の表から、水道水もアルカリイオン水も天然水も水素を発生しないことが分かる。これに対し、創生水は、水素を発生するまでに40分かかったが、水素を発生した後は水酸化ナトリウム水溶液が無くなるまで、水素を発生し続けた。 The graph on the right side of FIG. 25 is obtained by using aluminum shot at a sodium hydroxide concentration of 3%. From this graph and the table of FIG. 24, it can be seen that tap water, alkali ion water, and natural water do not generate hydrogen. On the other hand, it took 40 minutes for generation water to generate hydrogen, but after generating hydrogen, it continued to generate hydrogen until the aqueous sodium hydroxide solution disappeared.
 図26は、アルミニウム粉末(アルミニウムショットを粉末にしたもの)を使用して、水酸化ナトリウムの濃度を0%、1%、3%の3種類とし、水を創生水と、水道水と、アルカリイオン水と、天然水の4種類とした実験結果を示す表である。図27は図26の表の一部を示すグラフである。 26, using aluminum powder (aluminum shot powder), the concentration of sodium hydroxide is 0%, 1%, and 3%, and the water is fresh water, tap water, It is a table | surface which shows the experimental result made into four types of alkali ion water and natural water. FIG. 27 is a graph showing a part of the table of FIG.
 図27の左のグラフは、水酸化ナトリウムの濃度が1%で、アルミニウム粉末を使用したものである。このグラフと図26の表から、水道水やアルカリイオン水や天然水は、水素を発生するまでに、反応ナシ、30秒、60秒の時間がかかり、水素を発生し続ける時間は、反応ナシ、6分、4分であった。これに対し、創生水は、水素を発生するまでが10秒であり、水素を発生し続ける時間は10分であった。 図27の左のグラフに示すように、水素を発生し続ける時間は10分とあるが、これは容器内の水酸化ナトリウム水溶液が無くなるまで水素が発生するものである。この実験は容器に水酸化ナトリウム水溶液を入れた実験であり、容器内の水酸化ナトリウム水溶液が無くなった時間が10分であり、容器が大きければ水素を発生し続ける時間は、10分以上となることは明らかである。このように、図26の表と、図27の左グラフから、水素を発生するための水として、水道水やアルカリイオン水や天然水より、創生水を使用することが望ましいことが分かる。なお、水酸化ナトリウムの濃度が1%の場合には、水酸化ナトリウム水溶液が無くなるまで水素が発生するものであるが、実験の結果、水酸化ナトリウムの濃度が0.1%以上であれば水素が発生するものである。 The graph on the left of FIG. 27 shows the case where the concentration of sodium hydroxide is 1% and aluminum powder is used. From this graph and the table of FIG. 26, tap water, alkaline ionized water, and natural water take reaction time of 30 seconds and 60 seconds until hydrogen is generated, and the time for which hydrogen is continuously generated is determined as follows. 6 minutes and 4 minutes. On the other hand, the generation water was 10 seconds until hydrogen was generated, and the time during which hydrogen was continuously generated was 10 minutes. As shown in the graph on the left side of FIG. 27, the time during which hydrogen is continuously generated is 10 minutes, which is generated until the sodium hydroxide aqueous solution in the container is exhausted. This experiment is an experiment in which a sodium hydroxide aqueous solution is put in a container. The time when the sodium hydroxide aqueous solution in the container disappears is 10 minutes. If the container is large, the time during which hydrogen is continuously generated is 10 minutes or more. It is clear. Thus, it can be seen from the table of FIG. 26 and the left graph of FIG. 27 that it is preferable to use the created water as tap water, alkaline ionized water or natural water as water for generating hydrogen. When the concentration of sodium hydroxide is 1%, hydrogen is generated until the sodium hydroxide aqueous solution disappears. However, as a result of the experiment, if the concentration of sodium hydroxide is 0.1% or more, hydrogen is generated. Will occur.
 図27の右のグラフは、水酸化ナトリウムの濃度が3%でアルミニウム粉末を使用したものである。このグラフと図26から、水道水やアルカリイオン水や天然水は、水素を発生するまでに、30秒、15秒、15秒の時間がかかり、水素を発生し続ける時間は、40分、45分、45分であった。これに対し、創生水は、水素を発生するまでが瞬時であり、水素を発生し続ける時間は90分であった。図27の右のグラフに示すように、水素を発生し続ける時間は90分とあるが、これは水酸化ナトリウム水溶液が無くなるまで水素が発生するものである。この実験は容器に水酸化ナトリウム水溶液を入れた実験であり、容器内の水酸化ナトリウム水溶液が無くなった時間が90分であり、容器が大きければ水素を発生し続ける時間は、90分以上となることは明らかである。水酸化ナトリウムの濃度が3%以上になると瞬時に水素が発生するので、瞬時に水素の発生を必要とする場合には、創生水を使用した水酸化ナトリウム水溶液が最適である。 The graph on the right side of FIG. 27 is obtained by using aluminum powder at a sodium hydroxide concentration of 3%. From this graph and FIG. 26, tap water, alkaline ionized water, and natural water take 30 seconds, 15 seconds, and 15 seconds to generate hydrogen, and the time that hydrogen is continuously generated is 40 minutes, 45 seconds. Minutes, 45 minutes. In contrast, the generation water was instantaneous until hydrogen was generated, and the time during which hydrogen was continuously generated was 90 minutes. As shown in the graph on the right side of FIG. 27, the time during which hydrogen is continuously generated is 90 minutes, which is that hydrogen is generated until the sodium hydroxide aqueous solution is used up. This experiment is an experiment in which a sodium hydroxide aqueous solution is put in a container. The time when the sodium hydroxide aqueous solution in the container disappears is 90 minutes. If the container is large, the time during which hydrogen is continuously generated is 90 minutes or more. It is clear. Since hydrogen is instantaneously generated when the concentration of sodium hydroxide is 3% or more, an aqueous sodium hydroxide solution using creation water is optimal when instantaneous hydrogen generation is required.
 このように、図26の表と、図27の右のグラフからすれば、創生水を使用する水酸化ナトリウム水溶液は、アルカリイオン水や天然水や水道水を使用する水酸化ナトリウム水溶液と比べて、水素の発生量が多く、しかも創生水を使用する水酸化ナトリウム水溶液のみが瞬時に水素を発生する。この結果、水素を発生するための水として、アルカリイオン水や天然水や水道水より、創生水を使用することが優れていることが分かる。特に、アルミニウムを粉とし、水酸化ナトリウム濃度を3%以上とすれば、瞬時に水素を発生することができ、しかも、長時間にわたって水素を発生することができる。 Thus, according to the table of FIG. 26 and the graph on the right side of FIG. 27, the sodium hydroxide aqueous solution using the created water is compared with the sodium hydroxide aqueous solution using alkali ion water, natural water or tap water. In addition, only a large amount of hydrogen is generated, and only an aqueous sodium hydroxide solution using the generated water instantaneously generates hydrogen. As a result, it can be seen that it is better to use the created water as water for generating hydrogen than alkali ion water, natural water or tap water. In particular, if aluminum is powdered and the sodium hydroxide concentration is 3% or more, hydrogen can be generated instantaneously and hydrogen can be generated for a long time.
 アルミニウム66と水酸化ナトリウム水溶液とが反応して反応熱を出し、この反応熱によって、水酸化ナトリウム水溶液のうちの創生水から水素を発生し、水酸化ナトリウム水溶液は徐々に減少する。一方、アルミニウム66は溶けて残留物となる。残留物は80~90%が水酸化アルミニウムである。アルミニウム66が溶けて残留物になって、反応熱が得られなくなると、棚62の上の残留物と新しいアルミニウム66とを入れ替えなければならない。 Aluminum 66 reacts with the aqueous sodium hydroxide solution to generate reaction heat, which generates hydrogen from the generated water in the aqueous sodium hydroxide solution, and the aqueous sodium hydroxide solution gradually decreases. On the other hand, the aluminum 66 melts and becomes a residue. The residue is 80-90% aluminum hydroxide. If the aluminum 66 melts and becomes a residue and heat of reaction cannot be obtained, the residue on the shelf 62 and the new aluminum 66 must be replaced.
 次に、本発明の水素製造装置の他の実施例(実施例4)について説明する。実施例1の装置(図5)や実施例2の装置(図12)や実施例3の装置(図15)では、水素を発生させた結果、アルミニウム66は溶けて容器60内に残留物となって残る。このため、容器60内に水素が発生しなくなった残留物が大量に溜まると、容器60内から残留物を取り出し、新たなアルミニウム66を容器60内に入れなければならず、途切れることなく水素を発生させることができない。たとえば水素を自動車の燃料とする場合には、途切れることなく水素を発生させることができないと、途中で自動車が走行できなくなるおそれが生じる。 Next, another embodiment (Example 4) of the hydrogen production apparatus of the present invention will be described. In the apparatus according to the first embodiment (FIG. 5), the apparatus according to the second embodiment (FIG. 12), and the apparatus according to the third embodiment (FIG. 15), as a result of generating hydrogen, the aluminum 66 is melted and the residue in the container 60 is removed. It will remain. For this reason, when a large amount of residue in which hydrogen is no longer generated in the container 60 accumulates, the residue must be taken out from the container 60, and new aluminum 66 must be put in the container 60. It cannot be generated. For example, when hydrogen is used as a fuel for an automobile, if the hydrogen cannot be generated without interruption, the automobile may not be able to travel on the way.
 ここで、実施例4の水素製造装置について、図28乃至図30に基づいて説明する。この実施例4は、永続的に水素を発生することを可能にするための装置である。
この実施例4で使用する水は、創生水をアルカリ性としたアルカリ性の創生水である。アルカリ性の創生水は、中性の創生水をアルミニウム粉末77と反応させて水素を発生した後の創生水や、創生水に水酸化ナトリウムを混合した水酸化ナトリウム水溶液が考えられる。容器78はその内部に、水酸化ナトリウム水溶液とアルミニウム66とを収容するものである。容器78は上部が開口したコップ形状をしており、その上部開口部は漏斗状の蓋82(容器78の一部とみなす)によって閉じられている。容器78の側面と底面の外側は、断熱材80で覆うものであり、容器78の温度が大気に向けて低下するのを防止するものである。漏斗状の蓋82の上方には第一弁手段84が取付けられており、第一弁手段84の上には筒状の連絡管86が取付けられており、その連絡管86の上には第二弁手段88が取付けられており、その第二弁手段88の上には大量の粒状または小片のアルミニウム66を貯蔵するホッパー90が取付けられている。第一弁手段84は、蓋82の内部空間と連絡管86の内部空間とを連絡遮断するものであり、第二弁手段88は、連絡管86の内部空間とホッパー90の内部とを連絡遮断するものである。第一弁手段84は第一モータ92によって作動させられ、第二弁手段88は第二モータ94によって作動させられる。
Here, the hydrogen production apparatus of Example 4 will be described with reference to FIGS. This Example 4 is an apparatus for making it possible to generate hydrogen permanently.
The water used in this Example 4 is alkaline created water in which the created water is made alkaline. The alkaline creation water may be a creation water obtained by reacting a neutral creation water with the aluminum powder 77 to generate hydrogen, or a sodium hydroxide aqueous solution in which sodium hydroxide is mixed with the creation water. The container 78 contains an aqueous sodium hydroxide solution and aluminum 66 therein. The container 78 has a cup shape with an upper opening, and the upper opening is closed by a funnel-shaped lid 82 (considered as a part of the container 78). The sides of the container 78 and the outside of the bottom surface are covered with a heat insulating material 80, and the temperature of the container 78 is prevented from decreasing toward the atmosphere. A first valve means 84 is attached above the funnel-shaped lid 82, and a tubular communication pipe 86 is attached on the first valve means 84. A two-valve means 88 is mounted on which a hopper 90 for storing a large amount of granular or small pieces of aluminum 66 is mounted. The first valve means 84 communicates and cuts off the internal space of the lid 82 and the internal space of the connecting pipe 86, and the second valve means 88 cuts off the communication between the internal space of the connecting pipe 86 and the inside of the hopper 90. To do. The first valve means 84 is actuated by the first motor 92 and the second valve means 88 is actuated by the second motor 94.
 蓋82やホッパー90は図示しない部材に固定状態になっており、容器78は蓋82に対して螺合等の着脱手段により着脱自在となっている。容器78の内部には有底筒状で剛性のある網部材96が取付けられており、網部材96の底は容器78の内部のやや深い位置となるように配置されている。網部材96は水酸化ナトリウムによって侵食されない金属や合成樹脂を素材とする。網部材96の網目の大きさは、粒状や小片のアルミニウム66が通過せず、アルミニウム66が溶けた後のカスである残留物が下方に落下する程度の大きさ、例えば3~4ミリ程度の大きさとするのが望ましいが、網目の大きさはこれに限定するものではない。 The lid 82 and the hopper 90 are fixed to a member (not shown), and the container 78 can be attached to and detached from the lid 82 by attaching / detaching means such as screwing. A rigid net member 96 having a bottomed cylindrical shape is attached to the inside of the container 78, and the bottom of the net member 96 is disposed at a slightly deeper position inside the container 78. The net member 96 is made of a metal or a synthetic resin that is not eroded by sodium hydroxide. The mesh size of the mesh member 96 is such that the granular or small pieces of aluminum 66 do not pass through and the residue, which is residue after the aluminum 66 has melted, falls downward, for example about 3 to 4 mm. Although the size is desirable, the size of the mesh is not limited to this.
 漏斗状の蓋82の内部空間(容器60の内部空間)に冷却手段としての冷却管98が備えられ、その冷却管98の両端は蓋82の外部に至っている。冷却管98は蓋82の内部空間においてコイル状となっているのが望ましい。冷却管98の両端は例えば自動車のラジエータに連絡しており、冷却管98の内部には冷却用の液体や気体等の流体が通過し、蓋82の内部空間の気体(水素)を冷却する。蓋82における冷却管98の取付け位置より上方に、容器78内で発生した水素を外部に取り出すための気体排出通路100が取付けられている。容器78とその蓋82とで囲まれた容器の内部空間は、第一弁手段84で開閉される連絡管86の内部空間と、気体排出通路100とのみに連絡している。 A cooling pipe 98 as a cooling means is provided in the inner space of the funnel-shaped lid 82 (inner space of the container 60), and both ends of the cooling pipe 98 reach the outside of the lid 82. The cooling pipe 98 is preferably coiled in the internal space of the lid 82. Both ends of the cooling pipe 98 communicate with, for example, an automobile radiator, and a fluid such as a cooling liquid or gas passes through the cooling pipe 98 to cool the gas (hydrogen) in the internal space of the lid 82. A gas discharge passage 100 for taking out the hydrogen generated in the container 78 to the outside is attached above the attachment position of the cooling pipe 98 in the lid 82. The internal space of the container surrounded by the container 78 and its lid 82 communicates only with the internal space of the connecting pipe 86 opened and closed by the first valve means 84 and the gas discharge passage 100.
 次に、ホッパー90内のアルミニウム66を容器78内に供給する手順について説明する。先ず、第一弁手段84の弁(図示せず)を閉じた状態で、第二弁手段88の弁(図示せず)を開く。それによって、ホッパー90内のアルミニウム66が連絡管86の内部空間に供給される。その後、第二弁手段88の弁(図示せず)を閉じる。容器78内に新しいアルミニウム66が必要になった時に、第一弁手段84の弁を開き、連絡管86の内部空間に溜っているアルミニウム66を容器78内に投入する。容器78内に投入されたアルミニウム66は、網部材96で受けられてその網部材96の底に溜る。その後、第一弁手段84の弁を閉じ、次に第二弁手段88の弁を開き、連絡管86の内部空間にホッパー90内のアルミニウム66を導入する。その後、第二弁手段88の弁を閉じる。この操作を繰り返すことによって、容器78内の網部材96の底の上に、間欠的に一定量のアルミニウム66を投入することができる。ホッパー90内のアルミニウム66を容器78内に投入するアルミニウム投入手段は、第一弁手段84と第二弁手段88と連絡管86とホッパー90とから成る。しかし、アルミニウム投入手段の構成部材は、これらの構成に限るものではない。 Next, a procedure for supplying the aluminum 66 in the hopper 90 into the container 78 will be described. First, with the valve (not shown) of the first valve means 84 closed, the valve (not shown) of the second valve means 88 is opened. Thereby, the aluminum 66 in the hopper 90 is supplied to the internal space of the connecting pipe 86. Thereafter, the valve (not shown) of the second valve means 88 is closed. When new aluminum 66 is needed in the container 78, the valve of the first valve means 84 is opened, and the aluminum 66 accumulated in the internal space of the connecting pipe 86 is put into the container 78. The aluminum 66 put into the container 78 is received by the mesh member 96 and collected at the bottom of the mesh member 96. Thereafter, the valve of the first valve means 84 is closed, then the valve of the second valve means 88 is opened, and the aluminum 66 in the hopper 90 is introduced into the internal space of the connecting pipe 86. Thereafter, the valve of the second valve means 88 is closed. By repeating this operation, a certain amount of aluminum 66 can be intermittently charged on the bottom of the net member 96 in the container 78. The aluminum charging means for charging the aluminum 66 in the hopper 90 into the container 78 includes a first valve means 84, a second valve means 88, a connecting pipe 86 and a hopper 90. However, the constituent members of the aluminum charging means are not limited to these configurations.
 容器78内におけるアルカリ性の創生水の液面102は、網部材96の底に投入されたアルミニウム66の上面よりも高い位置になるように設定される。容器78内でアルミニウム66とアルカリ性の創生水とが接触することで、アルミニウム66とアルカリ性の創生水による反応熱が発生して水素が発生する。 The liquid level 102 of the alkaline creation water in the container 78 is set to be higher than the upper surface of the aluminum 66 put into the bottom of the net member 96. When the aluminum 66 and the alkaline creation water come into contact with each other in the container 78, reaction heat is generated by the aluminum 66 and the alkaline creation water to generate hydrogen.
 次に、容器78内で発生した気体から水素を取り出す装置を図29に示す。容器78内において大量の水素が生成されるが、その水素と共に水蒸気と微量の酸素とが含まれる。大量の水素を含んだ気体が容器78から気体排出通路100を通して外部に排出される(図28)。気体排出通路100から排出される気体は、図29に示すように、冷却器104の内部に備えられる冷却管106と連絡する。冷却器104内には冷却液(冷却用流体)108が備えられ、この冷却液108は、図示しない循環システム(例えば自動車のラジエータ等)によって、冷却器104の外部への排出と外部から冷却器104内への流入とが行なわれる。なお、図28に示すように、蓋82の内部空間に冷却管98を備えているが、この冷却管98と冷却器104のいずれか1つを備えても、両方を備えてもどちらでも良い。 Next, an apparatus for extracting hydrogen from the gas generated in the container 78 is shown in FIG. A large amount of hydrogen is produced in the container 78, and water and a small amount of oxygen are contained together with the hydrogen. A gas containing a large amount of hydrogen is discharged from the container 78 to the outside through the gas discharge passage 100 (FIG. 28). The gas discharged from the gas discharge passage 100 communicates with a cooling pipe 106 provided inside the cooler 104 as shown in FIG. A cooling liquid (cooling fluid) 108 is provided in the cooler 104, and the cooling liquid 108 is discharged to the outside of the cooler 104 and cooled from the outside by a circulation system (not shown) such as an automobile radiator. Inflow into 104 is performed. As shown in FIG. 28, the cooling pipe 98 is provided in the internal space of the lid 82. However, either one of the cooling pipe 98 and the cooler 104 or both may be provided. .
 冷却器104に近接して、液体槽110が備えられる。前記冷却管106の他端は、冷却器104の外部で連絡管112の一端と連絡し、その連絡管112の他端は液体槽110の内部に挿入されている。液体槽110の内部に挿入された位置にある連絡管112には気体を外部に放出するための穴(図示せず)が多数形成されている。液体槽110の中には、創生水または水酸化ナトリウム水溶液(創生水と水酸化ナトリウムから成る水溶液)が入れられている。液体槽110の上部は蓋で閉じられており、液体槽110の内部の上部は連絡管114の一端を通して外部と連絡している。 In the vicinity of the cooler 104, a liquid tank 110 is provided. The other end of the cooling pipe 106 communicates with one end of the connecting pipe 112 outside the cooler 104, and the other end of the connecting pipe 112 is inserted into the liquid tank 110. A large number of holes (not shown) for discharging gas to the outside are formed in the connecting pipe 112 at a position inserted into the liquid tank 110. In the liquid tank 110, creation water or a sodium hydroxide aqueous solution (an aqueous solution composed of the creation water and sodium hydroxide) is placed. The upper part of the liquid tank 110 is closed with a lid, and the upper part inside the liquid tank 110 communicates with the outside through one end of the communication pipe 114.
 液体槽110に隣接して乾燥器116が備えられる。乾燥器116の内部にはシリカゲル等の乾燥材118が多数収容されている。前記連絡管114の他端は、乾燥器116の底付近に水平に配置され、連絡管114の乾燥器116内の底付近に水平に配置される箇所には多数の穴(図示せず)が形成されている。乾燥器116の上部には、内部と外部とを連絡する水素取り出し管120が備えられている。 A dryer 116 is provided adjacent to the liquid tank 110. A large number of desiccants 118 such as silica gel are accommodated in the drier 116. The other end of the connecting pipe 114 is horizontally disposed near the bottom of the dryer 116, and a plurality of holes (not shown) are provided at positions where the connecting pipe 114 is horizontally disposed near the bottom of the dryer 116. Is formed. A hydrogen take-out pipe 120 that communicates the inside and the outside is provided at the top of the dryer 116.
 図29について説明する。容器78内で発生する気体(高温)は、図16や図17に示すように、殆どが水素であるが、若干の水蒸気と若干の酸素を含んでいる。高温の気体を冷却器104で冷却し、その後、冷却した気体を液体槽110の中に通過させる。気体に含まれる水蒸気はこの液体槽110で吸収される。気体に含まれる若干の酸素は、創生水や水酸化ナトリウム水溶液によって吸収される。また、必要に応じて、幾つかの液体槽110を直列に通過するようにしても良い。このように、容器78で発生した気体(水蒸気と若干の酸素を含んだ水素から成る)のうち、水蒸気や若干の酸素は創生水や水酸化ナトリウム水溶液を収容した液体槽110内の液体の中を通過することによって、除去されて水素のみとすることができる。 FIG. 29 will be described. The gas (high temperature) generated in the container 78 is mostly hydrogen as shown in FIGS. 16 and 17, but contains some water vapor and some oxygen. The hot gas is cooled by the cooler 104, and then the cooled gas is passed through the liquid tank 110. Water vapor contained in the gas is absorbed by the liquid tank 110. Some oxygen contained in the gas is absorbed by the creation water or the aqueous sodium hydroxide solution. Moreover, you may make it pass through several liquid tanks 110 in series as needed. Thus, of the gas generated from the vessel 78 (consisting of water vapor and hydrogen containing some oxygen), the water vapor and some oxygen are liquids in the liquid tank 110 containing the created water and the sodium hydroxide aqueous solution. By passing through it, it can be removed to only hydrogen.
 液体槽110で水蒸気と酸素とが除去された気体は、水素のみとなる。その後、水素は乾燥器116の内部に導入され、シリカゲル等の乾燥材118を通過して水分(液体槽110の水酸化ナトリウム水溶液を通過した際の水分)が除去され、水素取出し管120から外部に取り出される。 The gas from which water vapor and oxygen have been removed in the liquid tank 110 is only hydrogen. Thereafter, hydrogen is introduced into the dryer 116, passes through a desiccant 118 such as silica gel, and moisture (water when passing through the sodium hydroxide aqueous solution in the liquid tank 110) is removed. To be taken out.
 次に、容器78内に溜る残留物を水素の発生を停止することなく、容器78内から除去する装置を、図30に基づいて説明する。この装置で使用する水は、前述したものと同じく創生水をアルカリ性としたアルカリ性の創生水を用いる。実施例5の装置において、容器78の底付近には、その容器78と2箇所で連絡する環状の液体循環通路122を備える。液体循環通路122における容器78の一方との連絡箇所を第一連絡点124とし、液体循環通路122における容器78の他方との連絡箇所を第二連絡点126とする。第一連絡点124から第二連絡点126に至るまでの液体循環通路122の途中には、第一連絡点124に近い位置から順に、第1電磁弁128、残留物捕捉手段としてのフィルタ130、第1ポンプ132、アルカリ性の創生水を収容するタンク134、第2ポンプ136、第2電磁弁138が備えられている。なお、第2ポンプ136と第2電磁弁138の位置は前後しても良い。液体循環通路122内にはアルカリ性の創生水が、第一連絡点124から第二連絡点126に向けて流れるものとする。ここで、アルカリ性の創生水を容器78へ供給するための液体投入手段としては、タンク134からのアルカリ性の創生水を容器78へ導入するための第2ポンプ136と第2電磁弁138とから成る。なお、液体投入手段はこの構成に限るものではない。容器78からアルカリ性の創生水と残留物とを取出すための液体取出し手段としては、第1電磁弁128と第1ポンプ132とから成る。なお、液体取出し手段はこの構成に限るものではない。 Next, an apparatus for removing the residue accumulated in the container 78 from the container 78 without stopping the generation of hydrogen will be described with reference to FIG. As the water used in this apparatus, alkaline creation water in which the creation water is made alkaline as described above is used. In the apparatus of the fifth embodiment, an annular liquid circulation passage 122 communicating with the container 78 at two locations is provided near the bottom of the container 78. A connection point with one of the containers 78 in the liquid circulation passage 122 is a first connection point 124, and a connection point with the other of the containers 78 in the liquid circulation passage 122 is a second connection point 126. In the middle of the liquid circulation passage 122 from the first contact point 124 to the second contact point 126, in order from the position close to the first contact point 124, a first electromagnetic valve 128, a filter 130 as a residue capturing means, The 1st pump 132, the tank 134 which accommodates alkaline creation water, the 2nd pump 136, and the 2nd solenoid valve 138 are provided. The positions of the second pump 136 and the second electromagnetic valve 138 may be moved back and forth. It is assumed that alkaline creation water flows in the liquid circulation passage 122 from the first connection point 124 toward the second connection point 126. Here, as the liquid input means for supplying the alkaline creation water to the container 78, the second pump 136 and the second electromagnetic valve 138 for introducing the alkaline creation water from the tank 134 into the container 78, Consists of. The liquid input means is not limited to this configuration. The liquid removal means for removing the alkaline creation water and the residue from the container 78 includes a first electromagnetic valve 128 and a first pump 132. The liquid take-out means is not limited to this configuration.
 容器78内に液体投入手段によって新たなアルカリ性の創生水を供給する場合には、第1電磁弁128を閉じると共に第2電磁弁138を開き、第2ポンプ136を作動させる。これによって、タンク134内から新たなアルカリ性の創生水が取り出され、液体循環通路122を経て容器78内にアルカリ性の創生水が供給される。 In the case where new alkaline created water is supplied into the container 78 by the liquid charging means, the first electromagnetic valve 128 is closed and the second electromagnetic valve 138 is opened, and the second pump 136 is operated. As a result, new alkaline creation water is taken out from the tank 134, and the alkaline creation water is supplied into the container 78 through the liquid circulation passage 122.
 容器78内の網部材96に投入されたアルミニウム66は、アルカリ性の創生水と反応して、溶けて小さくなり、網部材96の網目から下方に落下し、残留物として容器78内の底に溜る。この残留物を容器78内から除去する手順について説明する。容器78内の底にアルミニウム66の残留物が蓄積していてこれを容器78内から取出す場合には、第1電磁弁128を開くと共に第1ポンプ132を作動させる。第1ポンプ132の吸引力が、液体循環通路122を通じて容器78内に及び、容器78内からアルカリ性の創生水と共に残留物が容器78の外部に取り出される。第1ポンプ132で吸引されたアルカリ性の創生水と残留物のうち、残留物は残留物捕捉手段であるフィルタ130で捕捉され、アルカリ性の創生水はフィルタ130でゴミ等が除かれてタンク134に至り、タンク134に蓄積される。容器78内から取出された残留物はフィルタ130で捕捉されて、フィルタ130を交換することにより残留物が除去される。この残留物の除去の際に、容器78内のアルカリ性の創生水の液面102(図28)が所定の高さにまで低下すると、第2電磁弁138を開くと共に第2ポンプ136を作動させることによって、容器78内に新たなアルカリ性の創生水を供給する。タンク134では、pHの濃度が常にチェックされ、必要に応じて、水酸化ナトリウムを供給するようにしても良い。 The aluminum 66 put into the mesh member 96 in the container 78 reacts with the alkaline creation water, melts and becomes small, falls downward from the mesh of the mesh member 96, and remains as a residue on the bottom in the container 78. Accumulate. A procedure for removing the residue from the container 78 will be described. When a residue of aluminum 66 is accumulated at the bottom of the container 78 and is taken out from the container 78, the first electromagnetic valve 128 is opened and the first pump 132 is operated. The suction force of the first pump 132 extends into the container 78 through the liquid circulation passage 122, and the residue is taken out of the container 78 together with the alkaline creation water from the container 78. Of the alkaline creation water and the residue sucked by the first pump 132, the residue is captured by the filter 130 which is a residue capturing means, and the alkaline creation water is removed from the dust by the filter 130 and stored in the tank. 134 and accumulated in the tank 134. The residue taken out from the container 78 is captured by the filter 130, and the residue is removed by replacing the filter 130. When removing the residue, when the level 102 (FIG. 28) of the alkaline creation water in the container 78 is lowered to a predetermined height, the second electromagnetic valve 138 is opened and the second pump 136 is operated. By doing so, fresh alkaline water is supplied into the container 78. In the tank 134, the pH concentration is always checked, and sodium hydroxide may be supplied as necessary.
 容器78内においては、網部材96でアルミニウム66を保持し、アルミニウム66の残留物を容器78の底に溜めるので、容器78の底付近を通過するアルカリ性の創生水の循環構造を備えることによって、容器78内からの残留物の排出と、容器78内への新規のアルカリ性の創生水の供給が可能となる。容器78内からの残留物の排出と、容器78内への新規のアルカリ性の創生水の供給は、容器78からの水素の発生を停止することなく行なうことができるものである。従って、水素を継続的に発生させることができ、自動車用の燃料として、途切れることなく使用する場合に適している。 Inside the container 78, the aluminum 66 is held by the net member 96, and the residue of the aluminum 66 is accumulated at the bottom of the container 78. Therefore, by providing a circulation structure of alkaline creation water that passes near the bottom of the container 78. The residue can be discharged from the inside of the container 78, and a new alkaline creation water can be supplied into the container 78. The discharge of the residue from the container 78 and the supply of new alkaline creation water into the container 78 can be performed without stopping the generation of hydrogen from the container 78. Therefore, hydrogen can be continuously generated, and it is suitable for use as a fuel for automobiles without interruption.

Claims (20)

  1.  水を最初にイオン交換樹脂に通過させ、その後にトルマリンと、流紋岩または花崗岩の少なくとも1つからなる二酸化珪素を65~76%含む岩石とのどちらか一方を先に他方を後に通過させることによって生成するものを特殊な水とし、前記特殊な水とアルミニウムとを容器内に入れて前記容器内で接触させた状態で前記容器内の温度を30℃以上前記特殊な水の沸点未満とすることで、前記特殊な水と前記アルミニウムとを反応させて水素を発生させることを特徴とする水素の製造方法。 Pass water first through an ion exchange resin followed by either tourmaline or a rock containing 65-76% silicon dioxide consisting of at least one of rhyolite or granite and the other after it. The water produced by the above is made into special water, and the temperature in the container is set to 30 ° C. or higher and lower than the boiling point of the special water in a state where the special water and aluminum are put in the container and contacted in the container. Thus, the hydrogen is generated by reacting the special water with the aluminum.
  2.  前記容器内の温度を80℃以上前記特殊な水の沸点未満の間に保つことを特徴とする請求項1項記載の水素の製造方法。 The method for producing hydrogen according to claim 1, wherein the temperature in the container is maintained at 80 ° C or higher and lower than the boiling point of the special water.
  3.  前記アルミニウムを粉末とし、前記容器内の温度を80℃以上前記特殊な水の沸点未満にして水素を発生させることで前記特殊な水をアルカリ性(アルカリ性の特殊な水)とし、前記容器内のアルカリ性の特殊な水に新たなアルミニウム粉末を供給することで、加熱手段による加熱無しに前記容器内の温度を80℃以上前記特殊な水の沸点未満の間に保持して水素を発生させることを特徴とする請求項2記載の水素の製造方法。 The aluminum is powdered, the special water is made alkaline (alkaline special water) by generating hydrogen by setting the temperature in the container to 80 ° C. or higher and lower than the boiling point of the special water, and the alkaline in the container By supplying new aluminum powder to the special water, hydrogen is generated by maintaining the temperature in the container between 80 ° C. and below the boiling point of the special water without heating by heating means. The method for producing hydrogen according to claim 2.
  4.  前記容器内の温度が30℃以上で80℃未満の場合に、前記容器内の温度を加熱手段によって継続的に上昇させることを特徴とする請求項1記載の水素の製造方法。 The method for producing hydrogen according to claim 1, wherein when the temperature in the container is 30 ° C or higher and lower than 80 ° C, the temperature in the container is continuously increased by a heating means.
  5.  前記イオン交換樹脂を強酸性カチオン交換樹脂(RzSO3Na)としたことを特徴とする請求項1乃至4のいずれか1項記載の水素の製造方法。 The method for producing hydrogen according to any one of claims 1 to 4, wherein the ion exchange resin is a strongly acidic cation exchange resin (RzSO 3 Na).
  6.  前記特殊な水を生成するためのトルマリンにアルミニウム、ステンレス、銀の少なくとも1種類の金属を混合させたことを特徴とする請求項1乃至4のいずれか1項記載の水素の製造方法。 The method for producing hydrogen according to any one of claims 1 to 4, wherein the tourmaline for generating the special water is mixed with at least one metal selected from aluminum, stainless steel, and silver.
  7.  前記流紋岩を黒曜石,真珠岩,松脂岩のうち少なくとも1つからなる岩石としたことを特徴とする請求項1乃至4のいずれか1項記載の水素の製造方法。 The method for producing hydrogen according to any one of claims 1 to 4, wherein the rhyolite is a rock composed of at least one of obsidian, pearlite, and pine sebite.
  8.  前記特殊な水の100重量に対して、前記アルミニウムを5重量以上とすることを特徴とする請求項5乃至7のいずれか1項載の水素の製造方法。 The method for producing hydrogen according to any one of claims 5 to 7, wherein the aluminum is made 5 weights or more with respect to 100 weights of the special water.
  9.  前記アルミニウムの重量を10重量以上としたことを特徴とする請求項8記載の水素の製造方法。 The method for producing hydrogen according to claim 8, wherein the weight of the aluminum is 10 weights or more.
  10.  前記特殊な水に水酸化ナトリウムを加えた水酸化ナトリウム水溶液を前記容器内でアルミニウムと接触させることを特徴とする請求項1乃至3のいずれか1項に記載の水素の製造方法。 The method for producing hydrogen according to any one of claims 1 to 3, wherein an aqueous sodium hydroxide solution obtained by adding sodium hydroxide to the special water is brought into contact with aluminum in the container.
  11.  前記容器の外部からの熱を加える加熱手段を用いずに、前記水酸化ナトリウム水溶液と前記アルミニウムとの反応熱によって前記容器内の温度を30℃以上にすることを特徴とする請求項10記載の水素の製造方法。 The temperature in the container is set to 30 ° C or more by heat of reaction between the aqueous sodium hydroxide solution and the aluminum without using a heating means for applying heat from the outside of the container. A method for producing hydrogen.
  12.  水酸化ナトリウム水溶液と前記アルミニウムとの反応熱によって前記容器内の温度を80℃以上にすることを特徴とする請求項10記載の水素の製造方法。 The method for producing hydrogen according to claim 10, wherein the temperature in the container is set to 80 ° C. or higher by reaction heat between the aqueous sodium hydroxide solution and the aluminum.
  13.  前記水酸化ナトリウム水溶液における水酸化ナトリウムの濃度を0.1%以上とすることを特徴とする請求項11または12記載の水素の製造方法。 The method for producing hydrogen according to claim 11 or 12, wherein the concentration of sodium hydroxide in the aqueous sodium hydroxide solution is 0.1% or more.
  14.  前記水酸化ナトリウムの濃度を3%以上とすることを特徴とする請求項13記載の水素の製造方法。 The method for producing hydrogen according to claim 13, wherein the concentration of the sodium hydroxide is 3% or more.
  15.  前記容器の底に前記アルミニウムを備え、そのアルミニウムの最上位よりも前記水酸化ナトリウム水溶液の液面を上位とすることを特徴とする請求項1,2,3,10のいずれか1項記載の水素の製造方法。 The said aluminum is provided in the bottom of the said container, The liquid level of the said sodium hydroxide aqueous solution is made higher than the uppermost layer of the aluminum, The any one of Claims 1, 2, 3, 10 characterized by the above-mentioned. A method for producing hydrogen.
  16.  水を最初にイオン交換樹脂に通過させ、その後にトルマリンと、流紋岩または花崗岩の少なくとも1つからなる二酸化珪素を65~76%含む岩石とのどちらか一方を先に他方を後に通過させることによって生成した特殊な水をアルカリ性としたもの(アルカリ性の特殊な水)と、アルミニウムとを収容するための容器と、前記容器にアルミニウムを投入するためのアルミニウム投入手段と、前記アルミニウム投入手段から前記容器内に投入されたアルミニウムをその上に載せると共に前記アルミニウムが溶けた残留物を網目より前記容器の下方に落下させるためのものであって前記容器の底よりも高位に配置される網部材と、前記容器の内部と連絡するものであって前記容器内にアルカリ性の特殊な水を導入すると共にそのアルカリ性の特殊な水を前記容器内から排出するための液体循環通路と、前記液体循環通路の途中に備えられるものであって前記容器内に前記アルカリ性の特殊な水を供給するための液体投入手段と、前記液体循環通路の途中に備えられるものであって前記容器内から前記アルカリ性の特殊な水を取出するための液体取り出し手段と、前記液体循環通路の途中に備えられるものであって前記容器内から取出される前記アルカリ性の特殊な水と共に取り出される残留物を捕捉するための残留物捕捉手段と、前記液体循環通路の途中に備えられるものであって前記液体投入手段に前記アルカリ性の特殊な水を供給すると共に液体取り出し手段からの取り出された前記アルカリ性の特殊な水を収容するためのタンクと、を有することを特徴とする水素の製造装置。 Pass water first through an ion exchange resin followed by either tourmaline or a rock containing 65-76% silicon dioxide consisting of at least one of rhyolite or granite and the other after it. The special water produced by the above is made alkaline (alkaline special water), a container for containing aluminum, an aluminum charging means for charging aluminum into the container, and the aluminum charging means from the aluminum charging means A net member placed on the top of the container for placing the aluminum charged in the container on the top and dropping the residue in which the aluminum is melted below the net from the mesh; , Which communicates with the inside of the container and introduces alkaline special water into the container and A liquid circulation passage for discharging water from the inside of the container, and a liquid charging means provided in the middle of the liquid circulation passage for supplying the alkaline special water into the container; A liquid take-out means for taking out the alkaline special water from the inside of the container, provided in the middle of the liquid circulation path, and provided in the middle of the liquid circulation path from the inside of the container Residue capturing means for capturing the residue taken out together with the alkaline special water to be taken out, and provided in the middle of the liquid circulation passage, and the alkaline special water is supplied to the liquid input means. A tank for supplying hydrogen and containing the alkaline special water taken out from the liquid take-out means,
  17.  前記液体取り出し手段が、前記容器から前記アルカリ性の特殊な水が排出される位置に近い側に備えられる第1ポンプ並びに第1弁とから成り、前記液体投入手段が前記容器に前記アルカリ性の特殊な水が導入される近い側に備えられる第2ポンプ並びに第2弁と、タンクとから成り、前記液体循環通路の途中の前記第1ポンプの上流側に前記残留物捕捉手段を備え、前記第1ポンプの下流側に前記タンクを備えたことを特徴とする請求項16記載の水素の製造装置。 The liquid take-out means includes a first pump and a first valve provided on a side close to a position where the alkaline special water is discharged from the container, and the liquid input means is provided in the container with the alkaline special water. The second pump and the second valve provided on the near side where water is introduced, and a tank, the residue capturing means is provided upstream of the first pump in the middle of the liquid circulation passage, and the first 17. The hydrogen production apparatus according to claim 16, wherein the tank is provided on the downstream side of the pump.
  18.  前記アルカリ性の特殊な水を特殊な水は、前記特殊な水とアルミニウムとを容器内で温度を30℃以上にして水素を発生させることで生成したものであることを特徴とする請求項16または17記載の水素の製造装置。 The alkaline water, which is special water, is produced by generating hydrogen from the special water and aluminum at a temperature of 30 ° C or higher in a container. 17. The apparatus for producing hydrogen according to 17.
  19.  前記アルカリ性の特殊な水を特殊な水は、前記特殊な水に水酸化ナトリウムを混合して水酸化ナトリウムの濃度を0.1%以上としたものであることを特徴とする請求項16または17記載の水素の製造装置。 18. The special water of the alkaline special water is obtained by mixing sodium hydroxide with the special water so that the concentration of sodium hydroxide is 0.1% or more. The hydrogen production apparatus as described.
  20.  前記水酸化ナトリウムの濃度を3%以上とすることを特徴とする請求項19記載の水素の製造装置。 20. The hydrogen production apparatus according to claim 19, wherein the concentration of the sodium hydroxide is 3% or more.
PCT/JP2010/067863 2009-10-13 2010-10-12 Method and device for manufacturing hydrogen WO2011046111A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010544495A JP4728452B2 (en) 2009-10-13 2010-10-12 Hydrogen production method and hydrogen production apparatus
TW099134887A TW201132582A (en) 2009-10-13 2010-10-13 Method and device for manufacturing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009236462 2009-10-13
JP2009-236462 2009-10-13

Publications (1)

Publication Number Publication Date
WO2011046111A1 true WO2011046111A1 (en) 2011-04-21

Family

ID=43876161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067863 WO2011046111A1 (en) 2009-10-13 2010-10-12 Method and device for manufacturing hydrogen

Country Status (3)

Country Link
JP (1) JP4728452B2 (en)
TW (1) TW201132582A (en)
WO (1) WO2011046111A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136146A1 (en) * 2010-04-27 2011-11-03 Fukai Toshiharu Hydrogen production method
CN103456975A (en) * 2012-05-31 2013-12-18 佛山市顺德区雷动能源科技有限公司 Method and device for water-catalytic hydrogen-generation power generation
JP2014111514A (en) * 2012-12-05 2014-06-19 Toshiharu Fukai Production method of hydrogen, and production method of aluminum hydroxide
WO2018047319A1 (en) * 2016-09-09 2018-03-15 泰弘 山本 Hydrogen production method and hydrogen production device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481519B (en) * 2021-08-10 2022-05-24 海慧特能源科技(广州)有限公司 Method and equipment for producing hydrogen by normal temperature water catalysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132284A (en) * 1993-11-09 1995-05-23 Fukai Toshiko Method for producing water having purifying activation action and device therefor
WO2008139791A1 (en) * 2007-05-15 2008-11-20 Toshiharu Fukai Oil emulsion
JP2008280481A (en) * 2007-05-14 2008-11-20 Yukinobu Mori Method and apparatus for coal liquefaction
JP2009196835A (en) * 2008-02-20 2009-09-03 Hydro-Device Co Ltd Hydrogen generating material and method for producing the hydrogen generating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132284A (en) * 1993-11-09 1995-05-23 Fukai Toshiko Method for producing water having purifying activation action and device therefor
JP2008280481A (en) * 2007-05-14 2008-11-20 Yukinobu Mori Method and apparatus for coal liquefaction
WO2008139791A1 (en) * 2007-05-15 2008-11-20 Toshiharu Fukai Oil emulsion
JP2009196835A (en) * 2008-02-20 2009-09-03 Hydro-Device Co Ltd Hydrogen generating material and method for producing the hydrogen generating material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136146A1 (en) * 2010-04-27 2011-11-03 Fukai Toshiharu Hydrogen production method
CN103456975A (en) * 2012-05-31 2013-12-18 佛山市顺德区雷动能源科技有限公司 Method and device for water-catalytic hydrogen-generation power generation
JP2014111514A (en) * 2012-12-05 2014-06-19 Toshiharu Fukai Production method of hydrogen, and production method of aluminum hydroxide
WO2018047319A1 (en) * 2016-09-09 2018-03-15 泰弘 山本 Hydrogen production method and hydrogen production device
JP2018039710A (en) * 2016-09-09 2018-03-15 泰弘 山本 Hydrogen manufacturing method and hydrogen manufacturing device

Also Published As

Publication number Publication date
JPWO2011046111A1 (en) 2013-03-07
JP4728452B2 (en) 2011-07-20
TW201132582A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
JP4728452B2 (en) Hydrogen production method and hydrogen production apparatus
WO2011136146A1 (en) Hydrogen production method
AU2011277514B2 (en) Device for selectively hydrogenating biocompatible solution
WO1995013245A1 (en) Process for producing water having clarifying activity and apparatus therefor
KR101030721B1 (en) Apparatus for manufacturing hydrogen-abundant water
JPWO2002060576A1 (en) Active structure, device for activating substance, and method for activating substance
JPH04119903A (en) Apparatus for generating ozone by electrolysis
KR101883864B1 (en) Magnetized-hidrogen water purifier applied magnetizing and circulating method
CN103518007A (en) Apparatus for electrolyzing sulfuric acid and method for electrolyzing sulfuric acid
TW201210934A (en) Hydrogen production method
KR20100129210A (en) Method for production of hydrogen
JP2011026182A (en) Method for manufacturing hydrogen
JP2014001117A (en) Hydrogen production apparatus and power generator
WO2014123063A1 (en) Hydrogen water production device and hydrogen water production method
JP2012072023A (en) Method for producing hydrogen
JP2014111514A (en) Production method of hydrogen, and production method of aluminum hydroxide
Haake et al. Requirements for long-life microchannel coolers for direct diode laser systems
JP2018076575A (en) Water electrolysis apparatus and method for producing functional water
JP2012036342A (en) Incomplete emulsion fuel, and high calorific value generation method of the same
KR102315928B1 (en) Water purifier for manufacturing hydrogen containing water and ozone containing water
KR200399254Y1 (en) Pure and activated water manufacturing machine
JP2014196388A (en) Production method of incomplete emulsion fuel, and production apparatus of incomplete emulsion fuel
JP2006210282A (en) Manufacturing method for fuel electrode of fuel cell, and the fuel cell
KR100773121B1 (en) Decomposer of hydrogen peroxide and oxygen generator using the same
TW200413073A (en) Process for producing water capable of lowering blood sugar level

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010544495

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823379

Country of ref document: EP

Kind code of ref document: A1