WO2011046077A1 - Light source apparatus and surface processing method - Google Patents

Light source apparatus and surface processing method Download PDF

Info

Publication number
WO2011046077A1
WO2011046077A1 PCT/JP2010/067740 JP2010067740W WO2011046077A1 WO 2011046077 A1 WO2011046077 A1 WO 2011046077A1 JP 2010067740 W JP2010067740 W JP 2010067740W WO 2011046077 A1 WO2011046077 A1 WO 2011046077A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
plasma
source device
main
inert gas
Prior art date
Application number
PCT/JP2010/067740
Other languages
French (fr)
Japanese (ja)
Inventor
和浩 福田
正信 鈴木
達也 廣瀬
和喜 田地
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011536118A priority Critical patent/JP5733214B2/en
Publication of WO2011046077A1 publication Critical patent/WO2011046077A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/14Selection of substances for gas fillings; Specified operating pressure or temperature having one or more carbon compounds as the principal constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent

Definitions

  • the present invention relates to a light source device that emits vacuum ultraviolet light and a surface treatment method using the same.
  • An excimer lamp that emits vacuum ultraviolet light having a wavelength of 200 nm or less is used in a cleaning process or the like of a glass substrate of a liquid crystal display panel by ultraviolet irradiation (see, for example, Patent Document 1).
  • FIG. 15 is a schematic cross-sectional view showing an example of a general excimer lamp.
  • a discharge vessel 101 made of quartz glass, which is an electrical insulator that transmits vacuum ultraviolet light, xenon (Xe ) And the like, and an internal electrode 102 is disposed in the discharge vessel 101, a mesh-like external electrode 104 is disposed outside the discharge vessel 101, and the discharge vessel 101 itself.
  • a dielectric As a dielectric, a high voltage is applied between the electrodes for discharge to emit vacuum ultraviolet light.
  • the quartz glass itself that encloses the discharge gas that emits vacuum ultraviolet light such as xenon (Xe) cannot completely transmit the vacuum ultraviolet light and absorbs it. Since the performance deteriorates as a result of the occurrence of this, there is a problem in terms of durability, such as being usable only for about 2000 hours.
  • the present invention has been made in view of the above problems, and its object is to provide a light source device having a long life as a light source and an improved emission intensity of vacuum ultraviolet light, and a surface treatment with excellent surface treatment efficiency using the light source device. It is to provide a method.
  • the inert gas Contains a carbon dioxide gas, and the frequency of the high-frequency electric field formed is in the microwave band.
  • a surface treatment is performed by irradiating the substrate with light emitted from plasma generated by supplying an inert gas to the discharge space and forming a high-frequency electric field in the discharge space at or near atmospheric pressure.
  • the inert gas contains carbon dioxide gas, and the frequency of the high-frequency electric field to be formed is in a microwave band.
  • the light source device that is a vacuum ultraviolet light source of the present invention, unlike the excimer lamp, it is not necessary to contain gas in the quartz glass tube, so that it does not deteriorate and can be used semipermanently. Furthermore, by increasing the plasma power, the emission intensity of vacuum ultraviolet light is improved, and a light source device capable of obtaining an emission intensity 10 to 100 times higher than that of an excimer lamp can be realized. It was possible to provide an improved surface treatment method.
  • FIG. 3 is a front sectional view taken along the line AA ′ of the light source device of the present invention shown in FIG. 2.
  • It is a bottom view which shows an example of the irradiation port of the light source device of this invention shown in FIG.
  • It is a bottom view which shows another example of the irradiation port of the light source device of this invention shown in FIG.
  • the present inventor has found that plasma generated by supplying an inert gas to the discharge space and forming a high-frequency electric field in the discharge space under atmospheric pressure or a pressure in the vicinity thereof.
  • the light source apparatus for irradiating the light emitted from the light source device containing the inert gas is carbon dioxide, and the frequency of the high frequency electric field formed characterized in that it is a microwave band, the life of the light source It has been found that a light source device having a long and improved emission intensity of vacuum ultraviolet light and a surface treatment method excellent in surface treatment efficiency can be realized using the light source device, and the present invention has been achieved.
  • Embodiment 1 of the light source device of the present invention will be described with reference to FIGS.
  • FIG. 1 is an external perspective view showing an example of the configuration of a light source device according to Embodiment 1 of the present invention
  • FIG. 2 is a side sectional view showing the internal structure of the light source device of the present invention shown in FIG.
  • FIG. 4 is a front sectional view taken along the line AA ′ of the light source device of the present invention shown in FIG. 2, and
  • FIG. 4 is a bottom view showing an example of an irradiation port of the light source device of the present invention shown in FIG. is there.
  • the light source device 1 includes a transport tube 10 that supplies a discharge gas G, main plasma generation means 20 that generates plasma discharged as irradiation light L, and an arbitrary position on the transport tube 10. And auxiliary plasma generating means 30 provided.
  • the inert gas G which is a discharge gas a gas pipe for feeding to the auxiliary plasma generating means 30 and the main plasma generating means 20, and is formed by using a material such as glass or ceramic Yes.
  • Examples of the inert gas G sent through the transport pipe 10 include He, Ne, N 2 , Ar, or a mixed gas thereof.
  • the inert gas G which is the discharge gas it is characterized by containing the carbon dioxide, the essential requirement on to radiate vacuum ultraviolet light, which is a feature of the present invention.
  • the range in which carbon dioxide gas is contained is preferably 0.01 to 3% by volume relative to the discharge gas, and further 0.1 to 0.5% by volume emits high-intensity vacuum ultraviolet light. Is preferable.
  • the inert gas is at least one selected from argon, helium, nitrogen and a mixture thereof in order to emit high-intensity vacuum ultraviolet light.
  • the transport pipe 10 sends the plasma converted into plasma by the auxiliary plasma generating means 30 to the main plasma generating means 20.
  • the transport tube 10 sends electrons, ions, or radical species necessary at the start of or during discharge in the main plasma generating means 20 from the auxiliary plasma generating means 30 to the main plasma generating means 20.
  • the transport pipe 10 is formed in a cylindrical shape in FIG. 1, it is not limited to a cylindrical shape, and may be, for example, a prismatic shape. Furthermore, the transport pipe 10 may be formed of a hard material, or may be formed of a flexible material.
  • the main plasma generating means 20 is a means for generating plasma without an electrode and at atmospheric pressure.
  • plasma (second plasma) that plays a main role in the process or the like is generated and irradiated to the outside as irradiation light L.
  • FIG. 2 and FIG. 3 show an example of the internal structure of the main plasma generating means 20 constituting the light source device of the present invention.
  • the main plasma generating means 20 includes a main plasma tube 21 for generating a plasma inside, and a main waveguide 22 which guides the microwave to the main plasma tube 21.
  • the present invention is characterized in that the microwave is in the frequency band of the microwave band.
  • the microwave band as used in the present invention is defined as high frequency power having a frequency of 300 MHz or more and 30 GHz or less. In this way, by increasing the plasma power, the emission intensity of vacuum ultraviolet light is improved, and a light source device capable of obtaining an emission intensity that is 10 to 100 times higher than that of an excimer lamp can be realized. Can be provided.
  • the main plasma tube (plasma chamber) 21 is formed of, for example, quartz glass or the like, and an inert gas G containing carbon dioxide gas according to the present invention is introduced as a source gas from a transport tube 10 connected upward.
  • an inert gas G which is a discharge gas, is excited by microwaves sent through the main waveguide 22 to generate plasma.
  • a second plasma is generated by being attracted by the plasma (first plasma) from the auxiliary plasma generator 30.
  • the generation of the second plasma by the first plasma will be described in detail later.
  • an irradiation port 23 for the irradiation light L is formed below the main plasma tube 21.
  • the irradiation port 23 has an opening formed in a band shape.
  • the irradiation port 23 can also be formed as a wide strip
  • belt shape) of the irradiation opening 23 may be roundish, or may be elliptical shape.
  • the light source device 1 of the present invention is suitable for use in a dry process represented by surface modification of a substrate and the like in that the opening surface of the irradiation port 23 is a large area. Yes.
  • cleaning of a glass substrate having a large area is common, but it can also be used as a means for improving the film hardness of a SiO 2 thin film coated by CVD or the like.
  • the main plasma tube 21 can be formed of quartz, but the material is not limited to quartz, and there is no particular limitation as long as it is a material that transmits microwaves and can withstand the heat generated from the plasma. For example, many glasses, ceramics, etc. meet this purpose and have better heat resistance than other insulating materials. However, it is advantageous not to provide a member such as quartz in the portion irradiated with vacuum ultraviolet light because it can be used stably for a long period of time. In addition, the part that is irradiated with vacuum ultraviolet light is installed with an easy-to-replace structure, and it is possible to replace only the member periodically. Basically, only the member is replaced, so the entire excimer lamp can be replaced. Compared to, it is very advantageous economically.
  • the main waveguide 22 is made of, for example, aluminum, copper, stainless steel, etc., and can transmit high power. For this reason, microwaves can be propagated inside the main waveguide 22.
  • the main plasma tube 21 is provided inside the main waveguide 22.
  • the main plasma tube 21 the details as shown in FIG. 2, a quarter wavelength of the wavelength of the microwaves final impact surface 24 from the quarter-wave (supply is the tip of the main waveguide 22 closing the front end (1 ⁇ 4 ⁇ )), that is, at the maximum amplitude position (antinode) of the standing wave.
  • the light source device 1 employs a microwave excitation method as a plasma generation method.
  • variety which an electron moves can be made small and the number of the electrons which hit a plasma chamber wall can be reduced even if it is a small plasma chamber.
  • plasma quality is improved and damage to the plasma chamber wall is prevented, and vacuum ultraviolet light can be stably irradiated.
  • Auxiliary plasma generating means 30 may be any position upstream of the inert gas G containing carbon dioxide gas to be supplied to the main plasma generating means 20, i.e., a plasma generating means provided in an arbitrary position in the transport tube 10 As shown in FIG. 1, an auxiliary plasma tube 31 and an auxiliary waveguide 32 are provided.
  • the auxiliary plasma tube 31 is made of quartz glass or the like, similar to the main plasma tube 21 of the main plasma generating means 20. Inside the auxiliary plasma generating means 30, the inert gas G containing carbon dioxide gas sent by the transport pipe 10 is turned into plasma by microwave excitation to generate plasma (first plasma).
  • the auxiliary plasma tube 31 Since the auxiliary plasma tube 31 has a smaller volume than the main plasma tube 21 of the main plasma generating means 20, it can be easily and stably discharged with less power. In addition, since the plasma discharged in the auxiliary plasma tube 31 is not directly related to the process, the plasma density may be low.
  • auxiliary plasma tube 31 can reduce the volume, yet since the plasma density generated may be lower, auxiliary plasma generating means 30 may be small compared to the main plasma generating means 20.
  • the auxiliary waveguide 32 supplies microwaves to the auxiliary plasma tube 31.
  • the auxiliary plasma generating means 30 also generates plasma by microwave excitation.
  • the same plasma generation method (microwave excitation method) is used for both the main plasma generation unit 20 and the auxiliary plasma generation unit 30.
  • the same plasma generation method is used for both.
  • the plasma generation method may be different from each other.
  • the plasma generated by the auxiliary plasma generating means 30 is guided to the main plasma generating means 20 through the transport pipe 10 as shown in FIG.
  • auxiliary plasma generating means 30 having the above-described configuration, plasma can be supplied from the auxiliary plasma generating means 30 at the start or during discharge of the main plasma generating means 20.
  • main plasma generating means 20 since ions, electrons, or a part of radicals generated by the auxiliary plasma generating means 30 are sent, it is attracted to these ions and the like, and it is very easy to ignite, and It is easy to maintain the discharge state, and stable plasma can be obtained.
  • auxiliary plasma generating means 30 when the auxiliary plasma generating means 30 is attached to the microwave-excited atmospheric pressure plasma source, even when the length of the transport tube 10 is set to 30 cm, for example, a relatively low power (for example, about 1/10 of the power). ), Stable plasma discharge and maintenance are possible. As a result, a large-area atmospheric pressure plasma source can be configured with a small amount of electric power, and the irradiation intensity of vacuum ultraviolet light can be made in a wide range.
  • the auxiliary plasma generating means 30 may be configured to be directly connected to the main plasma generating means 20 without using the transport pipe 10. Also in this configuration, the same effect as the configuration shown in FIG. 6 connected to the main plasma generating means 20 through the transport pipe 10 can be obtained.
  • auxiliary plasma tube 31 of the auxiliary plasma generating means 30 in FIG. 1, FIG. 6, FIG. 7 is an example of a box-shaped plasma chamber in which an area larger than the sectional area in the caliber direction of the transport tube 10 is secured.
  • the present invention is not limited to this configuration.
  • a part of the transport tube 10 can be used as the auxiliary plasma tube 31 as it is.
  • the location on the transport tube 10 to which the microwave transmitted through the auxiliary waveguide 32 is supplied (irradiated) corresponds to the auxiliary plasma tube 31.
  • the first gas introduction pipe 25 that sends the inert gas G containing carbon dioxide gas directly to the main plasma generating means 20 and the auxiliary plasma generating means 30 are passed through.
  • a second gas introduction pipe 11 or the like for sending an inert gas G containing carbon dioxide gas to the main plasma generating means 20 via the transport pipe 10 can be provided.
  • Embodiment 2 of the light source device of the present invention will be described with reference to FIG.
  • FIG. 10 is an external perspective view showing an example of the configuration of the light source device according to Embodiment 2 of the present invention.
  • the main waveguide differs from Embodiment 1 described above in the structure of the main waveguide. That is, in the first embodiment, the main waveguide is simply formed in a cylindrical shape having a rectangular cross section, but in this embodiment, the main waveguide extends in the horizontal and horizontal directions with respect to the microwave waveguide direction. It is different in that it is formed and one or more partition walls are provided inside the main waveguide. Other components are the same as those in the first embodiment. Therefore, in FIG. 10, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the main waveguide 22 that constitutes the main plasma generating means 20 of the light source device has a fan shape that is extended in a horizontal direction transverse to the guiding direction of the microwaves MW.
  • the main waveguide 22 has a structure extending horizontally and horizontally with respect to the waveguide direction of the microwave MW.
  • the shape of the main plasma tube 21 and outlet 23 can be formed in a band shape (horizontally long shape), as a result, can be irradiated to the substrate as the processing target vacuum ultraviolet light having a large area.
  • One or more partition walls 26 are provided inside the wide portion of the main waveguide 22 expanded in the horizontal and lateral directions.
  • the partition wall 26 is arranged so as to branch the microwave waveguide path into a plurality of branches.
  • Each branch path delimited by the partition wall 26 can be considered as an independent waveguide.
  • the number of waveguide paths divided by the four partition walls 26 is five. However, the number is not limited to five, but two, three, four, or six or more paths are used. Can do. However, the interval of the partition wall 26 should be at least constraint from a half wavelength of the cutoff wavelength of the main waveguide 22 (1/2 wavelength of the wavelength of the supplied microwave (1 / 2 ⁇ )).
  • the microwave power distributed between the partition walls 26 can be adjusted by the position of the partition walls 26, the distance between the partition walls 26, the height of the main waveguide 22, and the like.
  • the plasma irradiation port 23 of the main plasma generating means 20 can be changed in shape within the physical constraints of the main waveguide 22 depending on the shape of the substrate to be processed.
  • FIG. 11 is a cross-sectional view showing the structure of the plasma generating means inside the light source device according to Embodiment 2 of the present invention
  • FIG. 12 shows another structure of the plasma generating means inside the light source device according to Embodiment 2 of the present invention. It is sectional drawing which shows an example.
  • the main plasma tube 21 and the irradiation port 23 can be formed in a curved shape as shown in FIGS.
  • the bending direction of the irradiation port 23 is set to a direction opposite to the waveguide direction of the microwave MW, that is, a direction far from the final collision surface at the tip of the main waveguide 22. it can.
  • the main plasma tube 21 is also formed in a shape curved in the same direction as the direction of curvature of the irradiation port 23.
  • the irradiation port 23 and the main plasma tube 21 have such a curved shape, irradiation according to the shape of the substrate that is the object to be processed becomes possible.
  • Such a shape is suitable when it is necessary to process only the outer periphery of the disk shape.
  • the bending direction of the irradiation port 23 can be, for example, the same direction as the microwave guiding direction, that is, the direction toward the outside of the main waveguide 22.
  • the main plasma tube 21 is formed in a shape curved in the same direction as the direction of the irradiation port 23.
  • the main plasma tube 21 can also be formed in a shape curved in the same direction as that of the irradiation port 23 as shown in FIG.
  • the irradiation light L which is vacuum ultraviolet light irradiated from the irradiation port 23 gathers in the center in the irradiation direction. That is, the vacuum ultraviolet light irradiated from the middle of the irradiation port 23 travels straight, but the vacuum ultraviolet light irradiated from the end of the irradiation port 23 moves toward the front of the irradiation port 23 in the irradiation direction. move on. Thereby, the irradiation intensity
  • the bending direction of the irradiation port 23 can be, for example, a downward direction perpendicular to the waveguide direction of the microwave MW, that is, the same direction as the irradiation direction of the irradiation light.
  • the main plasma tube 21 can also be formed in a shape curved in the same direction as that of the irradiation port 23.
  • the irradiation port 23 and the main plasma tube 21 have such a curved shape, it can be applied to the inner surface of a pipe, the surface treatment of a bowl-shaped substrate, and the like.
  • the shape of the opening of the irradiation port 23 is a curved shape in the present embodiment, the shape is not limited to the curved shape, and may be a bent shape, for example.
  • FIG. 13 shows an example of the structure of the main plasma generating means 20 provided with the irradiation port 23 formed in a bent shape.
  • the bending direction of the irradiation port 23 can be, for example, a direction opposite to the waveguide direction of the microwave MW, that is, a direction far from the final collision surface of the main waveguide 22.
  • the main plasma tube 21 is also formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
  • the bending direction of the irradiation port 23 can be, for example, the same direction as the waveguide direction of the microwave MW, that is, the direction toward the outside of the main waveguide 22. Also in this case, the main plasma tube 21 is formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
  • a bending direction of the irradiation opening 23 a guiding direction of the microwaves can be applied to such a surface treatment of the substrate as an object to be treated, in particular, complex Corresponding to the shape of the substrate becomes possible.
  • the bending direction of the irradiation port 23 can be, for example, an upward direction perpendicular to the waveguide direction of the microwave MW, that is, a direction opposite to the irradiation direction of the irradiation light.
  • the main plasma tube 21 can also be formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
  • the bending direction of the irradiation port 23 can be, for example, the downward direction perpendicular to the waveguide direction of the microwave MW, that is, the same direction as the irradiation direction of the irradiation light.
  • the main plasma tube 21 can also be formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
  • the irradiation port 23 and the main plasma tube 21 in such a shape, it can be applied to the inner surface of a pipe or the surface treatment of a to-be-processed object.
  • the curved portion (or bent portion) to be formed is formed only at one place at the irradiation port 23, but is not limited to one place, and for example, formed at two or more places. You can also In addition, one or more of the curved portion and the bent portion can be formed in one irradiation port 23, respectively. By setting it as such a shape, it can respond to the to-be-processed object of a complicated shape.
  • Embodiment 3 of the light source device of the present invention will be described with reference to FIG.
  • FIG. 14 is an external perspective view showing an example of the configuration of the light source device according to Embodiment 3 of the present invention.
  • the light source device 1 shown in the third embodiment is different from the light source device 1 shown in the first embodiment in the means for supplying microwaves. That is, in the first embodiment, the microwave MW is supplied from the main waveguide 22 and the auxiliary waveguide 32, whereas in the present embodiment, the microwave MW is supplied from the power supply main antenna 27 and the power supply auxiliary antenna 33. It is different in point. Other components are the same as those in the first embodiment. Therefore, in the description of the light source device shown in FIG. 14, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light source device 1 that is the actual mode 3 includes a transport tube 10, a main plasma generating means 20, and an auxiliary plasma generating means 30.
  • the main plasma tube 21 of the main plasma generating means 20 and the auxiliary plasma tube of the auxiliary plasma generating means 30 are made of, for example, quartz and are integrally manufactured.
  • the main plasma generating means 20 includes a power feeding main antenna 27 and a coaxial cable 28 instead of the main waveguide as shown in FIG. 1 or the like, or in addition to the main waveguide 22. .
  • Feeding main antenna 27 is an antenna for supplying microwaves to the main plasma tube 21 is formed of a conductive material, a monopole antenna for supplying uniformly microwave band 27-1 Can be configured.
  • the monopole antenna 27-1, 14 is provided two, not limited to two, for example, be a single, or even three or more sheets Good. Moreover, it can replace with the coaxial cable 28 and a coaxial pipe
  • the auxiliary plasma generating means 30 includes a power feeding auxiliary antenna 33 and a coaxial cable 34 instead of or in addition to the auxiliary waveguide 32 as shown in FIG. .
  • the power feeding auxiliary antenna 33 is an antenna that supplies microwaves to the auxiliary plasma tube 31, is formed of a conductor, and is formed in a spiral shape so as to be wound around the outer periphery of the auxiliary plasma tube 31.
  • the spiral antenna 33-1 can be obtained.
  • a coaxial tube (not shown) can be used.
  • a method of feeding power through a waveguide is, for example, that of a horn antenna disclosed in Japanese Patent Laid-Open No. 2002-330020 or a slot antenna disclosed in Japanese Patent Laid-Open No. 08-078190. It operates in substantially the same way as a method of feeding with such an aperture antenna, and has the same function of electromagnetic field emission, although the principle is different from that of a feeding antenna made of a so-called conductor. Therefore, the light source device of the present invention can be configured also by antenna feeding by a conductor instead of feeding by a waveguide.
  • the merit of the antenna power feeding method compared to the power feeding by the waveguide is that the device can be miniaturized.
  • the waveguide cannot be made to be 1 ⁇ 2 ⁇ or less because of the cutoff wavelength in the lateral width.
  • power is supplied by an antenna using a coaxial cable or a coaxial tube, there are few dimensional restrictions and a reduction in size is possible.
  • either the monopole antenna 27-1 or the spiral antenna 33-1 is disposed outside the main plasma tube 21 or the auxiliary plasma tube 31 in order to prevent metal contamination of the plasma, and the plasma is transmitted through quartz glass. Is feeding.
  • any material can be used for the monopole antenna 27-1 and the spiral antenna 33-1 as long as they are good conductors. However, since they are directly exposed to the radiant heat of plasma, oxidation such as aluminum, stainless steel, gold-plated copper, etc. A metal having a high melting point and a high infrared reflectance is desirable.
  • the shape it is desirable to use a round wire, a plate, a pipe, etc. depending on the size and impedance matching state.
  • the power feeding antenna formed of a conductor can be realized by the plasma source technique described in Japanese Patent No. 3854238.
  • each of the main plasma generation unit and the auxiliary plasma generation unit includes two or more configurations. You can also
  • the plasma generated by one auxiliary plasma generating means is supplied to one main plasma generating means.
  • the auxiliary plasma generating means and the main plasma generating means are one-to-one.
  • a configuration in which plasma generated by one or more auxiliary plasma generating means is supplied to one or two or more main plasma generating means may be employed.
  • main plasma generating means when a plurality of main plasma generating means are provided, these main plasma generating means can be arranged in the horizontal direction and also in the vertical direction. However, when a plurality of main plasma generating means are arranged in the horizontal direction, the irradiation port is directed downward. On the other hand, when a plurality of main plasma generating means are arranged in the vertical direction, the irradiation port is arranged in the horizontal direction.
  • the structure is suitable. In any case, it is possible to supply plasma by one or more auxiliary plasma generating means.
  • Two microwave power supplies with a continuous wave output of 2.45 (GHz) and maximum power of 1.0 (kW) were used as auxiliary plasma generating means and main plasma generating means.
  • the inner diameter of the auxiliary waveguide 32 was 96 ⁇ 9 (mm)
  • the auxiliary plasma tube 31 was a quartz tube, and the inner diameter was 9 (mm).
  • the auxiliary plasma tube 31 and the main plasma tube 21 were connected by an alumina ceramic tube having an inner diameter of 15 (mm).
  • the inner diameter of the main waveguide 22 was 96 ⁇ 18.5 (mm).
  • the irradiation port 23 is formed in a strip shape of 94 (mm) ⁇ 3 (mm), and the main plasma tube 21 is formed in a rectangular parallelepiped.
  • argon gas containing 0.3% by volume of carbon dioxide (CO 2 gas) is supplied at 5 L / min, 500 W is applied to the auxiliary plasma generating means to generate plasma, and then main plasma is generated. 300 W was applied to the means to form a slit-like discharge, and then the power for the auxiliary plasma generating means was stopped at 0 W, but the discharge of the main plasma generating means was maintained. In this state, the emission spectrum generated in the main plasma generating means was measured using a spectroscope (May 2000 manufactured by Ocean Optics). As a result, as shown in FIG. 16, the excimer lamp (MEUT-1-330 manufactured by MDI excimer) was used. In comparison, it was confirmed that the vacuum ultraviolet light intensity of 200 nm or less was 10 times or more in peak intensity and 5 times or more in integrated intensity.
  • CO 2 gas carbon dioxide
  • Example 1 In Example 1 above, plasma was formed under exactly the same conditions except that carbon dioxide (CO 2 gas) in the discharge gas was removed, and the obtained emission spectrum was measured. As shown in FIG. The emission spectrum in the vacuum ultraviolet region was not measured.
  • CO 2 gas carbon dioxide
  • Example 2 In Example 1 described above, instead of the microwave power source, plasma was formed under exactly the same conditions except that a 13.56 MHz high frequency power source (RF power source) as a comparative example was used, and then the obtained emission spectrum was Although it measured using the spectroscope, the emission spectrum of the vacuum ultraviolet region was not measured.
  • RF power source 13.56 MHz high frequency power source
  • Example 2 As a result of measuring the light emission intensity of the highest peak value near 190 nm when continuously operated under the light source device and conditions used in Example 1, the peak was reached even after about 10,000 hours as shown in FIG. No degradation in value was observed.
  • Example 3 Using the light source device described in Example 1, the glass substrate placed on the moving stage is cleaned, and after the cleaning process, the adhesive is coated, and the adhesion is determined by a cross-cut test in accordance with JIS K 5400. went.
  • the cleaning process the time spent in the vacuum ultraviolet light irradiation opening is moved to 0.03, 0.05, 0.1, 0.5, 1, 3, 5, 10, 30 sec. The stage speed was changed.
  • Example 4 In Example 3 above, the glass substrate was cleaned in the same manner except that the light source device described in Comparative Example 1 (light source device excluding carbon dioxide (CO 2 gas) as a discharge gas) was used. An adhesion test was performed.
  • the light source device described in Comparative Example 1 light source device excluding carbon dioxide (CO 2 gas) as a discharge gas
  • Example 5 In Example 3 above, the glass substrate was cleaned in the same manner except that the light source device described in Comparative Example 2 (light source device using a 13.56 MHz high frequency power source (RF power source)) was used. An adhesion test was performed.
  • the light source device described in Comparative Example 2 light source device using a 13.56 MHz high frequency power source (RF power source)
  • Example 6 In Example 3 above, instead of the light source device of the present invention, the excimer lamp described in Comparative Example 3 (MEUT-1-330 manufactured by MDI Excimer) was used to clean the glass substrate, and the adhesion test was similarly performed. went.
  • the excimer lamp described in Comparative Example 3 MEUT-1-330 manufactured by MDI Excimer
  • the time which has stayed in the vacuum ultraviolet light irradiation opening part is 0.03, 0.05, 0.1, 0.5, 1, 3
  • An adhesion test of each sample when the moving stage speed was changed to be 5, 10, 30 sec was performed by a cross-cut test based on JIS K 5400, and the adhesion was evaluated according to the following criteria.
  • the light source device using the vacuum ultraviolet light source of the present invention can provide a light source device that can perform surface treatment in a short time and can be stably processed continuously for a long time without deterioration over time seen in an excimer lamp. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cleaning In General (AREA)
  • Plasma Technology (AREA)

Abstract

Provided is a light source apparatus that has a long lifespan as a light source, and wherein the luminescence intensity of vacuum-ultraviolet light is improved, as well as a surface processing method that uses the light source apparatus, and has excellent surface processing efficiency. This light source device, which supplies inert gas into a discharge space under atmospheric pressure or pressure in the vicinity thereof, and irradiates light emitted from plasma generated by forming a high frequency electric field in the discharge space, is characterized in that the inert gas contains carbonic acid gas, and that the frequency of the high frequency electric field to be formed is the microwave band.

Description

光源装置及び表面処理方法Light source device and surface treatment method
 本発明は、真空紫外光を放射する光源装置とそれを用いた表面処理方法に関するものである。 The present invention relates to a light source device that emits vacuum ultraviolet light and a surface treatment method using the same.
 液晶表示パネルのガラス基板の紫外線照射による洗浄工程などにおいて、波長200nm以下の真空紫外光を放射するエキシマランプが利用されている(例えば、特許文献1参照)。 An excimer lamp that emits vacuum ultraviolet light having a wavelength of 200 nm or less is used in a cleaning process or the like of a glass substrate of a liquid crystal display panel by ultraviolet irradiation (see, for example, Patent Document 1).
 例えば、図15に示した図は、一般的なエキシマランプの一例を示す概略断面図であって、真空紫外光を透過する電気絶縁体である石英ガラス製の放電容器101内に、キセノン(Xe)などの真空紫外光を発する放電用ガスを封入すると共に、この放電容器101内に内部電極102を配置し、放電容器101の外部にメッシュ状の外部電極104を配設し、放電容器101自体を誘電体として、電極間に高電圧を印加して放電させ真空紫外光を放射するものである。 For example, the diagram shown in FIG. 15 is a schematic cross-sectional view showing an example of a general excimer lamp. In a discharge vessel 101 made of quartz glass, which is an electrical insulator that transmits vacuum ultraviolet light, xenon (Xe ) And the like, and an internal electrode 102 is disposed in the discharge vessel 101, a mesh-like external electrode 104 is disposed outside the discharge vessel 101, and the discharge vessel 101 itself. As a dielectric, a high voltage is applied between the electrodes for discharge to emit vacuum ultraviolet light.
 しかしながら、図15に示すような構造からなるエキシマランプでは、キセノン(Xe)などの真空紫外光を発する放電ガスを封入する石英ガラス自身は、完全に真空紫外光を透過することができず、吸収が発生することに伴い性能が劣化するため、約2000時間程度しか使用できない等、耐久性の観点で問題がある。 However, in the excimer lamp having the structure shown in FIG. 15, the quartz glass itself that encloses the discharge gas that emits vacuum ultraviolet light such as xenon (Xe) cannot completely transmit the vacuum ultraviolet light and absorbs it. Since the performance deteriorates as a result of the occurrence of this, there is a problem in terms of durability, such as being usable only for about 2000 hours.
 また、真空紫外光照射の効率を高め、処理効率を向上させる為には、真空紫外光の発光強度を高めることが効果的であるが、その反面、更に石英ガラス自身の耐久性が劣化し、使用時間が短くなるという問題がある。 Also, in order to increase the efficiency of vacuum ultraviolet light irradiation and improve the processing efficiency, it is effective to increase the emission intensity of vacuum ultraviolet light, but on the other hand, the durability of quartz glass itself deteriorates, There is a problem that the use time is shortened.
特開平11-111235号公報JP-A-11-111235
 本発明は、上記課題に鑑みなされたものであり、その目的は、光源としての寿命が長く、真空紫外光の発光強度が向上した光源装置と、それを用いた表面処理効率に優れた表面処理方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide a light source device having a long life as a light source and an improved emission intensity of vacuum ultraviolet light, and a surface treatment with excellent surface treatment efficiency using the light source device. It is to provide a method.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.大気圧もしくはその近傍の圧力下で、放電空間に不活性ガスを供給し、該放電空間に高周波電界を形成することにより発生したプラズマから放射される光を照射する光源装置において、該不活性ガスが炭酸ガスを含有し、かつ形成する高周波電界の周波数がマイクロ波帯であることを特徴とする光源装置。 1. In a light source device that irradiates light emitted from plasma generated by supplying an inert gas to a discharge space and forming a high-frequency electric field in the discharge space under atmospheric pressure or a pressure in the vicinity thereof, the inert gas Contains a carbon dioxide gas, and the frequency of the high-frequency electric field formed is in the microwave band.
 2.前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.01体積%以上、3.0体積以下であることを特徴とする前記1に記載の光源装置。 2. 2. The light source device according to 1 above, wherein the content of carbon dioxide gas in the discharge gas composed of the inert gas and carbon dioxide gas is 0.01 volume% or more and 3.0 volume or less.
 3.前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.1体積%以上、0.5体積以下であることを特徴とする前記2に記載の光源装置。 3. 3. The light source device according to 2 above, wherein the content of carbon dioxide gas in the discharge gas composed of the inert gas and carbon dioxide gas is 0.1 volume% or more and 0.5 volume or less.
 4.前記不活性ガスが、アルゴン、ヘリウム、窒素及びそれらの混合物から選ばれる少なくとも1種であることを特徴とする前記1から3のいずれか1項に記載の光源装置。 4. 4. The light source device according to any one of 1 to 3, wherein the inert gas is at least one selected from argon, helium, nitrogen, and a mixture thereof.
 5.前記光源装置から照射される光が、真空紫外域に発光波長を有していることを特徴とする前記1から4のいずれか1項に記載の光源装置。 5. 5. The light source device according to any one of 1 to 4, wherein light emitted from the light source device has a light emission wavelength in a vacuum ultraviolet region.
 6.主プラズマ発生手段及び補助プラズマ発生手段の二つのプラズマ発生手段を有することを特徴とする前記1から5のいずれか1項に記載の光源装置。 6. 6. The light source device according to any one of 1 to 5, wherein the light source device has two plasma generation means, a main plasma generation means and an auxiliary plasma generation means.
 7.大気圧もしくはその近傍の圧力下で、放電空間に不活性ガスを供給し、該放電空間に高周波電界を形成することにより発生したプラズマから放射される光を、基板に照射して表面処理を施す表面処理方法において、該不活性ガスが炭酸ガスを含有し、かつ形成する高周波電界の周波数がマイクロ波帯であることを特徴とする表面処理方法。 7. A surface treatment is performed by irradiating the substrate with light emitted from plasma generated by supplying an inert gas to the discharge space and forming a high-frequency electric field in the discharge space at or near atmospheric pressure. In the surface treatment method, the inert gas contains carbon dioxide gas, and the frequency of the high-frequency electric field to be formed is in a microwave band.
 8.前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.01体積%以上、3.0体積以下であることを特徴とする前記7に記載の表面処理方法。 8. 8. The surface treatment method according to 7 above, wherein the content of carbon dioxide gas in the discharge gas composed of the inert gas and carbon dioxide gas is 0.01 volume% or more and 3.0 volume or less.
 9.前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.1体積%以上、0.5体積以下であることを特徴とする前記8に記載の表面処理方法。 9. 9. The surface treatment method as described in 8 above, wherein the content of carbon dioxide gas in the discharge gas composed of the inert gas and carbon dioxide gas is 0.1 volume% or more and 0.5 volume or less.
 10.前記不活性ガスが、アルゴン、ヘリウム、窒素及びそれらの混合物から選ばれる少なくとも1種であることを特徴とする前記7から9のいずれか1項に記載の表面処理方法。 10. 10. The surface treatment method according to any one of 7 to 9, wherein the inert gas is at least one selected from argon, helium, nitrogen, and a mixture thereof.
 11.光源装置から照射される光が、真空紫外域に発光波長を有していることを特徴とする前記7から10のいずれか1項に記載の表面処理方法。 11. 11. The surface treatment method according to any one of 7 to 10, wherein the light emitted from the light source device has an emission wavelength in a vacuum ultraviolet region.
 12.主プラズマ発生手段及び補助プラズマ発生手段の二つのプラズマ発生手段を有することを特徴とする前記7から11のいずれか1項に記載の表面処理方法。 12. 12. The surface treatment method according to any one of 7 to 11, wherein the surface treatment method includes two plasma generation means, a main plasma generation means and an auxiliary plasma generation means.
 本発明の真空紫外光源である光源装置によれば、前記エキシマランプの様に、石英ガラス管にガスを封じ込める必要が無い為、劣化が生じることが無く、半永久的に使用できる。更に、プラズマ電力を高めることにより真空紫外光の発光強度が向上し、エキシマランプに比較して、10~100倍以上の発光強度が得られる光源装置を実現でき、それを用い表面処理効率を大幅に向上できた表面処理方法を提供することができた。 According to the light source device that is a vacuum ultraviolet light source of the present invention, unlike the excimer lamp, it is not necessary to contain gas in the quartz glass tube, so that it does not deteriorate and can be used semipermanently. Furthermore, by increasing the plasma power, the emission intensity of vacuum ultraviolet light is improved, and a light source device capable of obtaining an emission intensity 10 to 100 times higher than that of an excimer lamp can be realized. It was possible to provide an improved surface treatment method.
本発明の実施態様1における光源装置の構成の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of a structure of the light source device in Embodiment 1 of this invention. 図1に示した本発明の光源装置の内部構造を示す側面断面図である。It is side surface sectional drawing which shows the internal structure of the light source device of this invention shown in FIG. 図2で示した本発明の光源装置のA-A′を切断面とする正面断面図である。FIG. 3 is a front sectional view taken along the line AA ′ of the light source device of the present invention shown in FIG. 2. 図1に示した本発明の光源装置の照射口の一例を示す底面図である。It is a bottom view which shows an example of the irradiation port of the light source device of this invention shown in FIG. 図1に示した本発明の光源装置の照射口の他の一例を示す底面図である。It is a bottom view which shows another example of the irradiation port of the light source device of this invention shown in FIG. 光源装置内部で、プラズマ発生手段により生成されたプラズマの様子の一例を示す状態模式図である。It is a state schematic diagram which shows an example of the mode of the plasma produced | generated by the plasma generation means inside the light source device. 光源装置内部で、プラズマ発生手段の他の一例により生成されたプラズマの様子の一例を示す状態模式図である。It is a state schematic diagram which shows an example of the mode of the plasma produced | generated by another example of the plasma generation means inside the light source device. 光源装置内部で、プラズマ発生手段の他の一例により生成されたプラズマの様子の一例を示す状態模式図である。It is a state schematic diagram which shows an example of the mode of the plasma produced | generated by another example of the plasma generation means inside the light source device. 第一及び第二のガス導入管を備えた光源装置内部で、プラズマ発生手段により生成されたプラズマの様子の一例を示す状態模式図である。It is a state schematic diagram which shows an example of the mode of the plasma produced | generated by the plasma generation means inside the light source device provided with the 1st and 2nd gas introduction tube. 本発明の実施形態2における光源装置の構成の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of a structure of the light source device in Embodiment 2 of this invention. 本発明の実施形態2における光源装置内部のプラズマ発生手段の構造を示す断面図である。It is sectional drawing which shows the structure of the plasma generation means inside the light source device in Embodiment 2 of this invention. 本発明の実施形態2における光源装置内部のプラズマ発生手段の構造の他の一例を示す断面図である。It is sectional drawing which shows another example of the structure of the plasma generation means inside the light source device in Embodiment 2 of this invention. 本発明の実施形態2における光源装置内部のプラズマ発生手段の構造の更に他の一例を示す断面図である。It is sectional drawing which shows another example of the structure of the plasma generation means inside the light source device in Embodiment 2 of this invention. 本発明の実施形態3における光源装置の構成の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of a structure of the light source device in Embodiment 3 of this invention. エキシマランプの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of an excimer lamp. 実施例で、主プラズマ部で発生する発光スペクトルの測定結果を示すグラフである。In an Example, it is a graph which shows the measurement result of the emission spectrum which generate | occur | produces in a main plasma part. 実施例で、185nm付近の最も高いピーク値の発光強度の測定結果を示すグラフである。In an Example, it is a graph which shows the measurement result of the emitted light intensity of the highest peak value of 185 nm vicinity.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、大気圧もしくはその近傍の圧力下で、放電空間に不活性ガスを供給し、該放電空間に高周波電界を形成することにより発生したプラズマから放射される光を照射する光源装置において、該不活性ガスが炭酸ガスを含有し、かつ形成する高周波電界の周波数がマイクロ波帯であることを特徴とする光源装置により、光源としての寿命が長く、真空紫外光の発光強度が向上した光源装置と、それを用いて表面処理効率に優れた表面処理方法を実現することができることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor has found that plasma generated by supplying an inert gas to the discharge space and forming a high-frequency electric field in the discharge space under atmospheric pressure or a pressure in the vicinity thereof. in the light source apparatus for irradiating the light emitted from the light source device containing the inert gas is carbon dioxide, and the frequency of the high frequency electric field formed characterized in that it is a microwave band, the life of the light source It has been found that a light source device having a long and improved emission intensity of vacuum ultraviolet light and a surface treatment method excellent in surface treatment efficiency can be realized using the light source device, and the present invention has been achieved.
 以下、本発明に係る好ましい実施形態について、図面を参照して説明する。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the drawings.
 〔実施形態1〕
 はじめに、本発明の光源装置の実施形態1について、図1~図4を参照して説明する。
[Embodiment 1]
First, Embodiment 1 of the light source device of the present invention will be described with reference to FIGS.
 図1は本発明の実施態様1における光源装置の構成の一例を示す外観斜視図であり、図2は図1に示した本発明の光源装置の内部構造を示す側面断面図であり、図3は図2で示した本発明の光源装置のA-A′を切断面とする正面断面図であり、図4は図1に示した本発明の光源装置の照射口の一例を示す底面図である。 FIG. 1 is an external perspective view showing an example of the configuration of a light source device according to Embodiment 1 of the present invention, and FIG. 2 is a side sectional view showing the internal structure of the light source device of the present invention shown in FIG. FIG. 4 is a front sectional view taken along the line AA ′ of the light source device of the present invention shown in FIG. 2, and FIG. 4 is a bottom view showing an example of an irradiation port of the light source device of the present invention shown in FIG. is there.
 図1に示すように、光源装置1は、放電ガスGを供給する輸送管10と、照射光Lとして放電されるプラズマを生成する主プラズマ発生手段20と、輸送管10上の任意の位置に設けられた補助プラズマ発生手段30とを有している。 As shown in FIG. 1, the light source device 1 includes a transport tube 10 that supplies a discharge gas G, main plasma generation means 20 that generates plasma discharged as irradiation light L, and an arbitrary position on the transport tube 10. And auxiliary plasma generating means 30 provided.
 図1における輸送管10は、放電ガスである不活性ガスGを補助プラズマ発生手段30や主プラズマ発生手段20へ送るためのガス管であって、ガラスやセラミックなどの材質を用いて形成されている。 Transport tube 10 in FIG. 1, the inert gas G which is a discharge gas a gas pipe for feeding to the auxiliary plasma generating means 30 and the main plasma generating means 20, and is formed by using a material such as glass or ceramic Yes.
 この輸送管10により送られる不活性ガスGとしては、例えば、He、Ne、N、Ar、あるいはそれらの混合ガスなどが挙げられる。 Examples of the inert gas G sent through the transport pipe 10 include He, Ne, N 2 , Ar, or a mixed gas thereof.
 本発明の光源装置において、この放電ガスである不活性ガスGが炭酸ガスを含有することが特徴であり、本発明の特徴である真空紫外光を放射させる上で必須の要件となる。本発明において、炭酸ガスが含有される範囲としては、放電ガスに対し0.01~3体積%であることが好ましく、更に0.1~0.5体積%が高強度の真空紫外光を放射させるのに好ましい。 In the light source device of the present invention, the inert gas G which is the discharge gas it is characterized by containing the carbon dioxide, the essential requirement on to radiate vacuum ultraviolet light, which is a feature of the present invention. In the present invention, the range in which carbon dioxide gas is contained is preferably 0.01 to 3% by volume relative to the discharge gas, and further 0.1 to 0.5% by volume emits high-intensity vacuum ultraviolet light. Is preferable.
 また、本発明においては、不活性ガスが、アルゴン、ヘリウム、窒素及びそれらの混合物から選ばれる少なくとも1種であることが、高強度の真空紫外光を放射させる上で好ましい。 In the present invention, it is preferable that the inert gas is at least one selected from argon, helium, nitrogen and a mixture thereof in order to emit high-intensity vacuum ultraviolet light.
 これは、炭酸ガスの有する真空紫外域の励起エネルギーよりも、アルゴン、ヘリウム、窒素及びそれらの混合物のガスの有する準安定状態の励起エネルギーが大きいことに基づくものである。 This than the excitation energy of the vacuum ultraviolet region with the carbon dioxide, is based on that argon, helium, excitation energy of the metastable states with a gas of nitrogen and mixtures thereof is large.
 また、輸送管10は、補助プラズマ発生手段30でプラズマ化されたプラズマを主プラズマ発生手段20へ送る。言い換えれば、輸送管10は、主プラズマ発生手段20での放電開始時あるいは放電中に必要な電子、イオンあるいはラジカル種を補助プラズマ発生手段30から主プラズマ発生手段20へ送る。 Further, the transport pipe 10 sends the plasma converted into plasma by the auxiliary plasma generating means 30 to the main plasma generating means 20. In other words, the transport tube 10 sends electrons, ions, or radical species necessary at the start of or during discharge in the main plasma generating means 20 from the auxiliary plasma generating means 30 to the main plasma generating means 20.
 なお、輸送管10は、図1においては、円筒形状に形成されているが、円筒形状に制限されるものではなく、例えば、角柱形状などであってもよい。さらに、輸送管10は、硬質な材料で形成されていてもよく、また、フレキシブルな材質で形成されていてもよい。 In addition, although the transport pipe 10 is formed in a cylindrical shape in FIG. 1, it is not limited to a cylindrical shape, and may be, for example, a prismatic shape. Furthermore, the transport pipe 10 may be formed of a hard material, or may be formed of a flexible material.
 主プラズマ発生手段20は、無電極かつ大気圧でプラズマを発生させる手段である。この主プラズマ発生手段20では、プロセス等に主たる役割を果たすプラズマ(第二のプラズマ)が生成され、照射光Lとして外部へ向かって照射される。 The main plasma generating means 20 is a means for generating plasma without an electrode and at atmospheric pressure. In the main plasma generating means 20, plasma (second plasma) that plays a main role in the process or the like is generated and irradiated to the outside as irradiation light L.
 本発明の光源装置を構成する主プラズマ発生手段20の内部構造の一例を、図2、図3に示す。 FIG. 2 and FIG. 3 show an example of the internal structure of the main plasma generating means 20 constituting the light source device of the present invention.
 これら図2、図3に示すように、主プラズマ発生手段20は、内部でプラズマを発生させる主プラズマ管21と、マイクロ波を主プラズマ管21へ導く主導波管22とを有している。本発明では、マイクロ波がマイクロ波帯の周波数帯にあることを特徴とする。本発明でいうマイクロ波帯とは、周波数300MHz以上、30GHz以下の高周波電力であると定義する。この様に、プラズマ電力を高めることにより真空紫外光の発光強度が向上し、エキシマランプに比較して、10~100倍以上の発光強度が得られる光源装置を実現でき、それを用い表面処理効率を大幅に向上できた表面処理方法を提供することができる。 These Figure 2, as shown in FIG. 3, the main plasma generating means 20 includes a main plasma tube 21 for generating a plasma inside, and a main waveguide 22 which guides the microwave to the main plasma tube 21. The present invention is characterized in that the microwave is in the frequency band of the microwave band. The microwave band as used in the present invention is defined as high frequency power having a frequency of 300 MHz or more and 30 GHz or less. In this way, by increasing the plasma power, the emission intensity of vacuum ultraviolet light is improved, and a light source device capable of obtaining an emission intensity that is 10 to 100 times higher than that of an excimer lamp can be realized. Can be provided.
 主プラズマ管(プラズマ室)21は、例えば、石英ガラスなどで形成されており、上方に接続された輸送管10から、原料ガスとして本発明に係る炭酸ガスを含有する不活性ガスGが導入される。この主プラズマ管21の内部では、放電ガスである不活性ガスGが、主導波管22を通って送られてきたマイクロ波により励起され、プラズマが発生する。 The main plasma tube (plasma chamber) 21 is formed of, for example, quartz glass or the like, and an inert gas G containing carbon dioxide gas according to the present invention is introduced as a source gas from a transport tube 10 connected upward. The Inside the main plasma tube 21, an inert gas G, which is a discharge gas, is excited by microwaves sent through the main waveguide 22 to generate plasma.
 この主プラズマ管21においては、補助プラズマ発生装置30からのプラズマ(第一のプラズマ)に誘引され第二のプラズマが発生する。この第一のプラズマによる第二のプラズマの発生については後記詳述する。 In the main plasma tube 21, a second plasma is generated by being attracted by the plasma (first plasma) from the auxiliary plasma generator 30. The generation of the second plasma by the first plasma will be described in detail later.
 また、主プラズマ管21の下方には、照射光Lの照射口23が形成されている。照射口23は、図4に示すように、開口部が帯状に形成されている。これにより、一度に広い範囲でのプラズマ放電が可能となり、広い範囲での照射が可能となる。また、照射口23は、図5に示すように、幅広の帯状として形成することもできる。すなわち、照射口23の長手方向や幅方向の長さは、用途に応じて任意に定めることができる。また、照射口23の開口部(帯状)の角部は、丸みを帯びていても、あるいは楕円形状であってもよい。 Further, an irradiation port 23 for the irradiation light L is formed below the main plasma tube 21. As shown in FIG. 4, the irradiation port 23 has an opening formed in a band shape. As a result, plasma discharge over a wide range is possible at a time, and irradiation over a wide range is possible. Moreover, the irradiation port 23 can also be formed as a wide strip | belt shape, as shown in FIG. That is, the length of the irradiation port 23 in the longitudinal direction and the width direction can be arbitrarily determined according to the application. Moreover, the corner | angular part of the opening part (strip | belt shape) of the irradiation opening 23 may be roundish, or may be elliptical shape.
 図4、図5に示すように、本発明の光源装置1は、照射口23の開口面が広い面積である点で、基板の表面改質等に代表されるドライプロセスへの利用に適している。ここでいうドライプロセスとしては、大面積のガラス基板の洗浄等が一般的であるが、CVDなどでコーティングしたSiO薄膜の膜硬度を向上させる手段等にも使用できる。 As shown in FIGS. 4 and 5, the light source device 1 of the present invention is suitable for use in a dry process represented by surface modification of a substrate and the like in that the opening surface of the irradiation port 23 is a large area. Yes. As the dry process here, cleaning of a glass substrate having a large area is common, but it can also be used as a means for improving the film hardness of a SiO 2 thin film coated by CVD or the like.
 主プラズマ管21は、石英を材質として形成可能であるが、材質は石英に限るものではなく、マイクロ波を透過し、プラズマから発せられる熱に耐える材質であれば、特に制限はない。例えば、多くのガラスやセラミックなどはこの目的に合致し、他の絶縁材料よりも耐熱性が良好である。ただし、真空紫外光が照射される部分には、石英などの部材を設けない方が、長期安定に使えて有利である。また、真空紫外光が照射される部分は、取り替えやすい構造で設置し、定期的にその部材のみを交換することも可能で、基本的には部材のみの交換であるため、エキシマランプ全体の交換に比べれば、経済的にはかなり有利となる。 The main plasma tube 21 can be formed of quartz, but the material is not limited to quartz, and there is no particular limitation as long as it is a material that transmits microwaves and can withstand the heat generated from the plasma. For example, many glasses, ceramics, etc. meet this purpose and have better heat resistance than other insulating materials. However, it is advantageous not to provide a member such as quartz in the portion irradiated with vacuum ultraviolet light because it can be used stably for a long period of time. In addition, the part that is irradiated with vacuum ultraviolet light is installed with an easy-to-replace structure, and it is possible to replace only the member periodically. Basically, only the member is replaced, so the entire excimer lamp can be replaced. Compared to, it is very advantageous economically.
 主導波管22は、例えば、アルミニウム,銅,ステンレスなどで形成されており、大電力送電が可能である。このため、主導波管22の内部でマイクロ波の伝播が可能となっている。 The main waveguide 22 is made of, for example, aluminum, copper, stainless steel, etc., and can transmit high power. For this reason, microwaves can be propagated inside the main waveguide 22.
 この主導波管22の内部には、主プラズマ管21が設けられる。主プラズマ管21は、その詳細を図2に示すように、先端を閉じた主導波管22の先端である最終衝突面24から1/4波長(供給されるマイクロ波の波長の1/4波長(1/4λ))のところ、すなわち、定在波の最大振幅位置(腹)に設置される。 The main plasma tube 21 is provided inside the main waveguide 22. The main plasma tube 21, the details as shown in FIG. 2, a quarter wavelength of the wavelength of the microwaves final impact surface 24 from the quarter-wave (supply is the tip of the main waveguide 22 closing the front end (¼λ)), that is, at the maximum amplitude position (antinode) of the standing wave.
 主導波管22がマイクロ波を供給していることからもわかるように、光源装置1は、プラズマ発生方法としてマイクロ波励起方法を採用している。これにより、電子が運動する幅を小さくし、小型のプラズマ室であっても、プラズマ室壁にあたる電子の個数を減らすことができる。この結果、プラズマの質向上、プラズマ室壁の損傷防止にもなり、安定して真空紫外光の照射が可能となる。 As can be seen from the fact that the main waveguide 22 supplies microwaves, the light source device 1 employs a microwave excitation method as a plasma generation method. Thereby, the width | variety which an electron moves can be made small and the number of the electrons which hit a plasma chamber wall can be reduced even if it is a small plasma chamber. As a result, plasma quality is improved and damage to the plasma chamber wall is prevented, and vacuum ultraviolet light can be stably irradiated.
 補助プラズマ発生手段30は、主プラズマ発生手段20に供給される炭酸ガスを含有する不活性ガスGの上流の任意の位置、すなわち、輸送管10における任意の位置に設けられたプラズマ発生手段であって、図1に示すように、補助プラズマ管31と、補助導波管32とを有している。 Auxiliary plasma generating means 30 may be any position upstream of the inert gas G containing carbon dioxide gas to be supplied to the main plasma generating means 20, i.e., a plasma generating means provided in an arbitrary position in the transport tube 10 As shown in FIG. 1, an auxiliary plasma tube 31 and an auxiliary waveguide 32 are provided.
 補助プラズマ管31は、主プラズマ発生手段20の主プラズマ管21と同様、石英ガラスなどで形成されている。この補助プラズマ発生手段30の内部では、輸送管10により送られてきた炭酸ガスを含有する不活性ガスGが、マイクロ波励起によりプラズマ化されて、プラズマ(第一のプラズマ)が発生する。 The auxiliary plasma tube 31 is made of quartz glass or the like, similar to the main plasma tube 21 of the main plasma generating means 20. Inside the auxiliary plasma generating means 30, the inert gas G containing carbon dioxide gas sent by the transport pipe 10 is turned into plasma by microwave excitation to generate plasma (first plasma).
 この補助プラズマ管31は、主プラズマ発生手段20の主プラズマ管21に比べて、容積が小さいため、少ない電力で容易かつ安定的にプラズマ放電させることができる。しかも、補助プラズマ管31で放電されるプラズマは、プロセスとは直接関係がないため、プラズマ密度は低くてもよい。 Since the auxiliary plasma tube 31 has a smaller volume than the main plasma tube 21 of the main plasma generating means 20, it can be easily and stably discharged with less power. In addition, since the plasma discharged in the auxiliary plasma tube 31 is not directly related to the process, the plasma density may be low.
 このように、補助プラズマ管31は、容積を小さくでき、しかも発生するプラズマ密度は低くてもよいことから、補助プラズマ発生手段30は、主プラズマ発生手段20に比べて小型にすることができる。 Thus, the auxiliary plasma tube 31 can reduce the volume, yet since the plasma density generated may be lower, auxiliary plasma generating means 30 may be small compared to the main plasma generating means 20.
 補助導波管32は、補助プラズマ管31へマイクロ波を供給する。このため、補助プラズマ発生手段30においても、マイクロ波励起によりプラズマが発生する。 The auxiliary waveguide 32 supplies microwaves to the auxiliary plasma tube 31. For this reason, the auxiliary plasma generating means 30 also generates plasma by microwave excitation.
 なお、実施形態1においては、主プラズマ発生手段20と補助プラズマ発生手段30との双方で、同じプラズマ発生方法(マイクロ波励起方法)を用いることとしているが、双方とも同じプラズマ発生方法とすることに限定されるものではなく、それぞれ異なるプラズマ発生方法を用いることもできる。 In the first embodiment, the same plasma generation method (microwave excitation method) is used for both the main plasma generation unit 20 and the auxiliary plasma generation unit 30. However, the same plasma generation method is used for both. However, the plasma generation method may be different from each other.
 この補助プラズマ発生手段30で生成されたプラズマは、図6に示すように、輸送管10を通って、主プラズマ発生手段20へ導かれる。 The plasma generated by the auxiliary plasma generating means 30 is guided to the main plasma generating means 20 through the transport pipe 10 as shown in FIG.
 条件によっては、この輸送中にプラズマの大半が消失する可能性があるが、本発明者が鋭意検討を進めた結果、平均自由行程を越えるような距離、すなわち大半のプラズマが失われるような距離や条件であっても、本発明の目的効果が得られることが判明した。 Depending on the conditions, most of the plasma may be lost during this transport, but as a result of extensive studies by the inventor, the distance exceeding the mean free path, that is, the distance at which most of the plasma is lost. It has been found that the object and effects of the present invention can be obtained even under the same conditions.
 上記のような構成の補助プラズマ発生手段30を設けることにより、主プラズマ発生手段20での放電開始時や放電中に、補助プラズマ発生手段30からプラズマを供給することができる。この結果、主プラズマ発生手段20では、補助プラズマ発生手段30で生成されたイオン、電子、あるいはラジカルの一部が送られてくるために、これらイオン等に誘引されて極めて点火しやすくなり、かつ放電状態を維持しやすくなっており、安定したプラズマを得ることができる。 By providing the auxiliary plasma generating means 30 having the above-described configuration, plasma can be supplied from the auxiliary plasma generating means 30 at the start or during discharge of the main plasma generating means 20. As a result, in the main plasma generating means 20, since ions, electrons, or a part of radicals generated by the auxiliary plasma generating means 30 are sent, it is attracted to these ions and the like, and it is very easy to ignite, and It is easy to maintain the discharge state, and stable plasma can be obtained.
 また、一般に、大気圧環境下で生成するプラズマは、気圧が高いことから、減圧下で生成するプラズマと比較すると、点火や放電維持における単位体積当たりの電力を非常に大きくする必要が生じる場合が多い。 In general, since the plasma generated under an atmospheric pressure environment has a high atmospheric pressure, it may be necessary to significantly increase the power per unit volume in ignition and discharge maintenance compared to plasma generated under reduced pressure. Many.
 そこで、マイクロ波励起の大気圧プラズマ源に補助プラズマ発生手段30を取り付けると、輸送管10の長さを、例えば、30cmとした場合においても、比較的低い電力(例えば、1/10程度の電力)で安定したプラズマ放電及び維持が可能である。この結果、少ない電力で大面積の大気圧プラズマ源を構成でき、真空紫外光の照射強度も広範囲で可能となる。 Therefore, when the auxiliary plasma generating means 30 is attached to the microwave-excited atmospheric pressure plasma source, even when the length of the transport tube 10 is set to 30 cm, for example, a relatively low power (for example, about 1/10 of the power). ), Stable plasma discharge and maintenance are possible. As a result, a large-area atmospheric pressure plasma source can be configured with a small amount of electric power, and the irradiation intensity of vacuum ultraviolet light can be made in a wide range.
 なお、補助プラズマ発生手段30は、図7に示すように、輸送管10を介さず、主プラズマ発生手段20に直接接続する構成とすることもできる。この構成においても、輸送管10を介して主プラズマ発生手段20と接続された図6に示す構成と同様の効果が得られる。 Note that, as shown in FIG. 7, the auxiliary plasma generating means 30 may be configured to be directly connected to the main plasma generating means 20 without using the transport pipe 10. Also in this configuration, the same effect as the configuration shown in FIG. 6 connected to the main plasma generating means 20 through the transport pipe 10 can be obtained.
 更に、補助プラズマ発生手段30の補助プラズマ管31は、図1、図6、図7においては、輸送管10の口径方向の断面積よりも広い面積が確保された箱型のプラズマ室を一例として示しているが、この構成に限定されるものではなく、例えば、図8に示すように、輸送管10の一部をそのまま補助プラズマ管31として使用することもできる。この場合、補助導波管32を通って送られてきたマイクロ波が供給(照射)される輸送管10上の箇所が、補助プラズマ管31に相当する。 Further, the auxiliary plasma tube 31 of the auxiliary plasma generating means 30 in FIG. 1, FIG. 6, FIG. 7 is an example of a box-shaped plasma chamber in which an area larger than the sectional area in the caliber direction of the transport tube 10 is secured. Although shown, the present invention is not limited to this configuration. For example, as shown in FIG. 8, a part of the transport tube 10 can be used as the auxiliary plasma tube 31 as it is. In this case, the location on the transport tube 10 to which the microwave transmitted through the auxiliary waveguide 32 is supplied (irradiated) corresponds to the auxiliary plasma tube 31.
 本発明においては、主プラズマ発生手段20に供給される放電ガスは、すべて補助プラズマ発生手段30を通過する必要はない。 In the present invention, it is not necessary for all the discharge gas supplied to the main plasma generating means 20 to pass through the auxiliary plasma generating means 30.
 図9に示すように、補助プラズマ発生手段30を通さずに、炭酸ガスを含有する不活性ガスGを直接主プラズマ発生手段20へ送る第一ガス導入管25や、補助プラズマ発生手段30を通さずに輸送管10を介して炭酸ガスを含有する不活性ガスGを主プラズマ発生手段20へ送る第二ガス導入管11などを設けることができる。 As shown in FIG. 9, without passing through the auxiliary plasma generating means 30, the first gas introduction pipe 25 that sends the inert gas G containing carbon dioxide gas directly to the main plasma generating means 20 and the auxiliary plasma generating means 30 are passed through. Instead, a second gas introduction pipe 11 or the like for sending an inert gas G containing carbon dioxide gas to the main plasma generating means 20 via the transport pipe 10 can be provided.
 〔実施形態2〕
 次に、本発明の光源装置の実施形態2について、図10を参照して説明する。
[Embodiment 2]
Next, Embodiment 2 of the light source device of the present invention will be described with reference to FIG.
 図10は、本発明の実施形態2における光源装置の構成の一例を示す外観斜視図である。 FIG. 10 is an external perspective view showing an example of the configuration of the light source device according to Embodiment 2 of the present invention.
 図10に示す実施態様2は、上記説明した実施形態1と比較して、主導波管の構造が相違する。すなわち、実施形態1では、主導波管が単に断面が矩形の筒状に形成されていたのに対し、本実施形態では、主導波管がマイクロ波の導波方向に対して水平横方向に拡張されて形成されており、かつ、主導波管の内部に一又は二以上の隔壁を設けた点で相違する。他の構成要素は実施形態1と同様である。したがって、図10において、図1と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。 10 differs from Embodiment 1 described above in the structure of the main waveguide. That is, in the first embodiment, the main waveguide is simply formed in a cylindrical shape having a rectangular cross section, but in this embodiment, the main waveguide extends in the horizontal and horizontal directions with respect to the microwave waveguide direction. It is different in that it is formed and one or more partition walls are provided inside the main waveguide. Other components are the same as those in the first embodiment. Therefore, in FIG. 10, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図10に示すように、光源装置の主プラズマ発生手段20を構成する主導波管22は、マイクロ波MWの導波方向に対して水平横方向に拡張された扇状形状を有している。 As shown in FIG. 10, the main waveguide 22 that constitutes the main plasma generating means 20 of the light source device has a fan shape that is extended in a horizontal direction transverse to the guiding direction of the microwaves MW.
 幅の広い帯状の基板を処理対象物として、真空紫外線を照射して処理するためには、幅の広い均質なプラズマを生成する必要がある。この場合、主プラズマ源20を複数台並べることも考えられるが、コスト面や各プラズマ源の管理面で問題となる。 In order to treat a wide band-shaped substrate as an object to be processed by irradiation with vacuum ultraviolet rays, it is necessary to generate a wide uniform plasma. In this case, it is conceivable to arrange a plurality of main plasma sources 20, but this is problematic in terms of cost and management of each plasma source.
 そこで、主導波管22をマイクロ波MWの導波方向に対して水平横方向に拡張した構造とする。これにより、主プラズマ管21や吹き出し口23の形状を帯状(横長状)に形成でき、その結果、大面積の真空紫外光を処理対象物である基板に対して照射することができる。 Therefore, the main waveguide 22 has a structure extending horizontally and horizontally with respect to the waveguide direction of the microwave MW. Thus, the shape of the main plasma tube 21 and outlet 23 can be formed in a band shape (horizontally long shape), as a result, can be irradiated to the substrate as the processing target vacuum ultraviolet light having a large area.
 水平横方向へ拡張された主導波管22の幅広部分の内部には、一又は二以上の隔壁26が設けられている。隔壁26は、マイクロ波の導波経路を複数に分岐するように配置されている。この隔壁26で区切られた各分岐経路は、それぞれ独立した導波管と考えることができる。この隔壁26の位置や長さを変更することにより、それぞれの導波管に分配されるマイクロ波の電力及び位相を調整することができる。 One or more partition walls 26 are provided inside the wide portion of the main waveguide 22 expanded in the horizontal and lateral directions. The partition wall 26 is arranged so as to branch the microwave waveguide path into a plurality of branches. Each branch path delimited by the partition wall 26 can be considered as an independent waveguide. By changing the position and length of the partition wall 26, the power and phase of the microwaves distributed to the respective waveguides can be adjusted.
 なお、図10においては、4枚の隔壁26による導波経路の分割数を5経路としているが、5経路に限るものではなく、2経路、3経路、4経路、あるいは6経路以上とすることができる。ただし、隔壁26の間隔は、主導波管22の遮断波長の制約から1/2波長(供給されるマイクロ波の波長の1/2波長(1/2λ))以上にする必要がある。 In FIG. 10, the number of waveguide paths divided by the four partition walls 26 is five. However, the number is not limited to five, but two, three, four, or six or more paths are used. Can do. However, the interval of the partition wall 26 should be at least constraint from a half wavelength of the cutoff wavelength of the main waveguide 22 (1/2 wavelength of the wavelength of the supplied microwave (1 / 2λ)).
 それぞれの隔壁26間に分配されるマイクロ波電力は、隔壁26の位置、隔壁26間の距離、主導波管22の高さなどによって調整可能である。 The microwave power distributed between the partition walls 26 can be adjusted by the position of the partition walls 26, the distance between the partition walls 26, the height of the main waveguide 22, and the like.
 主プラズマ発生手段20のプラズマの照射口23は、処理する基板の形状によって、主導波管22の物理的な制約の範囲内において、照射口23の形状を変更することもできる。 The plasma irradiation port 23 of the main plasma generating means 20 can be changed in shape within the physical constraints of the main waveguide 22 depending on the shape of the substrate to be processed.
 次に、主プラズマ管や照射口の形状について、図11、図12を参照して説明する。 Next, the shapes of the main plasma tube and the irradiation port will be described with reference to FIGS.
 図11は、本発明の実施形態2における光源装置内部のプラズマ発生手段の構造を示す断面図であり、図12は、本発明の実施形態2における光源装置内部のプラズマ発生手段の構造の他の一例を示す断面図である。 FIG. 11 is a cross-sectional view showing the structure of the plasma generating means inside the light source device according to Embodiment 2 of the present invention, and FIG. 12 shows another structure of the plasma generating means inside the light source device according to Embodiment 2 of the present invention. It is sectional drawing which shows an example.
 すなわち、本発明の光源装置においては、主プラズマ管21や照射口23は、図11、図12に示すように、湾曲した形状に形成することもできる。 That is, in the light source device of the present invention, the main plasma tube 21 and the irradiation port 23 can be formed in a curved shape as shown in FIGS.
 照射口23の湾曲方向は、例えば、図11に示すように、マイクロ波MWの導波方向とは逆の方向、すなわち、主導波管22の先端にある最終衝突面から遠のく方向とすることができる。この場合、主プラズマ管21も、照射口23の湾曲方向と同一の方向に湾曲した形状に形成される。 For example, as shown in FIG. 11, the bending direction of the irradiation port 23 is set to a direction opposite to the waveguide direction of the microwave MW, that is, a direction far from the final collision surface at the tip of the main waveguide 22. it can. In this case, the main plasma tube 21 is also formed in a shape curved in the same direction as the direction of curvature of the irradiation port 23.
 照射口23や主プラズマ管21をこのような湾曲した形状とすることにより、処理対象物である基板の形状等に応じた照射が可能となる。このような形状は、円盤状の外周部のみを処理する必要がある場合に適している。 By making the irradiation port 23 and the main plasma tube 21 have such a curved shape, irradiation according to the shape of the substrate that is the object to be processed becomes possible. Such a shape is suitable when it is necessary to process only the outer periphery of the disk shape.
 また、照射口23の湾曲方向は、例えば、マイクロ波の導波方向と同一方向、すなわち、主導波管22の外側へ向かう方向とすることができる。この場合も、主プラズマ管21を照射口23の湾曲方向と同一の方向に湾曲した形状に形成される。照射口23や主プラズマ管21をこのような湾曲した形状とすることにより、被処理物である基板に適した形状のプラズマを作成することができる。 Also, the bending direction of the irradiation port 23 can be, for example, the same direction as the microwave guiding direction, that is, the direction toward the outside of the main waveguide 22. Also in this case, the main plasma tube 21 is formed in a shape curved in the same direction as the direction of the irradiation port 23. By setting the irradiation port 23 and the main plasma tube 21 to such a curved shape, plasma having a shape suitable for the substrate to be processed can be created.
 さらに、照射口23の湾曲方向は、例えば、図12に示すように、マイクロ波MWの導波方向に対して垂直上方向、すなわち、照射の方向とは逆の方向とすることができる。この場合、主プラズマ管21についても、同図に示すように、照射口23の湾曲方向と同一の方向に湾曲した形状に形成することができる。 Furthermore, the bending direction of the irradiation opening 23, for example, as shown in FIG. 12, vertically upward with respect to the waveguide direction of the microwaves MW, i.e., may be a direction opposite to the direction of irradiation. In this case, the main plasma tube 21 can also be formed in a shape curved in the same direction as that of the irradiation port 23 as shown in FIG.
 照射口23や主プラズマ管21を図12に示す形状とすることにより、照射口23から照射される真空紫外光である照射光Lが、照射方向前方で中央に集まるようになる。つまり、照射口23の中程から照射された真空紫外光はそのまま真っ直ぐ進むが、照射口23の端の方から照射された真空紫外光は、その照射口23の照射方向前方の中央へ向かって進む。これにより、真空紫外光である照射光Lは、さらに照射強度を増すことができる。 By making the irradiation port 23 and the main plasma tube 21 have the shape shown in FIG. 12, the irradiation light L, which is vacuum ultraviolet light irradiated from the irradiation port 23, gathers in the center in the irradiation direction. That is, the vacuum ultraviolet light irradiated from the middle of the irradiation port 23 travels straight, but the vacuum ultraviolet light irradiated from the end of the irradiation port 23 moves toward the front of the irradiation port 23 in the irradiation direction. move on. Thereby, the irradiation intensity | strength of the irradiation light L which is vacuum ultraviolet light can further increase irradiation intensity | strength.
 また、照射口23の湾曲方向は、例えば、マイクロ波MWの導波方向に対して垂直下方向、すなわち、照射光の照射方向と同じ方向とすることができる。この場合、主プラズマ管21についても、照射口23の湾曲方向と同一の方向に湾曲した形状に形成することができる。 The bending direction of the irradiation port 23 can be, for example, a downward direction perpendicular to the waveguide direction of the microwave MW, that is, the same direction as the irradiation direction of the irradiation light. In this case, the main plasma tube 21 can also be formed in a shape curved in the same direction as that of the irradiation port 23.
 照射口23や主プラズマ管21をこのような湾曲した形状とすることにより、パイプの内面や、樋(とい)状の基板の表面処理などに適用することができる。 By making the irradiation port 23 and the main plasma tube 21 have such a curved shape, it can be applied to the inner surface of a pipe, the surface treatment of a bowl-shaped substrate, and the like.
 なお、照射口23の開口の形状は、本実施形態においては湾曲した形状としているが、湾曲した形状に限るものではなく、例えば、屈曲した形状とすることもできる。 In addition, although the shape of the opening of the irradiation port 23 is a curved shape in the present embodiment, the shape is not limited to the curved shape, and may be a bent shape, for example.
 屈曲した形状に形成された照射口23を備えた主プラズマ発生手段20の構造例を、図13に示す。 FIG. 13 shows an example of the structure of the main plasma generating means 20 provided with the irradiation port 23 formed in a bent shape.
 照射口23の屈曲方向は、図13に示すように、例えば、マイクロ波MWの導波方向とは逆の方向、すなわち、主導波管22の最終衝突面から遠のく方向とすることができる。この場合、主プラズマ管21も、照射口23の屈曲方向と同一の方向に屈曲した形状に形成される。 As shown in FIG. 13, the bending direction of the irradiation port 23 can be, for example, a direction opposite to the waveguide direction of the microwave MW, that is, a direction far from the final collision surface of the main waveguide 22. In this case, the main plasma tube 21 is also formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
 また、照射口23の屈曲方向は、例えば、マイクロ波MWの導波方向と同一方向、すなわち、主導波管22の外側へ向かう方向とすることができる。この場合も、主プラズマ管21を照射口23の屈曲方向と同一の方向に屈曲した形状に形成される。 Also, the bending direction of the irradiation port 23 can be, for example, the same direction as the waveguide direction of the microwave MW, that is, the direction toward the outside of the main waveguide 22. Also in this case, the main plasma tube 21 is formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
 これらのように、照射口23の屈曲方向をマイクロ波の導波方向とは逆の方向や同一方向とすることにより、被処理物である基材の表面処理などに適用でき、特に、複雑な形状の基材への対応が可能となる。 As these, by the opposite direction and the same direction a bending direction of the irradiation opening 23 a guiding direction of the microwaves can be applied to such a surface treatment of the substrate as an object to be treated, in particular, complex Corresponding to the shape of the substrate becomes possible.
 さらに、照射口23の屈曲方向は、例えば、マイクロ波MWの導波方向に対して垂直上方向、すなわち、照射光の照射方向とは逆の方向とすることができる。この場合、主プラズマ管21についても、照射口23の屈曲方向と同一の方向に屈曲した形状に形成することができる。 Furthermore, the bending direction of the irradiation port 23 can be, for example, an upward direction perpendicular to the waveguide direction of the microwave MW, that is, a direction opposite to the irradiation direction of the irradiation light. In this case, the main plasma tube 21 can also be formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
 また、照射口23の屈曲方向は、例えば、マイクロ波MWの導波方向に対して垂直下方向、すなわち、照射光の照射方向と同じ方向とすることができる。この場合、主プラズマ管21についても、照射口23の屈曲方向と同一の方向に屈曲した形状に形成することができる。 Also, the bending direction of the irradiation port 23 can be, for example, the downward direction perpendicular to the waveguide direction of the microwave MW, that is, the same direction as the irradiation direction of the irradiation light. In this case, the main plasma tube 21 can also be formed in a shape bent in the same direction as the bending direction of the irradiation port 23.
 照射口23や主プラズマ管21をこのような形状とすることにより、パイプの内面や、樋(とい)状の被処理物の表面処理などに適用できる。 By forming the irradiation port 23 and the main plasma tube 21 in such a shape, it can be applied to the inner surface of a pipe or the surface treatment of a to-be-processed object.
 さらに、図11~図13においては、形成される湾曲部分(又は屈曲部分)が、照射口23で一箇所だけ形成されているが、一箇所に限るものではなく、例えば、二箇所以上形成することもできる。しかも、一つの照射口23に、湾曲部分と屈曲部分との双方をそれぞれ一又は二以上形成することもできる。これらのような形状とすることで、複雑な形状の被処理物に対応できる。 Furthermore, in FIG. 11 to FIG. 13, the curved portion (or bent portion) to be formed is formed only at one place at the irradiation port 23, but is not limited to one place, and for example, formed at two or more places. You can also In addition, one or more of the curved portion and the bent portion can be formed in one irradiation port 23, respectively. By setting it as such a shape, it can respond to the to-be-processed object of a complicated shape.
 〔実施形態3〕
 次に、本発明の光源装置の実施形態3について、図14を参照して説明する。
[Embodiment 3]
Next, Embodiment 3 of the light source device of the present invention will be described with reference to FIG.
 図14は、本発明の実施形態3における光源装置の構成の一例を示す外観斜視図である。 FIG. 14 is an external perspective view showing an example of the configuration of the light source device according to Embodiment 3 of the present invention.
 実施形態3で示す光源装置1は、実施形態1で示した光源装置1に比較して、マイクロ波を供給する手段が相違する。すなわち、実施形態1では、マイクロ波MWが主導波管22や補助導波管32により供給されていたのに対し、本実施形態では、給電用主アンテナ27や給電用補助アンテナ33により供給される点で相違する。他の構成要素は実施形態1と同様である。したがって、図14で示す光源装置の説明においては、図1と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。 The light source device 1 shown in the third embodiment is different from the light source device 1 shown in the first embodiment in the means for supplying microwaves. That is, in the first embodiment, the microwave MW is supplied from the main waveguide 22 and the auxiliary waveguide 32, whereas in the present embodiment, the microwave MW is supplied from the power supply main antenna 27 and the power supply auxiliary antenna 33. It is different in point. Other components are the same as those in the first embodiment. Therefore, in the description of the light source device shown in FIG. 14, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図14に示すように、実態態様3である光源装置1は、輸送管10と、主プラズマ発生手段20と、補助プラズマ発生手段30とを有している。ここで、主プラズマ発生手段20の主プラズマ管21と補助プラズマ発生手段30の補助プラズマ管とは、例えば、石英などで形成されており、一体化して製作されている。 As shown in FIG. 14, the light source device 1 that is the actual mode 3 includes a transport tube 10, a main plasma generating means 20, and an auxiliary plasma generating means 30. Here, the main plasma tube 21 of the main plasma generating means 20 and the auxiliary plasma tube of the auxiliary plasma generating means 30 are made of, for example, quartz and are integrally manufactured.
 ここで、主プラズマ発生手段20は、図1等に示したような主導波管に代えて、あるいは、主導波管22に加えて、給電用主アンテナ27と、同軸ケーブル28とを備えている。 Here, the main plasma generating means 20 includes a power feeding main antenna 27 and a coaxial cable 28 instead of the main waveguide as shown in FIG. 1 or the like, or in addition to the main waveguide 22. .
 給電用主アンテナ27は、主プラズマ管21に対してマイクロ波を供給するアンテナであって、導電体で形成されており、帯状に一様にマイクロ波を供給するためのモノポールアンテナ27-1で構成することができる。なお、モノポールアンテナ27-1は、図14においては、二枚設けられているが、二枚に限るものではなく、例えば、一枚であってもよく、あるいは、三枚以上であってもよい。また、同軸ケーブル28に代えて、同軸管(図示せず)を用いることもできる。 Feeding main antenna 27 is an antenna for supplying microwaves to the main plasma tube 21 is formed of a conductive material, a monopole antenna for supplying uniformly microwave band 27-1 Can be configured. Incidentally, the monopole antenna 27-1, 14 is provided two, not limited to two, for example, be a single, or even three or more sheets Good. Moreover, it can replace with the coaxial cable 28 and a coaxial pipe | tube (not shown) can also be used.
 補助プラズマ発生手段30は、図1等に示したような補助導波管32に代えて、あるいは、補助導波管32に加えて、給電用補助アンテナ33と、同軸ケーブル34とを備えている。 The auxiliary plasma generating means 30 includes a power feeding auxiliary antenna 33 and a coaxial cable 34 instead of or in addition to the auxiliary waveguide 32 as shown in FIG. .
 給電用補助アンテナ33は、補助プラズマ管31に対してマイクロ波を供給するアンテナであって、導電体で形成されており、補助プラズマ管31の外周に沿って巻きつけるように螺旋状に形成されたスパイラルアンテナ33-1とすることができる。なお、同軸ケーブル34に代えて、同軸管(図示せず)を用いることもできる。 The power feeding auxiliary antenna 33 is an antenna that supplies microwaves to the auxiliary plasma tube 31, is formed of a conductor, and is formed in a spiral shape so as to be wound around the outer periphery of the auxiliary plasma tube 31. The spiral antenna 33-1 can be obtained. Instead of the coaxial cable 34, a coaxial tube (not shown) can be used.
 本発明において、導波管で給電する方法は、例えば、特開2002-330020号公報等で開示されているホーンアンテナや、例えば、特開平08-078190号公報等で開示されているスロットアンテナのような開口型アンテナで給電する方法とほぼ同様の作用をし、いわゆる導電体で構成される給電用アンテナと原理は異なるものの、電磁界の放出という機能は同じである。したがって、導波管による給電に代えて、導電体によるアンテナ給電によっても、本発明の光源装置を構成することができる。 In the present invention, a method of feeding power through a waveguide is, for example, that of a horn antenna disclosed in Japanese Patent Laid-Open No. 2002-330020 or a slot antenna disclosed in Japanese Patent Laid-Open No. 08-078190. It operates in substantially the same way as a method of feeding with such an aperture antenna, and has the same function of electromagnetic field emission, although the principle is different from that of a feeding antenna made of a so-called conductor. Therefore, the light source device of the present invention can be configured also by antenna feeding by a conductor instead of feeding by a waveguide.
 なお、導波管による給電に対し、アンテナ給電による方法のメリットは、装置の小型化が可能な点である。導波管は、その横幅に遮断波長が存在するために、1/2λ以下にすることはできない。しかし、同軸ケーブルあるいは同軸管を用いてアンテナによる給電とすれば、寸法的な制約が小さく、小型化が可能である。 Note that the merit of the antenna power feeding method compared to the power feeding by the waveguide is that the device can be miniaturized. The waveguide cannot be made to be ½λ or less because of the cutoff wavelength in the lateral width. However, if power is supplied by an antenna using a coaxial cable or a coaxial tube, there are few dimensional restrictions and a reduction in size is possible.
 なお、モノポールアンテナ27-1またはスパイラルアンテナ33-1のいずれのアンテナも、プラズマの金属汚損を防止するため、主プラズマ管21または補助プラズマ管31の外に配置されており、石英ガラスを通してプラズマに給電している。 Note that either the monopole antenna 27-1 or the spiral antenna 33-1 is disposed outside the main plasma tube 21 or the auxiliary plasma tube 31 in order to prevent metal contamination of the plasma, and the plasma is transmitted through quartz glass. Is feeding.
 それらモノポールアンテナ27-1やスパイラルアンテナ33-1の材質は、良導体であればいずれも使用可能であるが、プラズマの輻射熱に直接晒されることから、アルミニウム、ステンレス、金メッキされた銅など、酸化しにくく融点が高く赤外線の反射率が高い金属が望ましい。 Any material can be used for the monopole antenna 27-1 and the spiral antenna 33-1 as long as they are good conductors. However, since they are directly exposed to the radiant heat of plasma, oxidation such as aluminum, stainless steel, gold-plated copper, etc. A metal having a high melting point and a high infrared reflectance is desirable.
 形状は、丸線、板状、パイプなどを大きさ、インピーダンス整合の状態によって使い分けすることが望ましい。 As for the shape, it is desirable to use a round wire, a plate, a pipe, etc. depending on the size and impedance matching state.
 それらモノポールアンテナ27-1やスパイラルアンテナ33-1を用いた場合、実用的には、マイクロ波漏洩防止のため、光源1の全体を金属板などで覆い、電磁遮断する必要がある。 When these monopole antenna 27-1 or spiral antenna 33-1 are used, it is practically necessary to cover the entire light source 1 with a metal plate or the like to prevent electromagnetic leakage in order to prevent microwave leakage.
 なお、導電体で構成される給電用アンテナは、特許第3854238号公報に記載のプラズマ源の技術で実現可能である。 Note that the power feeding antenna formed of a conductor can be realized by the plasma source technique described in Japanese Patent No. 3854238.
 以上、本発明の光源装置の好ましい実施形態1~3について説明したが、本発明の光源装置は上述した実施形態1~3のみに限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。 The preferred embodiments 1 to 3 of the light source device of the present invention have been described above. However, the light source device of the present invention is not limited to the above-described first to third embodiments, and various modifications can be made within the scope of the present invention. It goes without saying that is possible.
 例えば、上述した実施形態では、主プラズマ発生手段や補助プラズマ発生手段をそれぞれ一つずつ備えた構成を示したが、それら主プラズマ発生手段や補助プラズマ発生手段は、それぞれ二つ以上備えた構成とすることもできる。 For example, in the above-described embodiment, a configuration including one main plasma generation unit and one auxiliary plasma generation unit is shown. However, each of the main plasma generation unit and the auxiliary plasma generation unit includes two or more configurations. You can also
 また、図1においては、一つの補助プラズマ発生手段で発生したプラズマが一つの主プラズマ発生手段へ供給される構成としてあるが、それら補助プラズマ発生手段と主プラズマ発生手段とは一つ対一つとする構成に限るものではなく、例えば、一又は二以上の補助プラズマ発生手段で発生したプラズマを一又は二以上の主プラズマ発生手段へ供給するような構成とすることもできる。 In FIG. 1, the plasma generated by one auxiliary plasma generating means is supplied to one main plasma generating means. The auxiliary plasma generating means and the main plasma generating means are one-to-one. For example, a configuration in which plasma generated by one or more auxiliary plasma generating means is supplied to one or two or more main plasma generating means may be employed.
 さらに、主プラズマ発生手段を複数設ける場合は、それら主プラズマ発生手段を横方向にも、また、縦方向にも並べることができる。ただし、複数の主プラズマ発生手段を横方向に並べた場合は、照射口が下方向を向く構造となり、一方、複数の主プラズマ発生手段を縦方向に並べた場合は、照射口が横方向を向く構造となる。そして、いずれの場合にも、一又は二以上の補助プラズマ発生手段によりプラズマを供給することは可能である。 Further, when a plurality of main plasma generating means are provided, these main plasma generating means can be arranged in the horizontal direction and also in the vertical direction. However, when a plurality of main plasma generating means are arranged in the horizontal direction, the irradiation port is directed downward. On the other hand, when a plurality of main plasma generating means are arranged in the vertical direction, the irradiation port is arranged in the horizontal direction. The structure is suitable. In any case, it is possible to supply plasma by one or more auxiliary plasma generating means.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 〔実施例1〕
 はじめに、本発明に係る実施形態の光源装置を用いた実験結果について、説明する。
[Example 1]
First, experimental results using the light source device according to the embodiment of the present invention will be described.
 マイクロ波電源は、2.45(GHz)、最大電力1.0(kW)の連続波出力のものを、補助プラズマ発生手段用、主プラズマ発生手段用として二台使用した。 Two microwave power supplies with a continuous wave output of 2.45 (GHz) and maximum power of 1.0 (kW) were used as auxiliary plasma generating means and main plasma generating means.
 補助導波管32の内径は、96×9(mm)とし、補助プラズマ管31は石英管とし、内径は9(mm)とした。補助プラズマ管31と主プラズマ管21との間は、内径15(mm)のアルミナセラミック管で接続した。主導波管22の内径は、96×18.5(mm)とした。 The inner diameter of the auxiliary waveguide 32 was 96 × 9 (mm), the auxiliary plasma tube 31 was a quartz tube, and the inner diameter was 9 (mm). The auxiliary plasma tube 31 and the main plasma tube 21 were connected by an alumina ceramic tube having an inner diameter of 15 (mm). The inner diameter of the main waveguide 22 was 96 × 18.5 (mm).
 主プラズマ発生手段20は、照射口23が94(mm)×3(mm)の帯状に形成されており、主プラズマ管21が直方体に形成されたものを使用した。 As the main plasma generating means 20, the irradiation port 23 is formed in a strip shape of 94 (mm) × 3 (mm), and the main plasma tube 21 is formed in a rectangular parallelepiped.
 放電ガスとしては、炭酸ガス(COガス)を0.3体積%含有するアルゴンガスを5L/minで供給し、補助プラズマ発生手段に500Wを印加してプラズマを発生させ、その後、主プラズマ発生手段に300Wを印加してスリット状に放電を形成、その後、補助プラズマ発生手段用の電力は0Wに停止したが、主プラズマ発生手段部の放電は維持できた。その状態で、主プラズマ発生手段部で発生する発光スペクトルを分光器(オーシャンオプティクス製Maya2000)を用いて計測した結果、図16に示すように、エキシマランプ(エムディエキシマ製MEUT-1-330)に比べ、200nm以下の真空紫外光強度が、ピーク強度で10倍以上、積算強度で5倍以上あることが確認された。 As the discharge gas, argon gas containing 0.3% by volume of carbon dioxide (CO 2 gas) is supplied at 5 L / min, 500 W is applied to the auxiliary plasma generating means to generate plasma, and then main plasma is generated. 300 W was applied to the means to form a slit-like discharge, and then the power for the auxiliary plasma generating means was stopped at 0 W, but the discharge of the main plasma generating means was maintained. In this state, the emission spectrum generated in the main plasma generating means was measured using a spectroscope (May 2000 manufactured by Ocean Optics). As a result, as shown in FIG. 16, the excimer lamp (MEUT-1-330 manufactured by MDI excimer) was used. In comparison, it was confirmed that the vacuum ultraviolet light intensity of 200 nm or less was 10 times or more in peak intensity and 5 times or more in integrated intensity.
 〔比較例1〕
 上記実施例1において、放電ガス中の炭酸ガス(COガス)を除いた以外は全く同条件にてプラズマを形成した後、得られた発光スペクトルを計測したが、図16に示したような真空紫外域の発光スペクトルは計測されなかった。
[Comparative Example 1]
In Example 1 above, plasma was formed under exactly the same conditions except that carbon dioxide (CO 2 gas) in the discharge gas was removed, and the obtained emission spectrum was measured. As shown in FIG. The emission spectrum in the vacuum ultraviolet region was not measured.
 〔比較例2〕
 上記実施例1において、マイクロ波電源に代えて、比較例である13.56MHzの高周波電源(RF電源)を用いた以外は全く同条件にてプラズマを形成した後、得られた発光スペクトルを、分光器を用いて計測したが、真空紫外域の発光スペクトルは計測されなかった。
[Comparative Example 2]
In Example 1 described above, instead of the microwave power source, plasma was formed under exactly the same conditions except that a 13.56 MHz high frequency power source (RF power source) as a comparative example was used, and then the obtained emission spectrum was Although it measured using the spectroscope, the emission spectrum of the vacuum ultraviolet region was not measured.
 〔実施例2〕
 上記実施例1で用いた光源装置及び条件にて、連続稼働させた際の190nm付近の最も高いピーク値の発光強度を計測した結果、図17に示すように約10000hr経過しても、そのピーク値における劣化は全く確認されなかった。
[Example 2]
As a result of measuring the light emission intensity of the highest peak value near 190 nm when continuously operated under the light source device and conditions used in Example 1, the peak was reached even after about 10,000 hours as shown in FIG. No degradation in value was observed.
 〔比較例3〕
 エキシマランプ(エムディエキシマ製MEUT-1-330)を用いて、同様に185nm付近の最も高いピーク値の発光強度を計測した結果、図17に示すように、約1800hr経過したところで発光強度が約1/10に低下してしまうことが確認された。
[Comparative Example 3]
Using an excimer lamp (MEUT-1-330 manufactured by MDI excimer), the emission intensity of the highest peak value in the vicinity of 185 nm was measured in the same manner. As a result, as shown in FIG. It was confirmed that it would fall to / 10.
 〔実施例3〕
 実施例1に記載の光源装置を用いて、移動ステージ上に設置したガラス基板の洗浄処理を行い、洗浄処理後、接着剤をコーティングし、その密着性をJIS K 5400に準拠した碁盤目試験により行った。ここで洗浄処理としては、真空紫外光照射開口部に滞在している時間を0.03、0.05、0.1、0.5、1、3、5、10、30secとなるように移動ステージ速度を変化させた。
Example 3
Using the light source device described in Example 1, the glass substrate placed on the moving stage is cleaned, and after the cleaning process, the adhesive is coated, and the adhesion is determined by a cross-cut test in accordance with JIS K 5400. went. Here, as the cleaning process, the time spent in the vacuum ultraviolet light irradiation opening is moved to 0.03, 0.05, 0.1, 0.5, 1, 3, 5, 10, 30 sec. The stage speed was changed.
 〔比較例4〕
 上記実施例3において、比較例1に記載の光源装置(放電ガスとして炭酸ガス(COガス)を除いた光源装置)を用いた以外は同様にして、ガラス基板の洗浄処理を行い、同様に密着試験を行った。
[Comparative Example 4]
In Example 3 above, the glass substrate was cleaned in the same manner except that the light source device described in Comparative Example 1 (light source device excluding carbon dioxide (CO 2 gas) as a discharge gas) was used. An adhesion test was performed.
 〔比較例5〕
 上記実施例3において、比較例2に記載の光源装置(13.56MHzの高周波電源(RF電源)を用いた光源装置)を用いた以外は同様にして、ガラス基板の洗浄処理を行い、同様に密着試験を行った。
[Comparative Example 5]
In Example 3 above, the glass substrate was cleaned in the same manner except that the light source device described in Comparative Example 2 (light source device using a 13.56 MHz high frequency power source (RF power source)) was used. An adhesion test was performed.
 〔比較例6〕
 上記実施例3において、本発明の光源装置に代えて、比較例3に記載のエキシマランプ(エムディエキシマ製MEUT-1-330)を用いて、ガラス基板の洗浄処理を行い、同様に密着試験を行った。
[Comparative Example 6]
In Example 3 above, instead of the light source device of the present invention, the excimer lamp described in Comparative Example 3 (MEUT-1-330 manufactured by MDI Excimer) was used to clean the glass substrate, and the adhesion test was similarly performed. went.
 上記実施例3、比較例4、比較例5及び比較例6において、真空紫外光照射開口部に滞在している時間を0.03、0.05、0.1、0.5、1、3、5、10、30secとなるように移動ステージ速度を変化させた時の各試料の密着試験をJIS K 5400に準拠した碁盤目試験により行い、下記の基準に従って密着性を評価した。 In the said Example 3, the comparative example 4, the comparative example 5, and the comparative example 6, the time which has stayed in the vacuum ultraviolet light irradiation opening part is 0.03, 0.05, 0.1, 0.5, 1, 3 An adhesion test of each sample when the moving stage speed was changed to be 5, 10, 30 sec was performed by a cross-cut test based on JIS K 5400, and the adhesion was evaluated according to the following criteria.
 ○:良好な密着性が確認され、実用に耐える品質である
 ×:密着不良に伴う接着剤の剥がれが確認され、実用上懸念される品質である
 以上により得られた結果を、表1に示す。
○: Good adhesion is confirmed and the quality can withstand practical use. ×: Adhesive peeling due to poor adhesion is confirmed, and the quality is of practical concern. The results obtained as described above are shown in Table 1. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の結果より明らかなように、実施例3の本発明の光源装置を用いて洗浄処理を行ったガラス基板は、いずれの処理時間においても、良好な密着性が得られ、非常に短時間でも洗浄処理を行うことができることが分かる。一方、比較例4及び5では、いずれの処理時間でも、実用に耐えうる密着性を得ることができなかった。また、比較例6においては、10sec及び30secの処理時間では実用に耐えうる品質の密着性を確認できたが、その他の条件では密着不良に伴う接着剤の剥がれが発生した。 As apparent from the results shown in Table 1, the glass substrate subjected to cleaning treatment by using the light source device of the present invention Example 3, in any of the processing time, a good adhesion is obtained, very It can be seen that the cleaning process can be performed even in a short time. On the other hand, in Comparative Examples 4 and 5, it was not possible to obtain adhesiveness that could withstand practical use at any treatment time. Further, in Comparative Example 6, the adhesiveness of quality that could withstand practical use could be confirmed in the processing time of 10 sec and 30 sec. However, the adhesive peeled off due to poor adhesion occurred under other conditions.
 以上のように、本発明の真空紫外光源を用いた光源装置は、短時間で表面処理が行え、またエキシマランプに見られる経時劣化もなく、長期で安定して連続処理できる光源装置が得られる。 As described above, the light source device using the vacuum ultraviolet light source of the present invention can provide a light source device that can perform surface treatment in a short time and can be stably processed continuously for a long time without deterioration over time seen in an excimer lamp. .
 1 光源装置
 10 輸送管
 11 第二ガス導入管
 20 主プラズマ発生手段
 21 主プラズマ管
 22 主導波管
 23 照射口
 24 最終衝突面
 25 第一ガス導入管
 26 隔壁
 27 給電用主アンテナ
 27-1 モノポールアンテナ
 28 同軸ケーブル
 30 補助プラズマ発生手段
 31 補助プラズマ管
 32 補助導波管
 33 給電用補助アンテナ
 33-1 スパイラルアンテナ
 34 同軸ケーブル
 101 放電容器
 102 内部電極
 104 外部電極
 105 隔壁
 G 放電ガス(不活性ガス)
 L 照射光
 MW マイクロ波
 PJ1 第一のプラズマ
 PJ2 第二のプラズマ
DESCRIPTION OF SYMBOLS 1 Light source device 10 Transport pipe 11 Second gas introduction pipe 20 Main plasma generating means 21 Main plasma pipe 22 Main waveguide 23 Irradiation port 24 Final collision surface 25 First gas introduction pipe 26 Bulkhead 27 Main antenna for feeding 27-1 Monopole Antenna 28 Coaxial cable 30 Auxiliary plasma generating means 31 Auxiliary plasma tube 32 Auxiliary waveguide 33 Power feeding auxiliary antenna 33-1 Spiral antenna 34 Coaxial cable 101 Discharge vessel 102 Internal electrode 104 External electrode 105 Bulkhead G Discharge gas (inert gas)
L irradiation light MW microwave PJ1 first plasma PJ2 second plasma

Claims (12)

  1. 大気圧もしくはその近傍の圧力下で、放電空間に不活性ガスを供給し、該放電空間に高周波電界を形成することにより発生したプラズマから放射される光を照射する光源装置において、該不活性ガスが炭酸ガスを含有し、かつ形成する高周波電界の周波数がマイクロ波帯であることを特徴とする光源装置。 In a light source device that irradiates light emitted from plasma generated by supplying an inert gas to a discharge space and forming a high-frequency electric field in the discharge space under atmospheric pressure or a pressure in the vicinity thereof, the inert gas Contains a carbon dioxide gas, and the frequency of the high-frequency electric field formed is in the microwave band.
  2. 前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.01体積%以上、3.0体積以下であることを特徴とする請求項1に記載の光源装置。 2. The light source device according to claim 1, wherein a content of carbon dioxide in a discharge gas composed of the inert gas and carbon dioxide is 0.01% by volume to 3.0% by volume.
  3. 前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.1体積%以上、0.5体積以下であることを特徴とする請求項2に記載の光源装置。 3. The light source device according to claim 2, wherein a content of carbon dioxide in a discharge gas composed of the inert gas and carbon dioxide is 0.1 volume% or more and 0.5 volume or less.
  4. 前記不活性ガスが、アルゴン、ヘリウム、窒素及びそれらの混合物から選ばれる少なくとも1種であることを特徴とする請求項1から3のいずれか1項に記載の光源装置。 4. The light source device according to claim 1, wherein the inert gas is at least one selected from argon, helium, nitrogen, and a mixture thereof. 5.
  5. 前記光源装置から照射される光が、真空紫外域に発光波長を有していることを特徴とする請求項1から4のいずれか1項に記載の光源装置。 The light source device according to claim 1, wherein the light emitted from the light source device has a light emission wavelength in a vacuum ultraviolet region.
  6. 主プラズマ発生手段及び補助プラズマ発生手段の二つのプラズマ発生手段を有することを特徴とする請求項1から5のいずれか1項に記載の光源装置。 6. The light source device according to claim 1, comprising two plasma generation means, a main plasma generation means and an auxiliary plasma generation means.
  7. 大気圧もしくはその近傍の圧力下で、放電空間に不活性ガスを供給し、該放電空間に高周波電界を形成することにより発生したプラズマから放射される光を、基板に照射して表面処理を施す表面処理方法において、該不活性ガスが炭酸ガスを含有し、かつ形成する高周波電界の周波数がマイクロ波帯であることを特徴とする表面処理方法。 A surface treatment is performed by irradiating the substrate with light emitted from plasma generated by supplying an inert gas to the discharge space and forming a high-frequency electric field in the discharge space at or near atmospheric pressure. In the surface treatment method, the inert gas contains carbon dioxide gas, and the frequency of the high-frequency electric field to be formed is in a microwave band.
  8. 前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.01体積%以上、3.0体積以下であることを特徴とする請求項7に記載の表面処理方法。 The surface treatment method according to claim 7, wherein the content of carbon dioxide in the discharge gas composed of the inert gas and carbon dioxide is 0.01 volume% or more and 3.0 volume or less. .
  9. 前記不活性ガス及び炭酸ガスから構成される放電ガス中の炭酸ガスの含有量が、0.1体積%以上、0.5体積以下であることを特徴とする請求項8に記載の表面処理方法。 The surface treatment method according to claim 8, wherein a content of carbon dioxide in a discharge gas composed of the inert gas and carbon dioxide is 0.1 volume% or more and 0.5 volume or less. .
  10. 前記不活性ガスが、アルゴン、ヘリウム、窒素及びそれらの混合物から選ばれる少なくとも1種であることを特徴とする請求項7から9のいずれか1項に記載の表面処理方法。 The surface treatment method according to any one of claims 7 to 9, wherein the inert gas is at least one selected from argon, helium, nitrogen, and a mixture thereof.
  11. 光源装置から照射される光が、真空紫外域に発光波長を有していることを特徴とする請求項7から10のいずれか1項に記載の表面処理方法。 The surface treatment method according to claim 7, wherein light emitted from the light source device has a light emission wavelength in a vacuum ultraviolet region.
  12. 主プラズマ発生手段及び補助プラズマ発生手段の二つのプラズマ発生手段を有することを特徴とする請求項7から11のいずれか1項に記載の表面処理方法。 The surface treatment method according to any one of claims 7 to 11, comprising two plasma generation means, a main plasma generation means and an auxiliary plasma generation means.
PCT/JP2010/067740 2009-10-15 2010-10-08 Light source apparatus and surface processing method WO2011046077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011536118A JP5733214B2 (en) 2009-10-15 2010-10-08 Light source device and surface treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009238022 2009-10-15
JP2009-238022 2009-10-15

Publications (1)

Publication Number Publication Date
WO2011046077A1 true WO2011046077A1 (en) 2011-04-21

Family

ID=43876127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067740 WO2011046077A1 (en) 2009-10-15 2010-10-08 Light source apparatus and surface processing method

Country Status (2)

Country Link
JP (1) JP5733214B2 (en)
WO (1) WO2011046077A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060269A (en) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd Laser device
JP2005251656A (en) * 2004-03-05 2005-09-15 Ntp:Kk Sample washing device and sample washing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010675A (en) * 2004-05-27 2006-01-12 National Institute Of Advanced Industrial & Technology Generating method of ultraviolet light, and ultraviolet light source device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060269A (en) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd Laser device
JP2005251656A (en) * 2004-03-05 2005-09-15 Ntp:Kk Sample washing device and sample washing method

Also Published As

Publication number Publication date
JPWO2011046077A1 (en) 2013-03-07
JP5733214B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP4607073B2 (en) Microwave resonance plasma generating apparatus and plasma processing system including the apparatus
JP5213150B2 (en) Plasma processing apparatus and product manufacturing method using plasma processing apparatus
US8610353B2 (en) Plasma generating apparatus, plasma processing apparatus and plasma processing method
US8128783B2 (en) Plasma generator and work processing apparatus provided with the same
JP2006128000A (en) Plasma treatment device
US20100006227A1 (en) Microwave Plasma Reactor
JP4852997B2 (en) Microwave introduction apparatus and plasma processing apparatus
JP4620015B2 (en) Plasma generating apparatus and work processing apparatus using the same
CN101395973A (en) Plasma generator and method of generating plasma using the same
JP2009021220A (en) Plasma processing device, antenna, and usage method for plasma processing device
JP2580266Y2 (en) High power beam generator
KR101170926B1 (en) Plasma reactor having ignition device for plasma discharge
TWI402001B (en) Plasma processing device, plasma processing method, and processed object treated by the method
JP5733214B2 (en) Light source device and surface treatment method
JP2010277971A (en) Plasma processing device and power feeding method for the plasma processing device
WO2014103604A1 (en) Microwave plasma generating apparatus
JP2004221087A (en) Plasma generation system
JP4418227B2 (en) Atmospheric pressure plasma source
JP5275092B2 (en) Plasma processing equipment
JP2010022975A (en) High-voltage plasma generator
JP2007227285A (en) Plasma treatment device and method
JP2007273096A (en) Plasma generator and workpiece processing apparatus using the same
JP2008066058A (en) Plasma generation nozzle, plasma generating device, and work treatment device using it
JP2008077926A (en) Plasma generating device and work processor using it
JP2005285349A (en) Microwave electrodeless discharge lamp device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536118

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823345

Country of ref document: EP

Kind code of ref document: A1