WO2011045201A1 - Device for non-destructive inspection of the interior of components and transducer for the same having improved ultrasonic coupling - Google Patents

Device for non-destructive inspection of the interior of components and transducer for the same having improved ultrasonic coupling Download PDF

Info

Publication number
WO2011045201A1
WO2011045201A1 PCT/EP2010/064799 EP2010064799W WO2011045201A1 WO 2011045201 A1 WO2011045201 A1 WO 2011045201A1 EP 2010064799 W EP2010064799 W EP 2010064799W WO 2011045201 A1 WO2011045201 A1 WO 2011045201A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
movement
component
extensions
coupling medium
Prior art date
Application number
PCT/EP2010/064799
Other languages
German (de)
French (fr)
Inventor
Julian Theobald
Stefan Holl
Klaus Krämer
Original Assignee
Institut für Akustomikroskopie Dr. Krämer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut für Akustomikroskopie Dr. Krämer GmbH filed Critical Institut für Akustomikroskopie Dr. Krämer GmbH
Publication of WO2011045201A1 publication Critical patent/WO2011045201A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise

Definitions

  • the present invention relates to a device for nondestructive inspection of the interior of components.
  • the device comprises an ultrasonic arrangement with at least one transducer which is assigned to the component. Between the components and a free end of the at least one transducer, a liquid coupling medium is provided. For the inspection of the entire component, a traversing device is provided, which moves the at least one transducer in a meandering manner substantially along a first direction of movement and along a second, opposite to the first direction of movement, in the liquid coupling medium on the component.
  • the invention also relates to a transducer.
  • the transducer is suitable for trouble-free inspection of the interior of components.
  • the transducer has a free end from which can be emitted from ultrasonic waves and from which an echo of the emitted ultrasonic waves can be received.
  • German patent application DE 10 2006 032 431 A1 discloses a method for detecting mechanical defects in a semiconductor material consisting of a rod piece.
  • the semiconductor material has at least one flat surface and a thickness of 1 cm to 100 cm measured perpendicular to this surface.
  • the flat surface of the rod piece is ratcheted with at least one transducer which is coupled via a liquid coupling medium to the flat surface of the rod piece.
  • the unpublished German patent application DE 10 2008 002 832.0 discloses a method and a device for the non-destructive detection of defects in the interior of semiconductor material.
  • the semiconductor material has a
  • An ultrasonic arrangement is associated with the semiconductor material.
  • a device for generating a relative movement between the ultrasonic arrangement and along the length L of the lateral surface of the semiconductor material is provided.
  • U.S. Patent 4,170,144 discloses an apparatus for scanning a material. With the device it is possible to determine changes in the thickness or elastic constants in the interior of a material. This involves moving a transducer over the surface of the material. Based on the ultrasound echo scattered back from the material, it is possible to conclude the changes in thickness or elastic constants. The ultrasonic waves emanating from the transducer are coupled via a coupling medium to the component to be examined.
  • U.S. Patent Application 2007/001215 A1 discloses a method and apparatus for coupling ultrasound between a transducer and an object. A scanning element is attached to an ultrasound transducer to thereby form an integral component with the transducer. In this case, the ultrasound emitting surface of the transducer is arranged in a liquid-filled chamber in an upper chamber. The ultrasound transducer is thereby moved relative to the object to be scanned.
  • the prior art does not address the problem that occurs at higher scanning speeds. If the transducer is moved at a higher speed in the liquid coupling medium, turbulences form or bubbles adhere to the free end of the transducer, which can lead to a falsification of the measurement result. To avoid this, it is only possible in the prior art to make the scan speed of the transducer not too large. The maximum speed, with which the transducer can be moved in the liquid coupling medium, so far is one meter per second.
  • the invention has for its object to provide a device for non-destructive inspection of the interior of components, with which it is possible in a shorter time and trouble-free to inspect the interior of a component nondestructive.
  • a further object of the invention is to transform a transducer for nondestructive inspection of the interior of a component in such a way that higher traversing speeds in the coupling medium are possible with the transducer, without impairing the inspection quality and the image recording carried out with the transducer.
  • a transducer comprising the features of claim 6.
  • the transducer In order to inspect the entire component, it is necessary to meander the transducer in the apparatus for nondestructive inspection of the interior of components meandering over the surface of the component.
  • the entire surface of the component with the at least one transducer is scanned meandering.
  • the transducer is guided over the surface of the component in a first direction of movement and in a second direction of movement.
  • the first direction of movement is opposite to the second direction of movement.
  • the transducer according to the invention is designed such that it has formed an extension pointing in the direction of the first movement direction and in the direction of the second movement direction.
  • the extension is designed such that it during the movement of the
  • Transducers in liquid coupling medium minimizes the turbulence occurring.
  • the extensions of the at least one transducer have a height. When using the at least one transducer, the extensions immerse at least half of the height in the liquid coupling medium.
  • Each of the extensions has a length and a maximum width. The length is greater than the maximum width. The maximum width is at least equal to the diameter of the transducer at the free end of the transducer.
  • the extensions of the transducer have the same shape both in the first direction of movement and in the second direction of movement.
  • the extensions have the shape of an isosceles triangle.
  • the two legs meet in the direction of movement at an acute angle to each other.
  • the apex of the isosceles triangle, where the legs meet at an angle, is a rounded tip.
  • a transducer For an advantageous and non-destructive inspection of the interior of components, a transducer is used that carries an element that has two opposing extensions formed.
  • the transducer has a free end which delivers the ultrasonic waves required for non-destructive inspection of the component and which receives echo of the ultrasonic waves from the component to be examined.
  • the extensions of the element fastened to the transducer have in the first direction of movement and in the second direction of movement when the transducer is in use. It should be noted that the first direction of movement is opposite to the second direction of movement.
  • the extensions of the element, which is attached to the transducer have at least one height, one length and a maximum width.
  • the length is greater than the maximum width.
  • the maximum width is at least equal to a diameter of the at least one transducer at the free end of the at least one transducer.
  • the transducers used are piezoelectric transducers for ultrasound examinations of the components.
  • the transducers convert an electrical voltage into an ultrasonic signal and vice versa. This is done with the help of a piezo element.
  • Piezo elements are materials which change their shape when an electrical voltage is applied. Conversely, mechanical pressure, which can be generated by the echo, causes a piezoelectric element to cause the piezoelectric element to generate an electrical voltage.
  • a transducer In a transducer is a piezo element that is made of zinc oxide (ZnO). If an electrical voltage is applied to the transducer, the piezoelectric element deforms due to the properties described. If the electrical voltage is applied at a certain frequency, the deformation of the piezo element in the transducer also takes place at a frequency at which acoustic waves are generated. Depending on the shape and size of the piezo element and the material, ultrasonic signals with different frequency or bandwidth are generated. These acoustic waves or ultrasonic waves are focused in the transducer and focused through a series of lenses and filters. The generated ultrasonic waves leave the transducer via another lens (calotte) on the underside or at the free end of the transducer.
  • ZnO zinc oxide
  • a reflected ultrasonic signal hits the transducer, these ultrasonic waves are directed to the active element inside the transducer.
  • the ultrasonic waves cause a deformation of the piezoelectric element there.
  • the piezo element converts the deformation into a corresponding electrical voltage. From the height and type of electrical voltage, the ultrasound image is generated by the component to be examined.
  • FIG. 1 shows a schematic view of a device for nondestructive detection or inspection of defects in the interior of components.
  • Figure 2 shows a schematic view of the structure of a transducer for the delivery and reception of ultrasonic waves.
  • FIG. 3 shows a schematic view of how a component to be examined is scanned meander-shaped with a transducer.
  • FIG. 4 shows an illustration of a transducer according to the prior art
  • Figure 5 shows a perspective view of a transducer according to the present invention.
  • FIG. 6 shows the illustration of the turbulence and blistering in the
  • Figure 7 shows an enlarged view of the transducer during movement in liquid coupling medium according to the prior art.
  • FIG. 8 shows a view of the prior art transducer during movement at the point of reversal of the meandering scanning structure.
  • Figure 9 shows an image taken with the prior art transducer in which defects in the image are discernible.
  • FIG. 10 shows a representation of the movement of the invention
  • FIG. 1 1 shows a schematic plan view of the transducer according to the present invention.
  • FIG. 12 shows a schematic side view of the transducer in association with the inspecting component.
  • FIG. 1 shows a schematic view of an arrangement 1 for nondestructive inspection of components 2.
  • the arrangement 1 described in FIG. 1 is state of the art. With the arrangement 1 components 2 can be examined with any cross-section Q.
  • the component 2 to be examined is positioned in a container 6 that is filled with a liquid coupling medium 8.
  • the device 10 for non-destructive inspection of the component 2 has a plurality of transducers 12. Ultrasonic signals are emitted by the transducers 12 and coupled to the component 2 via the coupling medium 8.
  • the double arrow 9 indicates that the plurality of transducers 12 are moved along the component 2 to be examined in order thereby to detect the entire component 2 and to generate a corresponding image of the interior of the component 2 from the ultrasound echo returning from the component 2.
  • the plurality of transducers 12 are accordingly moved along the surface 2 a of the component 2. During the process of the transducer 12, these submerge into the liquid coupling medium 8.
  • FIG. 2 shows the embodiment of a transducer 12 which is used to generate an ultrasound image.
  • the transducer 12 has a connection 7, via which it can be connected to other components 2 of the arrangement 1.
  • this connection 7 z. B. led the electrical connections.
  • this connection 7 also represents the mechanical connection.
  • the active element 14 is provided at the lower end of the transducer 12.
  • the active element 14 is the piezo element with which the sound waves are generated and which receives the sound waves coming back from the component 2 and correspondingly converts them into electrical signals.
  • a plurality of electrodes 1 1 are provided, which are responsible for the corresponding conversion of the signals.
  • the voltages are supplied to the transducer 12 via a plurality of electrical leads 17 or the voltages for the corresponding conversion are dissipated by the transducers 12.
  • an electrical circuit 18 is provided which is suitable for the conversion of the ultrasonic waves in electrical signals is responsible.
  • the application of the electrical voltage to the corresponding active element 14 is controlled via the electrical circuit 18.
  • the electrical leads 17, the electrical circuit 18 and the active element 14 are accommodated in a housing 19.
  • On the housing inner wall is an additional tube 16, which supports the active element 14.
  • the housing 19 is closed by an end plate 13 and thus forms the free end 12 a of the transducer 12. Inside the housing 19, at least the lines 17 are surrounded by a filling 15. This filling 15 diffusely attenuates the emitted ultrasonic signals.
  • the end plate 13 is the free end 12a of the transducer 12 and is located between the lens and the coupling medium 8. Further, the end plate 13 protects the transducer 12 from damage.
  • Figure 3 shows the schematic representation of how the component 2 is scanned with the transducer 12.
  • the transducer 12 is guided in a meandering manner over the surface 2a of the component 2.
  • the meandering movement of the transducer 12 is thus composed of a first direction of movement 20a and a second direction of movement 20b.
  • the first movement direction 20a is parallel to the second movement direction 20b and the second movement direction 20b is opposite to the first movement direction 20a.
  • the transducer 12 is transferred from the first direction of movement 20a in the second direction of movement 20b.
  • FIG. 4 shows a transducer 12, as used in accordance with the prior art.
  • the transducer 12 is connected to a carrier 24 via the connection 7.
  • the transducer 12 has a substantially cylindrical shape according to the prior art. From the free end 12a of the transducer 12, the ultrasonic signals required for the non-destructive examination of the component 2 are emitted and the ultrasound signals required for the image display receive. The free end 12a and a part of the transducer 12 thus immerse into the liquid coupling medium 8.
  • FIG. 5 shows the embodiment according to the invention of the transducer 12 in the region of the free end 12a.
  • an element 27 is attached in the cylindrical portion of the transducer 12.
  • the element 27 has two opposite extensions 27a and 27b.
  • the first extension 27a in the first direction of movement 20a and the second extension 27b in the second direction of movement 20b.
  • FIG. 6 shows a representation of the transducer 12 according to the prior art as it is guided in the liquid coupling medium 8 via the component 2 (not shown here).
  • the transducer 12 is guided along the first direction of movement 20a.
  • considerable turbulence 30 and increased bubble formation 31 occur in the coupling medium 8.
  • the turbulence 30 and the bubble formation 31 are caused by the movement of the transducer 12 in the coupling medium 8.
  • FIG. 7 shows an enlarged view of the transducer 12, which is guided along the direction of movement 20a by the coupling medium 8. As can be clearly seen in FIG. 7, the movement of the transducer results
  • FIG. 8 shows the free end 12a of the transducer 12 during the movement in the coupling medium 8. Precisely at the point of reversal 22 between the first direction of movement 20a and the second direction of movement 20b, an increased blistering 31 occurs. Likewise, at the turning point 22, considerable turbulence 30 occurs.
  • FIG. 8 shows the situation that an air bubble adheres to the free end 12a of the transducer 12.
  • FIG. 9 shows an ultrasound image 33 from the interior of the component 2. It can be clearly seen that the image has a plurality of black stripes 35 which contain no image information. These black stripes 35 are due to the fact that in the prior art transducer 12, just at the reversal point 22, air bubbles adhere to the free end 12a of the transducer. The air or air bubbles that adhere to the free end 12a of the transducer 12 completely reflect the ultrasound. Thus, fragment-wise line failures 35 result at the acoustic image at the locations.
  • FIG. 10 shows the transducer 12 according to the invention with the element 27 fastened to the transducer 12, which is suitable for reducing the turbulence during the movement in liquid coupling medium 8.
  • the element 27 has a first extension 27a and a second extension 27b. Through these extensions 27a, 27b, it is possible that even at high scanning speeds of up to about 1.5 meters per second, the turbulences 30 and also the blistering 31 in the coupling medium 8 are reduced.
  • FIG. 11 shows a plan view of the transducer 12 according to the invention with the element 27 reducing the turbulence 30.
  • the element 27 has a first extension 27a and a second extension 27b.
  • the first extension 27a is in the direction of movement 20a and the second extension 27b is aligned in the direction of movement 20b.
  • Each of the extensions 27a and 27b has a width B and a length L. The length L is greater than the width B of the
  • Extension 27a or 27b are formed such that their width B is at least equal to the diameter D of the transducer 12.
  • the extensions 27a and 27b of the element 27 both have the same shape.
  • the shape of the extensions 27a and 27b is an isosceles Triangle.
  • the legs 28 of each of the extensions 27a or 27b include an acute angle a.
  • the tips 29 of the extensions 27a and 27b are rounded.
  • FIG. 12 shows a side view of the transducer 12 with the element 27, which ensures a reduction of turbulence formation during the process of the transducer 12 in the coupling medium 8.
  • the element 27 is attached to the transducer 12 such that the free end 12a of the transducer 12 projects beyond the element 27.
  • the free end 12 a of the transducer 12 is arranged opposite to the component 2, of which it is necessary to inspect the interior of the component 2.
  • the transducer 12 dives so far into the coupling medium 8, that at least the line 8a of the liquid coupling medium 8 to half of the height H of the element 27 extends.
  • the element 27 with the two extensions 27a and 27b forms a flow-optimized form of the transducer 12, turbulences 30 as well as air bubbles and the wave formation in the coupling medium 8 are thereby significantly reduced. Due to the embodiment of the transducer 12 according to the invention, it is possible to increase the maximum scanning speed with an ultrasound microscope from 1 meter per second to 1.5 meters per second. With the ultrasonic microscope, a maximum magnification of 250x can be achieved. A minimum scanning field of 500 ⁇ to 500 ⁇ is possible. The transducer 12 emits sound frequencies in the range of 1 MHz to 1000 MHz. The transducer 12 with the element 27 according to the invention for the reduction of turbulence 30 and wave formation in the coupling medium 8 can be used in a wide variety of ultrasound microscopes.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The invention relates to a device for non-destructive inspection of the interior of components (2). A liquid coupling medium is provided between the component (2) and a free end (12a) of the at least one transducer (12). A displacement device (9) is provided for inspecting the entire component (2), displacing the at least one transducer (12) in a serpentine manner over the component (2) substantially along a first movement direction (20a) and along a second movement direction (20b) opposite the first movement direction (20a) in the liquid coupling medium (8). The at least one transducer (12) has an extension (27a, 27b) in the direction of the first movement direction (20a) and in the direction of the second movement direction (20b) for reducing turbulence.

Description

VORRICHTUNG ZUR ZERSTÖRUNGSFREIEN INSPEKTION DES INNEREN VON BAUTEILEN UND TRANSDUCER HIERFÜR MIT VERBESSERTER ULTRASCHALLANKOPPLUNG DEVICE FOR NON-DESTRUCTIVE INSPECTION OF THE INTERIOR OF COMPONENTS AND TRANSDUCERS THEREFORE WITH IMPROVED ULTRASOUND COUPLING
Die vorliegende Erfindung betrifft eine Vorrichtung zur zerstörungsfreien Inspektion des Inneren von Bauteilen. Die Vorrichtung umfasst dabei eine Ultraschallanordnung mit mindestens einem Transducer, der dem Bauteil zugeordnet ist. Zwischen den Bauteilen und einem freien Ende des mindestens einen Transdu- cers ist ein flüssiges Koppelmedium vorgesehen. Für die Inspektion des gesamten Bauteils ist eine Verfahreinrichtung vorgesehen, die den mindestens einen Transducer mäanderförmig im Wesentlichen entlang einer ersten Bewegungsrichtung und entlang einer zweiten, der ersten Bewegungsrichtung entgegen gesetzten Bewegungsrichtung, im flüssigen Koppelmedium über das Bauteil bewegt. The present invention relates to a device for nondestructive inspection of the interior of components. The device comprises an ultrasonic arrangement with at least one transducer which is assigned to the component. Between the components and a free end of the at least one transducer, a liquid coupling medium is provided. For the inspection of the entire component, a traversing device is provided, which moves the at least one transducer in a meandering manner substantially along a first direction of movement and along a second, opposite to the first direction of movement, in the liquid coupling medium on the component.
Die Erfindung betrifft außerdem einen Transducer. Der Transducer ist zur störungsfreien Inspektion des Inneren von Bauteilen geeignet. Der Transducer besitzt ein freies Ende von dem aus Ultraschallwellen abgebbar und von dem ein Echo der abgegebenen Ultraschallwellen empfangbar ist. The invention also relates to a transducer. The transducer is suitable for trouble-free inspection of the interior of components. The transducer has a free end from which can be emitted from ultrasonic waves and from which an echo of the emitted ultrasonic waves can be received.
Die deutsche Offenlegungsschrift DE 10 2006 032 431 A1 offenbart ein Verfahren zur Detektion von mechanischen Defekten in einem aus einem Stabstück bestehenden Halbleitermaterial. Das Halbleitermaterial besitzt mindestens eine ebene Fläche und eine senkrecht zu dieser Fläche gemessene Dicke von 1 cm bis 100 cm. Bei dem Verfahren wird die ebene Fläche des Stabstücks mit mindestens einem Transducer abgerattert, der über ein flüssiges Koppelmedium an die ebene Fläche des Stabstücks angekoppelt ist. German patent application DE 10 2006 032 431 A1 discloses a method for detecting mechanical defects in a semiconductor material consisting of a rod piece. The semiconductor material has at least one flat surface and a thickness of 1 cm to 100 cm measured perpendicular to this surface. In the method, the flat surface of the rod piece is ratcheted with at least one transducer which is coupled via a liquid coupling medium to the flat surface of the rod piece.
Die unveröffentlichte deutsche Patentanmeldung DE 10 2008 002 832.0 offenbart ein Verfahren und eine Vorrichtung zur zerstörungsfreien Detektion von Defekten im Inneren von Halbleitermaterial. Das Halbleitermaterial besitzt eineThe unpublished German patent application DE 10 2008 002 832.0 discloses a method and a device for the non-destructive detection of defects in the interior of semiconductor material. The semiconductor material has a
Länge, eine Querschnittsfläche und eine entlang der Länge ausgerichtete Mantelfläche. Eine Ultraschallanordnung ist dem Halbleitermaterial zugeordnet. Ebenso ist eine Einrichtung zur Erzeugung einer Relativbewegung zwischen der Ultraschallanordnung und entlang der Länge L der Mantelfläche des Halbleitermaterials vorgesehen. Length, a cross-sectional area and along the length-oriented lateral surface. An ultrasonic arrangement is associated with the semiconductor material. Likewise, a device for generating a relative movement between the ultrasonic arrangement and along the length L of the lateral surface of the semiconductor material is provided.
Das U.S. -Patent 4,170,144 offenbart eine Vorrichtung zum Abscannen eines Materials. Mit der Vorrichtung ist es möglich, Veränderungen der Dicke oder elastischer Konstanten im Inneren eines Materials zu bestimmen. Dazu wird ein Transducer über die Oberfläche des Materials bewegt. Anhand des von dem Material zurück gestreuten Ultraschallechos kann man auf die Veränderungen der Dicke bzw. der elastischen Konstanten schließen. Die von dem Transducer ausgehenden Ultraschallwellen werden über ein Koppelmedium an das zu untersuchende Bauteil angekoppelt. Die U.S. -Patentanmeldung 2007/001215 A1 offenbart ein Verfahren und eine Vorrichtung zum Koppeln des Ultraschalls zwischen einem Transducer und einem Objekt. Ein Scanningelement ist an einem Ultraschall-Transducer angebracht, um dadurch ein integrales Bauteil zusammen mit dem Transducer zu bilden. Dabei ist die den Ultraschall aussendende Fläche des Transducers in einer mit Flüssigkeit gefüllten Kammer in einer oberen Kammer angeordnet. Der Ultraschall-Transducer wird dabei relativ zu dem abzuscannenden Objekt bewegt. U.S. Patent 4,170,144 discloses an apparatus for scanning a material. With the device it is possible to determine changes in the thickness or elastic constants in the interior of a material. This involves moving a transducer over the surface of the material. Based on the ultrasound echo scattered back from the material, it is possible to conclude the changes in thickness or elastic constants. The ultrasonic waves emanating from the transducer are coupled via a coupling medium to the component to be examined. U.S. Patent Application 2007/001215 A1 discloses a method and apparatus for coupling ultrasound between a transducer and an object. A scanning element is attached to an ultrasound transducer to thereby form an integral component with the transducer. In this case, the ultrasound emitting surface of the transducer is arranged in a liquid-filled chamber in an upper chamber. The ultrasound transducer is thereby moved relative to the object to be scanned.
Die internationale Patentanmeldung WO 02/40987 offenbart ein Verfahren und eine Vorrichtung zur akustischen, mikroskopischen Untersuchung von flachen Substraten. Die zu untersuchenden Substrate werden in eine Nasszelle überführt, in der der Ultraschall angekoppelt wird. International Patent Application WO 02/40987 discloses a method and apparatus for acoustic, microscopic examination of flat substrates. The substrates to be examined are transferred to a wet cell, in which the ultrasound is coupled.
Der Stand der Technik spricht nicht die Problematik an, welche bei höheren Scanngeschwindigkeiten auftritt. Wenn der Transducer mit einer höheren Geschwindigkeit in dem flüssigen Koppelmedium verfahren wird, bilden sich Tur- bulenzen bzw. es haften am freien Ende des Transducers Blasen an, die zu einer Verfälschung des Messergebnisses führen können. Um dies zu vermeiden, ist es im Stand der Technik nur möglich, die Scanngeschwindigkeit des Transducers nicht allzu groß werden zu lassen. Die maximale Geschwindigkeit, mit der der Transducer in dem flüssigen Koppelmedium verfahren werden kann, beträgt bisher ein Meter pro Sekunde. The prior art does not address the problem that occurs at higher scanning speeds. If the transducer is moved at a higher speed in the liquid coupling medium, turbulences form or bubbles adhere to the free end of the transducer, which can lead to a falsification of the measurement result. To avoid this, it is only possible in the prior art to make the scan speed of the transducer not too large. The maximum speed, with which the transducer can be moved in the liquid coupling medium, so far is one meter per second.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur zerstörungsfreien Inspektion des Inneren von Bauteilen zu schaffen, mit der es möglich ist, in kürzerer Zeit und störungsfrei das Innere eines Bauteils zerstörungsfrei zu in- spizieren. The invention has for its object to provide a device for non-destructive inspection of the interior of components, with which it is possible in a shorter time and trouble-free to inspect the interior of a component nondestructive.
Die obige Aufgabe wird durch eine Vorrichtung gelöst, die die Merkmale des Anspruchs 1 umfasst. The above object is achieved by an apparatus comprising the features of claim 1.
Eine weitere Aufgabe der Erfindung ist, einen Transducer zur zerstörungsfreien Inspektion des Inneren eines Bauteils derart umzugestalten, dass mit dem Transducer höhere Verfahrgeschwindigkeiten in dem Koppelmedium möglich sind, ohne dabei die Inspektionsqualität und die mit dem Transducer erfolgte Bildaufnahme zu verschlechtern. A further object of the invention is to transform a transducer for nondestructive inspection of the interior of a component in such a way that higher traversing speeds in the coupling medium are possible with the transducer, without impairing the inspection quality and the image recording carried out with the transducer.
Die obige Aufgabe wird durch einen Transducer gelöst, der die Merkmale des Anspruchs 6 umfasst. Um das gesamte Bauteil zu inspizieren ist es erforderlich, den Transducer bei der Vorrichtung zur zerstörungsfreien Inspektion des Inneren von Bauteilen mäanderförmig über die Oberfläche des Bauteils zu verfahren. Dabei wird die gesamte Oberfläche des Bauteils mit dem mindestens einen Transducer mäanderförmig abgescannt. Dabei wird der Transducer in einer ersten Bewegungs- richtung und in einer zweiten Bewegungsrichtung über die Oberfläche des Bauteils geführt. Dabei ist die erste Bewegungsrichtung der zweiten Bewegungsrichtung entgegengesetzt. Der erfindungsgemäße Transducer ist dabei derart ausgestaltet, dass er einen in Richtung der ersten Bewegungsrichtung und in Richtung der zweiten Bewegungsrichtung weisenden Fortsatz ausgebildet hat. Der Fortsatz ist dabei derart gestaltet, dass er während der Bewegung desThe above object is achieved by a transducer comprising the features of claim 6. In order to inspect the entire component, it is necessary to meander the transducer in the apparatus for nondestructive inspection of the interior of components meandering over the surface of the component. In this case, the entire surface of the component with the at least one transducer is scanned meandering. In this case, the transducer is guided over the surface of the component in a first direction of movement and in a second direction of movement. In this case, the first direction of movement is opposite to the second direction of movement. The transducer according to the invention is designed such that it has formed an extension pointing in the direction of the first movement direction and in the direction of the second movement direction. The extension is designed such that it during the movement of the
Transducers in flüssigem Koppelmedium die auftretenden Turbulenzen minimiert. Die Fortsätze des mindestens einen Transducers weisen eine Höhe auf. Bei der Benutzung des mindestens einen Transducers tauchen die Fortsätze dabei mindestens zur Hälfte der Höhe in das flüssige Koppelmedium ein. Jeder der Fortsätze besitzt eine Länge und eine maximale Breite. Die Länge ist größer als die maximale Breite. Die maximale Breite ist mindestens gleich dem Durchmes- ser des Transducers am freien Ende des Transducers. Transducers in liquid coupling medium minimizes the turbulence occurring. The extensions of the at least one transducer have a height. When using the at least one transducer, the extensions immerse at least half of the height in the liquid coupling medium. Each of the extensions has a length and a maximum width. The length is greater than the maximum width. The maximum width is at least equal to the diameter of the transducer at the free end of the transducer.
Die Fortsätze des Transducers haben sowohl in der ersten Bewegungsrichtung als auch in der zweiten Bewegungsrichtung die gleiche Form. Bevorzugt haben die Fortsätze die Form eines gleichschenkligen Dreiecks. Die beiden Schenkel treffen in Bewegungsrichtung unter einem spitzen Winkel aufeinander. Die Spit- ze des gleichschenkligen Dreiecks, bei der die Schenkel unter dem Winkel aufeinander treffen, ist eine abgerundete Spitze. The extensions of the transducer have the same shape both in the first direction of movement and in the second direction of movement. Preferably, the extensions have the shape of an isosceles triangle. The two legs meet in the direction of movement at an acute angle to each other. The apex of the isosceles triangle, where the legs meet at an angle, is a rounded tip.
Für eine vorteilhafte und zerstörungsfreie Inspektion des Inneren von Bauteilen wird ein Transducer verwendet, der ein Element trägt, das zwei gegenüberliegende Fortsätze ausgebildet hat. Der Transducer besitzt ein freies Ende, das die für die zerstörungsfreie Inspektion des Bauteils erforderliche Ultraschallwellen abgibt und das von dem zu untersuchenden Bauteil Echo der Ultraschallwellen empfängt. Die Fortsätze des am Transducer befestigten Elements weisen dabei bei Gebrauch des Transducers in die erste Bewegungsrichtung und in die zweite Bewegungsrichtung. Dabei ist zu bemerken, dass die erste Bewe- gungsrichtung der zweiten Bewegungsrichtung entgegengesetzt ist. For an advantageous and non-destructive inspection of the interior of components, a transducer is used that carries an element that has two opposing extensions formed. The transducer has a free end which delivers the ultrasonic waves required for non-destructive inspection of the component and which receives echo of the ultrasonic waves from the component to be examined. The extensions of the element fastened to the transducer have in the first direction of movement and in the second direction of movement when the transducer is in use. It should be noted that the first direction of movement is opposite to the second direction of movement.
Die Fortsätze des Elements, welches am Transducer befestigt ist, haben mindestens eine Höhe, eine Länge und eine maximale Breite. Die Länge ist dabei größer als die maximale Breite. Die maximale Breite ist mindestens gleich einem Durchmesser des mindestens einen Transducers am freien Ende des min- destens einen Transducers. Als Transducer werden piezo-elektrische Wandler für Ultraschalluntersuchungen der Bauteile verwendet. Die Transducer wandeln eine elektrische Spannung in ein Ultraschallsignal und umgekehrt. Dies geschieht mit Hilfe eines Piezo-Elements. Als Piezo-Element werden Materialien bezeichnet, die bei Anlegen einer elektrischen Spannung ihre Form verändern. Umgekehrt führt mechanischer Druck, welcher durch das Echo erzeugt werden kann, auf ein Piezo-Element dazu, dass das Piezo-Element eine elektrische Spannung erzeugt. Diese Effekte nutzt ein Transducer aus. In einem Transducer befindet sich ein Piezo-Element, dass aus Zinkoxyd (ZnO) gebildet ist. Wird an dem Transducer eine elektrische Spannung angelegt, verformt sich das Piezo-Element aufgrund der beschriebenen Eigenschaften. Wird die elektrische Spannung mit einer bestimmten Frequenz angelegt, erfolgt auch die Verformung des Piezo-Elements im Transducer mit einer Frequenz, bei der akustische Wellen erzeugt werden. In Abhängigkeit von der Form und Größe des Piezo-Elements und dem Material, werden Ultraschallsignale mit unterschiedlicher Frequenz bzw. Bandbreite erzeugt. Diese akustischen Wellen bzw. Ultraschallwellen werden im Transducer gebündelt und durch eine Reihe von Linsen und Filtern fokussiert. Über eine weitere Linse (Kalotte) auf der Untersei- te bzw. am freien Ende des Transducers verlassen die erzeugten Ultraschallwellen den Transducer. Für die Erzeugung eines Bildes an dem zu inspizierenden Bauteil nutzt man die Umkehrung des Piezo-elektrischen Effekts aus. Trifft ein reflektiertes Ultraschallsignal (Echo) auf den Transducer, werden diese Ultraschallwellen an das aktive Element im Inneren des Transducers geleitet. Die Ultraschallwellen bewirken dort eine Verformung des Piezo-Elements. Das Piezo-Element wandelt die Verformung in eine entsprechende elektrische Spannung. Aus der Höhe und Art der elektrischen Spannung wird das Ultraschallbild von dem zu untersuchenden Bauteil erzeugt. The extensions of the element, which is attached to the transducer, have at least one height, one length and a maximum width. The length is greater than the maximum width. The maximum width is at least equal to a diameter of the at least one transducer at the free end of the at least one transducer. The transducers used are piezoelectric transducers for ultrasound examinations of the components. The transducers convert an electrical voltage into an ultrasonic signal and vice versa. This is done with the help of a piezo element. Piezo elements are materials which change their shape when an electrical voltage is applied. Conversely, mechanical pressure, which can be generated by the echo, causes a piezoelectric element to cause the piezoelectric element to generate an electrical voltage. These effects are exploited by a transducer. In a transducer is a piezo element that is made of zinc oxide (ZnO). If an electrical voltage is applied to the transducer, the piezoelectric element deforms due to the properties described. If the electrical voltage is applied at a certain frequency, the deformation of the piezo element in the transducer also takes place at a frequency at which acoustic waves are generated. Depending on the shape and size of the piezo element and the material, ultrasonic signals with different frequency or bandwidth are generated. These acoustic waves or ultrasonic waves are focused in the transducer and focused through a series of lenses and filters. The generated ultrasonic waves leave the transducer via another lens (calotte) on the underside or at the free end of the transducer. For the generation of an image on the component to be inspected, use is made of the reversal of the piezoelectric effect. If a reflected ultrasonic signal (echo) hits the transducer, these ultrasonic waves are directed to the active element inside the transducer. The ultrasonic waves cause a deformation of the piezoelectric element there. The piezo element converts the deformation into a corresponding electrical voltage. From the height and type of electrical voltage, the ultrasound image is generated by the component to be examined.
Im Folgenden sollen Ausführungsbeispiele die erfindungsgemäße Vorrichtung und den erfindungsgemäßen Transducer und deren Vorteile anhand der beigefügten Figuren näher erläutern. In the following, embodiments of the device according to the invention and the transducer according to the invention and their advantages are explained in more detail with reference to the attached figures.
Figur 1 zeigt eine schematische Ansicht einer Vorrichtung zur zerstörungsfreien Detektion bzw. Inspektion von Defekten im Inneren von Bauteilen. Figur 2 zeigt eine schematische Ansicht des Aufbaus eines Transducers für die Abgabe und den Empfang von Ultraschallwellen. FIG. 1 shows a schematic view of a device for nondestructive detection or inspection of defects in the interior of components. Figure 2 shows a schematic view of the structure of a transducer for the delivery and reception of ultrasonic waves.
Figur 3 zeigt eine schematische Ansicht, wie ein zu untersuchendes Bauteil mit einem Transducer mäanderförmig abgescannt wird. FIG. 3 shows a schematic view of how a component to be examined is scanned meander-shaped with a transducer.
Figur 4 zeigt eine Darstellung eines Transducers gemäß dem Stand der FIG. 4 shows an illustration of a transducer according to the prior art
Technik.  Technology.
Figur 5 zeigt eine perspektivische Ansicht eines Transducers gemäß der gegenwärtigen Erfindung. Figure 5 shows a perspective view of a transducer according to the present invention.
Figur 6 zeigt die Darstellung der Turbulenzen und Blasenbildung bei der FIG. 6 shows the illustration of the turbulence and blistering in the
Bewegung eines Transducers in flüssigem Koppelmedium gemäß dem Stand der Technik.  Movement of a Transducers in liquid coupling medium according to the prior art.
Figur 7 zeigt eine vergrößerte Darstellung des Transducers bei der Bewegung in flüssigem Koppelmedium gemäß dem Stand der Technik. Figure 7 shows an enlarged view of the transducer during movement in liquid coupling medium according to the prior art.
Figur 8 zeigt eine Ansicht des Transducers gemäß dem Stand der Technik während der Bewegung am Umkehrpunkt der mäanderförmi- gen Abscannstruktur. FIG. 8 shows a view of the prior art transducer during movement at the point of reversal of the meandering scanning structure.
Figur 9 zeigt ein mit dem Transducer gemäß dem Stand der Technik aufgenommenes Bild, bei dem Fehler im Bild erkennbar sind. Figure 9 shows an image taken with the prior art transducer in which defects in the image are discernible.
Figur 10 zeigt eine Darstellung der Bewegung des erfindungsgemäßen FIG. 10 shows a representation of the movement of the invention
Transducers im flüssigen Koppelmedium. Figur 1 1 zeigt eine schematische Draufsicht auf den Transducer gemäß der gegenwärtigen Erfindung.  Transducers in the liquid coupling medium. Figure 1 1 shows a schematic plan view of the transducer according to the present invention.
Figur 12 zeigt eine schematische Seitenansicht des Transducers in Zuordnung zu dem inspizierenden Bauteil. FIG. 12 shows a schematic side view of the transducer in association with the inspecting component.
Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszei- chen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. For identical or equivalent elements of the invention, identical reference numerals are used. Furthermore, for the sake of clarity, only reference Chen in the individual figures, which are required for the description of the respective figure.
Figur 1 zeigt eine schematische Ansicht einer Anordnung 1 zur zerstörungsfreien Inspektion von Bauteilen 2. Die in Figur 1 beschriebene Anordnung 1 ist Stand der Technik. Mit der Anordnung 1 können Bauteile 2 mit beliebigem Querschnitt Q untersucht werden. Das zu untersuchende Bauteil 2 ist in einem Behältnis 6 positioniert, dass mit einem flüssigen Koppelmedium 8 gefüllt ist. Die Vorrichtung 10 zur zerstörungsfreien Inspektion des Bauteils 2 besitzt in der hier gezeigten Darstellung mehrere Transducer 12. Von den Transducern 12 werden Ultraschallsignale abgegeben und über das Koppelmedium 8 an das Bauteil 2 gekoppelt. Der Doppelpfeil 9 deutet an, dass die mehreren Transducer 12 entlang des zu untersuchenden Bauteils 2 verfahren werden, um dadurch das gesamte Bauteil 2 zu erfassen und von dem aus dem Bauteil 2 zurückkommenden Ultraschallecho ein entsprechendes Bild des Inneren des Bauteils 2 zu erzeugen. Die mehreren Transducer 12 werden entsprechend entlang der Oberfläche 2a des Bauteils 2 verfahren. Während des Verfahrens der Transducer 12 tauchen diese in das flüssige Koppelmedium 8 ein. FIG. 1 shows a schematic view of an arrangement 1 for nondestructive inspection of components 2. The arrangement 1 described in FIG. 1 is state of the art. With the arrangement 1 components 2 can be examined with any cross-section Q. The component 2 to be examined is positioned in a container 6 that is filled with a liquid coupling medium 8. In the illustration shown here, the device 10 for non-destructive inspection of the component 2 has a plurality of transducers 12. Ultrasonic signals are emitted by the transducers 12 and coupled to the component 2 via the coupling medium 8. The double arrow 9 indicates that the plurality of transducers 12 are moved along the component 2 to be examined in order thereby to detect the entire component 2 and to generate a corresponding image of the interior of the component 2 from the ultrasound echo returning from the component 2. The plurality of transducers 12 are accordingly moved along the surface 2 a of the component 2. During the process of the transducer 12, these submerge into the liquid coupling medium 8.
Figur 2 zeigt die Ausgestaltung eines Transducers 12, der zur Erzeugung eines Ultraschallbilds Verwendung findet. Der Transducer 12 besitzt eine Verbindung 7, über die er mit anderen Bauteilen 2 der Anordnung 1 verbunden werden kann. Über diese Verbindung 7 werden z. B. die elektrischen Verbindungen geführt. Ferner stellt diese Verbindung 7 ebenfalls die mechanische Verbindung dar. Am unteren Ende des Transducers 12 ist das aktive Element 14 vorgesehen. Das aktive Element 14 ist das Piezo-Element, mit dem die Schallwellen erzeugt werden und das die von dem Bauteil 2 zurückkommenden Schallwellen empfängt und entsprechend in elektrische Signale wandelt. Ferner sind mehrere Elektroden 1 1 vorgesehen, die für die entsprechende Wandlung der Signale verantwortlich sind. Über mehrere elektrische Leitungen 17 werden dem Transducer 12 die Spannungen zugeführt bzw. werden von den Transducern 12 die Spannungen zur entsprechenden Wandlung abgeführt. Ebenso ist eine elektri- sehe Schaltung 18 vorgesehen, die für die Wandlung der Ultraschallwellen in elektrische Signale verantwortlich ist. Ebenso wird über die elektrische Schaltung 18 das Anlegen der elektrischen Spannung an das entsprechende aktive Element 14 gesteuert. Die elektrischen Leitungen 17, die elektrische Schaltung 18 und das aktive Element 14 sind in einem Gehäuse 19 untergebracht. An der Gehäuseinnenwand liegt ein zusätzliches Rohr 16 an, das das aktive Element 14 haltert. Das Gehäuse 19 ist durch eine Endplatte 13 abgeschlossen und bildet somit das freie Ende 12a des Transducers 12. Im Inneren des Gehäuses 19 sind zumindest die Leitungen 17 von einer Füllung 15 umgeben. Diese Füllung 15 dämpft diffus die abgestrahlten Ultraschallsignale. Die Endplatte 13 ist das freie Ende 12a des Transducers 12 und befindet sich zwischen der Linse und dem Koppelmedium 8. Ferner schützt die Endplatte 13 den Transducer 12 vor Beschädigungen. FIG. 2 shows the embodiment of a transducer 12 which is used to generate an ultrasound image. The transducer 12 has a connection 7, via which it can be connected to other components 2 of the arrangement 1. About this connection 7 z. B. led the electrical connections. Furthermore, this connection 7 also represents the mechanical connection. At the lower end of the transducer 12, the active element 14 is provided. The active element 14 is the piezo element with which the sound waves are generated and which receives the sound waves coming back from the component 2 and correspondingly converts them into electrical signals. Furthermore, a plurality of electrodes 1 1 are provided, which are responsible for the corresponding conversion of the signals. The voltages are supplied to the transducer 12 via a plurality of electrical leads 17 or the voltages for the corresponding conversion are dissipated by the transducers 12. Likewise, an electrical circuit 18 is provided which is suitable for the conversion of the ultrasonic waves in electrical signals is responsible. Likewise, the application of the electrical voltage to the corresponding active element 14 is controlled via the electrical circuit 18. The electrical leads 17, the electrical circuit 18 and the active element 14 are accommodated in a housing 19. On the housing inner wall is an additional tube 16, which supports the active element 14. The housing 19 is closed by an end plate 13 and thus forms the free end 12 a of the transducer 12. Inside the housing 19, at least the lines 17 are surrounded by a filling 15. This filling 15 diffusely attenuates the emitted ultrasonic signals. The end plate 13 is the free end 12a of the transducer 12 and is located between the lens and the coupling medium 8. Further, the end plate 13 protects the transducer 12 from damage.
Figur 3 zeigt die schematische Darstellung, wie das Bauteil 2 mit dem Transducer 12 abgescannt wird. Der Transducer 12 wird dabei mäanderförmig über der Oberfläche 2a des Bauteils 2 geführt. Die mäanderförmige Bewegung des Transducers 12 setzt sich somit aus einer ersten Bewegungsrichtung 20a und einer zweiten Bewegungsrichtung 20b zusammen. Dabei ist die erste Bewegungsrichtung 20a parallel zur zweiten Bewegungsrichtung 20b und die zweite Bewegungsrichtung 20b ist der ersten Bewegungsrichtung 20a entgegengesetzt. Bei Umkehrpunkten 22 wird der Transducer 12 von der ersten Bewe- gungsrichtung 20a in die zweite Bewegungsrichtung 20b übergeführt. Somit ist es möglich, die gesamte Oberfläche 2a des Bauteils 2 mit dem Transducer 12 abzuscannen und somit ein Ultraschallbild von einem inneren Bereich des Bauteils 2 zu erfassen. Figure 3 shows the schematic representation of how the component 2 is scanned with the transducer 12. The transducer 12 is guided in a meandering manner over the surface 2a of the component 2. The meandering movement of the transducer 12 is thus composed of a first direction of movement 20a and a second direction of movement 20b. In this case, the first movement direction 20a is parallel to the second movement direction 20b and the second movement direction 20b is opposite to the first movement direction 20a. At reversal points 22, the transducer 12 is transferred from the first direction of movement 20a in the second direction of movement 20b. Thus, it is possible to scan the entire surface 2 a of the component 2 with the transducer 12 and thus to acquire an ultrasound image from an inner region of the component 2.
Figur 4 zeigt einen Transducer 12, wie er gemäß dem Stand der Technik Ver- wendung findet. Der Transducer 12 ist, wie bereits in der Beschreibung zur Figur 2 erwähnt, über die Verbindung 7 mit einem Träger 24 verbunden. Der Transducer 12 besitzt gemäß dem Stand der Technik eine im Wesentlichen zylindrische Form. Vom freien Ende 12a des Transducers 12 werden die für die zerstörungsfreie Untersuchung des Bauteils 2 erforderlichen Ultraschallsignale ausgesendet und die für die Bilddarstellung erforderlichen Ultraschallsignale empfangen. Das freie Ende 12a und ein Teil des Transducers 12 taucht somit in das flüssige Koppelmedium 8 ein. FIG. 4 shows a transducer 12, as used in accordance with the prior art. As already mentioned in the description of FIG. 2, the transducer 12 is connected to a carrier 24 via the connection 7. The transducer 12 has a substantially cylindrical shape according to the prior art. From the free end 12a of the transducer 12, the ultrasonic signals required for the non-destructive examination of the component 2 are emitted and the ultrasound signals required for the image display receive. The free end 12a and a part of the transducer 12 thus immerse into the liquid coupling medium 8.
Figur 5 zeigt die erfindungsgemäße Ausgestaltung des Transducers 12 im Bereich des freien Endes 12a. In dem zylindrischen Abschnitt des Transducers 12 ist ein Element 27 befestigt. Das Element 27 besitzt zwei gegenüberliegende Fortsätze 27a und 27b. Bei Gebrauch des erfindungsgemäßen Transducers 12 weisen der erste Fortsatz 27a in die erste Bewegungsrichtung 20a und der zweite Fortsatz 27b in die zweite Bewegungsrichtung 20b. FIG. 5 shows the embodiment according to the invention of the transducer 12 in the region of the free end 12a. In the cylindrical portion of the transducer 12, an element 27 is attached. The element 27 has two opposite extensions 27a and 27b. In use of the transducer 12 according to the invention, the first extension 27a in the first direction of movement 20a and the second extension 27b in the second direction of movement 20b.
Figur 6 zeigt eine Darstellung des Transducers 12 gemäß dem Stand der Technik, wie er in dem flüssigen Koppelmedium 8 über das Bauteil 2 (hier nicht dargestellt) geführt wird. Der Transducer 12 wird entlang der ersten Bewegungsrichtung 20a geführt. Wie aus der Figur 6 deutlich zu erkennen ist, treten im Koppelmedium 8 erhebliche Turbulenzen 30 und eine verstärkte Blasenbildung 31 auf. Die Turbulenzen 30 und die Blasenbildung 31 werden durch die Bewegung des Transducers 12 im Koppelmedium 8 hervorgerufen. Je höher die Geschwindigkeit des Transducers 12 in der ersten Bewegungsrichtung 20a oder der zweiten Bewegungsrichtung 20b ist, desto größer sind die Turbulenzen 30 und die Blasenbildung 31 . FIG. 6 shows a representation of the transducer 12 according to the prior art as it is guided in the liquid coupling medium 8 via the component 2 (not shown here). The transducer 12 is guided along the first direction of movement 20a. As can be seen clearly from FIG. 6, considerable turbulence 30 and increased bubble formation 31 occur in the coupling medium 8. The turbulence 30 and the bubble formation 31 are caused by the movement of the transducer 12 in the coupling medium 8. The higher the speed of the transducer 12 in the first direction of movement 20a or the second direction of movement 20b, the greater the turbulence 30 and the bubble formation 31.
Figur 7 zeigt eine vergrößerte Darstellung des Transducers 12, der entlang der Bewegungsrichtung 20a durch das Koppelmedium 8 geführt wird. Wie aus der Figur 7 deutlich zu erkennen ist, tritt aufgrund der Bewegung des TransducersFIG. 7 shows an enlarged view of the transducer 12, which is guided along the direction of movement 20a by the coupling medium 8. As can be clearly seen in FIG. 7, the movement of the transducer results
12 eine verstärkte Blasenbildung 31 im Koppelmedium 8 auf. Hinzu kommt, dass aufgrund der schnellen Bewegung des Transducers 12 im Koppelmedium 8 ein Teil der Flüssigkeit auf den Transducer 12 aufsteigt und somit zu erheblichen Turbulenzen 30 im Koppelmedium 8 führt. Figur 8 zeigt das freie Ende 12a des Transducers 12 während der Bewegung im Koppelmedium 8. Gerade am Umkehrpunkt 22 zwischen der ersten Bewegungsrichtung 20a und der zweiten Bewegungsrichtung 20b tritt eine verstärkte Blasenbildung 31 auf. Ebenso kommt es am Umkehrpunkt 22 zu erheblichen Turbulenzen 30. Dies ist leicht vorstellbar, da am Umkehrpunkt 22 die Ge- schwindigkeit des Transducers 12 in der ersten Bewegungsrichtung 20a reduziert werden muss und der Transducer 12 am Umkehrpunkt 22 wieder in die zweite Bewegungsrichtung 20b auf eine bestimmte Geschwindigkeit beschleunigt werden muss. In Figur 8 ist die Situation dargestellt, dass am freien Ende 12a des Transducers 12 eine Luftblase anhaftet. Figur 9 zeigt ein Ultraschallbild 33 aus dem Inneren des Bauteils 2. Es ist deutlich zu erkennen, dass das Bild mehrere schwarze Streifen 35 aufweist, die keine Bildinformation enthalten. Diese schwarzen Streifen 35 rühren daher, dass bei dem Transducer 12 des Standes der Technik gerade am Umkehrpunkt 22 Luftblasen am freien Ende 12a des Transducers anhaften. Die Luft bzw. Luft- blasen, die am freien Ende 12a des Transducers 12 anhaften, reflektieren den Ultraschall vollkommen. Somit ergeben sich am akustischen Bild an den Stellen die Fragmentweisen Zeilenausfälle 35. 12 a reinforced bubble formation 31 in the coupling medium 8. In addition, due to the rapid movement of the transducer 12 in the coupling medium 8, a portion of the liquid rises on the transducer 12 and thus leads to considerable turbulence 30 in the coupling medium 8. FIG. 8 shows the free end 12a of the transducer 12 during the movement in the coupling medium 8. Precisely at the point of reversal 22 between the first direction of movement 20a and the second direction of movement 20b, an increased blistering 31 occurs. Likewise, at the turning point 22, considerable turbulence 30 occurs. This is easily conceivable, since at the turning point 22 the speed of the transducer 12 in the first direction of movement 20a must be reduced and the transducer 12 at the reversal point 22 must be accelerated again in the second direction of movement 20b to a certain speed. FIG. 8 shows the situation that an air bubble adheres to the free end 12a of the transducer 12. FIG. 9 shows an ultrasound image 33 from the interior of the component 2. It can be clearly seen that the image has a plurality of black stripes 35 which contain no image information. These black stripes 35 are due to the fact that in the prior art transducer 12, just at the reversal point 22, air bubbles adhere to the free end 12a of the transducer. The air or air bubbles that adhere to the free end 12a of the transducer 12 completely reflect the ultrasound. Thus, fragment-wise line failures 35 result at the acoustic image at the locations.
Figur 10 zeigt den erfindungsgemäßen Transducer 12 mit dem am Transducer 12 befestigten Element 27, das geeignet ist, bei der Bewegung in flüssigem Koppelmedium 8 die Turbulenzen zu reduzieren. Das Element 27 besitzt einen ersten Fortsatz 27a und einen zweiten Fortsatz 27b. Durch diese Fortsätze 27a, 27b ist es möglich, dass auch bei hohen Scanngeschwindigkeiten von bis zu ca. 1 ,5 Meter pro Sekunde die Turbulenzen 30 und auch die Blasenbildung 31 im Koppelmedium 8 reduziert sind. Figur 11 zeigt eine Draufsicht auf den erfindungsgemäßen Transducer 12 mit dem die Turbulenzen 30 reduzierenden Element 27. Das Element 27 besitzt einen ersten Fortsatz 27a und einen zweiten Fortsatz 27b. Der erste Fortsatz 27a ist in Bewegungsrichtung 20a und der zweite Fortsatz 27b ist in Bewegungsrichtung 20b ausgerichtet. Jeder der Fortsätze 27a und 27b besitzt eine Breite B und eine Länge L. Dabei ist die Länge L größer als die Breite B desFIG. 10 shows the transducer 12 according to the invention with the element 27 fastened to the transducer 12, which is suitable for reducing the turbulence during the movement in liquid coupling medium 8. The element 27 has a first extension 27a and a second extension 27b. Through these extensions 27a, 27b, it is possible that even at high scanning speeds of up to about 1.5 meters per second, the turbulences 30 and also the blistering 31 in the coupling medium 8 are reduced. FIG. 11 shows a plan view of the transducer 12 according to the invention with the element 27 reducing the turbulence 30. The element 27 has a first extension 27a and a second extension 27b. The first extension 27a is in the direction of movement 20a and the second extension 27b is aligned in the direction of movement 20b. Each of the extensions 27a and 27b has a width B and a length L. The length L is greater than the width B of the
Fortsatzes 27a bzw. 27b. Ebenso sind die beiden Fortsätze 27a und 27b derart ausgebildet, dass deren Breite B zumindest gleich dem Durchmesser D des Transducers 12 ist. Die Fortsätze 27a und 27b des Elements 27 haben beide die gleiche Form. Die Form der Fortsätze 27a und 27b ist ein gleichschenkliges Dreieck. Die Schenkel 28 eines jeden der Fortsätze 27a oder 27b schließen dabei einen spitzen Winkel a ein. Die Spitzen 29 der Fortsätze 27a und 27b sind abgerundet. Extension 27a or 27b. Likewise, the two extensions 27a and 27b are formed such that their width B is at least equal to the diameter D of the transducer 12. The extensions 27a and 27b of the element 27 both have the same shape. The shape of the extensions 27a and 27b is an isosceles Triangle. The legs 28 of each of the extensions 27a or 27b include an acute angle a. The tips 29 of the extensions 27a and 27b are rounded.
Figur 12 zeigt eine Seitenansicht des Transducers 12 mit dem Element 27, das für eine Reduktion der Turbulenzenbildung während des Verfahrens des Trans- ducers 12 im Koppelmedium 8 sorgt. Das Element 27 ist dabei derart am Transducer 12 befestigt, dass das freie Ende 12a des Transducers 12 das Element 27 überragt. Das freie Ende 12a des Transducers 12 ist gegenüber dem Bauteil 2 angeordnet, von dem es gilt, das Innere des Bauteils 2 zu inspizieren. Der Transducer 12 taucht dabei derart weit in das Koppelmedium 8 ein, dass zumindest die Linie 8a des flüssigen Koppelmediums 8 bis zur Hälfte der Höhe H des Elements 27 reicht. Da das Element 27 mit den beiden Fortsätzen 27a und 27b eine strömungsoptimierte Form des Transducers 12 bildet, werden dadurch Turbulenzen 30 und auch Luftblasen, sowie die Wellenbildung im Koppelmedium 8 deutlich reduziert. Aufgrund der erfindungsgemäßen Ausgestal- tung des Transducers 12 ist es möglich, die maximale Scanngeschwindigkeit mit einem Ultraschallmikroskop von bisher ein Meter pro Sekunde auf 1 ,5 Meter pro Sekunde zu erhöhen. Mit dem Ultraschallmikroskop kann eine maximale Vergrößerung von 250fach erreicht werden. Dabei ist ein minimales Scannfeld von 500 μιτι auf 500 μιτι möglich. Der Transducer 12 sendet Schallfrequenzen im Bereich von 1 MHz bis 1000 MHz aus. Der Transducer 12 mit dem erfindungsgemäßen Element 27 zur Reduktion von Turbulenzen 30 und Wellenbildung im Koppelmedium 8 kann bei verschiedensten Ultraschallmikroskopen verwendet werden. FIG. 12 shows a side view of the transducer 12 with the element 27, which ensures a reduction of turbulence formation during the process of the transducer 12 in the coupling medium 8. The element 27 is attached to the transducer 12 such that the free end 12a of the transducer 12 projects beyond the element 27. The free end 12 a of the transducer 12 is arranged opposite to the component 2, of which it is necessary to inspect the interior of the component 2. The transducer 12 dives so far into the coupling medium 8, that at least the line 8a of the liquid coupling medium 8 to half of the height H of the element 27 extends. Since the element 27 with the two extensions 27a and 27b forms a flow-optimized form of the transducer 12, turbulences 30 as well as air bubbles and the wave formation in the coupling medium 8 are thereby significantly reduced. Due to the embodiment of the transducer 12 according to the invention, it is possible to increase the maximum scanning speed with an ultrasound microscope from 1 meter per second to 1.5 meters per second. With the ultrasonic microscope, a maximum magnification of 250x can be achieved. A minimum scanning field of 500 μιτι to 500 μιτι is possible. The transducer 12 emits sound frequencies in the range of 1 MHz to 1000 MHz. The transducer 12 with the element 27 according to the invention for the reduction of turbulence 30 and wave formation in the coupling medium 8 can be used in a wide variety of ultrasound microscopes.
Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen. Dabei ist es für einen Fachmann selbstverständlich, dass das die Turbulenzen 30 reduzierende Element 27 Abwandlungen aufweisen kann, die ebenfalls die Wirkung erzielen, dass die Turbulenzen 30 während der Bewegung des Transducers 12 im Koppelmedium 8 deutlich reduziert sind. The invention has been described with reference to a preferred embodiment. However, it will be apparent to those skilled in the art that modifications or changes may be made to the invention without departing from the scope of the following claims. It is obvious to a person skilled in the art that the turbulence-reducing element 27 can have modifications which likewise achieve the effect of the turbulences 30 are significantly reduced during the movement of the transducer 12 in the coupling medium 8.

Claims

Ansprüche: Claims:
1 . Vorrichtung zur zerstörungsfreien Inspektion des Inneren von Bauteilen (2), insbesondere mit einer Ultraschallanordnung (10), mit mindestens einem Transducer (12), der dem Bauteil (2) zugeordnet ist, dass zwischen dem Bauteil (2) und einem freien Ende (12a) des mindestens einen Transducers (12) ein flüssiges Koppelmedium (8) vorgesehen ist, dass zur Inspektion des gesamten Bauteils (2) eine Verfahreinrichtung (9) vorgesehen ist, die den mindestens einen Transducer (12) mäanderförmig im Wesentlichen entlang einer ersten Bewegungsrichtung (20a) und entlang einer zweiten, der ersten Bewegungsrichtung (20a) entgegengesetzten Bewegungsrichtung (20b) im flüssigen Koppelmedium (8) über das Bauteil (2) bewegt, dadurch gekennzeichnet, dass der mindestens eine Transducer (12) in Richtung der ersten Bewegungsrichtung (20a) und in Richtung der zweiten Bewegungsrichtung (20b) jeweils einen während der Bewegung im flüssigen Koppelmedium (8) Turbulenzen reduzierenden Fortsatz (27a, 27b) aufweist. 1 . Device for nondestructive inspection of the interior of components (2), in particular with an ultrasound assembly (10), with at least one transducer (12) associated with the component (2), between the component (2) and a free end (12a ) of the at least one transducer (12) a liquid coupling medium (8) is provided, that for the inspection of the entire component (2) a traversing device (9) is provided, the meandering the at least one transducer (12) substantially along a first direction of movement ( 20a) and along a second, the first direction of movement (20a) opposite direction of movement (20b) in the liquid coupling medium (8) on the component (2) moves, characterized in that the at least one transducer (12) in the direction of the first direction of movement (20a ) and in the direction of the second movement direction (20b) each have a during the movement in the liquid coupling medium (8) turbulence reducing projection (27a, 27b) is.
2. Vorrichtung nach Anspruch 1 , wobei die Fortsätze (27a, 27b) des mindestens einen Transducers (12) eine Höhe (H) besitzen und das bei Benutzung des mindestens einen Transducers (12) die Fortsätze (27a, 27b) mindestens zur Hälfte der Höhe (H) in das flüssige Koppelmedium (8) eintauchen. 2. Device according to claim 1, wherein the extensions (27a, 27b) of the at least one transducer (12) have a height (H) and that when using the at least one transducer (12) the extensions (27a, 27b) at least half of Immerse height (H) in the liquid coupling medium (8).
3. Vorrichtung nach einem der Ansprüche 1 und 2, wobei jeder der Fortsätze (27a, 27b) eine Länge (L) und eine maximale Breite (B) besitzt, die Länge (L) größer ist als die maximale Breite (B) und dass die maximale Breite (B) mindestens gleich einen Durchmesser (D) des mindestens einen Transducers (12) am freien Ende (12a) des Transducers (12) ist. 3. A device according to any one of claims 1 and 2, wherein each of the extensions (27a, 27b) has a length (L) and a maximum width (B), the length (L) is greater than the maximum width (B) and that the maximum width (B) is at least equal to a diameter (D) of the at least one transducer (12) at the free end (12a) of the transducer (12).
4. Vorrichtung nach einem der Ansprüche 1 bis 3, wobei jeder der Fortsätze (27a, 27b) die gleiche Form besitzt. 4. Device according to one of claims 1 to 3, wherein each of the extensions (27a, 27b) has the same shape.
5 Vorrichtung nach Anspruch 4, wobei die Form ein gleichschenkliges Dreieck ist und die beiden Schenkel (28) in Bewegungsrichtung (20a 20b) einen spitzen Winkel (cc) einschließen und eine abgerundete Spitze (29) bilden. A device according to claim 4, wherein the shape is an isosceles triangle and the two legs (28) enclose an acute angle (cc) in the direction of movement (20a 20b) and form a rounded tip (29).
6. Transducer (12) zur zerstörungsfreien Inspektion des Inneren von Bauteilen (2), wobei der Transducer (12) ein freies Ende (12a) besitzt, von dem aus die Ultraschallwellen abgebbar und vom ein Echo der abgegebenen Ultraschallwellen emfangbar ist, dadurch gekennzeichnet, dass am Transducer (12) ein Element (27) befestigt ist, das zwei gegenüberliegende Fortsätze (27a, 27b) ausgebildet hat. 6. Transducer (12) for nondestructive inspection of the interior of components (2), wherein the transducer (12) has a free end (12 a) from which the ultrasonic waves can be emitted and an echo of the emitted ultrasonic waves can be received, characterized in that an element (27) which has two opposite extensions (27a, 27b) is fastened to the transducer (12).
7. Transducer nach Anspruch 6, wobei die Fortsätze (27a, 27b) des Elements (12) mindestens eine Höhe (H), eine Länge (L) und eine maximale Breite (B) besitzen, wobei die Länge (L) größer ist als die maximale Breite (B) und wobei die maximale Breite (B) mindestens gleich einen Durchmesser (D) des mindestens einen Transducers (12) am freien Ende (1 2a) des Transducers (12) ist. 7. Transducer according to claim 6, wherein the extensions (27a, 27b) of the element (12) have at least one height (H), a length (L) and a maximum width (B), wherein the length (L) is greater than the maximum width (B) and wherein the maximum width (B) is at least equal to a diameter (D) of the at least one transducer (12) at the free end (1 2a) of the transducer (12).
8. Transducer nach den Ansprüchen 6 bis 7, wobei das Element (27) mit den beiden Fortsätzen (27a, 27b) derart am Transducer (12) angeordnet ist, dass das freie Ende (12a) des Transducers (12) das Element (27) überragt. 8. Transducer according to claims 6 to 7, wherein the element (27) with the two extensions (27a, 27b) is arranged on the transducer (12) such that the free end (12a) of the transducer (12) the element (27 ) surmounted.
9. Transducer nach den Ansprüchen 6 bis 8, wobei jeder der Fortsätze (27a, 27b) die gleiche Form besitzt. A transducer according to claims 6 to 8, wherein each of the projections (27a, 27b) has the same shape.
10. Transducer nach Anspruch 9, wobei die Form ein gleichschenkliges Dreieck ist und die beiden Schenkel (28) einen spitzen Winkel (cc) einschließen und eine abgerundete Spitze (29) bilden. 10. Transducer according to claim 9, wherein the shape is an isosceles triangle and the two legs (28) form an acute angle (cc) and form a rounded tip (29).
PCT/EP2010/064799 2009-10-15 2010-10-05 Device for non-destructive inspection of the interior of components and transducer for the same having improved ultrasonic coupling WO2011045201A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009044254.5 2009-10-15
DE102009044254A DE102009044254A1 (en) 2009-10-15 2009-10-15 Device for nondestructive inspection of the interior of components and transducers therefor

Publications (1)

Publication Number Publication Date
WO2011045201A1 true WO2011045201A1 (en) 2011-04-21

Family

ID=43268787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/064799 WO2011045201A1 (en) 2009-10-15 2010-10-05 Device for non-destructive inspection of the interior of components and transducer for the same having improved ultrasonic coupling

Country Status (2)

Country Link
DE (1) DE102009044254A1 (en)
WO (1) WO2011045201A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1428153A (en) * 1973-09-07 1976-03-17 British Steel Corp Apparatus and method for ultrasonic testing
US4170144A (en) 1977-10-27 1979-10-09 The United States Of America As Represented By The Secretary Of The Navy Material scanning apparatus
WO2002040987A1 (en) 2000-11-17 2002-05-23 Sonoscan, Inc. Automated acoustic micro imaging system and method
US20060243051A1 (en) * 2004-09-24 2006-11-02 The Boeing Company Integrated ultrasonic inspection probes, systems, and methods for inspection of composite assemblies
US20070001215A1 (en) 2005-07-04 2007-01-04 Samsung Electronics Co., Ltd. Non-volatile memory device having a floating gate and method of forming the same
EP1744156A2 (en) * 2005-07-11 2007-01-17 The Boeing Company Ultrasonic array probe apparatus, system, and method for travelling over holes and off edges of a structure
DE102006032431A1 (en) 2006-06-22 2007-12-27 Siltronic Ag Detection of mechanical defects in a boule composed of mono-crystalline semiconductor material, comprises scanning an even surface of the boule by an ultrasound head and determining the positions of the mechanical defects in the boule
DE102008002832A1 (en) 2008-04-24 2009-12-17 Institut für Akustomikroskopie Dr. Krämer GmbH Method and device for nondestructive detection of defects in the interior of semiconductor material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280621A (en) * 1963-10-28 1966-10-25 Louis C Cardinal Omni-directional ultrasonic search unit
DE19916671A1 (en) * 1999-01-29 2000-08-24 Alstom En Gmbh Method and device for testing a liquid-filled container
FR2827050B1 (en) * 2001-07-06 2005-02-11 Univ Paris 7 Denis Diderot ULTRASONIC TOMOGRAPH, SYSTEM AND METHOD FOR ULTRASOUND TOMOGRAPHIC MEASUREMENT USING SUCH A TOMOGRAPH

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1428153A (en) * 1973-09-07 1976-03-17 British Steel Corp Apparatus and method for ultrasonic testing
US4170144A (en) 1977-10-27 1979-10-09 The United States Of America As Represented By The Secretary Of The Navy Material scanning apparatus
WO2002040987A1 (en) 2000-11-17 2002-05-23 Sonoscan, Inc. Automated acoustic micro imaging system and method
US20060243051A1 (en) * 2004-09-24 2006-11-02 The Boeing Company Integrated ultrasonic inspection probes, systems, and methods for inspection of composite assemblies
US20070001215A1 (en) 2005-07-04 2007-01-04 Samsung Electronics Co., Ltd. Non-volatile memory device having a floating gate and method of forming the same
EP1744156A2 (en) * 2005-07-11 2007-01-17 The Boeing Company Ultrasonic array probe apparatus, system, and method for travelling over holes and off edges of a structure
DE102006032431A1 (en) 2006-06-22 2007-12-27 Siltronic Ag Detection of mechanical defects in a boule composed of mono-crystalline semiconductor material, comprises scanning an even surface of the boule by an ultrasound head and determining the positions of the mechanical defects in the boule
DE102008002832A1 (en) 2008-04-24 2009-12-17 Institut für Akustomikroskopie Dr. Krämer GmbH Method and device for nondestructive detection of defects in the interior of semiconductor material

Also Published As

Publication number Publication date
DE102009044254A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
EP0309890B1 (en) Use of the electromagnetic ultrasound transformation process in monitoring the filling level and formation of bubbles in enclosures containing a fluid
DE102008027228B4 (en) Method and device for the non-destructive ultrasound examination of a test piece with mutually angled, flat surfaces
DE102004059856A1 (en) Method for the non-destructive examination of a specimen by means of ultrasound
DE102008002832A1 (en) Method and device for nondestructive detection of defects in the interior of semiconductor material
DE3225586A1 (en) ULTRASONIC MICROSCOPE
DE102019106427B4 (en) Transducer and transducer arrangement for ultrasonic probe systems, ultrasonic probe system and test methods
DE3415283A1 (en) ACOUSTIC MICROSCOPE
DE102008002860A1 (en) Method for non-destructive testing of objects by means of ultrasound
WO2017012794A1 (en) Device and method for examining materials by means of acoustic spectroscopy
DE102010030332A1 (en) Device for determining border level, density and viscosity of liquid in pipeline of food industry, has drive unit with piezoelectric elements displaced by bending vibration in measuring tube from which oscillation signals are received
WO2011045201A1 (en) Device for non-destructive inspection of the interior of components and transducer for the same having improved ultrasonic coupling
DE202009018526U1 (en) Device for nondestructive inspection of the interior of components and transducers therefor
DE2238130A1 (en) PROCEDURE AND ARRANGEMENT FOR DETERMINING AND COMPENSATING DIFFERENT SOUND ATTENUATION PROPERTIES DURING ULTRASONIC MATERIAL TESTING
DE102014102374B4 (en) Method for testing a workpiece by means of ultrasound
DE3241814A1 (en) ULTRASONIC MICROSCOPE
DE3241978C2 (en) Sound imager
DE102016125016B4 (en) Method for ultrasonic microscopic measurement of semiconductor samples, computer program for ultrasonic microscopic measurement of semiconductor samples, computer program product and ultrasonic microscope
EP2238443A1 (en) Device and method for the non-destructive testing of a test object by way of ultrasound tofd technology
WO2002014804A1 (en) Dirt-repeller and self cleaning measuring sensor
EP0086531A1 (en) Apparatus for ultrasonic investigation
CH653542A5 (en) ULTRASONIC DIAGNOSTIC DEVICE.
WO2024074381A1 (en) Method for operating a scanning-acoustic microscope, and scanning-acoustic microscope
WO2012117088A1 (en) Apparatus for non-destructively inspecting the interior of components
DE102022105759A1 (en) Flow measuring device and method for operating the same
DE102021115546A1 (en) Arrangement of ultrasonic transducers, clamp-on ultrasonic measuring device with such an arrangement and method for adjusting the ultrasonic measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761008

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10761008

Country of ref document: EP

Kind code of ref document: A1