WO2011045152A2 - Plattenwärmetauscher - Google Patents

Plattenwärmetauscher Download PDF

Info

Publication number
WO2011045152A2
WO2011045152A2 PCT/EP2010/063977 EP2010063977W WO2011045152A2 WO 2011045152 A2 WO2011045152 A2 WO 2011045152A2 EP 2010063977 W EP2010063977 W EP 2010063977W WO 2011045152 A2 WO2011045152 A2 WO 2011045152A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
plate heat
primary
shaft
flow
Prior art date
Application number
PCT/EP2010/063977
Other languages
English (en)
French (fr)
Other versions
WO2011045152A3 (de
Inventor
Ilona Krinn
Juergen Stegmaier
Manfred Schmitt
Bernd Banzhaf
Patrick Glaser
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2011045152A2 publication Critical patent/WO2011045152A2/de
Publication of WO2011045152A3 publication Critical patent/WO2011045152A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Definitions

  • the invention relates to a plate heat exchanger, in particular for exhaust heat transfer in motor vehicles, with a plurality of heat exchanger plates, which are arranged to form primary and secondary shafts for a primary medium and a secondary medium spaced from each other.
  • Plate heat exchangers are used in practice in a wide variety of technical applications due to their compact design and their small weight that can be realized.
  • the plate heat exchanger is flowed through by a heating or cooling medium on the primary side, while the medium to be heated or cooled is guided on the secondary side through the plate heat exchanger.
  • this medium evaporates or condenses, it is referred to as a so-called multi-phase application.
  • the flowed through by the primary or secondary medium primary and secondary chutes are basically arranged parallel to each other, wherein the flow direction of the media relative to each other can be done in cocurrent, countercurrent or cross flow.
  • the heat transfer takes place via the plate exchanger plates, which are usually profiled on their surfaces facing the flow channel, in order to improve the heat transfer by a turbulence of the medium flowing through with respect to the heat transfer in a purely laminar flow.
  • generic plate heat exchangers are used, for example, as exhaust gas heat exchangers in the exhaust gas recirculation line (EGR).
  • the object of the invention is to improve the heat transfer with the lowest possible manufacturing effort in a generic plate heat exchanger on.
  • the object is achieved by a plate heat exchanger with the features specified in claim 1.
  • the advantage associated with the plate heat exchanger according to the invention consists essentially in the fact that a flow flow of the guided through the meander-shaped flow channel medium can be aligned in a simple and cost-effective manner to the flow occurring during operation of the other medium. This increases the heat transfer of the plate heat exchanger.
  • the entire available for the heat exchange surface of the respective primary and / or secondary shaft is exploited, at the same time the wetting of the heat exchange involved in the shaft walls of the flow channel is improved in a two-phase application even at high vapor contents and in so-called horizontal operation.
  • the flow guide elements of a shaft are formed by projections, in particular beads, on one or both heat exchanger plates of the shaft.
  • the two heat exchanger plates of the shaft abut each other via the flow guide elements provided therebetween.
  • the flow channel has regions with different cross-section through which a phase-independent optimization of the heat transfer is possible.
  • At least two meandering flow channels arranged one behind the other in the shaft longitudinal direction and decoupled from one another are advantageously provided with feed and discharge connections for the primary and secondary medium which are independent of one another.
  • These two flow channels can have different lengths and a different flow cross-section.
  • the plate heat exchanger as a highly efficient steam generator, for example for driving an expansion machine coupled to the crankshaft of a motor vehicle, it is preferred that the longer flow channel can be used as preheater and evaporator and the shorter flow channel as superheater for the secondary medium.
  • the flow channels have at least one intermediate connection.
  • the feed back from downstream or a downstream heat exchanger section removed medium is possible. borrowed. This can be used, for example, for the regeneration of steam partially expanded in a steam turbine.
  • the heat exchanger plates are cup-shaped and stacked in the plate heat exchanger.
  • the precise alignment of the heat exchanger plates required during assembly is simplified relative to one another and at the same time the number of required components is reduced, which reduces overall manufacturing and assembly costs.
  • plate heat exchangers with a heat exchanger surface of different sizes can be produced by simply increasing the number of heat exchanger plates stacked one inside the other.
  • FIG. 1 is a highly schematic perspective fragmentary view of the plate heat exchanger according to the invention.
  • FIG. 2 is a sectional view of the plate heat exchanger according to II-II in FIG. 1. Description of the embodiment
  • a plate heat exchanger according to the invention is shown, wherein to improve the clarity of the presentation of a plate heat exchanger 10 surrounding housing and other attachments was omitted.
  • the plate heat exchanger 10 is provided for the arrangement in an exhaust system of a motor vehicle and therefore has a correspondingly compact construction and a low weight corresponding to the general requirements in vehicle construction.
  • the plate heat exchanger 10 comprises a plurality of shell-shaped heat exchanger plates 12, which have a corresponding shell-shaped and in cross-section substantially U-profiled basic shape.
  • the heat exchanger plates 12 are stacked one inside the other and form shafts arranged parallel to one another, alternately primary shafts 14 for the exhaust gas of an internal combustion engine of the motor vehicle and secondary shafts 16 for a secondary or working medium, which in the present case is water.
  • the primary and secondary shafts 14, 16 each have a rectangular cross-section, wherein the shaft bottom are formed by the respective lower heat exchanger plate 12 and the shaft ceiling and the shaft side walls through the respective upper heat exchanger plate 12.
  • the primary wells 14 are conventionally internally ribbed 18 to increase heat transfer on the heating side.
  • 16 flow guide 20 are arranged in each secondary shaft, which form a meandering flow channel 24 for the water in the secondary shaft 16 in the shaft longitudinal direction 22.
  • these flow guide elements 20 are formed by projections 26 which are provided on one or both heat exchanger plates 12 of the secondary shaft 16 and project transversely into the secondary shaft 16.
  • the projections 26 are formed by beads, which are introduced by deep drawing in the heat exchanger plates 12.
  • the beads 26 are provided only at the top of the bottom 16a of the secondary shaft 14 forming lower heat exchanger plate 12 and are each transverse to the shaft longitudinal direction 22 alternately from one and the other shaft side wall 16c in the secondary shaft 16 before.
  • the upper heat exchanger plate 12 forming the ceiling 16b of the secondary shaft 16 rests on the beads 26 of the lower heat exchanger plate 12, that is, the stack height is defined by the height of the beads 26.
  • the primary shafts 14 are formed continuously over their entire length of the shaft, so that the plate heat exchanger 10 can be flowed through without interruption by the exhaust gas.
  • the secondary shafts 16 each have two shaft-shaped flow channels 24, 24a arranged one behind the other in the shaft longitudinal direction 22 and decoupled from one another, with mutually independent inlet and outlet connections 32; 34 and 32a, 34a for the water.
  • the two flow channels 24, 24 a are separated from one another by a separating element 36 which, like the flow guide elements 20, is likewise formed by a bead 38 of the lower heat exchanger plate 12 of the secondary shaft 14.
  • This bead 38 has the same height as the other beads 26, whereby the ceiling 16 b of the secondary shaft 16 forming upper heat exchanger plate 12 rests on all beads 26, 38 of the lower heat exchanger plates 12.
  • the left-hand flow channel 24 still has an intermediate connection 40, via which water or water vapor can be supplied or removed.
  • the left in Fig. 2 meandering flow channel 24 is longer in the shaft longitudinal direction 22 than the right flow channel 24a and has due to its comparatively larger bead spacing and a larger flow cross-section.
  • the longer flow channel 24 can be used as a preheater and evaporator and the shorter flow channel 24a as a superheater for the water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Bei einem Plattenwärmetauscher (10), insbesondere zur Abgaswärmeübertragung in Kraftfahrzeugen, mit einer Mehrzahl von Wärmetauscherplatten (12), die unter Ausbildung von Primär- und Sekundärschächten (14; 16) für ein Primärmedium und ein Sekundärmedium beabstandet zueinander angeordnet sind, sind erfindungsgemäß in den Primär- und/oder Sekundärschächten (14; 16) jeweils Strömungsleitelemente (20) angeordnet, die in den Schächten (14; 16) mindestens einen mäanderförmigen Strömungskanal (24; 24a) für das Primär- bzw. Sekundärmedium ausbilden. Vorzugsweise sind die Strömungsleitelemente (20) durch Sicken (26) an einer oder beiden Wärmetauscherplatten (12) des Schachts (14, 16) gebildet.

Description

Plattenwärmetauscher Die Erfindung betrifft einen Plattenwärmetauscher, insbesondere zur Abgaswärmeübertragung in Kraftfahrzeugen, mit einer Mehrzahl von Wärmetauscherplatten, die unter Ausbildung von Primär- und Sekundärschächten für ein Primärmedium und ein Sekundärmedium beabstandet zueinander angeordnet sind.
Plattenwärmetauscher werden aufgrund ihrer kompakten Bauform und ihres realisierbaren geringen Gewichts in der Praxis in den verschiedensten technischen Anwendungsbereichen eingesetzt. Der Plattenwärmetauscher wird dabei in der Regel primärseitig von einem Heiz- oder Kühlmedium durchströmt, wäh- rend das zu beheizende oder zu kühlende Medium sekundärseitig durch den Plattenwärmetauscher hindurchgeführt ist. Wenn dieses Medium dabei verdampft oder kondensiert, wird dies als sogenannte Mehrphasenanwendung bezeichnet. Die vom primären oder sekundären Medium durchströmten Primär- und Sekundärschachte sind grundsätzlich parallel zueinander angeordnet, wobei die Strömungsrichtung der Medien relativ zueinander im Gleichstrom, Gegenstrom oder im Kreuzstrom erfolgen kann. Die Wärmeübertragung erfolgt dabei über die Plattentauscherplatten, die jeweils an ihren dem Strömungskanal zuge- wandten Oberflächen üblicherweise profiliert sind, um die Wärmeübertragung durch eine Verwirbelung des durchströmenden Mediums gegenüber der Wärmeübertragung bei einer rein laminaren Strömung zu verbessern. Im Bereich der Kraftfahrzeugtechnik finden gattungsgemäße Plattenwärmetauscher beispielsweise als Abgaswärmetauscher im Abgasrückführstrang (AGR) Anwendung.
Aufgabe der Erfindung ist es, bei einem gattungsgemäßen Plattenwärmetauscher die Wärmeübertragung mit möglichst geringem fertigungstechnischem Aufwand weiter zu verbessern.
Vorteile der Erfindung
Die Aufgabe wird erfindungsgemäß gelöst durch einen Plattenwärmetauscher mit den im Anspruch 1 angegebenen Merkmalen. Der mit dem erfindungsgemäßen Plattenwärmetauscher verbundene Vorteil besteht im Wesentlichen darin, dass ein Strömungsfluss des durch den mäan- derförmigen Strömungskanal geführten Mediums auf einfache und kostengünstige Weise auf den im Betrieb auftretenden Strömungsfluss des anderen Mediums ausrichtbar ist. Dadurch wird die Wärmeübertragung des Plattenwärme- tauschers gesteigert. Zusätzlich wird die gesamte für den Wärmeaustausch zur Verfügung stehende Fläche des betreffenden Primär- und/oder Sekundärschachts ausgenutzt, wobei zugleich die Benetzung der am Wärmetausch beteiligten Schachtwandungen des Strömungskanals bei einer zweiphasigen Anwendung selbst bei hohen Dampfgehalten und im sogenannten horizontalen Betrieb verbessert ist.
Aus fertigungstechnischer Sicht ist es besonders bevorzugt, dass die Strömungsleitelemente eines Schachtes durch Vorsprünge, insbesondere Sicken, an einer oder beiden Wärmetauscherplatten des Schachts gebildet sind. Vor- zugsweise liegen die zwei Wärmetauscherplatten des Schachtes über die dazwischen vorgesehenen Strömungsleitelemente aneinander an. Dies ermöglicht eine besonders einfache Montage des Plattenwärmetauschers, wobei die Strömungsleitelemente im Hinblick auf eine möglichst geringe Anzahl von Arbeits- schritten und Bauteilen im Wege eines Umformprozesses, vorzugsweise durch Tiefziehen, in die Wärmetauscherplatten eingebracht sind. Dadurch wird zudem ein gegenüber Verschleiß und Störungen wenig anfälliger Aufbau realisiert und einer Korrosion, wie diese beispielsweise an ansonsten vorzusehenden
Schweißnähten und dergl. auftritt, sowie einem Festsetzen von Verunreinigungen oder Kalk entgegengewirkt. Durch den mäanderförmigen Strömungskanal wird im Zweiphasenbetrieb im Bereich der 180°-Umlenkungen eine Vorabscheidung der im Medium mitgeführten unverdampften Tropfen begünstigt. Diese Vorabscheidung unterstützt eine anschließende Tropfenabscheidung und gewährleistet eine hohe Dampfqualität.
Vorzugsweise weist der Strömungskanal Bereiche mit unterschiedlichem durchströmbarem Querschnitt auf, wodurch eine phasenunabhängige Optimierung der Wärmeübertragung möglich ist.
Vorteilhaft sind in einem oder mehreren der Primär- und/oder Sekundärschächte mindestens zwei in Schachtlängsrichtung hintereinander angeordnete, voneinander entkoppelte mäanderförmige Strömungskanäle mit voneinander unabhängigen Zu- und Abführanschlüssen für das Primär- bzw. Sekundärmedium vorgesehen. Diese zwei Strömungskanäle können unterschiedlich lang und einen unterschiedlichen Strömungsquerschnitt aufweisen. Hinsichtlich eines Einsatzes des Plattenwärmetauschers als hocheffizienter Dampferzeuger, beispielsweise für den Antrieb einer mit der Kurbelwelle eines Kraftfahrzeugs gekoppelten Expansionsmaschine, ist bevorzugt, dass der längere Strömungska- nal als Vorwärmer und Verdampfer und der kürzere Strömungskanal als Überhitzer für das Sekundärmedium genutzt werden können.
Im Hinblick auf eine Feinregelung des Medienstroms bzw. der Temperatur des den Strömungskanälen zu- bzw. aus diesen herausgeführten Mediums ist über- dies bevorzugt, dass die Strömungskanäle zumindest einen Zwischenanschluss aufweisen. Auch ist die Rückeinspeisung von stromabwärts bzw. einem stromabwärts angeordneten Wärmetauscherabschnitt entnommenem Medium mög- lieh. Dies kann beispielsweise zur Regeneration von in einer Dampfturbine teilentspanntem Dampf genutzt werden.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung sind die Wärmetauscherplatten schalenförmig ausgebildet und im Plattenwärmetauscher ineinander gestapelt. Dadurch ist die bei der Montage erforderliche exakte Ausrichtung der Wärmetauscherplatten zueinander vereinfacht und zugleich die Anzahl der erforderlichen Bauteile verringert, was den Herstellungs- und Montageaufwand insgesamt reduziert. Weiterhin können dadurch Plattenwär- metauscher mit einer unterschiedlich großen Wärmetauscherfläche durch eine einfache Erhöhung der Anzahl der ineinander gestapelten Wärmetauscherplatten hergestellt werden.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfin- dung sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar. Ebenso können die vorstehend genannten und die weiteren aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigte und beschriebene Ausführungsform ist nicht als abschließende Aufzählung zu verstehen, sondern hat vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
Zeichnungen Nachfolgend wird die Erfindung anhand eines in der Zeichnung exemplarisch wiedergegebenen Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1 eine stark schematisierte perspektivische ausschnittsweise Darstellung des erfindungsgemäßen Plattenwärmetauschers; und Fig. 2 eine Schnittansicht des Plattenwärmetauschers gemäß II-II in Fig. 1 . Beschreibung des Ausführungsbeispieles
In der Zeichnung ist mit 10 bezeichneter ein erfindungsgemäßer Plattenwärmetauscher gezeigt, wobei zur Verbesserung der Übersichtlichkeit auf die Darstel- lung eines den Plattenwärmetauscher 10 umgebenden Gehäuse sowie weiterer Anbauteile verzichtet wurde.
Der Plattenwärmetauscher 10 ist für die Anordnung in einem Abgasstrang eines Kraftfahrzeugs vorgesehen und weist daher eine entsprechend kompakte Bau- weise und ein den allgemeinen Anforderungen im Fahrzeugbau entsprechendes geringes Gewicht auf.
Wie in Fig. 1 gezeigt, umfasst der Plattenwärmetauscher 10 mehrere schalenförmige Wärmetauscherplatten 12, die eine einander entsprechende schalen- förmige und im Querschnitt im Wesentlichen U-profilierte Grundform aufweisen. Die Wärmetauscherplatten 12 sind ineinander gestapelt und bilden zwischen sich parallel zueinander angeordnete Schächte aus, und zwar abwechselnd Primärschächte 14 für das Abgas eines Verbrennungsmotors des Kraftfahrzeugs sowie Sekundärschächte 16 für ein Sekundär- bzw. Arbeitsmedium, wel- ches vorliegend Wasser ist. Die Primär- und Sekundärschächte 14, 16 haben jeweils einen rechteckigen Querschnitt, wobei der Schachtboden durch die jeweils untere Wärmetauscherplatte 12 und die Schachtdecke und die Schachtseitenwände durch die jeweils obere Wärmetauscherplatte 12 gebildet sind. Die Primärschächte 14 weisen in herkömmlicher Weise im Innern eine Berippung 18 zur Steigerung der Wärmeübertragung auf der Heizseite auf.
Wie in Fig. 2 gezeigt, sind in jedem Sekundärschacht 16 Strömungsleitelemente 20 angeordnet, die in dem Sekundärschacht 16 in Schachtlängsrichtung 22 einen mäanderförmigen Strömungskanal 24 für das Wasser ausbilden. Wie in Fig. 1 gezeigt, sind diese Strömungsleitelemente 20 durch Vorsprünge 26 gebildet, die an einer oder an beiden Wärmetauscherplatten 12 des Sekundärschachts 16 vorgesehen sind und quer in den Sekundärschacht 16 vorstehen. Vorzugsweise sind die Vorsprünge 26 durch Sicken ausgebildet, die durch Tiefziehen in die Wärmetauscherplatten 12 eingebracht sind.
In dem in Fig. 1 gezeigten Ausführungsbeispiel sind die Sicken 26 nur an der Oberseite der den Boden 16a des Sekundärschachts 14 bildenden unteren Wärmetauscherplatte 12 vorgesehen und stehen jeweils quer zur Schachtlängsrichtung 22 abwechselnd von der einen und der anderen Schachtseitenwand 16c in den Sekundärschachts 16 vor. Die die Decke 16b des Sekundärschachts 16 bildende obere Wärmetauscherplatte 12 liegt auf den Sicken 26 der unteren Wärmetauscherplatte 12 auf, d.h., die Stapelhöhe ist durch die Höhe der Sicken 26 definiert. Die Sicken 26 bilden zusammen mit Boden, Decke und Seitenwänden 16a-16c den mäanderförmigen Strömungskanal 24 mit seinen quer zur Schachtlängsrichtung 22 verlaufenden Kanalabschnitten 28 und seinen jeweils dazwischenliegenden U-förmigen Kurvenabschnitten 30 für einen 180°-Richtungswechsel.
Die Primärschächte 14 sind über ihre gesamte Schachtlänge durchgängig ausgebildet, so dass der Plattenwärmetauscher 10 vom Abgas unterbrechungsfrei durchströmbar ist. Die Sekundärschächten 16 weisen jeweils zwei in Schacht- längsrichtung 22 hintereinander angeordnete, voneinander entkoppelte mäan- derförmige Strömungskanäle 24, 24a mit voneinander unabhängigen Zu- und Abführanschlüssen 32; 34 bzw. 32a, 34a für das Wasser auf. Die beiden Strömungskanäle 24, 24a sind voneinander durch ein Trennelement 36 getrennt, das wie die Strömungsleitelemente 20 ebenfalls durch eine Sicke 38 der unte- ren Wärmetauscherplatte 12 des Sekundärschachts 14 gebildet ist. Diese Sicke 38 weist die gleiche Höhe wie die anderen Sicken 26 auf, wodurch die die Decke 16b des Sekundärschachts 16 bildende obere Wärmetauscherplatte 12 auf allen Sicken 26, 38 der unteren Wärmetauscherplatten 12 aufliegt. Der linke Strömungskanal 24 weist zwischen seinen Zu- und Abführanschlüssen 32, 34 noch einen Zwischenanschluss 40 auf, über den Wasser oder Wasserdampf zu- bzw. abgeführt werden kann. Der in Fig. 2 linke mäanderförmige Strömungskanal 24 ist in Schachtlängsrichtung 22 länger als der rechte Strömungskanal 24a und weist aufgrund seines vergleichsweise größeren Sickenabstands auch einen größeren Strömungsquerschnitt auf. Der längere Strömungskanal 24 kann als Vorwärmer und Ver- dampfer und der kürzere Strömungskanal 24a als Überhitzer für das Wasser genutzt werden.

Claims

Patentansprüche
1 . Plattenwärmetauscher (10), insbesondere zur Abgaswärmeübertragung in Kraftfahrzeugen, mit einer Mehrzahl von Wärmetauscherplatten (12), die unter Ausbildung von Primär- und Sekundärschächten (14; 16) für ein Primärmedium und ein Sekundärmedium beabstandet zueinander angeordnet sind,
dadurch gekennzeichnet,
dass in den Primär- und/ oder Sekundärschächten (14; 16) jeweils Strömungsleitelemente (20) angeordnet sind, die in den Schächten (14; 16) mindestens einen mäanderförmigen Strömungskanal (24; 24a) für das
Primär- bzw. Sekundärmedium ausbilden.
Plattenwärmetauscher nach Anspruch 1 , dadurch gekennzeichnet, dass die Strömungsleitelemente (20) eines Schachtes (14, 16) an einer oder an beiden Wärmetauscherplatten (12) des Schachts (14, 16) angeordnet sind.
Plattenwärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strömungsleitelemente (20) durch Vorsprünge, insbesondere Si- cken (26), an einer oder beiden Wärmetauscherplatten (12) des Schachts (14, 16) gebildet sind.
Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei benachbarte Wärmetauscherplatten (12) über die dazwischen vorgesehenen Strömungsleitelemente (20) aneinander anliegen.
5. Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mäanderförmige Strömungskanal (24; 24a) Kanalbereiche mit unterschiedlichen Strömungsquerschnittsflächen aufweist.
6. Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem oder mehreren der Primär- und/ oder Sekundärschächte (14; 16) mindestens zwei in Schachtlängsrichtung (22) hintereinander angeordnete, voneinander entkoppelte mäanderförmi- ge Strömungskanäle (24, 24a) mit voneinander unabhängigen Zu- und Abführanschlüssen (32, 34; 32a, 364a) für das Primär- bzw. Sekundärmedium vorgesehen sind.
Plattenwärmetauscher nach Anspruch 6, dadurch gekennzeichnet, dass die zwei in Schachtlängsrichtung (22) hintereinander angeordneten mäan- derförmigen Strömungskanäle (24, 24a) voneinander durch ein Trennelement (36) getrennt sind, das durch einen Vorsprung, insbesondere Sicke (38), an einer der beiden Wärmetauscherplatten (12) des Schachts (14, 16) gebildet ist.
Plattenwärmeüberträge nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die zwei in Schachtlängsrichtung (22) hintereinander angeordneten mäanderförmigen Strömungskanäle (24, 24a) unterschiedlich lang und/oder einen unterschiedlichen Strömungsquerschnitt aufweisen.
Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mäanderförmige Strömungskanal (24; 24a) zwischen seinen Zu- und Abführanschlüssen (32, 34) mindestens einen Zwischenanschluss (40) aufweist.
Plattenwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmetauscherplatten (12) schalenförmig ausgebildet und ineinander gestapelt sind.
PCT/EP2010/063977 2009-10-14 2010-09-22 Plattenwärmetauscher WO2011045152A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009045671A DE102009045671A1 (de) 2009-10-14 2009-10-14 Plattenwärmetauscher
DE102009045671.6 2009-10-14

Publications (2)

Publication Number Publication Date
WO2011045152A2 true WO2011045152A2 (de) 2011-04-21
WO2011045152A3 WO2011045152A3 (de) 2011-09-09

Family

ID=43798670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063977 WO2011045152A2 (de) 2009-10-14 2010-09-22 Plattenwärmetauscher

Country Status (2)

Country Link
DE (1) DE102009045671A1 (de)
WO (1) WO2011045152A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641196A (zh) * 2012-09-17 2015-05-20 马勒国际公司 热交换器
JP2015523536A (ja) * 2012-06-26 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー 蒸発器、内燃機関用廃熱利用装置、及び内燃機関

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011077154B4 (de) * 2011-05-25 2017-05-18 Eberspächer Exhaust Technology GmbH & Co. KG Verdampfer
FR2993354B1 (fr) * 2012-07-13 2018-07-13 Delphi Automotive Systems Lux Refroidisseur d'air de suralimentation
DE102012022676A1 (de) * 2012-11-21 2014-05-22 Voith Patent Gmbh Verdampfer zur teilweisen oder vollständigen Verdampfung eines Flüssigkeitsstromes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8002973A (nl) * 1980-05-22 1981-12-16 Aernoud Rudolf Koenings Inrichting voor het behandelen van een fluidum.
US5180004A (en) * 1992-06-19 1993-01-19 General Motors Corporation Integral heater-evaporator core
US6357396B1 (en) * 2000-06-15 2002-03-19 Aqua-Chem, Inc. Plate type heat exchanger for exhaust gas heat recovery
US6948559B2 (en) * 2003-02-19 2005-09-27 Modine Manufacturing Company Three-fluid evaporative heat exchanger
DE202007008615U1 (de) * 2007-06-15 2007-08-09 Liu, Chia-Pai, Jhuci Wärmeaustauscher

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523536A (ja) * 2012-06-26 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー 蒸発器、内燃機関用廃熱利用装置、及び内燃機関
CN104641196A (zh) * 2012-09-17 2015-05-20 马勒国际公司 热交换器
US9683786B2 (en) 2012-09-17 2017-06-20 Mahle International Gmbh Heat exchanger

Also Published As

Publication number Publication date
WO2011045152A3 (de) 2011-09-09
DE102009045671A1 (de) 2011-04-21

Similar Documents

Publication Publication Date Title
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP3119623B1 (de) Heizkühlmodul
EP1626238B1 (de) Wärmetauscher, bestehend aus Flachrohren
EP3102899B1 (de) Strömungsapparat zur führung eines fluidstroms
EP1913324A1 (de) Wärmeübertrager
DE102012106782A1 (de) Wärmeübertrager zur Abgaskühlung in Kraftfahrzeugen
DE102006012219B4 (de) Wärmeübertragungseinheit mit einem verschließbaren Fluidteileinlass
DE102006033313A1 (de) Wärmeübertrager
EP1939412A1 (de) Wärmetauscher zur Kühlung von Spaltgas
DE102010008176B4 (de) Wärmeübertrager und Verfahren zum Betreiben eines Wärmeübertragers
WO2007017064A1 (de) Wärmetauscher
EP2547960B1 (de) Thermische abluftreinigungsanlage
WO2011045152A2 (de) Plattenwärmetauscher
EP2843348A1 (de) Plattenwärmeaustauscher mit durch Metallschaum verbundenen Wärmetauscherblöcken
DE102017203058A1 (de) Wärmeübertrager und Reaktor
WO2015140034A1 (de) Heizkühlmodul
DE102007031824A1 (de) Wärmetauscher
DE102011118164B4 (de) Wärmeübertrager und Verfahren zum Betreiben eines Wärmeübertragers
DE102005034137A1 (de) Wärmeübertrager
WO2005100895A1 (de) Wärmeübertrager für kraftfahrzeuge
DE3208467A1 (de) Konvektionserhitzer zum erhitzen von fluida, wie z.b. eine aufschlaemmung oder dergleichen
DE102007048824A1 (de) Wärmetauscher, insbesondere zur Abgaskühlung
WO2015028052A1 (de) Rekuperator, mikrogasturbine und verwendung des rekuperators
EP3203173B1 (de) Abgaswärmeübertrager
EP2049859A1 (de) Kraftfahrzeugklimaanlage, wärmeübertrager, insbesondere heizkörper, für eine derartige kraftfahrzeugeklimaanlage sowie verfahren zum betreiben eines wärmeübertragers einer kraftfahrzeugklimaanlage

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 10759615

Country of ref document: EP

Kind code of ref document: A2