WO2011042779A1 - 直流配電システム - Google Patents

直流配電システム Download PDF

Info

Publication number
WO2011042779A1
WO2011042779A1 PCT/IB2010/002428 IB2010002428W WO2011042779A1 WO 2011042779 A1 WO2011042779 A1 WO 2011042779A1 IB 2010002428 W IB2010002428 W IB 2010002428W WO 2011042779 A1 WO2011042779 A1 WO 2011042779A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
storage
power failure
distribution system
Prior art date
Application number
PCT/IB2010/002428
Other languages
English (en)
French (fr)
Inventor
小新 博昭
井上 健
卓也 香川
傘谷 正人
和憲 木寺
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/500,458 priority Critical patent/US20120228944A1/en
Priority to EP10821636.7A priority patent/EP2475070A4/en
Priority to CN2010800552030A priority patent/CN102640387A/zh
Publication of WO2011042779A1 publication Critical patent/WO2011042779A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a DC power distribution system.
  • a DC distribution system that distributes DC power to a DC load by linking an ACZDC converter that converts AC power supplied from a power system into DC power and a distributed power source such as a solar cell and a fuel cell.
  • a DC power distribution system includes a storage battery as an emergency power source for supplying DC power to a DC load in the event of an emergency such as a power failure at night.
  • the storage battery is charged by DC power supplied from an AC / DC converter or a distributed power source such as a solar cell or a fuel cell at all times, and in an emergency, the storage battery is discharged to supply DC power to the direct load.
  • the remaining capacity of the storage battery is less than 100% of the capacity when fully charged (for example, 20% The battery is discharged until it drops to), and the battery is charged when the remaining capacity of the battery drops to the predetermined rate. That is, at all times, the DC power stored in the storage battery is supplied to the DC load in such a range that the remaining capacity of the storage battery does not fall below the remaining capacity required in the event of a power failure.
  • the storage battery is always maintained in a state where the predetermined amount of power capacity is stored as DC power required in the event of an emergency such as a power failure. This makes it possible to supply the necessary DC power to the DC load in an emergency.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 0 9-1 5 9 7 3 0
  • the remaining capacity of the storage battery can be estimated based on the terminal voltage. For example, if the battery terminal voltage changes from 30 V (volts) at full charge to half 15 V, the remaining capacity of the storage battery is estimated to be 50%.
  • storage batteries degrade over time due to temperature changes in the installation environment or repeated charge / discharge.
  • the total capacity of the storage battery that is, the amount of power stored at full charge
  • the amount of power stored at full charge changes. For example, when the storage battery is new, 10 OW h of energy is stored when fully charged, but when the storage battery deteriorates, the amount of power stored when fully charged is 8 OW h.
  • 20% of the electric energy is secured for emergency use with respect to the fully charged capacity (1 0 0%).
  • the m-force secured for this emergency is 2 ow h when new, and when degraded
  • the terminal voltage at full charge is the same regardless of changes in the total capacity of the storage battery.
  • the terminal voltage in the fully charged state when new is 3 OV
  • the terminal voltage in the fully charged state when degraded is also 3 OV.
  • the storage battery charge state (%) required based on the terminal voltage of the storage battery is suitable, the power ⁇ actually stored in the storage battery differs between when it is new and when it deteriorates. Therefore, even if it is determined that a certain remaining capacity is secured on the system side, there is a concern that the actual remaining capacity may be less than a certain percentage of the total capacity of the new storage battery. Is done. In this case, there is a risk that the power required in the event of a power failure may not be extracted.
  • the present invention has been made in view of the above points, and provides a DC power distribution system that can more reliably secure the power required in the event of a power failure.
  • the power storage device includes a first storage battery that discharges the electrical device only during a power failure, and a direct current including a second storage battery that discharges the electrical device during a non-power failure
  • a power distribution system is provided.
  • the power storage device and the electric device receive DC power from a power generation device that generates power using natural energy, and AC power supplied from a commercial power source into DC power, and the converted DC power is
  • the first storage battery may discharge the electrical device when power supply from the power generation device and the commercial power supply is interrupted.
  • the power of the first storage battery is not used during a non-power outage.
  • all the electric power stored in the first storage battery allocated for this power failure is supplied to the DC equipment during a power failure.
  • by providing a dedicated first storage battery that discharges only during a power failure of the commercial power supply separately from the second storage battery for normal use that discharges during a non-power failure such as at night The power required sometimes is ensured by a dedicated first storage battery.
  • it is convenient to use because the power stored in the second storage battery can be taken out and used when there is no power outage or when power generation by the power generator becomes difficult.
  • the DC power distribution system further includes a control device that controls charging and discharging of the first and second storage batteries, and the control device has a specific timing for the role of the first and second harmful batteries. It may be replaced with.
  • the control device of the system always discharges the storage battery assigned for non-power failure and does not discharge the storage battery assigned for power failure. In other words, the control device discharges the storage battery allocated for power failure only in case of emergency such as power failure.
  • At least one of the first and second storage batteries may be stored under the floor of a building.
  • the temperature environment is low and stable.
  • the self-discharge amount of the storage battery depends on the temperature, and increases as the temperature rises. For this reason, the floor under the building is suitable as a storage location for the storage battery. For this reason, according to this invention, the lifetime increase of a storage battery is achieved by suppressing the temperature rise of a storage battery.
  • the DC power distribution system may include setting means for setting the role of the first and second storage batteries to either a power failure time or a non-power failure time through manual operation.
  • the role of the first and second storage batteries can be set to either a power outage or a non-power outage through operation of the setting means, which is convenient.
  • each of the first and second storage batteries is configured as an assembled battery in which a plurality of single cells are combined, and the setting means serves as a role of each of the single batteries constituting the first and second storage batteries. Can be set to either during a power failure or during a non-power failure through manual operation.
  • the power capacity allocated for power failure and non-power failure can be finely adjusted through the operation of the setting means.
  • the power capacity allocated for power failure can be changed as appropriate according to the power failure protection time required by the user.
  • the backup capacity according to the user environment can be secured.
  • the power generation device may be a solar cell that generates power using sunlight as the natural energy.
  • the present invention by providing a dedicated storage battery that discharges only during a power failure and a non-power-saving storage battery that discharges during a non-power failure, it is possible to more reliably secure a pack-up power source during a power failure. Can do.
  • FIG. 1 is a block diagram showing an outline of a DC power distribution system.
  • FIG. 2 is a block diagram showing a configuration of a control unit according to the first and second embodiments.
  • FIG. 3 (a) and (b) are graphs showing voltage fluctuations of the storage battery for power failure and non-power failure according to the second embodiment.
  • FIG. 4A is a perspective view showing an installation mode of a storage battery for power failure according to the third embodiment
  • FIG. 4B is a front sectional view.
  • FIG. 5 is a block diagram illustrating a configuration of a control unit according to a fourth embodiment.
  • FIG. 6 Similarly, (a) is a front view of the setting switch in the initial state, (b) is a circuit diagram showing the connection form (series) of each storage battery in the initial state, and (c) is a connection of each storage battery in the initial state.
  • the circuit diagram which shows form (parallel).
  • FIG. 7 Similarly, (a) is a front view of a setting switch, (b) is a circuit diagram showing a connection form (series) of each storage battery, and (c) is a circuit diagram showing a connection form (parallel) of each storage battery.
  • FIG. 8 Similarly, (a) is a front view of a setting switch, (b) is a circuit diagram showing a connection form (series) of each storage battery, and (c) is a circuit diagram showing a connection form (parallel) of each storage battery.
  • the house is equipped with a power supply system 1 that supplies power to various devices (lighting equipment, air conditioners, home appliances, audiovisual equipment, etc.) installed in the house.
  • various devices lighting equipment, air conditioners, home appliances, audiovisual equipment, etc.
  • the power supply system 1 also supplies power from solar cells 3 that generate power from sunlight as power.
  • the power supply system 1 supplies power not only to the DC device 5 that operates by inputting DC power (DC power), but also to the AC device 6 that operates by inputting AC power (AC power).
  • the power supply system 1 is provided with a control unit 7 and a DC distribution board (with built-in DC breaker) 8 as distribution boards for the system. Further, the power supply system 1 is provided with a control unit 9 and a relay unit 10 as devices for controlling the operation of the DC device 5 in the house.
  • the control unit 7 is connected to an AC distribution board 11 1 for branching an AC power supply via an AC power line 12.
  • the control unit 7 is connected to the commercial power supply 2 through the AC distribution board 11 and is connected to the solar cell 3 through the DC power line 13.
  • the control unit 7 takes in AC power from the AC distribution board 1 1 and solar cells 3 DC power is taken in and converted into predetermined DC power as equipment power.
  • the control unit 7 outputs the converted DC power to the DC distribution board 8 via the DC power line 14 or to the storage battery 16 via the DC power line 15. Or store the same power.
  • the control unit 7 can not only take AC power from the AC distribution board 11 but also convert the power of the solar cell 3 and storage battery 16 to AC power and supply it to the AC distribution board 11 It is.
  • the control unit 7 exchanges data with the DC distribution board 8 via the signal line 17.
  • the DC distribution board 8 is a type of breaker that supports DC power.
  • the DC distribution board 8 branches the DC power input from the control unit 7 and outputs the DC power after branching to the control unit 9 via the DC power line 18 or the DC power line 1 9 Or output to relay unit 10 via. Further, the DC distribution board 8 exchanges data with the control unit 9 via the signal line 20 and exchanges data with the relay unit 10 via the signal line 21.
  • a plurality of DC devices 5 are connected to the control unit 9. These DC devices 5 are connected to a control unit 9 via a DC supply line 22 that can carry both DC power and data by a pair of wires.
  • the DC supply line 22 is a so-called power line carrier communication that superimposes a communication signal that transmits data using a high-frequency carrier wave on a DC voltage that serves as a power source for DC equipment. Transport to DC device 5.
  • the control unit 9 acquires the DC power source of the DC device 5 through the DC system power line 1 8 and determines which DC device 5 is based on the operation command obtained from the DC distribution board 8 through the signal line 20. Know how to control. Then, the control unit 9 outputs a DC voltage and an operation command to the instructed DC device 5 through the DC supply line 22, and controls the operation of the DC device 5.
  • the control unit 9 is connected to a switch 2 3 that is operated when switching the operation of the DC device 5 in the home via the DC supply line 2 2. Further, for example, a sensor 24 that detects a radio wave transmitted from an infrared remote controller is connected to the control unit 9 via a DC supply line 22. Accordingly, not only the operation instruction from the DC distribution board 8 but also the operation of the switch 23 and the detection of the sensor 24, the DC device 5 is controlled by sending a communication signal to the DC supply line 22.
  • a plurality of DC devices 5 are connected to the relay unit 10 via individual DC power lines 25, respectively.
  • Relay unit 10 acquires the DC power supply of DC device 5 via DC power line 19 and operates which DC device 5 based on the operation command obtained from DC distribution board 8 via signal line 21. Know what to do.
  • the relay unit 10 controls the operation of the DC device 5 by turning on / off the power supply to the DC power line 25 with the built-in relay for the instructed DC device 5.
  • the relay unit 10 is connected to a plurality of switches 26 for manual operation of the DC device 5.
  • the power supply to the DC power line 25 can be turned on and off by operating the switch 26. By doing so, the DC device 5 is controlled.
  • a wall outlet or a floor outlet is connected to the DC distribution board 8 through a DC power line 2 8. If a DC device plug (not shown) is inserted into this DC outlet 27, DC power can be supplied directly to the device.
  • a power meter 29 that can remotely measure the usage of the commercial power source 2 is connected.
  • the power meter 29 has not only the function of remote meter reading of commercial power consumption, but also, for example, functions of power line carrier communication and wireless communication.
  • the power meter 29 sends the meter reading result to an electric power company or the like via power line carrier communication or wireless communication.
  • the power supply system 1 is provided with a network system 30 that enables various devices in the home to be controlled by network communication.
  • the network system 30 is provided with a home server 31 as a control unit of the system.
  • the home server 31 is connected to a management server 32 outside the home via a network N such as the Internet, and is connected to the home equipment 3 4 via a signal line 33.
  • the in-home server 3 1 operates using DC power acquired from the DC distribution board 8 through the DC power line 35 as a power source.
  • a control box 36 that manages operation control of various devices in the home through network communication is connected to the home server 31 via a signal line 37.
  • the control box 36 is connected to the control unit 7 and the DC distribution board 8 via the signal line 17 and can directly control the DC device 5 via the DC supply line 38.
  • a gas / water meter 39 that can remotely measure the amount of gas and water used is connected to the control box 36, and also connected to the operation panel 40 of the network system 30.
  • the operation panel 40 is connected to a monitoring device 41 including, for example, a door phone slave, a sensor, and a camera.
  • the control box 3 6 When the home server 3 1 inputs operation commands for various devices in the home via the network N, the control box 3 6 notifies the control box 3 6 of the instructions so that the various devices operate in accordance with the operation commands. To work.
  • the home server 3 1 can provide various information acquired from the gas and water meter 39 to the management server 32 via the network N, and operate the monitoring device 41 to detect that an abnormality has been detected. When accepted from panel 40, this is also provided to management server 32 via network N.
  • the storage battery 16 includes a first storage battery 51 and a second storage battery 52.
  • the first and second storage batteries 5 1, 52 are connected to the control unit via the DC power lines 15 a, 15 b constituting the previous DC power line 15.
  • the first storage battery 51 is used as a backup storage battery that uses power only when the power supply from the commercial power source 2 and the solar battery 3 is interrupted, and the second storage battery 52 is used at night. Is set as a nighttime storage battery that uses the power.
  • the power capacity of the first storage battery 5 1 is medium power supply from the commercial power source 2 and solar cell 3. It is set to such an extent that it can sufficiently cover the necessary power required when it is cut off.
  • the first and second storage batteries 5 1, 52 are provided outside the control unit 7, but they can also be configured by being incorporated in the control unit 7.
  • only the first storage battery 51 for backup may be incorporated in the control unit 7. This is due to the following reason. In other words, unlike normal times when operating power can be supplied to all DC devices 5, it is often possible to supply operating power only to the minimum required DC devices 5 during a power outage. is assumed. In this case, as the power capacity of the first storage battery 51 for backup, it is only necessary to cover the operating power for the minimum required DC device 5 that should ensure operation in the event of a power failure.
  • the second storage battery 52 used during normal (non-power outage) cases may be required to cover the operating power of all DC devices 5.
  • the physique of the second storage battery 52 is likely to be larger than that of the first storage battery 51.
  • the first storage battery 51 having a smaller physique is incorporated in the control unit, and the second storage battery 52 having a larger physique is provided outside the control unit 7.
  • the control unit 7 includes a bidirectional ACZDC converter 6 1, a DC / DC converter 6 2 for solar cells, and a first charge / discharge circuit 6 3 corresponding to the first storage battery 5 1.
  • the second charging / discharging circuit 6 4 corresponding to the second storage battery 5 2 and the control circuit 65 are provided.
  • a CZ DC converter 61 is connected to the AC distribution board 11 via the AC power line 12 described above, and is connected to the DC distribution line installed in the controller unit via the DC power line 1. Connected to connection terminal P 1 for panel 8. The connection terminal P 1 is connected to the DC distribution board 8 via the DC power line 14.
  • a CZ DC converter 6 1 and AC power distribution panel 1 1 Connect the AC power line 1 2 to the AC power distribution panel 1 1 to detect the AC power (to be precise, voltage) supplied from the AC distribution panel 1 1. Sensor 6 6 is provided.
  • the DC / DC converter 6 2 is a DC power line that connects between the connection terminal P 2 for the solar cell 3 provided in the control unit and the connection terminal P 1 for the DC distribution board 8 described above. L 2 is provided.
  • the DC power line 1 3 connecting the control unit 7 and the solar cell 3 is provided with a voltage sensor (not shown) for detecting the DC power (to be precise, voltage) supplied from the solar cell 3. It has been.
  • the first charging / discharging circuit 63 connects between the connection terminal P3 for the first storage battery 51 provided in the control unit and the connection terminal P1 for the DC distribution board 8 described above. Is provided on the DC power line L3. In the DC power line L 3, the first storage battery 5 1 (to be precise, Between the connection terminal P 3) and the first charging / discharging circuit 63, a first voltage sensor 67 for detecting the voltage (terminal voltage) of the first storage battery 51 is provided.
  • the second charging / discharging circuit 64 is a direct current that connects between the connection terminal P 4 for the second storage battery 52 provided in the control unit 7 and the connection terminal P 1 for the DC distribution board 8 described above. It is provided on the system power line L4. In the DC power line L 4, the voltage (terminal voltage) of the second storage battery 52 is detected between the second storage battery 52 (more precisely, the connection terminal P 4) and the second charge / discharge circuit 64. A second voltage sensor 68 is provided.
  • first and second charge / discharge circuits 63 and 64 can be provided by being incorporated in the first and second storage batteries 51 and 52.
  • the ACZDC converter 61 has a function of converting AC power into DC power and a function of converting DC power into AC power. That is, the AC / DC converter 61 converts the AC power supplied from the AC distribution board 11 into a DC current, and converts the converted DC power into the DC distribution board 8 or the first and second storage batteries 51, Supply to 52. The AC / DC converter 61 converts the DC power supplied from the solar cell 3 and the first and second storage batteries 51 and 52 into AC power, and converts the converted AC power into the AC distribution board 11 1 It is also possible to supply to Based on the switching command from the control circuit 65, the ACZDC comparator 61 switches both the above-mentioned functions.
  • the DCZDC converter 62 for solar cells converts the DC power generated by the solar cell 3 into predetermined DC power, and supplies the converted DC power to the DC distribution board 8 or the storage battery 16.
  • the first charging / discharging circuit 63 includes a DC / DC converter and the like, and controls charging / discharging of the first storage battery 51 based on a command from the control circuit 65.
  • Second charging / discharging circuit 64 includes a DC / DC converter and the like, and controls charging / discharging of second storage battery 52 based on a command from control circuit 65.
  • the control circuit 65 switches and controls the function (operation mode) of the AC / DC converter 61 between the function of converting AC power into DC power and the function of converting DC power into AC power.
  • the control circuit 65 controls the charging operation and the discharging operation of the first and second storage batteries 51, 52 through the first and second charging / discharging circuits 63, 64.
  • control circuit 65 uses the fact that a proportional relationship is established between the terminal voltages of the first and second storage batteries 51 and 52 and the remaining capacity, and thereby the first and second voltage sensors 67 and 68. Based on the detection result, the remaining capacities (charged states) of the first and second storage batteries 51 and 52 are detected. For example, the control circuit 65 determines that the remaining capacities of the first and second storage batteries 51 and 52 have decreased when the voltages of the first and second storage batteries 51 and 52 have decreased.
  • the control circuit 65 determines the remaining capacity of the first and second storage batteries 51, 52. The amount is estimated to be 50%. Based on the estimated remaining capacity (charged state) of the first and second storage batteries 5 1 and 5 2, the control circuit 65 can charge / discharge the first and second storage batteries 5 1 and 5 2. It is possible to control.
  • control circuit 65 includes a clock IC or an illuminance sensor (not shown), and grasps the time of the day or the illuminance outside the house obtained by using them. If the control circuit 65 determines that the amount of power generated by the solar cell 3 cannot be sufficiently secured, such as at night, for example, the control circuit 65 passes through the second charge / discharge circuit 64. The second storage battery 52 is caused to perform a discharging operation. The DC power stored in the second storage battery 52 is supplied to each DC device 5 through the DC distribution board 8. In addition, when it is determined that the amount of power generated by the solar cell 3 can be sufficiently secured, such as in the daytime, the second storage battery 5 through the second charge / discharge circuit 64. Let 2 perform the charging operation.
  • control circuit 65 determines whether or not power is supplied from the commercial power source 2 based on the detection result of the voltage sensor 66 when the solar battery 3 cannot generate power. When it is determined that the power supply from the commercial power supply 2 has been interrupted, the control circuit 65 performs a discharge operation on the first storage battery 51 through the control of the first charge / discharge circuit 63. Let The DC power stored in the first storage battery 51 is supplied to each DC device 5 through the DC distribution board 8.
  • the control circuit 65 charges the first storage battery 51 through the first charge / discharge circuit 63 in a normal time that is not a power failure.
  • the control circuit 65 supplies the first storage battery 51 with the DC power generated by the solar cell 3 during the daytime and the like, and the DC power supplied through the A C ZD C converter 61 at the nighttime. In this way, the control circuit 65 maintains the charge state (charge level) of the first storage battery 51 to such an extent that power required at the time of a power failure can be supplied to the DC distribution board 8 side. Thus, the charging operation of the first storage battery 51 is controlled.
  • DC power generated by the solar cell 3 is supplied to each DC device 5 through the DC distribution board 8.
  • the surplus power at this time is supplied to the first and second storage batteries 5 1, 5 2.
  • the power stored in the second storage battery 52 is used.
  • the DC power generated by the solar battery 3 and the DC power of the second storage battery 52 can be supplied to the AC device 6 side. Since the first storage battery 51 is set as a backup power source in the event of a power failure, the power of the first storage battery 51 is never used for purposes other than backup.
  • the DC power stored in the second storage battery 52 is basically supplied to each DC device 5. Sunlight at daytime The same applies to cases where the condition is bad.
  • the DC power stored in the first storage battery 5 1 for backup is basically Supplied to.
  • the essential DC device 5 can be used continuously.
  • the power stored in the first storage battery 5 1 is never used during normal (non-power failure) times, and the first power storage capacity is always maintained on the DC device 5 side during a power failure.
  • the state of charge of the storage battery 5 1 is maintained. For this reason, the first storage battery 51 for backup can reliably supply the power required at the time of power failure to the DC device 5 side.
  • the control circuit 65 discharges the second storage battery 52 set for non-power failure not only during non-power failure but also during power failure. In this way, it becomes possible to ensure the backup power source at the time of a power failure. In addition, for example, it is possible to increase the backup time during which power can be supplied to the essential DC device 5 and the like.
  • First and second storage batteries 5 1 and 5 2 were prepared.
  • the first storage battery 51 is used as a backup for discharging only at the time of power failure
  • the second storage battery 52 is used for non-power failure when discharging at night when power generation by the solar battery 3 is difficult (normally Assigned).
  • the power required at the time of a power failure is stored independently using the first storage battery 51.
  • the electric power stored in the first storage battery 51 is not normally used. For this reason, the power required at the time of a power failure can be secured more reliably.
  • the charge / discharge operation can be controlled for each storage battery. For this reason, in particular, the life of the first storage battery 51 for backup can be extended.
  • the first storage battery 51 is discharged only at the time of a power failure, as shown in the previous prior art document, when a single storage battery secures power for power failure and non-power failure Unlike charging, charging and discharging are not repeated frequently. Therefore, the deterioration of the first storage battery 51 is suppressed, and as a result, reliable backup power supply during a power failure is ensured.
  • the control circuit 65 can simplify the charge / discharge control of the storage battery.
  • the power of the storage battery is transferred to the load.
  • it is necessary to closely monitor the remaining capacity of the storage battery so there is a concern that the control related to charging and discharging of the storage battery becomes complicated.
  • the first and second storage batteries 5 1 and 5 2 are individually controlled for charge / discharge, so there is no such concern.
  • the power generated in the daytime (power stored in the second storage battery 52) can be used at night, etc. when the power generation by the solar battery 3 cannot be performed.
  • the electric power required at the time of a power failure or the like is suitably secured by the first storage battery 51 provided separately from the second storage battery 52. For this reason, it is easy to use.
  • the power supply system of this example basically has the same configuration as shown in FIGS. Therefore, the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the roles of the first and second storage batteries 5 1 and 5 2 are switched at a predetermined timing. That is, as shown in the graphs of Figs. 3 (a) and (b), the first storage battery 51 is set for power failure and the second storage battery 52 is set for non-power-off as the initial state. In the daytime, the first storage battery 51 is maintained at a predetermined level of charge (for example, full charge). Further, the second storage battery 5 2 for non-power failure is recharged by the electric power generated by the solar battery 3 (time t 0). Then, at night, when it is detected that the voltage of the second storage battery 52 has fully recovered (time t 1), the control circuit 65 can now use the second storage battery 52 for power failure.
  • the first storage battery 51 is allocated for non-power outage.
  • the control circuit 65 discharges the first storage battery 51 set for non-power failure. As shown in FIG. 3 (a), the voltage of the first storage battery 51 gradually decreases with discharge.
  • the second storage battery 52 used for power failure is not discharged, and the voltage is maintained.
  • the control circuit 65 charges the first storage battery 51 for non-power failure (time t2). As a result, the voltage of the first storage battery 51 gradually increases. At this time, as shown in FIG. 3 (b), the control circuit 65 does not charge or discharge the second storage battery 52 used for power failure. For this reason, the voltage of the second battery 52 is maintained in a fully charged state.
  • the control circuit 65 is again connected to the first circuit. And the roles of the second storage batteries 5 1 and 5 2 are switched. That is, the control circuit 65 now sets the first storage battery 51 for power failure and the second storage battery 52 for non-power failure. The control circuit 65 discharges the second storage battery 52 set for non-power failure at night. As shown in FIG. 3 (b), the voltage of the second storage battery 52 gradually decreases with discharge. As shown in Fig. 3 (a), when it is detected that the power supply of the commercial power supply 2 is interrupted in this state (time t4), the control circuit 65 is used for the first power failure. Start discharging the storage battery 51.
  • the control circuit 65 continues to discharge the second storage battery 52, which is used for non-power failure, even when this power failure occurs.
  • the control circuit 65 charges both the first and second storage batteries 5 1 and 5 2. Thereafter, when it is detected that the voltages of the first and second storage batteries 51, 52 have sufficiently recovered, the roles of the first and second storage batteries 51, 52 are the same as those described above in the event of a power failure. It is exchanged between for use and for non-power outage.
  • the role of the first and second storage batteries 5 1 and 5 2 is determined by detecting that the voltage of the storage battery that was used for non-power failure has recovered. It may be switched between a power failure time and a non-power failure time. The replacement of the roles of the first and second storage batteries 5 1 and 5 2 is executed through control of the first and second charge / discharge circuits 6 3 and 6 4 by the control circuit 65.
  • the role is switched between a power outage and a non-power outage at a predetermined timing. May be.
  • the timing may be regular or irregular. Even in this case, it is preferable to switch roles while the voltage of the storage battery set for the power failure is sufficiently recovered.
  • the power supply system in this example is also basic The same configuration as that shown in FIGS. 1 and 2 is provided.
  • the second storage battery 52 is stored under the floor in the house.
  • This floor is constructed as follows. That is, as shown in FIG. 4 (b), an opening 72 is formed in the floor board 71 in the house, and a stepped portion 7 3 is formed in the inner peripheral edge of the opening 72.
  • a storage box 74 is inserted into the opening 72 from above.
  • the storage box 74 is formed with an opening at the top, and a flange-like flange 75 is formed at the periphery of the opening. When the flange 75 is engaged with the stepped portion 73 of the opening 72, the downward displacement of the storage box 74 is restricted. That is, the container box 74 is positioned in the vertical direction.
  • the storage box 74 is made of non-combustible material or flame-retardant material.
  • the storage box 74 has water resistance.
  • a second storage battery 52 is accommodated in the storage box 74 installed below the floor.
  • the outer side surface of the second storage battery 52 is separated from the inner side surface of the storage box 74. That is, an air layer is formed between the outer side surface of the second storage battery 5 2 and the inner side surface of the storage box 74.
  • the upper opening of the storage box 74 in which the second storage battery 52 is stored is formed by a lid 76 having an outer shape corresponding to the inner shape of the opening 72 of the floor plate 71. It is blocked.
  • the upper surface of the lid body 76 attached to the opening 72 is in a state where there is no step with respect to the upper surface of the floor plate 71, so-called flush. Therefore, according to the present embodiment, the following effects can be obtained.
  • the second storage battery 52 is installed under the floor. Under the floor, the temperature environment is low and stable, so the life of the second storage battery 52 can be extended. This is because as the ambient temperature of the storage battery increases, the deterioration of the storage battery is promoted and its life is shortened. In addition, the space under the floor can be used effectively.
  • the second storage battery 52 is accommodated in a storage box 74 provided under the floor. For this reason, unlike the case where the second storage battery 52 is installed directly under the floor, insulation between the terminals of the second storage battery 52 or between the second storage battery 52 and the ground due to moisture or condensation. The occurrence of defects can be suppressed. In addition, submersion during floods can be suppressed. If it is underfloor flooding, the second storage battery 52 can be sufficiently protected from being submerged by the configuration shown in FIG. 4 (b).
  • the storage box 7 4 in which the second storage battery 52 is accommodated is formed of a non-combustible material or a flame-retardant material. Assuming that the second storage battery 52 generates heat for some reason, it is preferable to store such a storage battery in a storage box 74 formed of a noncombustible material or a flame retardant material.
  • the second storage battery 52 for non-power failure was accommodated under the floor. That is, the floor under which the space is easily secured is suitable as the installation location of the second storage battery 52, which is assumed to be larger than the first storage battery 51 for power failure.
  • Storage box 7 4 or a storage battery stored in the storage box may be provided with some heat dissipation structure.
  • the storage box 74 is formed of a metal material having thermal conductivity, and the state where the outer surface of the storage battery is in contact with the inner wall surface of the storage box 74 is maintained. In this way, when the storage battery generates heat, the heat is transferred to the storage box 74 and dissipated to the outside (in the atmosphere under the floor).
  • a heat-dissipating blade or the like may be formed in the storage box 74. Since the surface area of the storage box 74 is secured, the heat dissipation effect increases. Therefore, by increasing the cooling efficiency of the second storage battery 52, the life of the storage battery can be extended.
  • a sealing device such as packing may be provided between the flange 7 5 of the storage box 7 4 and the lid body 7 6. In this way, it is possible to prevent water and the like from entering the inside of the storage box 74 from the gap between the flange 75 and the lid 76. For this reason, for example, even when the floor is flooded, the flooding of the storage battery in the storage box 74 is suppressed.
  • the first storage battery 51 may be stored in the storage box 74.
  • both may be accommodated in a storage box 74.
  • This embodiment can also be applied to the second embodiment. That is, in the second embodiment, the roles of the first and second storage batteries 5 1 and 5 2 are interchanged between a power outage and a non-power outage. Either one or both of the second storage batteries 5 1 and 5 2 can be accommodated under the floor.
  • the power supply system of this example is basically provided with the configuration shown in FIGS. 1 and 2 as well.
  • the storage battery 16 includes, for example, eight storage batteries 8 1 a to 8 1 h. Of these storage batteries 8 1 a to 8 1 h, four storage batteries 8 1 a to 8 1 d are used as backup storage batteries that use their power only during a power failure, and the remaining four storage batteries 8 1 e to 8 1 h is set as a storage battery for non-power outages when the power is used at night. That is, in this initial state, the first storage battery 51 in the first embodiment is an assembled battery composed of storage batteries 8 1 a to 8 1 d as four unit cells, and also the second storage battery The storage battery 52 can also be viewed as being configured as an assembled battery composed of storage batteries 8 1 ⁇ to 81 h as four unit cells.
  • Each storage battery 8 1 a to 8 1 h is a switching matrix provided inside the control unit 7 via a plurality of DC system power lines 8 2 a to 8 2 h constituting the DC system power line 15. Connected to 8-3.
  • the switching matrix 83 is connected to the connection terminal P 1 for the DC distribution board 8 via two DC power lines 8 4 a and 8 4 b.
  • these DC power lines 8 4 a and 84 b one DC power line 8 4 a is provided with a charging circuit 85, and the other DC power line 8 4 b is provided with a discharge circuit 86. .
  • the switching matrix 8 3 Based on the switching signal from the control circuit 6 5, the switching matrix 8 3 The connection state between 1 a to 8 1 h and between each storage battery 8 1 a to 8 1 h and the charging circuit 85 or the discharging circuit 86 can be switched in various ways.
  • the switching matrix 8 3 connects each of the storage batteries 8 1 a to 8 1 h and the charging circuit 85 or the discharging circuit 86.
  • charge / discharge of the plurality of storage batteries 8 1 a to 81 h can be individually controlled.
  • the switching matrix 83 switches the connection state between the storage batteries 8 1 a to 8 1 h.
  • the storage batteries 8 1 a to 8 1 d for power failure and the storage batteries 8 1 e to 8 1 h for non-power failure are connected in series or in parallel through the switching matrix 83, respectively. Larger power can be extracted as the number of storage batteries connected in series increases. In addition, the storage capacity increases as the number of storage batteries connected in series or in parallel increases.
  • the number of storage batteries connected in series or in parallel can be appropriately changed based on a command signal from the control circuit 65. Specifically, of the 8 storage batteries 8 1 a to 8 1, 5 storage batteries 8 1 a to 8 1 e are connected in series or in parallel, and the remaining 3 storage batteries 8 1 f to 8 It is always possible to connect 1 h in series or in parallel.
  • the switching matrix 83 can connect the series circuit or the parallel circuit of these storage batteries individually to the charging circuit 85 or the discharging circuit 86. In this case, it becomes possible to charge each series circuit or each parallel circuit of the storage battery, and to extract electric power from each series circuit or each parallel circuit of the storage battery.
  • the system in this example employs the following configuration.
  • the control circuit 65 is connected to a setting switch 8 7 for setting the operating environment of the storage batteries 8 1 a to 8 1 h.
  • the setting switch 8 7 includes the same number of operation knobs 8 8 a to 8 8 h as the storage batteries 8 1 a to 8 1 h.
  • these operation knobs 8 8 a to 8 8 h are of the slide operation type. These operation knobs 8 8 a to 8 8 h slide between a first operation position where the role of the storage battery is set for a power failure and a second operation position which is also set for a non-power failure. Displace.
  • the control circuit 65 sets the roles of the storage batteries 8 1 a to 8 1 h based on the operation positions of the operation knobs 8 8 a to 8 8 h.
  • the operation knobs 8 8 a to 8 8 d corresponding to the four storage batteries 8 1 a to 8 1 d set for power failure are in the first state.
  • the control circuit 65 is based on the operation position of each operation knob 8 8 a to 8 8 h, and through the switching matrix 8 3, each storage battery 8 1 a to 8 Connect 1 h as follows. That is, as shown in FIG. 6B, four storage batteries 8 1 a to 8 1 d and four storage batteries 8 1 e to 8 1 h are connected in series.
  • the setting switch 87 may be provided on a housing (not shown) of the control unit 7 or may be provided on the operation panel 40 described above.
  • the setting switch 87 may be provided as an independent operation panel.
  • one of the storage batteries 8 1 e to 8 1 h set for non-power failure in the initial state is used for power failure.
  • the operation knob 8 8 e corresponding to the storage battery 8 1 e is moved from the second operation position to the first operation position. Slide to the position.
  • the control circuit 65 detects this, the storage battery 8 1 e is originally used for a power failure through the switching matrix 83 and the storage batteries 8 1 a to 8 1 d are used. Connect in series. As a result, the backup capacity at the time of a power failure increases by the power capacity of the additionally connected storage battery 8 1 e.
  • any one of the remaining three storage batteries 8 1 f to 8 1 h used for non-power failure can be additionally connected for power failure.
  • any one or two of the remaining three storage batteries 8 1 f to 8 1 h used for non-power failure may be additionally connected.
  • all storage batteries 8 1 a to 8 1 h can be set for power outages.
  • any of the storage batteries 8 1 a to 8 1 d set for the power failure at the time of the initial power failure is not Set for use. As shown in Fig.
  • the corresponding operation knob 8 8 d is moved from the first operation position to the second operation position. Manipulate. As shown in FIG. 8 (b), when the control circuit 65 detects that the operation knob 8 8 d has been operated to the second operation position, the control circuit 65 passes through the switching matrix 8 3 with the storage battery 8 1 d. Release the connection with the remaining three storage batteries 8 1 a to 8 1 c and connect them in series with the storage batteries 8 1 e to 8 1 h that were originally used for non-power outages. As a result, the backup capacity in the event of a power failure is reduced by the power capacity of the storage battery 8 1 d disconnected from the three storage batteries 8 1 a to 8 1 c.
  • any one of the remaining three storage batteries 8 1 a to 8 1 c used for power failure can be used for non-power failure.
  • any one or two of the remaining three storage batteries 8 1 a to 8 1 c used for power outage may be used for non-power outage.
  • all storage batteries 8 1 a to 8 1 h can be set for non-power failure.
  • a configuration is adopted in which four storage batteries 8 1 a to 8 1 d and four storage batteries 8 1 e to 8 1 h are connected in parallel. May be. Even in this case, it is possible to increase / decrease the backup capacity at the time of power failure relative to the initial state in the same manner as in the case where the storage batteries are connected in series.
  • the user can arbitrarily set the role of each of the storage batteries 8 1 a to 81 h through the operation of the setting switch 87 for either a power outage or a non-power outage. For this reason, the user can arbitrarily change and set the backup capacity at the time of power failure through the operation of the setting switch 87. For this reason, the backup capacity at the time of a power failure can be suitably secured according to the user environment. In addition, during power outages or non-power outages, it is possible to supply appropriate power according to the user environment to the DC equipment 5 and the like. Therefore, it is easy to use.
  • the control circuit 65 discharges the storage battery set for non-power failure during not only power failure but also during power failure. In this way, it is possible to ensure a backup power source in the event of a power failure. It is also possible to increase the backup time during which power can be supplied to each DC device 5 or the like.
  • the number of storage batteries may be changed as appropriate. For example, it may be more or less than eight. For example, 16 storage batteries can be provided. As the number of storage batteries increases, it becomes possible to finely adjust the backup capacity.
  • This embodiment can also be applied to the first embodiment.
  • the role of the first and second storage batteries 5 1, 5 2 is arbitrarily set to be used for power failure through the setting operation of the user. You can switch between non-power outages.
  • This embodiment can also be applied to the second embodiment.
  • the storage battery group for power failure (8 1 a to 8 1 d) and the storage battery group for non-power failure (8 1 e to 8 1 h) The roles of and are exchanged at a predetermined timing.
  • the number of times of charge / discharge of each of the storage batteries 8 1 a to 8 1 h is averaged, and consequently the life of each storage battery is extended.
  • a power generation means that uses natural energy other than sunlight may be employed. Good. It is also possible to use the power generation means and the solar cell 3 in combination. Examples of natural energy power generation means other than the solar cell 3 include a wind power generator that generates power using wind power, or a geothermal power generator that generates power using geothermal heat. Further, a fuel cell may be provided instead of the solar cell 3 or in combination with the solar cell 3.
  • the present invention is not limited to a detached house, but can be applied to, for example, an apartment house, a condominium, and an office. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Control Of Electrical Variables (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

直流配電システムは、蓄電装置を備え、蓄電装置は、停電時にのみ電気機器に放電を行う第1の蓄電池と、非停電時に電気機器に放電を行う第2の蓄電池を含む。蓄電装置及び電気機器には、自然エネルギを利用して発電する発電装置からの直流電力、及び商用電源から供給される交流電力を直流電力に変換して当該変換後の直流電力が供給され、第1の蓄電池は、発電装置と商用電源からの電力供給が中断される時、電気機器に放電を行う。

Description

明細書 直流配電システム 技術分野
本発明は、 直流配電システムに関する。 背景技術
従来、 電力系統から供給される交流電力を直流電力に変換する A C Z D Cコンバータと、 太陽電池及び燃料電池等の分散電源とを連係させて直流負荷に直流電力を配電する直流配 電システムが知られている。 こうした直流配電システムでは一般に、 夜間における電力系 統の停電時等の非常時に直流負荷へ直流電力を供給する非常用電源として蓄電池を備えて いる。 そして、 常時には A C / D Cコンバータ、 又は、 太陽電池もしくは燃料電池等の分 散電源から給電される直流電力によって蓄電池を充電し、 非常時には蓄電池を放電して直 流負荷に直流電力を供給する。
例えば特許文献 1に記載される直流配電システムでは、 電力系統が停電していない場合 には、 蓄電池の残容量が満充電時の容量に対して 1 0 0 %未満の所定割合 (例えば 2 0 %) に低下するまでは蓄電池を放電させるとともに、 蓄電池の残容量が前記所定割合まで低下 したときには蓄電池を充電する。 すなわち、 常時には、 蓄電池の残容量が停電時に必要と される残容量を下回らない範囲で、 蓄電池に蓄えられた直流電力が直流負荷に供給される。 ここで、 蓄電池は、 停電等の非常時に必要とされる直流電力として前記所定割合の電力容 量が蓄えられた状態に常に維持される。 このため、 非常時には、 必要とされる直流電力を 直流負荷へ供給することが可能となる。
【特許文献 1】 日本特開 2 0 0 9— 1 5 9 7 3 0号公報
ところが、 前記従来の直流配電システムでは、 残容量が一定割合を下回らないように蓄 電池の充放電が制御されるものの、 停電時に必要とされる電力が確保できない状況の発生 が懸念される。 すなわち、 蓄電池の端子電圧と残容量 (充電状態) との間には比例関係が 成立することから、 蓄電池の残容量はその端子電圧に基づき推定可能である。 例えば蓄電 池の端子電圧が満充電時の 3 0 V (ボルト) から半分の 1 5 Vへ変化した場合、 蓄電池の 残容量は 5 0 %と推定される。 しかし、 蓄電池はその設置環境における温度変化、 あるい は充放電の繰り返し等に起因して経年的に劣化する。 そしてこの蓄電池の経年劣化に起因 して蓄電池の総容量、 すなわち満充電時に蓄えられる電力量は変化する。 例えば、 蓄電池 が新品のときには満充電時に 1 0 O W hの電力量が蓄えられるところ、 蓄電池が劣化した ときには満充電時に蓄えられる電力量は 8 O W hとなる。 そして特許文献 1のシステムに おいて、 満充電時の容量 (1 0 0 %) に対して 2 0 %の電力量を非常時用として確保する とした場合、 この非常時用として確保される m力量は、 新品時では 2 ow h、 劣化時では
1 6 W hとなる。 ここで、 満充電時の端子電圧は、 蓄電池の総容量の変化に関係なく同じ 値になる。 前述の例のように、 新品時の満充電状態における端子電圧が 3 O Vであれば、 劣化時の満充電状態における端子電圧も 3 O Vとなる。 このため、 蓄電池の端子電圧に基 づき求められる蓄電池の充電状態 (%) は向じでも、 蓄電池に実際に蓄えられている電力 畺は新品時と劣化時とで異なる。 したがって、 システム側では一定の残容量が確保されて いる旨判断される場合であれ、 実際の残容量は、 蓄電池の新品時の総容量に対しては一定 割合を下回っている状況の発生が懸念される。 そしてこの場合には、 停電時に必要とされ る電力が十分に取り出せないおそれがある。
発明の概荽
本発明は上記点に鑑みてなされたものであって、 停電時において必姜とされる電力をよ リ確実に確保することができる直流配電システムを提供する。
本発明によれば、 蓄電装置を備え、 前記蓄電装置は、 停電時にのみ電気機器に放竃を行 う第 1の蓄電池と、 非停電時に前記電気機器に放電を行う第 2の蓄電池を含む直流配電シ ステムが提供される。
また、 前記蓄電装置及び前記電気機器には、 自然エネルギを利用して発電する発電装置 からの直流電力、 及び商用電源から供給される交流電力を直流電力に変換して当該変換後 の直流電力が供給され、 前記第 1の蓄電池は、 前記発電装置と商用電源からの電力供給が 中断される時、 前記電気機器に放電を行ってもよい。
本発明によれば、 第 1の蓄電池の電力は、 非停電時には使用されることがない。 すなわ ち、 この停電時用に割り当てられた第 1の蓄電池に蓄えられる電力は、停電時等において、 すべて直流機器へ供給される。 ここで、 前述したように、 単一の蓄電池に蓄えられる電力 を、 停憶時用及び非停電時用として使い分ける構成を採用することも考えられるものの、 この場合には、 害電池の劣化等に起因して停電時用の電力を十分に確保することができな いおそれがある。 この点、 本発明のように、 商用電源の停電時にのみ放電を行う専用の第 1の蓄電池を、 夜間等の非停電時に放電を行う通常用の第 2の蓄電池とは別に設けること により、 停電時に必要とされる電力は、 専用の第 1の蓄電池により確実に確保される。 ま た、 非停電時あるいは発電装置による発電が困難となる場合には、 第 2の蓄電池に蓄えら れた電力を取り出して使用することができるため、 使い勝手もよい。
また、 前記直流配電システムは、 前記第 1及び第 2の蓄電池の充電及び放電を制御する 制御装置をさらに備え、 前記制御装置は、 前記第 1及び第 2の害電池の役割を特定のタイ ミングで入れ替えてもよい。
第 1及び第 2の蓄電池の役割を停電時角及び非停電時用として固定的に割り当てた場合、 非停電時用の第 2の蓄電池の充放電回数は、 停電時のみに放電される第 1の蓄電池に比べ て、 圧倒的に多くなる。 このため、 第 2の蓄電池は、 第 1の蓄電池よりも劣化が進みやす い。 この点、 本発明によれば、 第 1及び第 2の蓄電池の役割を特定のタイミングで入れ替 えることにより、 これら蓄電池の充放電回数の平均化が図られる。 このため、 第 1及び第 2の蓄電池の寿命の平均化が図られる。 なお、 当該システムの制御装置は、 常時には非停 電時用として割り当てた蓄電池を放電させるとともに、 停電時用として割り当てた蓄電池 の放電は行わない。 すなわち、 制御装置は、 停電等の非常時にのみ停電時用として割り当 てた蓄電池を放電させる。
また、 前記第 1及び第 2の蓄電池の少なくとも一方は、 建築物の床下に収納されてなつ てもよい。
建築物の床下は、 得てして温度環境が低めで、 安定している。 そして蓄電池の自己放電 量は温度に依存し、 温度上昇に伴い増大する。 このため、 蓄電池の設置場所として建築物 の床下は好適である。 このため、 本発明によれば、 蓄電池の温度上昇が抑制されることに より、 蓄電池の長寿命化が図られる。
また、 前記直流配電システムは、 前記第 1及び第 2の蓄電池の役割を、 手動操作を通じ て停電時用及び非停電時用のいずれかに設定する設定手段を備えてなってもよい 。
本発明によれば、 設定手段の操作を通じて第 1及び第 2の蓄電池の役割を、 停電時用及 び非停電時用のいずれかに設定することができるので、 使い勝手がよい。
また、 前記第 1及び第 2の蓄電池は、 それぞれ複数個の単電池が組み合わせられてなる 組電池として構成し、 前記設定手段は、 前記第 1及び第 2の蓄電池を構成する各単電池の 役割を、 手動操作を通じて停電時用及び非停電時用のいずれかに設定可能とされてなって もよい。
本発明によれば、 停電時用及び非停電時用として割り当てられる電力容量を、 設定手段 の操作を通じて細やかに調節することができる。 例えば、 ユーザが必要とする停電保護時 間に応じて、 停電時用として割り当てる電力容量を適宜変更することもできる。 この場合 には、 ユーザ環境に応じたバックアップ容量を確保することができる。
また、 前記発電装置は、 前記自然エネルギとして太陽光を利用して発電する太陽電池で あってもよい。 発明の効果
本発明によれば、 停電時にのみ放電を行う専用の蓄電池と、 非停電時に放電を行う非停 電時用の蓄電池とを別個に設けることにより、 停電時におけるパックァップ電源をより確 実に確保することができる。
図面の簡単な説明
本発明の目的及び特徴は以下のような添付図面とともに与えられた後述する好ましい実 施形態の説明から明白になる。
【図 1】 直流配電システムの概略を示すブロック図。 【図 2】 第 1及び第 2の実施の形態のコントロールュニッ卜の構成を示すブロック図。 【図 3】 (a ) , ( b ) は、 第 2の実施の形態の停電時用及び非停電時用蓄電池の電圧変動 を示すフラフ。
【図 4】 (a ) は、 第 3の実施の形態の停電時用の蓄電池の設置態様を示す斜視図、 (b ) は、 同じく正断面図。
【図 5】 第 4の実施の形態のコントロールュニッ卜の構成を示すブロック図。
【図 6】 同じく (a ) は、 初期状態の設定スィッチの正面図、 (b ) は初期状態における 各蓄電池の接続形態 (直列) を示す回路図、 (c ) は初期状態における各蓄電池の接続形態 (並列) を示す回路図。
【図 7】 同じく (a ) は、 設定スィッチの正面図、 (b ) は各蓄電池の接続形態 (直列) を示す回路図、 (c ) は各蓄電池の接続形態 (並列) を示す回路図。
【図 8】 同じく (a ) は、 設定スィッチの正面図、 (b ) は各蓄電池の接続形態 (直列) を示す回路図、 (c ) は各蓄電池の接続形態 (並列) を示す回路図。 発明を実施するため最良の形態
以下、 本発明の実施形態が本明細書の一部をなす添付図面を参照にしてより詳細に説明 する。 図面全体において、 同一または類似した部分には同じ部材符号を付してそれについ ての重複する説明を省略する。
<第 1の実施の形態 >
以下、 本発明を、 住宅の配電システムに真体化した第 1の実施の形態を図 1〜図 3に基 づいて説明する。 まず、 当該システムの概要を説明する。
<配電システムの概要 >
図 1に示すように、 住宅には、 宅内に設置された各種機器 (照明機器、 エアコン、 家電、 オーディオビジュアル機器等) に電力を供給する電力供給システム 1が設けられている。 電力供給システム 1は、 家庭用の商用電源 (A C電源) 2を電力として各種機器を動作さ せる他に、 太陽光により発電する太陽電池 3の電力も各種機器に電源として供給する。 電 力供給システム 1は、 直流電源 (D C電源) を入力して動作する D C機器 5の他に、 交流 電源 (A C電源) を入力して動作する A C機器 6にも電力を供給する。
電力供給システム 1には、 同システムの分電盤としてコントロールュニット 7及び D C 分電盤 (直流ブレーカ内蔵) 8が設けられている。 また、 電力供給システム 1には、 住宅 の D C機器 5の動作を制御する機器として制御ュニット 9及びリレーュニット 1 0が設け られている。
コントロールユニット 7には、 交流電源を分岐させる A C分電盤 1 1が交流系電力線 1 2を介して接続されている。 コントロールユニット 7は、 この A C分電盤 1 1を介して商 用電源 2に接続されるとともに、 直流系電力線 1 3を介して太陽電池 3に接続されている。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を取り込むとともに太陽電池 3 から直流電力を取り込み、 これら電力を機器電源として所定の直流電力に変換する。 そし て、 コントロールユニット 7は、 この変換後の直流電力を、 直流系電力線 1 4を介して D C分電盤 8に出力したり、 又は直流系電力線 1 5を介して蓄電池 1 6に出力して同電力を 蓄電したりする。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を取り込むの みならず、 太陽電池 3や蓄電池 1 6の電力を交流電力に変換して A C分電盤 1 1に供給す ることも可能である。 コントロールュニット 7は、 信号線 1 7を介して D C分電盤 8とデ ータやり取りを実行する。
D C分電盤 8は、 直流電力対応の一種のブレーカである。 D C分電盤 8は、 コント口一 ルユニット 7から入力した直流電力を分岐させ、 その分岐後の直流電力を、 直流系電力線 1 8を介して制御ュニット 9に出力したり、 直流系電力線 1 9を介してリレ一ュニット 1 0に出力したりする。 また、 D C分電盤 8は、 信号線 2 0を介して制御ユニット 9とデ一 タやり取りをしたり、 信号線 2 1を介してリレーュニット 1 0とデータやり取りをしたり する。
制御ユニット 9には、 複数の D C機器 5が接続されている。 これら D C機器 5は、 直流 電力及びデータの両方を 1対の線によって搬送可能な直流供給線路 2 2を介して制御ュニ ット 9と接続されている。 直流供給線路 2 2は、 D C機器の電源となる直流電圧に、 高周 波の搬送波によりデータを電送する通信信号を重畳する、 いわゆる電力線搬送通信により、 1対の線で電力及びデータの両方を D C機器 5に搬送する。 制御ユニット 9は、 直流系電 力線 1 8を介して D C機器 5の直流電源を取得し、 D C分電盤 8から信号線 2 0を介して 得る動作指令を基に、 どの D C機器 5をどのように制御するのかを把握する。 そして、 制 御ュニット 9は、 指示された D C機器 5に直流供給線路 2 2を介して直流電圧及び動作指 令を出力し、 D C機器 5の動作を制御する。
制御ュニット 9には、 宅内の D C機器 5の動作を切り換える際に操作するスィッチ 2 3 が直流供給線路 2 2を介して接続されている。 また、 制御ユニット 9には、 例えば赤外線 リモートコントローラからの発信電波を検出するセンサ 2 4が直流供給線路 2 2を介して 接続されている。 よって、 D C分電盤 8からの動作指示のみならず、 スィッチ 2 3の操作 やセンサ 2 4の検知によっても、 直流供給線路 2 2に通信信号を流して D C機器 5が制御 される。
リレーュニット 1 0には、 複数の D C機器 5がそれぞれ個別の直流系電力線 2 5を介し て接続されている。 リレーユニット 1 0は、 直流系電力線 1 9を介して D C機器 5の直流 電源を取得し、 D C分電盤 8から信号線 2 1を介して得る動作指令を基に、 どの D C機器 5を動作させるのかを把握する。 そして、 リレーユニット 1 0は、 指示された D C機器 5 に対し、 内蔵のリレーにて直流系電力線 2 5への電源供給をオンオフすることで、 D C機 器 5の動作を制御する。 また、 リレーユニット 1 0には、 D C機器 5を手動操作するため の複数のスィッチ 2 6が接続されており、 スィツチ 2 6の操作によって直流系電力線 2 5 への電源供給をリレ一にてオンオフすることにより、 D C機器 5が制御される。 D C分電盤 8には、 例えば壁コンセントゃ床コンセン卜の態様で住宅に建て付けられた 直流コンセント 2 7が直流系電力線 2 8を介して接続されている。 この直流コンセント 2 7に D C機器のプラグ (図示略) を差し込めば、 同機器に直流電力を直接供給することが 可能である。
また、 商用電源 2と A C分電盤 1 1 との間には、 商用電源 2の使用量を遠隔検針可能な 電力メータ 2 9が接続されている。 電力メータ 2 9には、 商用電源使用量の遠隔検針の機 能のみならず、 例えば電力線搬送通信や無線通信の機能が搭載されている。 電力メータ 2 9は、 電力線搬送通信や無線通信等を介して検針結果を電力会社等に送信する。
電力供給システム 1には、 宅内の各種機器をネットワーク通信によって制御可能とする ネットワークシステム 3 0が設けられている。 ネットワークシステム 3 0には、 同システ ムのコントロールュニットとして宅内サーバ 3 1が設けられている。 宅内サーバ 3 1は、 インタ一ネットなどのネッ卜ワーク Nを介して宅外の管理サーバ 3 2と接続されるととも に、 信号線 3 3を介して宅内機器 3 4に接続されている。 また、 宅内サーバ 3 1は、 D C 分電盤 8から直流系電力線 3 5を介して取得する直流電力を電源として動作する。
宅内サーバ 3 1には、 ネットワーク通信による宅内の各種機器の動作制御を管理するコ ントロールボックス 3 6が信号線 3 7を介して接続されている。 コントロールボックス 3 6は、 信号線 1 7を介してコントロールュニット 7及び D C分電盤 8に接続されるととも に、 直流供給線路 3 8を介して D C機器 5を直接制御可能である。 コントロールボックス 3 6には、 例えば使用したガス量や水道量を遠隔検針可能なガス/水道メータ 3 9が接続 されるとともに、 ネットワークシステム 3 0の操作パネル 4 0に接続されている。 操作パ ネル 4 0には、 例えばドアホン子器やセンサやカメラからなる監視機器 4 1が接続されて いる。
宅内サーバ 3 1は、 ネットワーク Nを介して宅内の各種機器の動作指令を入力すると、 コントロールボックス 3 6に指示を通知して、 各種機器が動作指令に準じた動作をとるよ うにコントロールボックス 3 6を動作させる。 また、 宅内サーバ 3 1は、 ガス 水道メ一 タ 3 9から取得した各種情報を、 ネットワーク Nを通じて管理サーバ 3 2に提供可能であ るとともに、 監視機器 4 1で異常検出があったことを操作パネル 4 0から受け付けると、 その旨もネットワーク Nを通じて管理サーバ 3 2に提供する。
ぐ蓄電池 >
次に、 蓄電池 1 6について説明する。 本例では、 図 2に示すように、 蓄電池 1 6は、 第 1の蓄電池 5 1及び第 2の蓄電池 5 2からなる。 第 1及び第 2の蓄電池 5 1 , 5 2は、 先 の直流系電力線 1 5を構成する直流系電力線 1 5 a , 1 5 bを介してコントロ一ルュニッ トフに接続されている。 第 1の蓄電池 5 1は、 商用電源 2と太陽電池 3からの電力供給が 中断される際にのみその電力が使用されるバックアップ用の蓄電池として、 また第 2の蓄 電池 5 2は、 夜間時においてその電力が使用される夜間時用の蓄電池として設定されてい る。 なお、 第 1の蓄電池 5 1の電力容量は、 商用電源 2と太陽電池 3からの電力供給が中 断される際に必要とされる必須電力を十分に賄うことができる程度に設定されている。 こ こで、 商用電源 2と太陽電池 3からの電力供給が中断されるときとは、 例えば、 太陽電池 3の発電が不可な夜間等に商用電源 2の供給が切れる場合である。 以下、 便宜上、 このよ うなときを 「停電時」 と記載することとする。
なお、 本例では、 第 1及び第 2の蓄電池 5 1 , 5 2は、 コントロールユニット 7の外部 に設けられるところ、 これらはコントロールュニット 7に組み込んで構成することも可能 である。 また、 バックアップ用の第 1の蓄電池 5 1のみをコントロールユニット 7に組み 込むようにしてもよい。 これは次の理由による。 すなわち、 すべての D C機器 5に動作電 力が供給可能とされる通常時と異なり、 停電時には、 必要とされる最低限の D C機器 5に ついてのみ動作電力を供給可能とされる場合も多いと想定される。 この場合には、 バック アップ用の第 1の蓄電池 5 1の電力容量としては、 停電時に動作を確保すべき最小限の必 須 D C機器 5の分だけ動作電力を賄うことができればよい。 これに対し、 通常時 (非停電 時) に使用される第 2の蓄電池 5 2は、 すべての D C機器 5の動作電力を賄うことが要求 される場合も想定される。必要とされる電力容量の違いから、第 2の蓄電池 5 2の体格は、 第 1の蓄電池 5 1よりも大きくなる蓋然性が高い。 このような場合には、 体格のより小さ な第 1の蓄電池 5 1をコントロールュニットフに組み込み、 体格のより大きな第 2の蓄電 池 5 2はコントロールュニット 7の外部に設けることが好ましい。
<コントロールュニット>
次に、 コントロールユニットの構成について詳細に説明する。 図 2に示すように、 コン トロールユニット 7は、 双方向型の A C Z D Cコンバータ 6 1、 太陽電池用の D C / D C コンバータ 6 2、 第 1の蓄電池 5 1に対応する第 1の充放電回路 6 3、 第 2の蓄電池 5 2 に対応する第 2の充放電回路 6 4、 及び制御回路 6 5を備えてなる。
A CZ D Cコンバータ 6 1は、 前述した交流系電力線 1 2を介して A C分電盤 1 1に接 続されるとともに、 直流系電力線し 1を介してコント口一ルュニットフに設けられた D C 分電盤 8用の接続端子 P 1に接続されている。 当該接続端子 P 1は、 直流系電力線 1 4を 介して D C分電盤 8に接続されている。 A CZ D Cコンバータ 6 1と A C分電盤 1 1 との 間を接続する交流系電力線 1 2には、 A C分電盤 1 1から供給される交流電力(正確には、 電圧) を検出する電圧センサ 6 6が設けられている。
D C/ D Cコンバータ 6 2は、 コントロールュニットフに設けられた太陽電池 3用の接 続端子 P 2と、 前述した D C分電盤 8用の接続端子 P 1との間を接続する直流系電力線 L 2に設けられている。 コントロールュニット 7と太陽電池 3との間を接続する直流系電力 線 1 3には、 太陽電池 3から供給される直流電力 (正確には、 電圧) を検出する図示しな い電圧センサが設けられている。
第 1の充放電回路 6 3は、 コントロールュニットフに設けられた第 1の蓄電池 5 1用の 接続端子 P 3と、 前述した D C分電盤 8用の接続端子 P 1 との間を接続する直流系電力線 L 3に設けられている。 この直流系電力線 L 3において、 第 1の蓄電池 5 1 (正確には、 接続端子 P 3) と第 1の充放電回路 63との間には、 第 1の蓄電池 51の電圧 (端子電圧) を検出する第 1の電圧センサ 67が設けられている。
第 2の充放電回路 64は、 コントロールュニット 7に設けられた第 2の蓄電池 52用の 接続端子 P 4と、 前述した DC分電盤 8用の接続端子 P 1との間を接続する直流系電力線 L 4に設けられている。 この直流系電力線 L 4において、 第 2の蓄電池 52 (正確には、 接続端子 P 4) と第 2の充放電回路 64との間には、 第 2の蓄電池 52の電圧 (端子電圧) を検出する第 2の電圧センサ 68が設けられている。
なお、 これら第 1及び第 2の充放電回路 63, 64は、 第 1及び第 2の蓄電池 51 , 5 2に組み込んで設けることも可能である。
ACZDCコンバータ 61は、 交流電力を直流電力に変換する機能、 及び直流電力を交 流電力に変換する機能を有してなる。 すなわち、 AC/DCコンバータ 61は、 AC分電 盤 1 1から供給される交流電力を直流電流に変換し、 この変換後の直流電力を DC分電盤 8あるいは第 1及び第 2の蓄電池 51 , 52に供給する。 また、 AC/DCコンバータ 6 1は、 太陽電池 3並びに第 1及び第 2の蓄電池 51 , 52から供給される直流電力を交流 電力に変換し、 この変換後の交流電力を AC分電盤 1 1へ供給することも可能とされてい る。 ACZDCコンパ一タ 61は、 制御回路 65からの切り替え指令に基づき、 前述の両 機能を切り替える。
太陽電池用の DCZDCコンバータ 62は、 太陽電池 3により発電される直流電力を所 定の直流電力に変換し、 この変換後の直流電力を DC分電盤 8あるいは蓄電池 1 6へ供給 する。
第 1の充放電回路 63は、 DC/DCコンバータ等を含んで構成されて、 制御回路 65 からの指令に基づき第 1の蓄電池 51の充放電を制御する。
第 2の充放電回路 64は、 DC/DCコンバータ等を含んで構成されて、 制御回路 65 からの指令に基づき第 2の蓄電池 52の充放電を制御する。
制御回路 65は、 交流電力を直流電力に変換する機能と直流電力を交流電力に変換する 機能との間で AC/DCコンバータ 61の機能 (動作態様) を切り替え制御する。 また、 制御回路 65は、 第 1及び第 2の充放電回路 63, 64を通じて第 1及び第 2の蓄電池 5 1 , 52の充電動作及び放電動作を制御する。
さらに、 制御回路 65は、 第 1及び第 2の蓄電池 51 , 52の端子電圧と残容量との間 には比例関係が成立することを利用して、 第 1及び第 2の電圧センサ 67, 68の検出結 果に基づき第 1及び第 2の蓄電池 51 , 52の残容量 (充電状態) を検出する。 例えば、 制御回路 65は、 第 1及び第 2の蓄電池 51 , 52の電圧が低下したときには、 第 1及び 第 2の蓄電池 51 , 52の残容量が低下したと判断する。 具体的には、 第 1及び第 2の蓄 電池 51 , 52の端子電圧が満充電時の 3 OV (ボルト) であるときの残容量を 1 00% とした場合において、 第 1及び第 2の蓄電池 51, 52の端子電圧が例えば満充電時の半 分である 1 5 Vとなったとき、 制御回路 65は、 第 1及び第 2の蓄電池 51 , 52の残容 量も 5 0 %となったと推定する。 このように推定される第 1及び第 2の蓄電池 5 1 , 5 2 の残容量 (充電状態) に基づき、 制御回路 6 5は、 第 1及び第 2の蓄電池 5 1 , 5 2の充 放電を制御することが可能とされている。
また、 制御回路 6 5は、 図示しない時計 I Cあるいは照度センサ等を備え、 それらを ¾ じて取得されるその時々の時刻あるいは宅外の照度等を把握する。 そして制御回路 6 5は、 例えば夜間等のように、 太陽電池 3での発電量を十分に確保することができない状況であ る旨判断される場合には、 第 2の充放電回路 6 4を通じて第 2の蓄電池 5 2に放電動作を 実行させる。 第 2の蓄電池 5 2に蓄えられた直流電力は D C分電盤 8を通じて各 D C機器 5へ供給される。 また、 例えば昼間等のように、 太陽電池 3での発電量を十分に確保する ことができる状況である旨判断される場合には、 第 2の充放電回路 6 4を通じて第 2の蓄 電池 5 2に充電動作を実行させる。
また、 制御回路 6 5は、 太陽電池 3の発電が不可能な状況のとき、 電圧センサ 6 6の検 出結果に基づき商用電源 2からの電力供給の有無を判定する。 そして制御回路 6 5は、 商 用電源 2からの電力供給が中断されたと判断される場合には、 第 1の充放電回路 6 3の制 御を通じて、 第 1の蓄電池 5 1に放電動作を実行させる。 第 1の蓄電池 5 1に蓄えられた 直流電力は D C分電盤 8を通じて各 D C機器 5へ供給される。
制御回路 6 5は、 停電時でない通常時においては、 第 1の充放電回路 6 3を通じて第 1 の蓄電池 5 1を充電する。 制御回路 6 5は、 昼間等においては太陽電池 3により発電され る直流電力を、 夜間等においては A C Z D Cコンバータ 6 1を通じて供給される直流電力 を第 1の蓄電池 5 1に供給する。 このように、 制御回路 6 5は、 第 1の蓄電池 5 1の充電 状態 (充電レベル) が、 停電時に必要とされる電力を D C分電盤 8側へ供給可能となる程 度に維持されるように、 当該第 1の蓄電池 5 1の充電動作を制御する。
ぐ電力供給システムの動作 >
次に、 前述のように構成した電力供給システムの動作の態様を説明する。
<昼間時 >
まず昼間時には、 基本的には太陽電池 3により発電された直流電力が D C分電盤 8を通 じて各 D C機器 5へ供給される。 この際の余剰電力は、 第 1及び第 2の蓄電池 5 1 , 5 2 へ供給される。 太陽電池 3により発電される直流電力が D C機器 5側で不足する場合には、 第 2の蓄電池 5 2に蓄えられた電力が使用される。
なお、 太陽電池 3により発電される直流電力、 及び第 2の蓄電池 5 2の直流電力は、 A C機器 6側へ供給することも可能である。 第 1の蓄電池 5 1は停電時におけるバックアツ プ用電源として設定されていることから、 当該第 1の蓄電池 5 1の電力がバックアップ用 途以外の目的で使用されることはない。
ぐ夜間時 >
夜間時には、 太陽電池 3による発電が期待できないことから、 基本的には、 第 2の蓄電 池 5 2に蓄えられた直流電力が各 D C機器 5に供給される。 昼間時などにおいて、 日照状 態が悪い場合についても同様である。
<停電時>
太陽電池 3による発電が期待できない状況、 例えば、 夜間に商用電源 2の供給が切れる 時には、 基本的には、 バックアップ用である第 1の蓄電池 5 1に蓄えられている直流電力 が各 D C機器 5へ供給される。 これにより、 停電時であれ、 例えば、 必須 D C機器 5を継 続して使用することが可能となる。 第 1の蓄電池 5 1に蓄えられた電力は通常時 (非停電 時) には決して使用されず、 また常に停電時に D C機器 5側で必要とされる電力容量が維 持されるように第 1の蓄電池 5 1の充電状態が維持される。 このため、 バックアップ用の 第 1の蓄電池 5 1により、 停電時に必要とされる電力を D C機器 5側へ確実に供給するこ とができる。
なお、 停電時において、 第 1の蓄電池 5 1だけでなく、 第 2の蓄電池 5 2に蓄えられた 電力を各 D C機器 5へ供給するようにしてもよい。 すなわち、 制御回路 6 5は、 非停電時 用として設定された第 2の蓄電池 5 2を、 非停電時だけでなく停電時にも放電させる。 こ のようにすれば、 停電時のバックアツプ電源をいつそう確実に確保することが可能となる。 また、 例えば、 必須 D C機器 5等への電力の供給が可能となるバックアップ時間を増大さ せることも可能となる。
ぐ実施の形態の効果 >
したがって、 本実施の形態によれば、 以下の効果を得ることができる。
( 1 ) 第 1及び第 2の蓄電池 5 1 , 5 2を用意した。 そして、 第 1の蓄電池 5 1は停電 時にのみ放電を行うバックアップ用として、 また第 2の蓄電池 5 2は太陽電池 3による発 電が困難となる夜間時等に放電を行う非停電時用 (通常時用) として割り当てた。 この構 成によれば、 停電時に必要とされる電力は、 第 1の蓄電池 5 1を使用して独立して蓄えら れる。 そしてこの第 1の蓄電池 5 1に蓄えられる電力は通常時には使用されることはない。 このため、 停電時に必要とされる電力をより確実に確保することができる。
( 2 ) また、 通常時用及び停電時用の蓄電池を別個に設けることにより、 蓄電池毎に充 放電動作を制御することができる。 このため、 特に、 バックアップ用の第 1の蓄電池 5 1 の長寿命化が図られる。 すなわち、 第 1の蓄電池 5 1は停電時にのみ放電されるため、 先 の先行技術文献に示されるように、 単一の蓄電池において停電時用及び非停電時用の電力 を確保するようにした場合と異なり、 頻繁に充放電を繰り返すことがない。 したがって、 第 1の蓄電池 5 1の劣化が抑制され、 ひいては停電時の確実なバックアップ電源の供給が 担保される。
( 3 ) さらに、 例えば先の先行技術文献に記載されるように、 単一の蓄電池に蓄えられ る電力を停電時用の電力及び非停電時用の電力として使い分けるようにした場合と異なリ、 蓄電池の残容量の厳密な管理が不要となる。 このため、 制御回路 6 5による蓄電池の充放 電制御の簡素化が図られる。
ちなみに、 先の先行技術文献に記載されるシステムにおいては、 蓄電池の電力を負荷へ 供給する場合には、 電力系統の停電時に必要とされる残容量を下回らない範囲で蓄電池の 放電を制御する必要がある。 これは、 停電時に必要とされる電力を確保するためである。 しかしこの場合には、 蓄電池の残容量を厳密に監視する必要があることから、 蓄電池の充 放電に係る制御が複雑になることが懸念される。 本例のシステムによれば、 第 1及び第 2 の蓄電池 5 1 , 5 2は個別に充放電の制御が行われるので、 こうした懸念ない。
( 4 ) 本例のシステムによれば、 太陽電池 3による発電が行うことができない夜間等に は、 昼間に発電される電力 (第 2の蓄電池 5 2に蓄えられる電力) を利用することができ る。 また、 停電時等に必要とされる電力は、 第 2の蓄電池 5 2とは別個に設けられた第 1 の蓄電池 5 1により好適に確保される。 このため、 使い勝手がよい。
<第 2の実施の形態 >
次に、 本発明の第 2の実施の形態について説明する。 本例の電力供給システムも基本的 には先の図 1及び図 2に示される構成を同様に備えてなる。 したがって、 前記第 1の実施 の形態と同様の部材構成については同一の符号を付し、 その詳細な説明を省略する。
さて、 本例の電力供給システム 1では、 第 1及び第 2の蓄電池 5 1 , 5 2の役割が、 所 定のタイミングで入れ替えられる。 すなわち、 図 3 ( a ) , ( b ) のグラフに示されるよう に、 初期状態として、 第 1の蓄電池 5 1が停電時用として、 また第 2の蓄電池 5 2は非停 電時用として設定されているとした場合、 昼間時には第 1の蓄電池 5 1は所定レベルの充 電状態 (例えば、 満充電状態) に維持される。 また、 非停電時用である第 2の蓄電池 5 2 は、太陽電池 3によリ発電される電力によリ充電される(時刻 t 0 )。そして夜間になって、 第 2の蓄電池 5 2の電圧が十分に回復した旨検出されるとき(時刻 t 1 )、制御回路 6 5は、 今度は第 2の蓄電池 5 2を停電時用として、 また、 第 1の蓄電池 5 1を非停電時用として 割り当てる。 制御回路 6 5は、 夜間には、 非停電時用として設定した第 1の蓄電池 5 1を 放電させる。 図 3 ( a ) に示されるように、 第 1の蓄電池 5 1の電圧は放電に伴い徐々に 低下する。 また、 停電時用とされた第 2の蓄電池 5 2の放電は行われることなく、 その電 圧は維持される。
次に、 図 3 ( a ) に示されるように、 再び昼間になると、 制御回路 6 5は非停電時用と した第 1の蓄電池 5 1の充電を行う(時刻 t 2 )。これにより、第 1の蓄電池 5 1の電圧は、 徐々に上昇する。 このとき、 図 3 ( b ) に示されるように、 制御回路 6 5は、 停電時用と した第 2の蓄電池 5 2については、 充電も放電も行うことはない。 このため、 第 2の蓄電 池 5 2の電圧は満充電状態に維持される。
そして、 図 3 ( a ) に示されるように、 夜間になって、 第 1の蓄電池 5 1の電圧が十分 に回復した旨検出されるとき(時刻 t 3 )、制御回路 6 5は再び第 1及び第 2の蓄電池 5 1, 5 2の役割を入れ替える。 すなわち、 制御回路 6 5は、 今度は第 1の蓄電池 5 1を停電時 用として、 また第 2の蓄電池 5 2を非停電時用として設定する。 そして制御回路 6 5は、 夜間には非停電時用として設定した第 2の蓄電池 5 2を放電させる。 図 3 ( b ) に示され るように、 第 2の蓄電池 5 2の電圧は放電に伴い徐々に低下する。 図 3 ( a ) に示されるように、 この状態で商用電源 2の電力供給が中断された旨検出さ れる場合 (時刻 t 4 )、 制御回路 6 5は停電時用とされている第 1の蓄電池 5 1の放電を開 始する。 第 1の蓄電池 5 1は十分に回復しているので必要とされる電力は十分に供給可能 である。 第 1の蓄電池 5 1の放電に伴いその電圧は徐々に低下する。 なお、 図 3 ( b ) に 示されるように、 制御回路 6 5は、 この停電発生時においても、 非停電時用とされている 第 2の蓄電池 5 2の放電を継続する。
そして昼間になると (時刻 t 5 )、 制御回路 6 5は、 第 1及び第 2の蓄電池 5 1 , 5 2の 双方に対して充電を行う。 この後、 第 1及び第 2の蓄電池 5 1 , 5 2の電圧が十分に回復 した旨検出されるときには、 前述と同様にして第 1及び第 2の蓄電池 5 1 , 5 2の役割が 停電時用と非停電時用との間で入れ替えられる。
なお、 夜間であるか昼間であるかに関わらず、 非停電時用とされていた蓄電池の電圧が 回復した旨検出されることをもって、 第 1及び第 2の蓄電池 5 1 , 5 2の役割を停電時用 と非停電時用との間で入れ替えるようにしてもよい。 第 1及び第 2の蓄電池 5 1 , 5 2の 役割の入れ替えは、 制御回路 6 5による第 1及び第 2の充放電回路 6 3 , 6 4の制御を通 じて実行される。
また、 第 1及び第 2の蓄電池 5 1 , 5 2のいずれか一の放電毎にその役割を入れ替える のではなく、 定められたタイミングで役割を停電用と非停電用との間で入れ替えるように してもよい。 当該タイミングは、 定期、 不定期を問わない。 なお、 この場合であれ、 次に 停電時用として設定される蓄電池の電圧が十分に回復している状態で役割を入れ替えるこ とが好ましい。
したがって、 本実施の形態によれば、 以下の効果を得ることができる。
( 1 ) 第 1及び第 2の蓄電池 5 1 , 5 2の役割を所定のタイミングで入れ替えることに より、 第 1及び第 2の蓄電池 5 1 , 5 2の充放電回数の平均化、 ひいては電池寿命の平均 化が図られる。
( 2 ) 第 1及び第 2の蓄電池 5 1 , 5 2の電圧を監視し、 次に非停電時用として割り当 てられる蓄電池の電圧が回復している旨判断される場合に、 停電時用及び非停電時用の役 割を入れ替えるようにした。 次に非停電時用とされる蓄電池の電圧が回復していない状態 で停電用としてその役割が切リ換えられることがないので、 停電時において必要とされる 電力をより確実に確保することができる。
( 3 ) 夜間において停電が発生したときには、 停電時用に設定された蓄電 ¾だけではな く、 非停電時用の蓄電池の放電が継続して実行される。 このため、 停電時に必要とされる 電力をより確実に確保することができる。 なお、 停電時用に設定された蓄電池のみを使用 した場合であれ、 停電時に D C機器側で必要とされる電力は、 十分に取り出すことができ る。
<第 3の実施の形態 >
次に、 本発明の第 3の実施の形態について説明する。 本例の電力供給システムも基本的 には先の図 1及び図 2に示される構成を同様に備えてなる。
図 4 ( a ) , ( b ) に示されるように、 第 2の蓄電池 5 2は宅内の床下に収納される。 こ の床下は、 次のように構成されている。 すなわち、 図 4 ( b ) に示されるように、 宅内の 床板 7 1には開口部 7 2が形成されるとともに、 当該開口部 7 2の内周縁には段差部 7 3 が形成されている。 そして開口部 7 2には、 その上方から収容箱 7 4が揷入されている。 この収容箱 7 4はその上部が開口して形成されるとともに、 その開口周縁部には鍔状のフ ランジ 7 5が形成されている。 このフランジ 7 5が開口部 7 2の段差部 7 3に係止される ことにより、 収容箱 7 4の下方への変位が規制される。 すなわち、 収容箱 7 4の上下方向 における位置決めがなされる。 なお、 収容箱 7 4は、 不燃性材料あるいは難燃性材料によ リ形成される。 また、 収容箱 7 4は、 耐水性を有してなる。
この床下に設置された収容箱 7 4には、 第 2の蓄電池 5 2が収容されている。 第 2の蓄 電池 5 2の外側面と収容箱 7 4の内側面とは離間している。 すなわち、 第 2の蓄電池 5 2 の外側面と収容箱 7 4の内側面との間には空気層が形成されている。 そして、 第 2の蓄電 池 5 2が収容された収容箱 7 4の上部開口部は、 床板 7 1の開口部 7 2の内形形状に対応 する外形形状を有してなる蓋体 7 6により閉塞されている。 開口部 7 2に取り付けられた 蓋体 7 6の上面は、床板 7 1の上面に対して段差のない状態、いわゆる面一とされている。 したがって、 本実施の形態によれば、 以下の効果を得ることができる。
( 1 ) 第 2の蓄電池 5 2を床下に設置するようにした。 床下は、 温度環境が低めである とともに安定しているため、 第 2の蓄電池 5 2の長寿命化が図られる。 これは、 蓄電池の 周囲温度が高くなるほど蓄電池の劣化が促進されてその寿命が短くなるからである。 また、 床下のスペースを有効に利用することができる。
( 2 ) 第 2の蓄電池 5 2は、 床下に設けられる収容箱 7 4に収容するようにした。 この ため、 第 2の蓄電池 5 2を直接的に床下に設置する場合と異なり、 湿気又は結露等による 第 2の蓄電池 5 2の端子間又は当該第 2の蓄電池 5 2と大地との間の絶縁不良の発生を抑 制することができる。 また、 洪水発生時等における水没を抑制することができる。 床下浸 水であれば、 先の図 4 ( b ) に示される構成により、 第 2の蓄電池 5 2を水没から十分に 保護することができる。
( 3 ) 第 2の蓄電池 5 2が収容される収容箱 7 4を、 不燃性材料あるいは難燃性材料に より形成した。 何らかの原因で第 2の蓄電池 5 2が発熱することも想定されるところ、 こ うした蓄電池は不燃性材料あるいは難燃性材料により形成された収容箱 7 4に収容するこ とが好ましい。
( 4 ) 非停電時用の第 2の蓄電池 5 2を床下に収容するようにした。 すなわち、 停電時 用の第 1の蓄電池 5 1よりも体格が大きくなる場合が想定される第 2の蓄電池 5 2の設置 場所として、 スペースを確保しやすい床下は好適である。
なお、 この第 3の実施の形態は、 次のように変更して実施してもよい。
•防水性が問題にならないのであれば、 収容箱 7 4を省略して、 第 2の蓄電池 5 2を床 下に直接的に設置してもよい。
■収容箱 7 4あるいはこれに収容される蓄電池に、 何らかの放熱構造を設けるようにし てもよい。 例えば、 熱伝導性を有する金属材料等により収容箱 7 4を形成し、 この収容箱 7 4の内壁面に蓄電池の外側面が接触した状態を保持する。 このようにすれば、 蓄電池が 発熱した場合には、 その熱は収容箱 7 4に伝達されて外部 (床下の雰囲気中) に放熱され る。 またこの場合には、 収容箱 7 4に放熱用の羽根などを形成してもよい。 収容箱 7 4の 表面積が確保されるので、 放熱効果が増大する。 したがって、 第 2の蓄電池 5 2の冷却効 率が高められることにより、 当該蓄電池の長寿命化が図られる。
■収容箱 7 4のフランジ 7 5と蓋体 7 6との間に、 パッキン等の密封装置を設けてもよ い。 このようにすれば、 フランジ 7 5と蓋体 7 6との隙間から収容箱 7 4の内部へ水等が 浸入することが抑制される。 このため、 例えば床上浸水した場合であれ、 収容箱 7 4内の 蓄電池の浸水が抑制される。
•第 2の蓄電池 5 2ではなく、 第 1の蓄電池 5 1を収容箱 7 4に収容するようにしても よい。 また、 両方を収容箱 7 4に収容してもよい。
•本実施の形態は、 第 2の実施の形態に適用することも可能である。 すなわち、 第 2の 実施の形態では、 第 1及び第 2の蓄電池 5 1 , 5 2の役割が停電時用と非停電時用との間 で入れ替えられるものの、 この場合であれ、 これら第 1及び第 2の蓄電池 5 1 , 5 2のい ずれか一方、 あるいは両方を床下に収容することは可能である。
<第 4の実施の形態 >
次に、 本発明の第 4の実施の形態について説明する。 本例の電力供給システムも、 基本 的には先の図 1及び図 2に示される構成を同様に備えてなる。
図 5に示すように、蓄電池 1 6は、例えば、 8個の蓄電池 8 1 a ~ 8 1 hを備えてなる。 これら蓄電池 8 1 a〜8 1 hのうち、 4つの蓄電池 8 1 a ~ 8 1 dは停電時にのみその電 力が使用されるバックアップ用の蓄電池として、 また残りの 4つの蓄電池 8 1 e ~ 8 1 h は、 夜間時においてその電力が使用される非停電時用の蓄電池として設定されている。 す なわち、 この初期状態において、 前記第 1の実施の形態における第 1の蓄電池 5 1は、 4 つの単電池としての蓄電池 8 1 a〜8 1 dからなる組電池として、 また同じく第 2の蓄電 池 5 2は 4つの単電池としての蓄電池 8 1 β ~ 8 1 hからなる組電池として構成されてい るものとして見ることもできる。
各蓄電池 8 1 a ~ 8 1 hは、 先の直流系電力線 1 5を構成する複数の直流系電力線 8 2 a〜8 2 hを介してコントロールュニット 7の内部に設けられたスィツチングマトリック ス 8 3に接続されている。 このスイッチングマトリックス 8 3は、 2本の直流系電力線 8 4 a , 8 4 bを介して D C分電盤 8用の接続端子 P 1に接続されている。 これら直流系電 力線 8 4 a , 8 4 bのうち一方の直流系電力線 8 4 aには充電回路 8 5が、 他方の直流系 電力線 8 4 bには放電回路 8 6が設けられている。
スイッチングマトリックス 8 3は、 制御回路 6 5からの切替信号に基づき、 各蓄電池 8 1 a〜8 1 h間、 及び各蓄電池 8 1 a〜8 1 hと充電回路 8 5又は放電回路 8 6との間の 接続状態を様々な態様で切り替え可能とされている。
例えば、 スイッチングマトリックス 8 3は、 各蓄電池 8 1 a〜8 1 hと充電回路 8 5あ るいは放電回路 8 6との間を接続する。 この場合には、 複数の蓄電池 8 1 a ~ 8 1 hの充 放電を個別に制御可能となる。
また、 スイッチングマトリックス 8 3は、 各蓄電池 8 1 a ~ 8 1 h間の接続状態を切り 替える。 例えば、 停電時用の蓄電池 8 1 a〜8 1 d、 及び非停電時用の蓄電池 8 1 e〜8 1 hは、 それぞれスイッチングマトリックス 8 3を通じて直列又は並列に接続される。 直 列に接続される蓄電池の数が増えるほど大きな電力を取り出すことができる。 また、 直列 又は並列に接続される蓄電池の数が増えるほど蓄電容量は増大する。
また、 直列又は並列に接続される蓄電池の個数は、 制御回路 6 5からの指令信号に基づ き、 適宜変更することも可能とされている。 具体的には、 8個の蓄電池 8 1 a ~ 8 1 の うち、 5個の蓄電池 8 1 a〜8 1 eを直列又は並列に接続するとともに、 残りの 3個の蓄 電池 8 1 f ~ 8 1 hを直列又は並列に接続するといつたことも可能である。
さらに、 スイッチングマトリックス 8 3は、 これら蓄電池の直列回路又は並列回路を個 別に充電回路 8 5あるいは放電回路 8 6に接続することも可能とされている。 この場合に は、 蓄電池の直列回路毎又は並列回路毎に充電したり、 蓄電池の各直列回路又は各並列回 路から電力を取り出したりすることが可能となる。
ぐ設定手段 >
ここで、 前述したように、 初期状態では、 8個の蓄電池 8 1 a〜8 1 hのうち、 4つの 蓄電池 8 1 a ~ 8 1 dは停電時用として、 また残りの 4つの蓄電池 8 1 e ~ 8 1 hは、 非 停電時用として設定されている。 しかし、 ユーザによっては、 停電時に対するバックアツ プ容量を増減させたいという要望があることがある。 こうした要求に対応するべく、 本例 のシステムでは、 次のような構成を採用している。
すなわち、 制御回路 6 5には、 蓄電池 8 1 a〜8 1 hの動作環境設定用の設定スィッチ 8 7が接続されている。 図 6 ( a ) に示すように、 設定スィツチ 8 7は、 蓄電池 8 1 a〜 8 1 hと同数の操作ノブ 8 8 a ~ 8 8 hを備えてなる。 本例では、 これら操作ノブ 8 8 a 〜8 8 hはスライド操作タイプのものが採用されている。 そしてこれら操作ノブ 8 8 a ~ 8 8 hは、 蓄電池の役割が停電時用に設定される第 1の操作位置と、 同じく非停電時用に 設定される第 2の操作位置との間をスライ ド変位する。 制御回路 6 5は、 各操作ノブ 8 8 a〜8 8 hの操作位置に基づき、 各蓄電池 8 1 a〜8 1 hの役割を設定する。
図 6 ( a ) に示されるように、 初期状態においては、 停電時用に設定されている 4つの 蓄電池 8 1 a〜8 1 dに対応する操作ノブ 8 8 a〜 8 8 dは第 1の位置に、 また非停電時 用に設定されている残りの 4つの蓄電池 8 1 e〜8 1 hに対応する操作ノブ 8 8 β ~ 8 1 hは第 2の位置に保持されている。 この場合には、 制御回路 6 5は、 各操作ノブ 8 8 a〜 8 8 hの操作位置に基づき、 スイッチングマトリックス 8 3を通じて、 各蓄電池 8 1 a〜 8 1 hを次のように接続する。 すなわち、 図 6 ( b ) に示されるように、 4つの蓄電池 8 1 a〜8 1 d、 並びに 4つの蓄電池 8 1 e ~ 8 1 hを、 それぞれ直列に接続する。
なお、 設定スィッチ 8 7は、 コントロールユニット 7の図示しない筐体に設けてもよい し、 前述した操作パネル 4 0に設けてもよい。 また、 設定スィッチ 8 7は、 独立した操作 パネルとして設けるようにしてもよい。
<バックアップ容量の設定 >
次に、 停電時におけるバックアップ容量をュ一ザ側で変更して設定する場合について説 明する。
まず、 停電時のバックアップ容量を前述した初期状態に対して増大させる場合には、 初 期状態では非停電時用として設定されている蓄電池 8 1 e〜8 1 hのうちいずれかを停電 時用として設定する。 例えば蓄電池 8 1 eを停電時用とする場合には、 図 7 ( a ) に示さ れるように、 当該蓄電池 8 1 eに対応する操作ノブ 8 8 eを第 2の操作位置から第 1の操 作位置へスライド操作する。 図 7 ( b ) に示されるように、 制御回路 6 5は、 これを検出 すると、 スイッチングマトリックス 8 3を通じて、 蓄電池 8 1 eを元々停電時用とされて いた蓄電池 8 1 a〜8 1 dと直列に接続する。 これにより、 停電時におけるバックアップ 容量は、 追加して接続された蓄電池 8 1 eの電力容量の分だけ増大する。
なお、 蓄電池 8 1 eに代えて、 非停電時用とされている残りの 3つの蓄電池 8 1 f 〜8 1 hのいずれか一を停電時用として追加接続することも可能である。 また、 蓄電池 8 1 Θ に加えて、 非停電時用とされている残りの 3つの蓄電池 8 1 f ~ 8 1 hのいずれか一又は 二を追加接続するようにしてもよい。 さらに、 非停電時用の蓄電池が不要である場合等に おいては、 すべての蓄電池 8 1 a〜8 1 hを停電時用として設定することも可能である。 逆に、 停電時のバックアップ容量を前述した初期状態に対して減少させる場合には、 初 期状態では停電時用として設定されている蓄電池 8 1 a ~ 8 1 dのうちいずれかを非停電 時用として設定する。 図 8 ( a ) に示されるように、 例えば蓄電池 8 1 dを非停電時用と する場合には、 これに対応する操作ノブ 8 8 dを第 1の操作位置から第 2の操作位置ヘス ライド操作する。 図 8 ( b ) に示されるように、 制御回路 6 5は、 操作ノブ 8 8 dが第 2 の操作位置に操作された旨検出されるとき、 スイッチングマトリックス 8 3を通じて、 蓄 電池 8 1 dと残りの 3つの蓄電池 8 1 a〜8 1 cとの接続関係を解除するとともに、 元々 非停電時用とされていた蓄電池 8 1 e〜8 1 hと直列に接続する。 これにより、 停電時に おけるバックアップ容量は、 3つの蓄電池 8 1 a〜8 1 cに対する接続が解除された蓄電 池 8 1 dの電力容量の分だけ減少する。
なお、 蓄電池 8 1 dに代えて、 停電時用とされている残りの 3つの蓄電池 8 1 a〜8 1 cのいずれか一を非停電時用とすることも可能である。 また、 蓄電池 8 1 dに加えて、 停 電時用とされている残りの 3つの蓄電池 8 1 a〜8 1 cのいずれか一又は二を非停電時用 としてもよい。 さらに、 停電時のバックアップが不要である場合等においては、 すべての 蓄電池 8 1 a〜8 1 hを非停電時用として設定することも可能である。 なお、 図 6 ( c ) に示されるように、 初期状態において、 4つの蓄電池 8 1 a ~ 8 1 d、 並びに 4つの蓄電池 8 1 e ~ 8 1 hを、 それぞれ並列に接続する構成を採用してもよい。 この場合であれ、 前述した各蓄電池が直列に接続される場合と同様にして、 停電時のバッ クアツプ容量を初期状態に対して増減させることが可能である。
停電時のバックアップ容量を初期状態に対して増大させる場合には、 図 7 ( c ) に示さ れるように、 例えば蓄電池 8 1 βを元々停電時用とされていた蓄電池 8 1 a〜8 1 dと並 列に接続する。 このようにしても、 停電時におけるバックアップ容量は、 蓄電池 8 1 eの 電力容量の分だけ増大する。
停電時のバックアップ容量を初期状態に対して減少させる場合には、 図 8 ( c ) に示さ れるように、 例えば蓄電池 8 1 dを元々非停電時用とされていた蓄電池 8 1 Θ ~ 8 1 hと 並列に接続する。 このようにしても、 停電時におけるバックアップ容量は、 蓄電池 8 1 d の電力容量の分だけ減少する。
したがって、 本実施の形態によれば、 以下の効果を得ることができる。
( 1 ) ユーザは、 設定スィッチ 8 7の操作を通じて各蓄電池 8 1 a〜8 1 hの役割を停 電時用及び非停電時用のいずれかに、 任意に設定することが可能となる。 このため、 ユー ザは設定スィッチ 8 7の操作を通じて、 停電時におけるバックアップ容量を、 ユーザ側で 任意に変更して設定することも可能となる。 このため、 停電時のバックアップ容量を、 ュ —ザ環境に応じて好適に確保することができる。また、停電時あるいは非停電時において、 ユーザ環境に応じた適切な電力が D C機器 5等へ供給可能となる。 したがって、 使い勝手 がよい。
( 2 ) 各蓄電池 8 1 a〜8 1 hの役割を変更する際には、 設定スィッチ 8 7の各操作ノ ブ 8 8 a〜8 8 hをスライ ド操作するだけでよい。 このため、 例えば停電時用のバックァ ップ電力容量を簡単に変更することができる。
なお、 この第 4の実施の形態は、 次のように変更して実施してもよい。
■停電時において、 停電時用として設定された蓄電池 (初期状態では、 蓄電池 8 1 a〜 8 1 d ) だけでなく、 非停電時用として設定された蓄電池 (初期状態では、 蓄電池 8 1 β ~ 8 1 h ) の電力を各 D C機器 5へ供給するようにしてもよい。 すなわち、 制御回路 6 5 は、 非停電時用として設定された蓄電池を、 非停電時だけでなく停電時にも放電させる。 このようにすれば、 停電時のバックアップ電源をいつそう確実に確保することが可能とな る。 また、 各 D C機器 5等への電力の供給が可能となるバックアップ時間を増大させるこ とも可能となる。
•蓄電池の個数は適宜変更して設けてもよい。 例えば 8個よりも多くしてもよいし、 少 なくしてもよい。 例えば 1 6個の蓄電池を設けることも可能である。 蓄電池の個数が増え るほど、 細かなバックアツプ容量の調整が可能となる。
•本実施の形態は、 前記第 1の実施の形態に適用することも可能である。 すなわち、 ュ 一ザの設定操作を通じて、 任意に第 1及び第 2の蓄電池 5 1 , 5 2の役割を、 停電時用と 非停電時用との間で切り替えることができる。
•本実施の形態は、前記第 2の実施の形態に適用することも可能である。 この場合には、 先の図 3のグラフに示されるように、 停電時用の蓄電池群 (8 1 a〜8 1 d ) と、 非停電 時用の蓄電池群 (8 1 e ~ 8 1 h ) との役割が、 所定のタイミングで入れ替えられる。 こ れにより、 各蓄電池 8 1 a〜8 1 hの充放電回数の平均化、 ひいては各蓄電池の長寿命化 が図られる。 なお、 この場合には、 停電時用の蓄電池と、 非停電時用の蓄電池とが同数に 設定されることが望ましい。
ぐ他の実施の形態 >
なお、 前記各実施の形態は、 次のように変更して実施してもよい。
•第 1〜第 4の実施の形態において、 自然エネルギである太陽光を利用して発電する太 陽電池 3に代えて、 太陽光以外の他の自然エネルギを利用した発電手段を採用してもよい。 また、 当該発電手段と太陽電池 3とを併用することも可能である。 太陽電池 3以外の自然 エネルギ発電手段としては、 例えば、 風力を利用して発電する風力発電装置、 あるいは地 熱を利用して発電する地熱発電装置等がある。 また、 太陽電池 3に代えて、 あるいは太陽 電池 3と併せて燃料電池を設けてもよい。
■第 1〜第 4の実施の形態では、 電力供給システム 1を戸建て住宅に適用した場合につ いて説明したが、 戸建て住宅に限らず、 例えば集合住宅やマンション、 事務室などへの適 用も可能である。
以上、 本発明の好ましい実施形態が説明されているが、 本発明はこれらの特定の実施形 態に限られるものではなく、 請求範囲の範疇から離脱しない多様な変更及び変形が可能で あり、 それも本発明の範疇内に属する。

Claims

請求の範囲
【請求項 "I】
蓄電装置を備え、
前記蓄電装置は、 停電時にのみ電気機器に放電を行う第 1の蓄電池と、 非停電時に前記 電気機器に放電を行う第 2の蓄電池を含む直流配電システム。
【請求項 2】
請求項 1に記載の直流配電システムにおいて、
前記蓄電装置及び前記電気機器には、 自然エネルギを利用して発電する発電装置からの 直流電力、 及び商用電源から供給される交流電力を直流電力に変換して当該変換後の直流 電力が供給され、
前記第 1の蓄電池は、 前記発電装置と商用電源からの電力供給が中断される時、 前記電 気機器に放電を行う直流配電システム。
【請求項 3】
請求項 2に記載の直流配電システムにおいて、
前記第 1及び第 2の蓄電池の充電及び放電を制御する制御装置をさらに備え、 前記制御装置は、 前記第 1及び第 2の蓄電池の役割を特定のタイミングで入れ替える直 流配電システム。
【請求項 4】
請求項 2又は請求項 3に記載の直流配電システムにおいて、
前記第 1及び第 2の蓄電池の少なくとも一方は、 建築物の床下に収納されてなる直流配 電システム。
【請求項 5】
請求項 2〜請求項 4のうちいずれか一項に記載の直流配電システムにおいて、 前記第 1及び第 2の蓄電池の役割を、 手動操作を通じて停電時用及び非停電時用のいず れかに設定する設定手段を備えてなる直流配電システム。
【請求項 6】
請求項 5に記載の直流配電システムにおいて、
前記第 1及び第 2の蓄電池は、 それぞれ複数個の単電池が組み合わせられてなる組電池 として構成し、
前記設定手段は、 前記第 1及び第 2の蓄電池を構成する各単電池の役割を、 手動操作を 通じて停電時用及び非停電時用のいずれかに設定可能とされてなる直流配電システム。 【請求項 7】
請求項 2〜請求項 6のうちいずれか一項に記載の直流配電システムにおいて、 前記発電装置は、 前記自然エネルギとして太陽光を利用して発電する太陽電池である直 流配電システム。
PCT/IB2010/002428 2009-10-05 2010-09-28 直流配電システム WO2011042779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/500,458 US20120228944A1 (en) 2009-10-05 2010-09-28 Dc power distribution system
EP10821636.7A EP2475070A4 (en) 2009-10-05 2010-09-28 DC POWER DISTRIBUTION SYSTEM
CN2010800552030A CN102640387A (zh) 2009-10-05 2010-09-28 直流配电系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009232020A JP2011083089A (ja) 2009-10-05 2009-10-05 直流配電システム
JP2009-232020 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011042779A1 true WO2011042779A1 (ja) 2011-04-14

Family

ID=43856404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002428 WO2011042779A1 (ja) 2009-10-05 2010-09-28 直流配電システム

Country Status (5)

Country Link
US (1) US20120228944A1 (ja)
EP (1) EP2475070A4 (ja)
JP (1) JP2011083089A (ja)
CN (1) CN102640387A (ja)
WO (1) WO2011042779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738844A (zh) * 2011-04-15 2012-10-17 郑茂振 在线互动式电源控制系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093862B2 (en) * 2009-01-16 2015-07-28 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
JP2012253983A (ja) * 2011-06-07 2012-12-20 Sanica:Kk 無停電電源装置
DE102012212328A1 (de) * 2012-07-13 2014-01-16 Robert Bosch Gmbh Energiespeichervorrichtung für eine Photovoltaikanlage und Verfahren zum Betreiben einer Energiespeichervorrichtung einer Photovoltaikanlage
KR101332683B1 (ko) 2013-06-12 2013-11-25 (주)비젼웨이브 태양 광 모듈을 이용한 무정전 감시용 cctv 함체
JP6194527B2 (ja) * 2013-07-08 2017-09-13 株式会社高砂製作所 系統連系電源装置
CN104348244A (zh) * 2013-07-26 2015-02-11 国电新能源技术研究院 一种智能化的光伏分布式发电系统
WO2015019387A1 (ja) * 2013-08-07 2015-02-12 三洋電機株式会社 蓄電池管理装置
JP2015089320A (ja) * 2013-11-01 2015-05-07 ソニー株式会社 蓄電システムおよびその制御方法
JP6163121B2 (ja) * 2014-02-26 2017-07-12 サンケン電気株式会社 自立運転システム
CN106143170B (zh) * 2015-03-31 2020-11-17 通用电气公司 具有增程器的能量存储系统及能量管理控制方法
CN104966855B (zh) * 2015-06-26 2017-09-15 北京百度网讯科技有限公司 用于电池的放电装置及放电方法
JP6372452B2 (ja) * 2015-09-02 2018-08-15 東芝三菱電機産業システム株式会社 無停電電源装置及びその制御方法
US10003200B2 (en) * 2016-01-04 2018-06-19 Schneider Electric It Corporation Decentralized module-based DC data center
US10840734B2 (en) 2016-01-28 2020-11-17 Hewlett Packard Enterprise Development Lp Concurrent alternating-current and direct-current
US10873206B2 (en) 2017-05-30 2020-12-22 Schneider Electric It Corporation System and method for power storage and distribution
CN108923449A (zh) * 2018-06-28 2018-11-30 国网上海市电力公司 一种家庭能量管理系统及方法
JP7121295B2 (ja) * 2019-10-28 2022-08-18 ダイキン工業株式会社 脱臭装置
JP7446140B2 (ja) 2020-03-30 2024-03-08 大阪瓦斯株式会社 エネルギーシステム及びエネルギーシステムの運転方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393738U (ja) * 1986-12-09 1988-06-17
JP2002191126A (ja) * 2000-12-19 2002-07-05 Nippon Telegr & Teleph Corp <Ntt> 電力供給システム
JP2008117355A (ja) * 2006-10-31 2008-05-22 Satoru Otsu 建築物における節電方法
JP2009159730A (ja) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd 直流配電システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078237A (ja) * 2000-08-22 2002-03-15 Ntt Power & Building Facilities Inc 電力貯蔵装置
CN101801710B (zh) * 2007-09-10 2012-07-18 丰田自动车株式会社 车辆的系统起动装置及车辆的系统起动方法
JP4659909B2 (ja) * 2008-01-11 2011-03-30 トヨタ自動車株式会社 車両の充電制御装置および車両
JP4315232B1 (ja) * 2008-03-17 2009-08-19 トヨタ自動車株式会社 電動車両
CN201207581Y (zh) * 2008-04-30 2009-03-11 安徽继远电网技术有限责任公司 变电站光伏直流系统
US8412272B2 (en) * 2009-07-24 2013-04-02 T-Mobile Usa, Inc. Rectifier circuit management system, such as for use in cell site power systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393738U (ja) * 1986-12-09 1988-06-17
JP2002191126A (ja) * 2000-12-19 2002-07-05 Nippon Telegr & Teleph Corp <Ntt> 電力供給システム
JP2008117355A (ja) * 2006-10-31 2008-05-22 Satoru Otsu 建築物における節電方法
JP2009159730A (ja) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd 直流配電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2475070A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738844A (zh) * 2011-04-15 2012-10-17 郑茂振 在线互动式电源控制系统

Also Published As

Publication number Publication date
EP2475070A1 (en) 2012-07-11
CN102640387A (zh) 2012-08-15
EP2475070A4 (en) 2015-04-22
US20120228944A1 (en) 2012-09-13
JP2011083089A (ja) 2011-04-21

Similar Documents

Publication Publication Date Title
WO2011042779A1 (ja) 直流配電システム
US9929591B2 (en) Smart home power system
US8975859B2 (en) Energy storage system
CN106992586B (zh) 分电盘以及分电盘的控制方法
JP5592274B2 (ja) 直流給電システム
WO2011001796A1 (ja) 配電システム
JP6160481B2 (ja) 電源装置、電源システムおよび電源制御方法
KR101264142B1 (ko) 가정과 마이크로그리드에 적용 가능한 신재생에너지시스템
JP2009159730A (ja) 直流配電システム
US20120235492A1 (en) Power supply system
WO2013129499A1 (ja) 制御装置、制御システム及び蓄電池制御方法
WO2013061826A1 (ja) 給電システム、分散型電源システム、管理装置、及び給電制御方法
WO2011039604A1 (ja) 電力供給システムの蓄電池電力供給源監視装置
US20120212050A1 (en) Electricity supply management device
JP2010041782A (ja) 配電システム
JP2007028735A (ja) 分散電源システム及び方法
KR20140137545A (ko) 에너지 저장 모듈을 구비한 지능형 배전반 시스템
JP4293367B2 (ja) 自律分散制御型蓄電システム
JP2007043802A (ja) 無停電電源装置及び分電盤
JP3171974U (ja) 蓄電システム
WO2011042780A1 (ja) 電力供給システム
KR101103502B1 (ko) 가정용 전력 저장장치
JP3171633U (ja) 戸別蓄電付き売電可能太陽光システム
JP2016046829A (ja) 電力供給システム
WO2016117315A1 (ja) 電力供給装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055203.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 816/KOLNP/2012

Country of ref document: IN

Ref document number: 2010821636

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13500458

Country of ref document: US