WO2011041779A1 - Procédé pour déterminer des changements in vitro dans un environnement protéique - Google Patents

Procédé pour déterminer des changements in vitro dans un environnement protéique Download PDF

Info

Publication number
WO2011041779A1
WO2011041779A1 PCT/US2010/051316 US2010051316W WO2011041779A1 WO 2011041779 A1 WO2011041779 A1 WO 2011041779A1 US 2010051316 W US2010051316 W US 2010051316W WO 2011041779 A1 WO2011041779 A1 WO 2011041779A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
light
changes
frequency
fluorescence
Prior art date
Application number
PCT/US2010/051316
Other languages
English (en)
Inventor
David M. Jameson
Dudley J. Williams
Marcella A. Gilmore
Lance E. Steward
Nicholas G. James
Justin A. Ross
Original Assignee
Allergan, Inc.
Univeristy Of Hawaii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan, Inc., Univeristy Of Hawaii filed Critical Allergan, Inc.
Priority to EP10762851A priority Critical patent/EP2483666A1/fr
Publication of WO2011041779A1 publication Critical patent/WO2011041779A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Definitions

  • Emission heterogeneity could be due to the presence of multiple fluorophores (each giving rise to different exponential decays), excited state processes (such as solvent relaxation or Forster Resonance Energy Transfer (FRET)) or non-exponential decays due to processes such as transient quenching.
  • Models used to fit multiexponential decays are usually based on discrete exponential components or continuous distribution functions.
  • J.A. Ross, and D.M. Jameson Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence. Photochem. Photobiol. Sci. 7 (2008) 1301 -1312; B. Valeur, Molecular Fluorescence, Wiley-VCH, Weiheim, Germany, 2002; and, J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.)
  • Figure 1 shows a phasor plot of L-tryptophan at various pH values.
  • Figure 2 shows the quenching of NATA and lysozyme using the quencher acrylamide.
  • FIG. 4 B Monomeric HSA (closed circle) plotted with furosemide bound HSA (open triangle) and D-thyroxine bound HSA (closed triangle).
  • Dimeric HSA (open circle) which can be found up to 10% in lyophilized HSA, has a unique decay/phasor point compared to monomeric HSA.
  • Figure 7 shows a phasor plot of denaturation of GFP-SNAP25-BFP from OmM (gray star) to 2M (gray circle) with GHCI (Black line).
  • the universal circle (gray line) is illustrated for reference. Number illustrate the GHCI concentration in mM at the respective point.
  • the present application discloses an in vitro solution phase method that tracks conformational changes in a protein and/or changes to the protein milieu.
  • mapping kinetic changes in proteins due to enzymatic turnover or oligomerization may be observed.
  • screening batch to batch protein preparations to rapidly validate the exclusion of potential protein refolding problems may be observed.
  • the bandpass filter FF01-280/20-25 or FF01 -295/15-25 was used where appropriate with the excitation light and the emission collected through longpass filters (WG315 or UK330) or a 357/50 nm bandpass filter.
  • Polarizers were set at magic angles to eliminate polarization effects. (G.D. Reinhart, P. Marzola, D.M. Jameson, and E. Gratton, A method for on-line background subtraction in frequency domain fluorometry. J. Fluoresc.
  • Raw data are plotted to generate a phasor plot using a routine written in Matlab software.
  • the exact distance of the phasor point along the line joining the starting and ending points on the universal circle depends not only on the relative concentration but also the quantum yields of the species in question (in the case of L-tryptophan, the ratio of the lifetimes and quantum yields of the anion to zwitterion forms is ⁇ 3).
  • D.M. Jameson, and G. Weber Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements. The Journal of Physical Chemistry 85 (1981 ) 953-958.
  • the frequencies utilized will also weight the fractional contributions of the components differently, i.e., the lower frequency phasor points will weight the longer lifetime component while higher frequencies will favor the shorter component.
  • R.D. Spencer, and G. Weber Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer. Ann. N. Y. Acad. Sci. 158 (1969) 361-376.
  • lysozyme one notes that the phasor points are all within the universal circle indicating the heterogeneous nature of the lifetime data.
  • Addition of acrylamide results in shorter lifetimes, indicating one or more of the tryptophan residues in lysozyme are sensitive to dynamic quenching, and the subsequent shift in the phasor points in a clockwise direction.
  • Addition of the quencher iodide (data not shown) also shifted the phasor point, following a similar trajectory to shorter lifetimes, albeit to a lesser extent, as with the acrylamide quenching.
  • Dynamin 2 comprises 5 domains (an N-terminal GTPase domain, a middle domain, a pleckstrin homology (PH) domain, a GTPase Effector Region (GED) and a proline/arginine rich domain (PRD)) and contains 5 tryptophan residues, 4 of which are in the PH domain, while 1 tryptophan is in the C-terminal PRD domain.
  • PH pleckstrin homology
  • GED GTPase Effector Region
  • PRD proline/arginine rich domain
  • the phasor plot method recorded at a single frequency, is, however, well-suited for rapidly tracking changes in the phase and modulation data.
  • the phase and modulation of the intrinsic fluorescence of human serum transferrin were recorded over -300 sec at 80 MHz in pH 6.0 buffer and the presence of a chelator.
  • Human serum transferrin (hTF) is a bilobal glycoprotein that serves as the major transporter of iron in humans (A.B. Mason, and S.J. Everse, Iron Transport by Transferrin, in: H. Fuchs, (Ed.), Iron Metabolism and Disease, Research Signpost, Huawei, India, 2008, pp. 83-123.)
  • Example 1 1 - Analysis of Formulation Stability of Pharmaceutical Composition Stored Frozen Using Phasor Plot Analysis
  • This example illustrates that the stability of a formulated pharmaceutical composition can be assessed using phasor plot analysis without any disruption to the packaged composition.
  • Packaged vials comprising a dried pharmaceutical composition are assessed by phasor plot analysis using similar instrumental conditions, reagents and general experimental conditions as disclosed in Examples above.
  • the quality and quantity of the composition are initially assessed at the time of initial packaging.
  • the vials are then stored at the desired temperature, e.g., room temperature, -20 °C, or -70 °C.
  • the vials are periodically assessed over time to monitor both quality and quantity of the pharmaceutical composition, e.g., once every month, once every three months, once every six months, once every year. In this case assessment every three months over a period of three years indicated that the pharmaceutical composition remained stable in that the quality and quantity of the composition after three years was substantially the same as the initial assessment made after packaging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

L'invention concerne un procédé pour déterminer des changements in vitro dans un environnement protéique. Le procédé consiste à : sélectionner une protéine d'intérêt, et placer un premier échantillon de la protéine dans un spectrofluorimètre, de telle sorte que l'échantillon de protéine peut être éclairé par une lumière d'excitation modulée en fréquence, et la lumière émise est détectée ; obtenir un ensemble de références de mesures de lumière à une fréquence sélectionnée par mesure du changement d'angle de phase (Φ) entre la lumière émise et la lumière excitée et enregistrer simultanément un changement de modulation de signal (m) ; appliquer des équations de domaine temporel ou des équations de domaine de fréquence de l'ensemble de référence de mesures de lumière pour obtenir un ensemble de données de référence ; obtenir au moins un second ensemble de mesures de lumière à la fréquence sélectionnée pour la protéine ; appliquer les équations de domaine temporel ou les équations de domaine de fréquence du second ensemble de mesures de lumière pour obtenir un second ensemble de données ; reporter S par rapport à G pour l'ensemble de données de référence et le second ensemble de données ; et, déterminer si l'environnement protéique a subi des changements entre la mesure de référence et une seconde mesure par observation du changement de position des points reportés générés. Le spectrofluorimètre nécessite une source de lumière qui peut provoquer la fluorescence d'une protéine et un dispositif pour détecter et mesurer la lumière émise par la protéine. La source de lumière est modulée dans le domaine de fréquence et dans le domaine temporel. Les changements entre la mesure de référence et la seconde mesure sont sélectionnés dans le groupe constitué par : a) le même échantillon de protéine à un moment différent ; et b) la protéine dans un milieu différent. Les changements dans l'environnement protéique sont des changements de conformation d'une protéine unique, des changes dans les interactions protéine-protéine et/ou des changements dans les interactions protéine-excipient.
PCT/US2010/051316 2009-10-02 2010-10-04 Procédé pour déterminer des changements in vitro dans un environnement protéique WO2011041779A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10762851A EP2483666A1 (fr) 2009-10-02 2010-10-04 Procédé pour déterminer des changements in vitro dans un environnement protéique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24829509P 2009-10-02 2009-10-02
US61/248,295 2009-10-02

Publications (1)

Publication Number Publication Date
WO2011041779A1 true WO2011041779A1 (fr) 2011-04-07

Family

ID=43126996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/051316 WO2011041779A1 (fr) 2009-10-02 2010-10-04 Procédé pour déterminer des changements in vitro dans un environnement protéique

Country Status (2)

Country Link
EP (1) EP2483666A1 (fr)
WO (1) WO2011041779A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903187B1 (en) 2000-07-21 2005-06-07 Allergan, Inc. Leucine-based motif and clostridial neurotoxins
US7183066B2 (en) 2002-09-27 2007-02-27 Allergan, Inc. Cell-based fluorescence resonance energy transfer (FRET) assays for clostridial toxins
US7183127B2 (en) 2002-12-13 2007-02-27 Canon Kabushiki Kasha Method of manufacturing a semiconductor device
US7208285B2 (en) 2001-08-28 2007-04-24 Allergan, Inc. Fret protease assays for botulinum serotype A/E toxins
US7244437B2 (en) 2000-01-19 2007-07-17 Allergan, Inc. Clostridial toxin derivatives and methods for treating pain
US7273722B2 (en) 2000-11-29 2007-09-25 Allergan, Inc. Neurotoxins with enhanced target specificity
US7332567B2 (en) 2001-08-28 2008-02-19 Allergan, Inc. Fret protease assays for clostridial toxins
US7399607B2 (en) 2004-09-22 2008-07-15 Allergan, Inc. Fluorescence polarization assays for determining clostridial toxin activity
US7419676B2 (en) 1999-08-25 2008-09-02 Allergan, Inc. Activatable recombinant neurotoxins

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7419676B2 (en) 1999-08-25 2008-09-02 Allergan, Inc. Activatable recombinant neurotoxins
US7244437B2 (en) 2000-01-19 2007-07-17 Allergan, Inc. Clostridial toxin derivatives and methods for treating pain
US6903187B1 (en) 2000-07-21 2005-06-07 Allergan, Inc. Leucine-based motif and clostridial neurotoxins
US7273722B2 (en) 2000-11-29 2007-09-25 Allergan, Inc. Neurotoxins with enhanced target specificity
US7208285B2 (en) 2001-08-28 2007-04-24 Allergan, Inc. Fret protease assays for botulinum serotype A/E toxins
US7332567B2 (en) 2001-08-28 2008-02-19 Allergan, Inc. Fret protease assays for clostridial toxins
US7183066B2 (en) 2002-09-27 2007-02-27 Allergan, Inc. Cell-based fluorescence resonance energy transfer (FRET) assays for clostridial toxins
US7183127B2 (en) 2002-12-13 2007-02-27 Canon Kabushiki Kasha Method of manufacturing a semiconductor device
US7399607B2 (en) 2004-09-22 2008-07-15 Allergan, Inc. Fluorescence polarization assays for determining clostridial toxin activity

Non-Patent Citations (52)

* Cited by examiner, † Cited by third party
Title
0. BILSEL; L. YANG; J.A. ZITZEWITZ; J.M. BEECHEM; C.R. MATTHEWS: "Time-Resolved Fluorescence Anisotropy Study of the Refolding Reaction of the a-Subunit of Tryptophan Synthase Reveals Nonmonotonic Behavior of the Rotational Correlation Time", BIOCHEMISTRY, vol. 38, 1999, pages 4177 - 4187
A. ESPOSITO; H.C. GERRITSEN; T. OGGIER; F. LUSTENBERGER; F.S. WOUTERS: "Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics", J. BIOMED. OPT., vol. 11, 2006, pages 34016 - 34024
A. WHITE: "Effect of pH on fluorescence of tryosine, tryptophan and related compounds", BIOCHEM. J., vol. 71, 1959, pages 217 - 220
A.B. MASON; S.J. EVERSE: "Iron Metabolism and Disease", 2008, RESEARCH SIGNPOST, article "Iron Transport by Transferrin", pages: 83 - 123
A.E. MIRSKY; L. PAULING: "On the Structure of Native, Denatured, and Coagulated Proteins", PROC. NATL. ACAD. SCI. USA, vol. 22, 1936, pages 439 - 447
A.H. CLAYTON; Q.S. HANLEY; D.J. ARNDT-JOVIN; V. SUBRAMANIAM; T.M. JOVIN: "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)", BIOPHYS. J., vol. 83, 2002, pages 1631 - 1649, XP003019029
A.H.A. CLAYTON: "The polarized AB plot for the frequency-domain analysis and representation of fluorophore rotation and resonance energy homotransfer", J. MICROSC., vol. 232, 2008, pages 306 - 312
A.H.A. CLAYTON; Q.S. HANLEY; P.J. VERVEER: "Graphical representation and multicomponent analysis of single- frequency fluorescence lifetime imaging microscopy data", J. MICROSC., vol. 213, 2004, pages 1 - 5
A.R. FERSHT: "From the first protein structures to our current knowledge of protein folding: delights and scepticisms", NAT. REV. MOL. CELL BIOL., vol. 9, 2008, pages 650 - 654
B. BARBIERI; E. TERPETSCHNIG; D.M. JAMESON: "Frequency-domain fluorescence spectroscopy using 280-nm and 300-nm light-emitting diodes: measurement of proteins and protein-related fluorophores", ANAL. BIOCHEM., vol. 344, 2005, pages 298 - 300
B. VALEUR: "Molecular Fluorescence", 2002, WILEY-VCH
B.A. FEDDERSEN; D.W. PISTON; E. GRATTON: "Digital parallel acquisition in frequency domain fluorimetry", REV. SCI. INSTRUM., vol. 60, 1989, pages 2929 - 2936, XP000069699, DOI: doi:10.1063/1.1140629
BABUKE T ET AL: "Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis", CELLULAR SIGNALLING, ELSEVIER SCIENCE LTD, GB, vol. 21, no. 8, 1 August 2009 (2009-08-01), pages 1287 - 1297, XP026116198, ISSN: 0898-6568, [retrieved on 20090324], DOI: DOI:10.1016/J.CELLSIG.2009.03.012 *
C.E. PETERSEN; C.E. HA; D.M. JAMESON; N.V. BHAGAVAN: "Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia", J. BIOL. CHEM., vol. 271, 1996, pages 19110 - 19117
D. BEELER; R. ROSENBERG; R. JORDAN: "Fractionation of low molecular weight heparin species and their interaction with antithrombin", J. BIOL. CHEM., vol. 254, 1979, pages 2902 - 2913
D.M. DAVIS; D. MCLOSKEY; D.J. BIRCH; P.R. GELLERT; R.S. KITTLETY; R.M. SWART: "The fluorescence and circular dichroism of proteins in reverse micelles: application to the photophysics of human serum albumin and N-acetyl-L-tryptophanamide", BIOPHYS. CHEM., vol. 60, 1996, pages 63 - 77
D.M. JAMESON; E. GRATTON; R.D. HALL: "The Measurement and Analysis of Heterogeneous Emissions by Multifrequency Phase and Modulation Fluorometry", APPL. SPECTROSC. REV., vol. 20, 1984, pages 55 - 106, XP009076450
D.M. JAMESON; G. WEBER: "Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements", THE JOURNAL OF PHYSICAL CHEMISTRY, vol. 85, 1981, pages 953 - 958
G. HAZAN; E. HAAS; I.Z. STEINBERG: "The fluorescence decay of human serum albumin and its subfractions", BIOCHIM. BIOPHYS. ACTA, vol. 434, 1976, pages 144 - 153, XP024555411, DOI: doi:10.1016/0005-2795(76)90044-1
G.D. REINHART; P. MARZOLA; D.M. JAMESON; E. GRATTON: "A method for on-line background subtraction in frequency domain fluorometry", J. FLUORESC., vol. 1, 1991, pages 153 - 162
G.I. MAKHATADZE; P.L. PRIVALOV: "Protein interactions with urea and guanidinium chloride. A calorimetric study", J. MOL. BIOL., vol. 226, 1992, pages 491 - 505, XP024015891, DOI: doi:10.1016/0022-2836(92)90963-K
G.I. REDFORD; R.M. CLEGG: "Polar plot for frequency-domain analysis of fluorescence lifetimes", JOURNAL OF FLUORESCENCE, vol. 15, 2005, pages 805 - 815, XP019281753
G.I. REDFORD; R.M. CLEGG: "Polar plot representation for frequency-domain analysis of fluorescence lifetimes", J. FLUORESC., vol. 15, 2005, pages 805 - 815, XP019281753
HANLEY Q S: "Spectrally resolved fluorescent lifetime imaging", JOURNAL OF THE ROYAL SOCIETY INTERFACE, vol. 6, 6 February 2009 (2009-02-06), pages S83 - S92, XP002613453, ISSN: 1742-5689, DOI: 10.1098/rsif.2008.0393.focus *
J. ALMARZA; L. RINCON; A. BAHSAS; F. BRITO: "Molecular mechanism for the denaturation of proteins by urea", BIOCHEMISTRY, vol. 48, 2009, pages 7608 - 7613
J. LAKOWICZ: "Principles of Fluorescence Spectroscopy", 2006, SPRINGER
J.A. ROSS; D.M. JAMESON: "Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence", PHOTOCHEM. PHOTOBIOL. SCI., vol. 7, 2008, pages 1301 - 1312
J.C. BROCHON: "Maximum entropy method of data analysis in time-resolved spectroscopy", METHODS ENZYMOL., vol. 240, 1994, pages 262 - 311
J.R. LAKOWICZ; G. WEBER: "Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules", BIOCHEMISTRY, vol. 12, 1973, pages 4161 - 4170
J.R. LAKOWICZ; I. GRYCZYNSKI: "Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation", BIOPHYS. CHEM., vol. 45, 1992, pages 1 - 6
J.R. VOELKER; D.M. JAMESON; D.C. BRATER: "In vitro evidence that urine composition affects the fraction of active furosemide in the nephrotic syndrome", J. PHARMACOL. EXP. THER., vol. 250, 1989, pages 772 - 778
K.A. DILL; S.B. OZKAN; M.S. SHELL; T.R. WEIKL: "The protein folding problem", ANNU. REV. BIOPHYS, vol. 37, 2008, pages 289 - 316
KREMERS, G.J., VAN MUNSTER, E.B., GOEDHART, J., AND GADELLA, T.W., JR.: "Quantitative lifetime unmixing of multiexponentially decaying fluorophores using single-frequency fluorescence lifetime imaging microscopy.", BIOPHYS J, vol. 95, 1 July 2008 (2008-07-01), pages 378 - 389, XP002613454 *
M. ROSEMAN; W.P. JENCKS: "Interactions of urea and other polar compounds in water", J. AM. CHEM. SOC., vol. 97, 1975, pages 631 - 640
M.A. DIGMAN; V.R. CAIOLFA; M. ZAMAI; E. GRATTON: "The phasor approach to fluorescence lifetime imaging analysis", BIOPHYS. J. 94, 2008, pages L14 - 16
M.K. HELMS; C.E. PETERSEN; N.V. BHAGAVAN; D.M. JAMESON: "Time-resolved fluorescence studies on site-directed mutants of human serum albumin", FEBS LETT., vol. 408, 1997, pages 67 - 70
M.R. EFTINK; C.A. GHIRON: "Dynamics of a protein matrix revealed by fluorescence quenching", PROC. NATL. ACAD. SCI. USA, vol. 72, 1975, pages 3290 - 3294
N.G. JAMES; C.L. BERGER; S.L. BYRNE; V.C. SMITH; R.T. MACGILLIVRAY; A.B. MASON: "Intrinsic fluorescence reports a global conformational change in the N-lobe of human serum transferrin following iron release", BIOCHEMISTRY, vol. 46, 2007, pages 10603 - 10611
P. MARZOLA; E. GRATTON: "Hydration and protein dynamics: frequency domain fluorescence spectroscopy of proteins in reverse micelles", THE JOURNAL OF PHYSICAL CHEMISTRY, vol. 95, 1991, pages 9488 - 9495
Q.S. HANLEY; A.H.A. CLAYTON: "AB- , plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers", J. MICROSC., vol. 218, 2005, pages 62 - 67
R.B. SIMPSON; W. KAUZMANN: "The Kinetics of Protein Denaturation. I. The Behavior of the Optical Rotation of Ovalbumin in Urea Solutions1", J. AM. CHEM. SOC., vol. 75, 1953, pages 5139 - 5152
R.D. SPENCER; G. WEBER: "Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer", ANN. N. Y. ACAD. SCI., vol. 158, 1969, pages 361 - 376, XP009059616, DOI: doi:10.1111/j.1749-6632.1969.tb56231.x
ROYER C A: "Probing protein folding and conformational transitions with fluorescence", CHEMICAL REVIEWS, vol. 106, no. 5, 1 May 2006 (2006-05-01), pages 1769 - 1784, XP002613452, ISSN: 0009-2665, DOI: 10.1021/cr0404390 *
S. KASAI; T. HORIE; T. MIZUMA; S. AWAZU: "Fluorescence energy transfer study of the relationship between the lone tryptophan residue and drug binding sites in human serum albumin", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 76, 1987, pages 387 - 392
S.D. CONNER; S.L. SCHMID: "Regulated portals of entry into the cell", NATURE, vol. 422, 2003, pages 37 - 44
S.S. LEHRER: "Fluorescence and absorption studies of the binding of copper and iron to transferrin", J. BIOL. CHEM., vol. 244, 1969, pages 3613 - 3617
S.S. LEHRER: "Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion is commonly used to probe the dynamics of protein matrices", BIOCHEMISTRY, vol. 10, 1971, pages 3254 - 3263
S.S. LEHRER; G.D. FASMAN: "Fluorescence of lysozyme and lysozyme substrate complexes. Separation of tryptophan contributions by fluorescence difference methods", J. BIOL. CHEM., vol. 242, 1967, pages 4644 - 4651
T. IMOTO; L.S. FORSTER; J.A. RUPLEY; F. TANAKA: "Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration", PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 1151 - 1155
W. PFEIL; P.L. PRIVALOV: "Thermodynamic investigations of proteins. II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride", BIOPHYS. CHEM., vol. 4, 1976, pages 33 - 40
W.B. DE LAUDER; P. WAHL: "pH dependence of the fluorescence decay of tryptophan", BIOCHEMISTRY, vol. 9, 1970, pages 2750 - 2754
WOUTERS F S; ESPOSITO A: "Quantitative analysis of fluorescence lifetime imaging made easy", HFSP JOURNAL, vol. 2, no. 1, 1 February 2008 (2008-02-01), pages 7 - 11, XP002613451, DOI: 10.2976/1.2833600 *

Also Published As

Publication number Publication date
EP2483666A1 (fr) 2012-08-08

Similar Documents

Publication Publication Date Title
James et al. Applications of phasor plots to in vitro protein studies
Woody [4] Circular dichroism
JP5323356B2 (ja) 高感度fretセンサーの開発およびその使用方法
Bowen et al. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex
Johnson Calmodulin, conformational states, and calcium signaling. A single-molecule perspective
Li et al. Staring at protein-surfactant interactions: Fundamental approaches and comparative evaluation of their combinations-A review
Wang et al. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research
Carillo et al. Interaction of proteins associated with the magnetosome assembly in magnetotactic bacteria as revealed by two-hybrid two-photon excitation fluorescence lifetime imaging microscopy Forster resonance energy transfer
dos Santos Rodrigues et al. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts
Hofmann 12 Spectroscopic techniques: I Spectrophotometric techniques
Tol et al. Thermal unfolding of a mammalian pentameric ligand-gated ion channel proceeds at consecutive, distinct steps
Mao et al. New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11–20
Liskova et al. Probing the Ca 2+-assisted π–π interaction during Ca 2+-dependent protein folding
Ghosh et al. Unusual optical resolution of all four tryptophan residues in MPT63 protein by phosphorescence spectroscopy: assignment and significance
Yang et al. Observation of protein folding/unfolding dynamics of ubiquitin trapped in agarose gel by single-molecule FRET
Bumbak et al. Expression and purification of a functional E. coli 13 CH 3-methionine-labeled thermostable neurotensin receptor 1 variant for solution NMR studies
Brader UV-absorbance, fluorescence and FT-IR spectroscopy in biopharmaceutical development
EP2483666A1 (fr) Procédé pour déterminer des changements in vitro dans un environnement protéique
Haruta et al. Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin
Hofmann et al. Methods of molecular analysis in the life sciences
Blackman et al. Flexibility of the cytoplasmic domain of the anion exchange protein, band 3, in human erythrocytes
Siligardi et al. Characterisation of sensor kinase by CD spectroscopy: golden rules and tips
Grünewald Periplasmic binding proteins in biosensing applications
Side Right angle light scattering protein thermostability screening: From research to development
Kranz et al. Techniques for higher-order structure determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10762851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010762851

Country of ref document: EP