WO2011040787A2 - Lean nitrogen oxide breakdown method employing a high-adsorption mixed metal oxide catalyst - Google Patents

Lean nitrogen oxide breakdown method employing a high-adsorption mixed metal oxide catalyst Download PDF

Info

Publication number
WO2011040787A2
WO2011040787A2 PCT/KR2010/006714 KR2010006714W WO2011040787A2 WO 2011040787 A2 WO2011040787 A2 WO 2011040787A2 KR 2010006714 W KR2010006714 W KR 2010006714W WO 2011040787 A2 WO2011040787 A2 WO 2011040787A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
engine
nitrogen oxides
metal oxide
Prior art date
Application number
PCT/KR2010/006714
Other languages
French (fr)
Korean (ko)
Other versions
WO2011040787A3 (en
Inventor
장길상
팽소산
박서영
양기선
한아름
Original Assignee
상명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 상명대학교 산학협력단 filed Critical 상명대학교 산학협력단
Publication of WO2011040787A2 publication Critical patent/WO2011040787A2/en
Publication of WO2011040787A3 publication Critical patent/WO2011040787A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to a method for decomposing nitrogen oxides using a mixed metal oxide catalyst, and more particularly, using a mixed metal oxide catalyst prepared from a hydrotalcite-type precursor to decompose lean nitrogen oxide from exhaust gas during engine combustion. It is about a method of processing.
  • Nitrogen oxides (NOx) produce photochemical smog and various secondary pollutants (O 2 , PAN, etc.) that are harmful to the human body through photochemical reactions of various smogs, acid rain and air, and cause eutrophication of aquatic ecosystems. It is a pollutant.
  • nitrogen oxide is an exhaust gas regulation substance that is inevitably generated during the combustion of most fossil fuels.It is a method of decomposing and removing the three-way catalyst of gasoline engine, selective catalyst reduction using NH 3 and hydrocarbons as reducing agents (SCR). ) Technology is used in various ways.
  • the selective catalytic reduction method which has been put to practical use, has a problem in that the reaction temperature range is narrow, performance decreases due to aging of the catalyst, and facilities and operation costs are high.
  • the NOx storage materials are BaO, which is an alkaline earth metal oxide, and these oxides require a catalyst to oxidize and adsorb NO, since the adsorption performance for NO is lower than that of NO 2. It is added and used.
  • these sorbents usually have a maximum occupancy capacity of only 10-20 mg-NOx / g-cat at 350 ° C., and their capacity drops significantly when the temperature is increased or decreased.
  • the occlusion component is mainly composed of NO 2 rather than NO, there is a problem in that the rate of decomposing NOx in the desorption process is lowered to serve as an effective occlusion material.
  • Patent Document 1 discloses nitrogen oxide reduction decomposition. However, the patent relates to the reduction decomposition of nitrogen oxides in the absence of oxygen, which is difficult to apply to the case of containing oxygen as described above.
  • Patent Document 2 discloses a method for decomposing nitrogen oxides using carbon monoxide.
  • the patent has a disadvantage in that additional oxygen is required as much as the equivalent ratio of oxygen in addition to the nitrogen oxide when there is oxygen.
  • Patent Document 3 discloses a method of supplying CO by partially oxidizing CH 4 and decomposing N 2 O and NO x using an MMO catalyst.
  • MMO catalyst for the decomposition of lean NOx and N 2 O, a separate measure from the above patent is required.
  • Patent Document 1 Korean Registered Patent No. 563903
  • Patent Document 2 Korean Registered Patent No. 654885
  • Patent Document 3 Korean Patent No. 638835
  • the present invention in order to solve the problems of the prior art described above, when using a mixed metal oxide catalyst prepared from a hydrotalcite-type precursor, from the exhaust gas during the engine lean operation containing nitrogen oxides such as NOx and N 2 O It was found that the ability to occlude the nitrogen oxides can be improved and completed based on this.
  • an object of the present invention is to store NOx and N 2 O in the excess oxygen state in the engine lean operation for a relatively longer time than the prior art, and then operate the engine in a rich state again for a predetermined time to exhaust the exhaust gas
  • the present invention provides a method for removing NOx and N 2 O from a gas discharged by performing a cycle of decomposition and desorption of the occluded NOx and N 2 O using CO and HC in the reducing agent.
  • a mixed metal oxide catalyst prepared from a hydrotalcite or brucite compound precursor, a catalyst in which a noble metal is impregnated or bonded to the mixed metal oxide catalyst, or a cocatalyst to the mixed metal oxide catalyst Providing a catalyst layer having at least one of a catalyst to which is added and a non-noble metal is impregnated or interlayer bonded;
  • the method is characterized by repeating the steps ii) and iv).
  • the hydrotalcite type or brucite type compound precursor in step i) is represented by the following formula (1):
  • a divalent metal cation selected from + , Ca 2+ , Ni 2+ , Zn 2+ , Sr 2+ , Ba 2+ , Fe 2+ , Cu 2+ , Co 2+ , Pd 2+ and Mn 2+ is used.
  • N 3+ may be represented by Rh 3+ , Al 3+ , Mn 3+ , Fe 3+ , Co 3+ , Ni 3+ , Cr 3+ , Ga 3+ , B 3+ , La 3+ and Ce 3+. and trivalent metal cations selected, a n- is CO 3 2- has a charge of -1, -2 or -3, NO 3 -, SO 4 2-, Cl -, OH -, SiO 3 2-, MnO 4 2-, HPO 3 2-, MnO 4 2-, HGaO 3 2-, HVO 4 2-, ClO 4 - and a compound composed of an anion BO 3 2-, used alone or in combination of two or more, x is 0.0 to 0.5, b is an integer from 0 to 20.
  • the precious metal is Mo, Ti, Pt, Au, Ag, Rh, Pa, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Z and It is characterized in that it is selected from the group consisting of a mixture thereof.
  • the promoter is selected from the group consisting of K, Rb, and Cs
  • the non-noble metal is Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, At least one selected from the group consisting of Mg, Ca, Sr, and mixtures thereof, characterized in that the content of the noble metal in the interlayer bonded catalyst is 0.01 to 20% by weight.
  • the step ii) is characterized in that it is made for 20 seconds to 30 minutes.
  • the step iii) and iv) is characterized in that made for 2 seconds to 10 minutes.
  • the method is characterized in that the hourly space velocity of the exhaust gas GHSV (Gas Hourly Space Velocity), which has passed through the catalyst layer of 10,000 ⁇ 200,000h -1.
  • GHSV Gas Hourly Space Velocity
  • the method is characterized in that the temperature of the gas passing through the catalyst bed is 200 to 500 °C.
  • the step ii) is characterized in that 20 seconds to 30 minutes.
  • the step ii) and iv) is characterized in that it is repeatedly carried out with a cycle period of 5 seconds to 10 minutes.
  • the stored nitrogen oxides are decomposed and desorbed using CO and HC in the exhaust gas as a reducing agent, it does not require a separate reducing agent.
  • 1A and 1B are graphs of examples of cycle operation according to the method of the present invention.
  • 2A and 2B are graphs of examples of another cycle operation according to the present invention.
  • Automotive engines especially diesel engines, are characterized by lean combustion, making it difficult to remove NOx from the exhaust gases.
  • Efforts have been made to use ammonia or urea as reducing agents in existing SCR catalysts, but it is not desirable and most expected is the method of desorption and reduction of NOx with HC, CO, H 2, etc. Therefore, there has been a study on a catalyst having excellent NOx selectivity and easy desorption reduction.
  • the breakthrough curve concentration increases later or slower than the adsorption time, so the lean operation time can be increased and the rich operation time can be reduced, resulting in a longer cycle period. System operation becomes convenient and flexible.
  • the exhaust gas treatment method of diesel engines is adopted to reduce the NOx generation, the EGR system that lowers the operating temperature of the engine, which reduces the NOx but decreases the engine efficiency and increases the smoke so that the NOx removal technology is applied.
  • the elimination of the EGR system increases engine efficiency and reduces smoke emissions.
  • the present invention has been devised based on this aspect.
  • the present invention allows the mixed metal oxide catalyst layer prepared from a hydrotalcite type or brucite type compound precursor to pass the exhaust gas during the lean operation of the engine for a predetermined time.
  • the hydrotalcite compound is generally an anionic clay system, and is composed of hydrates such as magnesium or aluminum that are abundantly present on earth, and can be synthesized at room temperature and atmospheric pressure.
  • hydrotalcite is mainly used as a precursor of an oxide catalyst, and the application of a compound carrying, adding, or intercalating a hydrotalcite compound has not been put to practical use.
  • Hydrotalcite type or brucite type compound precursors used in the present invention may be represented by Chemical Formula 1.
  • Chemical Formula 1 Hydrotalcite type or brucite type compound precursors used in the present invention
  • M 2+ and N 3+ are each a metal As cations, M 2+ includes Mg 2+ , Ca 2+ , Ni 2+ , Zn 2+ , Sr 2+ , Ba 2+ , Fe 2+ , Cu 2+ , Co 2+ , Pd 2+ and Mn 2+ A divalent metal cation selected from among others is used.
  • a trivalent metal cation selected from, La 3+ and Ce 3+ and the like is used.
  • the molar ratio of M 2+ and N 3+ is 1: 1 to 100: 1, more preferably 1: 1 to 5: 1.
  • a n- is -1, -2 or -3 charge the C O3 2- NO 3 having a - SO 4 2-, Cl -, OH -, SiO 3 2-, MnO 4 2-, HPO 3 2-, MnO 4 2-, HGaO 3 2-, HVO 4 2-, ClO 4 - and a compound composed of an anion such as BO 3 2-, used alone or in combination of two or more, x Is 0.01 to 0.5, b is an integer of 0 to 20.
  • the hydrotalcite precursor is prepared in the form of a mixed metal oxide after firing in a range of 100 to 1000 ° C., and selectively increases Mo, Ti, Pt, Au, Ag, Rh, in order to increase the catalytic activity of the mixed metal oxide catalyst.
  • At least one precious metal selected from Pd, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Zr and the like is attached or interlayer bonded to the mixed metal oxide.
  • the MMO catalyst used in the method may be a mixed metal oxide catalyst is a non-noble metal is impregnated or interlayer bonded.
  • a catalyst such as K can be used to increase the catalytic activity. It can also replace precious metals.
  • the promoter used herein may be an alkali metal. Preferably from Na, K, Rb, and Cs.
  • the non-noble metal may be at least one selected from the group consisting of Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, Mg, Ca, Sr, and mixtures thereof.
  • the content of the non-noble metal in the interlayered catalyst is preferably 0.01 to 20% by weight.
  • the present invention utilizes the adsorption performance of the MMO catalyst, and the adsorption strength adsorbed on the MMO catalyst is usually (NO, N 2 O, NO 2 , SO 2 )>CO> O 2 . That is, NO, N 2 O, NO 2 , and SO 2 have higher adsorption strength than CO and O 2 , but the adsorption strength between NO, N 2 O, NO 2 , and SO 2 may vary depending on the composition of the catalyst. have.
  • MMO catalysts generally exhibit higher occlusion performance with respect to NO alone components, and SO 2 , commonly known as a catalyst poison, is relatively strongly adsorbed compared to CO, O 2, etc., but exhibits similar adsorption strengths to NO, NO 2, and the like.
  • SO 2 commonly known as a catalyst poison
  • the adsorbed SO 2 is desorbed by CO, NO, NO 2 , O 2 , N 2, etc., so that NOx storage efficiency decrease or catalyst activity decrease due to SO 2 accumulation rarely occurs.
  • the time to occlude NOx and / or N 2 O in the method may be 20 seconds to 30 minutes. If the occlusion time is less than 20 seconds, it will not be able to occlude enough NOx and / or N 2 O to reduce the treatment efficiency and engine efficiency of the nitrogen oxide, and if the occlusion time exceeds 30 minutes, it will be out of the occlusion capacity of the catalyst. There is a problem that the nitrogen oxides can not be occluded and discharged. Although conventional occlusion techniques generally use an occlusion time of about 50 seconds, the catalyst used in the method of the present invention has an excellent occlusion performance, and thus an advantage of occluding nitrogen oxides for a longer time. Has
  • the desorption decomposition of the occluded nitrogen oxides into CO and HC contained in the exhaust gas during the engine rich operation may be performed for about 5 seconds to 10 minutes.
  • the desorption decomposition time is less than 5 seconds, the occluded nitrogen oxides do not sufficiently react with CO and HC.
  • the engine may be operated in a rich state excessively, leading to excessive CO and HC emissions as well as a problem in that fuel efficiency (fuel efficiency) may be lowered.
  • the period of the cycle of the method can be adjusted in the range of 20 seconds to 30 minutes. This is because a heavy duty engine with high NOx generation and a light duty engine with relatively low NOx generation can have a shorter or longer occlusion cycle, respectively. ) And lower than necessary, the NOx storage and removal efficiency of the catalyst may be reduced.
  • the gas hour space velocity (GHSV) of the exhaust gas passing through the catalyst bed is preferably 10,000 to 200,000 h ⁇ 1 . If the GHSV is less than 10,000 h -1, the amount of catalyst is relatively low compared to the throughput, and if the GHSV is more than 200,000 h -1 , the contact time with the catalyst is short, so the adsorption efficiency of NOx or N 2 O is short. In addition to the possibility of this decrease, the negative pressure caused by the exhaust gas is increased, and the engine is heavily loaded.
  • the applied pressure may vary depending on the engine used, the pressure of the gas passing through the catalyst bed is preferably at least 1 atm, and the adsorption rate increases as the pressure increases, but the engine load increases. Be careful not to.
  • the temperature of the gas passing through the catalyst bed is preferably between 200 and 500 ° C. If the temperature of the gas passing through the catalyst bed is less than 200 °C the same as the initial start of the engine, the adsorption rate and reduction desorption reaction is slow, if the temperature exceeds 500 °C there is a problem that causes thermal damage to the catalyst and the support.
  • nitrogen gas containing 4500ppm of CO was passed through the flow rate at 500ml / min (SV 30,000hr -1 ) for 2 minutes, almost 97.65% of NOx was adsorbed. Decomposition and removal.
  • FIG. 1A and 1B show an example of cycle operation according to the present invention.
  • FIGS. 2A and 2B show an example of another cycle operation according to the present invention.

Abstract

The present invention relates to a breakdown method for nitrogen oxides using a mixed metal oxide catalyst, and more specifically provides a method for breaking down lean nitrogen oxides in exhaust gas during engine combustion by using a mixed metal oxide catalyst produced from a hydrotalcite form of precursor having an outstanding adsorption performance, thereby providing the advantageous effect of efficient nitrogen oxides removal from the exhaust gas by isolating and adsorbing lean NOx and N2O and then using the CO and HC in the exhaust gas as the only reducing agents with no other reducing agents being used, when the engine is running rich, such that the occluded nitrogen oxides are broken down and desorbed.

Description

고흡장성 혼합금속산화물 촉매를 통한 희박 질소산화물 분해처리 방법Decomposition of Dilute Nitrogen Oxides by Highly Adsorbable Mixed Metal Oxide Catalysts
본 발명은 혼합금속산화물 촉매를 이용한 질소산화물의 분해처리 방법에 관한 것으로, 보다 상세하게는 하이드로탈사이트형 전구체로부터 제조된 혼합 금속 산화물 촉매를 사용하여 엔진 연소시의 배기가스에서 희박 질소산화물을 분해 처리하는 방법에 관한 것이다.The present invention relates to a method for decomposing nitrogen oxides using a mixed metal oxide catalyst, and more particularly, using a mixed metal oxide catalyst prepared from a hydrotalcite-type precursor to decompose lean nitrogen oxide from exhaust gas during engine combustion. It is about a method of processing.
질소산화물(NOx)는 각종 스모그와 산성비 및 대기의 광화학 반응을 통해 광화학 스모그 및 인체에 유해한 각종 2차 오염물질(O2, PAN 등)을 부생시키고, 수생태계의 부영양화를 야기하는 등의 대표적인 대기 오염물질이다. Nitrogen oxides (NOx) produce photochemical smog and various secondary pollutants (O 2 , PAN, etc.) that are harmful to the human body through photochemical reactions of various smogs, acid rain and air, and cause eutrophication of aquatic ecosystems. It is a pollutant.
또한, 질소산화물은 대부분의 화석연료의 연소과정에서 필연적으로 나오는 배기가스 규제 물질로서, 이를 분해하고 제거하는 방법으로 가솔린 엔진의 삼원촉매와 NH3 및 탄화수소류 등을 환원제로 하는 선택적촉매환원(SCR) 기술 등이 다양하게 사용되고 있다. In addition, nitrogen oxide is an exhaust gas regulation substance that is inevitably generated during the combustion of most fossil fuels.It is a method of decomposing and removing the three-way catalyst of gasoline engine, selective catalyst reduction using NH 3 and hydrocarbons as reducing agents (SCR). ) Technology is used in various ways.
이러한 방법들은 산소 등 다른 성분들이 같이 존재하는 경우 분해효율이 급격히 떨어진다. 또한 실용화되어 많이 사용되고 있는 선택적 촉매환원법은 반응온도 범위가 좁고 촉매 노화(aging)에 따라 성능이 저하되며 설비 및 운전 비용이 높은 문제점들이 있어 이를 개선하기 위한 연구 개발이 지속적으로 수행되고 있다.These methods rapidly degrade the decomposition efficiency when other components such as oxygen are present. In addition, the selective catalytic reduction method, which has been put to practical use, has a problem in that the reaction temperature range is narrow, performance decreases due to aging of the catalyst, and facilities and operation costs are high.
엔진 희박(lean) 연소의 경우, 배기가스 중 산소가 과잉으로 존재하게 된다. 이 경우, 잔존 산소는 NOx 환원제를 크게 소모시키거나 환원 성능을 크게 저해한다. 따라서 NOx를 따로 흡착 저장하였다가 탈착 환원시킴으로써 산소 존재로 인한 NOx 환원 성능의 저하를 방지하고 NOx의 분해를 효율적으로 수행하는 방법이 요구된다. 이러한 요구에 따라 NOx 흡장소재에 대한 연구 개발이 이루어지고 있다.In engine lean combustion, excess oxygen is present in the exhaust gas. In this case, the remaining oxygen greatly consumes the NOx reducing agent or greatly reduces the reduction performance. Therefore, there is a need for a method of adsorbing and storing NOx separately and desorption reduction to prevent deterioration of NOx reduction performance due to the presence of oxygen and to efficiently decompose NOx. According to these demands, research and development on NOx storage materials has been made.
NOx 흡장소재들은 알칼리토금속 산화물인 BaO를 주 소재로 하는데 이들 산화물은 NO에 대한 흡착성능이 NO2보다 많이 떨어지기 때문에 NO를 산화시킨 후 흡착시키기 위한 촉매를 필요로 하는데 주로 고가의 전이금속인 Pt를 첨가하여 사용한다. 그러나 이러한 흡장재는 최대 흡장 용량이 350℃에서 대개 10~20 mg-NOx/g-cat에 불과하고 온도가 높아지거나 낮아지면 용량이 크게 떨어진다. 또한 흡장 성분이 NO보다 NO2를 주성분으로 하고 있어서 탈착 과정에서 NOx를 분해하는 속도가 떨어져 효과적인 흡장재로의 역할을 수행하는데 문제가 있다. The NOx storage materials are BaO, which is an alkaline earth metal oxide, and these oxides require a catalyst to oxidize and adsorb NO, since the adsorption performance for NO is lower than that of NO 2. It is added and used. However, these sorbents usually have a maximum occupancy capacity of only 10-20 mg-NOx / g-cat at 350 ° C., and their capacity drops significantly when the temperature is increased or decreased. In addition, since the occlusion component is mainly composed of NO 2 rather than NO, there is a problem in that the rate of decomposing NOx in the desorption process is lowered to serve as an effective occlusion material.
특허문헌 1에서는 질소산화물 환원 분해에 관하여 개시하고 있다. 그러나, 상기 특허는 산소가 없는 경우의 질소 산화물의 환원 분해에 관한 것으로 상기와 같이 산소를 포함하는 경우에 대하여는 적용이 어려운 문제점이 있다.Patent Document 1 discloses nitrogen oxide reduction decomposition. However, the patent relates to the reduction decomposition of nitrogen oxides in the absence of oxygen, which is difficult to apply to the case of containing oxygen as described above.
특허문헌 2에서는 일산화탄소를 이용한 질소산화물의 분해방법에 관하여 개시하고 있다. 그러나 상기 특허에서는 산소가 있는 경우 질소산화물 이외에 산소의 당량비 만큼의 CO를 추가로 요한다는 단점이 있다.Patent Document 2 discloses a method for decomposing nitrogen oxides using carbon monoxide. However, the patent has a disadvantage in that additional oxygen is required as much as the equivalent ratio of oxygen in addition to the nitrogen oxide when there is oxygen.
또한, 특허문헌 3에서는 CH4를 부분산화 시켜서 CO를 공급하는 방법을 택하고 MMO 촉매를 이용하여 N2O 및 NOx를 분해하는 방법을 개시하고 있다. 그러나 희박 NOx 및 N2O 분해를 위해서는 상기 특허와는 다른 별도의 조치가 필요하다.In addition, Patent Document 3 discloses a method of supplying CO by partially oxidizing CH 4 and decomposing N 2 O and NO x using an MMO catalyst. However, for the decomposition of lean NOx and N 2 O, a separate measure from the above patent is required.
산소가 과잉으로 존재하는 경우 일반적으로 최대 수 천 ppm 단위의 NOx 농도보다 훨씬 높은 % 단위로 존재할 수 있으므로 이를 제거하기 위한 CO 소요량이 매우 막대하게 된다. 이럴 경우 환원제의 소모량으로 인한 NOx 처리비용이 증가하게 되고 적절한 CO 공급방법을 찾기가 힘들며 배출되는 CO2 양도 또한 문제가 될 수 있다.When oxygen is present in excess, CO requirements to remove it can be very large, since it can generally be present in% much higher than NOx concentrations of up to several thousand ppm. In this case, the cost of NOx treatment increases due to the consumption of reducing agent, it is difficult to find a suitable CO supply method, and the amount of CO 2 emitted may also be a problem.
특허문헌 1: 한국 등록특허 제563903호Patent Document 1: Korean Registered Patent No. 563903
특허문헌 2: 한국 등록특허 제654885호Patent Document 2: Korean Registered Patent No. 654885
특허문헌 3: 한국 등록특허 제638835호Patent Document 3: Korean Patent No. 638835
본 발명은 전술한 종래기술의 문제점을 해결하기 위하여, 하이드로탈사이트형 전구체로부터 제조된 혼합 금속 산화물 촉매를 이용하는 경우, NOx 및 N2O 등의 질소산화물을 포함하는 엔진 희박 운전 시의 배기가스로부터 상기 질소 산화물을 흡장하는 성능을 향상시킬 수 있음을 발견하고 이를 기초로 완성되었다.The present invention, in order to solve the problems of the prior art described above, when using a mixed metal oxide catalyst prepared from a hydrotalcite-type precursor, from the exhaust gas during the engine lean operation containing nitrogen oxides such as NOx and N 2 O It was found that the ability to occlude the nitrogen oxides can be improved and completed based on this.
따라서 본 발명의 목적은 종래 기술보다 상대적으로 긴 시간동안 엔진의 희박 운전 시의 산소과잉 상태에서 NOx 및 N2O를 흡장한 후, 다시 일정 시간 동안 엔진을 리치(Rich) 상태로 운전하여 배기가스 중의 CO 및 HC를 환원제로 하여 상기 흡장된 NOx 및 N2O를 분해 탈착 시키는 사이클을 수행함에 의하여 배출되는 가스에서 NOx 및 N2O를 제거하는 방법을 제공하는 데 있다. Accordingly, an object of the present invention is to store NOx and N 2 O in the excess oxygen state in the engine lean operation for a relatively longer time than the prior art, and then operate the engine in a rich state again for a predetermined time to exhaust the exhaust gas The present invention provides a method for removing NOx and N 2 O from a gas discharged by performing a cycle of decomposition and desorption of the occluded NOx and N 2 O using CO and HC in the reducing agent.
상기 목적을 실현하기 위한 본 발명의 방법은, 엔진의 희박 연소시 질소산화물을 흡장 및 분해탈착하는 방법에 있어서, The method of the present invention for achieving the above object, in the method for occluding and desorption of nitrogen oxide during lean combustion of the engine,
엔진의 희박 연소시 질소산화물을 흡장 및 분해탈착하는 방법에 있어서, In the method for occluding and desorption of nitrogen oxides in lean combustion of the engine,
i) 하이드로탈사이트(Hydrotalcite)형 또는 브루사이트(brucite)형 화합물 전구체로부터 제조된 혼합 금속 산화물 촉매, 상기 혼합 금속 산화물 촉매에 귀금속이 첨착 또는 층간 결합된 촉매, 또는 상기 혼합 금속 산화물 촉매에 조촉매가 첨가되고 비귀금속이 첨착 또는 층간 결합된 촉매 중 하나 이상을 갖는 촉매층을 제공하는 단계;i) a mixed metal oxide catalyst prepared from a hydrotalcite or brucite compound precursor, a catalyst in which a noble metal is impregnated or bonded to the mixed metal oxide catalyst, or a cocatalyst to the mixed metal oxide catalyst Providing a catalyst layer having at least one of a catalyst to which is added and a non-noble metal is impregnated or interlayer bonded;
ii) 상기 촉매층에 엔진의 희박 운전 시의 배기가스를 통과시켜 상기 배기가스의 질소산화물을 흡장시키는 단계; ii) passing the exhaust gas during the lean operation of the engine to the catalyst layer to occlude nitrogen oxides of the exhaust gas;
iii) 상기 단계 이후에, 엔진의 운전을 리치(Rich) 상태로 하여 발생한 배기가스를 상기 촉매층에 통과시키는 단계; 및iii) after the step, passing the exhaust gas generated by operating the engine to a rich state through the catalyst bed; And
iv) 상기 배기가스 중의 CO 및 HC에 의하여 상기 촉매층에 흡장된 질소산화물을 분해 탈착시키는 단계;iv) decomposing and desorbing the nitrogen oxide stored in the catalyst layer by CO and HC in the exhaust gas;
를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.
본 발명의 일구체예에 있어서, 상기 방법은 상기 ii)단계 및 iv) 단계를 반복하여 실시하는 것을 특징으로 한다.In one embodiment of the present invention, the method is characterized by repeating the steps ii) and iv).
본 발명의 일구체예에 있어서, 상기 i) 단계에서의 하이드로탈사이트(Hydrotalcite)형 또는 브루사이트(brucite)형 화합물 전구체는 하기 화학식 1로 표현되는 것을 특징으로 한다:In one embodiment of the present invention, the hydrotalcite type or brucite type compound precursor in step i) is represented by the following formula (1):
[화학식1][Formula 1]
[M2+ 1-xN3+ x(OH)2]x+[An- x/n · bH2O], 여기서 M2+ 및 N3+는 각각 금속 양이온으로서, M2+로는 Mg2+, Ca2+, Ni2+, Zn2+, Sr2+, Ba2+, Fe2+, Cu2+, Co2+, Pd2+ 및 Mn2+ 등에서 선택되는 2가의 금속 양이온이 사용되며, N3+로는 Rh3+, Al3+, Mn3+, Fe3+, Co3+, Ni3+, Cr3+, Ga3+, B3+, La3+ 및 Ce3+ 등에서 선택되는 3가의 금속 양이온이고, An-는 -1, -2 또는 -3의 전하를 갖는 CO3 2-, NO3 -, SO4 2-, Cl-, OH-, SiO3 2-, MnO4 2-, HPO3 2-, MnO4 2-, HGaO3 2-, HVO4 2-, ClO4 - 및 BO3 2-으로 구성된 음이온 화합물로, 단독 또는 2가지 이상의 조합으로 사용되며, x는 0.0 내지 0.5이고, b는 0 내지 20의 정수임.As [M 2+ 1-x N 3+ x (OH) 2] x + [A n- x / n · bH 2 O], wherein M 2+ and N 3+ are each a metal cation, Mg 2+ M roneun 2 A divalent metal cation selected from + , Ca 2+ , Ni 2+ , Zn 2+ , Sr 2+ , Ba 2+ , Fe 2+ , Cu 2+ , Co 2+ , Pd 2+ and Mn 2+ is used. N 3+ may be represented by Rh 3+ , Al 3+ , Mn 3+ , Fe 3+ , Co 3+ , Ni 3+ , Cr 3+ , Ga 3+ , B 3+ , La 3+ and Ce 3+. and trivalent metal cations selected, a n- is CO 3 2- has a charge of -1, -2 or -3, NO 3 -, SO 4 2-, Cl -, OH -, SiO 3 2-, MnO 4 2-, HPO 3 2-, MnO 4 2-, HGaO 3 2-, HVO 4 2-, ClO 4 - and a compound composed of an anion BO 3 2-, used alone or in combination of two or more, x is 0.0 to 0.5, b is an integer from 0 to 20.
본 발명의 일구체예에 있어서, 상기 귀금속은 Mo, Ti, Pt, Au, Ag, Rh, Pa, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Z 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 한다.In one embodiment of the invention, the precious metal is Mo, Ti, Pt, Au, Ag, Rh, Pa, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Z and It is characterized in that it is selected from the group consisting of a mixture thereof.
본 발명의 일구체예에 있어서, 상기 조촉매는 K, Rb, 및 Cs로 이루어진 군으로부터 선택되며, 상기 비귀금속은 Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, Mg, Ca, Sr, 및 이들의 혼합물로 이루어진 군으로부터 하나 이상 선택되며, 상기 층간결합된 촉매 중 귀금속의 함량은 0.01 내지 20 중량% 인 것을 특징으로 한다.In one embodiment of the invention, the promoter is selected from the group consisting of K, Rb, and Cs, the non-noble metal is Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, At least one selected from the group consisting of Mg, Ca, Sr, and mixtures thereof, characterized in that the content of the noble metal in the interlayer bonded catalyst is 0.01 to 20% by weight.
본 발명의 일구체예에 있어서, 상기 ii) 단계는 20초 내지 30분 동안 이루어지는 것을 특징으로 한다.In one embodiment of the present invention, the step ii) is characterized in that it is made for 20 seconds to 30 minutes.
본 발명의 일구체예에 있어서, 상기 iii) 단계 및 iv) 단계는 2초 내지 10분 동안 이루어지는 것을 특징으로 한다.In one embodiment of the present invention, the step iii) and iv) is characterized in that made for 2 seconds to 10 minutes.
본 발명의 일구체예에 있어서, 상기 방법은 상기 촉매 층을 통과하는 배기가스의 시간당 공간속도 GHSV(Gas Hourly Space Velocity)가 10,000∼200,000h-1인 것을 특징으로 한다.In one embodiment, the method is characterized in that the hourly space velocity of the exhaust gas GHSV (Gas Hourly Space Velocity), which has passed through the catalyst layer of 10,000~200,000h -1.
본 발명의 일구체예에 있어서, 상기 방법은 상기 촉매 층을 통과하는 기체의 온도가 200 내지 500℃인 것을 특징으로 한다.In one embodiment of the invention, the method is characterized in that the temperature of the gas passing through the catalyst bed is 200 to 500 ℃.
본 발명의 일구체예에 있어서, 상기 ii) 단계는 20초 내지 30분인 것을 특징으로 한다.In one embodiment of the invention, the step ii) is characterized in that 20 seconds to 30 minutes.
본 발명의 일구체예에 있어서, 상기 ii) 단계 및 iv) 단계는 5초 내지 10분의 싸이클 주기를 가지고 반복 실시되는 것을 특징으로 한다.In one embodiment of the present invention, the step ii) and iv) is characterized in that it is repeatedly carried out with a cycle period of 5 seconds to 10 minutes.
본 발명의 방법에 따르면, 엔진의 희박 운전 시의 배기가스 중의 NOx 및 N2O를 보다 긴 시간동안 흡장할 수 있는 효과를 지닌다.According to the method of the present invention, it is possible to occlude NOx and N2O in the exhaust gas during the lean operation of the engine for a longer time.
또한, 배기가스 중의 CO 및 HC를 환원제로 이용하여 상기 흡장된 질소산화물을 분해 탈착하므로, 별도의 환원제를 필요로 하지 않는 장점을 지닌다.In addition, since the stored nitrogen oxides are decomposed and desorbed using CO and HC in the exhaust gas as a reducing agent, it does not require a separate reducing agent.
도 1a 및 1b는 본 발명의 방법에 따른 사이클 운전의 예에 대한 그래프이다.1A and 1B are graphs of examples of cycle operation according to the method of the present invention.
도 2a 및 2b는 본 발명에 따른 다른 사이클 운전의 예에 대한 그래프이다.2A and 2B are graphs of examples of another cycle operation according to the present invention.
자동차 엔진, 특히 디젤 엔진은 희박연소를 특징으로 해서 배기가스 중 NOx를 제거하기가 쉽지 않다. 기존 SCR 촉매에 암모니아나 요소를 환원제로 쓰려는 노력도 있으나 바람직하지 않고 가장 기대되는 것은 NOx를 산소와 분리저장해서 HC, CO, H2 등으로 탈착 환원시키는 방법입니다. 그러므로 NOx의 선택 흡장성이 뛰어나고 탈착 환원이 쉬운 촉매에 대한 연구가 있어왔다. 흡장성이 좋고 탈착이 잘되면 흡착 시 파과곡선(Breakthrough curve) 농도가 흡착시간 대비 더 늦게 혹은 천천히 증가하기 때문에 희박운전 시간을 길게 하고 리치(Rich) 운전시간을 줄여서 사이클 주기를 길게 가져갈 수 있어 DeNOx 시스템 조작이 편리하고 유연해진다. 반대로 흡착성능이 떨어지면 파과곡선 농도가 급격히 증가해서 같은 시간 대비 높은 농도의 NO가 배출되게 되므로 시간을 짧게 조작해야 됨을 의미한다. 현재까지는 디젤 엔진용 희박/리치 운전은 80-90% NOx 제거를 위해서 50/10 sec 조작을 최상의 조건으로 여기고 있으며 흡장시간을 늘이면 NOx 처리효율이 급격히 떨어지게 된다(예를 들어 흡장시간을 2분으로 택할 경우 NOx 처리 효율 40-50% 수준). 현재 사용되고 있는 디젤 엔진의 배기가스 처리방식은 NOx 발생을 줄이기 위해서 엔진의 작동 온도를 낮추는 EGR 시스템이 채택되고 있는데 이는 NOx 를 줄이기도 하지만 엔진 효율을 떨어뜨리고 매연을 증가시키기 때문에 NOx 제거기술이 적용될 경우 EGR 시스템이 불필요해지므로 엔진효율도 높아지고 매연을 한층 줄이는 효과도 얻을 수 있다.Automotive engines, especially diesel engines, are characterized by lean combustion, making it difficult to remove NOx from the exhaust gases. Efforts have been made to use ammonia or urea as reducing agents in existing SCR catalysts, but it is not desirable and most expected is the method of desorption and reduction of NOx with HC, CO, H 2, etc. Therefore, there has been a study on a catalyst having excellent NOx selectivity and easy desorption reduction. When the adsorption property is good and the desorption is good, the breakthrough curve concentration increases later or slower than the adsorption time, so the lean operation time can be increased and the rich operation time can be reduced, resulting in a longer cycle period. System operation becomes convenient and flexible. On the contrary, when the adsorption performance decreases, the breakthrough curve concentration increases rapidly, so that a high concentration of NO is discharged compared to the same time, which means that the time must be shortened. To date, lean / rich operation for diesel engines considers 50/10 sec operation as the best condition to remove 80-90% NOx, and increasing the occlusion time leads to a sharp decrease in NOx treatment efficiency (for example, a two minute occlusion time). NOx treatment efficiency of 40-50%). Currently, the exhaust gas treatment method of diesel engines is adopted to reduce the NOx generation, the EGR system that lowers the operating temperature of the engine, which reduces the NOx but decreases the engine efficiency and increases the smoke so that the NOx removal technology is applied The elimination of the EGR system increases engine efficiency and reduces smoke emissions.
본 발명은 이러한 관점에 기초하여 안출되었다.The present invention has been devised based on this aspect.
이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.
전술한 바와 같이, 본 발명은 하이드로탈사이트(Hydrotalcite)형 또는 브루사이트(brucite)형 화합물 전구체로부터 제조한 혼합 금속 산화물 촉매층에, 일정시간 동안 엔진의 희박 운전 시의 배기가스를 통과시켜 배기가스 중의 N2O, 또는 NOx와 N2O를 흡장하고, 다시 일정 시간동안 엔진의 운전을 리치 상태로 하여 배기가스 중의 CO 및 HC를 환원제로 이용하여 상기 흡장된 NOx 및 N2O를 분해 탈착시킴을 반복하여 사이클 운전을 수행함으로써 배출되는 배기 가스에서 NOx 및 N2O를 동시에 제거하는 방법이다.As described above, the present invention allows the mixed metal oxide catalyst layer prepared from a hydrotalcite type or brucite type compound precursor to pass the exhaust gas during the lean operation of the engine for a predetermined time. N2O, or storing NOx and N 2 O, and to re-schedule the operation of the engine in a rich state for a time repeating the exhaust gases CO and recalled storing the decomposed desorb the NOx and N 2 O by using the HC as a reducing agent A method of simultaneously removing NOx and N 2 O from exhaust gas discharged by performing a cycle operation.
본 발명의 일구체예에 따르면, 상기 하이드로탈사이트 화합물은 일반적으로 음이온성의 점토계로서, 지구상에 풍부하게 존재하는 마그네슘이나 알루미늄 등의 수화물로 구성되어, 상온, 상압에서 합성될 수 있다. 현재까지는 하이드로탈사이트는 산화물 촉매의 전구체로 주로 사용되고 있으며 하이드로탈사이트 화합물을 담지나 첨착 또는 층간결합시킨 화합물의 응용은 아직도 실용화되어 있지 않은 상태이다.According to one embodiment of the present invention, the hydrotalcite compound is generally an anionic clay system, and is composed of hydrates such as magnesium or aluminum that are abundantly present on earth, and can be synthesized at room temperature and atmospheric pressure. To date, hydrotalcite is mainly used as a precursor of an oxide catalyst, and the application of a compound carrying, adding, or intercalating a hydrotalcite compound has not been put to practical use.
본 발명에서 사용된 하이드로탈사이트(Hydrotalcite)형 또는 브루사이트(brucite)형 화합물 전구체는 상기 화학식 1과 같이 나타낼 수 있다. 즉,Hydrotalcite type or brucite type compound precursors used in the present invention may be represented by Chemical Formula 1. In other words,
[M2+ 1-xN3+ x(OH)2]x+[An- x/n · bH2O]과 같고, 상기 하이드로탈사이트형 전구체에서, M2+ 및 N3+는 각각 금속 양이온으로서, M2+로는 Mg2+, Ca2+, Ni2+, Zn2+, Sr2+, Ba2+, Fe2+, Cu2+, Co2+, Pd2+ 및 Mn2+ 등에서 선택되는 2가의 금속 양이온이 사용되며, N3+로는 Rh3+, Al3+, Mn3+, Fe3+, Co3+, Ni3+, Cr3+, Ga3+, B3+, La3+ 및 Ce3+ 등에서 선택되는 3가의 금속 양이온이 사용된다. 상기 M2+와 N3+의 몰비는 1:1 내지 100:1이며, 더욱 바람직하게는 1:1 내지 5:1이 적합하다. 또한, 상기 하이드로탈사이트형 전구체에서, An-는 -1, -2 또는 -3의 전하를 갖는 CO3 2- NO3 - SO4 2-, Cl-, OH-, SiO3 2-, MnO4 2-, HPO3 2-, MnO4 2-, HGaO3 2-, HVO4 2-, ClO4 - 및 BO3 2- 등으로 구성된 음이온 화합물로, 단독 또는 2가지 이상의 조합으로 사용되며, x는 0.01 내지 0.5이고, b는 0 내지 20의 정수이다.Same as [M 2+ 1-x N 3+ x (OH) 2 ] x + [A n- x / nbH 2 O], in the hydrotalcite-type precursor, M 2+ and N 3+ are each a metal As cations, M 2+ includes Mg 2+ , Ca 2+ , Ni 2+ , Zn 2+ , Sr 2+ , Ba 2+ , Fe 2+ , Cu 2+ , Co 2+ , Pd 2+ and Mn 2+ A divalent metal cation selected from among others is used. As N 3+ , Rh 3+ , Al 3+ , Mn 3+ , Fe 3+ , Co 3+ , Ni 3+ , Cr 3+ , Ga 3+ , B 3+ A trivalent metal cation selected from, La 3+ and Ce 3+ and the like is used. The molar ratio of M 2+ and N 3+ is 1: 1 to 100: 1, more preferably 1: 1 to 5: 1. Further, in the hydrotalcite-type precursors, A n- is -1, -2 or -3 charge the C O3 2- NO 3 having a - SO 4 2-, Cl -, OH -, SiO 3 2-, MnO 4 2-, HPO 3 2-, MnO 4 2-, HGaO 3 2-, HVO 4 2-, ClO 4 - and a compound composed of an anion such as BO 3 2-, used alone or in combination of two or more, x Is 0.01 to 0.5, b is an integer of 0 to 20.
상기 하이드로탈사이트형 전구체는 100∼1000℃ 범위에서 소성을 거쳐 혼합금속 산화물 형태로 제조되며, 상기 혼합 금속 산화물 촉매의 촉매 활성을 증가시키기 위해서 선택적으로 Mo, Ti, Pt, Au, Ag, Rh, Pd, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y 및 Zr 등에서 선택된 적어도 하나의 귀금속을 상기 혼합 금속 산화물에 첨착시키거나 층간결합시킨다.The hydrotalcite precursor is prepared in the form of a mixed metal oxide after firing in a range of 100 to 1000 ° C., and selectively increases Mo, Ti, Pt, Au, Ag, Rh, in order to increase the catalytic activity of the mixed metal oxide catalyst. At least one precious metal selected from Pd, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Zr and the like is attached or interlayer bonded to the mixed metal oxide.
본 발명의 일구체예에 따르면, 상기 방법에서 사용되는 MMO 촉매는 상기 혼합 금속 산화물 촉매는 비귀금속이 첨착 또는 층간 결합된 것일 수 있다. 일반적으로 귀금속은 고비용을 요하는 등의 문제점을 지니고 있어 그 함량을 줄이는 것이 바람직하지만, Ni, Co, Al, Ba 등과 같은 비귀금속 만의 조합 외에 K 등 조촉매를 사용하여 촉매 활성을 증대시킬 수 있어 귀금속을 대체할 수도 있다.According to one embodiment of the present invention, the MMO catalyst used in the method may be a mixed metal oxide catalyst is a non-noble metal is impregnated or interlayer bonded. In general, noble metals have problems such as high cost, and it is desirable to reduce their contents. However, in addition to the combination of non-noble metals such as Ni, Co, Al, and Ba, a catalyst such as K can be used to increase the catalytic activity. It can also replace precious metals.
여기서 사용되는 조촉매는 알카리 금속일 수 있다. 바람직하게는 Na, K, Rb, 및 Cs로 이루어진 군으로부터 선택된다. 상기 비귀금속은 Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, Mg, Ca, Sr, 및 이들의 혼합물로 이루어진 군으로부터 하나 이상 선택될 수 있다. 상기 층간결합된 촉매 중 비귀금속의 함량은 0.01 내지 20 중량% 인 것이 바람직하다.The promoter used herein may be an alkali metal. Preferably from Na, K, Rb, and Cs. The non-noble metal may be at least one selected from the group consisting of Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, Mg, Ca, Sr, and mixtures thereof. The content of the non-noble metal in the interlayered catalyst is preferably 0.01 to 20% by weight.
본 발명은 상기 MMO 촉매의 흡착성능을 이용하는 것으로, 상기 MMO 촉매에 흡착되는 흡착강도는 대개 (NO, N2O, NO2, SO2) > CO > O2의 순서이다. 즉, NO, N2O, NO2, SO2는 CO 및 O2보다 높은 흡착 강도를 지니나, NO, N2O, NO2, SO2 사이에서의 흡착 강도는 촉매의 조성 등에 따라 상이할 수 있다. The present invention utilizes the adsorption performance of the MMO catalyst, and the adsorption strength adsorbed on the MMO catalyst is usually (NO, N 2 O, NO 2 , SO 2 )>CO> O 2 . That is, NO, N 2 O, NO 2 , and SO 2 have higher adsorption strength than CO and O 2 , but the adsorption strength between NO, N 2 O, NO 2 , and SO 2 may vary depending on the composition of the catalyst. have.
따라서, 산소에 비하여 NO 및 N2O 등이 더 잘 흡착되는 특성을 지니므로, 과잉 산소를 함유하고 있는 배기가스가 흡장 촉매층을 통과할 경우 NO 및 N2O가 산소에 비하여 더 흡착이 일어나게 되므로 대부분의 산소는 그대로 통과하고 NO 및 N2O는 촉매층에 흡착되므로 산소와 분리되게 된다. 이렇게 분리된 NO 및 N2O는 후에 CO 등 환원제에 의하여 쉽게 환원되고 산소와의 반응을 배제할 수 있으므로 CO의 소모량이 적으며 탈착속도가 빨라지는 것을 특징으로 한다. Therefore, since the genie the characteristics such as NO and N 2 O better absorption compared to the oxygen, because if the exhaust gas containing excess oxygen passing through the adsorption catalyst NO and N 2 O is more occurs are adsorbed as compared to oxygen Most of the oxygen passes through as it is, and NO and N 2 O are adsorbed in the catalyst layer, which is separated from the oxygen. Thus separated NO and N 2 O is easily reduced by a reducing agent such as CO and can exclude the reaction with oxygen, characterized in that the consumption of CO is small and the desorption rate is faster.
MMO 촉매는 대체로 NO 단독 성분에 대해 더 높은 흡장 성능을 나타내며, 흔히 촉매독으로 알려진 SO2는 CO, O2 등에 비하여 비교적 강하게 흡착되나 NO, NO2 등과 유사한 흡착강도를 나타낸다. 하지만, 흡착된 SO2는 CO, NO, NO2, O2 및 N2 등에 의하여 탈착되어 SO2 누적으로 인한 NOx 흡장 효율 저하나 촉매 활성저하가 거의 발생하지 않는다.MMO catalysts generally exhibit higher occlusion performance with respect to NO alone components, and SO 2 , commonly known as a catalyst poison, is relatively strongly adsorbed compared to CO, O 2, etc., but exhibits similar adsorption strengths to NO, NO 2, and the like. However, the adsorbed SO 2 is desorbed by CO, NO, NO 2 , O 2 , N 2, etc., so that NOx storage efficiency decrease or catalyst activity decrease due to SO 2 accumulation rarely occurs.
본 발명의 일구체예에 따르면, 상기 방법에서 NOx 및/또는 N2O를 흡장하는 시간은 20초 내지 30분일 수 있다. 여기서 흡장 시간이 20초 미만인 경우, 충분한 NOx 및/또는 N2O를 흡장하지 못하게 되어 질소산화물의 처리 효율 및 엔진 효율이 떨어지고, 흡장 시간이 30분을 초과하는 경우, 촉매의 흡장능력을 벗어나게 되어 질소산화물을 흡장하지 못하고 배출시키게 되는 문제점이 발생한다. 동종 분야의 통상적인 기술에서는 대개 50초 정도의 흡장 시간을 사용하고 있으나, 본원 발명의 방법에서 사용되는 촉매의 경우, 뛰어난 흡장 성능을 가짐에 따라, 보다 긴 시간동안 질소산화물을 흡장시킬 수 있는 장점을 지닌다.According to one embodiment of the invention, the time to occlude NOx and / or N 2 O in the method may be 20 seconds to 30 minutes. If the occlusion time is less than 20 seconds, it will not be able to occlude enough NOx and / or N 2 O to reduce the treatment efficiency and engine efficiency of the nitrogen oxide, and if the occlusion time exceeds 30 minutes, it will be out of the occlusion capacity of the catalyst. There is a problem that the nitrogen oxides can not be occluded and discharged. Although conventional occlusion techniques generally use an occlusion time of about 50 seconds, the catalyst used in the method of the present invention has an excellent occlusion performance, and thus an advantage of occluding nitrogen oxides for a longer time. Has
본 발명의 일구체예에 따르면, 상기 방법에서 상기 흡장된 질소산화물을 엔진 리치 운전 시의 배기가스에 포함되어 있는 CO 및 HC로 탈착 분해하는 단계는 약 5초 내지 10분 동안 이루어질 수 있다. 여기서 상기 탈착 분해 시간이 5초 미만인 경우, 흡장된 질소산화물이 CO 및 HC와 충분히 반응하지 못하는 문제점을 지닌다. 10분 이상인 경우, 흡장된 질소산화물이 모두 반응된 이후에, 과도하게 엔진을 리치 상태로 운전하게 되어 과잉 CO 및 HC 배출을 야기할 뿐 아니라 연료효율(연비)이 떨어지는 문제점이 발생될 수 있다.According to one embodiment of the present invention, the desorption decomposition of the occluded nitrogen oxides into CO and HC contained in the exhaust gas during the engine rich operation may be performed for about 5 seconds to 10 minutes. In this case, when the desorption decomposition time is less than 5 seconds, the occluded nitrogen oxides do not sufficiently react with CO and HC. In the case of 10 minutes or more, after the occluded nitrogen oxides are all reacted, the engine may be operated in a rich state excessively, leading to excessive CO and HC emissions as well as a problem in that fuel efficiency (fuel efficiency) may be lowered.
본 발명의 일구체예에 따르면, 상기 방법의 사이클의 주기는 20초 내지 30분의 범위로 조절될 수 있다. 이는 NOx의 발생이 많은 Heavy Duty 엔진과 NOx 발생이 비교적 적은 Light Duty 엔진의 경우에 따라 흡장 주기를 각각 짧게 혹은 길게 가져갈 수 있으며 필요 이상으로 짧게 할 경우 상대적으로 Rich 작동 시간이 길어져서 연료효율(연비)이 낮아지게 되며 필요 이상으로 길게 할 경우 촉매의 NOx 흡장 및 제거효율이 떨어질 수 있다.According to one embodiment of the invention, the period of the cycle of the method can be adjusted in the range of 20 seconds to 30 minutes. This is because a heavy duty engine with high NOx generation and a light duty engine with relatively low NOx generation can have a shorter or longer occlusion cycle, respectively. ) And lower than necessary, the NOx storage and removal efficiency of the catalyst may be reduced.
본 발명의 일구체예에서, 상기 촉매 층을 통과하는 배기가스의 시간당 공간속도 GHSV(Gas Hour Space Velocity)는 바람직하게는 10,000∼200,000h-1이다. GHSV가 10,000h-1 미만이면 처리량에 비해 촉매양이 상대적으로 많은 양을 사용하는 것으로 경제성이 떨어지며, GHSV가 200,000h-1를 초과하면 촉매와의 접촉시간이 짧아 NOx나 N2O의 흡착 효율이 감소할 가능성이 높아지는 외에 배기가스에 의한 부압이 높아져 엔진에 부하가 많이 걸리게 된다.In one embodiment of the invention, the gas hour space velocity (GHSV) of the exhaust gas passing through the catalyst bed is preferably 10,000 to 200,000 h −1 . If the GHSV is less than 10,000 h -1, the amount of catalyst is relatively low compared to the throughput, and if the GHSV is more than 200,000 h -1 , the contact time with the catalyst is short, so the adsorption efficiency of NOx or N 2 O is short. In addition to the possibility of this decrease, the negative pressure caused by the exhaust gas is increased, and the engine is heavily loaded.
한편, 사용되는 엔진에 따라 적용되는 압력이 다를 수 있으나, 상기 촉매 층을 통과하는 기체의 압력은 대기압(1atm) 내지 그 이상이 바람직하며, 압력이 증가할수록 흡착률은 증가하지만 엔진 부하가 높아지지 않도록 유의해야 한다.Meanwhile, although the applied pressure may vary depending on the engine used, the pressure of the gas passing through the catalyst bed is preferably at least 1 atm, and the adsorption rate increases as the pressure increases, but the engine load increases. Be careful not to.
본 발명에 따르면, 상기 촉매 층을 통과하는 기체의 온도는 바람직하게는 200 내지 500℃이다. 촉매 층을 통과하는 기체의 온도가 엔진 시동 초기와 같은 200℃ 미만인 경우 흡착속도 및 환원탈착 반응이 늦어지고, 500℃를 초과하면 촉매와 지지체 등에 열적 손상을 가져오게 되는 문제점이 있다.According to the invention, the temperature of the gas passing through the catalyst bed is preferably between 200 and 500 ° C. If the temperature of the gas passing through the catalyst bed is less than 200 ℃ the same as the initial start of the engine, the adsorption rate and reduction desorption reaction is slow, if the temperature exceeds 500 ℃ there is a problem that causes thermal damage to the catalyst and the support.
이하 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만, 하기 실시예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples, but the scope of the present invention is not limited to the following Examples.
실시예 1.Example 1.
하이드로탈사이트 전구체로부터 제조된 Al:Pd:Co=1:0.05:1의 몰비를 갖는 금속 산화물 촉매 2.746g을 이용하여 온도 300도에서 NO 547ppm, O2 1.54% 함유한 질소가스를 500ml/min(SV 21,000hr-1) 유량으로 30분 통과시키고, CO 4,590ppm 함유한 질소가스를 500ml/min(SV 21,000hr-1) 유량 으로 30분 통과시키는 것을 반복한 결과 91.5%의 NO가 흡착된 후 거의 분해탈착 되었다. 2.746 g of a metal oxide catalyst having a molar ratio of Al: Pd: Co = 1: 0.05: 1 prepared from a hydrotalcite precursor was used for 500 ml / min of nitrogen gas containing 547 ppm of NO and 1.54% of O 2 at a temperature of 300 ° C. SV 21,000hr -1 ) was passed for 30 minutes and the nitrogen gas containing 4,590ppm CO was passed for 30 minutes at 500ml / min (SV 21,000hr -1 ) flow rate. Decomposition and removal.
실시예 2. Example 2.
하이드로탈사이트 전구체로부터 제조된 Al:Pd:Co=1:0.02:1의 몰비를 갖는 금속 산화물 촉매 1.285g을 이용하여 온도 300도에서 NO 270ppm, O2 1.27% 함유한 질소가스를 700ml/min(SV 55,000hr-1) 유량으로 10분 통과시키고, CO 4,400ppm 함유한 질소가스를 700ml/min(SV 55,000hr-1) 유량으로 10분 통과 시키는 것을 반복하였을 때 총 92.2%의 NO가 흡착된 후 거의 분해탈착 되었다.700 ml / min of nitrogen gas containing 270 ppm of NO and 1.27% of O 2 at a temperature of 300 ° C. using 1.285 g of a metal oxide catalyst having a molar ratio of Al: Pd: Co = 1: 0.02: 1 prepared from a hydrotalcite precursor. SV 55,000hr -1 ) 10 minutes at a flow rate, and nitrogen gas containing 4,400ppm CO 10 minutes at 700ml / min (SV 55,000hr -1 ) flow rate is repeated, after a total of 92.2% of NO is adsorbed It was almost decomposed.
실시예 3. Example 3.
하이드로탈사이트 전구체로부터 제조된 Ni:Al:Pd=1:1:0.1의 몰비를 갖는 금속 산화물 촉매 3.71g(V=3mL)을 이용하여 온도 300도에서 NO 461ppm, O2 1.5% 함유한 질소가스를 500ml/min(SV 30,000hr-1) 유량으로 2분 통과시키고, CO 4,000ppm 함유한 질소가스를 500ml/min(SV 30,000hr-1) 유량으로 2분 통과 시키는 것을 반복하였을 때 총 99.0%의 NO가 흡착된 후 거의 분해탈착 되었다. Nitrogen gas containing 461 ppm of NO and 1.5% of O 2 at a temperature of 300 ° C using 3.71 g (V = 3 mL) of a metal oxide catalyst having a molar ratio of Ni: Al: Pd = 1: 1: 0.1 prepared from a hydrotalcite precursor. 2 minutes at 500 ml / min (SV 30,000 hr -1 ) flow rate and nitrogen gas containing 4,000 ppm CO at 2 minutes at 500 ml / min (SV 30,000 hr -1 ) flow rate. After NO was adsorbed, it was almost decomposed.
실시예 4.Example 4.
하이드로탈사이트 전구체로부터 제조된 Al:Pd:Co=1:0.05:1의 몰비를 갖는 금속 산화물 촉매 1.294g을 이용하여 온도 250도에서 NO 252ppm, O2 1.26% 함유한 질소가스를 700ml/min(SV 52,500hr-1) 유량으로 10분 동안 통과시키고, CO 4,600ppm 함유한 질소가스를 700ml/min(SV 52,000hr-1) 유량으로 10분 동안 통과시키는 것을 반복했을 때 총 80.4%의 NO가 흡착된 후 거의 전량 분해탈착 되었다. 700 ml / min of nitrogen gas containing 252 ppm of NO and 1.26% of O 2 at 250 ° C using 1.294 g of a metal oxide catalyst having a molar ratio of Al: Pd: Co = 1: 0.05: 1 prepared from a hydrotalcite precursor. SV 52,500hr -1 ) was passed for 10 minutes and nitrogen gas containing 4,600ppm CO was passed for 10 minutes at 700ml / min (SV 52,000hr -1 ) flow rate. Almost completely decomposed and desorbed.
실시예 5.Example 5.
하이드로탈사이트 전구체로부터 제조된 Al:Pd:Co=1:0.05:1의 몰비를 갖는 금속 산화물 촉매 1.59g을 이용하여 온도 300도에서 10분 동안 NOx 395ppm, O2 1.45%와 나머지 가스의 양은 질소로 하여 총 가스 500ml/min(SV 30,000hr-1)로 흡착시키고, CO 4,000ppm와 나머지 가스의 양은 질소로 하여 총 가스 500ml/min(SV 30,000hr-1) 유량 조건에서 촉매에 분해탈착을 10분씩 반복한 결과 총 96%의 NOx가 흡착된 후 거의 분해탈착 되었다.1.95 g of a metal oxide catalyst having a molar ratio of Al: Pd: Co = 1: 0.05: 1 prepared from a hydrotalcite precursor was used for 3 minutes by weight of NOx 395 ppm, O 2 1.45%, and remaining gas at 300 ° C. for 10 minutes. by the adsorbed gas with a total 500ml / min (SV 30,000hr -1) , CO 4,000ppm and the rest of the amount of gas in the decomposition of nitrogen desorption from the catalyst total gas 500ml / min (SV 30,000hr -1) flow conditions 10 As a result of repeating every minute, 96% of NOx was adsorbed and almost desorbed.
실시예 6.Example 6.
하이드로탈사이트 전구체로부터 제조된 Al:Ni:Co=1:1:1의 몰비를 갖는 금속 산화물 촉매 2.204g을 이용하여 온도 300도에서 NOx 400ppm, O2 1.52% 함유한 질소가스를 500ml/min(SV 30,000hr-1) 유량으로 5분 통과시키고, CO 4500ppm 함유한 질소가스를 500ml/min(SV 30,000hr-1) 유량으로 5분 통과 시키는 것을 반복하였을 때 총 94.5%의 NOx가 흡착된 후 거의 분해탈착 되었다. 2.200 g of a metal oxide catalyst having a molar ratio of Al: Ni: Co = 1: 1: 1 prepared from a hydrotalcite precursor was used for 500 ml / min of nitrogen gas containing 400 ppm of NOx and 1.52% of O 2 at a temperature of 300 ° C. SV 30,000hr -1 ) was passed through for 5 minutes and nitrogen gas containing 4500ppm of CO was passed through 500ml / min (SV 30,000hr -1 ) for 5 minutes. Decomposition and removal.
실시예 7.Example 7.
하이드로탈사이트 전구체로부터 제조된 Al:Ni:Co=1:1:1의 몰비를 갖는 금속 산화물 촉매 2.204g을 이용하여 온도 300도에서 NOx 400ppm, O2 1.52% 함유한 질소가스를 500ml/min(SV 30,000hr-1) 유량으로 2분 통과시키고, CO 4500ppm 함유한 질소가스를 500ml/min(SV 30,000hr-1) 유량으로 2분 통과 시키는 것을 반복하였을 때 총 97.65%의 NOx가 흡착된 후 거의 분해탈착 되었다.2.200 g of a metal oxide catalyst having a molar ratio of Al: Ni: Co = 1: 1: 1 prepared from a hydrotalcite precursor was used for 500 ml / min of nitrogen gas containing 400 ppm of NOx and 1.52% of O 2 at a temperature of 300 ° C. When 2 minutes were passed through the flow rate of SV 30,000hr -1 ), and nitrogen gas containing 4500ppm of CO was passed through the flow rate at 500ml / min (SV 30,000hr -1 ) for 2 minutes, almost 97.65% of NOx was adsorbed. Decomposition and removal.
상기 실시예에서 알수 있듯이 본 발명의 방법을 사용하는 경우, 거의 전량의 질소산화물을 흡착하고, 분해 탈착시킬 수 있었다. 이는 기존 Pt-BaO/Al2O3 촉매의 경우 Lean/Rich(50/10sec) 경우 최대 90% DeNOx 효율을 나타내며 Lean Operation 시간을 2분으로 할 경우 DeNOx 효율 50% 수준인 것과 비교하여 상당히 뛰어난 효과를 보임을 알 수 있다.As can be seen from the above examples, when the method of the present invention was used, almost all of the nitrogen oxides could be adsorbed and desorbed. This shows up to 90% DeNOx efficiency for Lean / Rich (50 / 10sec) for the existing Pt-BaO / Al 2 O 3 catalyst, and is significantly superior to 50% DeNOx efficiency for 2 minutes of Lean Operation time. It can be seen that.
또한, 이는 기존 대표적인 Pt/BaO 촉매의 흡장 능력에서 사이클 타임이 증가할수록 NOx 제거효율이 떨어지는 것과 비교하여 향상된 효과를 보임을 알 수 있다.In addition, it can be seen that the improved efficiency compared to the NOx removal efficiency decreases as the cycle time increases in the storage capacity of the conventional representative Pt / BaO catalyst.
도 1a 및 도 1b에서는 본 발명에 따른 사이클 운전의 예를 도시하고 있다. 상기 사이클의 조건은 Lean/Rich 20min/20min cyclic with AlCoPd(1/1/0.05) cat., GHSV 30000/h, O2: 1.38%, T=250℃ Input NOx: 231ppm였으며, NOx 제거효율은 94%였다.1A and 1B show an example of cycle operation according to the present invention. The cycle conditions were Lean / Rich 20min / 20min cyclic with AlCoPd (1/1 / 0.05) cat., GHSV 30000 / h, O 2 : 1.38%, T = 250 ° C Input NOx: 231ppm, NOx removal efficiency was 94 Was%.
도 2a 및 도 2b에서는 본 발명에 따른 다른 사이클 운전의 예를 도시하고 있다. 상기 사이클의 조건은 Lean/Rich 30min/30min cyclic with AlCoPd(1/1/0.05) cat., flow rate : 500ml/min GHSV: 21000/hr, O2: 1.54%, T=300℃~250℃, Input NOx: 547ppm이었으며, DeNOx 효율은 90% 였다.2A and 2B show an example of another cycle operation according to the present invention. The cycle conditions were Lean / Rich 30min / 30min cyclic with AlCoPd (1/1 / 0.05) cat., Flow rate: 500ml / min GHSV: 21000 / hr, O 2 : 1.54%, T = 300 ° C.-250 ° C., Input NOx was 547 ppm and DeNOx efficiency was 90%.
도 1 내지 2를 참고하면 본 발명에 따른 방법에서는 시간이 흐름에 따른 DeNOx 효율 감소가 크지 않음을 알 수 있다.1 to 2 it can be seen that the method according to the present invention does not have a large decrease in DeNOx efficiency over time.
한편 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형을 할 수 있음은 이 기술 분야에서 통상의 지식을 가진 자에게는 자명하다. 따라서, 그러한 변형예 또는 수정예들 역시 본 발명의 특허청구범위에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited to the described embodiments, it is apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the present invention. Therefore, such modifications or variations should also be seen as belonging to the claims of the present invention.

Claims (11)

  1. 엔진의 희박 연소시 질소산화물을 흡장 및 분해탈착하는 방법에 있어서, In the method for occluding and desorption of nitrogen oxides in lean combustion of the engine,
    i) 하이드로탈사이트(Hydrotalcite)형 또는 브루사이트(brucite)형 화합물 전구체로부터 제조된 혼합 금속 산화물 촉매, 상기 혼합 금속 산화물 촉매에 귀금속이 첨착 또는 층간 결합된 촉매, 또는 상기 혼합 금속 산화물 촉매에 조촉매가 첨가되고 비귀금속이 첨착 또는 층간 결합된 촉매 중 하나 이상을 갖는 촉매층을 제공하는 단계;i) a mixed metal oxide catalyst prepared from a hydrotalcite type or brucite type compound precursor, a catalyst in which a noble metal is impregnated or interlayer bonded to the mixed metal oxide catalyst, or a cocatalyst to the mixed metal oxide catalyst Providing a catalyst layer having at least one of a catalyst to which is added and a non-noble metal is impregnated or interlayer bonded;
    ii) 상기 촉매층에 엔진의 희박 운전 시의 배기가스를 통과시켜 상기 배기가스의 질소산화물을 흡장시키는 단계; ii) passing the exhaust gas during the lean operation of the engine to the catalyst layer to occlude nitrogen oxides of the exhaust gas;
    iii) 상기 단계 이후에, 엔진의 운전을 리치(Rich) 상태로 하여 발생한 배기가스를 상기 촉매층에 통과시키는 단계; 및iii) after the step, passing the exhaust gas generated by operating the engine to a rich state through the catalyst bed; And
    iv) 상기 배기가스 중의 CO 및 HC에 의하여 상기 촉매층에 흡장된 질소산화물을 분해 탈착시키는 단계;iv) decomposing and desorbing the nitrogen oxide stored in the catalyst layer by CO and HC in the exhaust gas;
    를 포함하는 엔진의 배기가스에서 질소산화물을 제거하는 방법.Method for removing nitrogen oxides from the exhaust gas of the engine comprising a.
  2. 청구항 1에 있어서, 상기 방법은 상기 ii) 단계 내지 iv) 단계를 반복하여 실시하는 것을 특징으로 하는 엔진의 배기가스에서 질소산화물을 제거하는 방법. The method of claim 1, wherein the method is performed by repeating steps ii) to iv).
  3. 청구항 1 또는 2에 있어서, 상기 i) 단계에서의 하이드로탈사이트(Hydrotalcite)형 또는 브루사이트(brucite)형 화합물 전구체는 하기 화학식 1로 표현되는 것을 특징으로 하는 엔진의 배기가스에서 질소산화물을 제거하는 방법:The method of claim 1 or 2, wherein the hydrotalcite or brucite compound precursor in step i) is represented by the following formula (1) to remove nitrogen oxides from the exhaust gas of the engine: Way:
    <화학식1><Formula 1>
    [M2+ 1-xN3+ x(OH)2]x+[An- x/n·bH2O], 여기서 M2+ 및 N3+는 각각 금속 양이온으로서, M2+는 Mg2+, Ca2+, Ni2+, Zn2+, Sr2+, Ba2+, Fe2+, Cu2+, Co2+, Pd2+ 및 Mn2+ 중에서 선택되는 2가의 금속 양이온이며, N3+는 Rh3+, Al3+, Mn3+, Fe3+, Co3+, Ni3+, Cr3+, Ga3+, B3+, La3+ 및 Ce3+ 중에서 선택되는 3가의 금속 양이온이고, An-는 -1, -2 또는 -3의 전하를 갖는 CO3 2-, NO3 -, SO4 2-, Cl-, OH-, SiO3 2-, MnO4 2-, HPO3 2-, MnO4 2-, HGaO3 2-, HVO4 2-, ClO4 - 및 BO3 2-으로 이루어진 음이온 화합물로부터 하나 또는 2가지 이상의 조합이 선택되며, x는 0.0 내지 0.5이고, b는 0 내지 20의 정수임.[M 2+ 1-x N 3+ x (OH) 2 ] x + [A n- x / nbH 2 O], where M 2+ and N 3+ are each metal cations and M 2+ is Mg 2 Is a divalent metal cation selected from + , Ca 2+ , Ni 2+ , Zn 2+ , Sr 2+ , Ba 2+ , Fe 2+ , Cu 2+ , Co 2+ , Pd 2+ and Mn 2+ , N 3+ is selected from Rh 3+ , Al 3+ , Mn 3+ , Fe 3+ , Co 3+ , Ni 3+ , Cr 3+ , Ga 3+ , B 3+ , La 3+ and Ce 3+ and trivalent metal cation, a n- is CO 3 2- has a charge of -1, -2 or -3, NO 3 -, SO 4 2-, Cl -, OH -, SiO 3 2-, MnO 4 2 -, HPO 3 2-, MnO 4 2-, HGaO 3 2-, HVO 4 2-, ClO 4 - and a is one or two or more in combination selected from anionic compounds consisting of BO 3 2-, x is 0.0 to 0.5 And b is an integer from 0 to 20.
  4. 청구항 1 또는 2에 있어서, 상기 귀금속은 Mo, Ti, Pt, Au, Ag, Rh, Pa, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Z 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 엔진의 희박 연소시 질소 산화물을 제거하는 방법.The method of claim 1 or 2, wherein the precious metal is Mo, Ti, Pt, Au, Ag, Rh, Pa, La, Ir, V, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Z and their A method for removing nitrogen oxides during lean combustion of an engine, characterized in that it is selected from the group consisting of mixtures.
  5. 청구항 1 또는 2에 있어서, 상기 조촉매는 Na, K, Rb, 및 Cs로 이루어진 군으로부터 선택되며, 상기 비귀금속은 Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, Mg, Ca, Sr, 및 이들의 혼합물로 이루어진 군으로부터 하나 이상 선택되며, 상기 층간결합된 촉매 중 귀금속의 함량은 0.01 내지 20 중량% 인 것을 특징으로 하는 엔진의 희박 연소시 질소 산화물을 제거하는 방법.The method according to claim 1 or 2, wherein the promoter is selected from the group consisting of Na, K, Rb, and Cs, the non-noble metal is Ni, Co, Fe, Mn, Al, Ce, Zr, Cu, Zn, Ba, At least one selected from the group consisting of Mg, Ca, Sr, and mixtures thereof, wherein the content of the noble metal in the interlayered catalyst is 0.01 to 20% by weight. .
  6. 청구항 1 또는 2에 있어서, 상기 ii) 단계는 20초 내지 30분 동안 이루어지는 것을 특징으로 하는 엔진의 배기가스에서 질소산화물을 제거하는 방법.The method of claim 1 or 2, wherein the step ii) is performed for 20 seconds to 30 minutes.
  7. 청구항 1 또는 2에 있어서, 상기 iii) 단계 및 iv) 단계는 5초 내지 10분 동안 이루어지는 것을 특징으로 하는 엔진의 배기가스에서 질소산화물을 제거하는 방법.The method of claim 1 or 2, wherein steps iii) and iv) are performed for 5 seconds to 10 minutes.
  8. 청구항 1 또는 2에 있어서, 상기 방법은 상기 촉매 층을 통과하는 배기가스의 시간당 공간속도 GHSV(Gas Hour Space Velocity)가 10,000∼200,000h-1인 것을 특징으로 하는 엔진의 배기가스에서 질소산화물을 제거하는 방법.The method according to claim 1 or 2, wherein the method removes nitrogen oxides from the exhaust gas of an engine, wherein the gas hour space velocity (GHSV) of the exhaust gas passing through the catalyst bed is 10,000 to 200,000 h −1 . How to.
  9. 청구항 1 또는 2에 있어서, 상기 방법은 상기 촉매 층을 통과하는 기체의 온도가 200 내지 500℃인 것을 특징으로 하는 엔진의 배가가스에서 질소산화물을 제거하는 방법.The method according to claim 1 or 2, wherein the temperature of the gas passing through the catalyst bed is 200 to 500 ° C.
  10. 청구항 6에 있어서, 상기 ii) 단계는 사이클 시간이 20초 내지 30분인 것을 특징으로 하는 엔진의 배기가스에서 질소산화물을 제거하는 방법.The method of claim 6, wherein the step ii) has a cycle time of 20 seconds to 30 minutes.
  11. 청구항 1 또는 2에 있어서, 상기 ii) 단계 내지 iv) 단계는 25초 내지 40분의 싸이클 주기를 가지고 반복 실시되는 것을 특징으로 하는 엔진의 배기가스에서 질소산화물을 제거하는 방법.The method of claim 1 or 2, wherein steps ii) to iv) are repeatedly performed with a cycle period of 25 seconds to 40 minutes.
PCT/KR2010/006714 2009-09-30 2010-09-30 Lean nitrogen oxide breakdown method employing a high-adsorption mixed metal oxide catalyst WO2011040787A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090093424A KR101029642B1 (en) 2009-09-30 2009-09-30 Method for decomposing nitrogen oxides with Mixed Metal Oxide Catalyst
KR10-2009-0093424 2009-09-30

Publications (2)

Publication Number Publication Date
WO2011040787A2 true WO2011040787A2 (en) 2011-04-07
WO2011040787A3 WO2011040787A3 (en) 2011-09-09

Family

ID=43826812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006714 WO2011040787A2 (en) 2009-09-30 2010-09-30 Lean nitrogen oxide breakdown method employing a high-adsorption mixed metal oxide catalyst

Country Status (2)

Country Link
KR (1) KR101029642B1 (en)
WO (1) WO2011040787A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993530A (en) * 2018-08-17 2018-12-14 太原理工大学 A kind of preparation method and application of hydrotalcite NiMnTi catalyst
CN110087771A (en) * 2016-12-19 2019-08-02 Scg化学有限公司 NOx storage and reducing catalyst and preparation method thereof
CN114558580A (en) * 2022-01-25 2022-05-31 晋中学院 Preparation method of hydrotalcite-based CoNiV composite oxide catalyst and application of hydrotalcite-based CoNiV composite oxide catalyst in removal of escaped ammonia

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012688A (en) * 2018-08-17 2018-12-18 太原理工大学 A kind of preparation method and application of houghite base NiMnFe low-temperature denitration catalyst
CN109499568B (en) * 2018-12-31 2022-02-08 天津大学 Diesel vehicle tail gas purification catalyst based on iron-modified hydrotalcite derived oxide and preparation method thereof
KR102618881B1 (en) * 2020-11-18 2023-12-29 고려대학교 산학협력단 Low-temperature NOx adsorbent with improved repeated adsorption performance and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866928B2 (en) * 1996-09-06 1999-03-08 工業技術院長 Catalyst for decomposing nitrous oxide and method for removing nitrous oxide
KR100287050B1 (en) * 1995-11-09 2001-05-02 와다 아끼히로 Method and apparatus for purifying exhaust gas of an engine
KR100654885B1 (en) * 2005-06-01 2006-12-06 장길상 Method for decomposing nitrogen oxides with carbon monoxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407652A (en) * 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals
KR100569084B1 (en) * 2004-08-26 2006-04-07 한국화학연구원 A method for removing nitrogen oxides by using dual catalyst beds
KR100836907B1 (en) 2006-06-23 2008-06-12 희성촉매 주식회사 Transition metal-substituted hydrotalcite catalysts for the removal of nitrogen oxide from the exhaust of diesel engines by the storage-reduction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100287050B1 (en) * 1995-11-09 2001-05-02 와다 아끼히로 Method and apparatus for purifying exhaust gas of an engine
JP2866928B2 (en) * 1996-09-06 1999-03-08 工業技術院長 Catalyst for decomposing nitrous oxide and method for removing nitrous oxide
KR100654885B1 (en) * 2005-06-01 2006-12-06 장길상 Method for decomposing nitrogen oxides with carbon monoxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087771A (en) * 2016-12-19 2019-08-02 Scg化学有限公司 NOx storage and reducing catalyst and preparation method thereof
CN108993530A (en) * 2018-08-17 2018-12-14 太原理工大学 A kind of preparation method and application of hydrotalcite NiMnTi catalyst
CN108993530B (en) * 2018-08-17 2021-05-18 太原理工大学 Preparation method and application of hydrotalcite-based NiMnTi catalyst
CN114558580A (en) * 2022-01-25 2022-05-31 晋中学院 Preparation method of hydrotalcite-based CoNiV composite oxide catalyst and application of hydrotalcite-based CoNiV composite oxide catalyst in removal of escaped ammonia
CN114558580B (en) * 2022-01-25 2023-10-27 晋中学院 Preparation method of hydrotalcite-based CoNiV composite oxide catalyst and escape ammonia removal application

Also Published As

Publication number Publication date
KR101029642B1 (en) 2011-04-15
WO2011040787A3 (en) 2011-09-09
KR20110035621A (en) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2011052920A2 (en) Method for adsorbing and decomposing lean nitrogen oxide using a mixed metal oxide catalyst
US6624113B2 (en) Alkali metal/alkaline earth lean NOx catalyst
US8735318B2 (en) NOx storage and reduction catalyst, preparation method, and NOx removing system
WO2011040787A2 (en) Lean nitrogen oxide breakdown method employing a high-adsorption mixed metal oxide catalyst
JP2015044191A (en) Exhaust system for lean burn ic engine
KR20060069445A (en) Catalyst arrangement and method of purifying the exhaust gas of internal combustion engines operated under lean conditions
WO2009139609A2 (en) Catalyst for removing nox from exhaust gas of lean-burning automobiles or incinerators
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
US20060117736A1 (en) Exhaust system for a diesel engine comprising a nox- trap
EP1634638B1 (en) Process of elimination of exhaust gas emissions
US6407032B1 (en) Poison resistant lean NOx catalyst
US6489259B2 (en) Mixed zeolite NOx catalyst
KR101776730B1 (en) Apparatus of purifying exhaust gas
JP2002143683A (en) Catalyst for purification of exhaust gas and method for manufacturing the same
WO2011052921A2 (en) Method for decomposing lean nitrogen oxide through a parallel arrangement of mixed metal oxide catalysts having highly adsorptive properties
JP4352586B2 (en) Internal combustion engine having exhaust gas purification catalyst
EP2004312B1 (en) High-efficiency catalytic method
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JP2004068717A (en) Method for removing nitrogen oxide in contacting manner and its device
KR20120054445A (en) Perovskite-based catalyst with a layer for trapping sox
JP2003148139A (en) Exhaust emission control device and method for internal combustion engine
WO2012160356A1 (en) NOx REDUCTION CATALYST
JPH11267506A (en) Catalyst for cleaning exhaust gas
JP2007085353A (en) Exhaust emission control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820860

Country of ref document: EP

Kind code of ref document: A2