WO2011040365A1 - 鞍乗り型車両 - Google Patents

鞍乗り型車両 Download PDF

Info

Publication number
WO2011040365A1
WO2011040365A1 PCT/JP2010/066685 JP2010066685W WO2011040365A1 WO 2011040365 A1 WO2011040365 A1 WO 2011040365A1 JP 2010066685 W JP2010066685 W JP 2010066685W WO 2011040365 A1 WO2011040365 A1 WO 2011040365A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
type vehicle
nox
fuel ratio
internal combustion
Prior art date
Application number
PCT/JP2010/066685
Other languages
English (en)
French (fr)
Inventor
伊藤 有
両角 直洋
瀧井 修
祥之 檜垣
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to AP2012006243A priority Critical patent/AP3559A/xx
Publication of WO2011040365A1 publication Critical patent/WO2011040365A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/11Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1028Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/04Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for motorcycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a saddle-ride type vehicle such as a motorcycle, and more particularly to a saddle-ride type vehicle equipped with an internal combustion engine that performs combustion at an air-fuel ratio smaller than a theoretical air-fuel ratio (that is, an air-fuel ratio on the fuel rich side).
  • a three-way catalyst is widely used to purify the combustion gas (exhaust gas) discharged from the engine of an automobile.
  • the three-way catalyst reduces or oxidizes CO (carbon monoxide), HC (hydrocarbon) and NOx (nitrogen oxide) contained in the exhaust gas into water, carbon dioxide and nitrogen.
  • theoretical air-fuel ratio an air-fuel ratio in which fuel and air burn without excess or deficiency. Therefore, a method has been proposed in which the oxygen concentration in the exhaust gas is detected by an oxygen sensor, and the fuel injection amount is feedback controlled so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the detected oxygen concentration.
  • the fuel injection amount is set so that the air-fuel ratio always becomes the stoichiometric air-fuel ratio.
  • a saddle type vehicle such as a motorcycle having a smaller displacement than a four-wheeled vehicle may not be able to obtain a sufficiently high engine output.
  • Patent Document 1 proposes an exhaust gas purification system for an engine that performs combustion at an air-fuel ratio on the fuel rich side.
  • FIG. 15 shows an exhaust gas purification system 200 disclosed in Patent Document 1.
  • the exhaust gas purification system 200 includes an engine 201 and an exhaust pipe 207 connected to an exhaust port of the engine 201.
  • a first catalyst 202A and a second catalyst 202B disposed downstream of the first catalyst 202A are provided in the exhaust pipe 207, and further, the first catalyst 202A in the exhaust pipe 207 is provided.
  • a secondary air introduction pipe 203 for introducing secondary air is connected to a portion between the first catalyst 202B and the second catalyst 202B.
  • the first catalyst 202A and the second catalyst 202B have the same components as, for example, a known three-way catalyst.
  • the engine 201 is operated at an air-fuel ratio on the fuel rich side.
  • the exhaust gas from the engine 201 first comes into contact with the first catalyst 202A. Since the three-way catalyst exhibits a high NOx purification rate at the fuel rich air-fuel ratio, NOx in the exhaust gas is purified to the final required purification rate by the first catalyst 202A. At this time, part of CO and HC in the exhaust gas is also purified.
  • the secondary air introduced from the secondary air introduction pipe 203 is mixed into the exhaust gas that has passed through the first catalyst 202A, and the air-fuel ratio of the exhaust gas shifts to the fuel lean side.
  • the fuel-lean air-fuel ratio exhaust gas contacts the second catalyst 202B unpurified CO and HC in the exhaust gas are purified.
  • the exhaust gas is first brought into contact with the first catalyst 202A in a reducing atmosphere to mainly purify NOx, and then the exhaust gas is brought into contact with the second catalyst 202B in an oxidizing atmosphere to leave the remaining CO. It aims at purifying CO, HC, and NOx in exhaust gas with high efficiency by purifying HC and HC.
  • the air-fuel ratio of the air-fuel mixture supplied to the engine 201 can be made smaller than the stoichiometric air-fuel ratio (that is, set to the fuel rich side). Engine output can be increased and drivability can be improved.
  • the carburetor method is sufficient as a method for creating the air-fuel mixture, which is advantageous in terms of cost compared to the case where the injection method is adopted.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the NOx purification rate in a saddle-ride type vehicle including an internal combustion engine that performs combustion at an air-fuel ratio smaller than the theoretical air-fuel ratio. It is in.
  • a saddle-ride type vehicle includes an internal combustion engine that performs combustion at an air-fuel ratio smaller than a stoichiometric air-fuel ratio, a first catalyst provided in an exhaust path that discharges combustion gas from the internal combustion engine, and the exhaust path In which secondary air is introduced into a portion between the first catalyst and the second catalyst in the exhaust path and a second catalyst provided downstream of the first catalyst.
  • a secondary air introduction device wherein each of the first catalyst and the second catalyst includes a noble metal component including at least one of platinum, rhodium, palladium, and gold, and the second catalyst further includes: An ammonia decomposing component for decomposing ammonia, and the ammonia decomposing component includes iridium and barium.
  • the second catalyst has a first catalyst layer containing the noble metal component and a second catalyst layer provided on the first catalyst layer and containing the ammonia decomposition component.
  • the second catalyst layer has an average thickness of 10 ⁇ m to 100 ⁇ m.
  • the second catalyst has a first region containing the ammonia decomposing component, and a second region located downstream of the first region and containing the noble metal component.
  • the first region has a length of 20 mm or more.
  • the secondary air introduction device introduces blow-by gas leaking from a combustion chamber of the internal combustion engine into a portion of the exhaust path between the first catalyst and the second catalyst. obtain.
  • the secondary air introduction device does not introduce blow-by gas into the exhaust passage for a predetermined period after the cold start of the internal combustion engine.
  • the saddle-ride type vehicle according to the present invention further includes a muffler, and the first catalyst and the second catalyst are disposed in the muffler.
  • the saddle-ride type vehicle includes a first catalyst and a second catalyst provided downstream of the first catalyst in the exhaust path, and further includes a first catalyst in the exhaust path.
  • a secondary air introduction device for introducing secondary air into a portion between the catalyst and the second catalyst is provided.
  • Combustion gas exhaust gas
  • Combustion gas discharged from an internal combustion engine that performs combustion at an air / fuel ratio smaller than the stoichiometric air / fuel ratio first contacts the first catalyst, and then the secondary air introduced by the secondary air introduction device.
  • the second catalyst is contacted after being mixed with air.
  • each of the first catalyst and the second catalyst includes a noble metal component including at least one of platinum, rhodium, palladium, and gold, first, NOx in the exhaust gas, CO, and CO are exhausted by the first catalyst. Part of the HC is purified, and then the remaining CO and HC are purified by the second catalyst. Since the second catalyst of the saddle-ride type vehicle according to the present invention further includes an ammonia decomposing component that decomposes ammonia (NH 3 ), the NH produced by the noble metal component of the first catalyst reducing NOx. 3 can be decomposed, and the production of NOx in the second catalyst can be suppressed. Therefore, according to the present invention, the NOx purification rate can be improved.
  • NH 3 ammonia decomposing component that decomposes ammonia
  • the ammonia decomposition component of the second catalyst contains iridium and barium.
  • the ammonia decomposing component contains iridium
  • the CO and HC purification by the noble metal component and the NH 3 purification by the ammonia decomposing component can be suitably performed in the second catalyst.
  • the ammonia decomposition component contains barium
  • the NOx purification rate can be further improved.
  • the internal combustion engine of the saddle-ride type vehicle according to the present invention performs combustion at an air-fuel ratio smaller than the stoichiometric air-fuel ratio (that is, an air-fuel ratio on the fuel rich side), so a high output is obtained and drivability is improved. Therefore, the saddle-ride type vehicle according to the present invention is excellent in both running performance and environmental performance.
  • the second catalyst preferably has a first catalyst layer containing the noble metal component and a second catalyst layer provided on the first catalyst layer and containing the ammonia decomposition component. Since the second catalyst has such a two-layer structure, the exhaust gas passes through the second catalyst layer containing the ammonia decomposing component before reaching the first catalyst layer containing the noble metal component. Therefore, NOx generation due to the oxidation of NH 3 in the first catalyst layer can be effectively suppressed, and the NOx purification rate can be further improved.
  • the second catalyst layer preferably has an average thickness of 10 ⁇ m to 100 ⁇ m.
  • the second catalyst may include a first region containing the ammonia decomposing component and a second region located on the downstream side in the exhaust path from the first region and containing the noble metal component. That is, the first region and the second region may be arranged in this order from the upstream side in the exhaust path. With such an arrangement, the exhaust gas passes through the first region containing the ammonia decomposing component before reaching the second region containing the noble metal component. Therefore, NOx generation due to the oxidation of NH 3 in the second region can be effectively suppressed, and the NOx purification rate can be further improved.
  • the length of the first region (the length along the gas flow direction in the exhaust path) is preferably 20 mm or more.
  • the secondary air introduction device can introduce blow-by gas leaking from the combustion chamber of the internal combustion engine into the exhaust path together with the secondary air (more specifically, in a portion between the first catalyst and the second catalyst). It is preferable. By mixing the secondary air and blow-by gas, it is possible to further reduce the NOx emission.
  • the secondary air introduction device does not introduce the blow-by gas into the exhaust path for a predetermined period after the cold start (cold start) of the internal combustion engine.
  • the blow-by gas is not introduced immediately after the cold start, that is, before the second catalyst is sufficiently activated, and after the predetermined period has elapsed since the cold start, that is, the second catalyst is sufficiently activated. By introducing the blow-by gas later, the blow-by gas in the second catalyst can be sufficiently burned.
  • the second catalyst contains an ammonia decomposing component, a sufficiently high NOx purification rate can be realized at a lower temperature than in the past. Therefore, since the first catalyst and the second catalyst can be arranged at positions farther away from the conventional internal combustion engine, both the first catalyst and the second catalyst can be arranged in the muffler. . By disposing the first catalyst and the second catalyst in the muffler, heat damage can be prevented. Further, an advantage in appearance can be obtained.
  • the NOx purification rate can be improved in a saddle-ride type vehicle equipped with an internal combustion engine that performs combustion at an air-fuel ratio smaller than the stoichiometric air-fuel ratio.
  • FIG. 1 shows typically the structure of the exhaust-gas purification system with which the saddle-riding type vehicle in suitable embodiment of this invention is provided.
  • (A) is a graph showing the NOx purification rate when barium is added to iridium as a NOx purification catalyst and when it is not added
  • (b) is a graph showing the addition of barium to iridium as an NH 3 purification catalyst. for the case of not adding the case of a graph illustrating the NH 3 purification rate.
  • It is sectional drawing which shows the example of the structure of the 1st catalyst with which the saddle riding type vehicle in suitable embodiment of this invention is provided.
  • (A) And (b) is sectional drawing which shows the example of the structure of the 2nd catalyst with which the saddle-riding type vehicle in suitable embodiment of this invention is provided. It is a figure which shows the example of the structure of the 2nd catalyst with which the saddle riding type vehicle in suitable embodiment of this invention is provided.
  • (A) And (b) is sectional drawing which shows the example of the more concrete structure of the 2nd catalyst shown in FIG. It is a figure which shows typically the structure of the exhaust-gas purification system with which the saddle-riding type vehicle in suitable embodiment of this invention is provided. It is a figure which shows typically the structure of the exhaust-gas purification system with which the saddle-riding type vehicle in suitable embodiment of this invention is provided.
  • FIG. 14 is a view showing an example of a motorcycle provided with the exhaust gas purification system shown in FIG. 1, FIG. 8, FIG. 9 or FIG. It is a figure which shows typically the structure of the conventional exhaust gas purification system.
  • FIG. 1 schematically shows a configuration of an exhaust gas purification system provided in a saddle-ride type vehicle according to the present embodiment.
  • the saddle-ride type vehicle in this embodiment includes an internal combustion engine 1, a first catalyst 2 ⁇ / b> A and a second catalyst 2 ⁇ / b> B, and a secondary air introduction device 3.
  • the internal combustion engine 1 (typically a 4-stroke gasoline engine) 1 performs combustion at an air / fuel ratio smaller than the stoichiometric air / fuel ratio (14.7 in the case of a gasoline engine). By performing combustion at an air-fuel ratio smaller than the stoichiometric air-fuel ratio, that is, at an air-fuel ratio on the fuel rich side, a higher output can be obtained than when combustion is performed at the stoichiometric air-fuel ratio. Typically, combustion is performed at an air fuel ratio of 12.5 or more and 14.5 or less.
  • the internal combustion engine 1 is supplied with an air-fuel mixture from a carburetor (vaporizer) 4 through an intake passage 5a.
  • the intake path 5 a is a space surrounded by the intake pipe 5 connected to the intake port of the internal combustion engine 1, and an air cleaner 6 is provided on the upstream side of the carburetor 4.
  • the first catalyst 2A is provided in the exhaust path 7a for discharging the combustion gas from the internal combustion engine 1, and the second catalyst 2B is provided in the exhaust path 7a on the downstream side of the first catalyst 2A. ing.
  • the exhaust path 7 a is a space surrounded by the exhaust pipe 7 connected to the exhaust port of the internal combustion engine 1.
  • the secondary air introduction device 3 introduces secondary air into a portion 7a 'between the first catalyst 2A and the second catalyst 2B in the exhaust path 7a.
  • the secondary air introduction device 3 includes, for example, a secondary air introduction pipe 3a connected to the exhaust pipe 7, and a reed valve (lead valve) provided between the secondary air introduction pipe 3a and the air cleaner 6 as shown in the figure. valve) 3b.
  • the reed valve 3b functions as a check valve that prevents the backflow of the secondary air supplied from the air cleaner 6 to the secondary air introduction pipe 3a.
  • the secondary air introduction device 3 may be configured to be able to introduce secondary air between the first catalyst 2A and the second catalyst 2B, and the configuration of the secondary air introduction device 3 is illustrated here. It is not limited to what you are doing.
  • a muffler (silencer) 8 for reducing exhaust noise is connected to the downstream end of the exhaust pipe 7.
  • Each of the first catalyst 2A and the second catalyst 2B contains a noble metal component.
  • the noble metal component includes at least one of platinum (Pt), rhodium (Rh), palladium (Pd), and gold (Au).
  • the noble metal components of the first catalyst 2A and the second catalyst 2B are purified by oxidizing or reducing CO, HC, NOx in the combustion gas (exhaust gas) discharged from the internal combustion engine 1.
  • the second catalyst 2B of the exhaust gas purification system in the present embodiment further includes an ammonia decomposition component that decomposes ammonia.
  • the ammonia decomposition component contains iridium (Ir) and barium (Ba). Iridium and barium are contained in the second catalyst 2B as simple substances or compounds. Note that the first catalyst 2A does not contain iridium and barium.
  • the exhaust gas purification system in the present embodiment includes the first catalyst 2A and the second catalyst 2B having the above-described configuration, thereby increasing the exhaust gas from the internal combustion engine 1 that performs combustion at the fuel-rich side air-fuel ratio. It can be purified with efficiency. In particular, the generation of NOx derived from NH 3 can be prevented, and the final NOx purification rate can be improved. Hereinafter, the reason will be specifically described.
  • Table 1 shows reactions in the first catalyst 202A and the second catalyst 202B of the conventional exhaust gas purification system 200.
  • the first catalyst 202A purification of CO, HC and NOx is performed as shown by the equations (1), (2) and (3). Specifically, CO and HC react with H 2 O to generate CO 2 and H 2 , as shown by formulas (1) and (2), respectively. NOx reacts with H 2 to produce NH 3 and H 2 O. Some of the NOx reacts with NH 3 produced by the reaction of formula (3), but is decomposed by the N 2 and H 2 O as shown in equation (4), all of the NH 3 is the reaction Is not consumed. In addition, as shown in the formula (5), only a small amount of NH 3 is decomposed. That is, in the conventional exhaust gas purification system 200, NH 3 is generated during the NOx purification in the upstream first catalyst 202A, and a part thereof is supplied to the second catalyst 202B.
  • the remaining CO and HC are purified as shown in the equations (6) and (7). Specifically, CO and HC are oxidized to produce CO 2 or CO 2 and H 2 O, as shown in equations (6) and (7), respectively. Further, in the second catalyst 202B, as shown in the equation (8), NH 3 is oxidized and NOx is generated.
  • NOx is reduced not only to N 2 but also to NH 3 by the first catalyst 202A, so that NH 3 is oxidized by the second catalyst 202B and NOx is reduced. Will be generated. Therefore, the NOx purification rate cannot be sufficiently increased.
  • Table 2 shows reactions in the first catalyst 2A and the second catalyst 2B of the exhaust gas purification system in the present embodiment.
  • reaction shown in (5) occurs as a side reaction. That is, CO, HC and NOx are purified and NH 3 is generated, and a part of the NH 3 is supplied to the second catalyst 2B.
  • the remaining CO and HC are purified as shown in the equations (6) and (7).
  • the second catalyst 2B of the present embodiment contains an ammonia decomposing component, the produced NH 3 is decomposed by the reaction represented by the formula (9). That is, in the second catalyst 2B of the present embodiment, the ammonia decomposition reaction of the formula (9) occurs as a main reaction. Therefore, the NOx production reaction due to the oxidation of NH 3 as shown in the formula (8) is reduced. Therefore, NOx generation is suppressed.
  • the exhaust gas cleaning system in the present embodiment since NH 3 by the ammonia decomposing component contained in the second catalyst 2B (NH 3 produced by the reduction of NOx) are decomposed, in the second catalyst 2B The generation of NOx is suppressed and the NOx purification rate is improved.
  • the ammonia decomposition component of the second catalyst 2B contains iridium.
  • metal elements that function as catalysts for decomposing ammonia vanadium (V), iron (Fe), copper (Cu), and the like are known, but according to the study of the present inventor, these are used as ammonia decomposing components.
  • V vanadium
  • Fe iron
  • Cu copper
  • the second catalyst 2B the oxidation of NH 3 and CO and HC is performed almost simultaneously in an oxidizing atmosphere.
  • the second catalyst 2B preferably performs the purification of CO and HC by the noble metal component and the purification of NH 3 by the ammonia decomposition component in parallel. Can do.
  • iridium can function as a catalyst for directly purifying NOx, as shown in FIG. 2, the NH 3 purification rate is much higher than the NOx purification rate by iridium. Therefore, rather than using iridium as the NOx purification catalyst, NOx is first purified by the noble metal component of the first catalyst 2A as in the present embodiment, and NH 3 generated by the purification is removed from the second catalyst 2B. By decomposing with an ammonia decomposing component (including iridium), the NOx purification rate in the entire exhaust gas purification system can be increased.
  • the ammonia decomposition component contains barium, the NOx purification rate can be further increased. This effect has been experimentally confirmed as will be described later, and is presumed to be produced for the following reason.
  • Barium contained in the ammonia decomposition component acts to trap NOx (NOx that could not be purified by the first catalyst 2A or NOx produced by oxidation of NH 3 ).
  • NOx NOx that could not be purified by the first catalyst 2A or NOx produced by oxidation of NH 3
  • a reaction in which nitric oxide (NO) is trapped by barium present as barium oxide is represented by the following formula (10). 2BaO + 4NO + 3O 2 ⁇ 2Ba (NO 3 ) 2 (10)
  • NH 3 is purified by a decomposition reaction represented by the following formula (11) using NO trapped by the reaction of the formula (10).
  • the ammonia decomposing component contains barium, that is, by adding barium to the ammonia decomposing component, NH 3 is decomposed using the remaining NOx (or generated from NH 3 ). Therefore, the NOx purification rate can be further increased.
  • iridium can also function as a catalyst for directly purifying NOx.
  • the inventors of the present application confirmed that the effect of improving the purification rate by adding barium was also obtained when iridium was used as the NOx purification catalyst.
  • the effect of improving the purification rate was more remarkable when iridium was used as the NH 3 purification catalyst (ammonia decomposition component) as in this embodiment.
  • FIG. 3A shows an example of the NOx purification rate when barium is added to iridium as the NOx purification catalyst and when it is not added.
  • FIG. 3B shows an example of the NH 3 purification rate when barium is added to iridium as the NH 3 purification catalyst and when it is not added.
  • the abundance ratio of iridium and barium in the ammonia decomposition component is not particularly limited, but is preferably 5: 1 to 1:20 in molar ratio. If the amount of barium added is less than when the molar ratio is 5: 1, a sufficient purification rate improving effect may not be obtained. Moreover, when the addition amount of barium is made larger than the case of molar ratio 1:20, the effect corresponding to the addition amount may not be acquired.
  • the ammonia decomposing component of the second catalyst 2B may contain not only iridium and barium but also other metal elements that function as a catalyst for decomposing ammonia. However, from the viewpoint of suitably decomposing ammonia, it is preferable not to include vanadium, iron, or copper already described.
  • FIGS. 4 and 5 are diagrams schematically showing a cross-sectional structure in the vicinity of the surfaces of the first catalyst 2A and the second catalyst 2B.
  • the first catalyst 2 ⁇ / b> A includes a carrier substrate 11 and a catalyst layer 12 provided on the carrier substrate 11.
  • the carrier substrate 11 is, for example, a honeycomb structure (referred to as a “metal carrier”) formed from metal.
  • the catalyst layer 12 includes the above-described noble metal component.
  • the catalyst layer 12 preferably further includes at least one of alumina, ceria, and zirconia. Alumina, ceria and zirconia preferably function as a support and cocatalyst for the noble metal component.
  • the second catalyst 2B has a carrier base 21 and a catalyst layer 22 provided on the carrier base 21.
  • the carrier substrate 21 is a metal carrier, for example.
  • the catalyst layer 22 includes both the above-described noble metal component and ammonia decomposition component. That is, the catalyst layer 22 contains a precious metal component and an ammonia decomposition component.
  • the catalyst layer 22 preferably further includes at least one of alumina, ceria, and zirconia. Alumina, ceria and zirconia suitably function as a support and a co-catalyst for the ammonia decomposition component including the noble metal component and iridium and barium.
  • the second catalyst 2B is provided on the carrier base 21, the first catalyst layer 23 provided on the carrier base 21, and the first catalyst layer 23. And a second catalyst layer 24.
  • the first catalyst layer 23 includes a noble metal component
  • the second catalyst layer 24 includes an ammonia decomposition component. That is, the first catalyst layer 23 containing a noble metal component (but not containing iridium and barium) and the second catalyst layer 24 containing an ammonia decomposition component are laminated in this order on the support substrate 21.
  • the second catalyst layer 24 is disposed outside the first catalyst layer 23.
  • the first catalyst layer 23 preferably further includes at least one of alumina, ceria, and zirconia.
  • Alumina, ceria and zirconia preferably function as a support and cocatalyst for the noble metal component.
  • the second catalyst layer 24 preferably further contains alumina.
  • Alumina suitably functions as a support and cocatalyst for ammonia decomposition components including iridium and barium.
  • the second catalyst 2B preferably has the structure shown in FIG. 5B rather than the structure shown in FIG. Since the second catalyst 2B has a two-layer structure as shown in FIG. 5B, the exhaust gas contains the ammonia decomposition component before reaching the first catalyst layer 23 containing the noble metal component. Pass through layer 24. Therefore, NOx generation due to the oxidation of NH 3 in the first catalyst layer 23 can be effectively suppressed, and the NOx purification rate can be further improved. If the second catalyst 2B has the structure shown in FIG. 5A, an advantage that the manufacturing process of the second catalyst 2B can be simplified is obtained.
  • the second catalyst 2B may have a structure as shown in FIG.
  • the second catalyst 2B has a first region R1 containing an ammonia decomposition component and a second region R2 located downstream from the first region R1 and containing a noble metal component. That is, the first region R1 and the second region R2 are arranged in this order from the upstream side in the exhaust path 7a.
  • a catalyst layer 25 containing an ammonia decomposing component is provided on the support substrate 21.
  • a catalyst layer 26 containing a noble metal component (but not containing iridium and barium) is provided on the support substrate 21.
  • the exhaust gas passes through the first region R1 containing the ammonia decomposition component before reaching the second region R2 containing the noble metal component. Therefore, NOx production due to oxidation of NH 3 in the second region R2 can be effectively suppressed, so that the NOx purification rate can be further improved.
  • Both the structure shown in FIG. 5B and the structure shown in FIG. 6 are preferable in terms of increasing the NOx purification rate.
  • the heat generated by the oxidation reaction of CO and HC in the first catalyst layer 23 can be used for the decomposition reaction of NH 3 in the second catalyst layer 24. Therefore, there is an advantage that the effect of reducing NOx is high even at a low temperature.
  • the drying and baking after the application of the slurry for forming the catalyst layer is only required once (in the case of the two-layer structure, it is performed twice). The advantage that the cost can be reduced is obtained.
  • the average thickness of the second catalyst layer 24 in the structure shown in FIG. 5B is preferably 10 ⁇ m or more and 100 ⁇ m or less from the viewpoint of more reliably decomposing NH 3 .
  • the length of the first region R1 in the structure shown in FIG. 6 is 20 mm or more from the viewpoint of more reliably decomposing NH 3. It is preferable that
  • blow-by gas (blow-by gas; indicated by BG in the figure) leaking from the combustion chamber of the internal combustion engine 1 is secondary air (SA and SA in the figure) upstream of the reed valve 3b.
  • the secondary air introduction device 3 can introduce the blow-by gas together with the secondary air into the portion 7a 'between the first catalyst 2A and the second catalyst 2B. According to the study of the present inventor, it has been found that the supply of blow-by gas in addition to the secondary air further improves the NOx purification rate of the entire system.
  • the secondary air introduction device 3 does not introduce the blow-by gas into the exhaust path 7a for a predetermined period after the cold start of the internal combustion engine 1 (cold start).
  • the cold start refers to a start in a state where the temperature of the internal combustion engine 1 is equal to or lower than the outside air temperature (when cold).
  • the blow-by gas is not introduced immediately after the cold start, that is, before the second catalyst 2B is sufficiently activated, and after the predetermined period has elapsed since the cold start, that is, the second catalyst 2B is sufficiently activated.
  • the blow-by gas can be sufficiently burned in the second catalyst 2B.
  • An example of a configuration that allows such selective introduction of blow-by gas is shown in FIG.
  • the secondary air introduction device 3 has a blow-by gas switching valve 3 c that switches the introduction destination of the blow-by gas.
  • the blow-by gas switching valve 3c By this blow-by gas switching valve 3c, the blow-by gas is introduced into the intake passage 5a for a predetermined period from the cold start, and the blow-by gas is mixed with the secondary air after the predetermined period.
  • the “predetermined period” during which the blow-by gas is not introduced into the exhaust path 7a is from the cold start until the temperature of the second catalyst 2B reaches the activation temperature or higher (typically 300 ° C. or higher). For example, 20 to 200 seconds.
  • the second catalyst 2B has the structure shown in FIG. 5B in Examples 1 and 4, the structure shown in FIG. 6 in Example 2, and the structure shown in FIG. 5A in Example 3.
  • the catalyst provided on the upstream side of the exhaust path (corresponding to the first catalyst 2A) and the catalyst provided on the downstream side (corresponding to the second catalyst 2B) both contain a noble metal component.
  • the upstream catalyst and the downstream catalyst do not contain ammonia decomposition components (iridium and barium).
  • the downstream catalyst contains iridium but does not contain barium.
  • the calcined product 100 g of ion-exchanged water, 20 g of alumina sol, and 5 g of aluminum nitrate hexahydrate were pulverized with a ball mill for 1 hour (pH is 4.5) to obtain a slurry for the first catalyst layer 23. .
  • a slurry for the second catalyst layer 24 was prepared. Specifically, first, 95 g of ⁇ -alumina and 9.3 g of barium acetate were mixed in 200 g of ion-exchanged water and evaporated to dryness to produce 5% Ba- ⁇ -alumina. To 98 g of this 5% Ba- ⁇ alumina, 200 g of ion exchange water and 2.0 g of iridium nitrate in terms of Ir amount were added and stirred at 40 ° C. for 2 hours to adsorb iridium to 5% Ba- ⁇ alumina. Next, after the said mixture was dried at 120 degreeC for 12 hours, it baked at 600 degreeC for 1 hour.
  • the calcined product 100 g of ion-exchanged water, 20 g of alumina sol, and 5 g of aluminum nitrate hexahydrate were pulverized with a ball mill for 1 hour (pH is 4.5) to obtain a slurry for the second catalyst layer 24. .
  • the coating amount after firing was 100 g / L.
  • the first catalyst layer 23 containing 0.5 g / L of platinum and 1.5 g / L of palladium and having an average thickness of 55 ⁇ m was formed.
  • a slurry for the second catalyst layer 24 was applied on the first catalyst layer 23, dried at 120 ° C, and fired at 600 ° C.
  • the coating amount after firing was 100 g / L.
  • the second catalyst layer 24 containing 2.0 g / L of iridium and 5.0 g / L of barium and having an average thickness of 55 ⁇ m was formed.
  • the first catalyst 2A and the second catalyst 2B produced as described above were attached to the upstream side and the downstream side of the exhaust path 7a, respectively, to produce an exhaust gas purification system having the configuration shown in FIG.
  • Example 2 [First catalyst] A first catalyst 2A was produced in the same manner as in Example 1.
  • a slurry for the catalyst layer 25 in the first region R1 a slurry having the same composition as the slurry for the second catalyst layer 24 of Example 1 was prepared. Further, a slurry having the same composition as the slurry for the first catalyst layer 23 of Example 1 was prepared as the slurry for the catalyst layer 26 in the second region R2.
  • the slurry for the catalyst layer 25 in the first region R1 is applied to the front half of the metal carrier 21 (ie, up to 80 mm from the inlet), and the second region is applied to the rear half of the metal carrier 21 (ie, up to 80 mm from the outlet).
  • the slurry for the catalyst layer 26 of R2 was applied, dried and fired to form the catalyst layers 25 and 26, and the second catalyst 2B was produced.
  • the first catalyst 2A and the second catalyst 2B produced as described above were attached to the upstream side and the downstream side of the exhaust path 7a, respectively, to produce an exhaust gas purification system having the configuration shown in FIG.
  • Example 3 [First catalyst] A first catalyst 2A was produced in the same manner as in Example 1.
  • a metal carrier 21 having the same specifications as the metal carrier 21 for the second catalyst 2B of Example 1 was prepared.
  • a slurry for the catalyst layer 22 was prepared as follows. Specifically, first, 95 g of ⁇ -alumina and 9.3 g of barium acetate were mixed in 200 g of ion-exchanged water and evaporated to dryness to produce 5% Ba- ⁇ -alumina.
  • this calcined product 100 g of ion-exchanged water, 20 g of alumina sol, and 5 g of aluminum nitrate hexahydrate were pulverized with a ball mill for 1 hour (pH is 4.5) to obtain a slurry for the catalyst layer 22.
  • the slurry for the catalyst layer 22 was applied, dried at 120 ° C., and fired at 600 ° C. In this way, a second catalyst 2B was produced.
  • the first catalyst 2A and the second catalyst 2B produced as described above were attached to the upstream side and the downstream side of the exhaust path 7a, respectively, to produce an exhaust gas purification system having the configuration shown in FIG.
  • Example 4 As shown in FIG. 8, the first catalyst 2A and the second catalyst 2B produced by the same method as in Example 1 are attached to the upstream side and the downstream side of the exhaust path 7a, respectively, and blow-by gas is introduced into the exhaust path 7a. An exhaust gas purification system with the above configuration was produced.
  • [Downstream catalyst] A catalyst containing no iridium and barium was produced in the same manner as the second catalyst 2B of Example 1 except that the second catalyst layer 24 was not formed.
  • An exhaust gas purification system was produced using the two catalysts produced as described above.
  • a catalyst containing iridium but not containing barium was prepared in the same manner as the second catalyst 2B of Example 1, except that barium acetate was not added and ⁇ -alumina was used as it was.
  • An exhaust gas purification system was produced using the two catalysts produced as described above.
  • the exhaust gas purification systems of Examples 1 to 4 and Comparative Examples 1 and 2 are attached to a motorcycle with a displacement of 125 cc, and in the EU3 mode, CO (carbon monoxide), THC (total hydrocarbons) and NOx (nitrogen oxides) Emissions were measured.
  • the EU3 mode as shown in FIG. 10, the measurement is performed while periodically changing the vehicle speed as time passes.
  • the exhaust temperature was set to 850 ° C. in advance, and the catalyst was forcibly deteriorated by operating for 6 hours.
  • FIGS. 11A to 11C are graphs showing the CO emission amount (g / km), the THC emission amount (g / km), and the NOx emission amount (g / km), respectively.
  • FIG. 12 is a graph in which the horizontal axis represents the relative ratio of CO emissions (Comparative Example 1 is set to 1), and the vertical axis represents the relative ratio of NOx emissions (Comparative Example 1 is set to 1).
  • the CO emission amount and the THC emission amount are almost the same in Example 1 and Comparative Examples 1 and 2.
  • the NOx emission amount is smaller in Comparative Example 2 than in Comparative Example 1, and is smaller in Example 1. Therefore, it can be seen that the downstream catalyst (second catalyst 2B) contains iridium to reduce the NOx emission amount, and further contains barium to further reduce the NOx emission amount.
  • Example 1 to 4 have less NOx emission than Comparative Example 1. Furthermore, in Examples 1, 2, and 4, the NOx emission amount is smaller than that in Example 3. From this, it can be seen that the structure shown in FIG. 5B or 6 is preferable to the structure shown in FIG. 5A from the viewpoint of increasing the NOx purification rate. In consideration of the amount of CO emission, Examples 1 and 4 are more preferable than Example 2, and it can be seen that the structure shown in FIG. 5B is most excellent in terms of environmental performance. The reason why the structure shown in FIG. 5B is superior to the structure shown in FIG. 6 is that the heat generated by the oxidation reaction of CO and HC in the first catalyst layer 23 in the structure shown in FIG.
  • the two catalyst layers 24 can be used for the decomposition reaction of NH 3 , and CO and HC can be oxidized closer to the internal combustion engine 1 (that is, at a higher temperature) than the structure shown in FIG. Further, in Example 4, the NOx emission amount is smaller than that in Example 1, and it can be seen that the NOx purification rate is further improved by introducing blow-by gas into the exhaust path 7a.
  • the NOx emission amount can be reduced as compared with the prior art.
  • FIG. 1 shows a configuration in which the first catalyst 2A and the second catalyst 2B are arranged upstream of the muffler 8, but as shown in FIG.
  • the second catalyst 2B may be arranged in the muffler 8.
  • the exhaust gas purification system of the present embodiment since the second catalyst 2B contains an ammonia decomposition component, a sufficiently high NOx purification rate can be realized at a lower temperature than in the past. That is, the exhaust gas purification system of the present embodiment can be suitably used even at a lower temperature than in the past.
  • the conventional exhaust gas purification system shown in FIG. 15 can be used at 650 ° C. to 900 ° C.
  • the exhaust gas purification system of this embodiment can be used at 550 ° C. to 900 ° C.
  • the first catalyst 2A and the second catalyst 2B can be disposed at a position away from the internal combustion engine 1 as compared with the conventional case.
  • the first catalyst 202A is arranged at a position 150 to 400 mm away from the engine 201.
  • the first catalyst 2A can be arranged at a position away from the internal combustion engine 1 by 150 mm to 600 mm. Therefore, in the exhaust gas purification system of this embodiment, both the first catalyst 2A and the second catalyst 2B can be arranged in the muffler 8.
  • the periphery of the first catalyst 2A and the second catalyst 2B becomes high temperature due to the reaction heat generated with the purification reaction. As shown in FIG. 13, by disposing the first catalyst 2A and the second catalyst 2B in the muffler 8, it is possible to prevent softening and deterioration (thermal damage) of peripheral parts. Moreover, the advantage of an external appearance (an improvement in design property, etc.) is also obtained.
  • NOx in the combustion gas discharged from the internal combustion engine that performs combustion at an air-fuel ratio smaller than the stoichiometric air-fuel ratio can be purified with high efficiency.
  • FIG. 14 shows a motorcycle 100 equipped with an exhaust gas purification system in the present embodiment.
  • the motorcycle 100 includes an engine 1, an exhaust pipe 7 connected to the exhaust port of the engine 1, and a silencer 8 connected to the exhaust pipe 7.
  • a first catalyst 2A and a second catalyst 2B are provided in the exhaust pipe 7, and the motorcycle 100 further introduces secondary air into the exhaust pipe 7.
  • a secondary air introduction device 3 is also provided.
  • the motorcycle 100 since the engine 1 is operated at an air-fuel ratio on the fuel rich side, a high engine output can be obtained and high drivability can be obtained.
  • the motorcycle 100 since the motorcycle 100 includes the above-described exhaust gas purification system, NOx contained in the exhaust gas from the engine 1 operated at the fuel-rich air-fuel ratio can be purified with high efficiency. Therefore, the motorcycle 100 is excellent in both running performance and environmental performance.
  • 1, 8, 9, and 13 exemplify a configuration in which the carburetor 4 is provided (carburetor method), the motorcycle 100 may have a configuration in which an injector is provided (that is, injection). Mixtures may be created in a manner.)
  • the exhaust gas purification system in the present embodiment is not limited to motorcycles, and can be suitably used for all saddle riding type vehicles on which riders ride. For example, it is also used for ATV such as buggy. Generally, since saddle-ride type vehicles have a small displacement, it is preferable to operate the internal combustion engine at an air-fuel ratio on the fuel rich side, and it is significant to mount the exhaust gas purification system of this embodiment.
  • the NOx purification rate can be improved in a saddle-ride type vehicle equipped with an internal combustion engine that performs combustion at an air-fuel ratio smaller than the stoichiometric air-fuel ratio.
  • the present invention is suitably used for various saddle-ride type vehicles including motorcycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

 本発明による鞍乗り型車両は、理論空燃比よりも小さい空燃比で燃焼を行う内燃機関(1)と、内燃機関(1)から燃焼ガスを排出する排気経路(7a)内に設けられた第1の触媒(2A)と、排気経路(7a)内において第1の触媒(2A)よりも下流側に設けられた第2の触媒(2B)と、排気経路(7a)の、第1の触媒(2A)と第2の触媒(2B)との間の部分(7a')に二次空気を導入する二次空気導入装置(3)とを備える。第1の触媒(2A)および第2の触媒(2B)のそれぞれは、白金、ロジウム、パラジウムおよび金の少なくとも1つを含む貴金属成分を含む。第2の触媒(2B)は、さらに、アンモニアを分解するアンモニア分解成分を含む。アンモニア分解成分は、イリジウムおよびバリウムを含む。本発明によると、理論空燃比よりも小さい空燃比で燃焼を行う内燃機関を備えた鞍乗り型車両において、NOxの浄化率を向上させることができる。

Description

鞍乗り型車両
 本発明は、自動二輪車等の鞍乗り型車両に関し、特に、理論空燃比よりも小さい空燃比(つまり燃料リッチ側の空燃比)で燃焼を行う内燃機関を備えた鞍乗り型車両に関する。
 自動車両のエンジンから排出される燃焼ガス(排気ガス)を浄化するため、三元触媒が広く用いられている。三元触媒は、排気ガスに含まれるCO(一酸化炭素)、HC(炭化水素)およびNOx(窒素酸化物)を水や二酸化炭素、窒素に還元または酸化する。
 三元触媒を用いて効率よく還元・酸化を行うためには、燃料と空気とが過不足なく燃焼する空燃比(「理論空燃比」と呼ばれる。)で燃焼を行うことが好ましい。そのため、排気ガス中の酸素濃度を酸素センサにより検出し、検出した酸素濃度に基づいて空燃比が理論空燃比となるように燃料噴射量をフィードバック制御する方式が提案されている。
 ところが、エンジンは、理論空燃比よりも小さい空燃比(つまり燃料リッチ側の空燃比)で燃焼を行う方が高い出力が得られるので、空燃比が常に理論空燃比となるように燃料噴射量を制御すると、四輪自動車に比べて排気量の小さい自動二輪車等の鞍乗り型車両では、十分に高いエンジン出力を得られないことがある。また、厳密なフィードバック制御を行なうためには、現在自動二輪車に多く用いられているキャブレタ方式ではなく、インジェクション(燃料噴射)方式で混合気を作り出す必要があるので、製造コストが増加してしまう。
 特許文献1には、燃料リッチ側の空燃比で燃焼を行うエンジン用の排気ガス浄化システムが提案されている。図15に、特許文献1に開示されている排気ガス浄化システム200を示す。
 排気ガス浄化システム200は、図15に示すように、エンジン201と、エンジン201の排気ポートに接続された排気管207を備えている。排気管207内には、第1の触媒202Aと、第1の触媒202Aよりも下流側に配置された第2の触媒202Bとが設けられており、さらに、排気管207の第1の触媒202Aと第2の触媒202Bとの間の部分に、二次空気を導入するための二次空気導入管203が接続されている。第1の触媒202Aおよび第2の触媒202Bは、例えば公知の三元触媒と同じ成分を有している。
 この排気ガス浄化システム200では、エンジン201は、燃料リッチ側の空燃比で運転される。エンジン201からの排気ガスは、まず第1の触媒202Aに接触する。三元触媒は、燃料リッチ側の空燃比では高いNOx浄化率を示すため、排気ガス中のNOxは、第1の触媒202Aによって最終所要浄化率まで浄化される。また、このとき、排気ガス中のCOおよびHCの一部も浄化される。
 次に、第1の触媒202Aを通過した排気ガスに、二次空気導入管203から導入された二次空気が混入され、排気ガスの空燃比は燃料リーン側にシフトする。この燃料リーン側の空燃比の排気ガスが第2の触媒202Bに接触することによって、排気ガス中の未浄化のCOおよびHCが浄化される。
 つまり、この方式では、排気ガスをまず還元雰囲気下で第1の触媒202Aと接触させて主にNOxを浄化し、その後排気ガスを酸化雰囲気下で第2の触媒202Bと接触させて残りのCOおよびHCを浄化することにより、排気ガス中のCO、HCおよびNOxを高効率で浄化することを目論んでいる。
 特許文献1の排気ガス浄化システム200によれば、エンジン201に供給される混合気の空燃比を理論空燃比より小さく(つまり燃料リッチ側に設定)できるので、排気量の小さい鞍乗り型車両のエンジン出力を高くでき、ドライバビリティーを向上できる。また、混合気を作り出す方式としてキャブレタ方式で十分であり、インジェクション方式を採用する場合に比べてコストの点で有利である。
国際公開第2004/113696号
 しかしながら、本願発明者が詳細な検討を行ったところ、特許文献1に開示されている方式では、後に詳述するように、第1の触媒202AによってNOxの一部が窒素(N2)ではなくアンモニア(NH3)に還元されてしまうことがわかった。そのため、生成したNH3が第2の触媒202Bによって酸化されてNOxが生成してしまう。従って、実際には、NOxの浄化率を十分に高くすることができない。このような現象は、燃料リッチ側の空燃比で燃焼を行うエンジンから排出される排気ガスを、二次空気を導入しつつ、2つの触媒(二次空気の導入部よりも上流側と下流側とにそれぞれ配置された触媒)で浄化処理する場合に発生する特異なものである。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、理論空燃比よりも小さい空燃比で燃焼を行う内燃機関を備えた鞍乗り型車両において、NOxの浄化率を向上させることにある。
 本発明による鞍乗り型車両は、理論空燃比よりも小さい空燃比で燃焼を行う内燃機関と、前記内燃機関から燃焼ガスを排出する排気経路内に設けられた第1の触媒と、前記排気経路内において前記第1の触媒よりも下流側に設けられた第2の触媒と、前記排気経路の、前記第1の触媒と前記第2の触媒との間の部分に二次空気を導入する二次空気導入装置と、を備え、前記第1の触媒および前記第2の触媒のそれぞれは、白金、ロジウム、パラジウムおよび金の少なくとも1つを含む貴金属成分を含み、前記第2の触媒は、さらに、アンモニアを分解するアンモニア分解成分を含み、前記アンモニア分解成分はイリジウムおよびバリウムを含む。
 ある好適な実施形態において、前記第2の触媒は、前記貴金属成分を含む第1触媒層と、前記第1触媒層上に設けられ、前記アンモニア分解成分を含む第2触媒層と、を有する。
 ある好適な実施形態において、前記第2触媒層は、10μm以上100μm以下の平均厚さを有する。
 ある好適な実施形態において、前記第2の触媒は、前記アンモニア分解成分を含む第1領域と、前記第1領域よりも下流側に位置し、前記貴金属成分を含む第2領域と、を有する。
 ある好適な実施形態において、前記第1領域は、20mm以上の長さを有する。
 ある好適な実施形態において、前記二次空気導入装置は、前記内燃機関の燃焼室から漏れるブローバイガスを、前記排気経路の前記第1の触媒と前記第2の触媒との間の部分に導入し得る。
 ある好適な実施形態において、前記二次空気導入装置は、前記内燃機関の冷間始動から所定の期間、ブローバイガスの前記排気経路への導入を行わない。
 ある好適な実施形態において、本発明による鞍乗り型車両は、マフラをさらに備え、前記第1の触媒および前記第2の触媒は前記マフラ内に配置されている。
 本発明による鞍乗り型車両は、排気経路内に、第1の触媒と、第1の触媒よりも下流側に設けられた第2の触媒とを備えており、さらに、排気経路の第1の触媒と第2の触媒との間の部分に二次空気を導入する二次空気導入装置を備えている。理論空燃比よりも小さい空燃比で燃焼を行う内燃機関から排出された燃焼ガス(排気ガス)は、まず、第1の触媒に接触し、続いて、二次空気導入装置によって導入された二次空気と混合された後に第2の触媒に接触する。第1の触媒および第2の触媒のそれぞれは、白金、ロジウム、パラジウムおよび金の少なくとも1つを含む貴金属成分を含んでいるので、まず、第1の触媒によって排気ガス中のNOxと、COおよびHCの一部が浄化され、続いて、第2の触媒によって残りのCOおよびHCが浄化される。本発明による鞍乗り型車両の第2の触媒は、さらに、アンモニア(NH3)を分解するアンモニア分解成分を含んでいるので、第1の触媒の貴金属成分がNOxを還元することにより生成したNH3を分解することができ、第2の触媒でのNOxの生成を抑制できる。そのため、本発明によれば、NOxの浄化率を向上させ得る。また、第2の触媒のアンモニア分解成分は、イリジウムおよびバリウムを含んでいる。アンモニア分解成分がイリジウムを含んでいることにより、第2の触媒において、貴金属成分によるCOおよびHCの浄化と、アンモニア分解成分によるNH3の浄化とを並行して好適に行うことができる。さらに、アンモニア分解成分がバリウムを含んでいることにより、NOx浄化率のさらなる向上が可能となる。本発明による鞍乗り型車両の内燃機関は、理論空燃比よりも小さい空燃比(つまり燃料リッチ側の空燃比)で燃焼を行うので、高い出力が得られ、ドライバビリティーが向上する。従って、本発明による鞍乗り型車両は、走行性能と環境性能の両方に優れる。
 第2の触媒は、上記貴金属成分を含む第1触媒層と、第1触媒層上に設けられ上記アンモニア分解成分を含む第2触媒層とを有することが好ましい。第2の触媒がこのような2層構造を有することにより、排気ガスは、貴金属成分を含む第1触媒層に到達する前にアンモニア分解成分を含む第2触媒層を通過する。そのため、第1触媒層でNH3が酸化されることによるNOxの生成を効果的に抑制できるので、NOxの浄化率をいっそう向上させ得る。
 NH3の分解をより確実に行う観点からは、第2触媒層は、10μm以上100μm以下の平均厚さを有することが好ましい。
 あるいは、第2の触媒は、上記アンモニア分解成分を含む第1領域と、第1領域よりも排気経路内において下流側に位置し、上記貴金属成分を含む第2領域とを有してもよい。つまり、排気経路内で第1領域および第2領域が上流側からこの順に配置されてもよい。このような配置により、排気ガスは、貴金属成分を含む第2領域に到達する前にアンモニア分解成分を含む第1領域を通過する。そのため、第2領域でNH3が酸化されることによるNOxの生成を効果的に抑制できるので、NOxの浄化率をいっそう向上させ得る。
 NH3の分解をより確実に行う観点からは、第1領域の長さ(排気経路内でのガス流方向に沿った長さ)は、20mm以上であることが好ましい。
 二次空気導入装置は、内燃機関の燃焼室から漏れるブローバイガスを、二次空気とともに排気経路に(より具体的には第1の触媒と第2の触媒との間の部分に)導入し得ることが好ましい。二次空気とブローバイガスとを混合することにより、NOx排出量のさらなる低減を図ることができる。
 また、二次空気導入装置は、内燃機関の冷間始動(コールドスタート)から所定の期間、ブローバイガスの排気経路への導入を行わないことがさらに好ましい。冷間始動直後、つまり、第2の触媒が十分に活性化する前にはブローバイガスの導入を行わず、冷間始動から所定の期間経過後、つまり、第2の触媒が十分に活性化した後にブローバイガスの導入を行うことにより、第2の触媒におけるブローバイガスの燃焼を十分に行うことができる。
 本発明によれば、第2の触媒がアンモニア分解成分を含んでいることにより、従来よりも低温で十分に高いNOx浄化率を実現することができる。そのため、第1の触媒および第2の触媒を、内燃機関から従来よりも離れた位置に配置することができるので、第1の触媒および第2の触媒の両方をマフラ内に配置することができる。第1の触媒および第2の触媒をマフラ内に配置することにより、熱害を防止することができる。また、外観面での利点も得られる。
 本発明によると、理論空燃比よりも小さい空燃比で燃焼を行う内燃機関を備えた鞍乗り型車両において、NOxの浄化率を向上させることができる。
本発明の好適な実施形態における鞍乗り型車両が備える排気ガス浄化システムの構成を模式的に示す図である。 イリジウムによるNOx浄化率およびNH3浄化率を示すグラフである。 (a)は、NOx浄化触媒としてのイリジウムにバリウムを添加した場合と添加しなかった場合とについてNOx浄化率を示すグラフであり、(b)は、NH3浄化触媒としてのイリジウムにバリウムを添加した場合と添加しなかった場合とについてNH3浄化率を示すグラフである。 本発明の好適な実施形態における鞍乗り型車両が備える第1の触媒の構造の例を示す断面図である。 (a)および(b)は、本発明の好適な実施形態における鞍乗り型車両が備える第2の触媒の構造の例を示す断面図である。 本発明の好適な実施形態における鞍乗り型車両が備える第2の触媒の構造の例を示す図である。 (a)および(b)は、図5に示す第2の触媒のより具体的な構造の例を示す断面図である。 本発明の好適な実施形態における鞍乗り型車両が備える排気ガス浄化システムの構成を模式的に示す図である。 本発明の好適な実施形態における鞍乗り型車両が備える排気ガス浄化システムの構成を模式的に示す図である。 EU3モードにおける時間(s)と車両速度(km/h)との関係を示すグラフである。 (a)~(c)は、実施例1、比較例1および2の排気ガス浄化システムについて、CO(一酸化炭素)、THC(全炭化水素)およびNOx(窒素酸化物)の排出量を示すグラフである。 実施例1~4および比較例1の排気ガス浄化システムについて、横軸にCO排出量の相対比をとり、縦軸にNOx排出量の相対比(比較例1を1とする)をとったグラフである。 本発明の好適な実施形態における鞍乗り型車両が備える排気ガス浄化システムの構成を模式的に示す図である。 図1、図8、図9または図13に示す排気ガス浄化システムを備えた自動二輪車の例を示す図である。 従来の排気ガス浄化システムの構成を模式的に示す図である。
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
 図1に、本実施形態における鞍乗り型車両が備える排気ガス浄化システムの構成を模式的に示す。本実施形態における鞍乗り型車両は、図1に示すように、内燃機関1と、第1の触媒2Aおよび第2の触媒2Bと、二次空気導入装置3とを備えている。
 内燃機関(典型的には4ストロークガソリンエンジン)1は、理論空燃比(ガソリンエンジンの場合14.7)よりも小さい空燃比で燃焼を行う。理論空燃比よりも小さい空燃比、すなわち、燃料リッチ側の空燃比で燃焼を行うことにより、理論空燃比で燃焼を行う場合よりも高い出力を得られる。典型的には、12.5以上14.5以下の空燃比で燃焼が行われる。内燃機関1は、キャブレタ(気化器)4から吸気経路5aを介して混合気を供給される。吸気経路5aは、内燃機関1の吸気ポートに接続された吸気管5によって囲まれた空間であり、キャブレタ4の上流側には、エアクリーナ6が設けられている。
 第1の触媒2Aは、内燃機関1から燃焼ガスを排出する排気経路7a内に設けられており、第2の触媒2Bは、排気経路7a内において第1の触媒2Aよりも下流側に設けられている。排気経路7aは、内燃機関1の排気ポートに接続された排気管7によって囲まれた空間である。
 二次空気導入装置3は、排気経路7aの、第1の触媒2Aと第2の触媒2Bとの間の部分7a’に二次空気を導入する。二次空気導入装置3は例えば図示しているように、排気管7に接続された二次空気導入管3aと、二次空気導入管3aとエアクリーナ6との間に設けられたリードバルブ(lead valve)3bとを含んでいる。リードバルブ3bは、エアクリーナ6から二次空気導入管3aに供給される二次空気の逆流を防止する逆止弁として機能する。なお、二次空気導入装置3は、第1の触媒2Aと第2の触媒2Bとの間に二次空気を導入し得る構成であればよく、二次空気導入装置3の構成はここで例示しているものに限定されない。排気管7の下流側端部には、排気音を低減させるためのマフラ(消音器)8が接続されている。
 第1の触媒2Aおよび第2の触媒2Bのそれぞれは、貴金属成分を含んでいる。貴金属成分は、具体的には、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)および金(Au)の少なくとも1つを含む。第1の触媒2Aおよび第2の触媒2Bの貴金属成分は、内燃機関1から排出される燃焼ガス(排気ガス)中のCO、HC、NOxを酸化あるいは還元することによって浄化する。
 本実施形態における排気ガス浄化システムの第2の触媒2Bは、さらに、アンモニアを分解するアンモニア分解成分を含んでいる。アンモニア分解成分は、具体的には、イリジウム(Ir)およびバリウム(Ba)を含んでいる。イリジウムおよびバリウムは、単体または化合物として第2の触媒2Bに含まれている。なお、第1の触媒2Aは、イリジウムおよびバリウムを含んでいない。
 本実施形態における排気ガス浄化システムは、上述した構成を有する第1の触媒2Aおよび第2の触媒2Bを含むことにより、燃料リッチ側の空燃比で燃焼を行う内燃機関1からの排気ガスを高効率で浄化することができる。特に、NH3に由来するNOxの生成を防止でき、最終的なNOx浄化率を向上できる。以下、この理由を具体的に説明する。
 まず、図15に示した従来の排気ガス浄化システム200において、NOxの浄化率を十分に高くできない理由を説明する。表1に、従来の排気ガス浄化システム200の第1の触媒202Aおよび第2の触媒202Bにおける反応を示す。
Figure JPOXMLDOC01-appb-T000001
 第1の触媒202Aでは、式(1)、(2)および(3)で示されているように、CO、HCおよびNOxの浄化が行われる。具体的には、COおよびHCは、式(1)および(2)でそれぞれ示されるように、H2Oと反応してCO2とH2とを生成する。また、NOxは、H2と反応してNH3とH2Oとを生成する。一部のNOxは、式(3)の反応により生成したNH3と反応して、式(4)に示すようにN2とH2Oとに分解されるが、すべてのNH3がこの反応によって消費されるわけではない。また、式(5)に示されるように分解されるNH3もわずかである。つまり、従来の排気ガス浄化システム200では、上流側の第1の触媒202AにおけるNOx浄化の際にNH3が生成され、その一部が第2の触媒202Bに供給されてしまう。
 第2の触媒202Bでは、式(6)および(7)で示されるように、残りのCO、HCの浄化が行われる。具体的には、COおよびHCは、式(6)および(7)でそれぞれ示されるように、酸化されてCO2あるいはCO2とH2Oとを生成する。また、第2の触媒202Bでは、式(8)で示されるように、NH3が酸化されてNOxが生成されてしまう。
 このように、従来の排気ガス浄化システム200では、第1の触媒202AでNOxがN2だけでなくNH3にも還元されてしまうので、NH3が第2の触媒202Bで酸化されてNOxが生成されてしまう。そのため、NOxの浄化率を十分に高くすることができない。
 続いて、本実施形態における排気ガス浄化システムにおいて、NOxの浄化率を向上できる理由を説明する。表2に、本実施形態における排気ガス浄化システムの第1の触媒2Aおよび第2の触媒2Bにおける反応を示す。
Figure JPOXMLDOC01-appb-T000002
 第1の触媒2Aでは、従来の排気ガス浄化システムにおける第1の触媒202Aと同様に、式(1)、(2)および(3)で示される反応が主反応として起こり、式(4)および(5)で示される反応が副反応として起こる。つまり、CO、HCおよびNOxの浄化が行われるとともにNH3が生成され、その一部は第2の触媒2Bに供給される。
 第2の触媒2Bでは、式(6)および(7)で示されるように残りのCO、HCの浄化が行われる。また、本実施形態の第2の触媒2Bはアンモニア分解成分を含んでいるので、生成されたNH3は式(9)で示される反応によって分解される。つまり、本実施形態の第2の触媒2Bでは、式(9)のアンモニア分解反応が主反応として起こる。従って、式(8)に示されるようなNH3の酸化によるNOx生成反応は減少する。そのため、NOxの生成が抑制される。
 このように、本実施形態における排気ガス浄化システムでは、第2の触媒2Bに含まれるアンモニア分解成分によってNH3(NOxの還元によって生成したNH3)が分解されるので、第2の触媒2BにおけるNOxの生成が抑制され、NOxの浄化率が向上する。
 また、本実施形態では、第2の触媒2Bのアンモニア分解成分がイリジウムを含んでいる。アンモニアを分解する触媒として機能する金属元素としては、バナジウム(V)、鉄(Fe)、銅(Cu)などが公知であるが、本願発明者の検討によれば、これらをアンモニア分解成分として用いても、式(6)および(7)で示されるようなCO、HCの浄化を行いつつ、式(9)で示されるようなNH3の分解反応を進めることは困難であることがわかった。第2の触媒2Bでは、酸化雰囲気下でNH3とCOおよびHCの酸化をほぼ同時に行うことになるので、上述したバナジウム、鉄、銅をアンモニア分解成分として用いると、NH3が酸化され過ぎてNOxが発生するか、もしくは、このようなNOxの発生を抑制しようとすると、COやHCの浄化率を十分に高くすることができない。これに対し、アンモニア分解成分がイリジウムを含んでいることにより、第2の触媒2Bにおいて、貴金属成分によるCOおよびHCの浄化と、アンモニア分解成分によるNH3の浄化とを並行して好適に行うことができる。
 なお、イリジウムは、NOxを直接浄化する触媒としても機能し得るが、図2に示すように、イリジウムによるNOx浄化率よりも、NH3浄化率の方がはるかに高い。そのため、イリジウムをNOx浄化触媒として用いるよりも、本実施形態のように、第1の触媒2Aの貴金属成分によってNOxをまず浄化し、その浄化に伴って発生したNH3を第2の触媒2Bのアンモニア分解成分(イリジウムを含む)で分解することにより、排気ガス浄化システム全体でのNOx浄化率を高くすることができる。
 さらに、本実施形態では、アンモニア分解成分がバリウムを含んでいることにより、NOx浄化率をいっそう高くすることができる。この効果は、後に詳述するように実験的に確認されており、以下の理由により奏されると推測される。
 アンモニア分解成分に含まれるバリウムは、NOx(第1の触媒2Aで浄化しきれなかったNOxやNH3の酸化により生成したNOx)をトラップするように作用する。例えば、酸化バリウムとして存在するバリウムによって一酸化窒素(NO)がトラップされる反応は、下記式(10)で示される。
 2BaO+4NO+3O2→2Ba(NO32   ・・・(10)
 このようにしてトラップされたNOxを利用して、NH3の分解反応が進められる。例えば、式(10)の反応によってトラップされたNOを利用して、下記式(11)に示す分解反応によってNH3が浄化される。
 3Ba(NO32+10NH3→3BaO+8N2+15H2O・・・(11)
 上述したように、アンモニア分解成分がバリウムを含んでいる、つまり、アンモニア分解成分にバリウムを添加することにより、残存している(あるいはNH3から生成した)NOxを利用したNH3の分解を行うことができるので、NOx浄化率をいっそう高くすることができる。
 既に述べたように、イリジウムはNOxを直接浄化する触媒としても機能し得る。本願発明者が確認したところ、バリウム添加による浄化率の向上効果は、NOx浄化触媒としてイリジウムを用いる場合にも得られた。ただし、浄化率の向上効果は、本実施形態のようにNH3浄化触媒(アンモニア分解成分)としてイリジウムを用いる場合の方が顕著であった。
 図3(a)に、NOx浄化触媒としてのイリジウムにバリウムを添加した場合と添加しなかった場合とについてのNOx浄化率の例を示す。また、図3(b)に、NH3浄化触媒としてのイリジウムにバリウムを添加した場合と添加しなかった場合とについてのNH3浄化率の例を示す。
 図3(a)に示すように、NOx浄化触媒としてのイリジウムにバリウムを添加すると、約40%の浄化率向上効果が得られる。これに対し、NH3浄化触媒としてのイリジウムにバリウムを添加すると、約60%の浄化率向上効果が得られる。このように、NH3浄化触媒(アンモニア分解成分)としてのイリジウムにバリウムを添加することにより、顕著な効果が得られる。なお、図3(a)および(b)に示されている数値(約40%、約60%という浄化率向上効果)は、ある仕様の試作例についてのものであり、仕様が異なればこれらの絶対値が異なることは言うまでもない。
 アンモニア分解成分中におけるイリジウムとバリウムとの存在比率は特に限定されるものではないが、モル比で5:1~1:20であることが好ましい。バリウムの添加量がモル比5:1の場合よりも少ないと、十分な浄化率向上効果が得られないことがある。また、バリウムの添加量をモル比1:20の場合よりも多くすると、添加量に見合った効果が得られないことがある。
 なお、第2の触媒2Bのアンモニア分解成分は、イリジウムおよびバリウムだけでなく、アンモニアを分解する触媒として機能する他の金属元素を含んでいてもよい。ただし、アンモニアの分解を好適に行う観点からは、既に述べたバナジウム、鉄、銅を含まないことが好ましい。
 続いて、図4および図5を参照しながら、第1の触媒2Aおよび第2の触媒2Bのより具体的な構造の例を説明する。図4および図5は、第1の触媒2Aおよび第2の触媒2Bの表面近傍の断面構造を模式的に示す図である。
 第1の触媒2Aは、図4に示すように、担体基材11と、担体基材11上に設けられた触媒層12とを有する。担体基材11は、例えば、金属から形成されたハニカム構造体(「メタル担体」と呼ばれる。)である。触媒層12は、上述した貴金属成分を含んでいる。触媒層12は、アルミナ、セリアおよびジルコニアの少なくとも1つをさらに含むことが好ましい。アルミナ、セリアおよびジルコニアは、貴金属成分の担体および助触媒として好適に機能する。
 第2の触媒2Bは、図5(a)に示すように、担体基材21と、担体基材21上に設けられた触媒層22とを有する。担体基材21は、例えばメタル担体である。触媒層22は、上述した貴金属成分およびアンモニア分解成分の両方を含んでいる。つまり、触媒層22中には貴金属成分およびアンモニア分解成分が混在している。触媒層22は、アルミナ、セリアおよびジルコニアの少なくとも1つをさらに含むことが好ましい。アルミナ、セリアおよびジルコニアは、貴金属成分とイリジウムおよびバリウムを含むアンモニア分解成分の担体および助触媒として好適に機能する。
 あるいは、第2の触媒2Bは、図5(b)に示すように、担体基材21と、担体基材21上に設けられた第1触媒層23と、第1触媒層23上に設けられた第2触媒層24とを有する。第1触媒層23は、貴金属成分を含んでおり、第2触媒層24は、アンモニア分解成分を含んでいる。つまり、担体基材21上に貴金属成分を含む(ただしイリジウムおよびバリウムを含まない)第1触媒層23とアンモニア分解成分を含む第2触媒層24がこの順で積層されている。さらに言い換えると、第2触媒層24は、第1の触媒層23よりも外側に配置されている。第1触媒層23は、アルミナ、セリアおよびジルコニアの少なくとも1つをさらに含むことが好ましい。アルミナ、セリアおよびジルコニアは、貴金属成分の担体および助触媒として好適に機能する。また、第2触媒層24は、アルミナをさらに含むことが好ましい。アルミナは、イリジウムおよびバリウムを含むアンモニア分解成分の担体および助触媒として好適に機能する。
 NOxの浄化率をより向上させる観点からは、第2の触媒2Bは、図5(a)に示した構造よりも、図5(b)に示した構造を有することが好ましい。第2の触媒2Bが図5(b)に示したような2層構造を有することにより、排気ガスは、貴金属成分を含む第1触媒層23に到達する前にアンモニア分解成分を含む第2触媒層24を通過する。そのため、第1触媒層23でNH3が酸化されることによるNOxの生成を効果的に抑制できるので、NOxの浄化率をいっそう向上させることができる。なお、第2の触媒2Bが図5(a)に示した構造を有していると、第2の触媒2Bの製造プロセスを簡略化できるという利点が得られる。
 また、第2の触媒2Bは、図6に示すような構造を有してもよい。図6に示す構造では、第2の触媒2Bは、アンモニア分解成分を含む第1領域R1と、第1領域R1よりも下流側に位置し、貴金属成分を含む第2領域R2とを有する。つまり、排気経路7a内で第1領域R1および第2領域R2が上流側からこの順に配置されている。第1領域R1では、図7(a)に示すように、担体基材21上にアンモニア分解成分を含む触媒層25が設けられている。第2領域R2では、図7(b)に示すように、担体基材21上に貴金属成分を含む(ただしイリジウムおよびバリウムを含まない)触媒層26が設けられている。図6に示すような配置により、排気ガスは、貴金属成分を含む第2領域R2に到達する前にアンモニア分解成分を含む第1領域R1を通過する。そのため、第2領域R2でNH3が酸化されることによるNOxの生成を効果的に抑制できるので、NOxの浄化率をいっそう向上させ得る。
 図5(b)に示した構造および図6に示した構造は、いずれもNOxの浄化率を高くする点で好ましい。図5(b)に示した構造を採用すると、さらに、第1触媒層23でのCO、HCの酸化反応により発生する熱を第2触媒層24でのNH3の分解反応に用いることができるので、低温でもNOxを低減する効果が高いという利点が得られる。これに対し、図6に示した構造を採用すると、触媒層を形成するためのスラリーの塗布後の乾燥や焼成が1回で済むため(二層構造の場合には2回となる)、製造コストを低減できるという利点が得られる。
 図5(b)に示した構造における第2触媒層24の平均厚さは、NH3の分解をより確実に行う観点からは、10μm以上100μm以下であることが好ましい。また、図6に示した構造における第1の領域R1の長さ(排気経路7a内でのガス流方向に沿った長さ)は、NH3の分解をより確実に行う観点からは、20mm以上であることが好ましい。
 続いて、図8を参照しながら、排気ガス浄化システム全体でのNOx浄化率を向上させ得るさらに好ましい構成を説明する。
 図8に示す構成では、内燃機関1の燃焼室から漏れるブローバイガス(blow-by gas;図中にBGと表記されている)が、リードバルブ3bの上流で二次空気(図中にSAと表記されている)と混合される。従って、二次空気導入装置3は、ブローバイガスを第1の触媒2Aと第2の触媒2Bとの間の部分7a’に二次空気とともに導入することができる。本願発明者の検討によれば、二次空気に加えてブローバイガスを供給することにより、システム全体でのNOx浄化率がさらに向上することがわかった。
 また、二次空気導入装置3は、内燃機関1の冷間始動(コールドスタート)から所定の期間、ブローバイガスの排気経路7aへの導入を行わないことがさらに好ましい。冷間始動とは、内燃機関1の温度が外気温以下の状態(冷間時)での始動を指す。冷間始動直後、つまり、第2の触媒2Bが十分に活性化する前にはブローバイガスの導入を行わず、冷間始動から所定の期間経過後、つまり、第2の触媒2Bが十分に活性化した後にブローバイガスの導入を行うことにより、第2の触媒2Bにおけるブローバイガスの燃焼を十分に行うことができる。ブローバイガスのこのような選択的導入を可能にする構成の例を図9に示す。
 図9に示す構成では、二次空気導入装置3は、ブローバイガスの導入先を切り替えるブローバイガス切替弁3cを有する。このブローバイガス切替弁3cにより、冷間始動から所定の期間は、ブローバイガスは吸気経路5aに導入され、所定の期間経過後は、ブローバイガスは二次空気と混合される。
 なお、ブローバイガスの排気経路7aへの導入を行わない「所定の期間」とは、冷間始動から第2の触媒2Bの温度が活性化温度以上(典型的には300℃以上)になるまでの期間であり、例えば20秒~200秒である。
 次に、本実施形態における排気ガス浄化システムを実際に試作し、その効果を検証した結果を説明する。
 以下の方法により、本実施形態における排気ガス浄化システムを4種類(実施例1~4)と、比較のための排気ガス浄化システム(比較例1、2)とを作製した。第2の触媒2Bは、実施例1、4では図5(b)に示した構造、実施例2では図6に示した構造、実施例3では図5(a)に示した構造を有する。また、比較例1、2では、排気経路の上流側に設けられる触媒(第1の触媒2Aに相当)と下流側に設けられる触媒(第2の触媒2Bに相当)はいずれも貴金属成分を含む。ただし、比較例1では上流側の触媒および下流側の触媒はアンモニア分解成分(イリジウム、バリウム)を含まない。また、比較例2では、下流側の触媒がイリジウムを含むものの、バリウムを含まない。
 (実施例1)
 [第1の触媒]
 直径45mmで長さ60mm、セル数100cpsi(=15.5個/cm2)のメタル担体11を用意し、このメタル担体11に市販の還元触媒材料(Pt=1.0wt%、Rh=0.2wt%、CeO2-ZrO2=30wt%、残部がAl23)を100g/Lでコーティングすることによって触媒層12を形成し、第1の触媒2Aを作製した。第1の触媒2A中の白金、ロジウムの濃度は、Pt=1.0g/L、Rh=0.2g/Lであった。
 [第2の触媒]
 まず、第1触媒層23用のスラリーを調製した。具体的には、まず、イオン交換水200gにγアルミナを70g、セリア-ジルコニア(Ce:Zr=1:1)を30g、ジニトロジアミン白金をPt量換算で0.5g、硝酸パラジウムをPd量換算で1.5g加え、40℃で2時間撹拌(pHは2.0から2.5に変化)した。次に、上記混合物を120℃で12時間乾燥させた後に、600℃で1時間焼成した。続いて、この焼成物と、イオン交換水100g、アルミナゾル20gおよび硝酸アルミニウム六水和物5gとをボールミルで1時間粉砕し(pHは4.5)、第1触媒層23用のスラリーを得た。
 次に、第2触媒層24用のスラリーを調製した。具体的には、まず、イオン交換水200gにγアルミナを95g、酢酸バリウムを9.3g混合し、蒸発乾固させて、5%Ba-γアルミナを作製した。この5%Ba-γアルミナ98gにイオン交換水200gと硝酸イリジウムをIr量換算で2.0g加え、40℃で2時間撹拌することによって、イリジウムを5%Ba-γアルミナに吸着させた。次に、上記混合物を120℃で12時間乾燥させた後に、600℃で1時間焼成した。続いて、この焼成物と、イオン交換水100g、アルミナゾル20gおよび硝酸アルミニウム六水和物5gとをボールミルで1時間粉砕し(pHは4.5)、第2触媒層24用のスラリーを得た。
 続いて、直径54mmで長さ80mm、セル数100cpsi(=15.5個/cm2)のメタル担体21の表面上に、第1触媒層23用のスラリーを塗布し、120℃で乾燥、600℃で焼成を行った。焼成後のコート量は、100g/Lであった。これにより、白金を0.5g/L、パラジウムを1.5g/L含み、平均して55μmの厚さを有する第1触媒層23を形成した。
 次に、第1触媒層23上に、第2触媒層24用のスラリーを塗布し、120℃で乾燥、600℃で焼成を行った。焼成後のコート量は、100g/Lであった。これにより、イリジウムを2.0g/L、バリウムを5.0g/L含み、平均して55μmの厚さを有する第2触媒層24を形成した。このようにして、第2の触媒2Bを作製した。第2の触媒2B中の白金、パラジウム、イリジウム、バリウムの濃度は、Pt=0.5g/L、Pd=1.5g/L、Ir=2.0g/L、Ba=5.0g/Lであった。
 上述したようにして作製した第1の触媒2Aおよび第2の触媒2Bをそれぞれ排気径路7aの上流側および下流側に取り付け、図1に示した構成の排気ガス浄化システムを作製した。
 (実施例2)
 [第1の触媒]
 実施例1と同様にして第1の触媒2Aを作製した。
 [第2の触媒]
 直径54mmで長さ160mm、セル数100cpsi(=15.5個/cm2)のメタル担体21を用意した。第1領域R1の触媒層25用のスラリーとして、実施例1の第2触媒層24用のスラリーと同じ組成のスラリーを調整した。また、第2領域R2の触媒層26用のスラリーとして、実施例1の第1触媒層23用のスラリーと同じ組成のスラリーを調整した。メタル担体21の前半分に(つまり入口から80mmのところまで)第1領域R1の触媒層25用のスラリーを塗布し、メタル担体21の後半分に(つまり出口から80mmのところまで)第2領域R2の触媒層26用のスラリーを塗布し、乾燥、焼成を行って触媒層25、26を形成し、第2の触媒2Bを作製した。第2の触媒2Bの第1領域R1(前半分)におけるイリジウム、バリウムの濃度は、Ir=2.0g/L、Ba=5.0g/Lであり、第2領域R2(後半分)における白金、パラジウムの濃度は、Pt=0.5g/L、Pd=1.5g/Lであった。
 上述したようにして作製した第1の触媒2Aおよび第2の触媒2Bをそれぞれ排気径路7aの上流側および下流側に取り付け、図1に示した構成の排気ガス浄化システムを作製した。
 (実施例3)
 [第1の触媒]
 実施例1と同様にして第1の触媒2Aを作製した。
 [第2の触媒]
 実施例1の第2の触媒2B用のメタル担体21と同じ仕様のメタル担体21を用意した。触媒層22用のスラリーを以下のようにして調製した。具体的には、まず、イオン交換水200gにγアルミナを95g、酢酸バリウムを9.3g混合し、蒸発乾固させて、5%Ba-γアルミナを作製した。この5%Ba-γアルミナ98gにイオン交換水200gと硝酸イリジウムをIr量換算で2.0g加え、さらにジニトロジアミン白金をPt換算で0.5g、硝酸PdをPd換算で1.5g加え、40℃で2時間撹拌することによって、イリジウム等を5%Ba-γアルミナに吸着させた。次に、上記混合物を120℃で12時間乾燥させた後に、600℃で1時間焼成した。続いて、この焼成物と、イオン交換水100g、アルミナゾル20gおよび硝酸アルミニウム六水和物5gとをボールミルで1時間粉砕し(pHは4.5)、触媒層22用のスラリーを得た。触媒層22用のスラリーを塗布し、120℃で乾燥、600℃で焼成を行った。このようにして、第2の触媒2Bを作製した。第2の触媒2B中の白金、パラジウム、イリジウム、バリウムの濃度は、Pt=0.5g/L、Pd=1.5g/L、Ir=2.0g/L、Ba=5.0g/Lであった。
 上述したようにして作製した第1の触媒2Aおよび第2の触媒2Bをそれぞれ排気径路7aの上流側および下流側に取り付け、図1に示した構成の排気ガス浄化システムを作製した。
 (実施例4)
 実施例1と同様の方法により作製した第1の触媒2Aおよび第2の触媒2Bをそれぞれ排気径路7aの上流側および下流側に取り付け、さらにブローバイガスが排気経路7aに導入される図8に示した構成の排気ガス浄化システムを作製した。
 (比較例1)
 [上流側の触媒]
 実施例1の第1の触媒2Aと同様の方法により、排気経路の上流側に設ける触媒を作製した。
 [下流側の触媒]
 第2触媒層24を形成しない点以外は実施例1の第2の触媒2Bと同様にして、イリジウムおよびバリウムを含まない触媒を作製した。触媒中の白金、パラジウムの濃度は、Pt=0.5g/L、Pd=1.5g/Lであった。
 上述したようにして作製した2つの触媒を用いて排気ガス浄化システムを作製した。
 (比較例2)
 [上流側の触媒]
 実施例1の第1の触媒2Aと同様の方法により、排気経路の上流側に設ける触媒を作製した。
 [下流側の触媒]
 酢酸バリウムの添加を行わず、γアルミナをそのまま使用する点以外は実施例1の第2の触媒2Bと同様にして、イリジウムを含むがバリウムを含まない触媒を作製した。触媒中の白金、パラジウム、イリジウムの濃度は、Pt=0.5g/L、Pd=1.5g/L、Ir=2.0g/Lであった。
 上述したようにして作製した2つの触媒を用いて排気ガス浄化システムを作製した。
 (検証結果)
 実施例1~4および比較例1、2の排気ガス浄化システムを排気量125ccの自動二輪車に取り付け、EU3モードでCO(一酸化炭素)、THC(全炭化水素)およびNOx(窒素酸化物)の排出量を測定した。EU3モードでは、図10に示すように、時間の経過とともに車両速度を周期的に変化させながら測定が行われる。また、測定に際し、あらかじめ排気温度を850℃に設定し、6時間運転を行って触媒を強制的に劣化させた。
 実施例1、比較例1および2についての測定結果を図11(a)~(c)に示し、実施例1~4および比較例1についての測定結果を図12に示す。図11(a)~(c)は、それぞれCO排出量(g/km)、THC排出量(g/km)、NOx排出量(g/km)を示すグラフである。図12は、横軸にCO排出量の相対比(比較例1を1とする)をとり、縦軸にNOx排出量の相対比(比較例1を1とする)をとったグラフである。
 図11(a)および(b)に示されているように、CO排出量やTHC排出量については、実施例1と、比較例1および2とでほぼ同じである。これに対し、図11(c)に示されているように、NOx排出量については、比較例1よりも比較例2の方が少なく、実施例1の方がさらに少ない。従って、下流側の触媒(第2の触媒2B)がイリジウムを含むことによりNOx排出量が低減され、さらにバリウムを含むことによりNOx排出量がいっそう低減されることがわかる。
 また、図12に示されているように、実施例1~4ではすべて、比較例1よりもNOx排出量が少ない。さらに、実施例1、2および4では、実施例3よりもさらにNOx排出量が少ない。このことから、NOx浄化率を高くする点からは、図5(a)に示した構造よりも図5(b)または図6に示した構造が好ましいことがわかる。また、CO排出量なども考慮すると、実施例2よりも実施例1および4がさらに好ましく、図5(b)に示した構造が環境性能の点でもっとも優れていることがわかる。図5(b)に示す構造が図6に示す構造よりも優れている理由は、図5(b)に示す構造では第1触媒層23でのCO、HCの酸化反応により発生する熱を第2触媒層24でのNH3の分解反応に使用できることと、CO、HCの酸化を図6に示す構造よりも内燃機関1の近くで(つまり高温で)行い得ることにある。また、実施例4では実施例1よりもさらにNOx排出量が少ないことから、ブローバイガスの排気経路7aへの導入により、NOx浄化率がいっそう向上していることがわかる。
 このように、本実施形態における排気ガス浄化システムによれば、NOx排出量を従来よりも少なくすることができる。
 なお、図1には、第1の触媒2Aおよび第2の触媒2Bがマフラ8よりも上流側に配置されている構成を示しているが、図13に示すように、第1の触媒2Aおよび第2の触媒2Bをマフラ8内に配置してもよい。本実施形態の排気ガス浄化システムでは、第2の触媒2Bがアンモニア分解成分を含んでいることにより、従来よりも低温で十分に高いNOx浄化率を実現することができる。つまり、本実施形態の排気ガス浄化システムは、従来より低い温度でも好適に使用できる。例えば、図15に示した従来の排気ガス浄化システムが650℃~900℃で使用できるのに対し、本実施形態の排気ガス浄化システムは、550℃~900℃で使用できる。
 そのため、第1の触媒2Aおよび第2の触媒2Bを、内燃機関1から従来よりも離れた位置に配置することができる。例えば、図15に示した従来の排気ガス浄化システムでは、第1の触媒202Aがエンジン201から150mm~400mm離れた位置に配置される。これに対し、本実施形態の排気ガス浄化システムでは、第1の触媒2Aは内燃機関1から150mm~600mm離れた位置に配置され得る。そのため、本実施形態の排気ガス浄化システムでは、第1の触媒2Aおよび第2の触媒2Bの両方をマフラ8内に配置することができる。
 第1の触媒2Aおよび第2の触媒2Bの周辺は、浄化反応に伴って発生する反応熱により高温となる。図13に示すように、第1の触媒2Aおよび第2の触媒2Bをマフラ8内に配置することにより、周辺部品の軟化や劣化(熱害)を防止することができる。また、外観面の利点(意匠性の向上など)も得られる。
 上述したように、本実施形態の排気ガス浄化システムによれば、理論空燃比よりも小さい空燃比で燃焼を行う内燃機関から排出される燃焼ガス中のNOxを高効率で浄化することができる。
 本実施形態における排気ガス浄化システムは、NOx浄化性能に優れているので、自動二輪車に好適に用いられる。図14に、本実施形態における排気ガス浄化システムを備えた自動二輪車100を示す。自動二輪車100は、エンジン1と、エンジン1の排気ポートに接続された排気管7と、排気管7に接続された消音器8とを備えている。排気管7内には、図示していないが、第1の触媒2A、第2の触媒2Bが設けられており、自動二輪車100は、さらに、排気管7内に二次空気を導入するための二次空気導入装置3も備えている。
 自動二輪車100では、燃料リッチ側の空燃比でエンジン1が運転されるので、高いエンジン出力が得られ、高いドライバビリティーが得られる。また、自動二輪車100は、上述した排気ガス浄化システムを備えているので、燃料リッチ側の空燃比で運転されるエンジン1からの排気ガスに含まれるNOxを高効率で浄化できる。そのため、自動二輪車100は、走行性能と環境性能の両方に優れる。
 なお、図1、図8、図9および図13には、キャブレタ4が設けられる構成(キャブレタ方式)を例示したが、自動二輪車100は、インジェクタが設けられる構成を有してもよい(つまりインジェクション方式で混合気を作り出してもよい。)。
 また、本実施形態における排気ガス浄化システムは、自動二輪車に限定されず、ライダーが跨って乗る鞍乗り型車両全般に好適に用いられる。例えば、バギーなどのATVにも用いられる。一般に、鞍乗り型車両は排気量が小さいので、内燃機関を燃料リッチ側の空燃比で運転することが好ましく、本実施形態の排気ガス浄化システムを搭載する意義が大きい。
 本発明によると、理論空燃比よりも小さい空燃比で燃焼を行う内燃機関を備えた鞍乗り型車両において、NOxの浄化率を向上させることができる。本発明は、自動二輪車をはじめとする各種の鞍乗り型車両に好適に用いられる。
 1  内燃機関
 2A  第1の触媒
 2B  第2の触媒
 3  二次空気導入装置
 3a  二次空気導入管
 3b  リードバルブ
 3c  ブローバイガス切替弁
 4  キャブレタ
 5  吸気管
 5a  吸気経路
 6  エアクリーナ
 7  排気管
 7a  排気経路
 8  消音器
 11、21 担体基材
 12、22、25、26  触媒層
 23  第1触媒層
 24  第2触媒層
 R1 第2の触媒の第1領域
 R2 第2の触媒の第2領域
 100  自動二輪車

Claims (8)

  1.  理論空燃比よりも小さい空燃比で燃焼を行う内燃機関と、
     前記内燃機関から燃焼ガスを排出する排気経路内に設けられた第1の触媒と、
     前記排気経路内において前記第1の触媒よりも下流側に設けられた第2の触媒と、
     前記排気経路の、前記第1の触媒と前記第2の触媒との間の部分に二次空気を導入する二次空気導入装置と、を備え、
     前記第1の触媒および前記第2の触媒のそれぞれは、白金、ロジウム、パラジウムおよび金の少なくとも1つを含む貴金属成分を含み、
     前記第2の触媒は、さらに、アンモニアを分解するアンモニア分解成分を含み、
     前記アンモニア分解成分はイリジウムおよびバリウムを含む、鞍乗り型車両。
  2.  前記第2の触媒は、
     前記貴金属成分を含む第1触媒層と、
     前記第1触媒層上に設けられ、前記アンモニア分解成分を含む第2触媒層と、を有する請求項1に記載の鞍乗り型車両。
  3.  前記第2触媒層は、10μm以上100μm以下の平均厚さを有する請求項2に記載の鞍乗り型車両。
  4.  前記第2の触媒は、
     前記アンモニア分解成分を含む第1領域と、
     前記第1領域よりも下流側に位置し、前記貴金属成分を含む第2領域と、を有する請求項1に記載の鞍乗り型車両。
  5.  前記第1領域は、20mm以上の長さを有する請求項4に記載の鞍乗り型車両。
  6.  前記二次空気導入装置は、前記内燃機関の燃焼室から漏れるブローバイガスを、前記排気経路の前記第1の触媒と前記第2の触媒との間の部分に導入し得る請求項1から5のいずれかに記載の鞍乗り型車両。
  7.  前記二次空気導入装置は、前記内燃機関の冷間始動から所定の期間、ブローバイガスの前記排気経路への導入を行わない請求項6に記載の鞍乗り型車両。
  8.  マフラをさらに備え、
     前記第1の触媒および前記第2の触媒は前記マフラ内に配置されている請求項1から7のいずれかに記載の鞍乗り型車両。
PCT/JP2010/066685 2009-10-01 2010-09-27 鞍乗り型車両 WO2011040365A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AP2012006243A AP3559A (en) 2009-10-01 2010-09-27 Saddle type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009229714 2009-10-01
JP2009-229714 2009-10-01

Publications (1)

Publication Number Publication Date
WO2011040365A1 true WO2011040365A1 (ja) 2011-04-07

Family

ID=43826180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066685 WO2011040365A1 (ja) 2009-10-01 2010-09-27 鞍乗り型車両

Country Status (2)

Country Link
AP (1) AP3559A (ja)
WO (1) WO2011040365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700293A (zh) * 2016-07-04 2018-10-23 中外炉工业株式会社 工业炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162564A (ja) * 1997-08-08 1999-03-05 Yamaha Motor Co Ltd 内燃機関
JP2001173437A (ja) * 1999-12-17 2001-06-26 Denso Corp 内燃機関の排ガス浄化装置
JP2004283692A (ja) * 2003-03-20 2004-10-14 Cataler Corp 排ガス浄化用触媒システム
WO2008036908A2 (en) * 2006-09-21 2008-03-27 Basf Catalysts Llc Treatment systems and methods for internal combustion engine exhaust streams
WO2009041028A1 (ja) * 2007-09-27 2009-04-02 Yamaha Hatsudoki Kabushiki Kaisha 鞍乗り型車両
JP2010101310A (ja) * 2008-09-26 2010-05-06 Yamaha Motor Co Ltd 鞍乗り型車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162564A (ja) * 1997-08-08 1999-03-05 Yamaha Motor Co Ltd 内燃機関
JP2001173437A (ja) * 1999-12-17 2001-06-26 Denso Corp 内燃機関の排ガス浄化装置
JP2004283692A (ja) * 2003-03-20 2004-10-14 Cataler Corp 排ガス浄化用触媒システム
WO2008036908A2 (en) * 2006-09-21 2008-03-27 Basf Catalysts Llc Treatment systems and methods for internal combustion engine exhaust streams
WO2009041028A1 (ja) * 2007-09-27 2009-04-02 Yamaha Hatsudoki Kabushiki Kaisha 鞍乗り型車両
JP2010101310A (ja) * 2008-09-26 2010-05-06 Yamaha Motor Co Ltd 鞍乗り型車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700293A (zh) * 2016-07-04 2018-10-23 中外炉工业株式会社 工业炉
CN108700293B (zh) * 2016-07-04 2020-05-22 中外炉工业株式会社 工业炉

Also Published As

Publication number Publication date
AP3559A (en) 2016-01-19
AP2012006243A0 (en) 2012-04-30

Similar Documents

Publication Publication Date Title
US9527031B2 (en) Exhaust system for a lean burn IC engine
KR100451075B1 (ko) 배기가스 정화 촉매
US9764286B2 (en) Zoned catalyst system for reducing N2O emissions
US11732631B2 (en) Exhaust gas purification system for a gasoline engine
US12104514B2 (en) Exhaust gas purification system for a gasoline engine
US11614015B2 (en) Exhaust gas purification system for a gasoline engine
US11377993B2 (en) Exhaust gas purification system for a gasoline engine
US11859526B2 (en) Exhaust gas purification system for a gasoline engine
US11547969B2 (en) Exhaust gas purification system for a gasoline engine
US11649753B2 (en) Exhaust gas purification system for a gasoline engine
KR20130038211A (ko) NOx 저장 촉매 및 촉매화된 매연 필터를 포함하는 배기 시스템
JP2010101310A (ja) 鞍乗り型車両
JP2010229817A (ja) 鞍乗り型車両
EP1536111B1 (en) Apparatus and method for removal of by-products from exhaust gases of a combustion engine
KR20200134608A (ko) 배기가스 후처리 장치
WO2011040365A1 (ja) 鞍乗り型車両
TW200925394A (en) Straddle-type vehicle
JP2001140630A (ja) 内燃機関の排ガス浄化装置
JPH10128122A (ja) 排ガス浄化用触媒及び排ガス浄化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820480

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP