WO2011040258A1 - 無線通信システム、通信装置、無線通信方法および端末装置 - Google Patents

無線通信システム、通信装置、無線通信方法および端末装置 Download PDF

Info

Publication number
WO2011040258A1
WO2011040258A1 PCT/JP2010/066085 JP2010066085W WO2011040258A1 WO 2011040258 A1 WO2011040258 A1 WO 2011040258A1 JP 2010066085 W JP2010066085 W JP 2010066085W WO 2011040258 A1 WO2011040258 A1 WO 2011040258A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
feedback information
transmission
path condition
antenna port
Prior art date
Application number
PCT/JP2010/066085
Other languages
English (en)
French (fr)
Inventor
寿之 示沢
智造 野上
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080043893.8A priority Critical patent/CN102577486B/zh
Priority to MX2012003828A priority patent/MX2012003828A/es
Priority to EP10820377.9A priority patent/EP2485522A4/en
Priority to BR112012007539-0A priority patent/BR112012007539B1/pt
Priority to EA201270493A priority patent/EA026041B1/ru
Publication of WO2011040258A1 publication Critical patent/WO2011040258A1/ja
Priority to US13/436,330 priority patent/US9681322B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a technique for performing adaptive control, and more particularly, to a wireless communication system, a communication apparatus, a wireless communication method, and a terminal apparatus that can efficiently perform adaptive control regarding a feedback method of a transmission path condition.
  • a base station and a mobile terminal are provided with a plurality of transmission / reception antennas, respectively. Data transmission can be realized.
  • the mobile terminal estimates the channel condition between the base station and the mobile terminal, and based on the estimation result, the modulation scheme and the coding rate (MCS ( Modulation (and Coding (Scheme)), spatial multiplexing number (layer, rank), precoding weight (precoding matrix), etc. can be adaptively controlled to realize more efficient data transmission.
  • MCS Modulation (and Coding (Scheme)
  • MCS Modulation (and Coding (Scheme)
  • spatial multiplexing number layer, rank
  • precoding weight precoding matrix
  • a reference signal for measuring a channel condition specific to a base station is a frequency. It is possible to use a reference signal scattered (scattered) in resource elements in the direction and time direction (elements composed of one subcarrier in one OFDM symbol).
  • transmission path condition measurement reference signal information based on transmission path conditions (explicit CSI (Channel State Information)), recommended transmission format information for base stations (implicit CSI (for example, , CQI (Channel Quality Indicator), RI (Rank Index), PMI (Precoding Matrix Index), etc.) can be used.
  • Non-Patent Document 2 and Non-Patent Document 3 methods for reducing the amount of information of explicit CSI have been studied. For example, eigenvalue decomposition, orthogonal transformation such as DCT (Discrete Cosine Transform), vector, etc. Techniques using quantization and the like are being studied.
  • DCT Discrete Cosine Transform
  • the present invention has been made in view of such circumstances, and provides a wireless communication system, a communication device, a wireless communication method, and a terminal device that can perform adaptive control efficiently even when there are many transmission / reception antennas. For the purpose.
  • the wireless communication system of the present invention is a wireless communication system in which a first communication device and a second communication device perform wireless communication, and the first communication device is transmitted by the second communication device.
  • a transmission path condition measurement reference signal generator for generating a transmission path condition measurement reference signal for measuring a path condition; and the transmission path condition measurement reference signal for each transmission antenna port to the second communication device.
  • a transmission antenna unit that transmits the received signal, and the second communication device receives the channel state measurement reference signal transmitted from the first communication device at a reception antenna port; and Based on the received transmission path status measurement reference signal, the transmission path status estimated value is calculated by measuring the transmission path status between the transmission antenna port and the reception antenna port, and a plurality of the transmission path status estimation values It is characterized by and a feedback information generating section that generates feedback information for the first communication device performs a grouping for.
  • the second communication device performs grouping on a plurality of transmission path state estimation values and generates feedback information for the first communication device, so that the amount of feedback information can be significantly reduced. it can. Further, for example, from the viewpoint of a power amplifier, in a system that outputs signals from all the transmission antenna ports in the first communication device, the first communication device to the second communication device without stopping a part of them. Data transmission to can be realized.
  • the wireless communication system includes a plurality of first communication devices that perform cooperative communication with the second communication device, and the feedback information generation unit includes the first communication device of each of the first communication devices. Measure the transmission path condition between the transmitting antenna port and the receiving antenna port to calculate a transmission path condition estimated value, perform grouping on at least two transmission path condition estimated values, and generate feedback information It is characterized by.
  • the second communication apparatus measures the transmission path condition between the transmission antenna port and the reception antenna port of each first communication apparatus, calculates the transmission path condition estimated value, and obtains at least two transmission paths. Since grouping is performed on the situation estimation value and feedback information is generated, the second communication device located between the first communication devices can greatly reduce the influence of inter-channel interference. Furthermore, the amount of feedback information can be greatly reduced.
  • the feedback information generation unit generates information indicating the measured transmission path condition as the feedback information.
  • the second communication device generates information indicating the measured transmission path status as feedback information, and therefore greatly increases the amount of information (explicit CSI (Channel ⁇ ⁇ ⁇ State Information)) based on the transmission path status. Can be reduced.
  • the feedback information generation unit generates recommended transmission format information for the first communication device as the feedback information.
  • the second communication device generates the recommended transmission format information for the first communication device as feedback information. Therefore, the recommended transmission format information for the first communication device (implicit CSI (for example, CQI (Channel The amount of information such as Quality (Indicator), RI (Rank Indicator), PMI (Precoding Matrix Index), etc.) can be greatly reduced.
  • CSI for example, CQI (Channel The amount of information such as Quality (Indicator), RI (Rank Indicator), PMI (Precoding Matrix Index), etc.
  • the feedback information generation unit generates feedback information by performing grouping with respect to a preliminarily defined transmission path condition estimated value.
  • the second communication apparatus generates feedback information by performing grouping on the pre-defined transmission path condition estimated value, and thus the amount of feedback information can be greatly reduced.
  • the first communication device to the second communication device without stopping a part of them. Data transmission to can be realized.
  • the feedback information generation unit selects a transmission path condition estimated value for grouping from all the calculated transmission path condition estimated values, and the selected transmission path condition It is characterized in that feedback information is generated by grouping the estimated values.
  • the second communication apparatus selects a transmission path condition estimation value to be grouped from all the calculated transmission path condition estimation values, and performs grouping on the selected transmission path condition estimation value.
  • Feedback information can be flexibly transmitted according to road conditions.
  • the feedback information generation unit further generates information indicating the selected transmission path condition estimated value as the feedback information.
  • the second communication device further generates information indicating the selected transmission path state estimated value as feedback information, so that the first communication device performs the transmission antenna port and the reception antenna port that have undergone the combining process. Can be grasped.
  • the feedback information generation unit performs grouping on the transmission path state estimated value based on a codeword unit.
  • the second communication device since the second communication device performs grouping on the transmission path state estimated value based on the codeword unit, it is possible to synthesize antenna ports that output the same codeword.
  • the feedback information generation unit performs grouping on the transmission path state estimated value based on at least one configuration of the transmission antenna unit or the reception antenna unit. It is characterized by that.
  • the second communication apparatus performs grouping on the transmission path state estimated value based on the configuration of at least one of the transmission antenna unit and the reception antenna unit, and therefore, the antenna port is set according to the characteristics of the antenna port. It can be combined.
  • the feedback information generation unit performs grouping on the transmission path state estimated value based on an antenna correlation between the transmission antenna unit and the reception antenna unit. It is characterized by.
  • the second communication apparatus performs grouping on the transmission path state estimation value based on the antenna correlation between the transmission antenna unit and the reception antenna unit. For example, the antenna port having a high antenna correlation of the transmission antenna Can be synthesized.
  • the feedback information generation unit performs grouping on the transmission path condition estimated value based on polarization of at least one of the transmission antenna unit or the reception antenna unit. It is characterized by doing.
  • the second communication device performs grouping on the transmission path state estimation value based on the polarization of at least one of the transmission antenna unit and the reception antenna unit.
  • the same antenna port can be combined.
  • the feedback information generation unit is configured to estimate the transmission path condition based on a spatial multiplexing number used by the first communication device for the second communication device. Is characterized by grouping.
  • the second communication device performs grouping on the transmission path state estimation value based on the spatial multiplexing number used by the first communication device for the second communication device. Then, the combining process can be performed so that the number of feedbacks to the transmission antenna port after this is the same as the spatial multiplexing number determined by the first communication device or the second communication device.
  • the feedback information generation unit defines a plurality of combined patterns when grouping the transmission path estimation values, and based on any of the combined patterns The transmission path condition estimated value is grouped.
  • the second communication apparatus defines a plurality of combined patterns when grouping the transmission path estimation values, and groups the transmission path status estimation values based on one of the combination patterns. Therefore, the composition process can be performed dynamically and good characteristics can be realized.
  • the feedback information generation unit includes a parameter related to a time axis, a parameter related to a frequency axis, a parameter related to the first communication device, or a parameter related to the second communication device.
  • the composite pattern is selected based on at least one parameter.
  • the second communication device determines the composite pattern based on at least one parameter among the parameter related to the time axis, the parameter related to the frequency axis, the parameter related to the first communication device, or the parameter related to the second communication device. Since the selection is made, there is no need to notify or feed back information relating to the synthesis pattern to be used, and overhead relating to the information can be reduced.
  • the communication device is a communication device that performs wireless communication with another communication device, and receives a reference signal for transmission path condition measurement transmitted from a transmission antenna port of the other communication device as a reception antenna. Based on the reception antenna unit received at the port and the received reference signal for transmission path condition measurement, the transmission path condition is calculated by measuring the transmission path condition between the transmission antenna port and the reception antenna port. And a feedback information generation unit configured to group the plurality of transmission path state estimated values and generate feedback information for the other communication device.
  • the communication device performs grouping on a plurality of transmission path state estimation values and generates feedback information for other communication devices, so that the amount of feedback information can be greatly reduced. Also, for example, from the viewpoint of a power amplifier, in a system that outputs signals from all of the transmission antenna ports in another communication device, data transmission from the other communication device to the communication device can be performed without stopping a part of them. Can be realized.
  • the feedback information generation unit measures a transmission path condition between a transmission antenna port and the reception antenna port of a plurality of other communication apparatuses, and estimates a transmission path condition. Is calculated, and grouping is performed on at least two transmission path state estimation values to generate feedback information.
  • the communication apparatus measures the transmission path condition between the transmission antenna port and the reception antenna port of a plurality of other communication apparatuses, calculates the transmission path condition estimation value, and at least two transmission path condition estimation values Since the feedback information is generated by grouping the communication devices, communication devices located between other communication devices can significantly reduce the influence of inter-channel interference. Furthermore, the amount of feedback information can be greatly reduced.
  • the wireless communication method of the present invention is a wireless communication method in which a first communication device and a second communication device perform wireless communication, wherein the second communication is performed in the first communication device.
  • the second communication device based on the step of receiving the transmission path condition measurement reference signal transmitted from the first communication apparatus at a reception antenna port and the received transmission path condition measurement reference signal Measuring a transmission path condition between the transmitting antenna port and the receiving antenna port to calculate a transmission path condition estimate, and grouping the plurality of transmission path condition estimates Carried out are the steps of generating feedback information, and transmitting the generated feedback information to the first communication apparatus, characterized by comprising at least a.
  • the second communication apparatus performs grouping on the plurality of transmission path state estimation values and generates feedback information, so that the amount of feedback information can be greatly reduced. Further, for example, from the viewpoint of a power amplifier, in a system that outputs signals from all the transmission antenna ports in the first communication device, the first communication device to the second communication device without stopping a part of them. Data transmission to can be realized.
  • the feedback information generation unit measures transmission path conditions between the transmission antenna port and the reception antenna port of the plurality of first communication apparatuses, and transmits the transmission path.
  • a situation estimation value is calculated, grouping is performed on at least two transmission path situation estimation values, and feedback information is generated.
  • the second communication apparatus measures the transmission path condition between the transmission antenna port and the reception antenna port of the plurality of first communication apparatuses, calculates the transmission path condition estimated value, and obtains at least two transmissions. Since grouping is performed on the estimated road condition value to generate feedback information, the second communication device located between the first communication devices can greatly reduce the influence of inter-channel interference. Furthermore, the amount of feedback information can be greatly reduced.
  • the terminal device of the present invention obtains a precoding matrix that is in an optimal reception state when grouping transmission antenna ports, and generates feedback information indicating the obtained precoding matrix. It is characterized by providing.
  • a precoding matrix that obtains an optimal reception state when grouping transmission antenna ports is obtained, and feedback information indicating the obtained precoding matrix is generated.
  • an optimal reception state for example, a state where reception power is maximized, or a state where interference power from other base stations or other mobile terminals is small (including the case where an interference canceller or the like is used), etc. can do.
  • the terminal apparatus of the present invention obtains and obtains a precoding matrix that has precoding weights such that each of the grouped transmission antenna ports performs the same precoding process, and is in an optimal reception state. And a feedback information generating unit that generates feedback information indicating the precoding matrix.
  • the feedback information generation unit performs grouping for each cross-polarized antenna with respect to the transmission antenna port.
  • the terminal device is a terminal device that communicates with a base station device, and receives a transmission path state measurement reference signal transmitted from a transmission antenna port of the base station device at a reception antenna port.
  • a reception antenna unit that measures the transmission path condition between the transmission antenna port and the reception antenna port using the received propagation path condition measurement reference signal and calculates a transmission path condition estimated value,
  • a feedback information generation unit configured to generate feedback information for the base station apparatus based on a frequency response calculated by performing grouping on the transmission path state estimation value.
  • the transmission path condition measurement reference signal transmitted from the transmission antenna port of the base station apparatus is received by the reception antenna port, and the transmission antenna port and the reception are received using the received propagation path condition measurement reference signal.
  • the base station apparatus Since the feedback information is generated, the amount of feedback information can be greatly reduced. Also, for example, from the viewpoint of a power amplifier, in a system that outputs signals from all the transmission antenna ports in the base station, it is possible to realize data transmission from the base station to the mobile terminal without stopping some of them. it can.
  • the amount of feedback information transmitted from the mobile terminal to the base station can be greatly reduced. Also, for example, from the viewpoint of a power amplifier, in a system that outputs signals from all the transmission antenna ports in the base station, it is possible to realize data transmission from the base station to the mobile terminal without stopping some of them. it can.
  • a base station 401 has a transmission antenna port # 0 to # 3
  • a mobile terminal 402 has a communication system configured with reception antenna ports # 0 to # 3. is there.
  • a base station 501 has a transmission antenna port # 0 to # 3, and a mobile terminal 502 has a reception antenna port # 0 to # 3. is there.
  • a base station 601 is shown with a transmission antenna port # 0 to # 3, and a mobile terminal 602 is shown with a reception antenna port # 0 to # 3. is there.
  • a base station 701 is a communication system configured with transmission antenna ports # 0 to # 3, and a mobile terminal 702 is configured with reception antenna ports # 0 to # 3. is there.
  • a base station 801 has a transmission antenna port # 0 to # 3, and a mobile terminal 802 has a reception antenna port # 0 to # 3. is there.
  • the base station 901-1 has transmission antenna ports # 1-0 to # 1-3
  • the base station 901-2 has transmission antenna ports # 2-0 to # 2-.
  • 1 is a diagram illustrating a communication system including mobile terminal 902 including reception antenna ports # 0 to # 3.
  • FIG. 18 shows an example of an eighth embodiment of the present invention, in which patterns for performing N types of combining processing are defined in advance, and the mobile terminal 1102 makes a base station 1101 one of the N types of combining patterns. It is a figure which shows a mode that it performs a synthesis process and feeds back. It is a block diagram which shows an example which performs adaptive control when the downlink (downlink, downlink) which performs the data transmission from the base station 100 to the mobile terminal 110 is considered.
  • FIG. 15 is a block diagram illustrating an example of performing adaptive control when considering a downlink (downlink, downlink) in which data transmission from the base station 100 to the mobile terminal 110 is considered.
  • base station 100 first, in multiplexing section 102, a reference signal (RS (Reference Signal), pilot signal, known signal) peculiar to the base station is used as a data signal for mobile terminal 110 or other movement. It is multiplexed with a data signal for terminal 110 and transmitted from transmission antenna (transmission antenna unit) 103.
  • RS Reference Signal
  • pilot signal known signal
  • the separation unit 112 separates the transmission path condition measurement reference signal from the signal received by the reception antenna (reception antenna unit) 111.
  • the feedback information generation unit 113 generates feedback information based on the transmission path condition measurement reference signal, and transmits the feedback information from the transmission antenna 114 via the uplink (uplink, uplink).
  • the feedback information processing unit 105 identifies and processes the feedback information transmitted from the mobile terminal 110 from the signal received by the receiving antenna 104.
  • the adaptive control unit 101 performs adaptive control on the data signal for the mobile terminal 110 based on the received feedback information.
  • the communication system includes a base station (transmitting device, cell, transmission point, transmitting antenna group, first communication device, serving base station, eNodeB, base station device) and mobile terminal (receiving point, receiving terminal). , Receiving device, second communication device, UE (User Equipment), terminal device).
  • FIG. 1 is a schematic block diagram showing the configuration of the base station 200 of the present invention.
  • a base station 200 includes a coding unit 201, a scrambler 202, a modulation unit 203, a layer mapping unit 204, a precoding unit 205, a resource element mapping unit 206, an OFDM signal generation unit 207, a transmission antenna 208, a transmission path condition.
  • a measurement reference signal generation unit 209, a reception antenna 210, a reception signal processing unit 211, a feedback information processing unit 212, and a data signal demodulation reference signal generation unit 213 are provided.
  • the reception antenna 210 receives a data signal including feedback information transmitted from the mobile terminal 300 (FIG. 3, described later) through an uplink (for example, PUCCH (Physical / Uplink / Control / CHannel), PUSCH (Physical / Uplink / Shared / CHannel)).
  • PUCCH Physical / Uplink / Control / CHannel
  • the reception signal processing unit 211 performs reception processing on transmission processing performed by the mobile terminal 300 for transmission, such as OFDM demodulation processing, demodulation processing, and decoding processing, on the signal received by the reception antenna 210, and receives the received signal.
  • the feedback information is identified from among the information and output to the feedback information processing unit 212.
  • the uplink is SC-FDMA (Single Carrier-Frequency Division Multiple Access), Clustered SC-FDMA, OFDMA, time division multiple access, code
  • a plurality of mobile terminals 300 can be multiplexed using various multiple access methods such as division multiple access.
  • each mobile terminal 300 designates a resource (an element for transmitting a signal divided by time, frequency, code, spatial domain, etc.) for transmitting feedback information, and the mobile terminal 300 is designated.
  • the base station 200 can be identified by transmitting the feedback information using the resources. It can also be realized by adding a unique identification number or the like for each mobile terminal 300 to each feedback information.
  • Feedback information processing section 212 provides adaptive control information for performing various adaptive controls on the data signal to be transmitted to mobile terminal 300 based on the input feedback information such as explicit CSI, CQI, PMI, and RI. Generate.
  • the adaptive control information in base station 200 is generated and output to encoding section 201, modulation section 203, layer mapping section 204, precoding section 205, and resource element mapping section 206 in base station 200.
  • the base station 200 uses the transmission format. Based on the adaptive control. Specifically, since the CQI is information indicating a coding rate and a modulation scheme, the encoding unit 201 and the modulation unit 203 can be controlled, respectively, and the PMI can control the precoding unit 205 because of information indicating a precoding matrix, Since the RI is information indicating the number of layers (ranks), the RI can be controlled with respect to the layer mapping unit 204 and an upper layer that generates a code word.
  • the resource element mapping unit 206 can be controlled. Note that these adaptive controls do not necessarily follow the received recommended transmission format information, and can be determined based on various factors such as the status of other mobile terminals and the status of a communication system.
  • the base station 200 can determine adaptive control. For example, the precoding matrix is determined so as to maximize the power when the mobile terminal 300 receives based on the fed back information, and the optimal coding rate, modulation scheme, and number of layers at that time can be determined. Various methods can be used.
  • the code unit 201 receives one or more codewords (transmission data signal, information data signal) to be transmitted, which are input from a processing device in a higher layer of the transmission device (not shown). Each codeword is encoded with an error correction code such as a turbo code, a convolutional code, or an LDPC (Low Density Parity Check) code, and is output to the scrambler 202.
  • the code word may be a processing unit for performing retransmission control such as HARQ (Hybrid Automatic Repeat reQuest), a processing unit for performing error correction coding, or a group of a plurality of these units.
  • the scrambler 202 generates a different scramble code for each base station 200 and performs a scramble process on the signal encoded by the encoder 201 using the generated scramble code.
  • the modulation unit 203 performs modulation processing on the scrambled signal using a modulation method such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), QAM (Quadrature Amplitude Modulation), and the layer mapping unit To 204.
  • the data signal demodulation reference signal generation unit 213 uses, as a reference signal for demodulating the information data signal in the mobile terminal 300, a data signal demodulation reference signal (Dm-RS () that is orthogonal between each layer (rank, spatial multiplexing). Demodulation (Reference Signal), DRS (Dedicated Reference Signal), Precoded RS, user-specific reference signal, UE-specific RS) are generated and output to the layer mapping unit 204.
  • Dm-RS data signal demodulation reference signal
  • an arbitrary signal can be used as the reference signal for data signal demodulation as long as both the base station 200 and the mobile terminal 300 are known signals.
  • a random number or pseudo-noise sequence for example, M
  • a pre-assigned parameter such as a number unique to the base station 200 (cell ID) or a number unique to the mobile terminal 300 (RNTI; Radio Network Temporary Identifier).
  • M a number unique to the base station 200
  • RNTI Radio Network Temporary Identifier
  • Maximum-length series Gold code, orthogonal Gold code, Walsh code, OVSFOV (Orthogonal Variable Spreading Factor) code, Hadamard code, Barker code, etc.
  • a sequence expanded cyclically may be used, or a sequence obtained by searching for a sequence excellent in autocorrelation characteristics and cross-correlation characteristics using a computer or the like may be used.
  • a method of orthogonalizing between layers a method in which resource elements for mapping reference signals for data signal demodulation are mutually null (zero) between layers (for example, time division multiplexing, frequency division multiplexing, etc.)
  • the code division multiplexing method used can be used as a method of orthogonalizing between layers.
  • the layer mapping unit 204 maps the data signal demodulation reference signal input from the data signal demodulation reference signal generation unit 213 to each layer that performs spatial multiplexing such as MIMO. Further, the signal output from each modulation section 203 is mapped to the resource element excluding the data signal demodulation reference signal for each layer. For example, if the number of codewords is 2 and the number of layers is 8, it may be possible to change the number of layers to 8 by converting each codeword into 4 parallel signals. Absent.
  • the precoding unit 205 performs precoding processing on the signal output from the layer mapping unit 204 and converts it into parallel signals of the number of antenna ports (transmission antennas, logical ports).
  • precoding processing is processing by a predetermined precoding matrix, CDD ⁇ (Cyclic Delay) Diversity), transmission diversity (SFBC (Spatial Frequency Block Code), STBC (Spatial Time Block Code), TSTD (Time Switched Transmission Diversity) ), FSTD (Frequency Switched Transmission Transmission Diversity, etc.) can be used, but is not limited to this.
  • the transmission path status measurement reference signal generation unit 209 determines the transmission path status between the base station 200 and the mobile terminal 300 (specifically, between the transmission antenna 208 and the reception antenna 301 (FIG. 3, described later)).
  • the base station 200 and the mobile terminal 300 generate a known transmission path condition measurement reference signal (cell-specific reference signal, CRS (Common RS), Cell-specific RS, Non-precoded RS) Output to the element mapping unit 206.
  • CRS Common RS
  • Cell-specific RS Cell-specific RS
  • Non-precoded RS Non-precoded RS
  • a random number or a pseudo noise sequence based on a parameter assigned in advance such as a number unique to the base station 200 (cell ID (Identification)) can be used.
  • a method of orthogonalizing between antenna ports a method of making resource elements that map reference signals for channel condition measurement mutually null (zero) between antenna ports, a method of code division multiplexing using a pseudo-noise sequence, etc. Can be used.
  • the resource element mapping unit 206 maps the transmission data signal output by the precoding unit 205 and the transmission path condition measurement reference signal output by the transmission path condition measurement reference signal generation unit 209 to the resource element of each antenna port. Do.
  • FIG. 2 is a diagram illustrating an example of a data signal demodulation reference signal, a transmission path condition measurement reference signal, an information data signal, or a control information signal mapped by the layer mapping unit 204 and the resource element mapping unit 206.
  • FIG. 2 shows a case where respective signals are mapped when the number of antenna ports is 4 and the number of layers is 2.
  • one resource block including 12 subcarriers in the frequency direction and 14 OFDM symbols in the time direction is represented.
  • Each subcarrier in one OFDM symbol is also called a resource element.
  • the seven OFDM symbols before and after in the time direction are also called slots.
  • the data signal demodulation reference signals of layer numbers 0 to 1 are D0 to D1, respectively, and the transmission path condition measurement reference signals of antenna ports # 0 to # 3 are C0 to C3, respectively. It represents. Also, in the reference signal resource elements mapped to the respective layers and antenna ports, no signal is assigned to the resource elements in the other layers and antenna ports, and zero (null) is set between the layers and antenna ports. It is orthogonal. As another method for orthogonalizing layers and antenna ports, code division multiplexing using a pseudo-noise sequence can be applied.
  • the number of OFDM symbols in the resource block can be changed. For example, when a long guard interval length is added, the number of OFDM symbols in one slot can be six.
  • the information data signal or the control information signal is mapped to resource elements other than the resource element to which the reference signal in the figure is mapped.
  • the maximum number of information data signal or control information signal layers can be two.
  • the number of information data signal layers can be two and the number of control information signal layers can be one.
  • the number of resource blocks can be changed according to the frequency bandwidth (system bandwidth) used by the communication system. For example, 6 to 110 resource blocks can be used, and the total system bandwidth can be increased to 110 or more by frequency aggregation.
  • the component carrier is composed of 100 physical resource blocks, and the total system bandwidth can be made 500 physical resource blocks with 5 component carriers with a guard band between the component carriers.
  • the component carrier is composed of 20 MHz, and the total system bandwidth can be set to 100 MHz with five component carriers with the guard band between the component carriers.
  • subcarriers can be further arranged between the component carriers.
  • the OFDM signal generation unit 207 converts the frequency domain signal output from the resource element mapping unit 206 into a time domain signal by performing a frequency time conversion process using inverse fast Fourier transform (IFFT (Inverse Fast Fourier Transform)) or the like. . Furthermore, a guard interval (cyclic prefix) is added by cyclically extending a part of each OFDM symbol.
  • the transmission antenna 208 transmits the signal output from the OFDM signal generation unit 207 after performing a conversion process from baseband to radio frequency.
  • FIG. 3 is a schematic block diagram showing the configuration of the mobile terminal 300 of the present invention.
  • a mobile terminal 300 includes a reception antenna 301, an OFDM signal demodulation unit 302, a resource element demapping unit 303, a filter unit 304, a layer demapping unit 305, a demodulation unit 306, a descrambling unit 307, a decoding unit 308, a transmission A path estimation unit 309, a feedback information generation unit 310 (transmission path status measurement unit), a transmission signal generation unit 311 and a transmission antenna 312 are provided.
  • the mobile terminal 300 is provided with at least one reception antenna 301 for the number of reception antennas.
  • the reception antenna 301 receives a signal transmitted from the base station 200 and transmitted through a transmission path (propagation path, channel), from a radio frequency. Performs conversion to baseband signal.
  • the OFDM signal demodulator 302 removes the added guard interval, performs time-frequency conversion processing such as fast Fourier transform (FFT (Fast Fourier Transform)), and converts the signal into a frequency domain signal.
  • FFT Fast Fourier transform
  • the received signal in the kth subcarrier is expressed as follows.
  • N TL is the number of transmission layers
  • N R is the number of reception antennas
  • R (k) is a reception signal corresponding to each reception antenna
  • S (k) is a transmission signal (information data signal or control information) corresponding to each transmission layer.
  • N (k) represents noise corresponding to each receiving antenna
  • H Dm (k) represents a frequency response corresponding to each receiving antenna and each transmission layer
  • T represents a transposed matrix.
  • H Dm (k) is preferably estimated from the data signal demodulation reference signal.
  • the resource element demapping unit 303 demaps (separates) the signal mapped by the base station 200, the information data signal to the filter unit 304, the transmission path condition measurement reference signal to the feedback information generation unit 310, and the data signal demodulator.
  • the reference signal for output is output to the transmission path estimation unit 309, respectively.
  • the transmission path estimation unit 309 estimates (transmits) amplitude and phase fluctuations (frequency response, transfer function) in each resource element for each layer of each reception antenna 301 based on the input data signal demodulation reference signal. Channel estimation) to obtain a transmission channel estimation value. Note that the resource element to which the data signal demodulation reference signal is not mapped is interpolated in the frequency direction and the time direction based on the resource element to which the data signal demodulation reference signal is mapped, and performs transmission path estimation.
  • interpolation method various methods such as linear interpolation, parabolic interpolation, polynomial interpolation, Lagrange interpolation, spline interpolation, FFT interpolation, and minimum mean square error (MMSE (Minimum Mean Square Error)) interpolation can be used.
  • MMSE Minimum Mean Square Error
  • the filter unit 304 performs channel compensation on the data signal for each reception antenna 301 output from the resource element demapping unit 303, using the channel estimation value output from the channel estimation unit 309, and transmits the transmission signal S. (K) is detected.
  • K is detected.
  • a detection method thereof a ZF (Zero Forcing) standard, a MMSE standard method, or the like can be used.
  • the weighting factors used for detection of the ZF criterion or the MMSE criterion are M ZF and M MMSE , respectively, the following weighting factors can be used.
  • H ⁇ (k) is the estimated frequency response
  • H ⁇ H (k) is the complex conjugate transpose matrix of H ⁇ (k)
  • -1 is the inverse matrix
  • ⁇ ⁇ 2 is the noise power
  • I NR is N R ⁇ N represents an R unit matrix.
  • a method based on MLD Maximum Likelihood Detection
  • QRM-MLD QR decomposition and M-algorithm MLD
  • SIC Successessive Interference Cancellation
  • Turbo SIC A method based on MMSE-SIC, ZF-SIC, BLAST (Bell Laboratories Layered Space-Time architecture, etc.), PIC (Parallel Interference Cancellation), etc.
  • the layer demapping unit 305 performs demapping processing on the signal for each layer into each codeword.
  • Demodulation section 306 performs demodulation based on the modulation scheme used in base station 200.
  • the descrambling unit 307 performs descrambling processing based on the scramble code used in the base station 200.
  • Decoding section 308 performs error correction decoding processing based on the encoding method performed by base station 200, and outputs the result to an upper layer processing device of mobile terminal 300 (not shown).
  • feedback information generation section 310 generates feedback information based on the transmission path condition measurement reference signal output from resource element demapping section 303.
  • FIG. 4 is a schematic block diagram showing the configuration of the feedback information generation unit 310 of the present invention.
  • the feedback information generation unit 310 includes a transmission path condition estimated value calculation unit 3101 and a grouping unit 3102.
  • the received channel state measurement reference signal is used, the frequency response of each receiving antenna port to each transmitting antenna port, the received signal power to interference / noise power ratio (SINR (Signal to Interference noise power Ratio)), received signal power to interference power ratio (SIR (Signal to Interference power Ratio)), received signal power to noise power ratio (SNR ((Signal to Noise power Ratio)), path loss, etc.
  • SINR Signal to Interference noise power Ratio
  • the frequency direction (for example, for each subcarrier, for each resource element, for each resource block, for each subband composed of a plurality of resource blocks), for the time direction (for example, for each OFDM symbol, Subframes, slots, radio frames, etc.), spatial directions (for example, antenna ports, transmission antennas, reception antennas, etc.) can be used, and these can be combined.
  • the transmission signal generation unit 311 performs a coding process, a modulation process, a transmission signal generation process, and the like to transmit (feedback) the feedback information output from the feedback information generation unit 310 to the base station 200, and generates a transmission signal.
  • the transmission antenna 312 transmits the transmission signal including the feedback information generated by the transmission signal generation unit 311 to the base station 200 through the uplink.
  • a transmission path condition estimated value calculation unit 3101 obtains a transmission path condition at each reception antenna port for each transmission antenna port.
  • the frequency response in the k-th subcarrier at that time is expressed as follows.
  • N T is the number of transmit antennas
  • N R is the number of receive antennas
  • H (k) represents the frequency response corresponding to each receive antenna and each transmit antenna.
  • H (k) is preferably estimated from the reference signal for transmission path condition measurement.
  • the frequency responses of at least two antenna ports of the transmission antenna port and / or the reception antenna port are used.
  • Perform composition processing (grouping) various processes such as addition, multiplication, average calculation (including arithmetic average and geometric average), and comparison calculation (including maximum, minimum, and selection) can be performed.
  • weighting may be performed on the antenna port for which the combining process is performed. For example, the weight of the antenna port having good transmission path conditions can be increased, but the present invention is not limited to this. Below, the case where addition is performed as a composition process will be described.
  • FIG. 5 shows a communication system including base station 401 including transmission antenna ports # 0 to # 3 and mobile terminal 402 including reception antenna ports # 0 to # 3.
  • FIG. The frequency response in the k-th subcarrier at that time is expressed as follows.
  • each of the two predefined ports of the transmission antenna ports # 0 to # 3 and the reception antenna ports # 0 to # 3 is combined. For example, transmission antenna ports # 0 and # 2, transmission antenna ports # 1 and # 3 are combined, and reception antenna ports # 0 and # 2 and reception antenna ports # 1 and # 3 are combined.
  • the frequency response H ′ (k) at that time is expressed as follows.
  • the mobile terminal 402 generates an explicit CSI based on the combined frequency response H ′ (k).
  • the frequency response H ′ (k) may be used as it is as feedback information, and furthermore, techniques such as amplitude quantization, phase quantization, eigenvalue decomposition, orthogonal transformation such as DCT, and vector quantization may be applied. it can.
  • the explicit CSI may be generated based on the frequency response obtained by combining only the transmission antenna ports. For example, the transmission antenna ports # 0 and # 2 and the transmission antenna ports # 1 and # 3 are combined.
  • the frequency response is expressed as follows.
  • the explicit CSI may be generated based on the frequency response obtained by combining only the receiving antenna ports. For example, the receiving antenna ports # 0 and # 2 and the receiving antenna ports # 1 and # 3 are combined.
  • the frequency response is expressed as follows.
  • the amount of feedback information can be significantly reduced by combining the frequency responses of at least two antenna ports of the transmission antenna port and / or the reception antenna port. Can do.
  • the implicit CSI can be obtained based on the frequency response that has been subjected to the synthesis process already described.
  • CQI and PMI can be set in advance as a plurality of types of patterns (indexing), and the pattern closest to the pattern can be selected.
  • the transmission path state estimation value for obtaining the implicit CSI the frequency response that has been subjected to the combining process described above is used.
  • the RI the number of layers is determined using a technique such as eigenvalue decomposition. At this time, it is preferable that the smaller number of layers and the number of columns of the frequency response matrix after the synthesizing process be the maximum number of layers.
  • the precoding matrix is obtained based on the frequency response after the synthesis process so as to obtain an optimum reception state.
  • an optimal reception state for example, a state where reception power is maximized, or a state where interference power from other base stations or other mobile terminals is small (including the case where an interference canceller or the like is used), etc. can do. It can also be obtained using a technique such as eigenvalue decomposition.
  • a CQI lookup table that satisfies the required quality is set in advance for the SINR, the SINR when using the determined RI and PMI is obtained, and the CQI is determined from the lookup table. At that time, it is preferable to determine the CQI so that the error rate in the mobile terminal 402 is 0.1.
  • the number of lookup tables such as PMI can be reduced, and the amount of feedback information can be reduced. Further, when the amount of feedback information is the same, the accuracy of the precoding process can be further increased.
  • transmission of a transmission data signal to the mobile terminal 402 of the base station 401 using feedback information as described above will be described.
  • Various methods can be used as the transmission method. For example, in the communication system shown in FIG. 5, a case where transmission antenna ports # 0 and # 1 and transmission antenna ports # 2 and # 3 among the transmission antenna ports # 0 to # 3 are combined (grouped) will be described. To do.
  • the base station 401 generates precoding weights for the mobile terminal 402 so that the transmission antenna ports # 0 and # 1 and the transmission antenna ports # 2 and # 3 perform the same precoding process.
  • the transmission data signal for is multiplied by its precoding weight and transmitted.
  • precoding processing such as cyclic delay diversity (CDD: “Cyclic” Delay “Diversity”) can be further performed between the grouped transmission antenna ports. In that case, it is preferable to consider precoding processing between grouped transmission antenna ports in the base station 401 or the mobile terminal 402.
  • CDD Cyclic Delay “Diversity”
  • the invention described in the first embodiment it is possible to greatly reduce the amount of feedback information such as explicit CSI and implicit CSI from the mobile terminal 402 to the base station 401. Also, for example, from the viewpoint of a power amplifier, in a system that outputs signals from all of the transmission antenna ports in the base station 401, data transmission from the base station 401 to the mobile terminal 402 is realized without stopping some of them. can do.
  • the combination process for the transmission antenna port or the reception antenna port has been described.
  • the combination process for each transmission path condition (transmission path condition estimated value) between each transmission antenna port and each reception antenna port is described. Is equivalent to that.
  • the transmission path condition measurement reference signal is used when generating the feedback information.
  • the feedback information generated using the data signal demodulation reference signal may be transmitted.
  • CQI, RI, CSI, etc. can be generated using a data signal demodulation reference signal. Note that only a part of the antenna ports of the transmission antenna port or the reception antenna port may be combined, or all the antenna ports may be combined.
  • the communication system in the second embodiment has the same configuration as the communication system in the first embodiment. Therefore, below, a different point from 1st Embodiment is demonstrated.
  • a transmission path state estimated value (frequency response) obtained by performing a combining process on an antenna port based on a code word is used. For example, the antenna port outputting the same code word can be synthesized.
  • FIG. 6 shows a communication system configured with transmission antenna ports # 0 to # 3 for the base station 501 and reception antenna ports # 0 to # 3 for the mobile terminal 502.
  • FIG. 1 transmit antenna ports # 0 and # 1 are output from codeword # 0, and transmit antenna ports # 2 and # 3 are output from codeword # 1.
  • the mobile terminal 502 combines the transmission antenna ports # 0 and # 1, and the transmission antenna ports # 2 and # 3, respectively, and generates feedback information based on the frequency response.
  • the transmission antenna ports # 0 and # 1 outputting the codeword # 0 may be combined.
  • the frequency responses of at least two reception antenna ports defined in advance may be further combined.
  • the communication system according to the third embodiment has the same configuration as the communication system according to the first embodiment. Therefore, below, a different point from 1st Embodiment is demonstrated.
  • a transmission path state estimation value (frequency response) obtained by performing a combining process based on an antenna configuration, particularly a combining process for an antenna port based on antenna correlation is used. For example, an antenna port having a high antenna correlation of the transmission antenna can be combined.
  • FIG. 7 shows an example of a third embodiment of the present invention, in which a base station 601 includes transmission antenna ports # 0 to # 3 and a mobile terminal 602 includes reception antenna ports # 0 to # 3.
  • the antenna interval between the transmission antenna ports # 0 and # 1 and the transmission antenna ports # 2 and # 3 is 0.5 wavelength and the antenna correlation is high, and the antennas of the transmission antenna ports # 1 and # 2 The interval is 10 wavelengths and the antenna correlation is low.
  • the mobile terminal 602 combines the transmission antenna ports # 0 and # 1 and the transmission antenna ports # 2 and # 3, respectively, and generates feedback information based on the frequency response.
  • the transmission antenna ports may be combined, for example, only the transmission antenna ports # 0 and # 1 having high antenna correlation may be combined.
  • the combining process may be performed for each antenna port having a low antenna correlation.
  • the frequency responses of at least two reception antenna ports defined in advance may be further combined.
  • the combining process may be performed based on the antenna correlation of the receiving antenna 301.
  • the fourth embodiment of the present invention will be described below.
  • the communication system according to the fourth embodiment has the same configuration as the communication system according to the first embodiment. Therefore, below, a different point from 1st Embodiment is demonstrated.
  • a transmission path in which combining processing based on an antenna configuration, particularly combining processing for an antenna port is performed based on antenna polarization when a cross-polarized antenna is used.
  • FIG. 8 shows a communication system configured with base station 701 including transmission antenna ports # 0 to # 3 and mobile terminal 702 with reception antenna ports # 0 to # 3.
  • base station 701 transmission antenna ports # 0 and # 1, and transmission antenna ports # 2 and # 3 constitute cross-polarized antennas, respectively.
  • Transmit antenna ports # 0 and # 2 are horizontally polarized waves
  • transmit antenna ports # 1 and # 3 are vertically polarized waves.
  • the mobile terminal 702 combines the transmission antenna ports # 0 and # 2 and the transmission antenna ports # 1 and # 3, respectively, and generates feedback information based on the frequency response.
  • the transmission antenna ports may be combined, for example, only the transmission antenna ports # 0 and # 2 having the same polarization may be combined.
  • the transmission antenna ports having different polarizations may be combined, and in particular, the combining process may be performed for each cross-polarized antenna.
  • the frequency responses of at least two reception antenna ports defined in advance may be further combined.
  • the combining process may be performed based on the polarization of the receiving antenna 301.
  • the fifth embodiment of the present invention will be described below.
  • the communication system in the fifth embodiment has the same configuration as the communication system in the first embodiment. Therefore, below, a different point from 1st Embodiment is demonstrated.
  • a transmitting antenna port and a receiving antenna port that perform combining processing are dynamically selected based on transmission path conditions, and combining processing is performed based on the selected antenna port.
  • the estimated transmission path condition (frequency response) is used.
  • FIG. 9 shows, as an example of the fifth embodiment of the present invention, a communication system including base station 801 with transmission antenna ports # 0 to # 3 and mobile terminal 802 with reception antenna ports # 0 to # 3.
  • the mobile terminal 802 selects a transmission antenna port and a reception antenna port to be combined so that the mobile terminal 802 can perform optimal reception according to the transmission path condition. For example, transmission antenna ports # 0 and # 3, transmission antenna ports # 1 and # 2 are combined, and reception antenna ports # 0 and # 2 and reception antenna ports # 1 and # 3 are combined. Feedback information is generated based on the frequency response. As feedback information, the port numbers of the transmission antenna port and the reception antenna port that have been further combined are also notified. Further, the port numbers to be selected and notified can be defined in advance as a plurality of types of patterns (indexing).
  • FIG. 10 is a schematic diagram of a radio communication system according to the sixth embodiment of the present invention.
  • the communication system according to the sixth embodiment includes at least two base stations 901-1, 901-2, and a mobile terminal 902.
  • the base station 200 (FIG. 1) and the mobile terminal 300 (FIG. 3) in FIG. Therefore, below, a different point from 1st Embodiment is demonstrated.
  • the base station 901-1 and the base station 901-2 perform cooperative communication with the mobile terminal 902.
  • both base stations 901 are connected by a wired line (X2 interface) such as an optical fiber, and control information and transmission data signals are shared.
  • a wireless line using a relay technique or the like can also be used.
  • the base station 901-1 transmits to the mobile terminal 902 a transmission path condition measurement reference signal in the base station 901-1 and a transmission data signal to the mobile terminal 902.
  • the base station 901-2 transmits to the mobile terminal 902 a transmission path condition measurement reference signal in the base station 901-2 and a transmission data signal for the mobile terminal 902. Those signals are transmitted in cooperation between the base stations 901.
  • the mobile terminals 902 located between the base stations 901 can greatly reduce the influence of inter-channel interference.
  • FIG. 11 is a schematic view focusing on the number of antennas of the wireless communication system according to the sixth embodiment of the present invention.
  • the communication system according to the sixth embodiment is different in the number of transmission antenna ports of base stations 901-1 and 901-2 performing cooperative communication.
  • the number of transmission antenna ports provided in the base station 901-1 is 4, the number of transmission antenna ports provided in the base station 901-2 is 2, and the number of reception antenna ports provided in the mobile terminal 902 is 4.
  • the sixth embodiment when generating the feedback information, based on the base station 901 having a small number of transmission antenna ports, a transmission antenna port defined in advance in the base station 901 having a large number of transmission antenna ports is synthesized.
  • the processed transmission path condition estimated value (frequency response) is used.
  • FIG. 12 shows transmission antenna ports # 1-0 to # 1-3 for the base station 901-1 and transmission antenna port # 2-0 for the base station 901-2.
  • FIG. 2 is a diagram illustrating a communication system configured by receiving antenna ports # 0 to # 3 in # 2-1 and mobile terminal 902.
  • the mobile terminal 902 performs the combination processing of the transmission antenna ports # 1-0 and # 1-1 and the transmission antenna ports # 1-2 and # 1-3 to the base station 901-1, and the frequency Based on the response, feedback information is generated.
  • the base station 901-2 generates feedback information based on each frequency response without performing the combining process.
  • the feedback information may be transmitted to each base station 901 or may be transmitted to at least one base station 901 (for example, a serving base station or an anchor base station).
  • feedback information may be generated from a frequency response obtained by synthesizing a transmission antenna port defined in advance from all of the transmission antenna ports provided in a plurality of base stations 901 performing cooperative communication.
  • the frequency responses of at least two reception antenna ports may be further combined. Note that only a part of the antenna ports of the transmission antenna port or the reception antenna port may be combined. Note that the invention in the sixth embodiment can also be applied to the communication systems described in the second to fifth embodiments.
  • the seventh embodiment of the present invention will be described below.
  • the communication system in the seventh embodiment has the same configuration as the communication system in the first embodiment. Therefore, below, a different point from 1st Embodiment is demonstrated.
  • a transmission path state estimated value (frequency response) obtained by performing the combining process on the antenna port based on the number of spatial multiplexing (number of ranks, number of layers) is used.
  • the combining process can be performed so that the number of feedbacks to the transmission antenna port after the combining process is the same as the spatial multiplexing number determined by the base station 1001 or the mobile terminal 1002.
  • FIG. 13 shows, as an example of the seventh embodiment of the present invention, a base station 1001 having a transmission antenna port # 0 to # 3 and a mobile terminal 1002 having a reception antenna port # 0 to # 3.
  • the spatial multiplexing number is 4, the mobile terminal 1002 does not perform the combining process on the transmission antenna ports # 0 to # 3, and generates feedback information based on the respective frequency responses.
  • the spatial multiplexing number is 3, the mobile terminal 1002 performs the combining process on the transmission antenna ports # 0 and # 1, and does not perform the combining process on the transmission antenna ports # 2 and # 3, and feedback information based on the respective frequency responses. Is generated.
  • the mobile terminal 1002 When the number of spatial multiplexing is 2, the mobile terminal 1002 combines transmission antenna ports # 0 and # 1 and transmission antenna ports # 2 and # 3, and generates feedback information based on the respective frequency responses. When the number of spatial multiplexing is 1, the mobile terminal 1002 combines the transmission antenna ports # 0 to # 3 and generates feedback information based on the frequency response.
  • the combining process is performed so that the number of feedbacks to the transmission antenna port after the combining process is the same as the spatial multiplexing number determined by the base station 1001 or the mobile terminal 1002.
  • the antenna port for performing the combining process is determined based on the spatial multiplexing number, the present invention is not limited to this.
  • the frequency responses of at least two reception antenna ports may be further combined. Note that the invention in the seventh embodiment can also be applied to the communication systems described in the second to sixth embodiments.
  • the eighth embodiment of the present invention will be described below.
  • the communication system according to the eighth embodiment has the same configuration as the communication system according to the first embodiment. Therefore, below, a different point from 1st Embodiment is demonstrated.
  • a transmission path state estimated value (frequency response) obtained by performing a combining process on a predetermined antenna port is used, but an antenna port pattern (code) for performing the combining process is used.
  • a plurality of types of (book) are defined and switched (selected) according to the feedback timing.
  • FIG. 14 shows an example of the eighth embodiment of the present invention, in which patterns for performing N types of combining processes are defined in advance, and the mobile terminal 1102 transmits N types of combined patterns to the base station 1101. It is a figure which shows a mode that a synthetic
  • the base station 1101 includes transmission antenna ports # 0 to # 3 and the mobile terminal 1102 includes reception antenna ports # 0 to # 3.
  • mobile terminal 1102 performs transmission processing on transmission antenna ports # 0 and # 1, transmission antenna ports # 2 and # 3, and generates feedback information based on the respective frequency responses.
  • the mobile terminal 1102 performs a combination process on transmission antenna ports # 0 and # 2 and transmission antenna ports # 1 and # 3, and generates feedback information based on the respective frequency responses.
  • the mobile terminal 1102 performs transmission processing on transmission antenna ports # 0 and # 3 and transmission antenna ports # 1 and # 2, respectively, and generates feedback information based on the respective frequency responses.
  • the composite pattern can be defined for the reception antenna port, and can be defined for both the transmission antenna port and the reception antenna port.
  • the mobile terminal 1102 uses one of these composite patterns by switching according to the feedback timing. At this time, the synthesis pattern to be used can be defined in advance by the number of feedbacks.
  • the base station may instruct the synthesis pattern to be used. Further, the mobile terminal 1102 may select based on a transmission path condition or the like, and it is preferable to further feed back information indicating the combined pattern used. As a result, the composition process can be performed dynamically and good characteristics can be realized.
  • the synthesis pattern to be used can be defined based on parameters (subframe number, slot number, radio frame number, etc.) in the time direction to be fed back (or instructed to feed back). This eliminates the need for notifying or feeding back information related to the composite pattern to be used, and reduces the overhead related to that information.
  • the combination pattern switching is based on the feedback timing (parameter with respect to the time direction), but is not limited thereto.
  • switching may be performed according to parameters for the base station 1101, for example, switching may be performed between adjacent base stations 1101, switching may be performed depending on the configuration of the base station 1101, and between base stations 1101 performing cooperative communication. It may be switched with. Further, switching may be performed according to parameters for the mobile terminal 1102. Moreover, you may combine them.
  • the invention in the eighth embodiment can also be applied to the communication systems described in the second to seventh embodiments.
  • Base station 103 Transmit antenna 110, 300, 402, 502, 602, 702, 802, 902, 1002, 1102 Terminals 111, 210, 301 Reception antenna 113 Feedback information generation unit 209 Transmission path condition measurement reference signal generation unit 310 Feedback information generation unit 3102 Grouping unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 送受信アンテナが多い場合でも、効率的に適応制御を行なう。基地局200は、移動端末300が伝送路状況を測定するための伝送路状況測定用参照信号を生成する伝送路状況測定用参照信号生成部209と、送信アンテナポート毎に伝送路状況測定用参照信号を移動端末300に対して送信する送信アンテナ部208-1、208-2と、を備え、移動端末300は、基地局200から送信された伝送路状況測定用参照信号を受信アンテナポートで受信する受信アンテナ部301-1、301-2と、受信した伝送路状況測定用参照信号に基づいて、送信アンテナポートと受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の伝送路状況推定値に対してグルーピングを行なって基地局200に対するフィードバック情報を生成するフィードバック情報生成部310と、を備える。

Description

無線通信システム、通信装置、無線通信方法および端末装置
 本発明は、適応制御を行なう技術に関し、特に、伝送路状況のフィードバック方法に関して、効率的に適応制御を行なうことのできる無線通信システム、通信装置、無線通信方法および端末装置に関する。
 例えば、LTE(Long Term Evolution)、LTE-Advanced、WiMAXのような移動無線通信システムでは、基地局および移動端末に、複数の送受信アンテナをそれぞれ備え、MIMO(Multi Input Multi Output)技術により、高速なデータ伝送を実現することができる。一方、伝送路状況測定用参照信号を用いることによって、移動端末では、基地局と移動端末との間の伝送路状況を推定し、その推定結果に基づいて、変調方式および符号化率(MCS(Modulation and Coding Scheme))、空間多重数(レイヤー、ランク)、プレコーディング重み(プレコーディング行列)などを適応的に制御することで、より効率的なデータ伝送を実現することができる。例えば、非特許文献1で記載された方法を用いることができる。
 また、伝送方式としてOFDM(Orthogonal Frequency Division Multiplexing)方式やOFDMA(Orthogonal Frequency Division Multiple Access)方式のようなマルチキャリア伝送方式を用いた場合、基地局固有の伝送路状況測定用参照信号としては、周波数方向および時間方向のリソースエレメント(1つのOFDMシンボルにおける1つのサブキャリアで構成される要素)に散乱(スキャッタード)させた参照信号を用いることができる。そのような伝送路状況測定用参照信号を用いて推定するフィードバック情報として、伝送路状況に基づく情報(エクスプリシットCSI(Channel State Information))、基地局に対する推奨送信フォーマット情報(インプリシットCSI(例えば、CQI(Channel Quality Indicator)、RI (Rank Indicator)、PMI (Precoding Matrix Index)などが含まれる)などを用いることができる。
 特に、エクスプリシットCSIは、実際の伝送路状況に基づいた情報であるため、主にコードブックに基づいたインデックス情報となるインプリシットCSIに比べて、フィードバック情報量は大きくなる。そのため、非特許文献2や非特許文献3には、エクスプリシットCSIの情報量を削減するための手法が検討されており、例えば、固有値分解やDCT (Discrete Cosine Transform)などの直交変換、ベクトル量子化などを用いる手法が検討されている。
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);Physical layer procedures (Release 8)、3GPP TS 36.213 V8.7.0 (2009-05)、2009年5月。 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Further Advancements for E-UTRA Physical Layer Aspects (Release 9)、 3GPP TR 36.814 V1.2.1 (2009-06)、2009年6月。 Alcatel-Lucent, "Comparison of CSI Feedback Schemes," R1-092310, 3GPP TSG-RAN WG1 #57bis, Los Angeles, CA, USA, June 2009.
 しかしながら、送受信アンテナの数がそれぞれ多くなるにつれて、フィードバックすべきフィードバック情報の数は多くなってしまい、効率的なデータ伝送を妨げる要因となっていた。
 本発明は、このような事情に鑑みてなされたものであり、送受信アンテナが多い場合でも、効率的に適応制御を行なうことのできる無線通信システム、通信装置、無線通信方法および端末装置を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、第1の通信装置と第2の通信装置とが無線通信を行なう無線通信システムであって、前記第1の通信装置は、前記第2の通信装置が伝送路状況を測定するための伝送路状況測定用参照信号を生成する伝送路状況測定用参照信号生成部と、送信アンテナポート毎に前記伝送路状況測定用参照信号を前記第2の通信装置に対して送信する送信アンテナ部と、を備え、前記第2の通信装置は、前記第1の通信装置から送信された前記伝送路状況測定用参照信号を受信アンテナポートで受信する受信アンテナ部と、前記受信した伝送路状況測定用参照信号に基づいて、前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の前記伝送路状況推定値に対してグルーピングを行なって前記第1の通信装置に対するフィードバック情報を生成するフィードバック情報生成部と、を備えることを特徴としている。
 このように、第2の通信装置は、複数の伝送路状況推定値に対してグルーピングを行なって第1の通信装置に対するフィードバック情報を生成するので、フィードバック情報の情報量を大幅に削減することができる。また、例えばパワーアンプの観点から、第1の通信装置における送信アンテナポートの全てから信号を出力するようなシステムにおいて、それらの一部を止めることなく、第1の通信装置から第2の通信装置へのデータ送信を実現することができる。
 (2)また、本発明の無線通信システムにおいて、前記第2の通信装置に対して協調通信を行なう第1の通信装置を複数備え、前記フィードバック情報生成部は、前記各第1の通信装置の送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成することを特徴としている。
 このように、第2の通信装置は、各第1の通信装置の送信アンテナポートと受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成するので、第1の通信装置の間に位置する第2の通信装置は同一チャネル間干渉の影響を大幅に低減することができる。さらに、フィードバック情報の情報量を大幅に削減することができる。
 (3)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記フィードバック情報として、前記測定した伝送路状況を示す情報を生成することを特徴としている。
 このように、第2の通信装置は、フィードバック情報として、測定した伝送路状況を示す情報を生成するので、伝送路状況に基づく情報(エクスプリシットCSI(Channel State Information))の情報量を大幅に削減することができる。
 (4)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記フィードバック情報として、前記第1の通信装置に対する推奨送信フォーマット情報を生成することを特徴としている。
 このように、第2の通信装置は、フィードバック情報として、第1の通信装置に対する推奨送信フォーマット情報を生成するので、第1の通信装置に対する推奨送信フォーマット情報(インプリシットCSI(例えば、CQI(Channel Quality Indicator)、RI(Rank Indicator)、PMI(Precoding Matrix Index)などが含まれる)などの情報量を大幅に削減することができる。
 (5)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、予め規定されている伝送路状況推定値に対してグルーピングを行なうことにより、フィードバック情報を生成することを特徴としている。
 このように、第2の通信装置は、予め規定されている伝送路状況推定値に対してグルーピングを行なうことにより、フィードバック情報を生成するので、フィードバック情報の情報量を大幅に削減することができる。また、例えばパワーアンプの観点から、第1の通信装置における送信アンテナポートの全てから信号を出力するようなシステムにおいて、それらの一部を止めることなく、第1の通信装置から第2の通信装置へのデータ送信を実現することができる。
 (6)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記算出したすべての伝送路状況推定値から、グルーピングを行なう伝送路状況推定値を選択し、前記選択した伝送路状況推定値に対してグルーピングを行なうことにより、フィードバック情報を生成することを特徴としている。
 このように、第2の通信装置は、算出したすべての伝送路状況推定値から、グルーピングを行なう伝送路状況推定値を選択し、選択した伝送路状況推定値に対してグルーピングを行なうので、伝送路状況に応じて柔軟にフィードバック情報を送信することができる。
 (7)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記フィードバック情報として、前記選択した伝送路状況推定値を示す情報をさらに生成することを特徴としている。
 このように、第2の通信装置が、フィードバック情報として、選択した伝送路状況推定値を示す情報をさらに生成するので、第1の通信装置は、合成処理を行なった送信アンテナポートおよび受信アンテナポートを把握することができる。
 (8)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、コードワード単位に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴としている。
 このように、第2の通信装置は、コードワード単位に基づいて、伝送路状況推定値に対してグルーピングを行なうので、同一のコードワードを出力しているアンテナポートを合成処理することができる。
 (9)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記送信アンテナ部または前記受信アンテナ部の少なくとも一方の構成に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴としている。
 このように、第2の通信装置は、送信アンテナ部または受信アンテナ部の少なくとも一方の構成に基づいて、伝送路状況推定値に対してグルーピングを行なうので、アンテナポートの特性に応じてアンテナポートを合成処理することができる。
 (10)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記送信アンテナ部と前記受信アンテナ部とのアンテナ相関に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴としている。
 このように、第2の通信装置は、送信アンテナ部と受信アンテナ部とのアンテナ相関に基づいて、伝送路状況推定値に対してグルーピングを行なうので、例えば、送信アンテナのアンテナ相関が高いアンテナポートを合成処理することができる。
 (11)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記送信アンテナ部または前記受信アンテナ部の少なくとも一方の偏波に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴としている。
 このように、第2の通信装置は、送信アンテナ部または受信アンテナ部の少なくとも一方の偏波に基づいて、伝送路状況推定値に対してグルーピングを行なうので、例えば、送信アンテナのアンテナ偏波が同一のアンテナポートを合成処理することができる。
 (12)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記第1の通信装置が前記第2の通信装置に対して用いる空間多重数に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴としている。
 このように、第2の通信装置は、第1の通信装置が第2の通信装置に対して用いる空間多重数に基づいて、伝送路状況推定値に対してグルーピングを行なうので、例えば、合成処理した後の送信アンテナポートに対するフィードバックの数が、第1の通信装置または第2の通信装置が決定した空間多重数と同じになるように、合成処理をすることができる。
 (13)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、前記伝送路推定値に対してグルーピングを行なう際の複数の合成パターンを規定し、前記合成パターンのいずれかに基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴としている。
 このように、第2の通信装置は、伝送路推定値に対してグルーピングを行なう際の複数の合成パターンを規定し、合成パターンのいずれかに基づいて、伝送路状況推定値に対してグルーピングを行なうので、動的に合成処理を行なうことができ、良好な特性が実現できる。
 (14)また、本発明の無線通信システムにおいて、前記フィードバック情報生成部は、時間軸に関するパラメータ、周波数軸に関するパラメータ、前記第1の通信装置に関するパラメータまたは前記第2の通信装置に関するパラメータのうち、少なくとも1つのパラメータに基づいて、前記合成パターンを選択することを特徴としている。
 このように、第2の通信装置は、時間軸に関するパラメータ、周波数軸に関するパラメータ、第1の通信装置に関するパラメータまたは第2の通信装置に関するパラメータのうち、少なくとも1つのパラメータに基づいて、合成パターンを選択するので、用いる合成パターンに関する情報を通知またはフィードバックする必要がなくなり、その情報に関するオーバーヘッドを削減できる。
 (15)また、本発明の通信装置は、他の通信装置と無線通信を行なう通信装置であって、前記他の通信装置の送信アンテナポートから送信された伝送路状況測定用参照信号を受信アンテナポートで受信する受信アンテナ部と、前記受信した伝送路状況測定用参照信号に基づいて、前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の前記伝送路状況推定値に対してグルーピングを行なって前記他の通信装置に対するフィードバック情報を生成するフィードバック情報生成部と、を備えることを特徴としている。
 このように、通信装置は、複数の伝送路状況推定値に対してグルーピングを行なって他の通信装置に対するフィードバック情報を生成するので、フィードバック情報の情報量を大幅に削減することができる。また、例えばパワーアンプの観点から、他の通信装置における送信アンテナポートの全てから信号を出力するようなシステムにおいて、それらの一部を止めることなく、他の通信装置から通信装置へのデータ送信を実現することができる。
 (16)また、本発明の通信装置において、前記フィードバック情報生成部は、複数の他の通信装置の送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成することを特徴としている。
 このように、通信装置は、複数の他の通信装置の送信アンテナポートと受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成するので、他の通信装置の間に位置する通信装置は同一チャネル間干渉の影響を大幅に低減することができる。さらに、フィードバック情報の情報量を大幅に削減することができる。
 (17)また、本発明の無線通信方法は、第1の通信装置と第2の通信装置とが無線通信を行なう無線通信方法であって、前記第1の通信装置において、前記第2の通信装置が伝送路状況を測定するための伝送路状況測定用参照信号を生成するステップと、送信アンテナポート毎に前記伝送路状況測定用参照信号を前記第2の通信装置に対して送信するステップと、前記第2の通信装置において、前記第1の通信装置から送信された前記伝送路状況測定用参照信号を受信アンテナポートで受信するステップと、前記受信した伝送路状況測定用参照信号に基づいて、前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出するステップと、複数の前記伝送路状況推定値に対してグルーピングを行なってフィードバック情報を生成するステップと、前記生成したフィードバック情報を前記第1の通信装置へ送信するステップと、を少なくとも含むことを特徴としている。
 このように、第2の通信装置は、複数の前記伝送路状況推定値に対してグルーピングを行なってフィードバック情報を生成するので、フィードバック情報の情報量を大幅に削減することができる。また、例えばパワーアンプの観点から、第1の通信装置における送信アンテナポートの全てから信号を出力するようなシステムにおいて、それらの一部を止めることなく、第1の通信装置から第2の通信装置へのデータ送信を実現することができる。
 (18)また、本発明の無線通信方法において、前記フィードバック情報生成部において、複数の前記第1の通信装置の送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成することを特徴としている。
 このように、第2の通信装置は、複数の第1の通信装置の送信アンテナポートと受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成するので、第1の通信装置の間に位置する第2の通信装置は同一チャネル間干渉の影響を大幅に低減することができる。さらに、フィードバック情報の情報量を大幅に削減することができる。
 (19)また、本発明の端末装置は、送信アンテナポートをグルーピングした場合に最適な受信状態となるようなプレコーディング行列を求め、求めたプレコーディング行列を示すフィードバック情報を生成するフィードバック情報生成部を備えることを特徴とする。
 このように、送信アンテナポートをグルーピングした場合に最適な受信状態となるようなプレコーディング行列を求め、求めたプレコーディング行列を示すフィードバック情報を生成するので、最適な受信状態となるプレコーディング行列を求めることができる。ここで、最適な受信状態として、例えば受信電力が最大になる状態であったり、他の基地局や他の移動端末からの干渉電力が小さい(干渉キャンセラ等を用いた場合も含む)状態などとすることができる。
 (20)また、本発明の端末装置は、グルーピングした送信アンテナポートのそれぞれが同じプレコーディング処理をするようなプレコーディング重みであって、最適な受信状態となるようなプレコーディング行列を求め、求めたプレコーディング行列を示すフィードバック情報を生成するフィードバック情報生成部を備えることを特徴とする。
 このように、グルーピングした送信アンテナポートのそれぞれが同じプレコーディング処理をするようなプレコーディング重みであって、最適な受信状態となるようなプレコーディング行列を求め、求めたプレコーディング行列を示すフィードバック情報を生成するので、最適な受信状態となるプレコーディング行列を求めることができる。
 (21)また、本発明の端末装置において、前記フィードバック情報生成部は、前記送信アンテナポートに対して交差偏波アンテナ毎にグルーピングを行なうことを特徴とする。
 このように、送信アンテナポートに対して交差偏波アンテナ毎にグルーピングを行なうので、一部の送信アンテナポートのみを合成処理することが可能となる。
 (22)また、本発明の端末装置は、基地局装置と通信を行なう端末装置であって、前記基地局装置の送信アンテナポートから送信された伝送路状況測定用参照信号を受信アンテナポートで受信する受信アンテナ部と、前記受信した伝搬路状況測定用参照信号を用いて前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の前記伝送路状況推定値に対してグルーピングを行なって算出する周波数応答に基づいて、前記基地局装置に対するフィードバック情報を生成するフィードバック情報生成部と、を備えることを特徴とする。
 このように、基地局装置の送信アンテナポートから送信された伝送路状況測定用参照信号を受信アンテナポートで受信し、前記受信した伝搬路状況測定用参照信号を用いて前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の前記伝送路状況推定値に対してグルーピングを行なって算出する周波数応答に基づいて、前記基地局装置に対するフィードバック情報を生成するので、フィードバック情報の情報量を大幅に削減することができる。また、例えばパワーアンプの観点から、基地局における送信アンテナポートの全てから信号を出力するようなシステムにおいて、それらの一部を止めることなく、基地局から移動端末へのデータ送信を実現することができる。
 本発明によれば、移動端末が基地局に対して送信するフィードバック情報の情報量を大幅に削減することができる。また、例えばパワーアンプの観点から、基地局における送信アンテナポートの全てから信号を出力するようなシステムにおいて、それらの一部を止めることなく、基地局から移動端末へのデータ送信を実現することができる。
本発明の基地局200の構成を示す概略ブロック図である。 レイヤーマッピング部204およびリソースエレメントマッピング部206がマッピングするデータ信号復調用参照信号、伝送路状況測定用参照信号、情報データ信号または制御情報信号の一例を示す図である。 本発明の移動端末300の構成を示す概略ブロック図である。 本発明のフィードバック情報生成部310の構成を示す概略ブロック図である。 本発明の第1の実施形態の一例として、基地局401には送信アンテナポート#0~#3、移動端末402には受信アンテナポート#0~#3により構成されている通信システムを示す図である。 本発明の第2の実施形態の一例として、基地局501には送信アンテナポート#0~#3、移動端末502には受信アンテナポート#0~#3により構成されている通信システムを示す図である。 本発明の第3の実施形態の一例として、基地局601には送信アンテナポート#0~#3、移動端末602には受信アンテナポート#0~#3により構成されている通信システムを示す図である。 本発明の第4の実施形態の一例として、基地局701には送信アンテナポート#0~#3、移動端末702には受信アンテナポート#0~#3により構成されている通信システムを示す図である。 本発明の第5の実施形態の一例として、基地局801には送信アンテナポート#0~#3、移動端末802には受信アンテナポート#0~#3により構成されている通信システムを示す図である。 本発明の第6の実施形態に係る無線通信システムの概略図である。 本発明の第6の実施形態に係る無線通信システムのアンテナ数に着目した概略図である。 本発明の第6の実施形態の一例として、基地局901-1には送信アンテナポート#1-0~#1-3、基地局901-2には送信アンテナポート#2-0~#2-1、移動端末902には受信アンテナポート#0~#3により構成されている通信システムを示す図である。 本発明の第7の実施形態の一例として、基地局1001には送信アンテナポート#0~#3、移動端末1002には受信アンテナポート#0~#3により構成されている通信システムを示す図である。 本発明の第8の実施形態の一例を示しており、N種類の合成処理を行なうパターンを予め規定しておき、移動端末1102は基地局1101に対して、N種類の合成パターンのいずれかにより合成処理を行ない、フィードバックする様子を示す図である。 基地局100から移動端末110へのデータ伝送を行なう下り回線(ダウンリンク、下りリンク)を考えた場合の適応制御を行なう一例を示すブロック図である。
 図15は、基地局100から移動端末110へのデータ伝送を行なう下り回線(ダウンリンク、下りリンク)を考えた場合の適応制御を行なう一例を示すブロック図である。基地局100では、まず、多重部102において、基地局固有の伝送路状況測定用参照信号(RS (Reference Signal)、パイロット信号、既知信号)を、移動端末110のためのデータ信号または他の移動端末110のためのデータ信号に多重して、送信アンテナ(送信アンテナ部)103から送信する。
 移動端末110では、分離部112において、受信アンテナ(受信アンテナ部)111で受信した信号から伝送路状況測定用参照信号を分離する。フィードバック情報生成部113において、その伝送路状況測定用参照信号に基づいて、フィードバック情報を生成し、送信アンテナ114から上り回線(アップリンク、上りリンク)を通じて送信する。基地局100では、フィードバック情報処理部105において、受信アンテナ104が受信した信号から移動端末110が送信したフィードバック情報を識別し、処理する。適応制御部101では、受信したフィードバック情報に基づいて、移動端末110に対するデータ信号に適応制御を行なう。以下、本発明の実施形態について図面を参照して説明する。
 (第1の実施形態)
 以下、本発明の第1の実施形態について説明する。第1の実施形態における通信システムは、基地局(送信装置、セル、送信点、送信アンテナ群、第1の通信装置、サービング基地局、eNodeB、基地局装置)および移動端末(受信点、受信端末、受信装置、第2の通信装置、UE(User Equipment)、端末装置)を備える。
 図1は、本発明の基地局200の構成を示す概略ブロック図である。図1において、基地局200は、符号部201、スクランブル部202、変調部203、レイヤーマッピング部204、プレコーディング部205、リソースエレメントマッピング部206、OFDM信号生成部207、送信アンテナ208、伝送路状況測定用参照信号生成部209、受信アンテナ210、受信信号処理部211、フィードバック情報処理部212、データ信号復調用参照信号生成部213を備えている。受信アンテナ210には、移動端末300(図3、後述)から送信されたフィードバック情報を含むデータ信号が上り回線(例えばPUCCH (Physical Uplink Control CHannel)、PUSCH (Physical Uplink Shared CHannel)など)を通して受信される。
 受信信号処理部211では、受信アンテナ210が受信した信号に対して、OFDM復調処理、復調処理、復号処理など、移動端末300が送信のために行なった送信処理に対する受信処理を行ない、受信した信号の中から、フィードバック情報を識別し、フィードバック情報処理部212に出力する。なお、当該基地局200と通信を行なう移動端末300が複数存在する場合は、上り回線として、SC-FDMA (Single Carrier-Frequency Division Multiple Access)、Clusterd SC-FDMA、OFDMA、時間分割多元接続、符号分割多元接続など、様々な多元接続方式を用いて、複数の移動端末300を多重できる。
 また、基地局200において、移動端末300毎のフィードバック情報を識別する方法として、様々な方法を用いることができる。例えば、基地局200において、各移動端末300がフィードバック情報を送信するリソース(時間、周波数、符号、空間領域などで分割された信号伝送するための要素)を指定し、移動端末300はその指定されたリソースでフィードバック情報を送信することで、基地局200は識別できる。また、それぞれのフィードバック情報には移動端末300毎に固有の識別番号などを付加することでも実現できる。
 フィードバック情報処理部212では、入力されたエクスプリシットCSI、CQI、PMI、RIなどのフィードバック情報に基づいて、当該移動端末300へ送信するデータ信号に様々な適応制御を行なうための適応制御情報を生成する。基地局200における適応制御情報を生成し、基地局200における符号部201、変調部203、レイヤーマッピング部204、プレコーディング部205、リソースエレメントマッピング部206に出力する。
 ここで、フィードバック情報に基づいた適応制御の方法を説明する。まず、フィードバック情報として、基地局200に対する推奨送信フォーマット情報が入力された場合、基地局200および移動端末300共に既知の送信フォーマットが予めインデックス化されているものとし、基地局200はその送信フォーマットに基づいて適応制御する。具体的には、CQIは符号化率および変調方式を示す情報のため、それぞれ符号部201および変調部203を制御でき、PMIはプレコーディング行列を示す情報のため、プレコーディング部205を制御でき、RIはレイヤー(ランク)数を示す情報のため、レイヤーマッピング部204やコードワードを生成する上位層に対して制御できる。また、リソースへのマッピングに関するフィードバック情報も含まれる場合、リソースエレメントマッピング部206に対して制御することもできる。なお、これらの適応制御は、必ずしも受信した推奨送信フォーマット情報に従う必要はなく、他の移動端末の状況や通信システムの状況など様々な要因に基づいて決定することができる。
 次に、フィードバック情報として、伝送路状況を示す情報(エクスプリシットCSI)が入力された場合、基地局200において適応制御を決定することができる。例えば、フィードバックされた情報に基づいて移動端末300が受信したときの電力を最大になるようにプレコーディング行列を決定し、その時の最適な符号化率および変調方式、レイヤー数を決定できるが、その方法は様々なものを用いることができる。
 符号部201には、図示しない送信装置の上位層の処理装置から入力された送信する1以上のコードワード(送信データ信号、情報データ信号)が入力される。それぞれのコードワードは、ターボ符号、畳込み符号、LDPC(Low Density Parity Check)符号などの誤り訂正符号により符号化され、スクランブル部202に出力する。ここで、コードワードはHARQ(Hybrid Automatic Repeat reQuest)などの再送制御を行なう処理単位、誤り訂正符号化を行なう処理単位、あるいはそれらの単位を複数まとめたものなどを用いてもよい。
 スクランブル部202は、基地局200毎に異なるスクランブル符号を生成し、符号部201が符号化した信号に対して、生成したスクランブル符号を用いてスクランブル処理を行なう。変調部203は、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)などの変調方式を用いて、スクランブル処理を行なった信号に変調処理を行ない、レイヤーマッピング部204に出力する。データ信号復調用参照信号生成部213は、移動端末300で情報データ信号を復調するための参照信号として、各レイヤー(ランク、空間多重)間で直交するデータ信号復調用参照信号(Dm-RS (Demodulation Reference Signal)、DRS (Dedicated Reference Signal)、Precoded RS、ユーザ固有参照信号、UE-specific RS)を生成し、レイヤーマッピング部204に出力する。
 このとき、データ信号復調用参照信号は、基地局200および移動端末300が共に既知の信号であれば、任意の信号(系列)を用いることができる。例えば、基地局200に固有の番号(セルID)やその移動端末300に固有の番号(RNTI;Radio Network Temporary Identifier)などの予め割り当てられているパラメータに基づいた乱数や疑似雑音系列(例えば、M (Maximum-length)系列、Gold符号、直交Gold符号、Walsh符号、OVSF (Orthogonal Variable Spreading Factor)符号、Hadamard符号、Barker符号などを用いることができ、さらにそれらの系列を巡回的にシフトした系列や巡回的に拡張した系列を用いてもよい。また、計算機などを用いて自己相関特性や相互相関特性に優れた系列を探索したものを用いてもよい。)を用いることができる。また、レイヤー間で直交させる方法として、データ信号復調用参照信号をマッピングするリソースエレメントをレイヤー間で互いにヌル(ゼロ)とする方法(例えば、時間分割多重や周波数分割多重など)、疑似雑音系列を用いた符号分割多重する方法などを用いることができる。
 レイヤーマッピング部204は、データ信号復調用参照信号生成部213から入力されたデータ信号復調用参照信号を、MIMOなどの空間多重を行なうレイヤーのそれぞれにマッピングする。さらに、データ信号復調用参照信号を除いたリソースエレメントに、それぞれの変調部203が出力した信号を、レイヤー毎にマッピングする。例えば、コードワード数が2で、レイヤー数を8であるとすると、それぞれのコードワードを4つの並列信号に変換することでレイヤー数を8にすることなどが考えられるが、これに限るものではない。
 プレコーディング部205は、レイヤーマッピング部204が出力した信号を、プレコーディング処理を行ない、アンテナポート(送信アンテナ、論理ポート)数の並列信号に変換する。ここで、プレコーディング処理は、予め決められたプレコーディング行列による処理、CDD (Cyclic Delay Diversity)、送信ダイバーシチ(SFBC (Spatial Frequency Block Code)、STBC (Spatial Time Block Code)、TSTD (Time Switched Transmission Diversity)、FSTD (Frequency Switched Transmission Diversity)など)を用いることができるがこれに限るものではない。
 伝送路状況測定用参照信号生成部209は、基地局200と移動端末300との間(具体的には、送信アンテナ208と受信アンテナ301(図3、後述)との間)の伝送路状況を測定するために、基地局200および移動端末300で互いに既知の伝送路状況測定用参照信号(セル固有参照信号、CRS (Common RS)、Cell-specific RS、Non-precoded RS)を生成し、リソースエレメントマッピング部206に出力する。このとき、伝送路状況測定用参照信号は、基地局200および移動端末300が共に既知の信号であれば、任意の信号(系列)を用いることができる。例えば、基地局200に固有の番号(セルID (Identification))などの予め割り当てられているパラメータに基づいた乱数や疑似雑音系列を用いることができる。また、アンテナポート間で直交させる方法として、伝送路状況測定用参照信号をマッピングするリソースエレメントをアンテナポート間で互いにヌル(ゼロ)とする方法、疑似雑音系列を用いた符号分割多重する方法などを用いることができる。
 リソースエレメントマッピング部206は、プレコーディング部205が出力した送信データ信号、伝送路状況測定用参照信号生成部209が出力した伝送路状況測定用参照信号を、それぞれのアンテナポートのリソースエレメントにマッピングを行なう。
 図2は、レイヤーマッピング部204およびリソースエレメントマッピング部206がマッピングするデータ信号復調用参照信号、伝送路状況測定用参照信号、情報データ信号または制御情報信号の一例を示す図である。図2はアンテナポート数が4、レイヤー数が2のときに、それぞれの信号をマッピングした場合を示している。また、周波数方向に12のサブキャリアと、時間方向に14のOFDMシンボルで構成される1つのリソースブロックを表している。1つのOFDMシンボルのうち、それぞれのサブキャリアをリソースエレメントとも呼ぶ。それぞれのサブフレームのうち、時間方向に前後の7つのOFDMシンボルをそれぞれスロットとも呼ぶ。
 図中の白色以外のリソースエレメントのうち、レイヤー番号0~1のデータ信号復調用参照信号をそれぞれD0~D1、アンテナポート#0~#3の伝送路状況測定用参照信号をそれぞれC0~C3と表わしている。また、それぞれのレイヤーおよびアンテナポートにマッピングした参照信号のリソースエレメントでは、それ以外のレイヤーおよびアンテナポートにおけるリソースエレメントに何も信号を割り当てず、ゼロ(ヌル)とすることでレイヤーおよびアンテナポート間を直交させている。なお、レイヤーおよびアンテナポート間を直交させる他の方法として、疑似雑音系列を用いた符号分割多重を適用することもできる。
 なお、リソースブロックのOFDMシンボル数を変えることもできる。例えば、長いガードインターバル長を付加する場合は1つのスロットのOFDMシンボル数を6とすることができる。さらに、図中の参照信号をマッピングしたリソースエレメント以外のリソースエレメントに、情報データ信号または制御情報信号をマッピングする。なお、この例では、情報データ信号または制御情報信号のレイヤー数は最大2とすることができ、例えば、情報データ信号のレイヤー数を2、制御情報信号のレイヤー数を1とすることができる。
 ここで、リソースブロックは、通信システムが用いる周波数帯域幅(システム帯域幅)に応じて、その数を変えることができる。例えば、6~110個のリソースブロックを用いることができ、さらに、周波数アグリゲーションにより、全システム帯域幅を110個以上にすることも可能である。通常コンポーネントキャリアは100物理リソースブロックで構成し、コンポーネントキャリア間にガードバンドをはさんで、5個のコンポーネントキャリアで、全システム帯域幅を500物理リソースブロックにすることができる。これを、帯域幅で表現すると、例えば、コンポーネントキャリアは20MHzで構成し、コンポーネントキャリア間にガードバンドをはさんで、5個のコンポーネントキャリアで、全システム帯域幅を100MHzにすることができる。なお、コンポーネントキャリア間にさらにサブキャリアを配置することもできる。
 OFDM信号生成部207は、リソースエレメントマッピング部206が出力した周波数領域の信号を、逆高速フーリエ変換(IFFT (Inverse Fast Fourier Transform))などにより周波数時間変換処理を行ない、時間領域の信号に変換する。さらに、それぞれのOFDMシンボルの一部を巡回的に拡張することでガードインターバル(サイクリックプレフィックス)を付加する。送信アンテナ208は、OFDM信号生成部207が出力した信号を、ベースバンドから無線周波数への変換処理などをした後、送信する。
 図3は、本発明の移動端末300の構成を示す概略ブロック図である。図3において、移動端末300は、受信アンテナ301、OFDM信号復調部302、リソースエレメントデマッピング部303、フィルタ部304、レイヤーデマッピング部305、復調部306、デスクランブル部307、復号部308、伝送路推定部309、フィードバック情報生成部310(伝送路状況測定部)、送信信号生成部311、送信アンテナ312を備えている。移動端末300は少なくとも1つの受信アンテナ数の受信アンテナ301を備えており、受信アンテナ301は、基地局200が送信し、伝送路(伝搬路、チャネル)を通った信号を受信し、無線周波数からベースバンド信号への変換処理などを行なう。OFDM信号復調部302は、付加したガードインターバルを除去し、高速フーリエ変換(FFT (Fast Fourier Transform))などにより時間周波数変換処理を行ない、周波数領域の信号に変換する。
 このとき、第k番目のサブキャリアにおける受信信号は以下のように表わされる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ただし、NTLは送信レイヤー数、Nは受信アンテナ数、R(k)は各受信アンテナに対応する受信信号、S(k)は各送信レイヤーに対応する送信信号(情報データ信号または制御情報信号)、N(k)は各受信アンテナに対応する雑音、HDm(k)は各受信アンテナおよび各送信レイヤーに対応する周波数応答、Tは転置行列を表わしている。HDm(k)の各要素HDm;z,y(k)は、送信レイヤーz(z=0, … , NTL-1)に対する受信アンテナポートy(y=0, … , NR-1)の周波数応答を表わしている。なお、HDm(k)はデータ信号復調用参照信号から推定されることが好ましい。リソースエレメントデマッピング部303は、基地局200でマッピングした信号をデマッピング(分離)し、情報データ信号をフィルタ部304に、伝送路状況測定用参照信号をフィードバック情報生成部310に、データ信号復調用参照信号を伝送路推定部309にそれぞれ出力する。
 伝送路推定部309では、入力されたデータ信号復調用参照信号に基づいて、各受信アンテナ301の各レイヤーに対する、それぞれのリソースエレメントにおける振幅と位相の変動(周波数応答、伝達関数)を推定(伝送路推定)し、伝送路推定値を求める。なお、データ信号復調用参照信号がマッピングされていないリソースエレメントは、データ信号復調用参照信号がマッピングされたリソースエレメントに基づいて、周波数方向および時間方向に補間し、伝送路推定を行なう。その補間方法としては、線形補間、放物線補間、多項式補間、ラグランジュ補間、スプライン補間、FFT補間、最小平均二乗誤差(MMSE (Minimum Mean Square Error))補間などの様々な方法を用いることができる。
 フィルタ部304では、リソースエレメントデマッピング部303が出力した受信アンテナ301毎のデータ信号に対して、伝送路推定部309が出力した伝送路推定値を用いて、伝搬路補償を行ない、送信信号S(k)を検出する。その検出方法としては、ZF(Zero Forcing)基準やMMSE基準の方法などを用いることができる。たとえば、ZF基準またはMMSE基準の検出に用いる重み係数をそれぞれMZFまたはMMMSEとすると、以下の重み係数を用いることができる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ただし、H^(k)は推定された周波数応答、H^(k)はH^(k)の複素共役転置行列、-1は逆行列、σ^2は雑音電力、INRはN×Nの単位行列を表している。それらの重み係数M(k)を用いて送信レイヤー毎の送信信号を推定する。推定された送信信号をS^(k)とすると、以下のように検出することができる。
Figure JPOXMLDOC01-appb-M000008
 また、その他の検出方法として、MLD(Maximum Likelihood Detection)に基づく方法(例えば、QRM-MLD (QR decomposition and M-algorithm MLD)など)、SIC(Successive Interference Cancellation)に基づく方法(例えば、Turbo SIC、MMSE-SIC、ZF-SIC、BLAST (Bell Laboratories Layered Space-Time architecture)など)、PIC(Parallel Interference Cancellation)に基づく方法なども適用できる。レイヤーデマッピング部305は、レイヤー毎の信号をそれぞれのコードワードにデマッピング処理を行なう。復調部306は、基地局200で用いた変調方式に基づいて復調を行なう。デスクランブル部307は、基地局200で用いたスクランブル符号に基づいて、デスクランブル処理を行なう。復号部308は、基地局200で施した符号化方法に基づいて、誤り訂正復号処理を行ない、図示しない移動端末300の上位層の処理装置へ出力する。一方、フィードバック情報生成部310は、リソースエレメントデマッピング部303が出力した伝送路状況測定用参照信号に基づいて、フィードバック情報を生成する。
 図4は、本発明のフィードバック情報生成部310の構成を示す概略ブロック図である。図4において、フィードバック情報生成部310は、伝送路状況推定値算出部3101、グルーピング部3102を備えている。フィードバック情報を生成する方法として、受信した伝送路状況測定用参照信号を用いて、それぞれの送信アンテナポートに対するそれぞれの受信アンテナポートの周波数応答、受信信号電力対干渉・雑音電力比(SINR (Signal to Interference plus Noise power Ratio))、受信信号電力対干渉電力比(SIR (Signal to Interference power Ratio))、受信信号電力対雑音電力比(SNR (Signal to Noise power Ratio))、パスロスなどを測定し、それらを用いて生成することができる。
 また、フィードバック情報を生成する単位として、周波数方向(例えば、サブキャリア毎、リソースエレメント毎、リソースブロック毎、複数のリソースブロックで構成されるサブバンド毎など)、時間方向(例えば、OFDMシンボル毎、サブフレーム毎、スロット毎、無線フレーム毎など)、空間方向(例えば、アンテナポート毎、送信アンテナ毎、受信アンテナ毎など)などを用いることができ、さらにそれらを組み合わせることもできる。送信信号生成部311は、フィードバック情報生成部310が出力したフィードバック情報を基地局200に送信(フィードバック)するために、符号化処理、変調処理、送信信号生成処理などを行ない、送信信号を生成する。送信アンテナ312は、送信信号生成部311が生成したフィードバック情報を含む送信信号を上り回線を通じて、基地局200に送信する。
 さらに、移動端末300におけるフィードバック情報を生成する際の詳細手順について説明する。まず、フィードバック情報として、エクスプリシットCSIを求める場合を説明する。伝送路状況推定値算出部3101において、それぞれの送信アンテナポートに対するそれぞれの受信アンテナポートにおける伝送路状況を求める。そのときの第k番目のサブキャリアにおける周波数応答は以下のように表わされる。
Figure JPOXMLDOC01-appb-M000009
 ただし、Nは送信アンテナ数、Nは受信アンテナ数、H(k)は各受信アンテナおよび各送信アンテナに対応する周波数応答を表わしている。H(k)の各要素Hx,y(k)は、送信アンテナポートx(x=0, … , NT-1)に対する受信アンテナポートy(y=0,… , NR-1)の周波数応答を表わしている。なお、H(k)は伝送路状況測定用参照信号から推定されることが好ましい。
 このとき、グルーピング部3102において、エクスプリシットCSIのフィードバック情報量を削減するために、送信アンテナポートおよび受信アンテナポートの両方またはいずれか一方のアンテナポートのうち、少なくとも2つのアンテナポートの周波数応答を合成処理(グルーピング)する。ここで、合成処理とは、加算、乗算、平均演算(相加平均、相乗平均を含む)、比較演算(最大、最小、選択を含む)など様々な処理を行なうことができる。また、合成処理を行なうアンテナポートに対して重みづけを行なってもよく、例えば、伝送路状況の良好なアンテナポートの重みを大きくすることができるが、これに限るものではない。以下では、合成処理として加算を行なう場合を説明する。
 図5は、本発明の第1の実施形態の一例として、基地局401には送信アンテナポート#0~#3、移動端末402には受信アンテナポート#0~#3により構成されている通信システムを示す図である。そのときの第k番目のサブキャリアにおける周波数応答は以下のように表わされる。
Figure JPOXMLDOC01-appb-M000010
 移動端末402において、フィードバック情報を生成する際に、送信アンテナポート#0~#3および受信アンテナポート#0~#3のうちの予め規定された2ポートずつをそれぞれ合成処理する。例えば、送信アンテナポート#0と#2、送信アンテナポート#1と#3をそれぞれ合成処理し、さらに受信アンテナポート#0と#2、受信アンテナポート#1と#3をそれぞれ合成処理する。そのときの周波数応答H’(k)は以下のように表わされる。
Figure JPOXMLDOC01-appb-M000011
 移動端末402は、合成処理された周波数応答H’(k)に基づいて、エクスプリシットCSIを生成する。このとき、フィードバック情報として、周波数応答H’(k)をそのまま用いてもよく、さらに振幅量子化、位相量子化、固有値分解、DCTなどの直交変換、ベクトル量子化などの手法を適用することもできる。なお、送信アンテナポートのみを合成処理した周波数応答に基づいてエクスプリシットCSIを生成してもよく、例えば、送信アンテナポート#0と#2、送信アンテナポート#1と#3をそれぞれ合成処理したときの周波数応答は以下のように表わされる。
Figure JPOXMLDOC01-appb-M000012
 なお、受信アンテナポートのみを合成処理した周波数応答に基づいてエクスプリシットCSIを生成してもよく、例えば、受信アンテナポート#0と#2、受信アンテナポート#1と#3をそれぞれ合成処理したときの周波数応答は以下のように表わされる。
Figure JPOXMLDOC01-appb-M000013
 以上のように、送信アンテナポートおよび受信アンテナポートの両方またはいずれか一方のアンテナポートのうち、少なくとも2つのアンテナポートの周波数応答を合成処理することにより、フィードバック情報の情報量を大幅に削減することができる。
 また、フィードバック情報として、既に説明した合成処理を行った周波数応答に基づいて、インプリシットCSIを求めることもできる。特にSINRに基づいたCQI、PMI、RIを求める手順を説明する。なお、CQIおよびPMIはそれぞれ複数種類のパターン(インデックス化)として予め設定しておき、そのパターンに最も近いものを選択することもできる。インプリシットCSIを求めるための伝送路状況推定値として、既に説明した合成処理を行った周波数応答を用いる。RIを決定する場合は、固有値分解などの手法を用いて、レイヤー数を決定する。このとき、合成処理をした後の周波数応答行列の行数と列数の少ない方をレイヤー数の最大とすることが好ましい。
 PMIを決定する場合は、合成処理した後の周波数応答に基づいて、最適な受信状態となるようにプレコーディング行列を求める。ここで、最適な受信状態として、例えば受信電力が最大になる状態であったり、他の基地局や他の移動端末からの干渉電力が小さい(干渉キャンセラ等を用いた場合も含む)状態などとすることができる。なお、固有値分解などの手法を用いて求めることもできる。CQIを決定する場合は、SINRに対して所要品質を満たすCQIのルックアップテーブルを予め設定しておき、決定したRIおよびPMIを用いたときのSINRを求め、ルックアップテーブルからCQIを決定する。そのとき、移動端末402における誤り率が0.1となるようにCQIを決定することが好ましい。
 以上のように、送信アンテナポートおよび受信アンテナポートの両方またはいずれか一方のアンテナポートのうち、少なくとも2つのアンテナポートの周波数応答を合成処理した周波数応答を用いて、インプリシットCSIを求めることによって、例えば、PMIなどのルックアップテーブルの数を削減することができ、フィードバック情報量を削減させることができる。また、フィードバック情報量を同じとした場合、プレコーディング処理の精度をさらに高めることができる。
 次に、以上で説明したようなフィードバック情報を用いた、基地局401の移動端末402に対する送信データ信号の送信に関して説明する。その送信方法としては様々な方法を用いることができる。例えば、図5で示した通信システムにおいて、送信アンテナポート#0~#3のうち、送信アンテナポート#0および#1、送信アンテナポート#2および#3をそれぞれ合成処理(グルーピング)した場合を説明する。基地局401は、その移動端末402に対して送信アンテナポート#0および#1、送信アンテナポート#2および#3のそれぞれが同じプレコーディング処理をするようなプレコーディング重みを生成し、移動端末402に対する送信データ信号にそのプレコーディング重みを乗算し、送信する。また、グルーピングした送信アンテナポート間でさらに循環遅延ダイバーシチ(CDD: Cyclic Delay Diversity)などのプレコーディング処理をすることができる。その場合は基地局401または移動端末402において、グルーピングした送信アンテナポート間でのプレコーディング処理を考慮することが好ましい。
 第1の実施形態で説明した発明を用いることにより、移動端末402から基地局401に対するエクスプリシットCSIやインプリシットCSIなどのフィードバック情報の情報量を大幅に削減することができる。また、例えばパワーアンプの観点から、基地局401における送信アンテナポートの全てから信号を出力するようなシステムにおいて、それらの一部を止めることなく、基地局401から移動端末402へのデータ送信を実現することができる。
 なお、以上の説明では、送信アンテナポートまたは受信アンテナポートに対する合成処理について説明したが、各送信アンテナポートと各受信アンテナポート間のそれぞれの伝送路状況(伝送路状況推定値)に対する合成処理とすることと同等である。なお、以上の説明では、フィードバック情報を生成する際に、伝送路状況測定用参照信号を用いる場合を説明したが、データ信号復調用参照信号を用いて生成したフィードバック情報を送信してもよい。例えば、データ信号復調用参照信号を用いて、CQI、RI、CSIなどを生成することができる。なお、送信アンテナポートまたは受信アンテナポートのうち、それぞれ一部のアンテナポートのみを合成処理してもよいし、それぞれ全てのアンテナポートを合成処理してもよい。
 (第2の実施形態)
 以下、本発明の第2の実施形態について説明する。第2の実施形態における通信システムは、第1の実施形態における通信システムと同様の構成を備える。そのため、以下では、第1の実施形態と異なる点について説明する。第2の実施形態では、フィードバック情報を生成するときに、コードワードに基づいて、アンテナポートに対する合成処理を行った伝送路状況推定値(周波数応答)を用いる。例えば、同一のコードワードを出力しているアンテナポートを合成処理することができる。
 図6は、本発明の第2の実施形態の一例として、基地局501には送信アンテナポート#0~#3、移動端末502には受信アンテナポート#0~#3により構成されている通信システムを示す図である。また、基地局501において、送信アンテナポート#0および#1はコードワード#0から、送信アンテナポート#2および#3はコードワード#1から、それぞれ出力されている。そのとき、移動端末502では、送信アンテナポート#0および#1、送信アンテナポート#2および#3をそれぞれ合成処理し、その周波数応答に基づいて、フィードバック情報を生成する。
 なお、一部の送信アンテナポートのみを合成処理してもよく、例えば、コードワード#0を出力している送信アンテナポート#0および#1のみを合成処理してもよい。なお、第1の実施形態でも説明したように、予め規定された少なくとも2つの受信アンテナポートの周波数応答をさらに合成処理してもよい。
 (第3の実施形態)
 以下、本発明の第3の実施形態について説明する。第3の実施形態における通信システムは、第1の実施形態における通信システムと同様の構成を備える。そのため、以下では、第1の実施形態と異なる点について説明する。第3の実施形態では、フィードバック情報を生成するときに、アンテナ構成に基づいた合成処理、特にアンテナ相関に基づいてアンテナポートに対する合成処理を行った伝送路状況推定値(周波数応答)を用いる。例えば、送信アンテナのアンテナ相関が高いアンテナポートを合成処理することができる。
 図7は、本発明の第3の実施形態の一例として、基地局601には送信アンテナポート#0~#3、移動端末602には受信アンテナポート#0~#3により構成されている通信システムを示す図である。また、基地局601において、送信アンテナポート#0および#1、送信アンテナポート#2および#3のそれぞれのアンテナ間隔は0.5波長とアンテナ相関が高く、送信アンテナポート#1および#2のアンテナ間隔は10波長とアンテナ相関が低くなっている。そのとき、移動端末602では、送信アンテナポート#0および#1、送信アンテナポート#2および#3をそれぞれ合成処理し、その周波数応答に基づいて、フィードバック情報を生成する。
 なお、一部の送信アンテナポートのみを合成処理してもよく、例えば、アンテナ相関の高い送信アンテナポート#0および#1のみを合成処理してもよい。なお、アンテナ相関の低いアンテナポート毎に合成処理をしてもよい。なお、第1の実施形態でも説明したように、予め規定された少なくとも2つの受信アンテナポートの周波数応答をさらに合成処理してもよい。特に、第3の実施形態で説明したように、受信アンテナ301のアンテナ相関に基づいて、合成処理をしてもよい。
 (第4の実施形態)
 以下、本発明の第4の実施形態について説明する。第4の実施形態における通信システムは、第1の実施形態における通信システムと同様の構成を備える。そのため、以下では、第1の実施形態と異なる点について説明する。第4の実施形態では、フィードバック情報を生成するときに、アンテナ構成に基づいた合成処理、特に交差偏波アンテナを用いたときのアンテナ偏波に基づいて、アンテナポートに対する合成処理を行った伝送路状況推定値(周波数応答)を用いる。例えば、送信アンテナ208のアンテナ偏波が同一のアンテナポートを合成処理することができる。
 図8は、本発明の第4の実施形態の一例として、基地局701には送信アンテナポート#0~#3、移動端末702には受信アンテナポート#0~#3により構成されている通信システムを示す図である。また、基地局701において、送信アンテナポート#0および#1、送信アンテナポート#2および#3はそれぞれ交差偏波アンテナを構成している。送信アンテナポート#0および#2は水平偏波、送信アンテナポート#1および#3は垂直偏波とする。そのとき、移動端末702では、送信アンテナポート#0および#2、送信アンテナポート#1および#3をそれぞれ合成処理し、その周波数応答に基づいて、フィードバック情報を生成する。
 なお、一部の送信アンテナポートのみを合成処理してもよく、例えば、同一偏波の送信アンテナポート#0および#2のみを合成処理してもよい。なお、異なる偏波の送信アンテナポートをそれぞれ合成処理してもよく、特に交差偏波アンテナ毎に合成処理をしてもよい。なお、第1の実施形態でも説明したように、予め規定された少なくとも2つの受信アンテナポートの周波数応答をさらに合成処理してもよい。特に、第4の実施形態で説明したように、受信アンテナ301の偏波に基づいて、合成処理をしてもよい。
 (第5の実施形態)
 以下、本発明の第5の実施形態について説明する。第5の実施形態における通信システムは、第1の実施形態における通信システムと同様の構成を備える。そのため、以下では、第1の実施形態と異なる点について説明する。第5の実施形態では、フィードバック情報を生成するときに、伝送路状況に基づいて合成処理を行なう送信アンテナポートおよび受信アンテナポートを動的に選択し、選択したアンテナポートに基づいて合成処理を行った伝送路状況推定値(周波数応答)を用いる。
 図9は、本発明の第5の実施形態の一例として、基地局801には送信アンテナポート#0~#3、移動端末802には受信アンテナポート#0~#3により構成されている通信システムを示す図である。そのとき、移動端末802では、伝送路状況に応じて、移動端末802で最適な受信ができるように合成処理を行なう送信アンテナポートおよび受信アンテナポートを選択する。例えば、送信アンテナポート#0および#3、送信アンテナポート#1および#2をそれぞれ合成処理し、さらに受信アンテナポート#0および#2、受信アンテナポート#1および#3をそれぞれ合成処理し、その周波数応答に基づいて、フィードバック情報を生成する。フィードバック情報として、さらに合成処理を行った送信アンテナポートおよび受信アンテナポートのポート番号も通知する。また、選択および通知するポート番号は予め複数種類のパターン(インデックス化)として規定しておくこともできる。
 なお、送信アンテナポートまたは受信アンテナポートのうち、それぞれ一部のアンテナポートのみを合成処理してもよい。
 (第6の実施形態)
 以下、本発明の第6の実施形態について説明する。図10は、本発明の第6の実施形態に係る無線通信システムの概略図である。第6の実施形態における通信システムは、図10で示すように、少なくとも2つの基地局901-1および基地局901-2、移動端末902を備えているが、それらの構成は第1の実施形態における基地局200(図1)および移動端末300(図3)とそれぞれ同様の構成を備える。そのため、以下では、第1の実施形態と異なる点について説明する。
 図10では、基地局901-1および基地局901-2が移動端末902に対して協調通信を行なっている。協調通信を行なうために、両方の基地局901を光ファイバなどの有線回線(X2インターフェース)で接続し、制御情報や送信データ信号の共有などが行なわれる。なお、リレー技術などを用いた無線回線を用いることもできる。また、基地局901-1は移動端末902に対して、基地局901-1における伝送路状況測定用参照信号および移動端末902に対する送信データ信号を送信する。基地局901-2は移動端末902に対して、基地局901-2における伝送路状況測定用参照信号および移動端末902に対する送信データ信号を送信する。それらの信号は基地局901間で協調して送信される。このような協調通信を行なうことにより、基地局901間に位置する移動端末902は同一チャネル間干渉の影響を大幅に低減させることができる。
 図11は、本発明の第6の実施形態に係る無線通信システムのアンテナ数に着目した概略図である。第6の実施形態における通信システムは、図11に示すように、協調通信を行なう基地局901-1、901-2の送信アンテナポートの数が異なる。例えば、基地局901-1が備える送信アンテナポート数は4、基地局901-2が備える送信アンテナポート数は2、移動端末902が備える受信アンテナポート数は4とする。このとき、第6の実施形態では、フィードバック情報を生成するときに、送信アンテナポート数の少ない基地局901に基づいて、送信アンテナポート数の多い基地局901における予め規定された送信アンテナポートを合成処理した伝送路状況推定値(周波数応答)を用いる。
 図12は、本発明の第6の実施形態の一例として、基地局901-1には送信アンテナポート#1-0~#1-3、基地局901-2には送信アンテナポート#2-0~#2-1、移動端末902には受信アンテナポート#0~#3により構成されている通信システムを示す図である。ここで、それぞれの送信アンテナポートから送信される伝送路状況測定用参照信号は独立しており、移動端末902において独立に伝送路状況を測定できるものとする。そのとき、移動端末902では、基地局901-1に対して、送信アンテナポート#1-0および#1-1、送信アンテナポート#1-2および#1-3をそれぞれ合成処理し、その周波数応答に基づいて、フィードバック情報を生成する。また、基地局901-2に対しては、合成処理を行なわず、それぞれの周波数応答に基づいて、フィードバック情報を生成する。なお、フィードバック情報は、それぞれの基地局901に対して送信してもよいし、少なくとも1つの基地局901(例えばサービング基地局やアンカー基地局)に送信してもよい。
 なお、協調通信している複数の基地局901に備えている送信アンテナポートの全ての中から、予め規定された送信アンテナポートを合成処理した周波数応答からフィードバック情報を生成してもよい。なお、第1の実施形態でも説明したように、少なくとも2つの受信アンテナポートの周波数応答をさらに合成処理してもよい。なお、送信アンテナポートまたは受信アンテナポートのうち、それぞれ一部のアンテナポートのみを合成処理してもよい。なお、第6の実施形態における発明は、第2~5の実施形態で説明した通信システムにも適用することができる。
 (第7の実施形態)
 以下、本発明の第7の実施形態について説明する。第7の実施形態における通信システムは、第1の実施形態における通信システムと同様の構成を備える。そのため、以下では、第1の実施形態と異なる点について説明する。第7の実施形態では、フィードバック情報を生成するときに、空間多重数(ランク数、レイヤー数)に基づいて、アンテナポートに対する合成処理を行った伝送路状況推定値(周波数応答)を用いる。例えば、合成処理した後の送信アンテナポートに対するフィードバックの数が、基地局1001または移動端末1002が決定した空間多重数と同じになるように、合成処理を行なうことができる。
 図13は、本発明の第7の実施形態の一例として、基地局1001には送信アンテナポート#0~#3、移動端末1002には受信アンテナポート#0~#3により構成されている通信システムを示す図である。空間多重数が4のとき、移動端末1002では、送信アンテナポート#0~#3を合成処理せず、それぞれの周波数応答に基づいて、フィードバック情報を生成する。空間多重数が3のとき、移動端末1002では、送信アンテナポート#0および#1を合成処理し、送信アンテナポート#2および#3を合成処理せず、それぞれの周波数応答に基づいて、フィードバック情報を生成する。空間多重数が2のとき、移動端末1002では、送信アンテナポート#0および#1、送信アンテナポート#2および#3をそれぞれ合成処理し、それぞれの周波数応答に基づいて、フィードバック情報を生成する。空間多重数が1のとき、移動端末1002では、送信アンテナポート#0~#3を合成処理し、その周波数応答に基づいて、フィードバック情報を生成する。
 なお、以上の説明では、合成処理した後の送信アンテナポートに対するフィードバックの数が、基地局1001または移動端末1002が決定した空間多重数と同じになるように、合成処理を行なう場合を説明したが、空間多重数に基づいて合成処理を行なうアンテナポートを決定されていればよく、これに限るものではない。なお、第1の実施形態でも説明したように、少なくとも2つの受信アンテナポートの周波数応答をさらに合成処理してもよい。なお、第7の実施形態における発明は、第2~6の実施形態で説明した通信システムにも適用することができる。
 (第8の実施形態)
 以下、本発明の第8の実施形態について説明する。第8の実施形態における通信システムは、第1の実施形態における通信システムと同様の構成を備える。そのため、以下では、第1の実施形態と異なる点について説明する。第8の実施形態では、フィードバック情報を生成するときに、予め規定されたアンテナポートに対する合成処理を行った伝送路状況推定値(周波数応答)を用いるが、合成処理を行なうアンテナポートのパターン(コードブック)を複数種類規定しておき、フィードバックするタイミングによって切り替える(選択する)。
 図14は、本発明の第8の実施形態の一例を示しており、N種類の合成処理を行なうパターンを予め規定しておき、移動端末1102は基地局1101に対して、N種類の合成パターンのいずれかにより合成処理を行ない、フィードバックする様子を示す図である。例えば、図5で示したように、基地局1101には送信アンテナポート#0~#3、移動端末1102には受信アンテナポート#0~#3により構成されている通信システムを考える。また、合成パターンは1~3の3種類とする。第1の合成パターンでは、移動端末1102において、送信アンテナポート#0および#1、送信アンテナポート#2および#3をそれぞれ合成処理し、それぞれの周波数応答に基づいて、フィードバック情報を生成する。第2の合成パターンでは、移動端末1102において、送信アンテナポート#0および#2、送信アンテナポート#1および#3をそれぞれ合成処理し、それぞれの周波数応答に基づいて、フィードバック情報を生成する。第3の合成パターンでは、移動端末1102において、送信アンテナポート#0および#3、送信アンテナポート#1および#2をそれぞれ合成処理し、それぞれの周波数応答に基づいて、フィードバック情報を生成する。
 なお、合成パターンとして、受信アンテナポートに対して規定することができ、送信アンテナポートおよび受信アンテナポートの両方に対して規定することができる。移動端末1102では、これらの合成パターンのいずれかをフィードバックするタイミングによって切り替えて用いる。このとき、用いる合成パターンは、フィードバック回数などによって、予め規定しておくことができる。なお、用いる合成パターンは、基地局が指示してもよい。また、移動端末1102が伝送路状況などに基づいて選択してもよく、用いた合成パターンを示す情報をさらにフィードバックすることが好ましい。これにより、動的に合成処理を行なうことができ、良好な特性が実現できる。なお、用いる合成パターンは、フィードバックする(またはフィードバックを指示された)時間方向に対するパラメータ(サブフレーム番号、スロット番号、無線フレーム番号など)に基づいて規定することができる。これにより、用いる合成パターンに関する情報を通知またはフィードバックする必要がなくなり、その情報に関するオーバーヘッドを削減できる。
 なお、以上の説明では、合成パターンの切り替えとして、フィードバックするタイミング(時間方向に対するパラメータ)に基づいていたが、これに限るものではない。例えば、周波数方向に対するパラメータ(サブキャリア、リソースブロック、サブバンド、コンポーネントキャリアなどを含む)に基づいて切り替えてもよい。また、基地局1101に対するパラメータにより切り替えてもよく、例えば、隣接する基地局1101間で切り替えてもよいし、基地局1101の構成によって切り替えてもよいし、協調通信を行なっている基地局1101間で切り替えてもよい。また、移動端末1102に対するパラメータにより切り替えてもよい。また、それらを組み合わせてもよい。なお、第8の実施形態における発明は、第2~7の実施形態で説明した通信システムにも適用することができる。
100、200、401、501、601、701、801、901-1、901-2、1001、1101 基地局
103 送信アンテナ
110、300、402、502、602、702、802、902、1002、1102 移動端末
111、210、301 受信アンテナ
113 フィードバック情報生成部
209 伝送路状況測定用参照信号生成部
310 フィードバック情報生成部
3102 グルーピング部

Claims (22)

  1.  第1の通信装置と第2の通信装置とが無線通信を行なう無線通信システムであって、
     前記第1の通信装置は、
     前記第2の通信装置が伝送路状況を測定するための伝送路状況測定用参照信号を生成する伝送路状況測定用参照信号生成部と、
     送信アンテナポート毎に前記伝送路状況測定用参照信号を前記第2の通信装置に対して送信する送信アンテナ部と、を備え、
     前記第2の通信装置は、
     前記第1の通信装置から送信された前記伝送路状況測定用参照信号を受信アンテナポートで受信する受信アンテナ部と、
     前記受信した伝送路状況測定用参照信号に基づいて、前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の前記伝送路状況推定値に対してグルーピングを行なって前記第1の通信装置に対するフィードバック情報を生成するフィードバック情報生成部と、を備えることを特徴とする無線通信システム。
  2.  前記第2の通信装置に対して協調通信を行なう第1の通信装置を複数備え、
     前記フィードバック情報生成部は、前記各第1の通信装置の送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成することを特徴とする請求項1記載の無線通信システム。
  3.  前記フィードバック情報生成部は、前記フィードバック情報として、前記測定した伝送路状況を示す情報を生成することを特徴とする請求項1または請求項2記載の無線通信システム。
  4.  前記フィードバック情報生成部は、前記フィードバック情報として、前記第1の通信装置に対する推奨送信フォーマット情報を生成することを特徴とする請求項1または請求項2記載の無線通信システム。
  5.  前記フィードバック情報生成部は、予め規定されている伝送路状況推定値に対してグルーピングを行なうことにより、フィードバック情報を生成することを特徴とする請求項1から請求項4のいずれかに記載の無線通信システム。
  6.  前記フィードバック情報生成部は、前記算出したすべての伝送路状況推定値から、グルーピングを行なう伝送路状況推定値を選択し、前記選択した伝送路状況推定値に対してグルーピングを行なうことにより、フィードバック情報を生成することを特徴とする請求項1から請求項4のいずれかに記載の無線通信システム。
  7.  前記フィードバック情報生成部は、前記フィードバック情報として、前記選択した伝送路状況推定値を示す情報をさらに生成することを特徴とする請求項6記載の無線通信システム。
  8.  前記フィードバック情報生成部は、コードワード単位に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴とする請求項5から請求項7のいずれかに記載の無線通信システム。
  9.  前記フィードバック情報生成部は、前記送信アンテナ部または前記受信アンテナ部の少なくとも一方の構成に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴とする請求項5から請求項7のいずれかに記載の無線通信システム。
  10.  前記フィードバック情報生成部は、前記送信アンテナ部と前記受信アンテナ部とのアンテナ相関に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴とする請求項9記載の無線通信システム。
  11.  前記フィードバック情報生成部は、前記送信アンテナ部または前記受信アンテナ部の少なくとも一方の偏波に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴とする請求項9記載の無線通信システム。
  12.  前記フィードバック情報生成部は、前記第1の通信装置が前記第2の通信装置に対して用いる空間多重数に基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴とする請求項5から請求項7のいずれかに記載の無線通信システム。
  13.  前記フィードバック情報生成部は、前記伝送路推定値に対してグルーピングを行なう際の複数の合成パターンを規定し、前記合成パターンのいずれかに基づいて、前記伝送路状況推定値に対してグルーピングを行なうことを特徴とする請求項1から請求項12のいずれかに記載の無線通信システム。
  14.  前記フィードバック情報生成部は、時間軸に関するパラメータ、周波数軸に関するパラメータ、前記第1の通信装置に関するパラメータまたは前記第2の通信装置に関するパラメータのうち、少なくとも1つのパラメータに基づいて、前記合成パターンを選択することを特徴とする請求項13記載の無線通信システム。
  15.  他の通信装置と無線通信を行なう通信装置であって、
     前記他の通信装置の送信アンテナポートから送信された伝送路状況測定用参照信号を受信アンテナポートで受信する受信アンテナ部と、
     前記受信した伝送路状況測定用参照信号に基づいて、前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の前記伝送路状況推定値に対してグルーピングを行なって前記他の通信装置に対するフィードバック情報を生成するフィードバック情報生成部と、を備えることを特徴とする通信装置。
  16.  前記フィードバック情報生成部は、複数の他の通信装置の送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成することを特徴とする請求項15記載の通信装置。
  17.  第1の通信装置と第2の通信装置とが無線通信を行なう無線通信方法であって、
     前記第1の通信装置において、
     前記第2の通信装置が伝送路状況を測定するための伝送路状況測定用参照信号を生成するステップと、
     送信アンテナポート毎に前記伝送路状況測定用参照信号を前記第2の通信装置に対して送信するステップと、
     前記第2の通信装置において、
     前記第1の通信装置から送信された前記伝送路状況測定用参照信号を受信アンテナポートで受信するステップと、
     前記受信した伝送路状況測定用参照信号に基づいて、前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出するステップと、
     複数の前記伝送路状況推定値に対してグルーピングを行なってフィードバック情報を生成するステップと、
     前記生成したフィードバック情報を前記第1の通信装置へ送信するステップと、を少なくとも含むことを特徴とする無線通信方法。
  18.  前記フィードバック情報生成部において、複数の前記第1の通信装置の送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、少なくとも2つの伝送路状況推定値に対してグルーピングを行なって、フィードバック情報を生成することを特徴とする請求項17記載の無線通信方法。
  19.  送信アンテナポートをグルーピングした場合に最適な受信状態となるようなプレコーディング行列を求め、求めたプレコーディング行列を示すフィードバック情報を生成するフィードバック情報生成部を備えることを特徴とする端末装置。
  20.  グルーピングした送信アンテナポートのそれぞれが同じプレコーディング処理をするようなプレコーディング重みであって、最適な受信状態となるようなプレコーディング行列を求め、求めたプレコーディング行列を示すフィードバック情報を生成するフィードバック情報生成部を備えることを特徴とする端末装置。
  21.  前記フィードバック情報生成部は、前記送信アンテナポートに対して交差偏波アンテナ毎にグルーピングを行なうことを特徴とする請求項20に記載の端末装置。
  22.  基地局装置と通信を行なう端末装置であって、
     前記基地局装置の送信アンテナポートから送信された伝送路状況測定用参照信号を受信アンテナポートで受信する受信アンテナ部と、
     前記受信した伝搬路状況測定用参照信号を用いて前記送信アンテナポートと前記受信アンテナポートとの間の伝送路状況を測定して伝送路状況推定値を算出し、複数の前記伝送路状況推定値に対してグルーピングを行なって算出する周波数応答に基づいて、前記基地局装置に対するフィードバック情報を生成するフィードバック情報生成部と、を備えることを特徴とする端末装置。
PCT/JP2010/066085 2009-10-02 2010-09-16 無線通信システム、通信装置、無線通信方法および端末装置 WO2011040258A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080043893.8A CN102577486B (zh) 2009-10-02 2010-09-16 无线通信系统、通信装置、无线通信方法及终端装置
MX2012003828A MX2012003828A (es) 2009-10-02 2010-09-16 Sistema de comunicacion inalambrica, aparato de comunicacion, metodo de comunicacion inalambrica y aparato terminal.
EP10820377.9A EP2485522A4 (en) 2009-10-02 2010-09-16 WIRELESS COMMUNICATION SYSTEM, COMMUNICATION DEVICE, WIRELESS COMMUNICATION PROCESS AND TERMINAL
BR112012007539-0A BR112012007539B1 (pt) 2009-10-02 2010-09-16 terminal móvel, sistema de comunicação, estação base e métodos de comunicação sem fio
EA201270493A EA026041B1 (ru) 2009-10-02 2010-09-16 Система беспроводной связи, устройство связи, способ беспроводной связи и устройство терминала
US13/436,330 US9681322B2 (en) 2009-10-02 2012-03-30 Wireless communication system, communication apparatus, wireless communication method and terminal apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-230623 2009-10-02
JP2009230623A JP5149257B2 (ja) 2009-10-02 2009-10-02 無線通信システム、通信装置および無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/436,330 Continuation US9681322B2 (en) 2009-10-02 2012-03-30 Wireless communication system, communication apparatus, wireless communication method and terminal apparatus

Publications (1)

Publication Number Publication Date
WO2011040258A1 true WO2011040258A1 (ja) 2011-04-07

Family

ID=43826084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066085 WO2011040258A1 (ja) 2009-10-02 2010-09-16 無線通信システム、通信装置、無線通信方法および端末装置

Country Status (8)

Country Link
US (1) US9681322B2 (ja)
EP (1) EP2485522A4 (ja)
JP (1) JP5149257B2 (ja)
CN (1) CN102577486B (ja)
BR (1) BR112012007539B1 (ja)
EA (1) EA026041B1 (ja)
MX (1) MX2012003828A (ja)
WO (1) WO2011040258A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111903065A (zh) * 2018-03-23 2020-11-06 株式会社Ntt都科摩 基站以及发送方法
US20220311484A1 (en) * 2011-04-19 2022-09-29 Sun Patent Trust Pre-coding method and pre-coding device

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8249540B1 (en) 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
WO2011085509A1 (en) * 2010-01-12 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Layer-to dm rs port mapping for lte-advanced
JP5682710B2 (ja) * 2010-09-03 2015-03-11 富士通株式会社 Mimo通信ネットワークにおいて使用される方法及びユーザ装置
JP5578617B2 (ja) * 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
WO2012176460A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 送信装置、送信方法、受信装置および受信方法
US20150072719A1 (en) * 2011-12-13 2015-03-12 Kyocera Corporation Mobile terminal, wireless communication system and wireless communication method
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
CN108736942A (zh) * 2012-04-24 2018-11-02 株式会社Ntt都科摩 码本生成方法
JP6093120B2 (ja) * 2012-07-13 2017-03-08 シャープ株式会社 移動局装置、基地局装置及び通信方法
US9407343B2 (en) * 2012-08-31 2016-08-02 Google Technology Holdings LLC Method and apparatus for mitigating downlink interference
SG2013067723A (en) * 2012-09-07 2014-04-28 Agency Science Tech & Res Method and system for high bandwidth and low power body channel communication
KR101972945B1 (ko) 2012-09-18 2019-04-29 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
EP2926466A1 (en) 2012-11-29 2015-10-07 Corning Optical Communications LLC HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs)
US9882691B2 (en) 2013-02-14 2018-01-30 Lg Electronics Inc. Method and apparatus for providing antenna configuration information for massive multiple input multiple output in a wireless communication system
CN105075139B (zh) * 2013-02-19 2018-06-15 Lg 电子株式会社 在多天线无线通信系统中发送信号的方法及其装置
KR102174636B1 (ko) * 2013-03-14 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2014163397A1 (ko) 2013-04-04 2014-10-09 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
US9680552B2 (en) 2013-04-16 2017-06-13 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN109982342B (zh) * 2013-05-24 2022-03-25 日本电信电话株式会社 无线通信装置以及无线通信方法
US9252854B2 (en) * 2013-06-07 2016-02-02 Industrial Technology Research Institute User equipment having channel quality indicator feedback mechanism
US20160072572A1 (en) * 2013-06-25 2016-03-10 Lg Electronics Inc. Method for performing beamforming based on partial antenna array in wireless communication system and apparatus therefor
JP6151108B2 (ja) * 2013-06-28 2017-06-21 株式会社Nttドコモ 無線基地局、ユーザ端末及び参照信号送信方法
US9350444B2 (en) * 2013-08-22 2016-05-24 Broadcom Corporation Wireless communication device with switched polarization and methods for use therewith
EP3042464B1 (en) 2013-09-06 2020-04-29 Telefonaktiebolaget LM Ericsson (publ) Improved adaptation of transmission format
US20150110210A1 (en) * 2013-10-18 2015-04-23 Nokia Solutions And Networks Oy Channel state information acquisition and feedback for full dimension multiple input multiple output
CN104980247B (zh) * 2014-04-04 2019-11-22 北京三星通信技术研究有限公司 自适应调整调制编码方式和参考信号图样的方法、基站、终端和系统
US9525472B2 (en) * 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
KR102334620B1 (ko) * 2014-09-25 2021-12-03 엘지전자 주식회사 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2016048087A1 (ko) * 2014-09-25 2016-03-31 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 참조 신호 전송 방법 및 이를 위한 장치
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016164146A2 (en) * 2015-03-16 2016-10-13 Lockheed Martin Corporation Apparatus and method for increased data rates in underwater communications using orbital angular momentum
KR20180009776A (ko) * 2015-06-23 2018-01-29 후지쯔 가부시끼가이샤 무선 통신 제어 방법, 무선 통신 시스템, 수신 장치 및 송신 장치
EP3389320A4 (en) 2015-12-31 2018-12-12 Huawei Technologies Co., Ltd. Terminal device and positioning system
JP6729152B2 (ja) * 2016-08-04 2020-07-22 富士通オプティカルコンポーネンツ株式会社 光伝送システムおよび光送信器
US10257105B2 (en) * 2016-12-02 2019-04-09 At&T Intellectual Property I, L.P. Facilitation of physical layer design for 5G networks or other next generation networks
US10090980B2 (en) 2017-01-08 2018-10-02 At&T Intellectual Property I, L.P. Transmission of demodulation reference signals for a 5G wireless communication network or other next generation network
WO2018134838A1 (en) 2017-01-20 2018-07-26 Wisig Networks Private Limited System and method for generating spreaded sequence with low peak-to-average power ratio (papr) waveform
WO2018215052A1 (en) * 2017-05-23 2018-11-29 Huawei Technologies Co., Ltd. Channel state information related feedback reporting and channel state information acquisition
KR102403763B1 (ko) * 2017-06-27 2022-05-30 삼성전자주식회사 무선 통신 시스템에서 명시적 채널 상태 정보 피드백을 위한 피드백 정보 설정하기 위한 방법
CN109787664A (zh) * 2017-11-15 2019-05-21 索尼公司 用于无线通信系统的电子设备、方法、装置和存储介质
US10778298B1 (en) 2019-03-29 2020-09-15 At&T Intellectual Property I, L.P. Context-based precoding matrix computations for radio access network for 5G or other next generation network
US11139868B2 (en) * 2019-11-12 2021-10-05 Nokia Technologies Oy Propagation link selection in telecommunication systems
CN115053498B (zh) * 2020-02-21 2024-05-14 华为技术有限公司 预测信道状态信息的方法及装置
US20230269024A1 (en) * 2020-07-29 2023-08-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal by using multiple antennas in wireless communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035637A1 (ja) * 2004-09-27 2006-04-06 Sharp Kabushiki Kaisha 無線送信装置
JP2007028569A (ja) * 2005-03-31 2007-02-01 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2008506330A (ja) * 2004-07-13 2008-02-28 サムスン エレクトロニクス カンパニー リミテッド 多重アンテナシステムにおけるビームフォーミング装置及び方法
WO2008030806A2 (en) * 2006-09-06 2008-03-13 Qualcomm Incorporated Codeword permutation and reduced feedback for grouped antennas
JP2008061253A (ja) * 2006-08-31 2008-03-13 Samsung Electronics Co Ltd 多重アンテナシステムにおけるデータ送受信装置及び方法とそれを支援するシステム
WO2008133582A2 (en) * 2007-04-30 2008-11-06 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356555B1 (en) * 1995-08-25 2002-03-12 Terayon Communications Systems, Inc. Apparatus and method for digital data transmission using orthogonal codes
WO2003026335A1 (fr) * 2001-09-14 2003-03-27 Fujitsu Limited Systeme de communication mobile, station mobile et station de base
FR2863422A1 (fr) * 2003-12-04 2005-06-10 France Telecom Procede d'emission multi-antennes d'un signal precode lineairement,procede de reception, signal et dispositifs correspondants
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
WO2006123418A1 (ja) * 2005-05-20 2006-11-23 Fujitsu Limited 無線通信装置、移動端末装置及び無線通信方法
US7580445B2 (en) * 2005-08-22 2009-08-25 Nec Laboratories America, Inc. Nonlinear precoding in code-division multiple access communication system
US7949318B2 (en) * 2007-02-05 2011-05-24 Nec Laboratories America, Inc. Multi-rank beamforming precoding apparatus and method
US8111782B2 (en) 2006-08-31 2012-02-07 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a multi-antenna system, and system using the same
EP2147516B1 (en) * 2007-04-20 2015-12-09 InterDigital Technology Corporation Method and apparatus for efficient precoding information validation for mimo communications
US8199840B2 (en) * 2007-04-26 2012-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Multiple-input, multiple-output communication system with reduced feedback
KR101282522B1 (ko) * 2007-06-19 2013-07-04 엘지전자 주식회사 다중 안테나 시스템에서 제어정보 전송 방법
US8160601B2 (en) * 2007-06-21 2012-04-17 Elektrobit Wireless Communications Ltd. Method for optimizing spatial modulation in a wireless link and network element thereto
WO2009041069A1 (ja) * 2007-09-28 2009-04-02 Panasonic Corporation 基地局装置、移動局装置、通信システム、チャネル推定方法、送信アンテナ検出方法及びプログラム
KR100995045B1 (ko) * 2007-12-31 2010-11-19 엘지전자 주식회사 협동 다중 입출력 통신 시스템에서, 프리코딩된 신호를송신하는 방법
US8537924B2 (en) * 2008-01-14 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Open loop precoder cycling in MIMO communications
US8811353B2 (en) * 2008-04-22 2014-08-19 Texas Instruments Incorporated Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO)
WO2009153809A2 (en) * 2008-06-18 2009-12-23 Centre Of Excellence In Wireless Technology Precoding for single transmission streams in multiple antenna systems
DK3073665T3 (en) * 2008-06-23 2018-08-13 Sun Patent Trust PROCEDURE FOR ARRANGING REFERENCE SIGNALS AND WIRELESS COMMUNICATION BASES
PL2294769T3 (pl) * 2008-07-01 2013-03-29 Ericsson Telefon Ab L M Sposoby i urządzenie stosujące macierze kodowania wstępnego w systemie telekomunikacyjnym MIMO
US8098750B2 (en) * 2008-07-10 2012-01-17 Infineon Technologies Ag Method and device for transmitting a plurality of data symbols
US8213293B2 (en) * 2008-08-13 2012-07-03 Lg Electronics Inc. Method for implementing transmit diversity at a wireless mobile communication system adopting SC-FDMA scheme
KR101505685B1 (ko) * 2008-09-26 2015-03-25 엘지전자 주식회사 다중셀 무선 네트워크에서 협력적 mimo 동작을 위한 방법 및 장치
US8737507B2 (en) * 2008-11-03 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Method for transmitting of reference signals and determination of precoding matrices for multi-antenna transmission
KR101707680B1 (ko) * 2008-12-21 2017-02-17 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 장치 및 방법
US8472539B2 (en) * 2009-04-07 2013-06-25 Lg Electronics Inc. Method of transmitting power information in wireless communication system
US9154352B2 (en) * 2009-04-21 2015-10-06 Qualcomm Incorporated Pre-communication for relay base stations in wireless communication
US8705510B2 (en) * 2009-04-22 2014-04-22 Lg Electronics Inc. Method for transmitting feedback information and data using a precoding codebook for multicell cooperative communication in a wireless communication system
KR101647377B1 (ko) * 2009-05-22 2016-08-10 엘지전자 주식회사 무선 통신 시스템에서 안테나 전송 전력에 따른 적응적인 다중 안테나 전송 방법 및 장치
CN102474324B (zh) * 2009-09-25 2014-07-16 富士通株式会社 预编码矩阵码书生成方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506330A (ja) * 2004-07-13 2008-02-28 サムスン エレクトロニクス カンパニー リミテッド 多重アンテナシステムにおけるビームフォーミング装置及び方法
WO2006035637A1 (ja) * 2004-09-27 2006-04-06 Sharp Kabushiki Kaisha 無線送信装置
JP2007028569A (ja) * 2005-03-31 2007-02-01 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2008061253A (ja) * 2006-08-31 2008-03-13 Samsung Electronics Co Ltd 多重アンテナシステムにおけるデータ送受信装置及び方法とそれを支援するシステム
WO2008030806A2 (en) * 2006-09-06 2008-03-13 Qualcomm Incorporated Codeword permutation and reduced feedback for grouped antennas
WO2008133582A2 (en) * 2007-04-30 2008-11-06 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8", 3GPP TS 36.213 V8.7.0, May 2009 (2009-05-01)
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Further Advancements for E-UTRA Physical Layer Aspects (Release 9", 3GPP TR 36.814 V1.2.1, June 2009 (2009-06-01)
"Comparison of CSI Feedback Schemes, Rl-092310", 3GPP TSG-RANWG1 #57BIS, June 2009 (2009-06-01)
See also references of EP2485522A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311484A1 (en) * 2011-04-19 2022-09-29 Sun Patent Trust Pre-coding method and pre-coding device
US11695457B2 (en) * 2011-04-19 2023-07-04 Sun Patent Trust Pre-coding method and pre-coding device
CN111903065A (zh) * 2018-03-23 2020-11-06 株式会社Ntt都科摩 基站以及发送方法
CN111903065B (zh) * 2018-03-23 2023-12-05 株式会社Ntt都科摩 基站以及发送方法

Also Published As

Publication number Publication date
BR112012007539A2 (pt) 2020-08-11
MX2012003828A (es) 2012-05-08
EP2485522A1 (en) 2012-08-08
JP5149257B2 (ja) 2013-02-20
CN102577486B (zh) 2015-11-25
US9681322B2 (en) 2017-06-13
EA026041B1 (ru) 2017-02-28
EP2485522A4 (en) 2013-05-01
US20120213111A1 (en) 2012-08-23
EA201270493A1 (ru) 2012-12-28
CN102577486A (zh) 2012-07-11
BR112012007539B1 (pt) 2021-05-18
JP2011082603A (ja) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5149257B2 (ja) 無線通信システム、通信装置および無線通信方法
US11005627B2 (en) Apparatus and method for transmitting a reference signal in a wireless communication system
EP2424137B1 (en) Radio communication system, radio communication device, and radio communication method
WO2010146975A1 (ja) 通信システム、通信装置および通信方法
KR101501714B1 (ko) 미모 무선 통신 시스템에서 오버헤드를 줄이기 위한 장치 및 방법
EP2424123B1 (en) Apparatus and method for transmitting a reference signal in a wireless communication system
JP5180299B2 (ja) 遅延ダイバーシティと空間−周波数ダイバーシティによる送信方法
EP2562951A1 (en) Feedback information transmission method, mobile station device and base station device
CN104662811B (zh) 在多天线无线通信系统中发送有效反馈的方法及其设备
WO2013024742A1 (ja) 端末、基地局、通信システムおよび通信方法
CN105519029A (zh) Ofdm通信系统及信号收发方法与装置
KR20170022938A (ko) 송신 다이버시티를 위한 방법 및 장치
WO2011155360A1 (ja) 移動端末装置、基地局装置、通信システム、および通信方法
WO2010122749A1 (ja) 通信システム、通信装置および通信方法
Song et al. A realistic algorithm design of 128-antenna prototype for massive MIMO

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043893.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/003828

Country of ref document: MX

Ref document number: 2010820377

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201270493

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 3820/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007539

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012007539

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120402