WO2011040250A1 - Actuator, drive device, and camera module - Google Patents

Actuator, drive device, and camera module Download PDF

Info

Publication number
WO2011040250A1
WO2011040250A1 PCT/JP2010/066036 JP2010066036W WO2011040250A1 WO 2011040250 A1 WO2011040250 A1 WO 2011040250A1 JP 2010066036 W JP2010066036 W JP 2010066036W WO 2011040250 A1 WO2011040250 A1 WO 2011040250A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
film
layer
deformation
lens group
Prior art date
Application number
PCT/JP2010/066036
Other languages
French (fr)
Japanese (ja)
Inventor
泰啓 本多
隆 松尾
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011534191A priority Critical patent/JP5056984B2/en
Publication of WO2011040250A1 publication Critical patent/WO2011040250A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to an actuator, and a drive device and a camera module equipped with the actuator.
  • This micro camera unit has a very high demand for miniaturization and price reduction.
  • MCU micro camera unit
  • AF autofocus
  • a substrate, a semiconductor sheet on which a large number of imaging elements are formed, and a lens array sheet on which a large number of imaging lenses are formed are arranged through a resin layer.
  • a technique has been proposed in which a laminated member is formed by pasting, and the laminated member is diced to complete individual camera modules (for example, Patent Document 1). According to this technology, it is possible to cut out hundreds of camera modules from a single wafer-like laminated member, and the matching with the microfabrication process is good. This is considered to contribute greatly to cost reduction.
  • Patent Document 1 it is difficult to arrange an actuator for moving an imaging lens such as a voice coil motor for realizing an AF function in order to stack wafer-like members.
  • an actuator for moving an imaging lens such as a voice coil motor for realizing an AF function
  • the MCU Increase in size and cost.
  • an actuator applicable to a small camera module formed in a wafer state for example, at least one of a piezoelectric element (PZT), a shape memory alloy (SMA), and a bimetal (Bi-metallic layer) is used.
  • PZT piezoelectric element
  • SMA shape memory alloy
  • Bi-metallic layer a bimetal layer
  • the imaging lens is not increased in size and cost. It is conceivable to detect the displacement.
  • the structure used for a general strain gauge etc. can be considered. With respect to the strain gauge, in order to suppress variation between elements, a metal stay or the like is precisely processed to ensure detection accuracy.
  • the present invention has been made in view of the above problems, and an actuator capable of accurately controlling displacement generated in an actuator with a simple configuration regardless of variations in the thickness and film quality of the displacement control thin film generated between the actuators. It is an object of the present invention to provide a driving device and a camera module on which the actuator is mounted.
  • an actuator includes a reference portion and a fixed portion fixed to the reference portion, and a displacement portion that is displaced by deformation according to the application of energy.
  • the movable portion includes a deformation film that is configured using at least one material of a conductor and a semiconductor and is deformed along with the deformation of the movable portion, and the reference portion is the deformation
  • the reference film is formed in the same process using the same material as the film.
  • An actuator according to a second aspect is the actuator according to the first aspect, wherein the first electrically connected to the deformation film and electrically connectable to an element outside the actuator.
  • a terminal portion and a second terminal portion electrically connected to the reference film and electrically connectable to an external element of the actuator, wherein the first and second element portions are , Provided in the reference portion.
  • the actuator according to the third aspect is the actuator according to the first aspect, wherein the reference film and the deformation film are formed simultaneously in the same step.
  • the actuator according to the fourth aspect is the actuator according to any one of the first to third aspects, wherein the reference film and the deformation film have the same thickness and the same crystal state.
  • An actuator according to a fifth aspect is the actuator according to any one of the first to fourth aspects, wherein the reference film and the deformation film are formed as an integral film formed using the same material. included.
  • the actuator according to a sixth aspect is the actuator according to any one of the first to fifth aspects, wherein the movable part includes a base part and a shape memory part configured using a shape memory material. And deforming according to the deformation of the shape memory unit according to the temperature change.
  • An actuator according to a seventh aspect is the actuator according to any one of the first to sixth aspects, wherein the deformable film generates a driving force in response to application of energy, whereby the movable part is Deform.
  • the actuator according to an eighth aspect is the actuator according to any one of the first to fifth aspects, wherein the movable portion includes first and second layers having different thermal expansion coefficients and the deformation film. It has a structure in which a plurality of layers including are laminated and is deformed according to a temperature change.
  • the actuator according to the ninth aspect is the actuator according to any one of the first to eighth aspects, and the deformation film includes a heater portion that generates heat in response to energization.
  • the drive device is determined in accordance with the impedance relation between the actuator according to any one of the first to ninth aspects, the reference film and the deformation film, and the impedance relation. And a control unit that controls a supply amount of the energy applied to the movable unit according to at least one of the electrical information.
  • the drive device according to the eleventh aspect is the drive device according to the tenth aspect, wherein the impedance relationship includes an impedance ratio between the reference film and the deformation film.
  • a drive device is the drive device according to the eleventh aspect, wherein a target value of a ratio of electrical resistance between the reference film and the deformation film with respect to each displacement amount of the displacement portion. Includes a target value storage unit that stores target value information associated with each of the target value information.
  • the control unit supplies the energy to be applied to the movable unit such that a ratio of the electrical resistance matches the target value with respect to a target displacement amount of the displacement unit. Perform feedback control to adjust the amount.
  • a drive device is the drive device according to the twelfth aspect, wherein at least one of the reference film and the deformation film stores a reference value of electric resistance in the reference value storage unit.
  • a reference value storage unit that stores a reference value of the electrical resistance according to the above, and a detection unit that detects an actual electrical resistance value related to at least one of the reference film and the deformation film.
  • a drive device is the drive device according to the thirteenth aspect, wherein the target value information is changed in accordance with a deviation amount from a reference value of the electrical resistance to the actual electrical resistance value. And an information changing unit.
  • a driving apparatus is the driving apparatus according to the thirteenth aspect, wherein an electrical index determined with respect to an impedance relationship between the reference film and the deformation film and the electrical index
  • a control information storage unit for storing control parameter information indicating the relationship between the amount of deviation from the target value of the current and the amount of change in the amount of energy supplied, and from the reference value of the electrical resistance to the value of the actual electrical resistance.
  • An information changing unit that changes the control parameter information in accordance with the amount of deviation.
  • a drive device is the drive device according to any one of the tenth to fifteenth aspects, wherein the reference film and the deformation film are electrically connected in series.
  • a camera module includes a drive device according to any one of the tenth to sixteenth aspects, an image sensor, and an optical system that guides light from a subject to the image sensor.
  • the movable unit moves at least one of the image sensor and the optical system according to the displacement of the displacement unit, thereby reducing the distance between the image sensor and the optical system. change.
  • the actuators according to any of the first to ninth aspects have the same thickness and quality of the reference film and the deformable film.
  • the information relating to the impedance relationship between the reference film and the deformable film Accordingly, the displacement can be controlled with high accuracy. Therefore, the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators.
  • the actuator since the thickness and quality of the reference film and the deformation film are further similar, the displacement is controlled according to the information related to the impedance relationship between the reference film and the deformation film. Can be performed with higher accuracy.
  • the actuator according to the fifth aspect it is possible to simplify the configuration for detecting the electrical state or electrical characteristics of the reference film and the deformation film.
  • the configuration of the movable portion can be simplified.
  • the drive device has the same thickness and quality of the reference film and the deformation film. For example, information relating to the impedance relationship between the reference film and the deformation film Accordingly, the displacement can be accurately controlled. Therefore, the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators.
  • the drive device can suppress the influence of changes and deterioration due to the environmental temperature of the deformation film on the displacement control in the actuator.
  • the displacement generated in the actuator can be accurately controlled with a simpler configuration.
  • the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators. For this reason, the distance between the image sensor and the optical system can be changed with high accuracy.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone equipped with a camera module according to an embodiment and a modification.
  • FIG. 2 is a schematic cross-sectional view focusing on the first housing according to the embodiment and the modification.
  • FIG. 3 is a schematic cross-sectional view of a camera module according to an embodiment.
  • FIG. 4 is a schematic side view of a camera module according to an embodiment.
  • FIG. 5 is a schematic diagram showing the configuration of the lens group.
  • FIG. 6 is a schematic diagram showing the configuration of the lens group.
  • FIG. 7 is a schematic diagram illustrating the configuration of the lens group.
  • FIG. 8 is a schematic diagram showing the configuration of the lens group.
  • FIG. 9 is a schematic diagram showing the configuration of the lens group.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone equipped with a camera module according to an embodiment and a modification.
  • FIG. 2 is a schematic cross-sectional view focusing on the first housing according to
  • FIG. 10 is a schematic top view showing the structure of the lens position adjusting layer.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the lens position adjusting layer.
  • FIG. 12 is a schematic bottom view showing the configuration of the actuator layer.
  • FIG. 13 is a schematic view of the configuration of the actuator layer viewed from the side.
  • FIG. 14 is a diagram for explaining the configuration of the actuator layer.
  • FIG. 15 is a diagram for explaining the configuration of the low thermal expansion layer.
  • FIG. 16 is a diagram for explaining the configuration of the heat conductive layer.
  • FIG. 17 is a diagram for explaining the configuration of the high thermal expansion layer.
  • FIG. 18 is a diagram for explaining the configuration of the insulating layer.
  • FIG. 19 is a diagram for explaining the configuration of the heater layer.
  • FIG. 19 is a diagram for explaining the configuration of the heater layer.
  • FIG. 20 is a schematic bottom view illustrating a detailed configuration of an actuator layer according to an embodiment.
  • FIG. 21 is a diagram for explaining the operation of the movable part.
  • FIG. 22 is a diagram for explaining the operation of the movable part.
  • FIG. 23 is a schematic bottom view showing the structure of the second parallel spring.
  • FIG. 24 is a schematic diagram showing the relationship between the lens group and the second parallel spring.
  • FIG. 25 is a schematic bottom view showing the structure of the first parallel spring.
  • FIG. 26 is a schematic diagram showing the relationship between the lens group and the first parallel spring.
  • FIG. 27 is a flowchart showing the manufacturing flow of the camera module.
  • FIG. 28 is a flowchart showing a manufacturing flow of the actuator layer sheet.
  • FIG. 29 is a schematic view illustrating the configuration of an actuator layer sheet.
  • FIG. 30 is a diagram schematically showing the manufacturing process of the camera module.
  • FIG. 31 is a block diagram illustrating a functional configuration for realizing feedback control of the displacement amount of the lens group according to an embodiment.
  • FIG. 32 is a schematic bottom view illustrating a detailed configuration of an actuator layer according to a modification.
  • FIG. 33 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group according to a modification.
  • FIG. 34 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group according to a modification.
  • FIG. 35 is a diagram conceptually illustrating a configuration of a camera module according to a modification.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone 100 equipped with a camera module 500 according to an embodiment of the present invention.
  • the mobile phone 100 is configured as a foldable mobile phone, and includes a first casing 200, a second casing 300, and a hinge part 400.
  • Each of the first casing 200 and the second casing 300 has a plate-like substantially rectangular parallelepiped shape and serves as a casing for storing various electronic members.
  • the first casing 200 includes a camera module 500 and a display
  • the second casing 300 includes a control unit that electrically controls the mobile phone 100 and an operation member such as a button.
  • the hinge part 400 connects the 1st housing
  • the current source 600 and the contrast detection unit 800 are mounted on the first casing 200.
  • the current source 600 is a driver that controls supply of current to the heater layer 155 (FIGS. 19 and 20) of the actuator layer 15 (FIG. 3).
  • the contrast detector 800 detects the contrast of the image signal obtained by the image sensor 181 (FIG. 3) of the camera module 500.
  • a focusing control unit 310 includes a CPU and a RAM
  • the storage unit 320 includes a non-volatile storage medium
  • the variable resistor 330 includes, for example, a digital potentiometer. Composed.
  • the focus control unit 310 is supplied to the heater layer 155 via the current source 600 in accordance with an electrical state (voltage in the present embodiment) in the camera module 500 and a signal input from the contrast detection unit 800.
  • the amount of current supplied is controlled using various information stored in the storage unit 320 and a circuit including the variable resistor 330. Thereby, AF control for adjusting the in-focus state of the camera module 500 is executed.
  • FIG. 2 is a schematic cross-sectional view focusing on the first casing 200 of the mobile phone 100.
  • the camera module 500 is a small imaging device, so-called micro camera unit, having an XY cross section of about 5 mm square and a thickness (depth in the Z direction) of about 3 mm. (MCU).
  • FIG. 3 is a schematic cross-sectional view of the camera module 500, and the direction indicated by the arrow AR1 in FIG. 3 corresponds to the + Z direction.
  • an arrow AR ⁇ b> 1 indicating a direction corresponding to the + Z direction is appropriately attached in order to clarify the orientation relationship.
  • FIG. 4 is a side view of the camera module 500 as viewed from the side.
  • the camera module 500 includes an optical unit KB in which a lens group 20 as a photographing optical system is movably provided, and an imaging unit PB that acquires a photographed image related to the subject image.
  • the imaging unit PB has, for example, a configuration in which an imaging element layer 18 having an imaging element 181 such as a CMOS sensor or a CCD sensor and a cover glass layer 17 are stacked in this order in the + Z direction.
  • the cover glass layer 17 may include a filter layer that cuts infrared rays (IR).
  • the optical unit KB includes a lid layer 10, a first frame layer 11, a first parallel spring (upper parallel spring) 12, a second frame layer 13, a second parallel spring (lower parallel spring) 14, an actuator layer 15, and lens position adjustment.
  • the layer 16 and the lens group 20 are provided.
  • the lid layer 10, the first frame layer 11, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, the actuator layer 15, the lens position adjustment layer 16, and the lens group 20 are all in a wafer state (wafer Produced by level). These manufacturing processes will be further described later.
  • the lens position adjusting layer 16, the actuator layer 15, the second parallel spring 14, the second frame layer 13, the first parallel spring 12, the first frame layer 11, and the lid layer 10 are arranged in this order in the + Z direction.
  • the lens group 20 is held between the second parallel spring 14 and the first parallel spring 12.
  • the first parallel spring 12, the second parallel spring 14, and the actuator layer 15 cooperate with each other to move the lens group 20 in the direction along the Z axis.
  • the lid layer 10, the first and second frame layers 11 and 13, the lens position adjustment layer 16, the cover glass layer 17, and the imaging element layer 18 are fixed relatively to the lens group 20.
  • the camera module 500 and the optical unit KB are manufactured in a wafer state (at the wafer level), and their four side surfaces (side surfaces parallel to the Z axis in FIG. 4) are cut surfaces formed by dicing. And in this cut surface, the laminated structure of the multiple layer which comprises the optical unit KB and the imaging part PB is exposed.
  • the lens group 20 is supported by the first and second parallel springs 12 and 14 coupled to the fixed portion. More specifically, the second parallel spring 14 is interposed between the actuator layer 15 and the lens group 20 on the ⁇ Z side of the lens group 20 (the side on which the image sensor 181 is disposed). Further, a first parallel spring 12 is interposed between the first frame layer 11 and the lens group 20 on the + Z side (the side where the lid layer 10 is disposed) of the lens group 20.
  • the posture of the lens group 20 is maintained regardless of the movement of the lens group 20, and the optical axis of the lens group 20 is substantially constant. Retained.
  • first and second parallel springs 12 and 14 apply a force in a direction opposite to the moving direction of the lens group 20 (that is, the + Z direction) when the lens group 20 as the moving object moves in the + Z direction.
  • the lens group 20 is given.
  • the direction of the force applied to the lens group 20 by the first and second parallel springs 12 and 14 is the moving direction of the lens group 20 (ie, ⁇ Z Direction).
  • the lens group 20 is moved by the elastic force of the first and second parallel springs 12, 14.
  • the lens group 20 is supported by the lens position adjusting layer 16 by being pressed against the upper end surface of the protrusion 162. For this reason, even when a strong impact is applied to the camera module 500, the posture of the lens group 20 is maintained.
  • the lens group 20 is placed at a predetermined position on the most ⁇ Z side of a range (displaceable range) that can be displaced along the Z axis and is stationary.
  • the predetermined position is, for example, a position where the focal point of the optical unit KB is disposed on the + Z side surface (hereinafter also referred to as “imaging surface”) on which a large number of pixel circuits are arranged in the image sensor 181. Is set.
  • the focal point of the optical unit KB refers to a point where light beams emitted from the optical unit KB gather at one point when parallel light beams enter the optical unit KB from the + Z side.
  • the actuator layer 15 as an actuator has movable portions 15a and 15b (FIG. 12) that generate drive displacement in the + Z direction, and is disposed on the ⁇ Z side of the lens group 20.
  • the movable portions 15a and 15b are in contact with the first protrusion 201 protruding to the ⁇ Z side of the lens group 20, and the drive displacement generated in the movable portions 15a and 15b is transmitted to the lens group 20 via the first protrusion 201. Is done. That is, the actuator layer 15 moves the lens group 20 that is a moving object in a predetermined direction (here, the + Z direction). In a scene where the drive displacement in the + Z direction in the movable portions 15a and 15b is reduced, the lens group 20 is moved in the direction opposite to the predetermined direction ( ⁇ Z) by the elastic force of the first and second parallel springs 12 and 14. Direction).
  • the side wirings 21a to 21c are thin conductive members disposed on one of the four side surfaces of the camera module 500, as shown in FIG.
  • the side wirings 21a to 21c electrically connect the imaging element layer 18 and the heater layer 155 (FIG. 19). For this reason, the heater layer 155 (FIG. 19), the current source 600 and the variable resistor 330 are electrically connected to each other via the imaging element layer 18. Insulating portions 14ep are provided between the second parallel spring 14 and the side wirings 21a to 21c so that the side wirings 21a to 21c and the second parallel spring 14 are not short-circuited.
  • the lens group 20 that is a moving object is coupled to the first and second parallel springs 12 and 14 disposed at positions facing each other via the lens group 20,
  • the first and second parallel springs 12 and 14 are elastically deformed in a direction perpendicular to the lens group 20 (+ Z direction), and hold the posture of the lens group 20.
  • the lens group 20 receives a driving force from the movable portions 15a and 15b of the actuator layer 15 and displaces the position along the Z axis. Therefore, the optical unit KB provided in the camera module 500 can displace the lens group 20 in the optical axis direction (+ Z direction) of the lens group 20, and the camera module 500 can be used as a driving device for displacing the lens group 20. Make it work.
  • the lens group 20 is manufactured at a wafer level using a glass substrate as a base material, and is formed by, for example, superposing two or more lenses. In the present embodiment, a case where the lens group 20 is configured by overlapping two optical lenses is illustrated. In the present embodiment, the lens group 20 functions as an imaging lens that guides light from the subject to the imaging element 181.
  • FIG. 5 and 6 are schematic cross-sectional views of the lens group 20, and the direction indicated by the arrow AR2 corresponds to the + Z direction.
  • 7 is a bottom view of the lens group 20 when the lens group 20 is viewed from below ( ⁇ Z side)
  • FIG. 8 is a top view of the lens group 20 when the lens group 20 is viewed from above (+ Z side). It is.
  • the lens group 20 includes a first lens constituent layer LY1 having a first lens G1, a second lens constituent layer LY2 having a second lens G2, and a spacer layer RB. . Then, the first lens constituent layer LY1 and the second lens constituent layer LY2 are coupled via the spacer layer RB.
  • the outer edge of the cross section along the XY plane of the non-lens portion of the first and second lens constituent layers LY1, LY2 has a substantially square shape.
  • the first lens constituting layer LY1 having the first lens G1 has a first main surface (here, ⁇ Z side) on the non-lens portion that does not function as a lens.
  • a protrusion 201 is provided.
  • a non-lens portion that does not function as a lens is formed on one main surface (here, + Z side) of the second lens constituent layer LY ⁇ b> 2 having the second lens G ⁇ b> 2.
  • a second protrusion 202 is provided.
  • FIG. 9 is a view of the spacer layer RB as viewed from above (+ Z side), focusing on the shape of the spacer layer RB.
  • the spacer layer RB is provided along the outer edge of the non-lens portion of the first and second lens constituting layers LY1, LY2, and the shape of the outer edge and inner edge of the cross section along the XY plane is rectangular. It has the cyclic structure which is. Then, the optical axis of the lens group 20 is set in a direction along the Z axis.
  • each functional layer which comprises the camera module 500 is demonstrated.
  • the ⁇ Z side surface is referred to as one main surface
  • the + Z side surface is referred to as the other main surface.
  • the image sensor layer 18 receives light from the subject that has passed through the optical unit KB, and generates an image signal related to the image of the subject, its peripheral circuit, and the image sensor 181. It is a member provided with the outer peripheral part which surrounds.
  • the image sensor 181 is configured by arranging a large number of pixel circuits. Note that a solder ball HB for performing soldering by a reflow method is provided on one main surface (the surface on the ⁇ Z side) of the imaging element layer 18.
  • various types of wiring for applying a signal to the image sensor 181 and reading a signal from the image sensor 181 are connected to one main surface of the image sensor layer 18. A terminal is provided.
  • the current source 600 and the contrast detection unit 800 are provided on the circuit board of the second casing 300, for example, and the contrast detection unit 800 is electrically connected to the image sensor layer 18 by reflow soldering.
  • the current source 600 is electrically connected to the actuator layer 15 via the imaging element layer 18 is conceivable.
  • the cover glass layer 17 has a substantially flat plate shape and has a substantially square cross section along the XY plane, and is made of transparent glass or the like.
  • the cover glass layer 17 is bonded to the other main surface (+ Z side surface) of the image sensor layer 18 and has a function of protecting the image sensor 181.
  • the image sensor substrate 178 is configured with the cover glass layer 17 bonded to the image sensor layer 18.
  • the lens position adjustment layer 16 is configured by using a resin material, is disposed between the image sensor 181 and the lens group 20, and is a member that adjusts the distance between the image sensor 181 and the lens group 20. Specifically, the lens position adjustment layer 16 defines the position (initial position) of the lens group 20 in the non-driven state.
  • the lens position adjustment layer 16 is generated using, for example, a method of etching a resin.
  • FIG. 10 is a top view of the lens position adjusting layer 16 as seen from above (+ Z side).
  • FIG. 11 is a cross-sectional view of the lens position adjusting layer 16 as viewed in the direction of the arrow at the cut surface XII-XII of the lens position adjusting layer 16.
  • the lens position adjustment layer 16 includes a frame body 161 and a protrusion 162.
  • the frame body 161 is a substantially rectangular annular portion constituting the outer peripheral portion of the lens position adjusting layer 16, and has a plate shape substantially parallel to the XY plane.
  • the frame body 161 forms a hole (through hole) 16H penetrating in the direction along the Z-axis.
  • the + Y side plate-like member and the ⁇ Y side plate-like member constituting the frame body 161 are:
  • Each plate-like portion has a portion (convex portion) 161T protruding from the lower portion to the through-hole 16H side.
  • one main surface of the frame body 161 is bonded to the adjacent cover glass layer 17, and the other main surface of the frame body 161 is connected to the adjacent actuator layer 15 (specifically, the frame body 15 f of the actuator layer 15 ( 12)).
  • the protrusion 162 is erected upward (+ Z direction) in the vicinity of the inner edge of the convex portion 161T provided on the frame body 161.
  • the projection 162 is a plate-like portion having a substantially rectangular board surface substantially parallel to the XZ plane, and the longitudinal direction of the projection 162 is a direction substantially parallel to the X axis, and the short direction of the projection 162 Is a direction substantially parallel to the Z-axis.
  • the end surface on the + Z side of the protrusion 162 has a function of placing the lens group 20 at the initial position when the lens group 20 comes into contact therewith.
  • an area where a plurality of pixel circuits constituting the image sensor 181 are arranged is indicated by a broken line.
  • the two protrusions 162 are arranged at positions where the optical path from the subject through the lens group 20 to the pixel array area of the image sensor 181 is sandwiched in the direction in which the width of the pixel array area is the narrowest.
  • FIG. 12 is a bottom view of the actuator layer 15 as viewed from below ( ⁇ Z side).
  • FIG. 13 is a side view of the actuator layer 15 as seen from the side.
  • FIG. 14 is a diagram schematically showing the layer structure of the actuator layer 15.
  • FIGS. 15 to 19 are diagrams showing the configuration of each layer constituting the actuator layer 15.
  • the actuator layer 15 includes a frame body 15f constituting the outer peripheral portion, and two plate-like movable portions projecting from the frame body 15f with respect to a hollow portion inside the frame body 15f. 15a and 15b. That is, the movable parts 15a and 15b are fixed with respect to the frame 15f as a reference part.
  • One main surface of the frame 15f is bonded to the adjacent lens position adjustment layer 16 (specifically, the frame 161), and the other main surface of the frame 15f is the adjacent second parallel spring 14. (Specifically, it is joined to the fixed frame 141 (FIG. 23)).
  • the actuator layer 15 includes a low thermal expansion layer 151 (FIG. 15), a heat conduction layer 152 (FIG. 16), a high thermal expansion layer 153 (FIG. 17), an insulating layer 154 (FIG. 18),
  • the heater layer 155 (FIG. 19) is laminated in this order from the + Z side to the ⁇ Z side. That is, the movable parts 15a and 15b have a structure in which a plurality of layers including a low thermal expansion layer 151 and a high thermal expansion layer 153 and a heater layer 155 having different thermal expansion coefficients are stacked, that is, a so-called bimetal (Bi-metallic layer). Is adopted.
  • the low thermal expansion layer 151 is composed of a frame portion 151f constituting the frame body 15f, and two plate-like protrusions projecting from the frame portion 151f with respect to a hollow portion inside the frame portion 151f.
  • Protruding portions 151a and 151b are provided.
  • the protruding portion 151a constitutes the movable portion 15a
  • the protruding portion 151b constitutes the movable portion 15b.
  • the low thermal expansion layer 151 is made of a material having a smaller coefficient of thermal expansion than the material forming the high thermal expansion layer 153.
  • the low thermal expansion layer 151 for example, an iron / nickel alloy having a thermal expansion coefficient of 1.1 ⁇ 10 ⁇ 6 / ° C. is preferably employed. However, the thermal conductivity of this material is relatively low, about 8.8 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the heat conductive layer 152 protrudes from the frame portion 152 f with respect to the frame portion 152 f constituting the frame body 15 f and the hollow portion inside the frame portion 152 f, similarly to the low thermal expansion layer 151.
  • Two plate-like projecting portions 152a and 152b are provided.
  • the heat conductive layer 152 is made of a material having a thermal conductivity larger than that of the material constituting the low thermal expansion layer 151 and the high thermal expansion layer 153.
  • the material constituting the heat conducting layer 152 for example, copper and copper alloys thermal conductivity of 105.5W ⁇ m -1 ⁇ K -1, heat conductivity in 204W ⁇ m -1 ⁇ K -1 Any one of aluminum and nickel having a thermal conductivity of 90 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 may be used.
  • the high thermal expansion layer 153 protrudes from the frame portion 153f with respect to the frame portion 153f constituting the frame body 15f and the hollow portion inside the frame portion 153f, similarly to the low thermal expansion layer 151.
  • Two plate-like projecting portions 153a and 153b are provided.
  • the projecting portion 153a constitutes the movable portion 15a
  • the projecting portion 153b constitutes the movable portion 15b.
  • the high thermal expansion layer 153 is made of a material having a larger coefficient of thermal expansion than the material constituting the low thermal expansion layer 151.
  • the material constituting the high thermal expansion layer 153 for example, iron-nickel-manganese alloy thermal expansion coefficient is 20 ⁇ 10 -6 / °C, manganese-copper thermal expansion coefficient is 30 ⁇ 10 -6 / °C nickel alloy, any of the thermal expansion coefficient of 18 ⁇ 10 -6 / °C iron-nickel-chromium alloys is, and thermal expansion coefficient of 18 ⁇ 10 -6 / °C iron-molybdenum-nickel alloy is 1 One material is enough. However, the thermal conductivity of these materials is relatively low. For example, the thermal conductivity of an iron / nickel / manganese alloy is about 8.8 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the insulating layer 154 protrudes from the frame portion 154f with respect to the frame portion 154f constituting the frame body 15f and the hollow portion inside the frame portion 154f, similarly to the low thermal expansion layer 151.
  • the projecting portion 154a constitutes the movable portion 15a
  • the projecting portion 154b constitutes the movable portion 15b.
  • the insulating layer 154 is made of an insulator such as silica (silicon dioxide).
  • the insulating layer 154 is provided for the purpose of preventing a short circuit between the heater layer 155 and the high thermal expansion layer 153.
  • the heater layer 155 is patterned on the back surface (the surface on the ⁇ Z side) of the insulating layer 154 and is made of a conductive metal such as gold (Au). As shown in FIG. 19, the heater layer 155 includes first to third electrode parts E1 to E3, a reference conductor part 155s as a reference film, first and second heater parts 155ha and 155hb as deformation films, And first to third wiring portions 155c1 to 155c3.
  • the first to third electrode portions E1 to E3, the reference conductor portion 155s, and the first to third wiring portions 155c1 to 155c3 constitute a frame body 15f, and the heater portion 155ha constitutes a movable portion 15a.
  • the heater part 155hb comprises the movable part 15b.
  • the first and second heater portions 155ha and 155hb are collectively referred to as “heater portion 155h” as appropriate.
  • first electrode part E1 and the second electrode part E2 are electrically connected by the reference conductor part 155s, and the second electrode part E2 and the third electrode part E3 are connected to the first heater part 155ha and the first electrode part 155ha.
  • the two wiring parts 155c2 are electrically connected by wirings connected in this order (hereinafter also referred to as “one wiring”), and the first wiring part 155c1, the second heater part 155hb, and the third wiring part 155c3 are connected. They are electrically connected by wirings connected in this order (hereinafter also referred to as “other wirings”).
  • a potential difference is applied between the first electrode portion E1 and the third electrode portion E3, and a current flows.
  • one wiring and the other wiring are electrically connected in parallel between the second electrode portion E2 and the third electrode portion E3, and the reference conductor portion 155s is connected to the one wiring and the other wiring.
  • the heater portion 155h and the reference conductor portion 155s are formed using the same material and included in an integral film, and the heater portion 155h and the reference conductor portion 155s are electrically connected in series. Connected to.
  • FIG. 20 is a schematic diagram showing a detailed configuration of the actuator layer 15 as viewed from the back side ( ⁇ Z side).
  • each of the first to third electrode portions E1 to E3 has one plate-like shape among the four plate-like portions (first to fourth plate-like portions) constituting the frame body 15f.
  • the portion (first plate-like portion) Provided in the portion (first plate-like portion).
  • the second electrode portion E2 is provided near one end in the longitudinal direction of the first plate-like portion
  • the third electrode portion E3 is provided near the other end in the longitudinal direction of the first plate-like portion.
  • the first electrode portion E1 is provided near the center in the longitudinal direction of the first plate-like portion.
  • the first to third electrode portions E1 to E3 serve as terminal portions that can be electrically connected to various elements and the like disposed outside the actuator layer 15 through various wirings and the like.
  • the reference conductor portion 155s is disposed from the vicinity of one end of the first plate member to the vicinity of the center.
  • first wiring portion 155c1 is formed in substantially the entire area in the longitudinal direction in the second and third plate-like portions forming two sides adjacent to each other among the first to fourth plate-like portions constituting the frame body 15f. It extends in a letter shape.
  • the second wiring portion 155c2 extends along the longitudinal direction in the first plate-like portion where the first electrode portion E1 is disposed.
  • the third wiring portion 155c3 extends along the vicinity of the end portion of the third plate-like portion and the region near the entire area in the longitudinal direction of the fourth plate-like portion.
  • the first heater portion 155ha extends from the vicinity of the fixed portion (fixed end) fixed to the frame 15f, which is one end in the longitudinal direction of the movable portion 15a, to the vicinity of the other end (free end FT). , Folded in the vicinity of the free end FT, and further extended from the free end FT to the fixed end. With such a configuration, the pattern of the elongated first heater portion 155ha is disposed over substantially the entire area on the back surface side of the movable portion 15a.
  • the second heater portion 155hb extends from the vicinity of the portion (fixed end) fixed to the frame 15f that is one end in the longitudinal direction of the movable portion 15b to the vicinity of the other end (free end FT), It is folded in the vicinity of the free end FT and further extends from the free end FT to the fixed end.
  • the pattern of the elongated second heater portion 155hb is disposed over substantially the entire back surface side of the movable portion 15b.
  • the reference conductor portion 155s, the first to third electrode portions E1 to E3, the first to third wiring portions 155c1 to 155c3, and the first and second heater portions 155ha have substantially the same film thickness.
  • the first and second heater portions 155ha and 155hb are sufficiently narrower and narrower than the reference conductor portion 155s, the first to third electrode portions E1 to E3, and the first to third wiring portions 155c1 to 155c3. Form. Therefore, in the wiring that electrically connects the first electrode portion E1 and the third electrode portion E3, the reference conductor portion 155s, the first to third electrode portions E1 to E3, and the first to third wiring portions 155c1.
  • the first and second heater portions 155ha and 155hb are configured to have higher electrical resistance than ⁇ 155c3.
  • the first and second heater portions 155ha and 155hb having relatively high electric resistance generate heat due to their own Joule heat. . That is, the first and second heater portions 155ha and 155hb generate heat in response to the supply of power energy.
  • the first to third electrode portions E1 to E3 are exposed on the side surface of the camera module 500 in the dicing process.
  • the exposed first to third electrode portions E1 to E3 of the heater layer 155 are provided with side wirings 21a to 21b (FIGS. 3 and 4), respectively, so that voltage is supplied via the side wirings 21a and 21c. And current is supplied.
  • FIG. 21 and FIG. 22 are schematic views showing a mode in which the movable portions 15a and 15b are deformed in response to heat generated by the first and second heater portions 155ha and 155hb.
  • transformation aspect of movable part 15a, 15b is respectively the same, in FIG.21 and FIG.22, the deformation
  • An embodiment will be described as an example.
  • the movable portion 15a has a flat shape when the first heater portion 155ha is not generating heat.
  • the protruding portion 153 a of the high thermal expansion layer 153 becomes the protruding portion of the low thermal expansion layer 151 due to heat generated in response to the supply of electrical energy to the first heater portion 155 ha. It expands more than 151a.
  • the amount of heat generated by the first heater portion 155ha exceeds the amount of heat released from the projecting portions 151a and 153a to the surrounding atmosphere and the frame 15f, whereby the temperature of the movable portion 15a increases. If the thickness of the movable portion 15a is made very thin, such as about 30 to 50 ⁇ m, the temperature of the movable portion 15a rises in a relatively short time.
  • the movable portion 15a When the temperature of the movable portion 15a rises, the movable portion 15a is counteracted with the fixed end fixed to the frame body 15f as a fulcrum due to the difference in expansion between the protruding portion 151a and the protruding portion 153a.
  • the free end FT as the displacement portion is displaced upward (+ Z direction).
  • the first heater portion 155ha is also deformed along with the deformation of the movable portion 15a.
  • the shape and electric resistance in the first heater portion 155ha have a unique relationship, and the displacement amount of the lens group 20 and the shape of the first heater portion 155ha have a unique relationship. For this reason, it is possible to control the amount of displacement of the lens group 20 using the change in the electrical resistance of the first heater portion 155ha. Since the control of the displacement amount of the lens group 20 is included in the AF control of the camera module 500, it will be described later.
  • the reference conductor portion 155s is provided on one main surface of the frame body 15f, the reference conductor portion 155s is not substantially deformed together with the frame body 15f regardless of the deformation of the movable portions 15a and 15b. Retain shape.
  • FIG. 23 is an external view of the lower surface of the second parallel spring 14 when the second parallel spring 14 is viewed from below ( ⁇ Z direction).
  • FIG. 24 is a diagram showing the second parallel spring 14 joined to the lens group 20.
  • the second parallel spring 14 is an elastic member having a fixed frame body 141 and an elastic portion 142, and is a layer (elastic layer) forming a spring mechanism.
  • the fixed frame 141 constitutes the outer peripheral portion of the second parallel spring 14 and is joined to the frame 15f of the adjacent actuator layer 15.
  • the distance between the heater layer 155 of the actuator layer 15 and the second parallel spring 14 is usually narrow. Therefore, when the side wirings 21a to 21c for supplying voltage and current to the heater layer 155 are simply provided from the imaging element layer 18 to the actuator layer 15 by printing or the like, for example, the side wirings 21a to 21c are formed on the fixed frame 141. It may take up to. That is, the side wirings 21a to 21c and the second parallel spring 14 may be short-circuited.
  • a notch 143 that is recessed near the both ends of the plate-like member constituting one side of the fixed frame 141 of the second parallel spring 14 and at the outer edge near the center thereof is provided.
  • the notch 143 is an epoxy system used for joining when the second frame layer 13 and the second parallel spring 14 are joined and when the second parallel spring 14 and the actuator layer 15 are joined.
  • Insulating part 14ep (FIGS. 3 and 4) is formed by filling an adhesive such as resin. Due to the presence of the insulating portion 14ep, unnecessary short circuit due to contact between the side wirings 21a to 21c and the second parallel spring 14 is prevented.
  • the elastic part 142 has a connection part PG1 with the fixed frame body 141 and a joint part PG2 with the lens group 20, and the connection part PG1 and the joint part PG2 are connected by a plate-like member EB. Then, as shown in FIG. 24, the second parallel spring 14 is joined to the lens group 20 at a joint portion PG ⁇ b> 2 provided in the elastic portion 142.
  • the first protrusion 201 contacts the free end FT of the actuator layer 15 through the gap between the fixed frame 141 of the second parallel spring 14 and the plate member EB.
  • the second parallel spring 14 can be elastically deformed in the optical axis direction ( ⁇ Z direction) of the lens group 20 by elastic deformation of the plate-like member EB, and functions as a spring mechanism.
  • the second parallel spring 14 is manufactured using a SUS metal material or phosphor bronze.
  • a resist in the shape of a parallel spring is patterned on the metal material by a photolithography technique, and dipped in an iron chloride-based etching solution to be wet. Etching is performed to form a parallel spring pattern.
  • the second frame layer 13 is an annular member whose outer edge and inner edge in a cross section along the XY plane are each substantially rectangular, and forms a hollow portion penetrating along the Z axis.
  • the second frame layer 13 surrounds the lens group 20 from the side by arranging the lens group 20 in the hollow portion.
  • resin, glass, etc. are mentioned as a raw material which comprises the 2nd frame layer 13,
  • the 2nd frame layer 13 is manufactured by what is called a press method using a metal metal mold
  • the lower end surface (one main surface) located on the ⁇ Z side of the second frame layer 13 is joined to the fixed frame body 141 of the adjacent second parallel spring 14.
  • the upper end surface (other main surface) located on the + Z side of the second frame layer 13 is adjacent to the adjacent first parallel spring 12 (specifically, the fixed frame body 121 (FIG. 25) of the first parallel spring 12). Be joined.
  • FIG. 25 is an external view of the lower surface of the first parallel spring 12 when the first parallel spring 12 is viewed from below ( ⁇ Z direction).
  • the first parallel spring 12 is an elastic member having the same configuration and function as the second parallel spring 14 except that the notch portion 143 is not provided. 121 and an elastic part 122.
  • One main surface of the fixed frame 121 is joined to the other main surface of the adjacent second frame layer 13, and the other main surface of the fixed frame 121 is connected to the adjacent first frame layer 11 (in detail, the first 1 frame layer 11 at the ⁇ Z side lower end surface).
  • FIG. 26 is a view showing the first parallel spring 12 joined to the lens group 20.
  • the joint portion PG ⁇ b> 2 provided in the elastic portion 122 is joined to the upper end surface on the + Z side of the protrusion 202 of the lens group 20. For this reason, when the lens group 20 is moved relative to the fixed frame 121 in the + Z direction, elastic deformation occurs in the plate-like member EB, and the first parallel spring 12 functions as a spring mechanism.
  • the first frame layer 11 is an annular member in which the outer edge and the inner edge of the cross section along the XY plane are each substantially rectangular like the second frame layer 13, and extends along the Z axis. To form a hollow portion penetrating through.
  • the hollow portion of the first frame layer 11 becomes a space in which the plate-like member EB and the protruding portion 202 that are elastically deformed when the lens group 20 is moved in the + Z direction can move.
  • the first frame layer 11 is formed by the same material and manufacturing method as the second frame layer 13.
  • the lower end surface (one main surface) located on the ⁇ Z side of the first frame layer 11 is joined to the fixed frame body 121 of the adjacent first parallel spring 12.
  • the upper end surface (other end surface) located on the + Z side of the first frame layer is joined to the adjacent lid layer 10 (specifically, near the outer peripheral portion of the lid layer).
  • the lid layer 10 has a substantially square outer edge in a cross section along the XY plane, and has a hole (through hole) 10 ⁇ / b> H penetrating in a direction parallel to the Z axis at a substantially center. It is a plate-like member having a board surface substantially parallel to the XY plane.
  • the through-hole 10H is a hole for guiding light from the subject to the image sensor 181 through the lens group 20, and the lid layer 10 is formed by, for example, a technique of pressing a flat resin material or a resin material.
  • the through-hole 10H is formed by a technique such as etching after patterning.
  • FIG. 27 is a flowchart showing the manufacturing process of the camera module 500.
  • process A generation of the lens group 20 (step SP1)
  • step SP2 sheet preparation
  • step SP3 assembly jig preparation
  • step SP3 assembly jig preparation
  • step SP4 First bonding of the sheet
  • step SP5 Mounting of the lens group 20
  • Step SP6 Second bonding of the sheet
  • Step SP6 Second bonding of the sheet
  • Step SP8 Second bonding of the sheet
  • Step SP8 Image sensor substrate 178
  • process H dicing
  • step SP1 the lens group 20 is generated.
  • a wafer in which a large number of lens groups 20 are arranged in a matrix (hereinafter also referred to as a “lens group wafer”) is manufactured, and a large number of lens groups 20 are separated into pieces by dicing. Group 20 is produced.
  • the lens group wafer includes a wafer in which a large number of first lens constituent layers LY1 are arranged (first lens constituent layer wafer), a wafer in which a large number of spacer layers RB are arranged (spacer layer wafer), and a large number of second lenses.
  • a wafer (second lens constituent layer wafer) on which the constituent layers LY2 are arranged is laminated and bonded together.
  • step SP2 a sheet relating to each functional layer constituting the camera module 500 is formed for each layer.
  • a disc-shaped sheet at the wafer level is prepared.
  • a large number of chips corresponding to members related to the functional layer are formed in a matrix on the sheet for each functional layer.
  • the functions such as the lid layer 10, the first frame layer 11, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, the actuator layer 15, and the lens position adjustment layer 16 are performed.
  • Prepared sheets (imaging element substrate sheets) U178 are prepared. That is, eight sheets U10 to 16 and U178 are prepared. In each of the sheets U10 to U16, U178, alignment marks for alignment are formed at two or more predetermined positions.
  • FIG. 28 is a flowchart showing a manufacturing flow of a sheet (actuator layer sheet) U15 in which a number of actuator layers 15 are arranged.
  • a manufacturing method of the actuator layer sheet U15 will be described with reference to FIG.
  • a bimetallic flat plate is prepared.
  • a bimetallic disk-shaped wafer is prepared in which a layer corresponding to the low thermal expansion layer 151, a layer corresponding to the heat conductive layer 152, and a layer corresponding to the high thermal expansion layer 153 are stacked.
  • the disk-shaped wafer for example, a laminated body in which three flat plates of materials constituting the low thermal expansion layer 151, the heat conductive layer 152, and the high thermal expansion layer 153 are stacked is rolled into a disk shape. It is made by punching.
  • step ST22 an insulating layer is formed on the bimetallic flat plate prepared in step ST21 by vapor deposition or the like.
  • a resist film pattern is formed on the insulating layer formed in step ST22 by photolithography or the like.
  • the resist film pattern formed here is a pattern in which patterns corresponding to the shape of the heater layer 155 are arranged in a matrix.
  • step ST24 a thin film of metal (for example, gold) is formed on the insulating layer on which the resist film pattern is formed in step ST23 by sputtering or the like.
  • metal for example, gold
  • the respective parts constituting the heater layer 155 are simultaneously formed in the same process using the same material. At this time, normally, even if the metal thin film is formed by the same batch process, the film thickness and film quality tend to be different from the whole wafer.
  • each part constituting the heater layer 155 is formed in a very close region. For this reason, the thickness and film quality of each part which comprises the heater layer 155 become substantially the same. And as this film quality, the state of a crystal (metal structure) etc. are mentioned, for example.
  • step ST25 the metal thin film formed on the resist film pattern in step ST24 is removed together with the resist film pattern by the lift-off method. At this time, a metal thin film pattern in which patterns corresponding to the heater layer 155 are arranged in a matrix is completed.
  • step ST26 the hollow portion of each actuator layer 15 is formed by press working or the like.
  • the actuator layer sheet U15 is completed.
  • FIG. 29 is a schematic diagram showing the configuration of the actuator layer sheet U15. In FIG. 29, a configuration focusing on a part of the actuator layer sheet U15 is shown, and the thick broken lines indicate the boundary lines of a plurality of chips respectively corresponding to the actuator layer 15.
  • an assembly jig is prepared.
  • the assembling jig is configured by providing a plurality of protrusions having substantially the same shape on a flat base in a predetermined arrangement.
  • alignment marks for alignment are formed at two or more predetermined locations.
  • the upper surface of the protrusion is configured to be substantially parallel to the main surface of the flat base.
  • a unit corresponding to the camera module 500 is manufactured on the upper surface of each protrusion.
  • step SP4 Three sheets U11 to U13 of the eight sheets U10 to U16 and U178 prepared in step SP2 are joined.
  • the first frame layer sheet U11, the first parallel spring sheet U12, and the second frame layer sheet U13 are aligned in the sheet shape so that the chips included in the sheets U11 to U13 are stacked on each other. (Alignment) is performed. Then, the sheets U11 to U13 are joined using an adhesive or the like.
  • FIG. 30 shows a state in which three sheets U11 to U13 are laminated and joined in step SP4, a lens group 20 is attached in step SP5, and four sheets U10 and U14 to U16 are laminated in step SP6. It is a figure which shows typically a mode that it joins, and a mode that the image pick-up element board
  • step SP5 the lens group 20 produced
  • the end surface of the second protrusion 202 is joined to the one main surface side of the joint PG2.
  • the method etc. which join using the adhesive agent (UV curing adhesive) hardened
  • step SP6 Sheet second joining (process F)>
  • step SP6 four sheets U10, U14 to U16 of the eight sheets U10 to U16 and U178 prepared in step SP2 are joined.
  • each chip included in the second parallel spring sheet U14 and the actuator layer sheet U15 is attached to the second frame layer sheet with respect to one main surface side of the units generated up to step SP5.
  • Positioning (alignment) is performed while maintaining the sheet shape so as to be stacked on each chip included in U13.
  • seat U14, U15 is joined using an adhesive agent etc. in order.
  • the sheet is so formed that each chip included in the lid layer sheet U10 is stacked with respect to each chip included in the first frame layer sheet U11 with respect to the other main surface side of the first frame layer sheet U11. Alignment (alignment) is performed in the shape. In this state, the lid layer sheet U10 is bonded to the other main surface side of the first frame layer sheet U11 using an adhesive or the like.
  • the sheet-like shape is formed so that each chip included in the lens position adjustment layer sheet U16 is stacked on each chip included in the actuator layer sheet U15 with respect to one main surface side of the actuator layer sheet U15.
  • the alignment is performed as it is.
  • the lens position adjustment layer sheet U16 is bonded to one main surface side of the actuator layer sheet U15 using an adhesive or the like.
  • step SP7 the outer peripheral portion of the image sensor substrate 178 is bonded to the frame 161 of each lens position adjustment layer 16 of the unit formed by bonding the lens position adjustment layer 16 by step SP6.
  • the other principal surface of the imaging element substrate sheet U178 is joined to one principal surface of the lens position adjustment layer sheet U16.
  • step SP8 a large number of lens groups 20 are respectively inserted, and a laminated member formed by laminating eight sheets U10 to U16 and U178 is protected by a dicing tape or the like and then separated for each chip by a dicing device. . At this time, a large number of camera modules 500 are completed.
  • the actuator layer sheet U15 is cut along the thick broken line shown in FIG.
  • the side wirings 21a to 21c are formed during the dicing process. Specifically, when dicing along one direction is performed, each heater layer 155 is exposed at a cut surface corresponding to the side surface of each camera module 500. Therefore, a conductive material for forming the side wirings 21a to 21c is applied to the cut surface, and then dicing along the other direction is performed, so that a large number of camera modules 500 are completed.
  • FIG. 31 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group 20 in the AF control of the camera module 500.
  • the wiring other than the reference conductor portion 155s and the heater portion 155h in the heater portion 155 will be described as having an electrical resistance that is small enough to be ignored.
  • a current is supplied from a current source 600 to a reference conductor portion 155s and a heater portion 155h that are electrically connected in series.
  • the current source 600 is electrically connected to the reference conductor portion 155s via the first electrode portion E1, and the reference conductor portion 155s and the heater portion 155h are connected via the second electrode portion E2.
  • the heater portion 155h is electrically connected to the ground wiring GND through the third electrode portion E3. That is, the third electrode portion E3 is grounded.
  • the variable resistor 330 is configured using, for example, a so-called digital potentiometer.
  • One electrode portion of the variable resistor 330 is electrically connected to the first electrode portion E1, and the other electrode portion of the variable resistor 330 is electrically connected to the ground wiring GND. For this reason, the other electrode portion is grounded, and a voltage V ref is applied between the one electrode portion and the other electrode portion.
  • the first electrode portion E1 and the third electrode sandwiching the reference conductor portion 155s and the heater portion 155h electrically connected in series between one electrode portion and the other electrode portion of the variable resistor 330.
  • the same voltage V ref as that applied between the part E3 and the part E3 is applied.
  • the slidable electrode portion (slide electrode portion) of the variable resistor 330 is electrically connected to a feedback control unit 312 described later.
  • the electric resistance between the one electrode part and the other electrode part of the variable resistor 330 is set to be sufficiently larger than the total value of the electric resistances of the reference conductor part 155s and the heater part 155h. It is preferable. By adopting such a setting, since a relatively small current flows through the variable resistor 330, unnecessary heat generation is suppressed, and as a result, power consumption is suppressed.
  • the focus control unit 310 includes a resistance control unit 311 and a feedback control unit 312 as functional configurations.
  • the second electrode unit E2 is electrically connected to the feedback control unit 312 and the slide electrode unit of the variable resistor 330 is electrically connected to the feedback control unit 312.
  • the resistance control unit 311 changes the position of the slide electrode unit in the variable resistor 330, that is, the partial pressure, by referring to information (target value information) stored in a target value storage unit 321 described later.
  • the feedback control unit 312 includes a voltage (sense voltage) V sns applied between the second electrode unit E2 and the third electrode unit E3, and a voltage between the slide electrode unit and the other electrode unit of the variable resistor 330. depending on the relationship between the (divided voltage) V vr, adjusts the amount of current flowing through the reference conductor portion 155s and the heater portion 155h from the current source 600.
  • the voltage V vr is input as a positive value and the voltage V sns is input as a negative value to the feedback control unit 312.
  • the feedback control unit 312 refers to information (gain information) stored in the gain storage unit 322 according to a numerical value (V vr ⁇ V sns ) obtained by subtracting the sense voltage V sns from the divided voltage V vr. Then, a control signal for adjusting the current amount I drv flowing from the current source 600 through the reference conductor portion 155 s and the heater portion 155 h is output to the current source 600.
  • the feedback control unit 312 is set to have a sufficiently high impedance (input impedance) related to input from the second electrode unit E2 and the slide electrode unit. This is because a large current does not flow through the feedback control unit 312 and the current easily flows through the heater unit 155h and the like, which contributes to detection of a weak signal in the feedback control unit 312.
  • the storage unit 320 includes a target value storage unit 321 and a gain storage unit 322.
  • the target value storage unit 321 obtains the ratio of the electrical resistance (reference film resistance) R ref of the reference conductor portion 155s and the electrical resistance (deformed film resistance) R sns of the heater portion 155h, which is obtained in advance by measurement, and the lens group 20 Is stored information (target value information) indicating the relationship with the amount of displacement in the + Z direction (that is, the amount of displacement of the free end FT). Specifically, each displacement amount of the free end FT in increments of a predetermined amount is set as a target displacement amount. For each target displacement amount, the corresponding electric resistance (reference film resistance) R ref of the reference conductor portion 155s and the electric power of the heater portion 155h.
  • a ratio with the resistance (deformed membrane resistance) R sns is stored as a target value.
  • the ratio between the electric resistance R ref and the electric resistance R sns is determined by design.
  • the gain storage unit 322 generates a value (V vr -V sns ) obtained by subtracting the sense voltage V sns from the divided voltage V vr from the current source 600 for each value (V vr -V sns ) in increments of a predetermined value.
  • Information (control parameter information) associated with a change amount (specifically, an amount to increase the current) of the electric energy supplied to the reference conductor portion 155s and the heater portion 155h is stored.
  • each numerical value (V vr ⁇ V sns ) is a sense voltage V sns , which is an electrical index determined by the electrical resistance relationship between the reference conductor portion 155 s and the heater portion 155 h, and the electrical resistance. This corresponds to the amount of deviation from the divided voltage Vvr , which is the target value of the electrical index determined by the relationship.
  • the reference film resistance related to the reference conductor portion 155s is R ref
  • the deformation film resistance related to the heater portion 155h is R sns
  • V ref is a reference voltage to be applied
  • V sns is a sense voltage applied between the second electrode portion E2 and the third electrode portion E3
  • a divided voltage of the slide electrode portion is V vr.
  • the reference voltage V ref is expressed by the following expression (1) using the drive current I drv , the reference film resistance R ref , and the deformation film resistance R sns .
  • V ref I drv ⁇ (R ref + R sns ) (1)
  • the sense voltage V sns is expressed by the following expression (2) using the reference voltage V ref , the reference film resistance R ref , and the deformation film resistance R sns .
  • V sns R sns / (R ref + R sns ) ⁇ V ref (2)
  • the resistance value (first voltage dividing resistance value) between one electrode portion to which the reference voltage V ref of the variable resistor 330 is applied and the slide electrode portion is set to R1, and the slide electrode portion and the ground are grounded.
  • the resistance value (second voltage dividing resistance value) between the other electrode part is R2
  • the divided voltage V vr related to the slide electrode part of the variable resistor 330 is expressed by the following expression (3).
  • V vr R2 / (R1 + R2) ⁇ V ref (3)
  • the feedback control unit 312 compares the input divided voltage V vr with the sense voltage V sns, and if the divided voltage V vr is larger than the sense voltage V sns , the drive current I drv is increased. Such a control signal is output to the current source 600. On the other hand, if the divided voltage V vr is smaller than the sense voltage V sns , a control signal is output to the current source 600 so that the drive current I drv decreases.
  • the deformation amount of the movable parts 15a and 15b decreases. Then, the drive current I drv decreases until the value on the left side and the value on the right side of the above equation (5) have an equivalent relationship.
  • the ratio between the reference voltage resistance R ref and the deformed film resistance R sns is set to the target value with the ratio of the first voltage dividing resistance value R1 and the second voltage dividing resistance value R2 in the variable resistor 330 as the target value.
  • Feedback control of the drive current I drv is performed so as to be equivalent to the value.
  • the absolute values of the electric resistances of the reference conductor portion 155s and the heater portion 155h tend to vary slightly for each actuator layer 15 due to the manufacturing process.
  • the film thickness and the like between the reference conductor portion 155s and the heater portion 155h are reduced.
  • the film quality is substantially the same.
  • the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h is a value corresponding to the amount of deformation of the heater portion 155h.
  • the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h and the deformation amount of the heater portion 155h have a one-to-one relationship.
  • the amount of displacement of the free ends FT of the movable portions 15a and 15b is controlled so that the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h matches the target value.
  • the wiring other than the reference conductor portion 155s and the heater portion 155h in the heater portion 155 has been described as being small enough to ignore the electric resistance, but is not limited thereto.
  • the reference voltage V ref and the sense voltage V sns may be handled by adding the electric resistances related to the wiring other than the reference conductor portion 155s and the heater portion 155h to the reference film resistance R ref and the deformation film resistance R sns , respectively. good.
  • the focus control unit 310 changes the separation distance between the lens group 20 and the image sensor 181 by the feedback control of the displacement amount of the lens group 20 described above, and the focus position of the optical unit KB is changed.
  • the contrast detection unit 800 shown in FIG. 1 detects the contrast of the image signal obtained by the image sensor 181. For example, a numerical value obtained by accumulating differences in gradation values between adjacent pixels for the entire image is detected as an evaluation value indicating contrast. A signal related to the evaluation value indicating the contrast is output to the focus control unit 310.
  • the separation distance between the lens group 20 and the image sensor 181 is sequentially set to a preset multi-step separation distance under the control of the focusing control unit 310, and each separation distance is set.
  • An image signal is acquired by the image sensor 181 in the set state.
  • the extension position of the lens group 20 in the + Z direction is set to a preset multistage position, and an image signal is output by the image sensor 181 at the time when the lens group 20 is disposed at each extension position. To be acquired.
  • the feeding position of the lens group 20 is changed by feedback control of the displacement amount of the lens group 20 by the focus control unit 310.
  • the focus control unit 310 detects a feeding position where the evaluation value indicating the contrast is maximum based on the evaluation value indicating the contrast detected for each feeding position by the contrast detection unit 800.
  • the state where the lens group 20 is disposed at the extended position where the evaluation value indicating the contrast is maximum corresponds to the state where the subject is in focus. For this reason, focusing on the subject in the camera module 500 is realized by moving the lens group 20 to the extended position where the evaluation value indicating the contrast is maximized under the control of the focusing control unit 310. That is, AF control is realized.
  • the thickness and film quality of the reference conductor portion 155s and the heater portion 155h are the same. For this reason, the displacement control according to the relationship of the electrical resistance between the reference conductor portion 155s and the heater portion 155h is accurately performed. Therefore, the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators. In addition, since it is possible to perform highly accurate displacement control in the actuator with a simple configuration, it is possible to suppress an increase in cost required for manufacturing the actuator.
  • the thickness and film quality of the reference conductor portion 155s and the heater portion 155h are the same. For this reason, it becomes possible to control the displacement according to the relationship of the electrical resistance between the reference conductor portion 155s and the heater portion 155h with higher accuracy.
  • the reference conductor portion 155s and the heater portion 155h are included in the heater layer 155 which is an integral film. For this reason, the structure for detecting an electrical state such as a voltage applied to the reference conductor portion 155s and the heater portion 155h can be simplified. Further, the reference conductor portion 155s and the heater portion 155h are electrically connected in series, so that the wiring and configuration outside the actuator layer 15 can be simplified as compared with the case where they are not connected in series. Therefore, the displacement generated in the actuator can be accurately controlled with a simpler configuration.
  • the heater portion 155h also serves as a deformation film for controlling the deformation, the configuration of the movable portions 15a and 15b can be simplified.
  • the reference conductor portion 155s and the heater portion 155h are included in an integral film and electrically connected in series.
  • the present invention is not limited to this.
  • the reference conductor portion and the heater portion may not be included in the integral film and may be spaced apart from each other.
  • FIG. 32 is a diagram schematically showing a detailed configuration of an actuator layer 15A according to a modification.
  • the camera module 500A according to the present modification, the first casing, and the first casing 200 are compared.
  • the body 200A and the mobile phone 100A have the actuator layer 15 changed to an actuator layer 15A having a different configuration.
  • the actuator layer 15A according to the present modified example is different from the heater layer 155A in which the movable portion 15b is removed and the heater layer 155 has a different configuration. It has been changed.
  • the heater layer 155A includes first to fourth electrode portions EA1 to EA4, a reference conductor portion 155sA, a first heater portion 155ha, and a wiring portion 155cA that are simultaneously formed in the same process such as sputtering. Is provided.
  • the reference conductor portion 155sA electrically connects the first electrode portion EA1 and the second electrode portion EA2. Further, the third electrode part EA3 and the fourth electrode part EA4 are electrically connected by the wiring arranged in the order of the first heater part 155ha and the wiring part 155cA.
  • the reference conductor portion 155sA and the first heater portion 155ha are not electrically connected in series, and a current source is provided separately for the reference conductor portion 155sA and the first heater portion 155ha, and a so-called current mirror is provided.
  • a configuration in which the same current is supplied to the reference conductor portion 155sA and the first heater portion 155ha using a circuit is also conceivable.
  • the absolute values of the electrical resistances of the reference conductor portion 155sA and the first heater portion 155ha are detected, the ratio of the electrical resistances is calculated, and the lens group is calculated using the electrical resistance ratio. It is also possible to control 20 displacement amounts.
  • the absolute values of the electrical resistances of the reference conductor portion 155s and the heater portion 155h were not measured, but the present invention is not limited to this.
  • the measured value of the electrical resistance of at least one of the reference conductor part 155s and the heater part 155h is monitored as an index of the amount of deformation caused by the environmental temperature of the reference conductor part 155s and the heater part 155h, and the measured electric resistance is measured.
  • Various information used for feedback control of the displacement amount of the lens group 20 may be changed according to the change in value.
  • FIG. 33 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group 20 in the AF control of the camera module 500 according to one modification.
  • a resistance detector 703 for detecting the electrical resistance (reference film resistance) R ref of the reference conductor portion 155s and the electrical resistance (deformed film resistance) R of the heater portion 155h.
  • a resistance detection unit 704 that detects sns , a target value change unit 313, and a reference resistance storage unit 323 are added.
  • the reference resistance storage unit 323 only needs to be added to the storage unit 320.
  • the reference resistance storage unit 323 is configured by an EEPROM or the like, and the absolute value of the electrical resistance related to the reference conductor unit 155s and the heater unit 155h at the time of shipment is the reference. Stored as a value.
  • the target value changing unit 313 may be functionally realized in the focusing control unit 310.
  • the target value information stored in the target value storage unit 321 is changed by the target value changing unit 313 according to the deviation amount.
  • the amount of change may be an amount that cancels out the amount of change in the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h that occurs according to the amount of deviation.
  • the target value information may be changed according to the deviation amount between the reference value and the actual measurement value of the deformation membrane resistance R sns instead of the deviation amount between the reference value and the actual measurement value of the reference membrane resistance R ref .
  • the absolute value of the electrical resistance relating to at least one of the reference conductor portion 155s and the heater portion 155h at the time of shipment is stored as a reference value in the reference resistance storage portion 323, and the reference conductor portion 155s and the heater portion 155h Any configuration may be used as long as the absolute value of one of the electrical resistances stored in the reference resistance storage unit 323 is detected.
  • the amount of displacement of the lens group 20 due to the environmental temperature is indirectly detected according to the change in the absolute value of the electrical resistance related to at least one of the reference conductor portion 155s and the heater portion 155h.
  • the target value information stored in the target value storage unit 321 may be changed so that the displacement amount is canceled out.
  • the control parameter information stored in the gain storage unit 322 may be changed according to the change in the absolute value of the electrical resistance related to at least one of the reference conductor portion 155s and the heater portion 155h.
  • thermometer for measuring the temperature of the movable parts 15a and 15b
  • fluctuations in the absolute values of the electrical resistances of the reference conductor part 155s and the heater part 155h are monitored together with fluctuations in the temperature of the movable parts 15a and 15b
  • Deterioration of the reference conductor portion 155s and the heater portion 155h is indirectly detected.
  • the heater unit 155h by changing at least one of the target value information stored in the target value storage unit 321 and the control parameter information stored in the gain storage unit 322, the heater unit 155h, etc. You may make it compensate the influence which deterioration of it has on the operation
  • the influence of the deterioration of the heater portion 155h on the displacement control in the actuator is suppressed.
  • variable resistor 330 is configured using a digital potentiometer.
  • present invention is not limited to this.
  • a mode using a manual trimmer resistor is also conceivable.
  • the movable portions 15a and 15b are configured using so-called bimetals.
  • the present invention is not limited to this.
  • the movable portion has a plate-like base portion (base portion) and a shape.
  • a configuration having a portion (shape memory portion) provided in a thin film shape on the base portion using a shape memory material such as a memory alloy (SMA) may be employed.
  • SMA shape memory alloy
  • the movable unit by directly applying a current that is electrical energy to the shape memory unit, the movable unit generates heat, and the shape memory unit is deformed in accordance with a temperature change, so that the driving force is increased. It is possible to generate and deform the movable part.
  • storage part can also be made to play a role as a deformation
  • the movable parts 15a and 15b generate heat by applying electrical energy to the movable parts 15a and 15b.
  • the present invention is not limited to this.
  • the movable portion may be configured to include a portion that generates a driving force by applying at least one or more of various types of energy such as heat, voltage, current, light, and magnetism. .
  • the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are both configured using the conductive material (conductor).
  • the reference film may be either a conductor or a semiconductor.
  • the deformation film may be a semiconductor. That is, the reference film and the deformation film may be formed by the same process using at least one material of a conductor or a semiconductor and change in electrical resistance to some extent.
  • the feedback control of the displacement amount of the lens group 20 is such that the ratio of the reference film resistance R ref and the deformation film resistance R sns is equivalent to the target value. It is not limited to this. For example, it may be assumed that there is a part having a component such as reactance or inductance related to a capacitor or coil in the circuit, so that the impedance ratio between the reference film and the deformation film is equivalent to the target value. Such control may be used. That is, the feedback control unit 312 determines the energy applied to the movable unit according to at least one of the impedance relationship between the reference membrane and the deformation membrane and the electrical information determined corresponding to the impedance relationship. The supply amount may be controlled.
  • the displacement amount of the lens group 20 is controlled using the sense voltage V sns and the divided voltage V vr , but the present invention is not limited to this.
  • the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h is calculated, Feedback control may be performed so as to match the target value of the resistance ratio.
  • the formation of the metal thin film corresponding to the pattern of the heater layer 155 is realized by sputtering.
  • the present invention is not limited to this.
  • any of a metal vapor deposition process, a metal plating process, a metal coating process, a bonding process of a metal thin film produced in a separate process, and a process of forming a thin film by rolling after a metal material is laminated and pasted may be adopted. Regardless of which step is employed, the thickness and film quality of each part constituting the heater layer 155 are substantially the same.
  • the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are formed at the same time using the same material in the same process.
  • the present invention is not limited to this.
  • the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are formed sequentially in time by repeating the same process using the same material twice.
  • the same process mentioned here includes, for example, sputtering under the same conditions using the same material. Different masks are used, and the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are sequentially timed. A method such as forming in this way can be considered. However, from the viewpoint of the uniformity of the film thickness and film quality between the reference film and the deformation film, it is preferable to form them simultaneously.
  • the object moved by the movable parts 15a and 15b is the lens group 20 as an optical system, but is not limited thereto.
  • other members such as an image sensor may be used as the moving object.
  • the lens group 20B corresponding to the optical system that guides light from the subject to the image sensor is fixed, and the image sensor layer is moved in the Z direction by a configuration similar to the configuration adopted for moving the lens group 20 in the one embodiment. It may be moved.
  • FIG. 35 is a diagram illustrating a conceptual diagram of one aspect in which the lens group 20B is fixed and the imaging element layer 18B is moved back and forth in a direction along the optical axis Ax of the lens group 20B.
  • an imaging unit PBB that moves the imaging element layer 18B back and forth along the optical axis Ax is depicted.
  • the image pickup element layer 18B is moved back and forth along the optical axis Ax in accordance with the operation of the actuator layer, and the distance between the lens group 20B and the image pickup element layer 18B is changed. Is realized.
  • AF control is realized if at least one of the image sensor and the optical system is moved in accordance with the displacement of the free end FT due to the bending deformation of the movable portions 15a and 15b.
  • the same effect as in the above-described embodiment can be obtained. For this reason, the distance between the image sensor and the optical system can be changed with high accuracy.
  • an object (moving object) moved by the actuator is not limited to an element constituting the imaging apparatus such as an optical system or an imaging element.
  • the moving object may be another object such as an objective lens of an optical pickup lens. That is, the present invention can be applied to an actuator and a drive device in which a moving object is moved according to deformation of the actuator. And according to such a drive device, the effect similar to the said one Embodiment is acquired.
  • the two movable parts 15a and 15b are provided.
  • the present invention is not limited to this, and the number of movable parts may be one or three or more.
  • the movable parts 15a and 15b have a so-called cantilever structure in which one end is fixed to the frame 15f.
  • the present invention is not limited to this.
  • a doubly-supported beam structure in which both ends of the movable part are fixed to the frame is also conceivable.

Abstract

Disclosed is a technology of accurately controlling, with a simple configuration, displacement generated in an actuator, irrespective of variance of the thickness and the qualities of thin films for controlling displacement, said variance being generated among actuators. The actuator is provided with: a reference section; and a movable section, which has a fixed section fixed to the reference section, and which has a displacement section that is displaced due to deformation that corresponds to energy applied thereto. In the actuator, the movable section has a deforming film, which is configured using a conductor material and/or a semiconductor material, and deforms corresponding to deformation of the movable section, and the reference section has a reference film that is formed using the material same as the material for the deforming film, in the same step wherein the deforming film is formed.

Description

アクチュエータ、駆動装置、およびカメラモジュールActuator, drive device, and camera module
 本発明は、アクチュエータ、ならびに該アクチュエータを搭載した駆動装置およびカメラモジュールに関する。 The present invention relates to an actuator, and a drive device and a camera module equipped with the actuator.
 近年、携帯電話機等の小型の電子機器に搭載することを目的として小型のカメラユニット(マイクロカメラユニット)が数多く生産されている。 In recent years, many small camera units (micro camera units) have been produced for the purpose of mounting on small electronic devices such as mobile phones.
 このマイクロカメラユニット(MCU)に対しては、小型化および低価格化に対する非常に高い要求がある。その一方で、MCUについては、画素数の増加(高画素化)が進むとともに、画質とユーザーの利便性とを満たすために、オートフォーカス(AF)機能を有すること等が必須とされつつある。 This micro camera unit (MCU) has a very high demand for miniaturization and price reduction. On the other hand, with respect to the MCU, as the number of pixels increases (higher pixels), it is becoming essential to have an autofocus (AF) function in order to satisfy image quality and user convenience.
 そこで、MCUに対する小型化および低価格化の要求に対しては、基板と、多数の撮像素子が形成された半導体シートと、多数の撮像レンズが形成されたレンズアレイシートとを樹脂層を介して貼り付けて積層部材を形成し、該積層部材をダイシングして、個々のカメラモジュールを完成させる技術が提案されている(例えば、特許文献1等)。この技術によれば、一枚のウエハ状の積層部材から、数百個のカメラモジュールを切り出すことも可能であり、微細加工のプロセスとのマッチングも良く、カメラモジュールの小型化、薄型化、および低コスト化に対して大きく寄与するものと考えられる。 Therefore, in response to the demand for reduction in size and price for MCU, a substrate, a semiconductor sheet on which a large number of imaging elements are formed, and a lens array sheet on which a large number of imaging lenses are formed are arranged through a resin layer. A technique has been proposed in which a laminated member is formed by pasting, and the laminated member is diced to complete individual camera modules (for example, Patent Document 1). According to this technology, it is possible to cut out hundreds of camera modules from a single wafer-like laminated member, and the matching with the microfabrication process is good. This is considered to contribute greatly to cost reduction.
特開2007-12995号公報Japanese Patent Laid-Open No. 2007-12995
 しかし、上記特許文献1の技術では、ウエハ状の部材を積層させるために、AF機能を実現するためのボイスコイルモータ等といった撮像レンズを移動させるアクチュエータを配置することが困難であった。また、撮像レンズを動かすAF制御を行うためには、撮像レンズの変位を検出する必要があるが、例えば、エンコーダやフォトセンサ等を用いた従来の変位を検出する技術を適用したのでは、MCUの大型化や高コスト化を招いてしまう。 However, in the technique of Patent Document 1, it is difficult to arrange an actuator for moving an imaging lens such as a voice coil motor for realizing an AF function in order to stack wafer-like members. In addition, in order to perform AF control for moving the imaging lens, it is necessary to detect the displacement of the imaging lens. For example, if a conventional technique for detecting displacement using an encoder, a photosensor, or the like is applied, the MCU Increase in size and cost.
 ところで、ウエハ状態で形成される小型のカメラモジュールへの適用が可能なアクチュエータとしては、例えば、圧電素子(PZT)、形状記憶合金(SMA)、およびバイメタル(Bi-metallic strip)のうちの少なくとも1以上の構成を含むユニモルフの形状を有する薄膜状のアクチュエータ等が考えられる。 By the way, as an actuator applicable to a small camera module formed in a wafer state, for example, at least one of a piezoelectric element (PZT), a shape memory alloy (SMA), and a bimetal (Bi-metallic layer) is used. A thin-film actuator having a unimorph shape including the above configuration is conceivable.
 そして、変形する部分に主に導電性を有する素材からなる薄膜を設け、該薄膜における変形に伴う電気抵抗の変化を検出することにより、MCUの大型化や高コスト化を招くことなく、撮像レンズの変位を検出する方法が考えられる。なお、このような薄膜としては、一般的な歪みゲージに用いられる構成等が考えられる。該歪みゲージについては、素子間のばらつきを抑制するために、金属泊等を精密に加工して、検出精度の確保が図られる。 Then, by providing a thin film mainly made of a conductive material at the deformed portion and detecting a change in electrical resistance accompanying the deformation in the thin film, the imaging lens is not increased in size and cost. It is conceivable to detect the displacement. In addition, as such a thin film, the structure used for a general strain gauge etc. can be considered. With respect to the strain gauge, in order to suppress variation between elements, a metal stay or the like is precisely processed to ensure detection accuracy.
 しかしながら、アクチュエータの一部に薄膜を形成する場合には、製造工程における各種条件の変化によって、薄膜の厚みや膜質のばらつきが製造ロット間等で発生する。このため、薄膜における電気抵抗がばらつくことで、撮像レンズの変位を精度良く検出することが出来ず、結果的に撮像レンズの変位量を精度良く制御することが出来なくなる。そして、このような問題は、移動対象物を移動させるための各種のアクチュエータならびに該アクチュエータを搭載する駆動装置およびカメラモジュール一般に共通する。 However, when a thin film is formed on a part of the actuator, variations in the thickness and quality of the thin film occur between production lots due to changes in various conditions in the manufacturing process. For this reason, when the electric resistance in the thin film varies, the displacement of the imaging lens cannot be detected with high accuracy, and as a result, the displacement amount of the imaging lens cannot be controlled with high accuracy. Such a problem is common to various actuators for moving a moving object, and a drive device and a camera module in which the actuator is mounted.
 本発明は、上記課題に鑑みてなされたものであり、アクチュエータ間で生じる変位制御用の薄膜の厚みや膜質のばらつきに拘わらず、簡易な構成でアクチュエータにおいて生じる変位を精度良く制御可能なアクチュエータならびに該アクチュエータを搭載した駆動装置およびカメラモジュールを提供することを目的とする。 The present invention has been made in view of the above problems, and an actuator capable of accurately controlling displacement generated in an actuator with a simple configuration regardless of variations in the thickness and film quality of the displacement control thin film generated between the actuators. It is an object of the present invention to provide a driving device and a camera module on which the actuator is mounted.
 上記課題を解決するために、第1の態様に係るアクチュエータは、基準部と、前記基準部に対して固定される固定部を有するとともに、エネルギーの付与に応じた変形によって変位する変位部を有する可動部と、を備える。そして、該アクチュエータでは、前記可動部が、導体および半導体のうちの少なくとも一方の素材を用いて構成され且つ前記可動部の変形に伴って変形する変形膜を有し、前記基準部が、前記変形膜と同一素材を用いた同一工程において形成される基準膜を有する。 In order to solve the above problem, an actuator according to a first aspect includes a reference portion and a fixed portion fixed to the reference portion, and a displacement portion that is displaced by deformation according to the application of energy. A movable part. In the actuator, the movable portion includes a deformation film that is configured using at least one material of a conductor and a semiconductor and is deformed along with the deformation of the movable portion, and the reference portion is the deformation The reference film is formed in the same process using the same material as the film.
 第2の態様に係るアクチュエータは、第1の態様に係るアクチュエータであって、前記変形膜に対して電気的に接続された、前記アクチュエータの外部の素子に対して電気的に接続可能な第1端子部と、前記基準膜に対して電気的に接続された、前記アクチュエータの外部の素子に対して電気的に接続可能な第2端子部と、を備え、前記第1および第2素子部が、前記基準部に設けられる。 An actuator according to a second aspect is the actuator according to the first aspect, wherein the first electrically connected to the deformation film and electrically connectable to an element outside the actuator. A terminal portion and a second terminal portion electrically connected to the reference film and electrically connectable to an external element of the actuator, wherein the first and second element portions are , Provided in the reference portion.
 第3の態様に係るアクチュエータは、第1の態様に係るアクチュエータであって、前記基準膜と前記変形膜とが、前記同一工程において同時に形成される。 The actuator according to the third aspect is the actuator according to the first aspect, wherein the reference film and the deformation film are formed simultaneously in the same step.
 第4の態様に係るアクチュエータは、第1から第3の何れか1つの態様に係るアクチュエータであって、前記基準膜と前記変形膜とが、同一の厚み、および同一の結晶の状態を有する。 The actuator according to the fourth aspect is the actuator according to any one of the first to third aspects, wherein the reference film and the deformation film have the same thickness and the same crystal state.
 第5の態様に係るアクチュエータは、第1から第4の何れか1つの態様に係るアクチュエータであって、前記基準膜と前記変形膜とが、前記同一素材を用いて形成される一体の膜に含まれる。 An actuator according to a fifth aspect is the actuator according to any one of the first to fourth aspects, wherein the reference film and the deformation film are formed as an integral film formed using the same material. included.
 第6の態様に係るアクチュエータは、第1から第5の何れか1つの態様に係るアクチュエータであって、前記可動部が、ベース部と、形状記憶材料を用いて構成される形状記憶部とを有するとともに、温度変化に応じた前記形状記憶部の変形に応じて変形する。 The actuator according to a sixth aspect is the actuator according to any one of the first to fifth aspects, wherein the movable part includes a base part and a shape memory part configured using a shape memory material. And deforming according to the deformation of the shape memory unit according to the temperature change.
 第7の態様に係るアクチュエータは、第1から第6の何れか1つの態様に係るアクチュエータであって、前記変形膜が、エネルギーの付与に応じて駆動力を発生することで、前記可動部を変形させる。 An actuator according to a seventh aspect is the actuator according to any one of the first to sixth aspects, wherein the deformable film generates a driving force in response to application of energy, whereby the movable part is Deform.
 第8の態様に係るアクチュエータは、第1から第5の何れか1つの態様に係るアクチュエータであって、前記可動部が、熱膨張率が相互に異なる第1および第2層と前記変形膜とを含む複数層が積層された構造を有するとともに、温度変化に応じて変形する。 The actuator according to an eighth aspect is the actuator according to any one of the first to fifth aspects, wherein the movable portion includes first and second layers having different thermal expansion coefficients and the deformation film. It has a structure in which a plurality of layers including are laminated and is deformed according to a temperature change.
 第9の態様に係るアクチュエータは、第1から第8の何れか1つの態様に係るアクチュエータであって、前記変形膜が、通電に応じて発熱するヒータ部を含む。 The actuator according to the ninth aspect is the actuator according to any one of the first to eighth aspects, and the deformation film includes a heater portion that generates heat in response to energization.
 第10の態様に係る駆動装置は、第1から第9の何れか1つの態様に係るアクチュエータと、前記基準膜と前記変形膜との間におけるインピーダンスの関係および該インピーダンスの関係に対応して決まる電気的な情報のうちの少なくとも一方に応じて、前記可動部に付与する前記エネルギーの供給量を制御する制御部と、を備える。 The drive device according to the tenth aspect is determined in accordance with the impedance relation between the actuator according to any one of the first to ninth aspects, the reference film and the deformation film, and the impedance relation. And a control unit that controls a supply amount of the energy applied to the movable unit according to at least one of the electrical information.
 第11の態様に係る駆動装置は、第10の態様に係る駆動装置であって、前記インピーダンスの関係が、前記基準膜と前記変形膜との間におけるインピーダンスの比を含む。 The drive device according to the eleventh aspect is the drive device according to the tenth aspect, wherein the impedance relationship includes an impedance ratio between the reference film and the deformation film.
 第12の態様に係る駆動装置は、第11の態様に係る駆動装置であって、前記変位部の各変位量に対して前記基準膜と前記変形膜との間における電気抵抗の比の目標値がそれぞれ関連付けられた目標値情報を記憶する目標値記憶部、を備える。そして、該駆動装置では、前記制御部が、前記変位部の目標とする変位量に対して、前記電気抵抗の比が前記目標値と合致するように、前記可動部に付与する前記エネルギーの供給量を調整するフィードバック制御を行う。 A drive device according to a twelfth aspect is the drive device according to the eleventh aspect, wherein a target value of a ratio of electrical resistance between the reference film and the deformation film with respect to each displacement amount of the displacement portion. Includes a target value storage unit that stores target value information associated with each of the target value information. In the driving device, the control unit supplies the energy to be applied to the movable unit such that a ratio of the electrical resistance matches the target value with respect to a target displacement amount of the displacement unit. Perform feedback control to adjust the amount.
 第13の態様に係る駆動装置は、第12の態様に係る駆動装置であって、前記基準膜および前記変形膜のうちの前記基準値記憶部に電気抵抗の基準値が記憶されている少なくとも一方に係る電気抵抗の基準値を記憶する基準値記憶部と、前記基準膜および前記変形膜のうちの少なくとも一方に係る実際の電気抵抗の値を検出する検出部と、を更に備える。 A drive device according to a thirteenth aspect is the drive device according to the twelfth aspect, wherein at least one of the reference film and the deformation film stores a reference value of electric resistance in the reference value storage unit. A reference value storage unit that stores a reference value of the electrical resistance according to the above, and a detection unit that detects an actual electrical resistance value related to at least one of the reference film and the deformation film.
 第14の態様に係る駆動装置は、第13の態様に係る駆動装置であって、前記電気抵抗の基準値から前記実際の電気抵抗の値までのずれ量に応じて、前記目標値情報を変更する情報変更部、を更に備える。 A drive device according to a fourteenth aspect is the drive device according to the thirteenth aspect, wherein the target value information is changed in accordance with a deviation amount from a reference value of the electrical resistance to the actual electrical resistance value. And an information changing unit.
 第15の態様に係る駆動装置は、第13の態様に係る駆動装置であって、前記基準膜と前記変形膜との間におけるインピーダンスの関係に対して決まる電気的な指標と該電気的な指標の目標値とのずれ量と、前記エネルギーの供給量の変更量との関係を示す制御パラメータ情報を記憶する制御情報記憶部と、前記電気抵抗の基準値から前記実際の電気抵抗の値までのずれ量に応じて、前記制御パラメータ情報を変更する情報変更部と、を備える。 A driving apparatus according to a fifteenth aspect is the driving apparatus according to the thirteenth aspect, wherein an electrical index determined with respect to an impedance relationship between the reference film and the deformation film and the electrical index A control information storage unit for storing control parameter information indicating the relationship between the amount of deviation from the target value of the current and the amount of change in the amount of energy supplied, and from the reference value of the electrical resistance to the value of the actual electrical resistance. An information changing unit that changes the control parameter information in accordance with the amount of deviation.
 第16の態様に係る駆動装置は、第10から第15の何れか1つの態様に係る駆動装置であって、前記基準膜と前記変形膜とが、電気的に直列に接続される。 A drive device according to a sixteenth aspect is the drive device according to any one of the tenth to fifteenth aspects, wherein the reference film and the deformation film are electrically connected in series.
 第17の態様に係るカメラモジュールは、第10から第16の何れか1つの態様に係る駆動装置と、撮像素子と、被写体からの光を前記撮像素子に導く光学系と、を備える。そして、該カメラモジュールは、前記可動部が、前記変位部の変位によって、前記撮像素子および前記光学系のうちの少なくとも一方を移動させることで、前記撮像素子と前記光学系との間の距離を変更する。 A camera module according to a seventeenth aspect includes a drive device according to any one of the tenth to sixteenth aspects, an image sensor, and an optical system that guides light from a subject to the image sensor. In the camera module, the movable unit moves at least one of the image sensor and the optical system according to the displacement of the displacement unit, thereby reducing the distance between the image sensor and the optical system. change.
 第1から第9の何れの態様に係るアクチュエータによっても、基準膜と変形膜の厚みや膜質が同様なものとなるため、例えば、基準膜と変形膜との間におけるインピーダンスの関係に係る情報に応じて変位の制御を精度良く行うことが可能となる。したがって、アクチュエータ間で生じる変位制御用の薄膜の厚みや膜質のばらつきに拘わらず、簡易な構成でアクチュエータにおいて生じる変位を精度良く制御することができる。 The actuators according to any of the first to ninth aspects have the same thickness and quality of the reference film and the deformable film. For example, the information relating to the impedance relationship between the reference film and the deformable film Accordingly, the displacement can be controlled with high accuracy. Therefore, the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators.
 第3の態様に係るアクチュエータによれば、基準膜と変形膜の厚みや膜質が更に同様なものとなるため、基準膜と変形膜との間におけるインピーダンスの関係に係る情報に応じた変位の制御を更に精度良く行うことが可能となる。 According to the actuator according to the third aspect, since the thickness and quality of the reference film and the deformation film are further similar, the displacement is controlled according to the information related to the impedance relationship between the reference film and the deformation film. Can be performed with higher accuracy.
 第5の態様に係るアクチュエータによれば、基準膜および変形膜の電気的状態または電気的特性を検出するための構成の簡略化を図ることができる。 According to the actuator according to the fifth aspect, it is possible to simplify the configuration for detecting the electrical state or electrical characteristics of the reference film and the deformation film.
 第7および第9の何れの態様に係るアクチュエータであっても、可動部の構成の簡略化が可能となる。 Even in the actuator according to any of the seventh and ninth aspects, the configuration of the movable portion can be simplified.
 第10から第16の何れの態様に係る駆動装置によっても、基準膜と変形膜の厚みや膜質が同様なものとなるため、例えば、基準膜と変形膜との間におけるインピーダンスの関係に係る情報に応じて変位の制御を精度良く行うことが可能となる。したがって、アクチュエータ間で生じる変位制御用の薄膜の厚みや膜質のばらつきに拘わらず、簡易な構成でアクチュエータにおいて生じる変位を精度良く制御することができる。 The drive device according to any of the tenth to sixteenth aspects has the same thickness and quality of the reference film and the deformation film. For example, information relating to the impedance relationship between the reference film and the deformation film Accordingly, the displacement can be accurately controlled. Therefore, the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators.
 第13から第15の何れの態様に係る駆動装置によっても、変形膜の環境温度に起因する変化や劣化がアクチュエータにおける変位の制御に与える影響を抑制することができる。 The drive device according to any of the thirteenth to fifteenth aspects can suppress the influence of changes and deterioration due to the environmental temperature of the deformation film on the displacement control in the actuator.
 第16の態様に係る駆動装置によっても、より簡易な構成でアクチュエータにおいて生じる変位を精度良く制御することができる。 Also with the drive device according to the sixteenth aspect, the displacement generated in the actuator can be accurately controlled with a simpler configuration.
 第17の態様に係るカメラモジュールによれば、アクチュエータ間で生じる変位制御用の薄膜の厚みや膜質のばらつきに拘わらず、簡易な構成でアクチュエータにおいて生じる変位を精度良く制御することができる。このため、撮像素子と光学系との間の距離を精度良く変更することができる。 According to the camera module of the seventeenth aspect, the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators. For this reason, the distance between the image sensor and the optical system can be changed with high accuracy.
図1は、一実施形態および変形例に係るカメラモジュールを搭載した携帯電話機の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone equipped with a camera module according to an embodiment and a modification. 図2は、一実施形態および変形例に係る第1の筐体に着目した断面模式図である。FIG. 2 is a schematic cross-sectional view focusing on the first housing according to the embodiment and the modification. 図3は、一実施形態に係るカメラモジュールの断面模式図である。FIG. 3 is a schematic cross-sectional view of a camera module according to an embodiment. 図4は、一実施形態に係るカメラモジュールの側面模式図である。FIG. 4 is a schematic side view of a camera module according to an embodiment. 図5は、レンズ群の構成を示す模式図である。FIG. 5 is a schematic diagram showing the configuration of the lens group. 図6は、レンズ群の構成を示す模式図である。FIG. 6 is a schematic diagram showing the configuration of the lens group. 図7は、レンズ群の構成を示す模式図である。FIG. 7 is a schematic diagram illustrating the configuration of the lens group. 図8は、レンズ群の構成を示す模式図である。FIG. 8 is a schematic diagram showing the configuration of the lens group. 図9は、レンズ群の構成を示す模式図である。FIG. 9 is a schematic diagram showing the configuration of the lens group. 図10は、レンズ位置調整層の構造を示す上面模式図である。FIG. 10 is a schematic top view showing the structure of the lens position adjusting layer. 図11は、レンズ位置調整層の構造を示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing the structure of the lens position adjusting layer. 図12は、アクチュエータ層の構成を示す下面模式図である。FIG. 12 is a schematic bottom view showing the configuration of the actuator layer. 図13は、アクチュエータ層の構成を側方から見た模式図である。FIG. 13 is a schematic view of the configuration of the actuator layer viewed from the side. 図14は、アクチュエータ層の構成を説明するための図である。FIG. 14 is a diagram for explaining the configuration of the actuator layer. 図15は、低熱膨張層の構成を説明するための図である。FIG. 15 is a diagram for explaining the configuration of the low thermal expansion layer. 図16は、熱伝導層の構成を説明するための図である。FIG. 16 is a diagram for explaining the configuration of the heat conductive layer. 図17は、高熱膨張層の構成を説明するための図である。FIG. 17 is a diagram for explaining the configuration of the high thermal expansion layer. 図18は、絶縁層の構成を説明するための図である。FIG. 18 is a diagram for explaining the configuration of the insulating layer. 図19は、ヒータ層の構成を説明するための図である。FIG. 19 is a diagram for explaining the configuration of the heater layer. 図20は、一実施形態に係るアクチュエータ層の詳細な構成を示す下面模式図である。FIG. 20 is a schematic bottom view illustrating a detailed configuration of an actuator layer according to an embodiment. 図21は、可動部の動作を説明するための図である。FIG. 21 is a diagram for explaining the operation of the movable part. 図22は、可動部の動作を説明するための図である。FIG. 22 is a diagram for explaining the operation of the movable part. 図23は、第2平行ばねの構造を示す下面模式図である。FIG. 23 is a schematic bottom view showing the structure of the second parallel spring. 図24は、レンズ群と第2平行ばねとの関係を示す模式図である。FIG. 24 is a schematic diagram showing the relationship between the lens group and the second parallel spring. 図25は、第1平行ばねの構造を示す下面模式図である。FIG. 25 is a schematic bottom view showing the structure of the first parallel spring. 図26は、レンズ群と第1平行ばねとの関係を示す模式図である。FIG. 26 is a schematic diagram showing the relationship between the lens group and the first parallel spring. 図27は、カメラモジュールの製造フローを示すフローチャートである。FIG. 27 is a flowchart showing the manufacturing flow of the camera module. 図28は、アクチュエータ層シートの製造フローを示すフローチャートである。FIG. 28 is a flowchart showing a manufacturing flow of the actuator layer sheet. 図29は、アクチュエータ層シートの構成を例示する模式図である。FIG. 29 is a schematic view illustrating the configuration of an actuator layer sheet. 図30は、カメラモジュールの製造工程を模式的に示す図である。FIG. 30 is a diagram schematically showing the manufacturing process of the camera module. 図31は、一実施形態に係るレンズ群の変位量のフィードバック制御を実現するための機能的な構成を示すブロック図である。FIG. 31 is a block diagram illustrating a functional configuration for realizing feedback control of the displacement amount of the lens group according to an embodiment. 図32は、一変形例に係るアクチュエータ層の詳細な構成を示す下面模式図である。FIG. 32 is a schematic bottom view illustrating a detailed configuration of an actuator layer according to a modification. 図33は、一変形例に係るレンズ群の変位量のフィードバック制御を実現するための機能的な構成を示すブロック図である。FIG. 33 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group according to a modification. 図34は、一変形例に係るレンズ群の変位量のフィードバック制御を実現するための機能的な構成を示すブロック図である。FIG. 34 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group according to a modification. 図35は、一変形例に係るカメラモジュールの構成を概念的に示す図である。FIG. 35 is a diagram conceptually illustrating a configuration of a camera module according to a modification.
 以下、本発明の一実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 <(1)携帯電話機の概略構成>
 図1は、本発明の一実施形態に係るカメラモジュール500を搭載した携帯電話機100の概略構成を示す模式図である。なお、図1および図1以降の他の図では方位関係を明確化するために、XYZの相互に直交する3軸が適宜付されている。
<(1) Schematic configuration of mobile phone>
FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone 100 equipped with a camera module 500 according to an embodiment of the present invention. In FIG. 1 and other drawings after FIG. 1, three axes XYZ orthogonal to each other are appropriately attached in order to clarify the orientation relationship.
 図1で示されるように、携帯電話機100は、折り畳み式の携帯電話機として構成され、第1の筐体200と、第2の筐体300と、ヒンジ部400とを有する。第1の筐体200および第2の筐体300は、それぞれ板状の略直方体の形状を有し、各種電子部材を格納する筐体としての役割を有する。具体的には、第1の筐体200は、カメラモジュール500および表示ディスプレイを有し、第2の筐体300は、携帯電話機100を電気的に制御する制御部とボタン等の操作部材とを有する。なお、ヒンジ部400は、第1の筐体200と第2の筐体300とを回動可能に接続する。このため、携帯電話機100は、折り畳み可能となっている。 As shown in FIG. 1, the mobile phone 100 is configured as a foldable mobile phone, and includes a first casing 200, a second casing 300, and a hinge part 400. Each of the first casing 200 and the second casing 300 has a plate-like substantially rectangular parallelepiped shape and serves as a casing for storing various electronic members. Specifically, the first casing 200 includes a camera module 500 and a display, and the second casing 300 includes a control unit that electrically controls the mobile phone 100 and an operation member such as a button. Have. In addition, the hinge part 400 connects the 1st housing | casing 200 and the 2nd housing | casing 300 so that rotation is possible. For this reason, the mobile phone 100 can be folded.
 また、第1の筐体200には、電流源600、およびコントラスト検出部800が搭載される。電流源600は、アクチュエータ層15(図3)のヒータ層155(図19および図20)への電流の供給を制御するドライバである。コントラスト検出部800は、カメラモジュール500の撮像素子181(図3)で得られる画像信号についてコントラストを検出する。 In addition, the current source 600 and the contrast detection unit 800 are mounted on the first casing 200. The current source 600 is a driver that controls supply of current to the heater layer 155 (FIGS. 19 and 20) of the actuator layer 15 (FIG. 3). The contrast detector 800 detects the contrast of the image signal obtained by the image sensor 181 (FIG. 3) of the camera module 500.
 また、第2の筐体300には、携帯電話機100の全体の動作を統括制御する回路基板上に、合焦制御部310、記憶部320、および可変抵抗器330が搭載される。なお、合焦制御部310は、CPUおよびRAM等を有して構成され、記憶部320は、不揮発性の記憶媒体等を有して構成され、可変抵抗器330は、例えば、デジタルポテンショメータ等によって構成される。 Also, in the second casing 300, a focusing control unit 310, a storage unit 320, and a variable resistor 330 are mounted on a circuit board that controls the overall operation of the mobile phone 100. The focus control unit 310 includes a CPU and a RAM, the storage unit 320 includes a non-volatile storage medium, and the variable resistor 330 includes, for example, a digital potentiometer. Composed.
 そして、合焦制御部310は、カメラモジュール500における電気的な状態(本実施形態では、電圧)およびコントラスト検出部800からの信号の入力に応じて、電流源600を介したヒータ層155への電流の供給量を、記憶部320に格納される各種情報ならびに可変抵抗器330を含む回路を利用して制御する。これにより、カメラモジュール500の合焦状態を調整するAF制御を実行する。 Then, the focus control unit 310 is supplied to the heater layer 155 via the current source 600 in accordance with an electrical state (voltage in the present embodiment) in the camera module 500 and a signal input from the contrast detection unit 800. The amount of current supplied is controlled using various information stored in the storage unit 320 and a circuit including the variable resistor 330. Thereby, AF control for adjusting the in-focus state of the camera module 500 is executed.
 図2は、携帯電話機100のうちの第1の筐体200に着目した断面模式図である。図1および図2で示されるように、カメラモジュール500は、XY断面のサイズが約5mm四方であり、厚さ(Z方向の奥行き)が約3mm程度である小型の撮像装置、所謂マイクロカメラユニット(MCU)となっている。 FIG. 2 is a schematic cross-sectional view focusing on the first casing 200 of the mobile phone 100. As shown in FIG. 1 and FIG. 2, the camera module 500 is a small imaging device, so-called micro camera unit, having an XY cross section of about 5 mm square and a thickness (depth in the Z direction) of about 3 mm. (MCU).
 以下、カメラモジュール500の構成、カメラモジュール500の製造工程、およびカメラモジュール500におけるAF制御について順次説明する。 Hereinafter, the configuration of the camera module 500, the manufacturing process of the camera module 500, and the AF control in the camera module 500 will be sequentially described.
 <(2)カメラモジュールの構成>
 図3は、カメラモジュール500の断面模式図であり、図3の矢印AR1の示す方向が+Z方向に対応する。なお、図3以降の他の図面においても、方位関係の明確化のために、+Z方向に対応する方向を示す矢印AR1が適宜付されている。また、図4は、カメラモジュール500を側方から見た側面図である。
<(2) Configuration of camera module>
FIG. 3 is a schematic cross-sectional view of the camera module 500, and the direction indicated by the arrow AR1 in FIG. 3 corresponds to the + Z direction. In other drawings subsequent to FIG. 3, an arrow AR <b> 1 indicating a direction corresponding to the + Z direction is appropriately attached in order to clarify the orientation relationship. FIG. 4 is a side view of the camera module 500 as viewed from the side.
 図3で示されるように、カメラモジュール500は、撮影光学系としてのレンズ群20が移動可能に設けられている光学ユニットKBと、被写体像に関する撮影画像を取得する撮像部PBとを有する。 As shown in FIG. 3, the camera module 500 includes an optical unit KB in which a lens group 20 as a photographing optical system is movably provided, and an imaging unit PB that acquires a photographed image related to the subject image.
 撮像部PBは、例えば、CMOSセンサまたはCCDセンサ等の撮像素子181を有する撮像素子層18と、カバーガラス層17とが+Z方向にこの順序で積層された構成を有する。なお、カバーガラス層17が、赤外線(IR)をカットするフィルタ層を含むようにしても良い。 The imaging unit PB has, for example, a configuration in which an imaging element layer 18 having an imaging element 181 such as a CMOS sensor or a CCD sensor and a cover glass layer 17 are stacked in this order in the + Z direction. The cover glass layer 17 may include a filter layer that cuts infrared rays (IR).
 光学ユニットKBは、蓋層10、第1枠層11、第1平行ばね(上層平行ばね)12、第2枠層13、第2平行ばね(下層平行ばね)14、アクチュエータ層15、レンズ位置調整層16、およびレンズ群20を備える。蓋層10、第1枠層11、第1平行ばね12、第2枠層13、第2平行ばね14、アクチュエータ層15、レンズ位置調整層16、およびレンズ群20は、いずれもウエハ状態(ウエハレベルで)製作される。これらの製作工程については更に後述する。 The optical unit KB includes a lid layer 10, a first frame layer 11, a first parallel spring (upper parallel spring) 12, a second frame layer 13, a second parallel spring (lower parallel spring) 14, an actuator layer 15, and lens position adjustment. The layer 16 and the lens group 20 are provided. The lid layer 10, the first frame layer 11, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, the actuator layer 15, the lens position adjustment layer 16, and the lens group 20 are all in a wafer state (wafer Produced by level). These manufacturing processes will be further described later.
 光学ユニットKBでは、レンズ位置調整層16、アクチュエータ層15、第2平行ばね14、第2枠層13、第1平行ばね12、第1枠層11、および蓋層10が+Z方向にこの順序で積層され、第2平行ばね14と第1平行ばね12との間にレンズ群20が保持される。そして、第1平行ばね12と第2平行ばね14とアクチュエータ層15とが互いに協働することで、レンズ群20をZ軸に沿った方向に移動させる。 In the optical unit KB, the lens position adjusting layer 16, the actuator layer 15, the second parallel spring 14, the second frame layer 13, the first parallel spring 12, the first frame layer 11, and the lid layer 10 are arranged in this order in the + Z direction. The lens group 20 is held between the second parallel spring 14 and the first parallel spring 12. The first parallel spring 12, the second parallel spring 14, and the actuator layer 15 cooperate with each other to move the lens group 20 in the direction along the Z axis.
 カメラモジュール500では、蓋層10、第1および第2枠層11,13、レンズ位置調整層16、カバーガラス層17、および撮像素子層18が、レンズ群20に対して相対的に固定された部分(固定部分)となる。また、カメラモジュール500および光学ユニットKBは、ウエハ状態(ウエハレベルで)製作され、その4つの側面(図4のZ軸に平行な側面)が、ダイシングによって形成された切断面となっている。そして、この切断面では、光学ユニットKBおよび撮像部PBを構成する複数層の積層構造が露出している。 In the camera module 500, the lid layer 10, the first and second frame layers 11 and 13, the lens position adjustment layer 16, the cover glass layer 17, and the imaging element layer 18 are fixed relatively to the lens group 20. Part (fixed part). The camera module 500 and the optical unit KB are manufactured in a wafer state (at the wafer level), and their four side surfaces (side surfaces parallel to the Z axis in FIG. 4) are cut surfaces formed by dicing. And in this cut surface, the laminated structure of the multiple layer which comprises the optical unit KB and the imaging part PB is exposed.
 ここで、レンズ群20は、固定部分に結合された第1および第2平行ばね12,14によって支持される。より詳細には、レンズ群20の-Z側(撮像素子181が配置される側)におけるアクチュエータ層15と該レンズ群20との間には、第2平行ばね14が介挿される。また、レンズ群20の+Z側(蓋層10が配置される側)における第1枠層11と該レンズ群20との間には、第1平行ばね12が介挿される。ここでは、第1および第2平行ばね12,14によってレンズ群20が挟持されるため、レンズ群20の移動に拘わらず、レンズ群20の姿勢が保持され、レンズ群20の光軸が略一定に保持される。 Here, the lens group 20 is supported by the first and second parallel springs 12 and 14 coupled to the fixed portion. More specifically, the second parallel spring 14 is interposed between the actuator layer 15 and the lens group 20 on the −Z side of the lens group 20 (the side on which the image sensor 181 is disposed). Further, a first parallel spring 12 is interposed between the first frame layer 11 and the lens group 20 on the + Z side (the side where the lid layer 10 is disposed) of the lens group 20. Here, since the lens group 20 is clamped by the first and second parallel springs 12 and 14, the posture of the lens group 20 is maintained regardless of the movement of the lens group 20, and the optical axis of the lens group 20 is substantially constant. Retained.
 また、第1および第2平行ばね12,14は、移動対象物であるレンズ群20が+Z方向に移動する際に、レンズ群20の移動方向(すなわち+Z方向)とは反対方向の力を、該レンズ群20に対して付与する。なお、レンズ群20が-Z方向に移動する際には、第1および第2平行ばね12,14がレンズ群20に対して付与する力の方向は、レンズ群20の移動方向(すなわち-Z方向)と一致する。 Further, the first and second parallel springs 12 and 14 apply a force in a direction opposite to the moving direction of the lens group 20 (that is, the + Z direction) when the lens group 20 as the moving object moves in the + Z direction. The lens group 20 is given. When the lens group 20 moves in the −Z direction, the direction of the force applied to the lens group 20 by the first and second parallel springs 12 and 14 is the moving direction of the lens group 20 (ie, −Z Direction).
 更に、レンズ群20が+Z方向に移動していない非駆動状態(例えば駆動前の静止状態)では、第1および第2平行ばね12,14の弾性力によってレンズ群20がレンズ位置調整層16の突起部162の上端面に対して押し付けられ、レンズ群20がレンズ位置調整層16によっても支持される。このため、カメラモジュール500に対して強い衝撃が付与されても、レンズ群20の姿勢が保持される。そして、この非駆動状態では、レンズ群20がZ軸に沿って変位可能な範囲(変位可能範囲)の最も-Z側の所定位置に配置されて静止する。 Further, in a non-driving state in which the lens group 20 is not moving in the + Z direction (for example, a stationary state before driving), the lens group 20 is moved by the elastic force of the first and second parallel springs 12, 14. The lens group 20 is supported by the lens position adjusting layer 16 by being pressed against the upper end surface of the protrusion 162. For this reason, even when a strong impact is applied to the camera module 500, the posture of the lens group 20 is maintained. In this non-driven state, the lens group 20 is placed at a predetermined position on the most −Z side of a range (displaceable range) that can be displaced along the Z axis and is stationary.
 なお、この所定位置は、例えば、撮像素子181において多数の画素回路が配列されている+Z側の面(以下「撮像面」とも称する)上に光学ユニットKBの焦点が配置されるような位置に設定される。ここで言う光学ユニットKBの焦点とは、+Z側から平行光線を光学ユニットKBに入射したときに、該光学ユニットKBから射出される光線が一点に集まる点のことを言う。 The predetermined position is, for example, a position where the focal point of the optical unit KB is disposed on the + Z side surface (hereinafter also referred to as “imaging surface”) on which a large number of pixel circuits are arranged in the image sensor 181. Is set. Here, the focal point of the optical unit KB refers to a point where light beams emitted from the optical unit KB gather at one point when parallel light beams enter the optical unit KB from the + Z side.
 アクチュエータとしてのアクチュエータ層15は、+Z方向への駆動変位を発生させる可動部15a,15b(図12)を有し、レンズ群20の-Z側に配置される。可動部15a,15bは、レンズ群20の-Z側に突出した第1突起部201と接触し、可動部15a,15bで生じる駆動変位は、第1突起部201を介してレンズ群20に伝達される。つまり、アクチュエータ層15は、移動対象物であるレンズ群20を所定方向(ここでは、+Z方向)に移動させる。なお、可動部15a,15bにおける+Z方向への駆動変位が小さくなっていく場面では、第1および第2平行ばね12,14の弾性力によって、レンズ群20が所定方向とは反対方向(-Z方向)に移動する。 The actuator layer 15 as an actuator has movable portions 15a and 15b (FIG. 12) that generate drive displacement in the + Z direction, and is disposed on the −Z side of the lens group 20. The movable portions 15a and 15b are in contact with the first protrusion 201 protruding to the −Z side of the lens group 20, and the drive displacement generated in the movable portions 15a and 15b is transmitted to the lens group 20 via the first protrusion 201. Is done. That is, the actuator layer 15 moves the lens group 20 that is a moving object in a predetermined direction (here, the + Z direction). In a scene where the drive displacement in the + Z direction in the movable portions 15a and 15b is reduced, the lens group 20 is moved in the direction opposite to the predetermined direction (−Z) by the elastic force of the first and second parallel springs 12 and 14. Direction).
 側面配線21a~21cは、図4で示されるように、カメラモジュール500の4つの側面のうちの1つの側面に配設される薄型の導電部材である。側面配線21a~21cは、撮像素子層18とヒータ層155(図19)とを電気的に接続する。このため、撮像素子層18を介して、ヒータ層155(図19)と、電流源600および可変抵抗器330とがそれぞれ電気的に接続される。なお、側面配線21a~21cと第2平行ばね14とが短絡しないように、第2平行ばね14と側面配線21a~21cとの間に絶縁部14epがそれぞれ設けられる。 The side wirings 21a to 21c are thin conductive members disposed on one of the four side surfaces of the camera module 500, as shown in FIG. The side wirings 21a to 21c electrically connect the imaging element layer 18 and the heater layer 155 (FIG. 19). For this reason, the heater layer 155 (FIG. 19), the current source 600 and the variable resistor 330 are electrically connected to each other via the imaging element layer 18. Insulating portions 14ep are provided between the second parallel spring 14 and the side wirings 21a to 21c so that the side wirings 21a to 21c and the second parallel spring 14 are not short-circuited.
 上述したように、カメラモジュール500では、移動対象物であるレンズ群20が、該レンズ群20を介して互いに対向する位置に配置された第1および第2平行ばね12,14と結合され、該第1および第2平行ばね12,14がレンズ群20に垂直な方向(+Z方向)に弾性変形しつつ、レンズ群20の姿勢を保持する。そして、レンズ群20は、アクチュエータ層15の可動部15a,15bから駆動力を受けて、その位置をZ軸に沿って変位させる。従って、カメラモジュール500に設けられた光学ユニットKBは、レンズ群20を該レンズ群20の光軸方向(+Z方向)に変位させることができ、レンズ群20を変位させる駆動装置としてカメラモジュール500を機能させる。 As described above, in the camera module 500, the lens group 20 that is a moving object is coupled to the first and second parallel springs 12 and 14 disposed at positions facing each other via the lens group 20, The first and second parallel springs 12 and 14 are elastically deformed in a direction perpendicular to the lens group 20 (+ Z direction), and hold the posture of the lens group 20. The lens group 20 receives a driving force from the movable portions 15a and 15b of the actuator layer 15 and displaces the position along the Z axis. Therefore, the optical unit KB provided in the camera module 500 can displace the lens group 20 in the optical axis direction (+ Z direction) of the lens group 20, and the camera module 500 can be used as a driving device for displacing the lens group 20. Make it work.
  <(2-1)レンズ群について>
 レンズ群20は、ガラス基板を基材としてウエハレベルで作製され、例えば、2枚以上のレンズを重ね合わせて成形される。本実施形態では、2枚の光学レンズを重ね合わせてレンズ群20が構成される場合について例示する。なお、本実施形態では、レンズ群20は、被写体からの光を撮像素子181に導く撮像レンズとして機能する。
<(2-1) Lens group>
The lens group 20 is manufactured at a wafer level using a glass substrate as a base material, and is formed by, for example, superposing two or more lenses. In the present embodiment, a case where the lens group 20 is configured by overlapping two optical lenses is illustrated. In the present embodiment, the lens group 20 functions as an imaging lens that guides light from the subject to the imaging element 181.
 図5および図6は、レンズ群20の断面模式図であり、矢印AR2の示す方向が+Z方向に対応する。図7は、レンズ群20を下方(-Z側)から見たレンズ群20の下面外観図であり、図8は、レンズ群20を上方(+Z側)から見たレンズ群20の上面外観図である。 5 and 6 are schematic cross-sectional views of the lens group 20, and the direction indicated by the arrow AR2 corresponds to the + Z direction. 7 is a bottom view of the lens group 20 when the lens group 20 is viewed from below (−Z side), and FIG. 8 is a top view of the lens group 20 when the lens group 20 is viewed from above (+ Z side). It is.
 図5および図6で示されるように、レンズ群20は、第1レンズG1を有する第1レンズ構成層LY1と、第2レンズG2を有する第2レンズ構成層LY2と、スペーサ層RBとを備える。そして、第1レンズ構成層LY1と第2レンズ構成層LY2とが、スペーサ層RBを介して結合される。ここでは、第1および第2レンズ構成層LY1,LY2の非レンズ部のXY平面に沿った断面の外縁が略正方形の形状を有する。 As shown in FIGS. 5 and 6, the lens group 20 includes a first lens constituent layer LY1 having a first lens G1, a second lens constituent layer LY2 having a second lens G2, and a spacer layer RB. . Then, the first lens constituent layer LY1 and the second lens constituent layer LY2 are coupled via the spacer layer RB. Here, the outer edge of the cross section along the XY plane of the non-lens portion of the first and second lens constituent layers LY1, LY2 has a substantially square shape.
 また、図5から図7で示されるように、第1レンズG1を有する第1レンズ構成層LY1の一方主面(ここでは、-Z側)には、レンズとして機能しない非レンズ部に第1突起部201が設けられる。更に、図5,図6および図8で示されるように、第2レンズG2を有する第2レンズ構成層LY2の一方主面(ここでは、+Z側)には、レンズとして機能しない非レンズ部に第2突起部202が設けられる。 Further, as shown in FIGS. 5 to 7, the first lens constituting layer LY1 having the first lens G1 has a first main surface (here, −Z side) on the non-lens portion that does not function as a lens. A protrusion 201 is provided. Further, as shown in FIGS. 5, 6, and 8, a non-lens portion that does not function as a lens is formed on one main surface (here, + Z side) of the second lens constituent layer LY <b> 2 having the second lens G <b> 2. A second protrusion 202 is provided.
 また、図9は、スペーサ層RBの形状に着目して、スペーサ層RBを上方(+Z側)から見た図である。図9で示されるように、スペーサ層RBは、第1および第2レンズ構成層LY1,LY2の非レンズ部の外縁に沿って設けられ、XY平面に沿った断面の外縁および内縁の形状が矩形である環状の構成を有する。そして、レンズ群20の光軸が、Z軸に沿った方向に設定される。 FIG. 9 is a view of the spacer layer RB as viewed from above (+ Z side), focusing on the shape of the spacer layer RB. As shown in FIG. 9, the spacer layer RB is provided along the outer edge of the non-lens portion of the first and second lens constituting layers LY1, LY2, and the shape of the outer edge and inner edge of the cross section along the XY plane is rectangular. It has the cyclic structure which is. Then, the optical axis of the lens group 20 is set in a direction along the Z axis.
  <(2-2)各機能層について>
 以下では、カメラモジュール500を構成する各機能層の詳細について説明する。なお、各機能層については、-Z側の面を一主面と称し、+Z側の面を他主面と称する。
<(2-2) About each functional layer>
Below, the detail of each functional layer which comprises the camera module 500 is demonstrated. For each functional layer, the −Z side surface is referred to as one main surface, and the + Z side surface is referred to as the other main surface.
   <(2-2-1)撮像素子層>
 図3で示されるように、撮像素子層18は、光学ユニットKBを通過した被写体からの光を受光して、被写体の像に関する画像信号を生成する撮像素子181、その周辺回路、および撮像素子181を囲む外周部を備える部材である。また、撮像素子181は、多数の画素回路が配列されて構成される。なお、撮像素子層18の一主面(-Z側の面)には、リフロー方式によるはんだ付けを行うためのはんだボールHBが設けられている。また、ここでは図示を省略しているが、撮像素子層18の一主面には、撮像素子181に対する信号の付与、および該撮像素子181からの信号の読み出しを行う配線を接続するための各種端子が設けられる。
<(2-2-1) Image sensor layer>
As shown in FIG. 3, the image sensor layer 18 receives light from the subject that has passed through the optical unit KB, and generates an image signal related to the image of the subject, its peripheral circuit, and the image sensor 181. It is a member provided with the outer peripheral part which surrounds. The image sensor 181 is configured by arranging a large number of pixel circuits. Note that a solder ball HB for performing soldering by a reflow method is provided on one main surface (the surface on the −Z side) of the imaging element layer 18. Although not shown here, various types of wiring for applying a signal to the image sensor 181 and reading a signal from the image sensor 181 are connected to one main surface of the image sensor layer 18. A terminal is provided.
 なお、電流源600、およびコントラスト検出部800が、例えば、第2の筐体300の回路基板上に設けられ、リフロー方式によるはんだ付けによって、コントラスト検出部800が、撮像素子層18に対して電気的に接続されるとともに、撮像素子層18を介して、電流源600が、アクチュエータ層15に対して電気的に接続される態様等が考えられる。 Note that the current source 600 and the contrast detection unit 800 are provided on the circuit board of the second casing 300, for example, and the contrast detection unit 800 is electrically connected to the image sensor layer 18 by reflow soldering. For example, a mode in which the current source 600 is electrically connected to the actuator layer 15 via the imaging element layer 18 is conceivable.
   <(2-2-2)カバーガラス層>
 図3で示されるように、カバーガラス層17は、略平板状であり且つXY平面に沿った断面が略正方形の形状を有し、透明なガラス等によって構成される。このカバーガラス層17は、撮像素子層18の他主面(+Z側の面)に対して接合され、撮像素子181を保護する機能を有する。なお、カバーガラス層17が撮像素子層18上に接合された状態で撮像素子基板178を構成する。
<(2-2-2) Cover glass layer>
As shown in FIG. 3, the cover glass layer 17 has a substantially flat plate shape and has a substantially square cross section along the XY plane, and is made of transparent glass or the like. The cover glass layer 17 is bonded to the other main surface (+ Z side surface) of the image sensor layer 18 and has a function of protecting the image sensor 181. The image sensor substrate 178 is configured with the cover glass layer 17 bonded to the image sensor layer 18.
   <(2-2-3)レンズ位置調整層>
 レンズ位置調整層16は、樹脂材料を用いて構成されるとともに、撮像素子181とレンズ群20との間に配設され、且つ撮像素子181とレンズ群20との距離を調整する部材である。具体的には、レンズ位置調整層16は、非駆動状態におけるレンズ群20の位置(初期位置)を規定する。なお、レンズ位置調整層16は、例えば、樹脂をエッチングする手法等を用いて生成される。
<(2-2-3) Lens position adjustment layer>
The lens position adjustment layer 16 is configured by using a resin material, is disposed between the image sensor 181 and the lens group 20, and is a member that adjusts the distance between the image sensor 181 and the lens group 20. Specifically, the lens position adjustment layer 16 defines the position (initial position) of the lens group 20 in the non-driven state. The lens position adjustment layer 16 is generated using, for example, a method of etching a resin.
 図10は、レンズ位置調整層16を上方(+Z側)から見たレンズ位置調整層16の上面図である。図11は、レンズ位置調整層16の切断面XII-XIIにて矢印方向に見たレンズ位置調整層16の断面図である。図10および図11で示されるように、レンズ位置調整層16は、枠体161と突起部162とを備える。 FIG. 10 is a top view of the lens position adjusting layer 16 as seen from above (+ Z side). FIG. 11 is a cross-sectional view of the lens position adjusting layer 16 as viewed in the direction of the arrow at the cut surface XII-XII of the lens position adjusting layer 16. As shown in FIGS. 10 and 11, the lens position adjustment layer 16 includes a frame body 161 and a protrusion 162.
 枠体161は、レンズ位置調整層16の外周部分を構成する略矩形の環状の部分であり、XY平面に略平行な板状の形状を有する。そして、枠体161は、Z軸に沿った方向に貫通する孔(貫通孔)16Hを形成し、枠体161を構成する+Y側の板状の部材および-Y側の板状の部材は、各板状の部分の下部から貫通孔16H側に出っ張った部分(凸部)161Tをそれぞれ有する。また、枠体161の一主面は、隣接するカバーガラス層17に対して接合され、枠体161の他主面は、隣接するアクチュエータ層15(詳細には、アクチュエータ層15の枠体15f(図12))と接合される。 The frame body 161 is a substantially rectangular annular portion constituting the outer peripheral portion of the lens position adjusting layer 16, and has a plate shape substantially parallel to the XY plane. The frame body 161 forms a hole (through hole) 16H penetrating in the direction along the Z-axis. The + Y side plate-like member and the −Y side plate-like member constituting the frame body 161 are: Each plate-like portion has a portion (convex portion) 161T protruding from the lower portion to the through-hole 16H side. Further, one main surface of the frame body 161 is bonded to the adjacent cover glass layer 17, and the other main surface of the frame body 161 is connected to the adjacent actuator layer 15 (specifically, the frame body 15 f of the actuator layer 15 ( 12)).
 突起部162は、枠体161に設けられる凸部161Tの内縁近傍において上方(+Z方向)に向けて立設される。この突起部162は、XZ平面に略平行で且つ略長方形の盤面を有する板状の部分であり、突起部162の長手方向がX軸に略平行な方向とされ、突起部162の短手方向がZ軸に略平行な方向とされる。そして、突起部162の+Z側の端面は、レンズ群20が当接することで、該レンズ群20を初期位置に配置する機能を有する。 The protrusion 162 is erected upward (+ Z direction) in the vicinity of the inner edge of the convex portion 161T provided on the frame body 161. The projection 162 is a plate-like portion having a substantially rectangular board surface substantially parallel to the XZ plane, and the longitudinal direction of the projection 162 is a direction substantially parallel to the X axis, and the short direction of the projection 162 Is a direction substantially parallel to the Z-axis. The end surface on the + Z side of the protrusion 162 has a function of placing the lens group 20 at the initial position when the lens group 20 comes into contact therewith.
 また、図10では、撮像素子181を構成する複数の画素回路が配列される領域(画素配列領域)、すなわち撮像素子181の前面(撮像面)の外縁が破線で示されている。図10で示されるように、撮像面は、(短辺の長さ):(長辺の長さ):(対角線の長さ)=3:4:5の関係が成立するように構成される。そして、2つの突起部162は、被写体からレンズ群20を介して撮像素子181の画素配列領域に至る光路を、該画素配列領域の幅が最も狭い方向において挟む位置に配設される。 Further, in FIG. 10, an area where a plurality of pixel circuits constituting the image sensor 181 are arranged (pixel arrangement area), that is, an outer edge of the front surface (imaging surface) of the image sensor 181 is indicated by a broken line. As shown in FIG. 10, the imaging surface is configured so that a relationship of (short side length) :( long side length) :( diagonal length) = 3: 4: 5 is established. . The two protrusions 162 are arranged at positions where the optical path from the subject through the lens group 20 to the pixel array area of the image sensor 181 is sandwiched in the direction in which the width of the pixel array area is the narrowest.
   <(2-2-4)アクチュエータ層>
 図12は、アクチュエータ層15を下方(-Z側)から見た該アクチュエータ層15の下面図である。図13は、アクチュエータ層15を側方から見た該アクチュエータ層15の側面図である。図14は、アクチュエータ層15の層構造を概略的に示す図である。図15から図19は、アクチュエータ層15を構成する各層の構成を示す図である。
<(2-2-4) Actuator layer>
FIG. 12 is a bottom view of the actuator layer 15 as viewed from below (−Z side). FIG. 13 is a side view of the actuator layer 15 as seen from the side. FIG. 14 is a diagram schematically showing the layer structure of the actuator layer 15. FIGS. 15 to 19 are diagrams showing the configuration of each layer constituting the actuator layer 15.
 図12で示されるように、アクチュエータ層15は、外周部を構成する枠体15fと、枠体15fの内側の中空部分に対して枠体15fから突設される2枚の板状の可動部15a,15bとを備える。つまり、可動部15a,15bが基準部としての枠体15fに対して固定される。そして、枠体15fの一主面は、隣接するレンズ位置調整層16(具体的には、枠体161)に対して接合され、枠体15fの他主面は、隣接する第2平行ばね14(具体的には、固定枠体141(図23))と接合される。 As shown in FIG. 12, the actuator layer 15 includes a frame body 15f constituting the outer peripheral portion, and two plate-like movable portions projecting from the frame body 15f with respect to a hollow portion inside the frame body 15f. 15a and 15b. That is, the movable parts 15a and 15b are fixed with respect to the frame 15f as a reference part. One main surface of the frame 15f is bonded to the adjacent lens position adjustment layer 16 (specifically, the frame 161), and the other main surface of the frame 15f is the adjacent second parallel spring 14. (Specifically, it is joined to the fixed frame 141 (FIG. 23)).
 また、図14で示されるように、アクチュエータ層15は、低熱膨張層151(図15)、熱伝導層152(図16)、高熱膨張層153(図17)、絶縁層154(図18)、およびヒータ層155(図19)が、+Z側から-Z側に向けてこの順番に積層されて構成される。つまり、可動部15a,15bでは、熱膨張率が相互に異なる低熱膨張層151および高熱膨張層153とヒータ層155とを含む複数層が積層された構造、すなわち、いわゆるバイメタル(Bi-metallic strip)が採用される。 As shown in FIG. 14, the actuator layer 15 includes a low thermal expansion layer 151 (FIG. 15), a heat conduction layer 152 (FIG. 16), a high thermal expansion layer 153 (FIG. 17), an insulating layer 154 (FIG. 18), The heater layer 155 (FIG. 19) is laminated in this order from the + Z side to the −Z side. That is, the movable parts 15a and 15b have a structure in which a plurality of layers including a low thermal expansion layer 151 and a high thermal expansion layer 153 and a heater layer 155 having different thermal expansion coefficients are stacked, that is, a so-called bimetal (Bi-metallic layer). Is adopted.
 低熱膨張層151は、図15で示されるように、枠体15fを構成する枠部151fと、枠部151fの内側の中空部分に対して枠部151fから突設される2枚の板状の突設部151a,151bを備える。ここでは、突設部151aが可動部15aを構成するとともに、突設部151bが可動部15bを構成する。また、低熱膨張層151は、高熱膨張層153を構成する素材よりも小さな熱膨張率を持つ素材によって構成される。この低熱膨張層151を構成する素材としては、例えば、熱膨張率が1.1×10-6/℃である鉄・ニッケル合金が採用されることが好ましい。但し、この素材の熱伝導率は、比較的低く、約8.8W・m-1・K-1である。 As shown in FIG. 15, the low thermal expansion layer 151 is composed of a frame portion 151f constituting the frame body 15f, and two plate-like protrusions projecting from the frame portion 151f with respect to a hollow portion inside the frame portion 151f. Protruding portions 151a and 151b are provided. Here, the protruding portion 151a constitutes the movable portion 15a, and the protruding portion 151b constitutes the movable portion 15b. The low thermal expansion layer 151 is made of a material having a smaller coefficient of thermal expansion than the material forming the high thermal expansion layer 153. As a material constituting the low thermal expansion layer 151, for example, an iron / nickel alloy having a thermal expansion coefficient of 1.1 × 10 −6 / ° C. is preferably employed. However, the thermal conductivity of this material is relatively low, about 8.8 W · m −1 · K −1 .
 熱伝導層152は、図16で示されるように、低熱膨張層151と同様に、枠体15fを構成する枠部152fと、枠部152fの内側の中空部分に対して枠部152fから突設される2枚の板状の突設部152a,152bを備える。また、熱伝導層152は、低熱膨張層151および高熱膨張層153を構成する素材よりも大きな熱伝導率を持つ素材によって構成される。この熱伝導層152を構成する素材としては、例えば、熱伝導率が105.5W・m-1・K-1である銅および銅合金、熱伝導率が204W・m-1・K-1であるアルミニウム、ならびに熱伝導率が90W・m-1・K-1であるニッケルのうちの何れか1つの素材であれば良い。 As shown in FIG. 16, the heat conductive layer 152 protrudes from the frame portion 152 f with respect to the frame portion 152 f constituting the frame body 15 f and the hollow portion inside the frame portion 152 f, similarly to the low thermal expansion layer 151. Two plate-like projecting portions 152a and 152b are provided. Further, the heat conductive layer 152 is made of a material having a thermal conductivity larger than that of the material constituting the low thermal expansion layer 151 and the high thermal expansion layer 153. The material constituting the heat conducting layer 152, for example, copper and copper alloys thermal conductivity of 105.5W · m -1 · K -1, heat conductivity in 204W · m -1 · K -1 Any one of aluminum and nickel having a thermal conductivity of 90 W · m −1 · K −1 may be used.
 高熱膨張層153は、図17で示されるように、低熱膨張層151と同様に、枠体15fを構成する枠部153fと、枠部153fの内側の中空部分に対して枠部153fから突設される2枚の板状の突設部153a,153bを備える。ここでは、突設部153aが可動部15aを構成するとともに、突設部153bが可動部15bを構成する。また、高熱膨張層153は、低熱膨張層151を構成する素材よりも大きな熱膨張率を持つ素材によって構成される。この高熱膨張層153を構成する素材としては、例えば、熱膨張率が20×10-6/℃である鉄・ニッケル・マンガン合金、熱膨張率が30×10-6/℃であるマンガン・銅・ニッケル合金、熱膨張率が18×10-6/℃である鉄・ニッケル・クロム合金、および熱膨張率が18×10-6/℃である鉄・モリブデン・ニッケル合金のうちの何れか1つの素材であれば良い。但し、これらの素材の熱伝導率は、比較的低く、例えば、鉄・ニッケル・マンガン合金の熱伝導率は、約8.8W・m-1・K-1である。 As shown in FIG. 17, the high thermal expansion layer 153 protrudes from the frame portion 153f with respect to the frame portion 153f constituting the frame body 15f and the hollow portion inside the frame portion 153f, similarly to the low thermal expansion layer 151. Two plate-like projecting portions 153a and 153b are provided. Here, the projecting portion 153a constitutes the movable portion 15a, and the projecting portion 153b constitutes the movable portion 15b. The high thermal expansion layer 153 is made of a material having a larger coefficient of thermal expansion than the material constituting the low thermal expansion layer 151. The material constituting the high thermal expansion layer 153, for example, iron-nickel-manganese alloy thermal expansion coefficient is 20 × 10 -6 / ℃, manganese-copper thermal expansion coefficient is 30 × 10 -6 / ℃ nickel alloy, any of the thermal expansion coefficient of 18 × 10 -6 / ℃ iron-nickel-chromium alloys is, and thermal expansion coefficient of 18 × 10 -6 / ℃ iron-molybdenum-nickel alloy is 1 One material is enough. However, the thermal conductivity of these materials is relatively low. For example, the thermal conductivity of an iron / nickel / manganese alloy is about 8.8 W · m −1 · K −1 .
 絶縁層154は、図18で示されるように、低熱膨張層151と同様に、枠体15fを構成する枠部154fと、枠部154fの内側の中空部分に対して枠部154fから突設される2つの突設部154a,154bを備える。ここでは、突設部154aが可動部15aを構成するとともに、突設部154bが可動部15bを構成する。そして、絶縁層154は、シリカ(二酸化珪素)等の絶縁体によって構成される。この絶縁層154は、ヒータ層155と高熱膨張層153との短絡を防止する目的で設けられる。 As shown in FIG. 18, the insulating layer 154 protrudes from the frame portion 154f with respect to the frame portion 154f constituting the frame body 15f and the hollow portion inside the frame portion 154f, similarly to the low thermal expansion layer 151. Provided with two projecting portions 154a and 154b. Here, the projecting portion 154a constitutes the movable portion 15a, and the projecting portion 154b constitutes the movable portion 15b. The insulating layer 154 is made of an insulator such as silica (silicon dioxide). The insulating layer 154 is provided for the purpose of preventing a short circuit between the heater layer 155 and the high thermal expansion layer 153.
 ヒータ層155は、絶縁層154の裏面(-Z側の面)にパターンニングされ、金(Au)等の導電性を有する金属等によって構成される。そして、図19で示されるように、ヒータ層155は、第1~第3電極部E1~E3、基準膜としての基準導体部155s、変形膜としての第1および第2ヒータ部155ha,155hb、および第1~第3配線部155c1~155c3を有する。そして、第1~第3電極部E1~E3と基準導体部155sと第1~第3配線部155c1~155c3とが、枠体15fを構成するとともに、ヒータ部155haが、可動部15aを構成し、且つヒータ部155hbが、可動部15bを構成する。なお、以下では、第1および第2ヒータ部155ha,155hbを適宜「ヒータ部155h」と総称する。 The heater layer 155 is patterned on the back surface (the surface on the −Z side) of the insulating layer 154 and is made of a conductive metal such as gold (Au). As shown in FIG. 19, the heater layer 155 includes first to third electrode parts E1 to E3, a reference conductor part 155s as a reference film, first and second heater parts 155ha and 155hb as deformation films, And first to third wiring portions 155c1 to 155c3. The first to third electrode portions E1 to E3, the reference conductor portion 155s, and the first to third wiring portions 155c1 to 155c3 constitute a frame body 15f, and the heater portion 155ha constitutes a movable portion 15a. And the heater part 155hb comprises the movable part 15b. Hereinafter, the first and second heater portions 155ha and 155hb are collectively referred to as “heater portion 155h” as appropriate.
 具体的には、第1電極部E1と第2電極部E2とが基準導体部155sによって電気的に接続され、第2電極部E2と第3電極部E3とが、第1ヒータ部155haと第2配線部155c2とがこの順番で連結される配線(以下「一方配線」とも称する)によって電気的に接続されるとともに、第1配線部155c1と第2ヒータ部155hbと第3配線部155c3とがこの順番で連結される配線(以下「他方配線」とも称する)によって電気的に接続される。 Specifically, the first electrode part E1 and the second electrode part E2 are electrically connected by the reference conductor part 155s, and the second electrode part E2 and the third electrode part E3 are connected to the first heater part 155ha and the first electrode part 155ha. The two wiring parts 155c2 are electrically connected by wirings connected in this order (hereinafter also referred to as “one wiring”), and the first wiring part 155c1, the second heater part 155hb, and the third wiring part 155c3 are connected. They are electrically connected by wirings connected in this order (hereinafter also referred to as “other wirings”).
 なお、本実施形態では、第1電極部E1と第3電極部E3との間に、電位差が付与されるとともに、電流が流される。このため、第2電極部E2と第3電極部E3との間において、一方配線と他方配線とが電気的に並列に接続されるとともに、この一方配線および他方配線に対して、基準導体部155sが電気的に直列に接続される。つまり、ここでは、ヒータ部155hと基準導体部155sとが同一素材を用いて形成され且つ一体の膜に含まれるように形成されるとともに、ヒータ部155hと基準導体部155sとが電気的に直列に接続される。 In the present embodiment, a potential difference is applied between the first electrode portion E1 and the third electrode portion E3, and a current flows. For this reason, one wiring and the other wiring are electrically connected in parallel between the second electrode portion E2 and the third electrode portion E3, and the reference conductor portion 155s is connected to the one wiring and the other wiring. Are electrically connected in series. That is, here, the heater portion 155h and the reference conductor portion 155s are formed using the same material and included in an integral film, and the heater portion 155h and the reference conductor portion 155s are electrically connected in series. Connected to.
 図20は、アクチュエータ層15を裏面側(-Z側)から見た詳細な構成を示す模式図である。 FIG. 20 is a schematic diagram showing a detailed configuration of the actuator layer 15 as viewed from the back side (−Z side).
 図20で示されるように、第1~第3電極部E1~E3は、枠体15fを構成する4つの板状の部分(第1~第4板状部分)のうちの1つの板状の部分(第1板状部分)に設けられる。具体的には、該第1板状部分の長手方向の一端近傍に第2電極部E2が設けられ、且つ該第1板状部分の長手方向の他端近傍に第3電極部E3が設けられるとともに、該第1板状部分の長手方向の中央付近に第1電極部E1が設けられる。ここでは、第1~第3電極部E1~E3は、各種配線等を介してアクチュエータ層15の外部に配置される各種素子等に対して電気的に接続可能な端子部としての役割を有する。そして、基準導体部155sが、第1板状部材の一端近傍から中央付近にかけて配設される。 As shown in FIG. 20, each of the first to third electrode portions E1 to E3 has one plate-like shape among the four plate-like portions (first to fourth plate-like portions) constituting the frame body 15f. Provided in the portion (first plate-like portion). Specifically, the second electrode portion E2 is provided near one end in the longitudinal direction of the first plate-like portion, and the third electrode portion E3 is provided near the other end in the longitudinal direction of the first plate-like portion. In addition, the first electrode portion E1 is provided near the center in the longitudinal direction of the first plate-like portion. Here, the first to third electrode portions E1 to E3 serve as terminal portions that can be electrically connected to various elements and the like disposed outside the actuator layer 15 through various wirings and the like. The reference conductor portion 155s is disposed from the vicinity of one end of the first plate member to the vicinity of the center.
 また、第1配線部155c1は、枠体15fを構成する第1~第4板状部分のうちの相互に隣接する2辺を成す第2および第3板状部分において長手方向の略全域においてL字状に延設される。第2配線部155c2は、第1電極部E1が配設される第1板状部分において長手方向に沿って延設される。第3配線部155c3は、第3板状部分の端部近傍および第4板状部分の長手方向の全域に近い領域に沿っておいて延設される。 Further, the first wiring portion 155c1 is formed in substantially the entire area in the longitudinal direction in the second and third plate-like portions forming two sides adjacent to each other among the first to fourth plate-like portions constituting the frame body 15f. It extends in a letter shape. The second wiring portion 155c2 extends along the longitudinal direction in the first plate-like portion where the first electrode portion E1 is disposed. The third wiring portion 155c3 extends along the vicinity of the end portion of the third plate-like portion and the region near the entire area in the longitudinal direction of the fourth plate-like portion.
 また、第1ヒータ部155haは、可動部15aのうちの長手方向の一端である枠体15fに固定される固定部(固定端)近傍から他端(自由端FT)近傍にかけて延設されるとともに、該自由端FT近傍で折り返されて、更に該自由端FTから固定端にかけて延設される。このような構成により、細長い第1ヒータ部155haのパターンが、可動部15aの裏面側の略全域に渡って配設される。また、第2ヒータ部155hbは、可動部15bのうちの長手方向の一端である枠体15fに固定される部分(固定端)近傍から他端(自由端FT)近傍にかけて延設されるとともに、該自由端FT近傍で折り返されて、更に該自由端FTから固定端にかけて延設される。このような構成により、細長い第2ヒータ部155hbのパターンが、可動部15bの裏面側の略全域に渡って配設される。 The first heater portion 155ha extends from the vicinity of the fixed portion (fixed end) fixed to the frame 15f, which is one end in the longitudinal direction of the movable portion 15a, to the vicinity of the other end (free end FT). , Folded in the vicinity of the free end FT, and further extended from the free end FT to the fixed end. With such a configuration, the pattern of the elongated first heater portion 155ha is disposed over substantially the entire area on the back surface side of the movable portion 15a. The second heater portion 155hb extends from the vicinity of the portion (fixed end) fixed to the frame 15f that is one end in the longitudinal direction of the movable portion 15b to the vicinity of the other end (free end FT), It is folded in the vicinity of the free end FT and further extends from the free end FT to the fixed end. With such a configuration, the pattern of the elongated second heater portion 155hb is disposed over substantially the entire back surface side of the movable portion 15b.
 また、基準導体部155s、第1~第3電極部E1~E3、第1~第3配線部155c1~155c3、および第1および第2ヒータ部155haは、略同一の膜厚を有する。そして、第1および第2ヒータ部155ha,155hbは、基準導体部155s、第1~第3電極部E1~E3、および第1~第3配線部155c1~155c3よりも十分幅が狭く、細長いパターンを形成する。このため、第1電極部E1と第3電極部E3とを電気的に接続する配線においては、基準導体部155s、第1~第3電極部E1~E3、および第1~第3配線部155c1~155c3よりも、第1および第2ヒータ部155ha,155hbの方が、電気抵抗が高くなるように構成される。 The reference conductor portion 155s, the first to third electrode portions E1 to E3, the first to third wiring portions 155c1 to 155c3, and the first and second heater portions 155ha have substantially the same film thickness. The first and second heater portions 155ha and 155hb are sufficiently narrower and narrower than the reference conductor portion 155s, the first to third electrode portions E1 to E3, and the first to third wiring portions 155c1 to 155c3. Form. Therefore, in the wiring that electrically connects the first electrode portion E1 and the third electrode portion E3, the reference conductor portion 155s, the first to third electrode portions E1 to E3, and the first to third wiring portions 155c1. The first and second heater portions 155ha and 155hb are configured to have higher electrical resistance than ˜155c3.
 したがって、第1電極部E1と第3電極部E3との間に電圧が印加されると、電気抵抗が相対的に高い第1および第2ヒータ部155ha,155hbが、自身のジュール熱によって発熱する。つまり、第1および第2ヒータ部155ha,155hbが電力エネルギーの供給に応じて発熱する。なお、第1~第3電極部E1~E3は、ダイシング工程において、カメラモジュール500の側面に露出する。この露出するヒータ層155の第1~第3電極部E1~E3に対しては、側面配線21a~21b(図3および図4)がそれぞれ設けられることで、側面配線21a,21cを介して電圧および電流が供給される。 Accordingly, when a voltage is applied between the first electrode portion E1 and the third electrode portion E3, the first and second heater portions 155ha and 155hb having relatively high electric resistance generate heat due to their own Joule heat. . That is, the first and second heater portions 155ha and 155hb generate heat in response to the supply of power energy. The first to third electrode portions E1 to E3 are exposed on the side surface of the camera module 500 in the dicing process. The exposed first to third electrode portions E1 to E3 of the heater layer 155 are provided with side wirings 21a to 21b (FIGS. 3 and 4), respectively, so that voltage is supplied via the side wirings 21a and 21c. And current is supplied.
 図21および図22は、第1および第2ヒータ部155ha,155hbの発熱に応じて可動部15a,15bが変形する態様を示す模式図である。なお、可動部15a,15bの変形の態様は、それぞれ同様であるから、図21および図22では、可動部15aの変形の態様が一例として示されており、ここでは、可動部15aの変形の態様を例にとって説明する。 FIG. 21 and FIG. 22 are schematic views showing a mode in which the movable portions 15a and 15b are deformed in response to heat generated by the first and second heater portions 155ha and 155hb. In addition, since the deformation | transformation aspect of movable part 15a, 15b is respectively the same, in FIG.21 and FIG.22, the deformation | transformation aspect of the movable part 15a is shown as an example, Here, deformation | transformation of the movable part 15a is shown. An embodiment will be described as an example.
 図21で示されるように、第1ヒータ部155haが発熱していない状態では、可動部15aが平坦な形状を有する。 As shown in FIG. 21, the movable portion 15a has a flat shape when the first heater portion 155ha is not generating heat.
 これに対して、図22で示されるように、第1ヒータ部155haに対する電気的なエネルギーの供給に応答した発熱により、高熱膨張層153の突設部153aが、低熱膨張層151の突設部151aよりも大きく膨張する。ここでは、第1ヒータ部155haの発熱による熱量が、突設部151a,153aから周辺の雰囲気および枠体15fに対して放出される熱量を上回ることで、可動部15aの温度が上昇する。なお、可動部15aの厚みを30~50μm程度と非常に薄くしておくと、可動部15aの温度が比較的短時間で上昇する。そして、可動部15aの温度が上昇すると、突設部151aと突設部153aとの間の膨張の違いによって、可動部15aが、枠体15fに対して固定される固定端を支点として、反るような変形を生じて、変位部としての自由端FTが上方(+Z方向)へ変位する。このとき、可動部15aの変形に伴って、第1ヒータ部155haも変形する。 On the other hand, as shown in FIG. 22, the protruding portion 153 a of the high thermal expansion layer 153 becomes the protruding portion of the low thermal expansion layer 151 due to heat generated in response to the supply of electrical energy to the first heater portion 155 ha. It expands more than 151a. Here, the amount of heat generated by the first heater portion 155ha exceeds the amount of heat released from the projecting portions 151a and 153a to the surrounding atmosphere and the frame 15f, whereby the temperature of the movable portion 15a increases. If the thickness of the movable portion 15a is made very thin, such as about 30 to 50 μm, the temperature of the movable portion 15a rises in a relatively short time. When the temperature of the movable portion 15a rises, the movable portion 15a is counteracted with the fixed end fixed to the frame body 15f as a fulcrum due to the difference in expansion between the protruding portion 151a and the protruding portion 153a. The free end FT as the displacement portion is displaced upward (+ Z direction). At this time, the first heater portion 155ha is also deformed along with the deformation of the movable portion 15a.
 一方、第1ヒータ部155haに対する通電が停止されると、可動部15aの熱が熱伝導層152の存在によって枠体15fに急速に伝わり、枠体15fからの放熱によって、可動部15aが急速に冷却される。このとき、自由端FTの上方(+Z方向)への変位が低減されていき、図21で示されるように、可動部15aが平坦な形状に戻る。 On the other hand, when the energization to the first heater portion 155ha is stopped, the heat of the movable portion 15a is rapidly transmitted to the frame body 15f due to the presence of the heat conductive layer 152, and the movable portion 15a is rapidly moved by heat dissipation from the frame body 15f. To be cooled. At this time, the upward displacement (+ Z direction) of the free end FT is reduced, and the movable portion 15a returns to a flat shape as shown in FIG.
 ところで、第1ヒータ部155haにおける形状と電気抵抗とが一義的な関係を有し、レンズ群20の変位量と第1ヒータ部155haの形状とが一義的な関係を有する。このため、第1ヒータ部155haの電気抵抗の変化を利用して、レンズ群20の変位量を制御することが可能である。レンズ群20の変位量の制御については、カメラモジュール500のAF制御に含まれるため、後述する。 Incidentally, the shape and electric resistance in the first heater portion 155ha have a unique relationship, and the displacement amount of the lens group 20 and the shape of the first heater portion 155ha have a unique relationship. For this reason, it is possible to control the amount of displacement of the lens group 20 using the change in the electrical resistance of the first heater portion 155ha. Since the control of the displacement amount of the lens group 20 is included in the AF control of the camera module 500, it will be described later.
 なお、ここで、基準導体部155sは、枠体15fの一主面上に設けられるため、可動部15a,15bの変形に拘わらず、枠体15fとともに、ほとんど変形することなく、略平面状の形状を保持する。 Here, since the reference conductor portion 155s is provided on one main surface of the frame body 15f, the reference conductor portion 155s is not substantially deformed together with the frame body 15f regardless of the deformation of the movable portions 15a and 15b. Retain shape.
   <(2-2-5)第2平行ばね>
 図23は、第2平行ばね14を下方(-Z方向)から見た該第2平行ばね14の下面外観図である。図24は、レンズ群20に接合された第2平行ばね14を示す図である。図23で示されるように、第2平行ばね14は、固定枠体141と、弾性部142とを有する弾性部材であり、ばね機構を形成する層(弾性層)となっている。
<(2-2-5) Second parallel spring>
FIG. 23 is an external view of the lower surface of the second parallel spring 14 when the second parallel spring 14 is viewed from below (−Z direction). FIG. 24 is a diagram showing the second parallel spring 14 joined to the lens group 20. As shown in FIG. 23, the second parallel spring 14 is an elastic member having a fixed frame body 141 and an elastic portion 142, and is a layer (elastic layer) forming a spring mechanism.
 固定枠体141は、第2平行ばね14の外周部を構成し、隣接するアクチュエータ層15の枠体15fと接合される。ここで、アクチュエータ層15のヒータ層155と、第2平行ばね14との間隔は、通常に狭い。このため、ヒータ層155に電圧および電流を供給する側面配線21a~21cを、例えば、印刷などによって撮像素子層18からアクチュエータ層15にわたって単に設けると、側面配線21a~21cが、固定枠体141にまでかかる虞がある。つまり、側面配線21a~21cと第2平行ばね14とが短絡する虞がある。 The fixed frame 141 constitutes the outer peripheral portion of the second parallel spring 14 and is joined to the frame 15f of the adjacent actuator layer 15. Here, the distance between the heater layer 155 of the actuator layer 15 and the second parallel spring 14 is usually narrow. Therefore, when the side wirings 21a to 21c for supplying voltage and current to the heater layer 155 are simply provided from the imaging element layer 18 to the actuator layer 15 by printing or the like, for example, the side wirings 21a to 21c are formed on the fixed frame 141. It may take up to. That is, the side wirings 21a to 21c and the second parallel spring 14 may be short-circuited.
 そこで、この短絡を防ぐ目的で、第2平行ばね14の固定枠体141の一辺を成す板状の部材の両端付近およびその中央付近の外縁に窪んだ切り欠き部143が設けられる。この切り欠き部143には、第2枠層13と第2平行ばね14とが接合される際、および第2平行ばね14とアクチュエータ層15とが接合される際に、接合に用いられるエポキシ系の樹脂等の接着剤が充填されることで、絶縁部14ep(図3および図4)が形成される。この絶縁部14epの存在により、側面配線21a~21cと第2平行ばね14とが接触することによる不要な短絡が防止される。 Therefore, for the purpose of preventing this short circuit, a notch 143 that is recessed near the both ends of the plate-like member constituting one side of the fixed frame 141 of the second parallel spring 14 and at the outer edge near the center thereof is provided. The notch 143 is an epoxy system used for joining when the second frame layer 13 and the second parallel spring 14 are joined and when the second parallel spring 14 and the actuator layer 15 are joined. Insulating part 14ep (FIGS. 3 and 4) is formed by filling an adhesive such as resin. Due to the presence of the insulating portion 14ep, unnecessary short circuit due to contact between the side wirings 21a to 21c and the second parallel spring 14 is prevented.
 弾性部142は、固定枠体141との接続部PG1と、レンズ群20との接合部PG2とを有し、接続部PG1と接合部PG2とが板状部材EBで繋がれる。そして、図24で示されるように、第2平行ばね14は、弾性部142に設けられる接合部PG2においてレンズ群20と接合される。ここでは、第1突起部201は、第2平行ばね14の固定枠体141と板状部材EBとの隙間を通って、アクチュエータ層15の自由端FTと当接する。 The elastic part 142 has a connection part PG1 with the fixed frame body 141 and a joint part PG2 with the lens group 20, and the connection part PG1 and the joint part PG2 are connected by a plate-like member EB. Then, as shown in FIG. 24, the second parallel spring 14 is joined to the lens group 20 at a joint portion PG <b> 2 provided in the elastic portion 142. Here, the first protrusion 201 contacts the free end FT of the actuator layer 15 through the gap between the fixed frame 141 of the second parallel spring 14 and the plate member EB.
 そして、レンズ群20が固定枠体141に対して+Z方向に移動されるにつれて、接続部PG1と接合部PG2とのZ方向の位置がずれ、板状部材EBは曲げ変形(たわみ変形)を生じて湾曲する。つまり、第2平行ばね14は、板状部材EBの弾性変形によって、レンズ群20の光軸方向(±Z方向)に弾性変形可能であり、ばね機構として機能する。 Then, as the lens group 20 is moved in the + Z direction with respect to the fixed frame 141, the positions of the connecting portion PG1 and the joint portion PG2 shift in the Z direction, and the plate-like member EB undergoes bending deformation (deflection deformation). Bend. That is, the second parallel spring 14 can be elastically deformed in the optical axis direction (± Z direction) of the lens group 20 by elastic deformation of the plate-like member EB, and functions as a spring mechanism.
 なお、第2平行ばね14は、SUS系の金属材料またはりん青銅等を用いて作製される。例えば、SUS系の金属材料で第2平行ばね14が作製される場合は、フォトリソグラフィ技術により、平行ばねの形状のレジストが金属材料上にパターンニングされ、塩化鉄系のエッチング液に浸してウエットエッチングが行われることで、平行ばねのパターンが形成される。 The second parallel spring 14 is manufactured using a SUS metal material or phosphor bronze. For example, when the second parallel spring 14 is made of a SUS-based metal material, a resist in the shape of a parallel spring is patterned on the metal material by a photolithography technique, and dipped in an iron chloride-based etching solution to be wet. Etching is performed to form a parallel spring pattern.
   <(2-2-6)第2枠層>
 図3で示されるように、第2枠層13は、XY平面に沿った断面の外縁および内縁がそれぞれ略矩形である環状の部材であり、Z軸に沿って貫通する中空部分を形成する。第2枠層13は、中空部分にレンズ群20が配置されることで、該レンズ群20を側方から囲む。なお、第2枠層13を構成する素材としては、樹脂やガラス等が挙げられ、第2枠層13は、金属金型を用いたいわゆるプレス法や射出成型法等によって製作される。そして、第2枠層13の-Z側に位置する下端面(一主面)は、隣接する第2平行ばね14の固定枠体141と接合される。また、第2枠層13の+Z側に位置する上端面(他主面)は、隣接する第1平行ばね12(詳細には、第1平行ばね12の固定枠体121(図25))と接合される。
<(2-2-6) Second frame layer>
As shown in FIG. 3, the second frame layer 13 is an annular member whose outer edge and inner edge in a cross section along the XY plane are each substantially rectangular, and forms a hollow portion penetrating along the Z axis. The second frame layer 13 surrounds the lens group 20 from the side by arranging the lens group 20 in the hollow portion. In addition, resin, glass, etc. are mentioned as a raw material which comprises the 2nd frame layer 13, The 2nd frame layer 13 is manufactured by what is called a press method using a metal metal mold | die, the injection molding method, etc. The lower end surface (one main surface) located on the −Z side of the second frame layer 13 is joined to the fixed frame body 141 of the adjacent second parallel spring 14. The upper end surface (other main surface) located on the + Z side of the second frame layer 13 is adjacent to the adjacent first parallel spring 12 (specifically, the fixed frame body 121 (FIG. 25) of the first parallel spring 12). Be joined.
   <(2-2-7)第1平行ばね>
 図25は、第1平行ばね12を下方(-Z方向)から見た該第1平行ばね12の下面外観図である。図25で示されるように、第1平行ばね12は、切り欠き部143が設けられていないことを除いて、第2平行ばね14と同様の構成および機能を有する弾性部材であり、固定枠体121と弾性部122とを備える。そして、固定枠体121の一主面は、隣接する第2枠層13の他主面と接合され、固定枠体121の他主面は、隣接する第1枠層11(詳細には、第1枠層11の-Z側の下端面)と接合される。
<(2-2-7) First parallel spring>
FIG. 25 is an external view of the lower surface of the first parallel spring 12 when the first parallel spring 12 is viewed from below (−Z direction). As shown in FIG. 25, the first parallel spring 12 is an elastic member having the same configuration and function as the second parallel spring 14 except that the notch portion 143 is not provided. 121 and an elastic part 122. One main surface of the fixed frame 121 is joined to the other main surface of the adjacent second frame layer 13, and the other main surface of the fixed frame 121 is connected to the adjacent first frame layer 11 (in detail, the first 1 frame layer 11 at the −Z side lower end surface).
 図26は、レンズ群20に接合された第1平行ばね12を示す図である。図26で示されるように、弾性部122に設けられた接合部PG2が、レンズ群20の突起部202の+Z側の上端面と接合される。このため、固定枠体121に対してレンズ群20が+Z方向に相対的に移動されると、板状部材EBにおいて弾性変形が発生し、第1平行ばね12が、ばね機構として機能する。 FIG. 26 is a view showing the first parallel spring 12 joined to the lens group 20. As illustrated in FIG. 26, the joint portion PG <b> 2 provided in the elastic portion 122 is joined to the upper end surface on the + Z side of the protrusion 202 of the lens group 20. For this reason, when the lens group 20 is moved relative to the fixed frame 121 in the + Z direction, elastic deformation occurs in the plate-like member EB, and the first parallel spring 12 functions as a spring mechanism.
   <(2-2-8)第1枠層>
 図3で示されるように、第1枠層11は、第2枠層13と同様に、XY平面に沿った断面の外縁および内縁がそれぞれ略矩形である環状の部材であり、Z軸に沿って貫通する中空部分を形成する。第1枠層11の中空部分は、レンズ群20が+Z方向に移動される際に、弾性変形する板状部材EBおよび突起部202が移動可能な空間となる。なお、第1枠層11は、第2枠層13と同様な素材および製作方法によって形成される。そして、第1枠層11の-Z側に位置する下端面(一主面)は、隣接する第1平行ばね12の固定枠体121と接合される。また、第1枠層の+Z側に位置する上端面(他端面)は、隣接する蓋層10(詳細には、蓋層の外周部近傍)と接合される。
<(2-2-8) First frame layer>
As shown in FIG. 3, the first frame layer 11 is an annular member in which the outer edge and the inner edge of the cross section along the XY plane are each substantially rectangular like the second frame layer 13, and extends along the Z axis. To form a hollow portion penetrating through. The hollow portion of the first frame layer 11 becomes a space in which the plate-like member EB and the protruding portion 202 that are elastically deformed when the lens group 20 is moved in the + Z direction can move. The first frame layer 11 is formed by the same material and manufacturing method as the second frame layer 13. The lower end surface (one main surface) located on the −Z side of the first frame layer 11 is joined to the fixed frame body 121 of the adjacent first parallel spring 12. Moreover, the upper end surface (other end surface) located on the + Z side of the first frame layer is joined to the adjacent lid layer 10 (specifically, near the outer peripheral portion of the lid layer).
   <(2-2-9)蓋層>
 図3で示されるように、蓋層10は、XY平面に沿った断面の外縁が略正方形であるとともに、略中央にZ軸に平行な方向に貫通する孔(貫通孔)10Hを有し、XY平面に略平行な盤面を有する板状の部材である。貫通孔10Hは、被写体からの光をレンズ群20を介して撮像素子181に導くための孔であり、この蓋層10は、例えば、平板状の樹脂材料をプレス加工する手法、あるいは樹脂材料をパターニングした後にエッチングする手法等によって、貫通孔10Hが形成されて製作される。
<(2-2-9) Lid layer>
As shown in FIG. 3, the lid layer 10 has a substantially square outer edge in a cross section along the XY plane, and has a hole (through hole) 10 </ b> H penetrating in a direction parallel to the Z axis at a substantially center. It is a plate-like member having a board surface substantially parallel to the XY plane. The through-hole 10H is a hole for guiding light from the subject to the image sensor 181 through the lens group 20, and the lid layer 10 is formed by, for example, a technique of pressing a flat resin material or a resin material. The through-hole 10H is formed by a technique such as etching after patterning.
 なお、図3では、図示が省略されているが、蓋層10の貫通孔10Hからカメラモジュール500の内部にゴミ等が侵入しないように、蓋層10の上面(他主面)側には、適宜ガラス等で構成される透明な保護層が設けられる。 In addition, although illustration is abbreviate | omitted in FIG. 3, on the upper surface (other main surface) side of the lid | cover layer 10 so that dust etc. may not penetrate | invade into the camera module 500 from the through-hole 10H of the lid | cover layer 10, A transparent protective layer composed of glass or the like is provided as appropriate.
 <(3)カメラモジュールの製造工程>
 ここで、カメラモジュール500の製造工程について簡単に説明する。図27は、カメラモジュール500の製造工程を示すフローチャートである。図27で示されるように、(工程A)レンズ群20の生成(ステップSP1)、(工程B)シートの準備(ステップSP2)、(工程C)組み立て治具の準備(ステップSP3)、(工程D)シートの第1の接合(ステップSP4)、(工程E)レンズ群20の取り付け(ステップSP5)、(工程F)シートの第2の接合(ステップSP6)、(工程G)撮像素子基板178の取り付け(ステップSP7)、および(工程H)ダイシング(ステップSP8)が順次に行われて、カメラモジュール500が製造される。
<(3) Camera module manufacturing process>
Here, a manufacturing process of the camera module 500 will be briefly described. FIG. 27 is a flowchart showing the manufacturing process of the camera module 500. As shown in FIG. 27, (process A) generation of the lens group 20 (step SP1), (process B) sheet preparation (step SP2), (process C) assembly jig preparation (step SP3), (process D) First bonding of the sheet (step SP4), (Process E) Mounting of the lens group 20 (Step SP5), (Process F) Second bonding of the sheet (Step SP6), (Process G) Image sensor substrate 178 (Step SP7) and (process H) dicing (step SP8) are sequentially performed, and the camera module 500 is manufactured.
  <(3-1)レンズ群の生成(工程A)>
 ステップSP1では、レンズ群20が生成される。ここでは、まず、多数のレンズ群20がマトリックス状に配列されたウエハ(以下「レンズ群ウエハ」とも称する)が製作され、ダイシングにより、多数のレンズ群20が個片化されて、多数のレンズ群20が製作される。レンズ群ウエハは、多数の第1レンズ構成層LY1が配列されたウエハ(第1レンズ構成層ウエハ)と、多数のスペーサ層RBが配列されたウエハ(スペーサ層ウエハ)と、多数の第2レンズ構成層LY2が配列されたウエハ(第2レンズ構成層ウエハ)とが積層されて、相互に接合されることで製作される。
<(3-1) Generation of Lens Group (Process A)>
In step SP1, the lens group 20 is generated. Here, first, a wafer in which a large number of lens groups 20 are arranged in a matrix (hereinafter also referred to as a “lens group wafer”) is manufactured, and a large number of lens groups 20 are separated into pieces by dicing. Group 20 is produced. The lens group wafer includes a wafer in which a large number of first lens constituent layers LY1 are arranged (first lens constituent layer wafer), a wafer in which a large number of spacer layers RB are arranged (spacer layer wafer), and a large number of second lenses. A wafer (second lens constituent layer wafer) on which the constituent layers LY2 are arranged is laminated and bonded together.
  <(3-2)シートの準備(工程B)>
 ステップSP2では、カメラモジュール500を構成する各機能層に係るシートが、層ごとに形成される。なお、ここでは、ウエハレベルの円盤状のシートが準備される。機能層ごとのシートには、該機能層に係る部材に相当するチップがマトリクス状に所定配列で多数形成される。具体的には、ステップSP2では、蓋層10、第1枠層11、第1平行ばね12、第2枠層13、第2平行ばね14、アクチュエータ層15、およびレンズ位置調整層16といった各機能層に係るチップがそれぞれ所定配列で多数形成された各シートU10~U16、ならびにカバーガラス層17と撮像素子層18とが接合されて形成される撮像素子基板178に係るチップが所定配列で多数形成されたシート(撮像素子基板シート)U178がそれぞれ準備される。つまり、8枚のシートU10~16,U178が準備される。なお、各シートU10~U16,U178には、2カ所以上の所定の箇所に位置合わせのためのアライメントマークが形成される。
<(3-2) Preparation of sheet (Process B)>
In step SP2, a sheet relating to each functional layer constituting the camera module 500 is formed for each layer. Here, a disc-shaped sheet at the wafer level is prepared. A large number of chips corresponding to members related to the functional layer are formed in a matrix on the sheet for each functional layer. Specifically, in step SP2, the functions such as the lid layer 10, the first frame layer 11, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, the actuator layer 15, and the lens position adjustment layer 16 are performed. Each of the sheets U10 to U16 in which a large number of chips relating to the layers are formed in a predetermined arrangement, and a large number of chips relating to the image pickup element substrate 178 formed by joining the cover glass layer 17 and the image pickup element layer 18 are formed in a predetermined arrangement. Prepared sheets (imaging element substrate sheets) U178 are prepared. That is, eight sheets U10 to 16 and U178 are prepared. In each of the sheets U10 to U16, U178, alignment marks for alignment are formed at two or more predetermined positions.
 図28は、多数のアクチュエータ層15が配列されたシート(アクチュエータ層シート)U15の作製フローを示すフローチャートである。ここで、図28を参照しつつ、アクチュエータ層シートU15の作製方法について説明する。 FIG. 28 is a flowchart showing a manufacturing flow of a sheet (actuator layer sheet) U15 in which a number of actuator layers 15 are arranged. Here, a manufacturing method of the actuator layer sheet U15 will be described with reference to FIG.
 まず、ステップST21では、バイメタルの平板が準備される。ここでは、低熱膨張層151に相当する層と、熱伝導層152に相当する層と、高熱膨張層153に相当する層とが積層されたバイメタルの円盤状のウエハが準備される。なお、該円盤状のウエハについては、例えば、低熱膨張層151、熱伝導層152および高熱膨張層153をそれぞれ構成する素材の3枚の平板が重ねられた積層体が、圧延されて、円盤状に打ち抜かれることで作製される。 First, in step ST21, a bimetallic flat plate is prepared. Here, a bimetallic disk-shaped wafer is prepared in which a layer corresponding to the low thermal expansion layer 151, a layer corresponding to the heat conductive layer 152, and a layer corresponding to the high thermal expansion layer 153 are stacked. As for the disk-shaped wafer, for example, a laminated body in which three flat plates of materials constituting the low thermal expansion layer 151, the heat conductive layer 152, and the high thermal expansion layer 153 are stacked is rolled into a disk shape. It is made by punching.
 ステップST22では、蒸着等によって、ステップST21で準備されたバイメタルの平板上に絶縁層が形成される。 In step ST22, an insulating layer is formed on the bimetallic flat plate prepared in step ST21 by vapor deposition or the like.
 ステップST23では、フォトリソグラフィー技術等によって、ステップST22で形成された絶縁層上に、レジスト膜のパターンが形成される。ここで形成されるレジスト膜のパターンは、ヒータ層155の形状に相当するパターンがマトリックス状に配列されたパターンとなっている。 In step ST23, a resist film pattern is formed on the insulating layer formed in step ST22 by photolithography or the like. The resist film pattern formed here is a pattern in which patterns corresponding to the shape of the heater layer 155 are arranged in a matrix.
 ステップST24では、スパッタリング等によって、ステップST23でレジスト膜のパターンが形成された絶縁層上に金属(例えば、金)の薄膜が形成される。なお、スパッタリングによる金属薄膜の形成では、繰り返して同じ厚みを再現し難い。しかしながら、ここでは、ヒータ層155を構成する各部(第1~第3電極部E1~E3、基準導体部155s、第1および第2ヒータ部155ha,155hb、および第1~第3配線部155c1~155c3)が、同一素材を用いた同一工程において同時に形成される。このとき、通常は、同一のバッチ処理による金属薄膜の形成であっても、ウエハ全体で見れば、膜厚および膜質が異なる傾向にある。ところが、1つのアクチュエータ層15のチップに相当する領域に着目すると、ごく近い領域でヒータ層155を構成する各部が形成される。このため、ヒータ層155を構成する各部の厚みおよび膜質が略同一となる。そして、該膜質としては、例えば、結晶(金属組織)の状態等が挙げられる。 In step ST24, a thin film of metal (for example, gold) is formed on the insulating layer on which the resist film pattern is formed in step ST23 by sputtering or the like. In forming a metal thin film by sputtering, it is difficult to reproduce the same thickness repeatedly. However, here, the respective parts constituting the heater layer 155 (first to third electrode parts E1 to E3, reference conductor part 155s, first and second heater parts 155ha and 155hb, and first to third wiring parts 155c1 to 155c1) 155c3) are simultaneously formed in the same process using the same material. At this time, normally, even if the metal thin film is formed by the same batch process, the film thickness and film quality tend to be different from the whole wafer. However, when attention is paid to a region corresponding to the chip of one actuator layer 15, each part constituting the heater layer 155 is formed in a very close region. For this reason, the thickness and film quality of each part which comprises the heater layer 155 become substantially the same. And as this film quality, the state of a crystal (metal structure) etc. are mentioned, for example.
 ステップST25では、リフトオフ法によって、ステップST24でレジスト膜のパターン上に形成された金属薄膜が、レジスト膜のパターンとともに除去される。このとき、ヒータ層155に相当するパターンがマトリックス状に配列された金属薄膜のパターンが出来上がる。 In step ST25, the metal thin film formed on the resist film pattern in step ST24 is removed together with the resist film pattern by the lift-off method. At this time, a metal thin film pattern in which patterns corresponding to the heater layer 155 are arranged in a matrix is completed.
 ステップST26では、プレス加工等によって、各アクチュエータ層15の中空部分が形成される。このとき、アクチュエータ層シートU15が出来上がる。図29は、アクチュエータ層シートU15の構成を示す模式図である。なお、図29では、アクチュエータ層シートU15のうちの一部分に着目した構成が示されており、太破線が、アクチュエータ層15にそれぞれ相当する複数のチップの境界線を示している。 In step ST26, the hollow portion of each actuator layer 15 is formed by press working or the like. At this time, the actuator layer sheet U15 is completed. FIG. 29 is a schematic diagram showing the configuration of the actuator layer sheet U15. In FIG. 29, a configuration focusing on a part of the actuator layer sheet U15 is shown, and the thick broken lines indicate the boundary lines of a plurality of chips respectively corresponding to the actuator layer 15.
  <(3-3)組み立て治具の準備(工程C)>
 図27のステップSP3では、組み立て治具が準備される。この組み立て治具は、平板状の基台上に略同一の形状を有する多数の突起部が所定配列で設けられて構成される。なお、組み立て治具には、2カ所以上の所定の箇所に位置合わせのためのアライメントマークが形成される。また、突起部の上面は、平板状の基台の主面に対して略平行となるように構成される。なお、該各突起部の上面上でカメラモジュール500に相当するユニットがそれぞれ製作される。
<(3-3) Preparation of assembly jig (Process C)>
In step SP3 of FIG. 27, an assembly jig is prepared. The assembling jig is configured by providing a plurality of protrusions having substantially the same shape on a flat base in a predetermined arrangement. In the assembly jig, alignment marks for alignment are formed at two or more predetermined locations. The upper surface of the protrusion is configured to be substantially parallel to the main surface of the flat base. A unit corresponding to the camera module 500 is manufactured on the upper surface of each protrusion.
  <(3-4)シートの第1の接合(工程D)>
 ステップSP4では、ステップSP2で準備された8枚のシートU10~16,U178のうちの3枚のシートU11~U13が接合される。ここでは、第1枠層シートU11、第1平行ばねシートU12、および第2枠層シートU13について、各シートU11~U13に含まれる各チップが互いに積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、各シートU11~U13が接着剤等を用いて接合される。
<(3-4) Sheet First Joining (Step D)>
In step SP4, three sheets U11 to U13 of the eight sheets U10 to U16 and U178 prepared in step SP2 are joined. Here, the first frame layer sheet U11, the first parallel spring sheet U12, and the second frame layer sheet U13 are aligned in the sheet shape so that the chips included in the sheets U11 to U13 are stacked on each other. (Alignment) is performed. Then, the sheets U11 to U13 are joined using an adhesive or the like.
 図30は、ステップSP4で3枚のシートU11~U13が積層されて接合される様子、ステップSP5でレンズ群20が取り付けられる様子、ステップSP6で4枚のシートU10,U14~U16が積層されて接合される様子、およびステップSP7で撮像素子基板シートU178が接合される様子を合わせて模式的に示す図である。 FIG. 30 shows a state in which three sheets U11 to U13 are laminated and joined in step SP4, a lens group 20 is attached in step SP5, and four sheets U10 and U14 to U16 are laminated in step SP6. It is a figure which shows typically a mode that it joins, and a mode that the image pick-up element board | substrate sheet | seat U178 is joined by step SP7.
  <(3-5)レンズ群の取り付け(工程E)>
 ステップSP5では、ステップSP4で製作されたユニットの各第2枠層13の中空部分に、ステップSP1で生成されたレンズ群20が、所定のマウンターによってそれぞれ取り付けられる。つまり、格子状の形状を有する第2枠層シートU13の各空隙に、レンズ群20がそれぞれ挿入される。ここでは、レンズ群20が接合部PG2に対して押し付けられつつ、第2突起部202の端面が、接合部PG2の一主面側に対して接合される。なお、この接合手法としては、紫外線の照射によって硬化する接着剤(紫外線硬化接着剤)を用いて接合する手法等が挙げられる。
<(3-5) Attaching the lens group (Process E)>
In step SP5, the lens group 20 produced | generated by step SP1 is each attached to the hollow part of each 2nd frame layer 13 of the unit produced by step SP4 with a predetermined mounter. That is, the lens group 20 is inserted into each gap of the second frame layer sheet U13 having a lattice shape. Here, while the lens group 20 is pressed against the joint PG2, the end surface of the second protrusion 202 is joined to the one main surface side of the joint PG2. In addition, as this joining method, the method etc. which join using the adhesive agent (UV curing adhesive) hardened | cured by irradiation of an ultraviolet-ray are mentioned.
  <(3-6)シートの第2の接合(工程F)>
 ステップSP6では、ステップSP2で準備された8枚のシートU10~16,U178のうちの4枚のシートU10,U14~U16が接合される。具体的には、ステップSP6では、ステップSP5までに生成されたユニットの一主面側に対して、第2平行ばねシートU14、およびアクチュエータ層シートU15に含まれる各チップが、第2枠層シートU13に含まれる各チップに対してそれぞれ積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、各シートU14,U15が順次に接着剤等を用いて接合される。
<(3-6) Sheet second joining (process F)>
In step SP6, four sheets U10, U14 to U16 of the eight sheets U10 to U16 and U178 prepared in step SP2 are joined. Specifically, in step SP6, each chip included in the second parallel spring sheet U14 and the actuator layer sheet U15 is attached to the second frame layer sheet with respect to one main surface side of the units generated up to step SP5. Positioning (alignment) is performed while maintaining the sheet shape so as to be stacked on each chip included in U13. And each sheet | seat U14, U15 is joined using an adhesive agent etc. in order.
 また、第1枠層シートU11の他主面側に対して、蓋層シートU10に含まれる各チップが、第1枠層シートU11に含まれる各チップに対してそれぞれ積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、この状態で、第1枠層シートU11の他主面側に対して、蓋層シートU10が接着剤等を用いて接合される。 Further, the sheet is so formed that each chip included in the lid layer sheet U10 is stacked with respect to each chip included in the first frame layer sheet U11 with respect to the other main surface side of the first frame layer sheet U11. Alignment (alignment) is performed in the shape. In this state, the lid layer sheet U10 is bonded to the other main surface side of the first frame layer sheet U11 using an adhesive or the like.
 更に、アクチュエータ層シートU15の一主面側に対して、レンズ位置調整層シートU16に含まれる各チップが、アクチュエータ層シートU15に含まれる各チップに対してそれぞれ積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、この状態で、アクチュエータ層シートU15の一主面側に対して、レンズ位置調整層シートU16が接着剤等を用いて接合される。 Further, the sheet-like shape is formed so that each chip included in the lens position adjustment layer sheet U16 is stacked on each chip included in the actuator layer sheet U15 with respect to one main surface side of the actuator layer sheet U15. The alignment (alignment) is performed as it is. In this state, the lens position adjustment layer sheet U16 is bonded to one main surface side of the actuator layer sheet U15 using an adhesive or the like.
  <(3-7)撮像素子基板の取り付け(工程G)>
 ステップSP7では、ステップSP6までにレンズ位置調整層16が接合されて形成されたユニットの各レンズ位置調整層16の枠体161に対して、撮像素子基板178の外周部がそれぞれ接合されるように、レンズ位置調整層シートU16の一主面に撮像素子基板シートU178の他主面が接合される。
<(3-7) Mounting of image pickup device substrate (process G)>
In step SP7, the outer peripheral portion of the image sensor substrate 178 is bonded to the frame 161 of each lens position adjustment layer 16 of the unit formed by bonding the lens position adjustment layer 16 by step SP6. The other principal surface of the imaging element substrate sheet U178 is joined to one principal surface of the lens position adjustment layer sheet U16.
  <(3-8)ダイシング(工程H)>
 ステップSP8では、多数のレンズ群20がそれぞれ挿入され、8つのシートU10~U16,U178が積層されて形成された積層部材が、ダイシングテープ等で保護された後、ダイシング装置によってチップ毎に切り離される。このとき、多数のカメラモジュール500が完成される。なお、アクチュエータ層シートU15については、図29で示される太破線に沿って切断が行われる。
<(3-8) Dicing (Process H)>
In step SP8, a large number of lens groups 20 are respectively inserted, and a laminated member formed by laminating eight sheets U10 to U16 and U178 is protected by a dicing tape or the like and then separated for each chip by a dicing device. . At this time, a large number of camera modules 500 are completed. The actuator layer sheet U15 is cut along the thick broken line shown in FIG.
 また、このダイシング工程の途中で、側面配線21a~21cが形成される。具体的には、一方向に沿ったダイシングが行われた時点で、各カメラモジュール500の側面に相当する切断面において、各ヒータ層155が露出する。このため、切断面に側面配線21a~21cを形成するための導電材料が塗布され、その後、他方向に沿ったダイシングが行われることで、多数のカメラモジュール500が完成される。 Further, the side wirings 21a to 21c are formed during the dicing process. Specifically, when dicing along one direction is performed, each heater layer 155 is exposed at a cut surface corresponding to the side surface of each camera module 500. Therefore, a conductive material for forming the side wirings 21a to 21c is applied to the cut surface, and then dicing along the other direction is performed, so that a large number of camera modules 500 are completed.
 <(4)カメラモジュールにおけるAF制御>
  <(4-1)レンズ群の変位量のフィードバック制御に係る機能的な構成>
 図31は、カメラモジュール500のAF制御において、レンズ群20の変位量のフィードバック制御を実現するための機能的な構成を示すブロック図である。なお、ここでは、説明の複雑化を防ぐために、ヒータ部155のうちの基準導体部155sおよびヒータ部155h以外の配線については、電気抵抗が無視出来る程度に小さいものとして説明する。
<(4) AF control in camera module>
<(4-1) Functional configuration related to feedback control of lens group displacement>
FIG. 31 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group 20 in the AF control of the camera module 500. Here, in order to prevent the description from becoming complicated, the wiring other than the reference conductor portion 155s and the heater portion 155h in the heater portion 155 will be described as having an electrical resistance that is small enough to be ignored.
 図31で示されるように、電気的に直列に接続された基準導体部155sとヒータ部155hとに対して、電流源600から電流が供給される。具体的には、電流源600が、基準導体部155sに対して第1電極部E1を介して電気的に接続され、基準導体部155sとヒータ部155hとが、第2電極部E2を介して電気的に接続され、ヒータ部155hは、第3電極部E3を介して接地用の配線GNDに対して電気的に接続される。つまり、該第3電極部E3が接地される。このような態様により、電流源600から、基準導体部155sおよびヒータ部155hの順に電流を流すことができる。 As shown in FIG. 31, a current is supplied from a current source 600 to a reference conductor portion 155s and a heater portion 155h that are electrically connected in series. Specifically, the current source 600 is electrically connected to the reference conductor portion 155s via the first electrode portion E1, and the reference conductor portion 155s and the heater portion 155h are connected via the second electrode portion E2. The heater portion 155h is electrically connected to the ground wiring GND through the third electrode portion E3. That is, the third electrode portion E3 is grounded. With such an aspect, it is possible to flow current from the current source 600 in the order of the reference conductor portion 155s and the heater portion 155h.
 可変抵抗器330は、例えば、いわゆるデジタルポテンショメータを利用して構成される。可変抵抗器330の一方電極部が、第1電極部E1に対して電気的に接続され、該可変抵抗器330の他方電極部が、接地用の配線GNDに対して電気的に接続される。このため、該他方電極部が接地され、一方電極部と他方電極部との間に電圧Vrefが付与される。具体的には、可変抵抗器330の一方電極部と他方電極部との間に、電気的に直列に接続される基準導体部155sとヒータ部155hとを挟む第1電極部E1と第3電極部E3との間に印加される電圧と同一の電圧Vrefが付与される。また、可変抵抗器330のスライド可能な電極部(スライド電極部)が、後述するフィードバック制御部312に対して電気的に接続される。 The variable resistor 330 is configured using, for example, a so-called digital potentiometer. One electrode portion of the variable resistor 330 is electrically connected to the first electrode portion E1, and the other electrode portion of the variable resistor 330 is electrically connected to the ground wiring GND. For this reason, the other electrode portion is grounded, and a voltage V ref is applied between the one electrode portion and the other electrode portion. Specifically, the first electrode portion E1 and the third electrode sandwiching the reference conductor portion 155s and the heater portion 155h electrically connected in series between one electrode portion and the other electrode portion of the variable resistor 330. The same voltage V ref as that applied between the part E3 and the part E3 is applied. The slidable electrode portion (slide electrode portion) of the variable resistor 330 is electrically connected to a feedback control unit 312 described later.
 なお、ここで、可変抵抗器330の一方電極部と他方電極部との間における電気抵抗が、基準導体部155sおよびヒータ部155hの電気抵抗の合算値よりも、十分大きくなるように設定されることが好ましい。このような設定が採用されることで、可変抵抗器330には、比較的小さな電流が流れるため、不必要な発熱が抑制され、結果的に電力の消費量が抑制される。 Here, the electric resistance between the one electrode part and the other electrode part of the variable resistor 330 is set to be sufficiently larger than the total value of the electric resistances of the reference conductor part 155s and the heater part 155h. It is preferable. By adopting such a setting, since a relatively small current flows through the variable resistor 330, unnecessary heat generation is suppressed, and as a result, power consumption is suppressed.
 合焦制御部310は、機能的な構成として、抵抗制御部311およびフィードバック制御部312を有する。そして、第2電極部E2が、フィードバック制御部312に対して電気的に接続されるとともに、可変抵抗器330のスライド電極部が、フィードバック制御部312に対して電気的に接続される。 The focus control unit 310 includes a resistance control unit 311 and a feedback control unit 312 as functional configurations. The second electrode unit E2 is electrically connected to the feedback control unit 312 and the slide electrode unit of the variable resistor 330 is electrically connected to the feedback control unit 312.
 抵抗制御部311は、後述する目標値記憶部321に記憶される情報(目標値情報)を参照することで、可変抵抗器330におけるスライド電極部の位置すなわち分圧を変更する。 The resistance control unit 311 changes the position of the slide electrode unit in the variable resistor 330, that is, the partial pressure, by referring to information (target value information) stored in a target value storage unit 321 described later.
 フィードバック制御部312は、第2電極部E2と第3電極部E3との間に付与される電圧(センス電圧)Vsnsと、可変抵抗器330のスライド電極部と他方電極部との間の電圧(分圧電圧)Vvrとの関係に応じて、電流源600から基準導体部155sおよびヒータ部155hを流れる電流量を調整する。ここでは、フィードバック制御部312に対して、電圧Vvrが正の値として入力され、電圧Vsnsが負の値として入力される。そして、フィードバック制御部312は、分圧電圧Vvrからセンス電圧Vsnsを引いた数値(Vvr-Vsns)に応じて、ゲイン記憶部322に記憶された情報(ゲイン情報)を参照しつつ、電流源600から基準導体部155sおよびヒータ部155hを流れる電流量Idrvを調整するための制御信号を電流源600に対して出力する。 The feedback control unit 312 includes a voltage (sense voltage) V sns applied between the second electrode unit E2 and the third electrode unit E3, and a voltage between the slide electrode unit and the other electrode unit of the variable resistor 330. depending on the relationship between the (divided voltage) V vr, adjusts the amount of current flowing through the reference conductor portion 155s and the heater portion 155h from the current source 600. Here, the voltage V vr is input as a positive value and the voltage V sns is input as a negative value to the feedback control unit 312. Then, the feedback control unit 312 refers to information (gain information) stored in the gain storage unit 322 according to a numerical value (V vr −V sns ) obtained by subtracting the sense voltage V sns from the divided voltage V vr. Then, a control signal for adjusting the current amount I drv flowing from the current source 600 through the reference conductor portion 155 s and the heater portion 155 h is output to the current source 600.
 なお、フィードバック制御部312は、第2電極部E2およびスライド電極部からの入力に係るインピーダンス(入力インピーダンス)が十分高く設定される。これは、フィードバック制御部312に大きな電流が流れず、ヒータ部155h等に電流が流れ易くするためであり、フィードバック制御部312における微弱な信号の検出にも資する。 The feedback control unit 312 is set to have a sufficiently high impedance (input impedance) related to input from the second electrode unit E2 and the slide electrode unit. This is because a large current does not flow through the feedback control unit 312 and the current easily flows through the heater unit 155h and the like, which contributes to detection of a weak signal in the feedback control unit 312.
 記憶部320は、目標値記憶部321およびゲイン記憶部322を有する。 The storage unit 320 includes a target value storage unit 321 and a gain storage unit 322.
 目標値記憶部321は、測定によって予め得られた、基準導体部155sの電気抵抗(基準膜抵抗)Rrefとヒータ部155hの電気抵抗(変形膜抵抗)Rsnsとの比と、レンズ群20の+Z方向への変位量(すなわち、自由端FTの変位量)との関係を示す情報(目標値情報)が記憶される。具体的には、自由端FTの所定量刻みの各変位量を目標変位量とし、目標変位量毎に、対応する基準導体部155sの電気抵抗(基準膜抵抗)Rrefとヒータ部155hの電気抵抗(変形膜抵抗)Rsnsとの比が目標値として記憶される。なお、可動部15a,15bが平板状である非駆動状態の場合には、電気抵抗Rrefと電気抵抗Rsnsとの比は設計上決まる。 The target value storage unit 321 obtains the ratio of the electrical resistance (reference film resistance) R ref of the reference conductor portion 155s and the electrical resistance (deformed film resistance) R sns of the heater portion 155h, which is obtained in advance by measurement, and the lens group 20 Is stored information (target value information) indicating the relationship with the amount of displacement in the + Z direction (that is, the amount of displacement of the free end FT). Specifically, each displacement amount of the free end FT in increments of a predetermined amount is set as a target displacement amount. For each target displacement amount, the corresponding electric resistance (reference film resistance) R ref of the reference conductor portion 155s and the electric power of the heater portion 155h. A ratio with the resistance (deformed membrane resistance) R sns is stored as a target value. When the movable parts 15a and 15b are in a non-driving state having a flat plate shape, the ratio between the electric resistance R ref and the electric resistance R sns is determined by design.
 ゲイン記憶部322は、分圧電圧Vvrからセンス電圧Vsnsを引いた数値(Vvr-Vsns)について、所定値刻みの各数値(Vvr-Vsns)に対して、電流源600から基準導体部155sおよびヒータ部155hに対して供給する電気的なエネルギーの供給量の変更量(具体的には電流を増加すべき量)が関連付けられた情報(制御パラメータ情報)を記憶する。なお、ここでは、各数値(Vvr-Vsns)が、基準導体部155sとヒータ部155hとの間における電気抵抗の関係によって決まる電気的な指標であるセンス電圧Vsnsと、該電気抵抗の関係によって決まる電気的な指標の目標値である分圧電圧Vvrとのずれ量に相当する。 The gain storage unit 322 generates a value (V vr -V sns ) obtained by subtracting the sense voltage V sns from the divided voltage V vr from the current source 600 for each value (V vr -V sns ) in increments of a predetermined value. Information (control parameter information) associated with a change amount (specifically, an amount to increase the current) of the electric energy supplied to the reference conductor portion 155s and the heater portion 155h is stored. Here, each numerical value (V vr −V sns ) is a sense voltage V sns , which is an electrical index determined by the electrical resistance relationship between the reference conductor portion 155 s and the heater portion 155 h, and the electrical resistance. This corresponds to the amount of deviation from the divided voltage Vvr , which is the target value of the electrical index determined by the relationship.
  <(4-2)レンズ群の変位量のフィードバック制御に係る動作>
 ここで、図31を参照しつつ、レンズ群20の変位量のフィードバック制御に係る動作について説明する。ここでは、上述したように、基準導体部155sに係る基準膜抵抗をRref、ヒータ部155hに係る変形膜抵抗をRsns、第1電極部E1と第3電極部E3との間に印加されるリファレンス電圧をVref、第2電極部E2と第3電極部E3との間に印加されるセンス電圧をVsns、およびスライド電極部の分圧電圧をVvrとするとともに、電流源600から基準導体部155sおよびヒータ部155hに供給される電流(駆動電流)をIdrvとする。
<(4-2) Operation related to feedback control of lens group displacement>
Here, an operation relating to feedback control of the displacement amount of the lens group 20 will be described with reference to FIG. Here, as described above, the reference film resistance related to the reference conductor portion 155s is R ref , the deformation film resistance related to the heater portion 155h is R sns , and is applied between the first electrode portion E1 and the third electrode portion E3. V ref is a reference voltage to be applied, V sns is a sense voltage applied between the second electrode portion E2 and the third electrode portion E3, and a divided voltage of the slide electrode portion is V vr. Let I drv be the current (drive current) supplied to the reference conductor portion 155s and the heater portion 155h.
 まず、リファレンス電圧Vrefは、駆動電流Idrv、基準膜抵抗Rref、および変形膜抵抗Rsnsを用いて、下式(1)で示される。 First, the reference voltage V ref is expressed by the following expression (1) using the drive current I drv , the reference film resistance R ref , and the deformation film resistance R sns .
   Vref=Idrv×(Rref+Rsns) ・・・(1) V ref = I drv × (R ref + R sns ) (1)
 そして、センス電圧Vsnsは、リファレンス電圧Vref、基準膜抵抗Rref、および変形膜抵抗Rsnsを用いて、下式(2)で示される。 The sense voltage V sns is expressed by the following expression (2) using the reference voltage V ref , the reference film resistance R ref , and the deformation film resistance R sns .
   Vsns=Rsns/(Rref+Rsns)×Vref ・・・(2) V sns = R sns / (R ref + R sns ) × V ref (2)
 また、可変抵抗器330のうちのリファレンス電圧Vrefが付与される一方電極部とスライド電極部との間の抵抗値(第1分圧抵抗値)をR1とするとともに、該スライド電極部と接地される他方電極部との間の抵抗値(第2分圧抵抗値)をR2とすると、可変抵抗器330のスライド電極部に係る分圧電圧Vvrは、下式(3)で示される。 In addition, the resistance value (first voltage dividing resistance value) between one electrode portion to which the reference voltage V ref of the variable resistor 330 is applied and the slide electrode portion is set to R1, and the slide electrode portion and the ground are grounded. Assuming that the resistance value (second voltage dividing resistance value) between the other electrode part is R2, the divided voltage V vr related to the slide electrode part of the variable resistor 330 is expressed by the following expression (3).
   Vvr=R2/(R1+R2)×Vref ・・・(3) V vr = R2 / (R1 + R2) × V ref (3)
 ここで、フィードバック制御部312によって、入力される分圧電圧Vvrとセンス電圧Vsnsとが比較されて、分圧電圧Vvrがセンス電圧Vsnsよりも大きければ、駆動電流Idrvを増加させるような制御信号が電流源600に対して出力される。一方、分圧電圧Vvrがセンス電圧Vsnsよりも小さければ、駆動電流Idrvが減少するように、制御信号が電流源600に対して出力される。 Here, the feedback control unit 312 compares the input divided voltage V vr with the sense voltage V sns, and if the divided voltage V vr is larger than the sense voltage V sns , the drive current I drv is increased. Such a control signal is output to the current source 600. On the other hand, if the divided voltage V vr is smaller than the sense voltage V sns , a control signal is output to the current source 600 so that the drive current I drv decreases.
 つまり、Vvr>Vsnsの関係が成立する場合、すなわち下式(4)の関係が成立する場合には、駆動電流Idrvが増加するような制御が行われる。 That is, when the relationship of V vr > V sns is established, that is, when the relationship of the following equation (4) is established, control is performed such that the drive current I drv is increased.
   R2/(R1+R2)>Rsns/(Rref+Rsns) ・・・(4) R2 / (R1 + R2)> R sns / (R ref + R sns ) (4)
 このとき、アクチュエータ層15では、可動部15a,15bの変形量が増加する。そして、上式(4)の左辺の値と右辺の値とが等価な関係を有するようになるまで、駆動電流Idrvが増加する。 At this time, in the actuator layer 15, the deformation amount of the movable parts 15a and 15b increases. Then, the drive current I drv increases until the value on the left side and the value on the right side of the above equation (4) have an equivalent relationship.
 これに対して、Vvr<Vsnsの関係が成立する場合、すなわち下式(5)の関係が成立する場合には、駆動電流Idrvが減少するような制御が行われる。 On the other hand, when the relationship of V vr <V sns is established, that is, when the relationship of the following equation (5) is established, control is performed such that the drive current I drv is reduced.
   R2/(R1+R2)<Rsns/(Rref+Rsns) ・・・(5) R2 / (R1 + R2) <R sns / (R ref + R sns ) (5)
 このとき、アクチュエータ層15では、可動部15a,15bの変形量が減少する。そして、上式(5)の左辺の値と右辺の値とが等価な関係を有するようになるまで、駆動電流Idrvが減少する。 At this time, in the actuator layer 15, the deformation amount of the movable parts 15a and 15b decreases. Then, the drive current I drv decreases until the value on the left side and the value on the right side of the above equation (5) have an equivalent relationship.
 このようにして、可変抵抗器330における第1分圧抵抗値R1と第2分圧抵抗値R2との比を目標値として、基準膜抵抗Rrefと変形膜抵抗Rsnsとの比が、目標値と等価となるように、駆動電流Idrvのフィードバック制御が行われる。具体的には、基準導体部155sとヒータ部155hとの間における電気抵抗の比に対応して決まる電気的な情報としてのセンス電圧Vsnsに応じて、可動部15a,15bに付与する電気的なエネルギーの供給量が制御される。 In this way, the ratio between the reference voltage resistance R ref and the deformed film resistance R sns is set to the target value with the ratio of the first voltage dividing resistance value R1 and the second voltage dividing resistance value R2 in the variable resistor 330 as the target value. Feedback control of the drive current I drv is performed so as to be equivalent to the value. Specifically, the electrical applied to the movable portions 15a and 15b in accordance with the sense voltage V sns as electrical information determined corresponding to the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h. Energy supply is controlled.
 ところで、基準導体部155sとヒータ部155hの各電気抵抗の絶対値については、製造工程に起因して個々のアクチュエータ層15毎に若干ばらつく傾向を有する。しかしながら、本実施形態に係る1つのアクチュエータ層15においては、同一の工程で同時に基準導体部155sとヒータ部155hとが形成されるため、基準導体部155sとヒータ部155hとの間で膜厚や膜質が略同一となる。このため、基準導体部155sとヒータ部155hとの間における電気抵抗の比は、ヒータ部155hの変形量に応じた値となる。つまり、基準導体部155sとヒータ部155hとの間における電気抵抗の比と、ヒータ部155hの変形量とが、一対一の関係を有する。そして、本実施形態では、基準導体部155sとヒータ部155hとの間における電気抵抗の比が目標値と合致するように、可動部15a,15bの自由端FTの変位量が制御される。 Incidentally, the absolute values of the electric resistances of the reference conductor portion 155s and the heater portion 155h tend to vary slightly for each actuator layer 15 due to the manufacturing process. However, in one actuator layer 15 according to the present embodiment, since the reference conductor portion 155s and the heater portion 155h are formed at the same time in the same process, the film thickness and the like between the reference conductor portion 155s and the heater portion 155h are reduced. The film quality is substantially the same. For this reason, the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h is a value corresponding to the amount of deformation of the heater portion 155h. That is, the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h and the deformation amount of the heater portion 155h have a one-to-one relationship. In this embodiment, the amount of displacement of the free ends FT of the movable portions 15a and 15b is controlled so that the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h matches the target value.
 なお、ここでは、ヒータ部155のうちの基準導体部155sおよびヒータ部155h以外の配線については、電気抵抗が無視出来る程度に小さいものとして説明したが、これに限られない。例えば、基準膜抵抗Rrefおよび変形膜抵抗Rsnsに、基準導体部155sおよびヒータ部155h以外の配線に係る電気抵抗がそれぞれ加味されて、リファレンス電圧Vrefおよびセンス電圧Vsnsが取り扱われても良い。 Here, the wiring other than the reference conductor portion 155s and the heater portion 155h in the heater portion 155 has been described as being small enough to ignore the electric resistance, but is not limited thereto. For example, the reference voltage V ref and the sense voltage V sns may be handled by adding the electric resistances related to the wiring other than the reference conductor portion 155s and the heater portion 155h to the reference film resistance R ref and the deformation film resistance R sns , respectively. good.
  <(4-3)AF制御の動作>
 合焦制御部310によって、上述したレンズ群20の変位量のフィードバック制御によって、レンズ群20と撮像素子181との離隔距離が変更されて、光学ユニットKBの焦点の位置が変更される。
<(4-3) AF control operation>
The focus control unit 310 changes the separation distance between the lens group 20 and the image sensor 181 by the feedback control of the displacement amount of the lens group 20 described above, and the focus position of the optical unit KB is changed.
 図1で示されたコントラスト検出部800は、撮像素子181で得られる画像信号について、コントラストを検出する。例えば、隣接画素間の階調値の差分を画像全体について積算した数値が、コントラストを示す評価値として検出される。このコントラストを示す評価値に係る信号は、合焦制御部310に対して出力される。 The contrast detection unit 800 shown in FIG. 1 detects the contrast of the image signal obtained by the image sensor 181. For example, a numerical value obtained by accumulating differences in gradation values between adjacent pixels for the entire image is detected as an evaluation value indicating contrast. A signal related to the evaluation value indicating the contrast is output to the focus control unit 310.
 AF制御を行う際には、合焦制御部310の制御により、まず、レンズ群20と撮像素子181との離隔距離が予め設定された多段階の離隔距離に順次に設定され、各離隔距離に設定される状態で撮像素子181によって画像信号が取得される。換言すれば、レンズ群20の+Z方向への繰り出し位置が、予め設定された多段階の位置に設定されるとともに、各繰り出し位置にレンズ群20が配置される時点において撮像素子181によって画像信号が取得される。なお、このとき、合焦制御部310によるレンズ群20の変位量のフィードバック制御によって、レンズ群20の繰り出し位置が変更される。 When performing AF control, first, the separation distance between the lens group 20 and the image sensor 181 is sequentially set to a preset multi-step separation distance under the control of the focusing control unit 310, and each separation distance is set. An image signal is acquired by the image sensor 181 in the set state. In other words, the extension position of the lens group 20 in the + Z direction is set to a preset multistage position, and an image signal is output by the image sensor 181 at the time when the lens group 20 is disposed at each extension position. To be acquired. At this time, the feeding position of the lens group 20 is changed by feedback control of the displacement amount of the lens group 20 by the focus control unit 310.
 次に、合焦制御部310が、コントラスト検出部800によって各繰り出し位置について検出されたコントラストを示す評価値に基づいて、コントラストを示す評価値が最大となる繰り出し位置を検出する。このコントラストを示す評価値が最大となる繰り出し位置にレンズ群20が配置されている状態が、被写体に合焦している状態に相当する。このため、合焦制御部310の制御により、レンズ群20がコントラストを示す評価値が最大となる繰り出し位置まで移動されることで、カメラモジュール500における被写体に対する合焦が実現される。すなわち、AF制御が実現される。 Next, the focus control unit 310 detects a feeding position where the evaluation value indicating the contrast is maximum based on the evaluation value indicating the contrast detected for each feeding position by the contrast detection unit 800. The state where the lens group 20 is disposed at the extended position where the evaluation value indicating the contrast is maximum corresponds to the state where the subject is in focus. For this reason, focusing on the subject in the camera module 500 is realized by moving the lens group 20 to the extended position where the evaluation value indicating the contrast is maximized under the control of the focusing control unit 310. That is, AF control is realized.
 以上のように、本実施形態に係るカメラモジュール500では、基準導体部155sとヒータ部155hの厚みや膜質が同様なものとなる。このため、基準導体部155sとヒータ部155hとの間における電気抵抗の関係に応じた変位の制御が精度良く行われる。したがって、アクチュエータ間で生じる変位制御用の薄膜の厚みや膜質のばらつきに拘わらず、簡易な構成でアクチュエータにおいて生じる変位を精度良く制御することができる。また、簡易な構成でアクチュエータにおける高精度の変位制御が可能となるため、アクチュエータの製造に要するコストの上昇も抑制することができる。 As described above, in the camera module 500 according to this embodiment, the thickness and film quality of the reference conductor portion 155s and the heater portion 155h are the same. For this reason, the displacement control according to the relationship of the electrical resistance between the reference conductor portion 155s and the heater portion 155h is accurately performed. Therefore, the displacement generated in the actuator can be accurately controlled with a simple configuration regardless of variations in the thickness and quality of the displacement control thin film generated between the actuators. In addition, since it is possible to perform highly accurate displacement control in the actuator with a simple configuration, it is possible to suppress an increase in cost required for manufacturing the actuator.
 また、同一のアクチュエータにおいては、基準導体部155sとヒータ部155hの厚みや膜質が同様のものとなる。このため、基準導体部155sとヒータ部155hとの間における電気抵抗の関係に応じた変位の制御を更に精度良く行うことが可能となる。 Further, in the same actuator, the thickness and film quality of the reference conductor portion 155s and the heater portion 155h are the same. For this reason, it becomes possible to control the displacement according to the relationship of the electrical resistance between the reference conductor portion 155s and the heater portion 155h with higher accuracy.
 また、基準導体部155sとヒータ部155hとが一体の膜であるヒータ層155に含まれる。このため、基準導体部155sおよびヒータ部155hに印加される電圧等といった電気的な状態を検出するための構成の簡略化が図られる。更に、基準導体部155sとヒータ部155hとが電気的に直列に接続されることで、直列に接続されていない場合と比較して、アクチュエータ層15の外部における配線および構成の簡略化が図られるため、より簡易な構成でアクチュエータにおいて生じる変位を精度良く制御することができる。 Further, the reference conductor portion 155s and the heater portion 155h are included in the heater layer 155 which is an integral film. For this reason, the structure for detecting an electrical state such as a voltage applied to the reference conductor portion 155s and the heater portion 155h can be simplified. Further, the reference conductor portion 155s and the heater portion 155h are electrically connected in series, so that the wiring and configuration outside the actuator layer 15 can be simplified as compared with the case where they are not connected in series. Therefore, the displacement generated in the actuator can be accurately controlled with a simpler configuration.
 また、ヒータ部155hが変形を制御するための変形膜としての役割も果たすため、可動部15a,15bの構成の簡略化が図られる。 Further, since the heater portion 155h also serves as a deformation film for controlling the deformation, the configuration of the movable portions 15a and 15b can be simplified.
 <変形例>
 なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
<Modification>
It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention.
 ◎例えば、上記一実施形態では、ヒータ層155において、基準導体部155sとヒータ部155hとが一体の膜に含まれ且つ電気的に直列に接続されたが、これに限られない。例えば、ヒータ層において、基準導体部とヒータ部とが一体の膜に含まれず且つ相互に離隔して配設されても良い。以下、具体例を示して説明する。 For example, in the above-described embodiment, in the heater layer 155, the reference conductor portion 155s and the heater portion 155h are included in an integral film and electrically connected in series. However, the present invention is not limited to this. For example, in the heater layer, the reference conductor portion and the heater portion may not be included in the integral film and may be spaced apart from each other. Hereinafter, a specific example will be described.
 図32は、一変形例に係るアクチュエータ層15Aの詳細な構成を模式的に示す図である。なお、図1~図3で示された、上記一実施形態に係るカメラモジュール500、第1の筐体200、および携帯電話機100と比較すると、本変形例に係るカメラモジュール500A、第1の筐体200A、および携帯電話機100Aは、アクチュエータ層15が構成の異なるアクチュエータ層15Aに変更されたものとなっている。そして、図32で示されるように、上記一実施形態に係るアクチュエータ15と比較すると、本変形例に係るアクチュエータ層15Aは、可動部15bが取り除かれ且つヒータ層155が構成の異なるヒータ層155Aに変更されたものとなっている。また、ヒータ層155Aの構成に合わせて側面配線ならびに該側面配線に合わせた構成が採用される。その他の構成については、ほぼ同様な構成を有する。なお、上記一実施形態に係るアクチュエータ15と同様な構成については、同様な符号を付して説明を省略する。 FIG. 32 is a diagram schematically showing a detailed configuration of an actuator layer 15A according to a modification. Compared with the camera module 500, the first casing 200, and the mobile phone 100 according to the above-described embodiment shown in FIGS. 1 to 3, the camera module 500A according to the present modification, the first casing, and the first casing 200 are compared. The body 200A and the mobile phone 100A have the actuator layer 15 changed to an actuator layer 15A having a different configuration. As shown in FIG. 32, compared to the actuator 15 according to the above-described embodiment, the actuator layer 15A according to the present modified example is different from the heater layer 155A in which the movable portion 15b is removed and the heater layer 155 has a different configuration. It has been changed. Further, a side wiring and a configuration matched to the side wiring are adopted according to the configuration of the heater layer 155A. Other configurations are almost the same. In addition, about the structure similar to the actuator 15 which concerns on the said one Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図32で示されるように、ヒータ層155Aは、スパッタリング等の同一の工程で同時に形成される第1~第4電極部EA1~EA4、基準導体部155sA、第1ヒータ部155ha、および配線部155cAを備える。そして、基準導体部155sAは、第1電極部EA1と第2電極部EA2との間を電気的に接続する。また、第3電極部EA3と第4電極部EA4との間が、第1ヒータ部155haおよび配線部155cAの順に配設される配線によって電気的に接続される。なお、上記一実施形態に係る枠体15fについては、ヒータ層155Aの構成が、上記一実施形態に係るヒータ層155と異なる構成を有するため、本変形例では、枠体15fAに変更されている。 As shown in FIG. 32, the heater layer 155A includes first to fourth electrode portions EA1 to EA4, a reference conductor portion 155sA, a first heater portion 155ha, and a wiring portion 155cA that are simultaneously formed in the same process such as sputtering. Is provided. The reference conductor portion 155sA electrically connects the first electrode portion EA1 and the second electrode portion EA2. Further, the third electrode part EA3 and the fourth electrode part EA4 are electrically connected by the wiring arranged in the order of the first heater part 155ha and the wiring part 155cA. In addition, about the frame 15f which concerns on the said one Embodiment, since the structure of 155A of heater layers has a different structure from the heater layer 155 which concerns on the said one Embodiment, it is changed into the frame 15fA in this modification. .
 このような構成が採用されても、例えば、アクチュエータ層15Aの外部の配線が工夫されれば、図31で示されたレンズ群20の変位量のフィードバック制御を実現するための機能的な構成を実現することも可能である。 Even if such a configuration is adopted, for example, if wiring outside the actuator layer 15A is devised, the functional configuration for realizing feedback control of the displacement amount of the lens group 20 shown in FIG. It can also be realized.
 なお、基準導体部155sAと第1ヒータ部155haとが電気的に直列に接続されることなく、基準導体部155sAおよび第1ヒータ部155haに対して、個別に電流源が設けられ、いわゆるカレントミラー回路を利用して、基準導体部155sAおよび第1ヒータ部155haに同じ電流が供給される構成も考えられる。このような構成では、例えば、基準導体部155sAおよび第1ヒータ部155haの電気抵抗の絶対値をそれぞれ検出して、この電気抵抗の比を算出し、該電気抵抗の比を用いて、レンズ群20の変位量の制御を行うことも可能である。 The reference conductor portion 155sA and the first heater portion 155ha are not electrically connected in series, and a current source is provided separately for the reference conductor portion 155sA and the first heater portion 155ha, and a so-called current mirror is provided. A configuration in which the same current is supplied to the reference conductor portion 155sA and the first heater portion 155ha using a circuit is also conceivable. In such a configuration, for example, the absolute values of the electrical resistances of the reference conductor portion 155sA and the first heater portion 155ha are detected, the ratio of the electrical resistances is calculated, and the lens group is calculated using the electrical resistance ratio. It is also possible to control 20 displacement amounts.
 ◎また、上記一実施形態では、基準導体部155sおよびヒータ部155hの電気抵抗の絶対値が測定されなかったが、これに限られない。例えば、基準導体部155sおよびヒータ部155hのうちの少なくとも一方の電気抵抗の実測値を、基準導体部155sおよびヒータ部155hの環境温度に起因した変形量の指標としてモニタリングし、該電気抵抗の実測値の変化に応じて、レンズ群20の変位量のフィードバック制御に用いられる各種情報を変更しても良い。ここで、基準導体部155sおよびヒータ部155hの電気抵抗の実測値を用いて、基準導体部155sおよびヒータ部155hの環境温度に起因した変形量を補償する態様について、具体例を挙げて説明する。 In the above embodiment, the absolute values of the electrical resistances of the reference conductor portion 155s and the heater portion 155h were not measured, but the present invention is not limited to this. For example, the measured value of the electrical resistance of at least one of the reference conductor part 155s and the heater part 155h is monitored as an index of the amount of deformation caused by the environmental temperature of the reference conductor part 155s and the heater part 155h, and the measured electric resistance is measured. Various information used for feedback control of the displacement amount of the lens group 20 may be changed according to the change in value. Here, a mode for compensating for the deformation amount caused by the environmental temperature of the reference conductor portion 155s and the heater portion 155h using the actual measured values of the electric resistance of the reference conductor portion 155s and the heater portion 155h will be described with a specific example. .
 図33は、一変形例に係るカメラモジュール500のAF制御において、レンズ群20の変位量のフィードバック制御を実現するための機能的な構成を示すブロック図である。ここでは、図31で示されたブロック図と比較して、基準導体部155sの電気抵抗(基準膜抵抗)Rrefを検出する抵抗検出部703、ヒータ部155hの電気抵抗(変形膜抵抗)Rsnsを検出する抵抗検出部704、目標値変更部313、および基準抵抗記憶部323が追加された構成を有する。ここで、基準抵抗記憶部323は、記憶部320に対して追加されれば良く、例えば、EEPROM等によって構成され、出荷時における基準導体部155sおよびヒータ部155hに係る電気抵抗の絶対値が基準値として記憶される。また、目標値変更部313は、合焦制御部310において機能的に実現されれば良い。 FIG. 33 is a block diagram showing a functional configuration for realizing feedback control of the displacement amount of the lens group 20 in the AF control of the camera module 500 according to one modification. Here, as compared with the block diagram shown in FIG. 31, a resistance detector 703 for detecting the electrical resistance (reference film resistance) R ref of the reference conductor portion 155s and the electrical resistance (deformed film resistance) R of the heater portion 155h. A resistance detection unit 704 that detects sns , a target value change unit 313, and a reference resistance storage unit 323 are added. Here, the reference resistance storage unit 323 only needs to be added to the storage unit 320. For example, the reference resistance storage unit 323 is configured by an EEPROM or the like, and the absolute value of the electrical resistance related to the reference conductor unit 155s and the heater unit 155h at the time of shipment is the reference. Stored as a value. The target value changing unit 313 may be functionally realized in the focusing control unit 310.
 そして、例えば、非駆動状態において、基準抵抗記憶部323に記憶される基準膜抵抗Rrefに係る基準値から抵抗検出部703によって検出される実際の基準膜抵抗Rrefの値(実測値)までのずれ量(具体的には、正負といったずれの方向とずれ量の絶対値)が、環境温度に起因する電気抵抗の絶対値の変動量となる。そこで、該ずれ量に応じて、目標値変更部313により、目標値記憶部321に記憶される目標値情報が変更される。この変更量については、上記ずれ量に応じて生じる基準導体部155sとヒータ部155hとの間における電気抵抗の比の変動量を相殺する量とすれば良い。また、基準膜抵抗Rrefの基準値と実測値とのずれ量の代わりに、変形膜抵抗Rsnsの基準値と実測値とのずれ量に応じて、目標値情報が変更されても良い。 For example, in the non-driving state, from the reference value related to the reference film resistance R ref stored in the reference resistance storage unit 323 to the actual value (actual measurement value) of the reference film resistance R ref detected by the resistance detection unit 703. The amount of deviation (specifically, the direction of deviation such as positive and negative and the absolute value of the amount of deviation) is the amount of variation in the absolute value of the electrical resistance caused by the environmental temperature. Therefore, the target value information stored in the target value storage unit 321 is changed by the target value changing unit 313 according to the deviation amount. The amount of change may be an amount that cancels out the amount of change in the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h that occurs according to the amount of deviation. Further, the target value information may be changed according to the deviation amount between the reference value and the actual measurement value of the deformation membrane resistance R sns instead of the deviation amount between the reference value and the actual measurement value of the reference membrane resistance R ref .
 このため、基準抵抗記憶部323に、出荷時における基準導体部155sおよびヒータ部155hのうちの少なくとも一方に係る電気抵抗の絶対値が基準値として記憶され、基準導体部155sおよびヒータ部155hのうちの基準抵抗記憶部323に基準値が記憶されている一方の電気抵抗の絶対値が検出されるような構成であれば良い。このような構成では、基準導体部155sおよびヒータ部155hのうちの少なくとも一方に係る電気抵抗の絶対値の変動に応じて、環境温度に起因するレンズ群20の変位量が間接的に検知され、該変位量が打ち消されるように、目標値記憶部321に記憶される目標値情報が変更されれば良い。 For this reason, the absolute value of the electrical resistance relating to at least one of the reference conductor portion 155s and the heater portion 155h at the time of shipment is stored as a reference value in the reference resistance storage portion 323, and the reference conductor portion 155s and the heater portion 155h Any configuration may be used as long as the absolute value of one of the electrical resistances stored in the reference resistance storage unit 323 is detected. In such a configuration, the amount of displacement of the lens group 20 due to the environmental temperature is indirectly detected according to the change in the absolute value of the electrical resistance related to at least one of the reference conductor portion 155s and the heater portion 155h. The target value information stored in the target value storage unit 321 may be changed so that the displacement amount is canceled out.
 また、目標値変更部313によって目標値記憶部321に記憶される目標値情報が変更される代わりに、図34で示されるように、合焦制御部310において機能的に実現されるゲイン変更部314により、基準導体部155sおよびヒータ部155hのうちの少なくとも一方に係る電気抵抗の絶対値の変動に応じて、ゲイン記憶部322に記憶される制御パラメータ情報が変更されても良い。 Further, instead of changing the target value information stored in the target value storage unit 321 by the target value changing unit 313, as shown in FIG. 34, a gain changing unit functionally realized in the focus control unit 310 By 314, the control parameter information stored in the gain storage unit 322 may be changed according to the change in the absolute value of the electrical resistance related to at least one of the reference conductor portion 155s and the heater portion 155h.
 このような構成が採用されると、ヒータ部155hの環境温度による変化がアクチュエータにおける変位の制御に与える影響が抑制される。 When such a configuration is adopted, the influence of the change due to the environmental temperature of the heater 155h on the displacement control in the actuator is suppressed.
 なお、可動部15a,15bの温度を計測する温度計を設け、基準導体部155sおよびヒータ部155hの電気抵抗の絶対値の変動が、可動部15a,15bの温度の変動とともにモニタリングされると、基準導体部155sおよびヒータ部155hの劣化が間接的に検知される。このような劣化の発生に対して、目標値記憶部321に記憶される目標値情報、およびゲイン記憶部322に記憶される制御パラメータ情報のうちの少なくとも一方を変更することで、ヒータ部155h等の劣化がアクチュエータの動作に及ぼす影響を補償するようにしても良い。このような構成が採用されると、ヒータ部155hの劣化がアクチュエータにおける変位の制御に与える影響が抑制される。 In addition, when a thermometer for measuring the temperature of the movable parts 15a and 15b is provided, and fluctuations in the absolute values of the electrical resistances of the reference conductor part 155s and the heater part 155h are monitored together with fluctuations in the temperature of the movable parts 15a and 15b, Deterioration of the reference conductor portion 155s and the heater portion 155h is indirectly detected. In response to the occurrence of such deterioration, by changing at least one of the target value information stored in the target value storage unit 321 and the control parameter information stored in the gain storage unit 322, the heater unit 155h, etc. You may make it compensate the influence which deterioration of it has on the operation | movement of an actuator. When such a configuration is adopted, the influence of the deterioration of the heater portion 155h on the displacement control in the actuator is suppressed.
 ◎また、上記一実施形態では、可変抵抗器330がデジタルポテンショメータが用いられて構成されたが、これに限られず、例えば、手動式のトリマ抵抗器を使用する態様も考えられる。 In the above-described embodiment, the variable resistor 330 is configured using a digital potentiometer. However, the present invention is not limited to this. For example, a mode using a manual trimmer resistor is also conceivable.
 ◎また、上記一実施形態では、可動部15a,15bがいわゆるバイメタルを用いて構成されたが、これに限られず、例えば、可動部が、板状のベースとなる部分(ベース部)と、形状記憶合金(SMA)等の形状記憶材料を用いてベース部上において薄膜状に設けられる部分(形状記憶部)とを有する構成が採用されても良い。このような構成では、例えば、直接形状記憶部に対して電気的なエネルギーである電流を付与することで、可動部を発熱させ、温度変化に応じて形状記憶部を変形させることで駆動力を発生させ、可動部を変形させることが可能である。そして、該形状記憶部が変形膜としての役割を果たすようにすることもできる。 In the above-described embodiment, the movable portions 15a and 15b are configured using so-called bimetals. However, the present invention is not limited to this. For example, the movable portion has a plate-like base portion (base portion) and a shape. A configuration having a portion (shape memory portion) provided in a thin film shape on the base portion using a shape memory material such as a memory alloy (SMA) may be employed. In such a configuration, for example, by directly applying a current that is electrical energy to the shape memory unit, the movable unit generates heat, and the shape memory unit is deformed in accordance with a temperature change, so that the driving force is increased. It is possible to generate and deform the movable part. And the shape memory | storage part can also be made to play a role as a deformation | transformation film | membrane.
 なお、形状記憶部に対して、別に設けられるヒータ部によって熱エネルギーを与える構成も考えられる。 In addition, the structure which gives a heat energy with the heater part provided separately with respect to a shape memory | storage part can also be considered.
 ◎また、上記一実施形態では、電気的なエネルギーを可動部15a,15bに対して付与することで、可動部15a,15bが発熱したが、これに限られない。例えば、可動部が、熱、電圧、電流、光、および磁気等といった種々の種類のエネルギーのうちの少なくとも1種類以上のエネルギーの付与によって駆動力を発生させる部分を有して構成されても良い。 In the above embodiment, the movable parts 15a and 15b generate heat by applying electrical energy to the movable parts 15a and 15b. However, the present invention is not limited to this. For example, the movable portion may be configured to include a portion that generates a driving force by applying at least one or more of various types of energy such as heat, voltage, current, light, and magnetism. .
 ◎また、上記一実施形態では、基準膜としての基準導体部155sと変形膜としてのヒータ部155hが、ともに導電材料(導体)を用いて構成されたが、これに限られない。例えば、基準膜は、導体または半導体の何れかであれば良い。また、変形膜が通電によって発熱するものでない構成が採用されれば、変形膜は半導体であっても良い。すなわち、基準膜および変形膜は、導体または半導体のうちの少なくとも一方の素材を用いて同一工程によって形成され、電気抵抗の変化がある程度生じるものであれば良い。 In the above embodiment, the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are both configured using the conductive material (conductor). However, the present invention is not limited to this. For example, the reference film may be either a conductor or a semiconductor. In addition, if a configuration in which the deformation film does not generate heat when energized is employed, the deformation film may be a semiconductor. That is, the reference film and the deformation film may be formed by the same process using at least one material of a conductor or a semiconductor and change in electrical resistance to some extent.
 ◎また、上記一実施形態では、レンズ群20の変位量のフィードバック制御が、基準膜抵抗Rrefと変形膜抵抗Rsnsとの比が、目標値と等価となるような制御であったが、これに限られない。例えば、回路にコンデンサやコイル等に係るリアクタンスやインダクタンス等の成分を有する部分が存在している場合も想定されるため、基準膜と変形膜との間におけるインピーダンスの比が、目標値と等価となるような制御であっても良い。つまり、フィードバック制御部312が、基準膜と変形膜との間におけるインピーダンスの関係および該インピーダンスの関係に対応して決まる電気的な情報のうちの少なくとも一方に応じて、可動部に付与するエネルギーの供給量を制御するようにしても良い。 In the above embodiment, the feedback control of the displacement amount of the lens group 20 is such that the ratio of the reference film resistance R ref and the deformation film resistance R sns is equivalent to the target value. It is not limited to this. For example, it may be assumed that there is a part having a component such as reactance or inductance related to a capacitor or coil in the circuit, so that the impedance ratio between the reference film and the deformation film is equivalent to the target value. Such control may be used. That is, the feedback control unit 312 determines the energy applied to the movable unit according to at least one of the impedance relationship between the reference membrane and the deformation membrane and the electrical information determined corresponding to the impedance relationship. The supply amount may be controlled.
 ◎また、上記一実施形態では、センス電圧Vsnsおよび分圧電圧Vvr等を利用して、レンズ群20の変位量が制御されたが、これに限られない。直接、基準導体部155sおよびヒータ部155hの電気抵抗が検出され、A/D変換が行われた後に、基準導体部155sとヒータ部155hとの間における電気抵抗の比が算出されるとともに、電気抵抗の比の目標値と合致するように、フィードバック制御が行われても良い。 In the embodiment described above, the displacement amount of the lens group 20 is controlled using the sense voltage V sns and the divided voltage V vr , but the present invention is not limited to this. Directly after the electrical resistance of the reference conductor portion 155s and the heater portion 155h is detected and A / D conversion is performed, the ratio of the electrical resistance between the reference conductor portion 155s and the heater portion 155h is calculated, Feedback control may be performed so as to match the target value of the resistance ratio.
 ◎また、上記一実施形態では、ヒータ層155のパターンに相当する金属薄膜の形成が、スパッタリングによって実現されたが、これに限られない。例えば、金属の蒸着工程、金属のメッキ工程、金属の塗布工程、別工程で作製された金属薄膜の貼り合わせ工程、および金属材料を重ねて貼り付けた後に圧延によって薄膜化する工程のうちの何れの工程が採用されても良い。何れの工程が採用された場合であっても、ヒータ層155を構成する該各部の厚みおよび膜質が略同一となる。 In the above embodiment, the formation of the metal thin film corresponding to the pattern of the heater layer 155 is realized by sputtering. However, the present invention is not limited to this. For example, any of a metal vapor deposition process, a metal plating process, a metal coating process, a bonding process of a metal thin film produced in a separate process, and a process of forming a thin film by rolling after a metal material is laminated and pasted These steps may be adopted. Regardless of which step is employed, the thickness and film quality of each part constituting the heater layer 155 are substantially the same.
 ◎また、上記一実施形態では、基準膜としての基準導体部155sと、変形膜としてのヒータ部155hとが、同一素材を用いた同一工程で同時に形成されたが、これに限られない。例えば、同一素材を用いた同一工程を繰り返して2回行うことで、基準膜としての基準導体部155sと、変形膜としてのヒータ部155hとを時間順次に形成することも考えられる。ここで言う同一工程とは、例えば、同一素材を用いた同一条件のスパッタリング等が挙げられ、マスクを違えて、基準膜としての基準導体部155sと、変形膜としてのヒータ部155hとを時間順次に形成するような手法等が考えられる。但し、基準膜と変形膜との間における膜厚および膜質の均一性の観点から言えば、同時に形成される方が好ましい。 In the above embodiment, the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are formed at the same time using the same material in the same process. However, the present invention is not limited to this. For example, it is conceivable that the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are formed sequentially in time by repeating the same process using the same material twice. The same process mentioned here includes, for example, sputtering under the same conditions using the same material. Different masks are used, and the reference conductor portion 155s as the reference film and the heater portion 155h as the deformation film are sequentially timed. A method such as forming in this way can be considered. However, from the viewpoint of the uniformity of the film thickness and film quality between the reference film and the deformation film, it is preferable to form them simultaneously.
 ◎また、上記一実施形態では、可動部15a,15bによって移動される対象物(移動対象物)が、光学系としてのレンズ群20であったが、これに限られない。例えば、撮像素子等のその他の部材を移動対象物としても良い。例えば、被写体からの光を撮像素子に導く光学系にあたるレンズ群20Bを固定し、上記一実施形態においてレンズ群20を移動させるために採用された構成と同様な構成によって撮像素子層をZ方向に移動させても良い。 In the above embodiment, the object moved by the movable parts 15a and 15b (moving object) is the lens group 20 as an optical system, but is not limited thereto. For example, other members such as an image sensor may be used as the moving object. For example, the lens group 20B corresponding to the optical system that guides light from the subject to the image sensor is fixed, and the image sensor layer is moved in the Z direction by a configuration similar to the configuration adopted for moving the lens group 20 in the one embodiment. It may be moved.
 図35は、レンズ群20Bを固定して、該レンズ群20Bの光軸Axに沿った方向に撮像素子層18Bを前後に移動させる一態様の概念図を例示する図である。図35では、撮像素子層18Bを光軸Axに沿って前後に移動させる撮像部PBBが描かれている。このような構成では、アクチュエータ層の動作に応じて撮像素子層18Bが光軸Axに沿って前後に移動されて、レンズ群20Bと撮像素子層18Bとの距離が変更されることで、AF制御が実現される。このように、可動部15a,15bの曲げ変形による自由端FTの変位に応じて撮像素子および光学系のうちの少なくとも一方が移動されれば、AF制御が実現される。そして、何れの構成であっても、上記一実施形態と同様な効果が得られる。このため、撮像素子と光学系との間の距離を精度良く変更することができる。 FIG. 35 is a diagram illustrating a conceptual diagram of one aspect in which the lens group 20B is fixed and the imaging element layer 18B is moved back and forth in a direction along the optical axis Ax of the lens group 20B. In FIG. 35, an imaging unit PBB that moves the imaging element layer 18B back and forth along the optical axis Ax is depicted. In such a configuration, the image pickup element layer 18B is moved back and forth along the optical axis Ax in accordance with the operation of the actuator layer, and the distance between the lens group 20B and the image pickup element layer 18B is changed. Is realized. Thus, AF control is realized if at least one of the image sensor and the optical system is moved in accordance with the displacement of the free end FT due to the bending deformation of the movable portions 15a and 15b. In any configuration, the same effect as in the above-described embodiment can be obtained. For this reason, the distance between the image sensor and the optical system can be changed with high accuracy.
 また、アクチュエータによって移動される対象物(移動対象物)は、光学系や撮像素子等といった撮像装置を構成する要素に限られない。例えば、移動対象物は、光ピックアップレンズの対物レンズ等といったその他のものであっても良い。すなわち、本発明は、アクチュエータと、該アクチュエータの変形に応じて移動対象物が移動される駆動装置一般に適用することができる。そして、このような駆動装置によれば、上記一実施形態と同様な効果が得られる。 Further, an object (moving object) moved by the actuator is not limited to an element constituting the imaging apparatus such as an optical system or an imaging element. For example, the moving object may be another object such as an objective lens of an optical pickup lens. That is, the present invention can be applied to an actuator and a drive device in which a moving object is moved according to deformation of the actuator. And according to such a drive device, the effect similar to the said one Embodiment is acquired.
 ◎また、上記一実施形態では、2本の可動部15a,15bが設けられたが、これに限られず、可動部は、1本でも良いし、3本以上であっても良い。 In the above embodiment, the two movable parts 15a and 15b are provided. However, the present invention is not limited to this, and the number of movable parts may be one or three or more.
 ◎また、上記一実施形態では、可動部15a,15bが、その一端が枠体15fに対して固定された、いわゆる片持ち梁の構成を有していたが、これに限られない。例えば、可動部の両端が枠体に対して固定された、いわゆる両持ち梁の構成を有するものも考えられる。 In the above embodiment, the movable parts 15a and 15b have a so-called cantilever structure in which one end is fixed to the frame 15f. However, the present invention is not limited to this. For example, what has what is called a doubly-supported beam structure in which both ends of the movable part are fixed to the frame is also conceivable.
 ◎なお、上記一実施形態ならびに各種変形例をそれぞれ構成する全部または一部の構成を、適宜、矛盾しない範囲で組み合わせ可能であることは言うまでもない。 ◎ Needless to say, all or a part of the configuration of the above-described embodiment and various modifications can be combined as appropriate within a consistent range.
 15,15A アクチュエータ層
 15a,15b 可動部
 100,100A 携帯電話機
 151 低熱膨張層
 152 熱伝導層
 153 高熱膨張層
 154 絶縁層
 155,155A ヒータ層
 155h ヒータ部
 155ha 第1ヒータ部
 155hb 第2ヒータ部
 155s,155sA 基準導体部
 181 撮像素子
 20 レンズ群
 310 合焦制御部
 311 抵抗制御部
 312 フィードバック制御部
 313 目標値変更部
 314 ゲイン変更部
 320 記憶部
 321 目標値記憶部
 322 ゲイン記憶部
 323 基準抵抗記憶部
 330 可変抵抗器
 500,500A カメラモジュール
 600 電流源
 703,704 抵抗検出部
 E1~E3,EA1~EA4 電極部
 FT 自由端
 R1,R2 分圧抵抗値
 Rref 基準膜抵抗
 Rsns 変形膜抵抗
 Vref リファレンス電圧
 Vsns センス電圧
 Vvr 分圧電圧
15, 15A Actuator layer 15a, 15b Movable part 100, 100A Mobile phone 151 Low thermal expansion layer 152 Thermal conduction layer 153 High thermal expansion layer 154 Insulating layer 155, 155A Heater layer 155h Heater part 155ha First heater part 155hb Second heater part 155s, 155 sA Reference conductor 181 Image sensor 20 Lens group 310 Focus control unit 311 Resistance control unit 312 Feedback control unit 313 Target value change unit 314 Gain change unit 320 Storage unit 321 Target value storage unit 322 Gain storage unit 323 Reference resistance storage unit 330 variable resistor 500,500A camera module 600 current sources 703 and 704. resistor detector E1 ~ E3, EA1 ~ EA4 electrode portion FT free end R1, R2 dividing resistor value R ref reference film resistor R sns deformation film resistor V ref reference Voltage V sns sense voltage V vr divided voltage

Claims (17)

  1.  基準部と、
     前記基準部に対して固定される固定部を有するとともに、エネルギーの付与に応じた変形によって変位する変位部を有する可動部と、
    を備え、
     前記可動部が、
     導体および半導体のうちの少なくとも一方の素材を用いて構成され且つ前記可動部の変形に伴って変形する変形膜を有し、
     前記基準部が、
     前記変形膜と同一素材を用いた同一工程において形成される基準膜を有することを特徴とするアクチュエータ。
    A reference section;
    A movable part having a fixed part fixed to the reference part and having a displacement part that is displaced by deformation according to the application of energy;
    With
    The movable part is
    It has a deformation film that is configured using at least one material of a conductor and a semiconductor and is deformed along with the deformation of the movable part,
    The reference portion is
    An actuator comprising a reference film formed in the same process using the same material as the deformation film.
  2.  請求項1に記載のアクチュエータであって、
     前記変形膜に対して電気的に接続された、前記アクチュエータの外部の素子に対して電気的に接続可能な第1端子部と、
     前記基準膜に対して電気的に接続された、前記アクチュエータの外部の素子に対して電気的に接続可能な第2端子部と、
    を備え、
     前記第1および第2素子部が、前記基準部に設けられることを特徴とするアクチュエータ。
    The actuator according to claim 1,
    A first terminal portion electrically connected to the deformation membrane and electrically connectable to an external element of the actuator;
    A second terminal portion electrically connected to the reference film and electrically connectable to an external element of the actuator;
    With
    The actuator characterized in that the first and second element portions are provided in the reference portion.
  3.  請求項1に記載のアクチュエータであって、
     前記基準膜と前記変形膜とが、
     前記同一工程において同時に形成されることを特徴とするアクチュエータ。
    The actuator according to claim 1,
    The reference film and the deformation film are
    An actuator formed simultaneously in the same step.
  4.  請求項1に記載のアクチュエータであって、
     前記基準膜と前記変形膜とが、
     同一の厚み、および同一の結晶の状態を有することを特徴とするアクチュエータ。
    The actuator according to claim 1,
    The reference film and the deformation film are
    An actuator having the same thickness and the same crystal state.
  5.  請求項1に記載のアクチュエータであって、
     前記基準膜と前記変形膜とが、
     前記同一素材を用いて形成される一体の膜に含まれることを特徴とするアクチュエータ。
    The actuator according to claim 1,
    The reference film and the deformation film are
    It is contained in the integral film | membrane formed using the said same raw material, The actuator characterized by the above-mentioned.
  6.  請求項1に記載のアクチュエータであって、
     前記可動部が、
     ベース部と、形状記憶材料を用いて構成される形状記憶部とを有するとともに、温度変化に応じた前記形状記憶部の変形に応じて変形することを特徴とするアクチュエータ。
    The actuator according to claim 1,
    The movable part is
    An actuator having a base portion and a shape memory portion configured using a shape memory material, and deforming according to deformation of the shape memory portion according to a temperature change.
  7.  請求項1に記載のアクチュエータであって、
     前記変形膜が、
     エネルギーの付与に応じて駆動力を発生することで、前記可動部を変形させることを特徴とするアクチュエータ。
    The actuator according to claim 1,
    The deformation membrane is
    An actuator characterized in that the movable part is deformed by generating a driving force in response to application of energy.
  8.  請求項1に記載のアクチュエータであって、
     前記可動部が、
     熱膨張率が相互に異なる第1および第2層と前記変形膜とを含む複数層が積層された構造を有するとともに、温度変化に応じて変形することを特徴とするアクチュエータ。
    The actuator according to claim 1,
    The movable part is
    An actuator having a structure in which a plurality of layers including first and second layers having different coefficients of thermal expansion and the deformation film are stacked, and is deformed according to a temperature change.
  9.  請求項1に記載のアクチュエータであって、
     前記変形膜が、
     通電に応じて発熱するヒータ部を含むことを特徴とするアクチュエータ。
    The actuator according to claim 1,
    The deformation membrane is
    An actuator comprising a heater portion that generates heat in response to energization.
  10.  請求項1に記載のアクチュエータと、
     前記基準膜と前記変形膜との間におけるインピーダンスの関係および該インピーダンスの関係に対応して決まる電気的な情報のうちの少なくとも一方に応じて、前記可動部に付与する前記エネルギーの供給量を制御する制御部と、
    を備えることを特徴とする駆動装置。
    An actuator according to claim 1;
    The supply amount of the energy applied to the movable part is controlled in accordance with at least one of the impedance relationship between the reference membrane and the deformable membrane and the electrical information determined corresponding to the impedance relationship. A control unit,
    A drive device comprising:
  11.  請求項10に記載の駆動装置であって、
     前記インピーダンスの関係が、
     前記基準膜と前記変形膜との間におけるインピーダンスの比を含むことを特徴とする駆動装置。
    The drive device according to claim 10,
    The impedance relationship is
    A driving apparatus comprising an impedance ratio between the reference film and the deformation film.
  12.  請求項11に記載の駆動装置であって、
     前記変位部の各変位量に対して前記基準膜と前記変形膜との間における電気抵抗の比の目標値がそれぞれ関連付けられた目標値情報を記憶する目標値記憶部、を備え、
     前記制御部が、
     前記変位部の目標とする変位量に対して、前記電気抵抗の比が前記目標値と合致するように、前記可動部に付与する前記エネルギーの供給量を調整するフィードバック制御を行うことを特徴とする駆動装置。
    The drive device according to claim 11,
    A target value storage unit that stores target value information in which a target value of a ratio of electrical resistance between the reference film and the deformation film is associated with each displacement amount of the displacement unit,
    The control unit is
    Feedback control is performed to adjust the supply amount of the energy applied to the movable portion so that the ratio of the electrical resistance matches the target value with respect to the target displacement amount of the displacement portion. To drive.
  13.  請求項12に記載の駆動装置であって、
     前記基準膜および前記変形膜のうちの少なくとも一方に係る電気抵抗の基準値を記憶する基準値記憶部と、
     前記基準膜および前記変形膜のうちの前記基準値記憶部に電気抵抗の基準値が記憶されている少なくとも一方に係る実際の電気抵抗の値を検出する検出部と、
    を更に備えることを特徴とする駆動装置。
    The drive device according to claim 12, wherein
    A reference value storage unit that stores a reference value of electrical resistance according to at least one of the reference film and the deformation film;
    A detection unit for detecting an actual electric resistance value according to at least one of the reference film and the deformation film in which a reference value of electric resistance is stored in the reference value storage unit;
    A drive device further comprising:
  14.  請求項13に記載の駆動装置であって、
     前記電気抵抗の基準値から前記実際の電気抵抗の値までのずれ量に応じて、前記目標値情報を変更する情報変更部、
    を更に備えることを特徴とする駆動装置。
    The drive device according to claim 13,
    An information changing unit that changes the target value information according to a deviation amount from a reference value of the electrical resistance to the actual electrical resistance value;
    A drive device further comprising:
  15.  請求項13に記載の駆動装置であって、
     前記基準膜と前記変形膜との間におけるインピーダンスの関係に対して決まる電気的な指標と該電気的な指標の目標値とのずれ量と、前記エネルギーの供給量の変更量との関係を示す制御パラメータ情報を記憶する制御情報記憶部と、
     前記電気抵抗の基準値から前記実際の電気抵抗の値までのずれ量に応じて、前記制御パラメータ情報を変更する情報変更部と、
    を備えることを特徴とする駆動装置。
    The drive device according to claim 13,
    The relationship between the deviation | shift amount of the electric parameter | index determined with respect to the impedance relationship between the said reference | standard film | membrane and the said deformation | transformation film | membrane, the target value of this electric parameter | index, and the change amount of the said energy supply amount is shown. A control information storage unit for storing control parameter information;
    An information changing unit that changes the control parameter information according to a deviation amount from a reference value of the electrical resistance to the actual electrical resistance value;
    A drive device comprising:
  16.  請求項10に記載の駆動装置であって、
     前記基準膜と前記変形膜とが、
     電気的に直列に接続されることを特徴とする駆動装置。
    The drive device according to claim 10,
    The reference film and the deformation film are
    A drive device that is electrically connected in series.
  17.  請求項10に記載の駆動装置と、
     撮像素子と、
     被写体からの光を前記撮像素子に導く光学系と、
    を備え、
     前記可動部が、
     前記変位部の変位によって、前記撮像素子および前記光学系のうちの少なくとも一方を移動させることで、前記撮像素子と前記光学系との間の距離を変更することを特徴とするカメラモジュール。
    A drive device according to claim 10;
    An image sensor;
    An optical system for guiding light from a subject to the image sensor;
    With
    The movable part is
    A camera module, wherein a distance between the image sensor and the optical system is changed by moving at least one of the image sensor and the optical system according to displacement of the displacement unit.
PCT/JP2010/066036 2009-09-29 2010-09-16 Actuator, drive device, and camera module WO2011040250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011534191A JP5056984B2 (en) 2009-09-29 2010-09-16 Drive device and camera module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009223768 2009-09-29
JP2009-223768 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040250A1 true WO2011040250A1 (en) 2011-04-07

Family

ID=43826076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066036 WO2011040250A1 (en) 2009-09-29 2010-09-16 Actuator, drive device, and camera module

Country Status (2)

Country Link
JP (1) JP5056984B2 (en)
WO (1) WO2011040250A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142848A (en) * 2012-01-12 2013-07-22 Nidec Sankyo Corp Lens drive device
JP2019102582A (en) * 2017-11-30 2019-06-24 日亜化学工業株式会社 Light-emitting device
KR20230018896A (en) * 2021-07-30 2023-02-07 엘아이지넥스원 주식회사 System and method for focusing adjustment of optical device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US7708749B2 (en) 2000-12-20 2010-05-04 Fox Hollow Technologies, Inc. Debulking catheters and methods
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
RU2509537C2 (en) 2009-04-29 2014-03-20 ТАЙКО ХЕЛСКЕА ГРУП эЛПи Methods and devices for tissue cutting and cleansing
EP2506783B1 (en) 2009-12-02 2016-06-29 Covidien LP Methods and devices for cutting tissue
EP2509519B1 (en) 2009-12-11 2019-08-07 Covidien LP Material removal device having improved material capture efficiency
JP5690928B2 (en) 2010-06-14 2015-03-25 コヴィディエン リミテッド パートナーシップ Substance removal device
JP5806407B2 (en) 2011-09-01 2015-11-10 コヴィディエン リミテッド パートナーシップ Catheter with helical drive shaft and manufacturing method
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
WO2015200702A1 (en) 2014-06-27 2015-12-30 Covidien Lp Cleaning device for catheter and catheter including the same
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039053A (en) * 2000-07-21 2002-02-06 Matsushita Electric Works Ltd Method for manufacturing shape-memory alloy element
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module
WO2009093645A1 (en) * 2008-01-23 2009-07-30 Konica Minolta Opto, Inc. Drive device
WO2009096330A1 (en) * 2008-01-28 2009-08-06 Konica Minolta Holdings, Inc. Driving device and imaging device
WO2009096207A1 (en) * 2008-01-30 2009-08-06 Seiko Instruments Inc. Drive module, and electronic device having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214662A (en) * 2001-01-23 2002-07-31 Olympus Optical Co Ltd Shake correcting device for optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039053A (en) * 2000-07-21 2002-02-06 Matsushita Electric Works Ltd Method for manufacturing shape-memory alloy element
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module
WO2009093645A1 (en) * 2008-01-23 2009-07-30 Konica Minolta Opto, Inc. Drive device
WO2009096330A1 (en) * 2008-01-28 2009-08-06 Konica Minolta Holdings, Inc. Driving device and imaging device
WO2009096207A1 (en) * 2008-01-30 2009-08-06 Seiko Instruments Inc. Drive module, and electronic device having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142848A (en) * 2012-01-12 2013-07-22 Nidec Sankyo Corp Lens drive device
JP2019102582A (en) * 2017-11-30 2019-06-24 日亜化学工業株式会社 Light-emitting device
KR20230018896A (en) * 2021-07-30 2023-02-07 엘아이지넥스원 주식회사 System and method for focusing adjustment of optical device
KR102632772B1 (en) * 2021-07-30 2024-02-05 엘아이지넥스원 주식회사 System and method for focusing adjustment of optical device

Also Published As

Publication number Publication date
JP5056984B2 (en) 2012-10-24
JPWO2011040250A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5056984B2 (en) Drive device and camera module
JP5348241B2 (en) Actuator, drive device, and imaging device
WO2010038640A1 (en) Imaging unit and imaging device
JP5541156B2 (en) Actuator array sheet
KR20100129751A (en) Imaging device and imaging device manufacturing method
JP5163587B2 (en) Actuator, drive device, and imaging device
WO2011062209A1 (en) Optical material, optical unit, and imaging unit
JP5429190B2 (en) Imaging device
JP2010074502A (en) Drive unit and imaging device
JP5115510B2 (en) Imaging device, optical unit, and manufacturing method of imaging device
JP2011109853A (en) Actuator manufacturing method, actuator, moving mechanism, and camera module
JP5035188B2 (en) Imaging device manufacturing method and imaging device
JP2010160187A (en) Method for manufacturing drive device and method for manufacturing imaging apparatus
WO2011001972A1 (en) Actuator, drive device, and image-capturing device
JP2011083847A (en) Method for manufacturing actuator, actuator, and imaging device
JP5402277B2 (en) Actuator, drive device, and imaging device
JP2013077031A (en) Actuator, driving device and imaging apparatus
JP5440600B2 (en) Camera module array and manufacturing method thereof
JP2010169800A (en) Driving device and imaging apparatus
JP5407409B2 (en) Imaging device and manufacturing method thereof
JP5261749B2 (en) Driving device and imaging device
JP5447528B2 (en) Actuator, drive device, and camera module
JP2011118074A (en) Method for manufacturing moving mechanism, moving mechanism, and imaging apparatus
JP2010243695A (en) Actuator, drive device, and image capturing apparatus
WO2011016383A1 (en) Actuator, drive device and camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820369

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534191

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820369

Country of ref document: EP

Kind code of ref document: A1