WO2011040068A1 - Light emitting device and light emitting tube - Google Patents

Light emitting device and light emitting tube Download PDF

Info

Publication number
WO2011040068A1
WO2011040068A1 PCT/JP2010/055835 JP2010055835W WO2011040068A1 WO 2011040068 A1 WO2011040068 A1 WO 2011040068A1 JP 2010055835 W JP2010055835 W JP 2010055835W WO 2011040068 A1 WO2011040068 A1 WO 2011040068A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting device
discharge space
light emitting
electrode pattern
light
Prior art date
Application number
PCT/JP2010/055835
Other languages
French (fr)
Japanese (ja)
Inventor
清茂 宮脇
義明 植田
学 宮石
宏樹 伊藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2011040068A1 publication Critical patent/WO2011040068A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers

Definitions

  • the present invention relates to a light emitting device such as a discharge lamp.
  • a light emitting device such as a discharge lamp has a structure in which an inert gas is filled in a glass tube.
  • each of the pair of electrodes is fixed to the glass tube so as to protrude from the end of the glass tube into the discharge space.
  • light emitting devices such as discharge lamps have been required to be improved in light emission intensity or light emission amount while being downsized.
  • the conventional light emitting device has a difficult structure with respect to improving the light emission intensity or the light emission amount while reducing the size.
  • a light-emitting device includes a container member having a discharge space, an inert gas sealed in the discharge space, a position below the discharge space, and a container member.
  • a first electrode pattern provided and a second electrode pattern facing the first electrode pattern through the discharge space are included.
  • the container member includes a translucent member that closes the discharge space.
  • the second electrode pattern is provided on the translucent member.
  • the arc tube has a container member having a discharge space filled with an inert gas, and a first member provided below the discharge space and provided in the container member. And a second electrode pattern facing the first electrode pattern with a discharge space interposed therebetween.
  • the container member includes a translucent member that closes the discharge space. The second electrode pattern is provided on the translucent member.
  • FIG. 1 shows a perspective view of a light emitting device according to a first embodiment of the present invention.
  • FIG. 2 shows a longitudinal sectional view of the light emitting device shown in FIG. 1.
  • FIG. 3 is an exploded perspective view showing a base body 11 and a first electrode pattern 2 shown in FIG. 2.
  • FIG. 4 is a longitudinal sectional view showing another example of the light emitting device shown in FIG. 2.
  • the top view of the light-emitting device shown by FIG. 1 is shown.
  • the longitudinal cross-sectional view of the light-emitting device in the 2nd Embodiment of this invention is shown.
  • the longitudinal cross-sectional view of the light-emitting device in the 3rd Embodiment of this invention is shown.
  • the longitudinal cross-sectional view of the light-emitting device in the 4th Embodiment of this invention is shown. 9 shows another example of the first electrode pattern 2 and the second electrode pattern 3 in the light emitting device shown in FIG.
  • the top view of the light-emitting device in the 5th Embodiment of this invention is shown.
  • 11 shows another example of the light emitting device shown in FIG.
  • the light emitting device includes a container member 1, a first electrode pattern 2, a second electrode pattern 3, and an inert gas. 4 is included.
  • the light emitting device is mounted on the xy plane of a virtual xyz space.
  • the upward direction means the positive direction of the virtual z axis.
  • the light emitting direction of the light emitting device is the positive direction of the virtual z axis.
  • the light emitting device is a discharge lamp using light emission by discharge in the inert gas 4.
  • the container member 1, the first electrode pattern 2, and the second electrode pattern 3 constitute an arc tube.
  • the container member 1 includes a base body 11 and a translucent member 12 bonded to the base body 11.
  • the container member 1 has a discharge space 13 defined by the base 11 and the translucent member 12.
  • the substrate 11 is substantially made of an insulating material.
  • An example of the insulating material is ceramics.
  • the base 11 has a substantially rectangular shape in plan view.
  • the plan view is a line of sight in the negative direction of the virtual z-axis from above in FIG.
  • the exemplary substrate 11 has a substantially rectangular shape.
  • Another exemplary substrate 11 has sidewalls that become progressively thinner as it goes upward.
  • Another exemplary substrate 11 has sidewalls that become progressively thicker in the downward direction.
  • the upward direction refers to the positive direction of the virtual z axis
  • the downward direction refers to the negative direction of the virtual z axis.
  • the substrate 11 includes a first insulating layer 111 to a fourth insulating layer 114.
  • the second insulating layer 112 to the fourth insulating layer 114 are stacked on the first insulating layer 111.
  • the fourth insulating layer 114 has a frame shape surrounding the discharge space 13.
  • the translucent member 12 is bonded to the upper surface of the base 11 and closes the discharge space 13.
  • “translucency” of the member 12 means that at least part of the wavelength of light emitted by light emission in the discharge space 13 can be transmitted.
  • the translucent member 12 is substantially made of an insulating material.
  • An example of the insulating material is glass.
  • Other examples of insulating materials are translucent ceramics or sapphire.
  • the translucent member 12 is made of translucent ceramics or sapphire
  • the translucent member 12 is fixed to the base 11 by bonding or sintering bonding with an inorganic insulating material typified by glass.
  • sinter bonding is included in the base body 11 by subjecting the base body 11 and the translucent member 12 to high-temperature treatment in a state where the surfaces to be joined are brought into contact with each other using a joining jig. It means that glassy material is bonded as a bonding material.
  • the discharge space 13 has a substantially rectangular shape in a plan view and has a rectangular shape in a longitudinal section.
  • the discharge space 13 is defined by the recess of the base 11.
  • the first electrode pattern 2 is provided below the discharge space 13 and is embedded in the substrate 11.
  • the first electrode pattern 2 is an anode.
  • the first electrode pattern 2 has a structure that easily causes electric field concentration. “Electric field concentration” means that the electric field concentrates due to the edge effect generated at the end of the first electrode pattern 2. More specifically, as shown in FIG. 3, the first electrode pattern 2 desirably includes a planar portion 21 and a plurality of protruding portions 22 provided on the planar portion 21. . Electric field concentration occurs in the plurality of protruding portions 22 of the first electrode pattern 2.
  • the planar portion 21 is formed on the upper surface of the first insulating layer 111.
  • the plurality of protruding portions 22 are formed inside the second insulating layer 112 and are electrically connected to the planar portion 21.
  • the first electrode pattern 2 includes a refractory metal such as tungsten (W), molybdenum (Mo), and manganese (Mn) as a component.
  • the second electrode pattern 3 faces the first electrode pattern 2 through the discharge space 13.
  • the second electrode pattern 3 is a cathode.
  • the exemplary second electrode pattern 3 is provided inside the translucent member 12.
  • Another exemplary second electrode pattern 3 is provided on the outer surface of the translucent member 12, as shown in FIG.
  • the second electrode pattern 3 is substantially made of a translucent material.
  • “translucency” in the material of the second electrode pattern 3 means that at least a part of the wavelength of light emitted by light emission in the discharge space 13 can be transmitted.
  • the second electrode pattern 3 is substantially made of indium tin oxide (ITO), for example.
  • the formation region of the second electrode pattern 3 is preferably larger than the region of the discharge space 13 in plan view. With such a configuration, the light emitting device can efficiently use the discharge space 13.
  • the inert gas 4 is mainly composed of xenon (Xe), for example, and is enclosed in the discharge space 13.
  • the gas pressure of the inert gas 4 is preferably higher than atmospheric pressure for the purpose of improving luminous efficiency.
  • the light emitting device of the present embodiment includes the first electrode pattern 2 embedded in the container member 1 and the second electrode pattern 3 provided on the inner or outer surface of the translucent member 12.
  • the light emission intensity or the light emission amount can be improved while downsizing. Therefore, the light emitting device of this embodiment can be mounted on, for example, a portable electronic device.
  • the use resistance is improved because the substrate 11 is substantially made of ceramics. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
  • the first electrode pattern 2 is an anode, so that the light emitting device is improved with respect to use resistance. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
  • the translucent member 12 is substantially made of sapphire, so that the usage resistance is improved. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
  • the light emitting device of the present embodiment is improved with respect to the use durability by bonding the translucent member 12 to the base body 11 by sintering bonding. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
  • the first electrode pattern 2 has a structure that causes electric field concentration. More specifically, in the light emitting device of the present embodiment, the first electrode pattern 2 includes a planar portion 21 and a plurality of protruding portions 22 provided on the planar portion 21. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
  • the second electrode pattern 3 is substantially made of a translucent material, whereby the light emission intensity or the light emission amount can be improved.
  • the region where the second electrode pattern 3 is formed is larger than the region of the discharge space 13 in plan view, so that the light emitting device can effectively use the discharge space 13. Therefore, the light emitting device of the present embodiment can improve the light emission amount while reducing the size.
  • the light-emitting device in the 2nd Embodiment of this invention is demonstrated.
  • the light emitting device according to the second embodiment differs from the light emitting device according to the first embodiment shown in FIG. 2, for example, in that the base 11 further includes a reflecting member 115.
  • Other configurations are the same as those of the light emitting device according to the first embodiment.
  • the reflection member 115 is exposed to the discharge space 13.
  • the reflection member 115 is a porous structure.
  • the “porous structure” is a structure having a plurality of particles 116 and has a porosity included in a range of 15% to 43%.
  • An exemplary method for measuring the porosity of the reflecting member 115 is a mercury intrusion method using a Pore Sizer 9310 manufactured by Micromeritics.
  • the particle 116 has a higher refractive index than the vesicle 117. The light incident on the particle 116 is totally reflected at the interface between the particle 116 and the vesicle 117.
  • the reflecting member 115 is substantially made of ceramics, for example.
  • the light emitting device in the present embodiment includes the reflecting member 115, so that the amount of light generated in the discharge space 13 that can be reflected in the light emitting direction can be increased. Therefore, the light emitting device in this embodiment is improved with respect to the light emission intensity or the light emission amount.
  • the reflecting member 115 is a porous structure, the amount of light reflection can be increased by total reflection of light. Therefore, the light emitting device in this embodiment is improved with respect to the light emission intensity or the light emission amount.
  • the light emitting device according to the present embodiment is improved in terms of usage resistance because the reflecting member 115 is substantially made of ceramics.
  • the light emitting device according to the third embodiment is different from the light emitting device according to the first embodiment shown in FIG. 2, for example, in that it further includes a spacer member 14 provided in the discharge space 13.
  • Other configurations are the same as those of the light emitting device according to the first embodiment.
  • the light emitting device in the present embodiment includes the spacer member 14, thereby reducing the deformation of the translucent member 12 toward the inside of the discharge space. Therefore, the light emitting device in this embodiment is improved with respect to reliability.
  • the spacer member 14 is preferably joined to the translucent member 12. With such a configuration, the light emitting device is reduced with respect to the outward deformation of the translucent member 12 and is improved with respect to reliability.
  • the light-emitting device in the 4th Embodiment of this invention differs from the light emitting device of the first embodiment shown in FIG. 2, for example, in that the discharge space 13 includes a plurality of subspaces 131-133. Other configurations are the same as those of the light emitting device according to the first embodiment.
  • the plurality of subspaces 131-133 are mutually independent spaces.
  • the discharge space 13 includes a plurality of subspaces 131-133, so that the light emitting device of the other embodiment increases the degree of freedom regarding the setting of discharge conditions in the discharge space 13. Can do.
  • Each of the plurality of subspaces 131-133 has a different emission intensity.
  • the subspaces 131 and 133 located at both ends of the discharge space 13 are designed to have a larger emission intensity than the subspace 132 located at the center of the discharge space.
  • Each of the subspaces 131-133 differs with respect to the pressure of the inert gas 4 enclosed, for example.
  • the first electrode pattern 2 and the second electrode pattern 3 are provided corresponding to each of the plurality of subspaces 131-133. That is, the first electrode pattern 2 and the second electrode pattern 3 include sub-electrodes corresponding to each of the plurality of sub-spaces 131-133.
  • each of the plurality of subspaces 131-133 has a different light emission intensity or light emission amount, so that the light emitting device can realize an appropriate light irradiation space according to the intended use.
  • the light-emitting device in the 5th Embodiment of this invention is demonstrated.
  • the difference from the light emitting device in the first embodiment shown in FIG. 2 is that the peripheral region 135 is more per unit area than the central region 134 in the discharge space 13.
  • the density of the discharge points is high.
  • Other configurations are the same as those of the light emitting device according to the first embodiment.
  • the density of discharge points per unit area in the discharge space 13 is different, so that the light emitting device of other embodiments can realize an appropriate light irradiation space according to the intended use. it can.
  • the first electrode pattern 2 and the second electrode pattern 3 have a peripheral region 135 in the peripheral region 135 as compared with the central region 134 in the discharge space 13. Designed to be high with respect to pattern density.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Disclosed is a light emitting device, such as an electric discharge lamp. The light emitting device includes: a container member having a discharge space; an inert gas sealed in the discharge space; a first electrode pattern provided below the discharge space; and a second electrode pattern which faces the first electrode pattern with the discharge space therebetween. The container member includes a translucent member that covers the discharge space. The first electrode pattern is embedded in the container member. The second electrode pattern is provided inside or on the outer surface of the translucent member.

Description

発光装置および発光管Light emitting device and arc tube
 本発明は、例えば放電灯などの発光装置に関するものである。 The present invention relates to a light emitting device such as a discharge lamp.
 従来、例えば放電灯などの発光装置は、ガラス管内に不活性ガスが充填された構造を有していた。従来の発光装置において、一対の電極の各々は、ガラス管の端部から放電空間内に突き出るような状態でガラス管に固定されている。 Conventionally, a light emitting device such as a discharge lamp has a structure in which an inert gas is filled in a glass tube. In the conventional light emitting device, each of the pair of electrodes is fixed to the glass tube so as to protrude from the end of the glass tube into the discharge space.
 近年、例えば放電灯などの発光装置は、小型化を図りつつ発光強度または発光量に関する改善が求められている。従来の発光装置は、小型化を図りつつ発光強度または発光量を向上させることに関して困難な構造を有していた。 In recent years, light emitting devices such as discharge lamps have been required to be improved in light emission intensity or light emission amount while being downsized. The conventional light emitting device has a difficult structure with respect to improving the light emission intensity or the light emission amount while reducing the size.
 本発明の一つの態様によれば、発光装置は、放電空間を有している容器部材と、放電空間内に封入された不活性ガスと、放電空間の下方に位置しているとともに容器部材に設けられた第1の電極パターンと、放電空間を介して第1の電極パターンと対向している第2の電極パターンとを含んでいる。容器部材は、放電空間を塞いでいる透光性部材を含んでいる。第2の電極パターンは、透光性部材に設けられている。 According to one aspect of the present invention, a light-emitting device includes a container member having a discharge space, an inert gas sealed in the discharge space, a position below the discharge space, and a container member. A first electrode pattern provided and a second electrode pattern facing the first electrode pattern through the discharge space are included. The container member includes a translucent member that closes the discharge space. The second electrode pattern is provided on the translucent member.
 本発明の他の態様によれば、発光管は、不活性ガスが充填される放電空間を有している容器部材と、放電空間の下方に位置しているとともに容器部材に設けられた第1の電極パターンと、放電空間を介して前記第1の電極パターンと対向している第2の電極パターンとを含んでいる。容器部材は、放電空間を塞いでいる透光性部材を含んでいる。第2の電極パターンは、透光性部材に設けられている。 According to another aspect of the present invention, the arc tube has a container member having a discharge space filled with an inert gas, and a first member provided below the discharge space and provided in the container member. And a second electrode pattern facing the first electrode pattern with a discharge space interposed therebetween. The container member includes a translucent member that closes the discharge space. The second electrode pattern is provided on the translucent member.
本発明の第1の実施形態における発光装置の斜視図を示している。1 shows a perspective view of a light emitting device according to a first embodiment of the present invention. 図1に示された発光装置の縦断面図を示している。FIG. 2 shows a longitudinal sectional view of the light emitting device shown in FIG. 1. 図2に示された基体11および第1の電極パターン2を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a base body 11 and a first electrode pattern 2 shown in FIG. 2. 図2に示された発光装置の他の例を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing another example of the light emitting device shown in FIG. 2. 図1に示された発光装置の平面図を示している。The top view of the light-emitting device shown by FIG. 1 is shown. 本発明の第2の実施形態における発光装置の縦断面図を示している。The longitudinal cross-sectional view of the light-emitting device in the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態における発光装置の縦断面図を示している。The longitudinal cross-sectional view of the light-emitting device in the 3rd Embodiment of this invention is shown. 本発明の第4の実施形態における発光装置の縦断面図を示している。The longitudinal cross-sectional view of the light-emitting device in the 4th Embodiment of this invention is shown. 図8に示された発光装置における第1の電極パターン2および第2の電極パターン3の他の例を示している。9 shows another example of the first electrode pattern 2 and the second electrode pattern 3 in the light emitting device shown in FIG. 本発明の第5の実施形態における発光装置の平面図を示している。The top view of the light-emitting device in the 5th Embodiment of this invention is shown. 図10に示された発光装置の他の例を示している。11 shows another example of the light emitting device shown in FIG.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 本発明の第1の実施形態における発光装置は、図1および図2に示されているように、容器部材1と、第1の電極パターン2と、第2の電極パターン3と、不活性ガス4とを含んでいる。図1において、発光装置は、仮想のxyz空間のxy平面に実装されている。図1において、上方向とは、仮想のz軸の正方向のことをいう。発光装置の光出射方向は、仮想のz軸の正方向である。発光装置は、不活性ガス4中における放電による発光を利用した放電灯である。容器部材1、第1の電極パターン2および第2の電極パターン3が、発光管を構成している。
(First embodiment)
As shown in FIGS. 1 and 2, the light emitting device according to the first embodiment of the present invention includes a container member 1, a first electrode pattern 2, a second electrode pattern 3, and an inert gas. 4 is included. In FIG. 1, the light emitting device is mounted on the xy plane of a virtual xyz space. In FIG. 1, the upward direction means the positive direction of the virtual z axis. The light emitting direction of the light emitting device is the positive direction of the virtual z axis. The light emitting device is a discharge lamp using light emission by discharge in the inert gas 4. The container member 1, the first electrode pattern 2, and the second electrode pattern 3 constitute an arc tube.
 容器部材1は、基体11と、基体11に接合された透光性部材12とを含んでいる。容器部材1は、基体11と透光性部材12とによって規定される放電空間13を有している。 The container member 1 includes a base body 11 and a translucent member 12 bonded to the base body 11. The container member 1 has a discharge space 13 defined by the base 11 and the translucent member 12.
 基体11は、実質的に絶縁材料からなる。絶縁材料の例は、セラミックスである。基体11は、平面視において略矩形状を有している。ここで、平面視とは、図1において、上方から仮想のz軸の負方向への視線によるものである。縦断面において、例示的な基体11は、略矩形状を有する。他の例示的な基体11は、上方向に向かうに伴って漸次薄くなる側壁を有している。他の例示的な基体11は、下方向に向かうに伴って漸次厚くなる側壁を有している。図2において、上方向とは、仮想のz軸の正方向のことをいい、下方向とは仮想のz軸の負方向のことをいう。 The substrate 11 is substantially made of an insulating material. An example of the insulating material is ceramics. The base 11 has a substantially rectangular shape in plan view. Here, the plan view is a line of sight in the negative direction of the virtual z-axis from above in FIG. In the longitudinal section, the exemplary substrate 11 has a substantially rectangular shape. Another exemplary substrate 11 has sidewalls that become progressively thinner as it goes upward. Another exemplary substrate 11 has sidewalls that become progressively thicker in the downward direction. In FIG. 2, the upward direction refers to the positive direction of the virtual z axis, and the downward direction refers to the negative direction of the virtual z axis.
 図3に示されているように、基体11は、第1の絶縁層111から第4の絶縁層114までを含んでいる。第2の絶縁層112から第4の絶縁層114までは、第1の絶縁層111の上に積層されている。第4の絶縁層114は、放電空間13を囲むフレーム形状を有している。 As shown in FIG. 3, the substrate 11 includes a first insulating layer 111 to a fourth insulating layer 114. The second insulating layer 112 to the fourth insulating layer 114 are stacked on the first insulating layer 111. The fourth insulating layer 114 has a frame shape surrounding the discharge space 13.
 再び図1および図2を参照して、透光性部材12は、基体11の上面に接合されており、放電空間13を塞いでいる。ここで、部材12の“透光性”とは、放電空間13内における発光によって放射された光の少なくとも一部の波長が透過できることをいう。透光性部材12は、実質的に絶縁材料からなる。絶縁材料の例は、ガラスである。絶縁材料の他の例は、透光性セラミックスまたはサファイアである。透光性部材12がガラスからなる場合、透光性部材12は、ガラスに代表される無機絶縁材料によって基体11に固定されている。透光性部材12が透光性セラミックスまたはサファイアからなる場合、透光性部材12は、ガラスに代表される無機絶縁材料による接合または焼結接合によって基体11に固定されている。ここで、“焼結接合”とは、基体11と透光性部材12とを、接合用治具を使用して被接合面を接触させた状態にて高温処理することにより基体11に含まれるガラス質を接合材として機能させて接合させることをいう。 Referring to FIGS. 1 and 2 again, the translucent member 12 is bonded to the upper surface of the base 11 and closes the discharge space 13. Here, “translucency” of the member 12 means that at least part of the wavelength of light emitted by light emission in the discharge space 13 can be transmitted. The translucent member 12 is substantially made of an insulating material. An example of the insulating material is glass. Other examples of insulating materials are translucent ceramics or sapphire. When the translucent member 12 is made of glass, the translucent member 12 is fixed to the base 11 with an inorganic insulating material typified by glass. When the translucent member 12 is made of translucent ceramics or sapphire, the translucent member 12 is fixed to the base 11 by bonding or sintering bonding with an inorganic insulating material typified by glass. Here, “sinter bonding” is included in the base body 11 by subjecting the base body 11 and the translucent member 12 to high-temperature treatment in a state where the surfaces to be joined are brought into contact with each other using a joining jig. It means that glassy material is bonded as a bonding material.
 放電空間13は、平面視において略矩形状を有しており、縦断面において矩形状を有している。放電空間13は、基体11の凹部によって規定される。 The discharge space 13 has a substantially rectangular shape in a plan view and has a rectangular shape in a longitudinal section. The discharge space 13 is defined by the recess of the base 11.
 第1の電極パターン2は、放電空間13の下方に設けられており、基体11に埋め込まれている。第1の電極パターン2は、陽極である。第1の電極パターン2は、電界集中を生じさせやすい構造を有している。“電界集中”とは、第1の電極パターン2の端部に生じる縁端効果により電界が集中することをいう。さらに具体的に、第1の電極パターン2は、図3に示されているように、平面部分21と、平面部分21の上に設けられた複数の突出部分22とを含んでいることが望ましい。電界集中は、第1の電極パターン2の複数の突出部分22において生じる。平面部分21は、第1の絶縁層111の上面に形成されている。複数の突出部分22は、第2の絶縁層112の内部に形成されており、平面部分21に電気的に接続されている。第1の電極パターン2は、例えば、タングステン(W)、モリブデン(Mo)およびマンガン(Mn)などの高融点金属を成分とする。 The first electrode pattern 2 is provided below the discharge space 13 and is embedded in the substrate 11. The first electrode pattern 2 is an anode. The first electrode pattern 2 has a structure that easily causes electric field concentration. “Electric field concentration” means that the electric field concentrates due to the edge effect generated at the end of the first electrode pattern 2. More specifically, as shown in FIG. 3, the first electrode pattern 2 desirably includes a planar portion 21 and a plurality of protruding portions 22 provided on the planar portion 21. . Electric field concentration occurs in the plurality of protruding portions 22 of the first electrode pattern 2. The planar portion 21 is formed on the upper surface of the first insulating layer 111. The plurality of protruding portions 22 are formed inside the second insulating layer 112 and are electrically connected to the planar portion 21. The first electrode pattern 2 includes a refractory metal such as tungsten (W), molybdenum (Mo), and manganese (Mn) as a component.
 再び図2を参照して、第2の電極パターン3は、放電空間13を介して第1の電極パターン2と対向している。第2の電極パターン3は、陰極である。例示的な第2の電極パターン3は、透光性部材12の内部に設けられている。他の例示的な第2の電極パターン3は、図4に示されているように、透光性部材12の外側表面に設けられている。 Referring to FIG. 2 again, the second electrode pattern 3 faces the first electrode pattern 2 through the discharge space 13. The second electrode pattern 3 is a cathode. The exemplary second electrode pattern 3 is provided inside the translucent member 12. Another exemplary second electrode pattern 3 is provided on the outer surface of the translucent member 12, as shown in FIG.
 第2の電極パターン3は、実質的に透光性材料からなることが望ましい。ここで、第2の電極パターン3の材料における“透光性”とは、放電空間13内における発光によって放射された光の少なくとも一部の波長が透過できることをいう。第2の電極パターン3は、例えば、実質的に酸化インジウムスズ(ITO)からなる。 It is desirable that the second electrode pattern 3 is substantially made of a translucent material. Here, “translucency” in the material of the second electrode pattern 3 means that at least a part of the wavelength of light emitted by light emission in the discharge space 13 can be transmitted. The second electrode pattern 3 is substantially made of indium tin oxide (ITO), for example.
 図5に示されているように、第2の電極パターン3の形成領域は、平面視において、放電空間13の領域より大きいことが好ましい。このような構成により、発光装置は、放電空間13を効率的に利用することが可能となる。 As shown in FIG. 5, the formation region of the second electrode pattern 3 is preferably larger than the region of the discharge space 13 in plan view. With such a configuration, the light emitting device can efficiently use the discharge space 13.
 不活性ガス4は、例えばキセノン(Xe)を主成分とし、放電空間13内に封入されている。不活性ガス4のガス圧は、発光効率を向上させることを目的に、大気圧より高いことが好ましい。 The inert gas 4 is mainly composed of xenon (Xe), for example, and is enclosed in the discharge space 13. The gas pressure of the inert gas 4 is preferably higher than atmospheric pressure for the purpose of improving luminous efficiency.
 本実施形態の発光装置は、容器部材1に埋め込まれた第1の電極パターン2と、透光性部材12の内部または外側表面に設けられた第2の電極パターン3とを含んでいることにより、小型化を図りつつ発光強度または発光量を向上させることができる。従って、本実施形態の発光装置は、例えば携帯用電子機器などに搭載されることが可能となる。 The light emitting device of the present embodiment includes the first electrode pattern 2 embedded in the container member 1 and the second electrode pattern 3 provided on the inner or outer surface of the translucent member 12. Thus, the light emission intensity or the light emission amount can be improved while downsizing. Therefore, the light emitting device of this embodiment can be mounted on, for example, a portable electronic device.
 本実施形態の発光装置において、基体11が実質的にセラミックスからなることにより、使用耐性に関して改善されている。従って、本実施形態の発光装置は、小型化を図りつつ発光強度または発光量を向上させることができる。 In the light emitting device of the present embodiment, the use resistance is improved because the substrate 11 is substantially made of ceramics. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
 本実施形態の発光装置において、第1の電極パターン2が陽極であることにより、発光装置は、使用耐性に関して改善されている。従って、本実施形態の発光装置は、小型化を図りつつ発光強度または発光量を向上させることができる。 In the light emitting device of the present embodiment, the first electrode pattern 2 is an anode, so that the light emitting device is improved with respect to use resistance. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
 本実施形態の発光装置において、透光性部材12が実質的にサファイアからなることにより、使用耐性に関して改善されている。従って、本実施形態の発光装置は、小型化を図りつつ発光強度または発光量を向上させることができる。 In the light emitting device of the present embodiment, the translucent member 12 is substantially made of sapphire, so that the usage resistance is improved. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
 本実施形態の発光装置において、透光性部材12が焼結接合によって基体11に接合されていることによって、発光装置は、使用耐性に関して改善されている。従って、本実施形態の発光装置は、小型化を図りつつ発光強度または発光量を向上させることができる。 In the light emitting device of the present embodiment, the light emitting device is improved with respect to the use durability by bonding the translucent member 12 to the base body 11 by sintering bonding. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
 本実施形態の発光装置において、第1の電極パターン2が電界集中を生じさせる構造を有している。さらに具体的に、本実施形態の発光装置において、第1の電極パターン2が、平面部分21と、平面部分21の上に設けられた複数の突出部分22とを含んでいる。従って、本実施形態の発光装置は、小型化を図りつつ発光強度または発光量を向上させることができる。 In the light emitting device of this embodiment, the first electrode pattern 2 has a structure that causes electric field concentration. More specifically, in the light emitting device of the present embodiment, the first electrode pattern 2 includes a planar portion 21 and a plurality of protruding portions 22 provided on the planar portion 21. Therefore, the light emitting device of the present embodiment can improve the light emission intensity or the light emission amount while reducing the size.
 本実施形態の発光装置において、第2の電極パターン3が実質的に透光性材料からなることにより、発光強度または発光量を向上させることができる。 In the light emitting device of the present embodiment, the second electrode pattern 3 is substantially made of a translucent material, whereby the light emission intensity or the light emission amount can be improved.
 本実施形態の発光装置において、第2の電極パターン3の形成領域が平面視において放電空間13の領域より大きいことにより、発光装置は、放電空間13を有効に利用することができる。従って、本実施形態の発光装置は、小型化を図りつつ発光量を向上させることができる。 In the light emitting device of the present embodiment, the region where the second electrode pattern 3 is formed is larger than the region of the discharge space 13 in plan view, so that the light emitting device can effectively use the discharge space 13. Therefore, the light emitting device of the present embodiment can improve the light emission amount while reducing the size.
 (第2の実施形態)
 図6を参照して、本発明の第2の実施形態における発光装置について説明する。第2の実施形態の発光装置において、例えば図2に示された第1の実施形態における発光装置と異なる点は、基体11が反射部材115をさらに含んでいることである。その他の構成は、第1の実施形態における発光装置と同様である。
(Second Embodiment)
With reference to FIG. 6, the light-emitting device in the 2nd Embodiment of this invention is demonstrated. The light emitting device according to the second embodiment differs from the light emitting device according to the first embodiment shown in FIG. 2, for example, in that the base 11 further includes a reflecting member 115. Other configurations are the same as those of the light emitting device according to the first embodiment.
 反射部材115は、放電空間13に露出されている。反射部材115は、ポーラス状構造体である。“ポーラス状構造体”とは、複数の粒子116を有する構造体において、15%から43%までの範囲に含まれる気孔率を有するものである。反射部材115の気孔率の例示的な測定方法は、マイクロメリティクス(Micromeritics)社製のポアサイザー(Pore Sizer)9310型による水銀圧入法である。粒子116は、小胞117より屈折率が大きい。粒子116に入射された光は、粒子116と小胞117との界面において全反射される。反射部材115は、例えば実質的にセラミックスからなる。 The reflection member 115 is exposed to the discharge space 13. The reflection member 115 is a porous structure. The “porous structure” is a structure having a plurality of particles 116 and has a porosity included in a range of 15% to 43%. An exemplary method for measuring the porosity of the reflecting member 115 is a mercury intrusion method using a Pore Sizer 9310 manufactured by Micromeritics. The particle 116 has a higher refractive index than the vesicle 117. The light incident on the particle 116 is totally reflected at the interface between the particle 116 and the vesicle 117. The reflecting member 115 is substantially made of ceramics, for example.
 本実施形態における発光装置は、反射部材115を含んでいることにより、放電空間13において発生された光のうち光出射方向へ反射させることができる量を増大させることができる。従って、本実施形態における発光装置は、発光強度または発光量に関して改善されている。 The light emitting device in the present embodiment includes the reflecting member 115, so that the amount of light generated in the discharge space 13 that can be reflected in the light emitting direction can be increased. Therefore, the light emitting device in this embodiment is improved with respect to the light emission intensity or the light emission amount.
 本実施形態の発光装置において、反射部材115がポーラス構造体であることにより、光の全反射によって光反射の量を増大させることができる。従って、本実施形態における発光装置は、発光強度または発光量に関して改善されている。 In the light emitting device of the present embodiment, since the reflecting member 115 is a porous structure, the amount of light reflection can be increased by total reflection of light. Therefore, the light emitting device in this embodiment is improved with respect to the light emission intensity or the light emission amount.
 本実施形態における発光装置は、反射部材115が実質的にセラミックスからなることにより、使用耐性に関して改善されている。 The light emitting device according to the present embodiment is improved in terms of usage resistance because the reflecting member 115 is substantially made of ceramics.
 (第3の実施形態)
 図7を参照して、本発明の第3の実施形態における発光装置について説明する。第3の実施形態の発光装置において、例えば図2に示された第1の実施形態における発光装置と異なる点は、放電空間13内に設けられたスペーサ部材14をさらに含んでいることである。その他の構成は、第1の実施形態における発光装置と同様である。
(Third embodiment)
With reference to FIG. 7, the light-emitting device in the 3rd Embodiment of this invention is demonstrated. The light emitting device according to the third embodiment is different from the light emitting device according to the first embodiment shown in FIG. 2, for example, in that it further includes a spacer member 14 provided in the discharge space 13. Other configurations are the same as those of the light emitting device according to the first embodiment.
 本実施形態における発光装置は、スペーサ部材14を含んでいることにより、透光性部材12の放電空間の内側への変形に関して低減されている。従って、本実施形態における発光装置は、信頼性に関して改善されている。 The light emitting device in the present embodiment includes the spacer member 14, thereby reducing the deformation of the translucent member 12 toward the inside of the discharge space. Therefore, the light emitting device in this embodiment is improved with respect to reliability.
 本実施形態において、スペーサ部材14は、透光性部材12に接合されていることが好ましい。このような構成により、発光装置は、透光性部材12の外側への変形に関して低減され、信頼性に関して改善されている。 In the present embodiment, the spacer member 14 is preferably joined to the translucent member 12. With such a configuration, the light emitting device is reduced with respect to the outward deformation of the translucent member 12 and is improved with respect to reliability.
 (第4の実施形態)
 図8を参照して、本発明の第4の実施形態における発光装置について説明する。第4の実施形態の発光装置において、例えば図2に示された第1の実施形態における発光装置と異なる点は、放電空間13が複数のサブ空間131-133を含んでいることである。その他の構成は、第1の実施形態における発光装置と同様である。複数のサブ空間131-133は、互いに独立した空間である。
(Fourth embodiment)
With reference to FIG. 8, the light-emitting device in the 4th Embodiment of this invention is demonstrated. The light emitting device of the fourth embodiment differs from the light emitting device of the first embodiment shown in FIG. 2, for example, in that the discharge space 13 includes a plurality of subspaces 131-133. Other configurations are the same as those of the light emitting device according to the first embodiment. The plurality of subspaces 131-133 are mutually independent spaces.
 本実施形態の発光装置において、放電空間13が複数のサブ空間131-133を含んでいることにより、他の実施形態の発光装置は、放電空間13内における放電条件の設定に関する自由度を高めることができる。 In the light emitting device of the present embodiment, the discharge space 13 includes a plurality of subspaces 131-133, so that the light emitting device of the other embodiment increases the degree of freedom regarding the setting of discharge conditions in the discharge space 13. Can do.
 複数のサブ空間131-133の各々は、発光強度が異なる。例えば、放電空間13の両端部に位置するサブ空間131および133は、放電空間の中央部に位置するサブ空間132より発光強度に関して大きく設計されている。サブ空間131-133の各々は、例えば、封入されている不活性ガス4の圧力に関して異なっている。 Each of the plurality of subspaces 131-133 has a different emission intensity. For example, the subspaces 131 and 133 located at both ends of the discharge space 13 are designed to have a larger emission intensity than the subspace 132 located at the center of the discharge space. Each of the subspaces 131-133 differs with respect to the pressure of the inert gas 4 enclosed, for example.
 図9を参照して、第4の実施形態における第1の電極パターン2および第2の電極パターン3の他の例を説明する。第1の電極パターン2および第2の電極パターン3は、複数のサブ空間131-133の各々に対応して設けられている。すなわち、第1の電極パターン2および第2の電極パターン3は、複数のサブ空間131-133の各々に対応するサブ電極を含んでいる。 Referring to FIG. 9, another example of the first electrode pattern 2 and the second electrode pattern 3 in the fourth embodiment will be described. The first electrode pattern 2 and the second electrode pattern 3 are provided corresponding to each of the plurality of subspaces 131-133. That is, the first electrode pattern 2 and the second electrode pattern 3 include sub-electrodes corresponding to each of the plurality of sub-spaces 131-133.
 本実施形態の発光装置において、複数のサブ空間131-133の各々は発光強度または発光量が異なることにより、発光装置は、使用用途に応じた適切な光照射空間を実現することができる。 In the light emitting device of this embodiment, each of the plurality of subspaces 131-133 has a different light emission intensity or light emission amount, so that the light emitting device can realize an appropriate light irradiation space according to the intended use.
 (第5の実施形態)
 図10および図11を参照して、本発明の第5の実施形態における発光装置について説明する。第5の実施形態の発光装置において、例えば図2に示された第1の実施形態における発光装置と異なる点は、放電空間13における中央領域134に比べて周囲領域135の方が、単位面積あたりの放電ポイントの密度が大きいことである。その他の構成は、第1の実施形態における発光装置と同様である。
(Fifth embodiment)
With reference to FIG. 10 and FIG. 11, the light-emitting device in the 5th Embodiment of this invention is demonstrated. In the light emitting device of the fifth embodiment, for example, the difference from the light emitting device in the first embodiment shown in FIG. 2 is that the peripheral region 135 is more per unit area than the central region 134 in the discharge space 13. The density of the discharge points is high. Other configurations are the same as those of the light emitting device according to the first embodiment.
 本実施形態の発光装置において、放電空間13内の単位面積あたりの放電ポイントの密度が異なることにより、他の実施形態の発光装置は、使用用途に応じた適切な光照射空間を実現することができる。放電空間13内の単位面積あたりの放電ポイントの密度を異ならせるために、第1の電極パターン2および第2の電極パターン3は、放電空間13における中央領域134に比べて周囲領域135の方が、パターン密度に関して高くなるように設計されている。 In the light emitting device of the present embodiment, the density of discharge points per unit area in the discharge space 13 is different, so that the light emitting device of other embodiments can realize an appropriate light irradiation space according to the intended use. it can. In order to vary the density of discharge points per unit area in the discharge space 13, the first electrode pattern 2 and the second electrode pattern 3 have a peripheral region 135 in the peripheral region 135 as compared with the central region 134 in the discharge space 13. Designed to be high with respect to pattern density.

Claims (15)

  1. 放電空間を有しており、前記放電空間を塞いでいる透光性部材を含む容器部材と、
     前記放電空間内に封入された不活性ガスと、
     前記放電空間より下方に位置しているとともに前記容器部材に設けられた第1の電極パターンと、
     前記放電空間を介して前記第1の電極パターンと対向しており、前記透光性部材に設けられた第2の電極パターンと、
    を備えた発光装置。 
    A container member including a translucent member having a discharge space and closing the discharge space;
    An inert gas sealed in the discharge space;
    A first electrode pattern located below the discharge space and provided on the container member;
    A second electrode pattern which is opposed to the first electrode pattern through the discharge space and is provided on the translucent member;
    A light emitting device comprising:
  2. 前記容器部材が、前記放電空間を塞いでいるとともに前記透光性部材に接合された基体をさらに含んでおり、前記基体がセラミックスからなることを特徴とする請求項1記載の発光装置。  The light emitting device according to claim 1, wherein the container member further includes a base that closes the discharge space and is bonded to the translucent member, and the base is made of ceramics.
  3. 前記第1の電極パターンが陽極であることを特徴とする請求項2記載の発光装置。  The light emitting device according to claim 2, wherein the first electrode pattern is an anode.
  4. 前記透光性部材が、透光性セラミックスまたはサファイアからなることを特徴とする請求項2記載の発光装置。  The light-emitting device according to claim 2, wherein the translucent member is made of translucent ceramics or sapphire.
  5. 前記透光性部材が、前記基体に含まれるガラス質によって前記基体に接合されていることを特徴とする請求項4記載の発光装置。  The light-emitting device according to claim 4, wherein the translucent member is bonded to the base by vitreous contained in the base.
  6. 前記放電空間内に縁端効果による電界集中が生じることを特徴とする請求項1記載の発光装置。  The light-emitting device according to claim 1, wherein electric field concentration occurs due to an edge effect in the discharge space.
  7. 前記第1の電極パターンが、平面部分と、前記平面部分の上に設けられており前記縁端効果を生じる複数の突出部分とを含んでいることを特徴とする請求項6記載の発光装置。  The light emitting device according to claim 6, wherein the first electrode pattern includes a flat portion and a plurality of protruding portions that are provided on the flat portion and cause the edge effect.
  8. 前記第2の電極パターンが、透光性材料からなることを特徴とする請求項1記載の発光装置。  The light emitting device according to claim 1, wherein the second electrode pattern is made of a translucent material.
  9. 平面視において、前記第2の電極パターンの外周の少なくとも一部が、前記放電空間の外周より外側に位置していることを特徴とする請求項1記載の発光装置。  2. The light emitting device according to claim 1, wherein at least a part of the outer periphery of the second electrode pattern is located outside the outer periphery of the discharge space in a plan view.
  10. 前記容器部材が、前記放電空間を塞いでいるとともに前記透光性部材に接合された基体をさらに含んでおり、前記基体が前記放電空間に露出された反射部を有していることを特徴とする請求項1記載の発光装置。  The container member further includes a base that closes the discharge space and is joined to the translucent member, and the base has a reflecting portion exposed to the discharge space. The light-emitting device according to claim 1.
  11. 前記反射部が、ポーラス状構造体であることを特徴とする請求項10記載の発光装置。  The light emitting device according to claim 10, wherein the reflecting portion is a porous structure.
  12. 前記反射部が、セラミックスからなることを特徴とする請求項11記載の発光装置。  The light-emitting device according to claim 11, wherein the reflecting portion is made of ceramics.
  13. 前記放電空間内に設けられたスペーサ部材をさらに備えたことを特徴とする請求項1記載の発光装置。  The light emitting device according to claim 1, further comprising a spacer member provided in the discharge space.
  14. 前記放電空間が、前記スペーサ部材によって分けられた複数のサブ空間を含んでいることを特徴とする請求項13記載の発光装置。  The light emitting device according to claim 13, wherein the discharge space includes a plurality of subspaces divided by the spacer member.
  15. 不活性ガスが充填される放電空間を有しており、前記放電空間を塞いでいる透光性部材を含む容器部材と、
     前記放電空間の下方に位置しているとともに前記容器部材に設けられた第1の電極パターンと、
     前記放電空間を介して前記第1の電極と対向しており、前記透光性部材に設けられた第2の電極パターンと、
    を備えた発光管。
    A container member including a translucent member having a discharge space filled with an inert gas and closing the discharge space;
    A first electrode pattern located below the discharge space and provided on the container member;
    A second electrode pattern facing the first electrode through the discharge space and provided on the translucent member;
    Arc tube equipped with.
PCT/JP2010/055835 2009-09-30 2010-03-31 Light emitting device and light emitting tube WO2011040068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-227779 2009-09-30
JP2009227779 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040068A1 true WO2011040068A1 (en) 2011-04-07

Family

ID=43825905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055835 WO2011040068A1 (en) 2009-09-30 2010-03-31 Light emitting device and light emitting tube

Country Status (1)

Country Link
WO (1) WO2011040068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027535A (en) * 2014-06-26 2016-02-18 京セラ株式会社 Light-emission device and electronic apparatus having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118541A (en) * 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd Light-emitting device
JP2008505442A (en) * 2004-06-30 2008-02-21 ゼネラル・エレクトリック・カンパニイ System and method for designing projector lamps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118541A (en) * 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd Light-emitting device
JP2008505442A (en) * 2004-06-30 2008-02-21 ゼネラル・エレクトリック・カンパニイ System and method for designing projector lamps

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027535A (en) * 2014-06-26 2016-02-18 京セラ株式会社 Light-emission device and electronic apparatus having the same

Similar Documents

Publication Publication Date Title
WO2011040069A1 (en) Light emitting device and light emitting tube
CN106939973B (en) L ED bulb lamp
JP2005086051A (en) Light emitting device
JP2011096562A (en) Light emitting device and arc tube
WO2011040068A1 (en) Light emitting device and light emitting tube
CN112786433A (en) Excimer lamp
JP5026973B2 (en) lamp
JP6301797B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP6419015B2 (en) Discharger package and discharger
JP6272172B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP6441741B2 (en) Discharger package and discharger
JP6495758B2 (en) Discharger package and discharger
JP6334702B2 (en) Light emitting device
JP3115069U (en) Discharge tube
JP6321489B2 (en) WIRING BOARD, LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
CN215731580U (en) Miniature excimer lamp
JP6352776B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP2007073254A (en) External electrode discharge lamp
JP5199757B2 (en) Flat type lamp
JP6153062B2 (en) Discharge lamp and discharge lamp manufacturing method
JP6411850B2 (en) Discharger package and discharger
JP3115070U (en) Discharge tube
JP2005339824A (en) External electrode type discharge lamp
JP2007026677A (en) Flat discharge tube
JP2007273135A (en) Dielectric barrier discharge fluorescent lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP