WO2011037287A1 - Fail safety actuator - Google Patents

Fail safety actuator Download PDF

Info

Publication number
WO2011037287A1
WO2011037287A1 PCT/KR2009/005510 KR2009005510W WO2011037287A1 WO 2011037287 A1 WO2011037287 A1 WO 2011037287A1 KR 2009005510 W KR2009005510 W KR 2009005510W WO 2011037287 A1 WO2011037287 A1 WO 2011037287A1
Authority
WO
WIPO (PCT)
Prior art keywords
spur gear
union nut
rotation
driver
return assembly
Prior art date
Application number
PCT/KR2009/005510
Other languages
French (fr)
Korean (ko)
Inventor
조언정
김홍선
조은상
이창인
이진우
Original Assignee
한국산업기술대학교산학협력단
인지컨트롤스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술대학교산학협력단, 인지컨트롤스주식회사 filed Critical 한국산업기술대학교산학협력단
Priority to PCT/KR2009/005510 priority Critical patent/WO2011037287A1/en
Publication of WO2011037287A1 publication Critical patent/WO2011037287A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H33/00Gearings based on repeated accumulation and delivery of energy
    • F16H33/02Rotary transmissions with mechanical accumulators, e.g. weights, springs, intermittently-connected flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means

Definitions

  • the present invention relates to a fail safety actuator, and to a fail safety actuator having a safety function that provides a driving force to a separate mechanism and prevents malfunction in case of failure.
  • the present invention relates to a failsafe actuator capable of restoring (returning) a moved component to its original state (home position) when some of the moved components are inoperative.
  • the actuator is a general term for a driving device that uses electricity, hydraulic pressure, compressed air, etc., and generally refers to a device that performs mechanical work using fluid energy. In the field of mechatronics, it refers to an electric motor having some kind of control mechanism or a piston / cylinder mechanism operated by hydraulic or pneumatic pressure. Recently, the development of artificial muscles and micro actuators using new materials has been actively conducted.
  • an actuator is installed to open and close the valve.
  • the actuator is a valve in which the coupler 14 mounted on the rotation shaft 12a of the spur gear 12 is not shown as the spur gear 12 is rotated by the driving motor 10. Rotate At this time, the spur gear 12 receives the driving force of the drive motor 10 through the gear train 16 as shown by the broken line.
  • Such an actuator is a fail safety actuator in which the spur gear 12 automatically returns to its original position upon failure, and the spur gear 12 is rotated forward as shown in (b) of the drawing.
  • the other end 18b of the compression coil spring 18, in which one end 18a is fixed to the base 1 moves as shown by broken lines in (b) of the figure. .
  • the compression coil spring 18 is inoperative after the forward rotation (CW) of the drive motor 10 due to an error in the control circuit or a failure of the drive motor 10, the other end 18b is drawn by its own elastic force. Return to the original position as shown by the broken line in (b) of FIG.
  • the spur gear 12 is forced to the reverse rotation (CCW) by the other end portion 18b of the compression coil spring 18 to return to the correct position. That is, the spur gear 12 is rotated in a state before being rotated.
  • the not shown valve is closed again.
  • the vehicle can maintain a stable state as the valve is closed.
  • the above-described compression coil spring 18 has an elastic force of about 6kgcm.
  • the above-described drive motor 10 is composed of about 12W class and has a torque of about 10kgcm (Torque). Therefore, when the spur gear 12 is rotated forward by the driving force of the drive motor 10, the spur gear 12 always rotates forward while overcoming the elastic force of the compression coil spring 12.
  • Such a common fail safety actuator uses a 12W class drive motor 10 as described above so that the spur gear 12 can always overcome the elastic force of the compression coil spring 18, so that excessive power is required.
  • the miniaturization and weight reduction of parts are almost impossible. That is, the general fail-safe actuator has to use a largely formed drive motor 10 to obtain a large torque, not only excessive power is required, but also miniaturization and weight reduction of the component is not possible.
  • the present invention has been made to solve the above-mentioned conventional problems, and provides a fail-safe actuator provided with a mechanism for returning a moved member to its original position while being operated by a heating action by a power source generated when the driving source is not operated. For that purpose.
  • Another object of the present invention is to provide a fail safety actuator having a structure in which a moving member can minimize power loss.
  • another object of the present invention is to provide a fail-safe actuator provided with a mechanical element capable of controlling the rotation angle of a rotationally moving member by intermittently rotating the rotation angle of the rotationally moving member.
  • a fail safety actuator for achieving the above object is a driver for providing a driving force; A moving member which transfers the driving force of the driver to another device while being moved by the driving force of the driver or returning to its original position; And a return assembly which receives power from the outside as the driver is inoperative and provides a pressing force to a portion of the moving member while returning the moving member to its original position while operating by a heating operation by the supplied power.
  • the moving member is a spur gear that is rotatably moved by a driving force provided by the driver, has a rotation axis in the center, and is returned to its original position by the return assembly operated by the non-operation of the driver. Can be.
  • the return assembly is, for example, is wound around the rotating shaft of the spur gear, and has one end forming a fixed end and the other end forming a free end, while deforming to the form in which the other end is stored by the heat generation action by the supplied power.
  • a self-variable torsion spring made of a moving shape memory alloy; And a protrusion for protruding the spur gear and forcibly rotating the spur gear while the other end of the moving self-variable torsion spring is caught and moved together with the other end.
  • the return assembly may include, for example, a protrusion protruding from the spur gear;
  • the spur gear is wound on a rotational axis of the spur gear, and has one end forming a fixed end and the other end movably fixed in a compressed state while forming a free end.
  • the other end of the spur gear is moved by a compressive force as the fixed state is released.
  • the other end of the torsion spring is in close contact with the other end and supports the one end of the other end so as to be movable in a compressed state, and is bent into a memorized form by a heat generating action by the supplied power to maintain the support of the other end.
  • It may be configured to include; a stopper made of a shape memory alloy to release the movement of the other end.
  • the present invention it is necessary to further comprise a rotation angle control means for controlling the rotation angle of the spur gear by moving the projection by a set distance.
  • the rotation angle control means for example, has a length corresponding to the set rotation angle of the spur gear, the long hole holder for receiving the projection to guide the rotation of the projection; may be configured.
  • the return assembly is, for example, provided in the spur gear in unison, a male thread having a steep inclination is formed on the outer circumferential surface to rotate with the spur gear;
  • a union nut provided with a female screw threaded to the male screw of the rotary ring to be screwed to the rotary ring;
  • a coil spring elastically supporting the union nut connected to the rotary ring;
  • An anti-rotation member coupled to one side of the union nut supported by the coil spring to prevent rotation of the union nut; Pressing the union nut, one end of which is in close contact with one side of the union nut, the rotation of which is suppressed by the rotation preventing member, is extended in a memorized form by the exothermic action of the supplied power, and the rotation is suppressed.
  • It may be configured to include; self-elastic spring made of a shape memory alloy forcibly rotating the rotary ring screwed with the union nut.
  • the anti-rotation member may include, for example, a coupling protrusion integrally provided at one end of the self-elastic spring and coupled with a portion of the union nut to prevent rotation of the union nut; It is preferably configured to include; a projection sheet is provided in one side of the union nut, the projection sheet is seated by fitting the coupling projection.
  • the return assembly is operated by the heat generation action by the power source can easily operate the return assembly, it is possible to simply configure the return assembly.
  • the moving member is composed of a spur gear that rotates in a rotational manner
  • the driving force of the driver can be prevented from being lost due to the structural characteristics of the gear. Operation is possible.
  • the return assembly is composed of shape memory alloy material self-variable torsion springs and projections
  • the self-variable torsion springs are deformed only when the driver is not in operation, and the projections are pressed to rotate the spur gears. Since the pressure is not released and does not interfere with the rotation of the spur gear, it is possible to apply a low-power type small driver that dissipates less torque than before, and to miniaturize the product.
  • the return assembly is composed of the projection, the torsion spring and the shape memory alloy stopper, only the stopper needs to be made of the shape memory alloy, so as described above, the manufacturing cost is greater than that of manufacturing the self-variable torsion spring with the shape memory alloy. Can be saved.
  • the return assembly is composed of a coil type self-elastic spring consisting of a rotating ring, union nut, coil spring, anti-rotation member, and shape memory alloy
  • the return characteristics described above are due to the structural characteristics of the coil type self-elastic spring.
  • the pressure can be easily adjusted by adjusting the pitch spacing or the number of turns of the self-elastic spring.
  • the anti-rotation member is composed of the engaging projection and the groove-like protrusion sheet, the anti-rotation member can be configured very simply.
  • FIG. 1 is a longitudinal sectional view and a plan view of a typical fail safety actuator
  • FIG. 2 is an exploded perspective view of a fail safety actuator according to an embodiment of the present invention.
  • FIG. 3 is a side view of a portion of the failsafe actuator shown in FIG. 2;
  • FIG. 4 is a plan view showing the configuration of the return assembly shown in FIG. 3;
  • FIG. 5 is a plan view of a return assembly according to another embodiment of the present invention.
  • FIG. 6 is a longitudinal cross-sectional view of a return assembly according to another embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view showing an operating state of the return assembly shown in FIG. 6;
  • FIG. 2 is an exploded perspective view of the fail safety actuator according to an embodiment of the present invention
  • Figure 3 2 is a side view of the fail safety actuator shown in FIG. 2
  • FIG. 4 is a plan view of the return assembly shown in FIG. 3.
  • a fail safety actuator includes a driver (60) for providing a driving force as shown; Rotor 70 and; Contains the return assembly described below.
  • the driver 60 may be composed of a hydraulic cylinder or a motor as shown.
  • the driver 60 is built in the case 52.
  • the rotor 70 may be constituted by a moving member that is rotatable.
  • the rotor 70 is preferably composed of a spur gear 72 is coupled to the rotating shaft 72a as shown.
  • the rotor 70 may be provided with an electric gear coupled to the spur gear 72.
  • the electric gear may be composed of the drive gear 74 and the driven gear 76 and / or middle gear 78 as shown, alternatively, may be composed of only the drive gear (74).
  • Rotor 70 is connected to the coupler (CP) as shown. This coupler CP connects the rotor 70 with a separate device, such as a valve, not shown.
  • the return assembly may include a self-variable torsion spring 81 as shown and a protrusion 83 to be described later.
  • the self-variable torsion spring 81 is composed of a shape memory alloy, and the other end portion 81b is a shape memory spring whose shape is stored in a bent form as shown by a broken line. That is, the self-variable torsion spring 81 normally maintains the shape of the other end 81b as shown by the solid line, and when the shape is heated and memorized, the other end 81b is bent in the form as shown by the broken line. Is transformed.
  • the self-variable torsion spring 81 is designed to generate an elastic force of about 10 kgcm to 20 kgcm when deformed.
  • the case 52 is coupled to the cover 54 is provided with a connector 54a on one side as shown.
  • the case 52 has a gasket GK interposed therebetween as shown in the edge coupled to the cover 54.
  • the case 52 is hermetically sealed inside.
  • a circuit board PC and a gear seat GS are embedded therein.
  • the circuit board PC controls the power supplied to the driver 60 described above to drive the driver 60.
  • the gear seat GS supports the above-mentioned rotation shaft 72a and the gear shaft 76a, 78a mentioned later.
  • the above-described driven gear 76 and middle gear 78 are provided with the above-described gear shafts 76a and 78a in the center, respectively.
  • the spur gear 72 is fixed to the inside of the case 52 in a rotatable state by the rotation shaft 72a as shown.
  • Spur gear 72 is mated with middle gear 78 as shown.
  • the middle gear 78 forms a gear train together with the drive gear 74 fixed to the rotation axis of the driver 60 and the driven gear 76 engaged with the drive gear 74 as shown. Therefore, the spur gear 72 receives the driving force of the driver 60 through the gear train.
  • the self-variable torsion spring 81 is fitted and fixed to the rotation shaft 72a of the spur gear 72 as shown. As shown in the enlarged view, the self-variable torsion spring 81 is fixed at one end 81a through the protruding portion of the case 52 to form a fixed end, and the other end 81a is free on the case 52. To achieve.
  • the self-variable torsion spring 81 has an electric wire EW connected to one end 81a and the other end 81b, respectively, as shown in an enlarged manner, and receives a positive current and a negative current from the electric wire EW, respectively.
  • the spur gear 72 is a coupler (CP) is connected to the end of the rotation shaft (72a) as shown.
  • the spur gear 72 is provided with a projection 83 of the return assembly at the lower portion as shown.
  • the circuit board PC and the gear sheet GS are embedded in the case 52 in a stacked state as shown.
  • the case 52 is provided with a long hole holder 94 for receiving the above-described projections 83 as shown.
  • the long hole holder 94 is formed in the form of a long hole in the case 52 as shown enlarged.
  • the long hole holder 94 is a rotation angle control means for controlling the rotation angle of the rotor 70 by moving the received projection 83 only by a set distance as described below.
  • the long hole holder 94 is formed to have a length corresponding to the set rotation angle of the rotor 70, and is formed in an arc shape as shown to enable the movement of the protrusion 83.
  • the driver 60 operates the spur gear 72 through the driving gear 74, the driven gear 76, and the middle gear 78 while operating by the power supplied from the circuit board PC.
  • the spur gear 72 is driven by the driving force of the driver 60 through the coupler CP provided at the end of the rotation shaft 72a while being rotated forward or reversely about the rotation shaft 72a (CCW).
  • CCW the coupler CP
  • CCW the coupler CP is reversed
  • the protrusion 83 moves as shown by the solid line when the spur gear 72 rotates forward (CW), and when the spur gear 72 rotates counterclockwise (CCW), the protrusion 83 moves in a broken line. Move as shown.
  • the self-variable torsion spring 81 is located at the other end 81b as it is shown in the solid line.
  • the self-variable torsion spring 81 is stopped by a malfunction or failure after the above-mentioned driver 60 is rotated forward (CW), so that the projections 83 are positioned as shown in solid lines. Power is supplied via the wire EW of 81b).
  • the self-variable torsion spring 81 is deformed into a memorized shape as shown by the broken line while being heated by the power source.
  • the self-variable torsion spring 81 is deformed and moved as shown by the broken line while deforming the shape as shown by the broken line while pressing the projection 83 with an elastic force of about 10kgcm to 20kgcm. Therefore, the projection 83 moves as shown by the broken line by the pressing force of the self-variable torsion spring 81.
  • the protrusion 83 transmits the pressing force of the self-variable torsion spring 81 to a part of the spur gear 72.
  • the spur gear 72 rotates the rotation shaft 72a while being forced to reverse rotation (CCW) by the projection 83 moving as shown by the broken line. That is, the spur gear 72 is reversely rotated by the pressing force of the self-variable torsion spring 81 transmitted through the protrusion 83. At this time, the rotating shaft 72a reversely rotates the above-described coupler CP installed at the end. Thus, the not shown valve is closed by the coupler CP.
  • the projection 83 moves along the long hole holder 94 when the spur gear 72 rotates. That is, the long hole holder 94 guides the movement of the protrusion 83.
  • the protrusion 83 is fixed to the end of the long hole holder 94. Therefore, the spur gear 72 has a limited rotation angle due to the long hole holder 94.
  • the return assembly is composed of a shape memory alloy material self-variable torsion spring 81 which is operated by the heat generation action by the power source can easily operate the return assembly.
  • the return assembly can be easily configured.
  • the self-variable torsion spring 81 of the return assembly is deformed only when the driver 60 is not operated, the protrusion 83 is pressed to rotate the spur gear 72 of the rotor 70, and the protrusion is normally used. Since the pressure of the 83 is not released to hinder the rotation of the spur gear 72, it is possible to apply the low-power type small driver 60 that dissipates less torque than in the related art, and to miniaturize the product.
  • the moving member is constituted by a spur gear 72 which rotates
  • the driving force of the driver 60 can be prevented from being lost due to the structural characteristics of the gear. Not only can it be delivered completely but also stable driving is possible.
  • Figure 5 is a plan view showing a configuration of a return assembly according to another embodiment of the present invention.
  • the return assembly according to this other embodiment is applied to the metal torsion spring 85 is wound on the rotary shaft 72a of the spur gear 72, as shown instead of the above-described self-variable torsion spring 81, this torsion
  • the stopper 87 is provided to support the other end 85b of the spring 85, which is different from the above-described return assembly.
  • the return assembly according to another embodiment of the present invention, as shown, one end 85a of the torsion spring 85 is fixed to the protrusion of the case 52, the other end 85b forms a free end.
  • This torsion spring 85 is supported by the stopper 87 as shown in the other end 85b is forcibly bent. That is, the torsion spring 85 is fixed in a compressed state so that the other end portion 85b constituting the free end is caught by the stopper 87 and is movable.
  • the torsion spring 85 is designed to have an elastic force capable of pressing the protrusion 83 of the spur gear 72.
  • the stopper 87 is formed of a shape deformation alloy, and an enlarged view on the drawing is formed in a plate shape as shown in "1".
  • the stopper 87 is a shape memory element whose shape is stored in a bent form as shown by a broken line in the enlarged view "1", and maintains a vertical state in a straight line as shown by the solid line.
  • the stopper 87 supports one side of the other end 85b side of the torsion spring 85 in a vertical state as shown in the enlarged view "1".
  • the stopper 87 is connected to the upper and lower wires (EW), respectively, as shown in the enlarged view "1".
  • the projection 83 provides the pressing force to the spur gear 72 to reversely rotate the spur gear 72.
  • the spur gear 72 rotates together with the rotation shaft 72a to close the valve (not shown) through the rotation shaft 72a and the coupler CP (not shown).
  • the above-mentioned stopper 87 may be provided with a curved surface 87a at the end of one side facing the other end 85b of the torsion spring 85 as shown in the enlarged view "2" in the drawing. .
  • the curved surface 87a smoothly guides the other end 85b of the torsion spring 85 to the protrusion 83 by the shape characteristic of the stopper 87 when the shape is changed.
  • the stopper 87 may be provided with a spring seating groove 87b as shown when the curved surface 87a is formed.
  • the spring seating groove 87b stably restrains the other end 85b of the torsion spring 85 when the stopper 87 is undeformed.
  • the fail safety actuator according to another embodiment as described above is manufactured only by the shape memory alloy stopper 87 can significantly reduce the manufacturing cost than the above-described embodiment.
  • Figure 6 attached is a longitudinal cross-sectional view of a return assembly according to another embodiment of the present invention
  • Figure 7 is a longitudinal cross-sectional view showing an operating state of the return assembly shown in FIG.
  • a return assembly includes a rotating ring 88 as shown; Union nut 89; Coil springs CS; Self-elastic spring 89b and;
  • the anti-rotation member described below is configured to include a difference from the above-described embodiments. Therefore, only these differences are explained as follows.
  • the rotary ring 88 has one end connected to the spur gear 72 of the rotor 70 in unison.
  • the rotary ring 88 is formed with a male screw 88a having a steep slope on the outer circumferential surface as shown.
  • the male screw 88a has a steep slope of about 40 ° to 65 °.
  • This male screw 88a is composed of one or two lines. That is, the rotary ring 88 is a single row screw or two rows of screws.
  • the union nut 89 has a female screw 89a which is screwed with the aforementioned male screw 88a on the inner circumferential surface as shown.
  • the union nut 89 has one end fitted to the other end of the rotary ring 88 slightly.
  • the female screw (89a) forms a slightly screwed state with the male screw (88). Therefore, the union nut 89 is connected to the rotary ring 88 in a state capable of screwing the rotary ring 88.
  • Coil spring CS is fitted to the rotary ring 88 in an expanded state as shown.
  • the coil spring CS elastically supports one end of the union nut 89 as shown. Therefore, the union nut 89 does not move (raise) along the rotation ring 88 due to the coil spring CS.
  • Self-elastic spring 89b is formed in the form of a coil as shown.
  • the self-elastic spring 89b is made of a shape memory alloy, and is compressed as shown after being processed to store the expanded state. Thus, the self-elastic spring 89b remains compressed as shown normally.
  • the self-elastic spring 89b supports one side of the union nut 89 in a compressed state as shown. At this time, one end of the self-elastic spring (89b) is in close contact with one side of the union nut (89).
  • one end and the other end of the wire EW are connected to each other.
  • the wire EW applies positive and negative currents to both ends of the self-elastic spring 89b when the driver 60 is not operated.
  • the anti-rotation member described above for example, the engaging projection (89p) integrally connected to one end of the self-elastic spring (89b) and; It is provided on one side of the union nut (89) is a projection sheet of the groove (89 ') shape is coupled to the engaging projection (89p) can be configured;
  • the coupling protrusion 89p may use a metal plate in the form of a block as shown in an enlarged manner. However, the coupling protrusion 89p may be formed by bending one end of the self-elastic spring 89b, as shown. The formation of the coupling protrusion 89p is easily understood by those skilled in the art, and thus a detailed description thereof will be omitted.
  • the coupling protrusion 89p is fitted into the groove 89 'provided in the union nut 89 to be coupled with the union nut 89 as shown in an enlarged view.
  • the coupling protrusion 89b is coupled to the groove 89 'to prevent rotation of the union nut 89. That is, the union nut (89) is engaged with the engaging projection (89p) in the groove (89 ') of one side, the rotation is prevented.
  • Such rotation preventing member is provided with a rod or rail guider GD fitted vertically to the outer circumferential surface of the union nut 89 inside the case 52 as shown by the broken line, so that the union nut ( 89) may be configured to prevent rotation. That is, since the union nut 89 is fitted with a rod or rail guider GD on its outer circumferential surface, rotation is prevented.
  • the self-elastic spring 89b is deformed into a stored shape while being extended as shown when power is supplied from the wire EW by the non-operation of the driver 60 not shown.
  • the self-elastic spring (89b) is extended to press the union nut (89).
  • the union nut (89) is not rotated due to the engaging projection (89p) fitted in the groove (89 ') as shown in enlargement moves along the rotary ring (88).
  • the union nut 89 is raised while compressing the coil spring (CS) as shown.
  • the rotary ring 88 is rotated due to the male screw 88a coupled with the female screw 89a of the union nut 89 as the union nut 89 rises. That is, the rotary ring 88 is rotated because the female screw (89a) is forcibly screwed to the male screw (88a) by the lifting force of the union nut (89). At this time, the female screw (89a) and the male screw (89a) can be screwed together is formed as a steep slope. Accordingly, the rotary ring 88 rotates to reverse the spur gear 72 rotated forward by the driver 60 to its original position.
  • the self-elastic spring (89b) made of a shape memory alloy is formed in the form of a coil can not only provide greater pressure (elastic force) than the above-described embodiment, The pressure (elastic force) can be easily adjusted by adjusting the pitch interval and the number of windings.
  • Fail safety actuator according to the present invention can be applied to the vehicle as described above, otherwise it can be installed in various industrial devices to enable safe operation of the industrial device.
  • a driving device such as a motor or a cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

The present invention relates to a fail safety actuator. The fail safety actuator according to the present invention includes: a driver for supplying a driving force; a moving member for moving to a position or returning to an original position by the driving force of the driver so as to transmit the driving force of the driver to a separate device; and a return assembly to be supplied with power from the outside when the driver is not in operation, and operating by heating operations due to the supplied power so as to supply a pressing force to a part of the moving member, thereby returning the moving member to the original position. According to the present invention, it is possible to easily operate the return assembly since the return assembly operates by the power supply. In addition, it is possible to simply construct the return assembly.

Description

페일세이프티 엑츄에이터Failsafe Actuator
본 발명은 페일세이프티 엑츄에이터(Fail safety actuator)에 관한 것으로서, 별개의 기구에 구동력을 제공하면서 고장시 오작동을 방지하는 안전기능을 갖는 페일세이프티 엑츄에이터에 관한 것이다. 특히, 이동되는 일부의 구성요소가 미작동할 경우 이동된 구성요소를 원상태(원위치)로 복구(복귀)할 수 있는 페일세이프티 엑츄에이터에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fail safety actuator, and to a fail safety actuator having a safety function that provides a driving force to a separate mechanism and prevents malfunction in case of failure. In particular, the present invention relates to a failsafe actuator capable of restoring (returning) a moved component to its original state (home position) when some of the moved components are inoperative.
일반적으로 엑츄에이터는 전기, 유압, 압축공기 등을 이용하는 구동장치의 총칭으로, 보통 유체 에너지를 이용해서 기계적인 작업을 하는 기기를 말한다. 메카트로닉스 분야에서는 어떤 종류의 제어기구를 갖고 있는 전기모터 혹은 유압이나 공기압으로 작동하는 피스톤ㆍ실린더 기구를 가리킨다. 최근에는 신소재를 이용한 인공근육이나 초소형 액추에이터의 개발 등이 활발하게 이루어지고 있다. In general, the actuator is a general term for a driving device that uses electricity, hydraulic pressure, compressed air, etc., and generally refers to a device that performs mechanical work using fluid energy. In the field of mechatronics, it refers to an electric motor having some kind of control mechanism or a piston / cylinder mechanism operated by hydraulic or pneumatic pressure. Recently, the development of artificial muscles and micro actuators using new materials has been actively conducted.
차량의 경우 밸브를 개폐하는 엑츄에이터가 설치된다. 이러한 엑츄에이터는 도 1에 도시된 바와 같이 스퍼어기어(12)가 구동모터(10)에 의해 회전됨에 따라 스퍼어기어(12)의 회전축(12a)에 장착된 커플러(14)가 미도시된 밸브를 회전시킨다. 이때, 스퍼어기어(12)는 파선으로 도시된 바와 같은 기어트레인(16)을 통해 구동모터(10)의 구동력을 전달받는다.In the case of vehicles, an actuator is installed to open and close the valve. As shown in FIG. 1, the actuator is a valve in which the coupler 14 mounted on the rotation shaft 12a of the spur gear 12 is not shown as the spur gear 12 is rotated by the driving motor 10. Rotate At this time, the spur gear 12 receives the driving force of the drive motor 10 through the gear train 16 as shown by the broken line.
이와 같은 엑츄에이터는 고장시 스퍼어기어(12)가 자동으로 원상복귀하는 페일세이프티 엑츄에이터(Fail safety actuator)로서, 스퍼어기어(12)가 도면의 (b)에 도시(평면도)된 바와 같이 정회전(CW)하면서 밸브를 개방시킬 경우, 베이스(1)에 일단부(18a)가 고정된 압축코일스프링(18)의 타단부(18b)가 도면의 (b)에 파선으로 도시된 바와 같이 이동한다. 이러한 압축코일스프링(18)은 제어회로의 오류나 구동모터(10)의 고장으로 인해 구동모터(10)가 정회전(CW)된 후 미작동할 경우, 타단부(18b)가 자체탄성력에 의해 도면의 (b)에 파선으로 도시된 바와 같이 원위치로 복귀한다. 이때, 스퍼어기어(12)는 압축코일스프링(18)의 타단부(18b)에 의해 강제로 역회전(CCW)되면서 정위치로 복귀한다. 즉, 스퍼어기어(12)는 회전되기 전의 상태로 회전된다. 물론, 미도시된 밸브는 다시 폐쇄된다. 따라서, 차량은 밸브가 폐쇄됨에 따라 안정적인 상태를 유지할 수 있다.Such an actuator is a fail safety actuator in which the spur gear 12 automatically returns to its original position upon failure, and the spur gear 12 is rotated forward as shown in (b) of the drawing. When opening the valve while (CW), the other end 18b of the compression coil spring 18, in which one end 18a is fixed to the base 1, moves as shown by broken lines in (b) of the figure. . When the compression coil spring 18 is inoperative after the forward rotation (CW) of the drive motor 10 due to an error in the control circuit or a failure of the drive motor 10, the other end 18b is drawn by its own elastic force. Return to the original position as shown by the broken line in (b) of FIG. At this time, the spur gear 12 is forced to the reverse rotation (CCW) by the other end portion 18b of the compression coil spring 18 to return to the correct position. That is, the spur gear 12 is rotated in a state before being rotated. Of course, the not shown valve is closed again. Thus, the vehicle can maintain a stable state as the valve is closed.
여기서, 전술한 압축코일스프링(18)은 약 6kgcm의 탄성력을 갖는다. 그리고, 전술한 구동모터(10)는 약 12W급으로 구성되고 약 10kgcm의 회전력(Torque)을 갖는다. 따라서, 스퍼어기어(12)는 구동모터(10)의 구동력에 의해 정회전(CW)될 경우 항상 압축코일스프링(12)의 탄성력을 극복하면서 정회전된다.Here, the above-described compression coil spring 18 has an elastic force of about 6kgcm. In addition, the above-described drive motor 10 is composed of about 12W class and has a torque of about 10kgcm (Torque). Therefore, when the spur gear 12 is rotated forward by the driving force of the drive motor 10, the spur gear 12 always rotates forward while overcoming the elastic force of the compression coil spring 12.
그러나, 이러한 일반적인 페일세이프티 엑츄에이터는 스퍼어기어(12)가 항상 압축코일스프링(18)의 탄성력을 극복할 수 있도록 전술한 바와 같은 12W급의 구동모터(10)를 사용하므로 과도한 전력이 소요될 뿐만 아니라 부품의 소형화 및 경량화가 거의 불가능한 문제가 있다. 즉, 일반적인 페일세이프티 엑츄에이터는 큰 토크를 얻기 위해 크게 형성된 구동모터(10)를 사용하여야 하므로 과도한 전력이 소요될 뿐만 아니라, 부품의 소형화 및 경량화가 불가능하다.However, such a common fail safety actuator uses a 12W class drive motor 10 as described above so that the spur gear 12 can always overcome the elastic force of the compression coil spring 18, so that excessive power is required. There is a problem that the miniaturization and weight reduction of parts are almost impossible. That is, the general fail-safe actuator has to use a largely formed drive motor 10 to obtain a large torque, not only excessive power is required, but also miniaturization and weight reduction of the component is not possible.
본 발명은 상기와 같은 종래의 문제를 해결하기 위해 창출된 것으로서, 구동원의 미작동시 발생되는 전원에 의한 발열작용에 의해 작동되면서 이동된 부재를 원위치로 복귀시키는 메커니즘이 마련된 페일세이프티 엑츄에이터를 제공하기 위함이 그 목적이다.The present invention has been made to solve the above-mentioned conventional problems, and provides a fail-safe actuator provided with a mechanism for returning a moved member to its original position while being operated by a heating action by a power source generated when the driving source is not operated. For that purpose.
특히, 전술한 메커니즘이 탄성력 및 형상기억합금의 변형특성을 통해 작동될 수 있는 구성으로 이루어진 페일세이프티 엑츄에이터를 제공하기 위함이 그 목적이다.In particular, it is an object of the present invention to provide a fail-safe actuator made of a configuration that can be operated through the deformation characteristics of the elastic force and the shape memory alloy.
또, 이동되는 부재가 동력손실을 최소화할 수 있는 구조로 이루어진 페일세이프티 엑츄에이터를 제공하기 위함이 다른 목적이다.Another object of the present invention is to provide a fail safety actuator having a structure in which a moving member can minimize power loss.
또한, 회전식으로 이동하는 부재의 회전각도를 단속하여 회전식으로 이동하는 부재의 회전각도를 제어할 수 있는 기구적인 요소가 마련된 페일세이프티 엑츄에이터를 제공하기 위함이 또 다른 목적이다.In addition, another object of the present invention is to provide a fail-safe actuator provided with a mechanical element capable of controlling the rotation angle of a rotationally moving member by intermittently rotating the rotation angle of the rotationally moving member.
이와 같은 목적을 달성하기 위한 본 발명에 의한 페일세이프티 엑츄에이터는, 구동력을 제공하는 드라이버; 상기 드라이버의 구동력에 의해 이동되거나 원위치로 복귀하면서 드라이버의 구동력을 별개의 다른 장치에 전달하는 무빙부재 및; 상기 드라이버가 미작동됨에 따라 외부로부터 전원을 공급받고, 공급되는 전원에 의한 발열작용에 의해 작동하면서 상기 무빙부재의 일부분에 가압력을 제공하여 무빙부재를 원위치로 귀환시키는 리턴어셈블리;를 포함한다.A fail safety actuator according to the present invention for achieving the above object is a driver for providing a driving force; A moving member which transfers the driving force of the driver to another device while being moved by the driving force of the driver or returning to its original position; And a return assembly which receives power from the outside as the driver is inoperative and provides a pressing force to a portion of the moving member while returning the moving member to its original position while operating by a heating operation by the supplied power.
상기 이동부재는, 상기 드라이버에서 제공되는 구동력에 의해 회전식으로 이동되고, 중앙에 회전축을 가지며, 상기 드라이버의 미작동에 의해 작동하는 상기 리턴에셈블리에 의해 원위치로 귀환되는 스퍼어기어;로 구성할 수 있다. The moving member is a spur gear that is rotatably moved by a driving force provided by the driver, has a rotation axis in the center, and is returned to its original position by the return assembly operated by the non-operation of the driver. Can be.
상기 리턴어셈블리는 예컨대, 상기 스퍼어기어의 회전축에 와인딩되고, 고정단을 이루는 일단부 및 자유단을 이루는 타단부를 가지며, 공급되는 전원에 의한 발열작용에 의하여 타단부가 기억된 형태로 변형하면서 이동하는 형상기억합금으로 이루어진 셀프베리어블 토션스프링 및; 상기 스퍼어기어에 돌출형성되고, 이동하는 상기 셀프베리어블 토션스프링의 타단부가 걸려서 타단부와 함께 이동하면서 스퍼어기어를 강제로 회전시키는 돌기;를 포함하여 구성할 수 있다.The return assembly is, for example, is wound around the rotating shaft of the spur gear, and has one end forming a fixed end and the other end forming a free end, while deforming to the form in which the other end is stored by the heat generation action by the supplied power. A self-variable torsion spring made of a moving shape memory alloy; And a protrusion for protruding the spur gear and forcibly rotating the spur gear while the other end of the moving self-variable torsion spring is caught and moved together with the other end.
이와 달리, 상기 리턴어셈블리는 예컨대, 상기 스퍼어기어에 돌출형성되는 돌기; 상기 스퍼어기어의 회전축에 와인딩되고, 고정단을 이루는 일단부 및 자유단을 이루면서 압축상태로 이동가능하게 고정되는 타단부를 가지며, 이 타단부의 고정상태가 해제됨에 따라 압축력에 의해 이동하면서 상기 돌기를 회전시켜서 스퍼어기어를 강제로 회전시키는 토션스프링 및; 상기 토션스프링의 타단부에 밀착되어 타단부의 일측면을 지지하면서 타단부를 압축상태로 이동가능하게 고정하고, 공급되는 전원에 의한 발열작용에 의해 기억된 형태로 절곡되면서 타단부의 지지상태를 해제하여 타단부의 이동을 가능하게 하는 형상기억합금으로 이루어진 스토퍼;를 포함하여 구성할 수도 있다.In contrast, the return assembly may include, for example, a protrusion protruding from the spur gear; The spur gear is wound on a rotational axis of the spur gear, and has one end forming a fixed end and the other end movably fixed in a compressed state while forming a free end. The other end of the spur gear is moved by a compressive force as the fixed state is released. A torsion spring for forcibly rotating the spur gear by rotating the projection; The other end of the torsion spring is in close contact with the other end and supports the one end of the other end so as to be movable in a compressed state, and is bent into a memorized form by a heat generating action by the supplied power to maintain the support of the other end. It may be configured to include; a stopper made of a shape memory alloy to release the movement of the other end.
본 발명은, 상기 돌기를 설정된 거리만큼 이동시켜서 상기 스퍼어기어의 회전각도를 제어하는 회전각도 제어수단;을 더 포함하여 구성할 필요가 있다. The present invention, it is necessary to further comprise a rotation angle control means for controlling the rotation angle of the spur gear by moving the projection by a set distance.
상기 회전각도 제어수단은 예컨대, 상기 스퍼어기어의 설정된 회전각도에 대응하는 길이를 가지며, 상기 돌기를 수용하여 돌기의 회전을 안내하는 장공홀더;로 구성할 수 있다.The rotation angle control means, for example, has a length corresponding to the set rotation angle of the spur gear, the long hole holder for receiving the projection to guide the rotation of the projection; may be configured.
한편, 상기 리턴어셈블리는 예컨대, 상기 스퍼어기어에 일제적으로 마련되고, 급경사를 갖는 수나사가 외주면에 형성되어 스퍼어기어와 함께 회전하는 회전링; 상기 회전링의 수나사와 나사결합하는 암나사가 마련되어 회전링에 나사결합이 가능한 상태로 연결되는 유니언너트; 상기 회전링에 연결되는 상기 유니언너트를 탄력적으로 지지하는 코일스프링; 상기 코일스프링에 탄력지지되는 상기 유니언너트의 일측에 결합되어 유니언너트의 회전을 방지하는 회전방지부재 및; 상기 회전방지부재에 의해 회전이 억제되는 상기 유니언너트의 일측에 압축상태를 이루면서 일단부가 밀착되고, 공급되는 전원에 의한 발열작용에 의해 기억된 형태로 신장되면서 회전이 억제되는 유니언너트를 가압하여, 유니언너트와 나사결합된 상기 회전링을 강제로 회전시키는 형상기억합금으로 이루어진 셀프엘라스틱 스프링;을 포함하여 구성할 수도 있다.On the other hand, the return assembly is, for example, provided in the spur gear in unison, a male thread having a steep inclination is formed on the outer circumferential surface to rotate with the spur gear; A union nut provided with a female screw threaded to the male screw of the rotary ring to be screwed to the rotary ring; A coil spring elastically supporting the union nut connected to the rotary ring; An anti-rotation member coupled to one side of the union nut supported by the coil spring to prevent rotation of the union nut; Pressing the union nut, one end of which is in close contact with one side of the union nut, the rotation of which is suppressed by the rotation preventing member, is extended in a memorized form by the exothermic action of the supplied power, and the rotation is suppressed. It may be configured to include; self-elastic spring made of a shape memory alloy forcibly rotating the rotary ring screwed with the union nut.
상기 회전방지부재는 예컨대, 상기 셀프엘라스틱 스프링의 일단부에 일체적으로 마련되고, 상기 유니언너트의 일부분과 결합되어 유니언너트의 회전을 방지하는 결합돌기 및; 상기 유니언너트의 일측에 홈형태로 마련되고, 상기 결합돌기가 끼워져서 안착되는 돌기시트;를 포함하여 구성하는 것이 바람직하다.The anti-rotation member may include, for example, a coupling protrusion integrally provided at one end of the self-elastic spring and coupled with a portion of the union nut to prevent rotation of the union nut; It is preferably configured to include; a projection sheet is provided in one side of the union nut, the projection sheet is seated by fitting the coupling projection.
상기와 같은 본 발명에 의한 페일세이프티 엑츄에이터는, 리턴어셈블리가 전원에 의한 발열작용에 의해 작동하므로 리턴어셈블리를 용이하게 작동시킬 수 있으며, 리턴어셈블리를 간단하게 구성할 수 있다.The fail safety actuator according to the present invention as described above, the return assembly is operated by the heat generation action by the power source can easily operate the return assembly, it is possible to simply configure the return assembly.
또, 무빙부재를 회전식으로 이동하는 스퍼어기어로 구성할 경우 기어의 구조적 특성에 의해 드라이버의 구동력이 손실되는 것을 방지할 수 있으므로 별개의 다른 장치에 드라이버의 구동력을 온전하게 전달할 수 있을 뿐만 아니라 안정적인 작동이 가능하다.In addition, when the moving member is composed of a spur gear that rotates in a rotational manner, the driving force of the driver can be prevented from being lost due to the structural characteristics of the gear. Operation is possible.
또한, 리턴어셈블리를 형상기억합금재 셀프베리어블 토션스프링 및 돌기로 구성할 경우, 셀프베리어블 토션스프링이 드라이버의 미작동시에만 형상변형되면서 돌기를 가압하여 스퍼어기어를 회전시키고, 평상시에는 돌기의 가압을 해제하여 스퍼어기어의 회전을 방해하지 않으므로, 종래 보다 적은 토크를 발산하는 저전력형의 소형 드라이버를 적용할 수 있을 뿐만 아니라 제품의 소형화가 가능하다.In addition, when the return assembly is composed of shape memory alloy material self-variable torsion springs and projections, the self-variable torsion springs are deformed only when the driver is not in operation, and the projections are pressed to rotate the spur gears. Since the pressure is not released and does not interfere with the rotation of the spur gear, it is possible to apply a low-power type small driver that dissipates less torque than before, and to miniaturize the product.
아울러, 장공홀더로 이루어진 회전각도 제어수단을 마련할 경우 장공홀더를 통해 돌기의 이동을 제한할 수 있으므로 정밀한 제어가 가능하다.In addition, when providing a rotation angle control means made of a long hole holder, it is possible to limit the movement of the projection through the long hole holder, it is possible to precise control.
게다가, 리턴어셈블리를 돌기와 토션스프링 및 형상기억합금재 스토퍼로 구성할 경우 스토퍼만 형상기억합금으로 제조하면 되므로, 전술한 바와 같이 셀프베리어블 토션스프링을 형상기억합금으로 제조하는 것 보다 제조비용을 크게 절감할 수 있다.In addition, when the return assembly is composed of the projection, the torsion spring and the shape memory alloy stopper, only the stopper needs to be made of the shape memory alloy, so as described above, the manufacturing cost is greater than that of manufacturing the self-variable torsion spring with the shape memory alloy. Can be saved.
이에 더하여, 리턴어셈블리를 회전링, 유니언너트, 코일스프링, 회전방지부재 및 형상기억합금으로 이루어진 코일형태의 셀프엘라스틱 스프링으로 구성할 경우, 코일형태로 형성된 셀프엘라스틱 스프링의 구조적 특성으로 인하여 전술한 리턴어셈블리 보다 큰 압력을 제공할 수 있을 뿐만 아니라, 셀프엘라스틱 스프링의 피치 간격이나 권선 횟수 등을 조절하여 압력을 용이하게 조정할 수 있다.In addition, when the return assembly is composed of a coil type self-elastic spring consisting of a rotating ring, union nut, coil spring, anti-rotation member, and shape memory alloy, the return characteristics described above are due to the structural characteristics of the coil type self-elastic spring. In addition to providing greater pressure than the assembly, the pressure can be easily adjusted by adjusting the pitch spacing or the number of turns of the self-elastic spring.
더 나아가, 회전방지부재를 결합돌기 및 홈형태의 돌기시트로 구성할 경우 회전방지부재를 매우 간단하게 구성할 수 있다.Furthermore, when the anti-rotation member is composed of the engaging projection and the groove-like protrusion sheet, the anti-rotation member can be configured very simply.
도 1은 일반적인 페일세이프티 엑츄에이터의 종단면도 및 평면도;1 is a longitudinal sectional view and a plan view of a typical fail safety actuator;
도 2는 본 발명의 실시예에 의한 페일세이프티 엑츄에이터의 분해사시도;2 is an exploded perspective view of a fail safety actuator according to an embodiment of the present invention;
도 3은 도 2에 도시된 페일세이프티 엑츄에이터의 일부를 절개하여 도시한 측면도;FIG. 3 is a side view of a portion of the failsafe actuator shown in FIG. 2;
도 4는 도 3에 도시된 리턴어셈블리의 구성을 도시한 평면도;4 is a plan view showing the configuration of the return assembly shown in FIG. 3;
도 5는 본 발명의 다른 실시예에 의한 리턴어셈블리의 평면도;5 is a plan view of a return assembly according to another embodiment of the present invention;
도 6은 본 발명의 또 다른 실시예에 의한 리턴어셈블리의 종단면도; 및6 is a longitudinal cross-sectional view of a return assembly according to another embodiment of the present invention; And
도 7은 도 6에 도시된 리턴어셈블리의 작동상태를 도시한 종단면도.FIG. 7 is a longitudinal sectional view showing an operating state of the return assembly shown in FIG. 6; FIG.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 의한 페일세이프티 엑츄에이터를 설명하면 다음과 같으며, 첨부된 도 2는 본 발명의 실시예에 의한 페일세이프티 엑츄에이터의 분해사시도이고, 도 3은 도 2에 도시된 페일세이프티 엑츄에이터의 측면도이며, 도 4는 도 3에 도시된 리턴어셈블리의 평면도이다.Hereinafter, referring to the fail safety actuator according to an embodiment of the present invention with reference to the accompanying drawings as follows, the accompanying Figure 2 is an exploded perspective view of the fail safety actuator according to an embodiment of the present invention, Figure 3 2 is a side view of the fail safety actuator shown in FIG. 2, and FIG. 4 is a plan view of the return assembly shown in FIG. 3.
도 2를 참조하면, 본 발명의 실시예에 의한 페일세이프티 엑츄에이터는 도시된 바와 같이 구동력을 제공하는 드라이버(60); 로터(70) 및; 후술되는 리턴어셈블리를 포함한다.2, a fail safety actuator according to an embodiment of the present invention includes a driver (60) for providing a driving force as shown; Rotor 70 and; Contains the return assembly described below.
드라이버(60)는 유압실린더나 도시된 바와 같은 모터로 구성할 수 있다. 이러한 드라이버(60)는 케이스(52)의 내부에 내장된다.The driver 60 may be composed of a hydraulic cylinder or a motor as shown. The driver 60 is built in the case 52.
로터(70)는 회전식으로 이동하는 무빙부재로 구성할 수 있다. 로터(70)는 도시된 바와 같은 회전축(72a)이 결합되는 스퍼어기어(72)로 구성하는 것이 바람직하다. 이러한 로터(70)는 스퍼어기어(72)와 결합되는 전동기어가 마련될 수 있다. 이때, 전동기어는 도시된 바와 같이 구동기어(74)와 피동기어(76) 및/또는 미들기어(78)로 구성할 수 있으며, 이와 달리 구동기어(74)만으로 구성할 수도 있다. 로터(70)는 도시된 바와 같은 커플러(CP)가 연결된다. 이러한 커플러(CP)는 로터(70)를 미도시된 밸브와 같은 별개의 장치와 연결시킨다.The rotor 70 may be constituted by a moving member that is rotatable. The rotor 70 is preferably composed of a spur gear 72 is coupled to the rotating shaft 72a as shown. The rotor 70 may be provided with an electric gear coupled to the spur gear 72. In this case, the electric gear may be composed of the drive gear 74 and the driven gear 76 and / or middle gear 78 as shown, alternatively, may be composed of only the drive gear (74). Rotor 70 is connected to the coupler (CP) as shown. This coupler CP connects the rotor 70 with a separate device, such as a valve, not shown.
리턴어셈블리는 도시된 바와 같은 셀프베리어블 토션스프링(81) 및 후술되는 돌기(83)로 구성할 수 있다. 셀프베리어블 토션스프링(81)은 형상기억합금으로 구성되며, 타단부(81b)가 파선으로 도시된 바와 같이 절곡된 형태로 형상이 기억된 형상기억 스프링이다. 즉, 셀프베리어블 토션스프링(81)은 평상시 타단부(81b)가 실선으로 도시된 바와 같은 형태를 유지하고, 가열되어 형상기억될 경우 타단부(81b)가 파선으로 도시된 바와 같은 형태로 절곡되면서 변형된다. 이러한 셀프베리어블 토션스프링(81)은 변형시 약 10kgcm 내지 20kgcm의 탄성력이 발생되도록 설계된다.The return assembly may include a self-variable torsion spring 81 as shown and a protrusion 83 to be described later. The self-variable torsion spring 81 is composed of a shape memory alloy, and the other end portion 81b is a shape memory spring whose shape is stored in a bent form as shown by a broken line. That is, the self-variable torsion spring 81 normally maintains the shape of the other end 81b as shown by the solid line, and when the shape is heated and memorized, the other end 81b is bent in the form as shown by the broken line. Is transformed. The self-variable torsion spring 81 is designed to generate an elastic force of about 10 kgcm to 20 kgcm when deformed.
한편, 전술한 케이스(52)는 도시된 바와 같이 일측에 커넥터(54a)가 마련된 커버(54)와 결합된다. 이때, 케이스(52)는 커버(54)와 결합되는 테두리에 도시된 바와 같이 가스킷(GK)이 개재된다. 따라서, 케이스(52)는 내부가 기밀상태로 밀폐된다.On the other hand, the case 52 is coupled to the cover 54 is provided with a connector 54a on one side as shown. In this case, the case 52 has a gasket GK interposed therebetween as shown in the edge coupled to the cover 54. Thus, the case 52 is hermetically sealed inside.
이러한 케이스(54)는 도시된 바와 같이 내부에 회로기판(PC) 및 기어시트(GS)가 내장된다. 회로기판(PC)은 전술한 드라이버(60)에 공급되는 전원을 제어하여 드라이버(60)를 구동시킨다. 그리고, 기어시트(GS)는 전술한 회전축(72a) 및 후술되는 기어축(76a, 78a)을 지지한다.As shown in the case 54, a circuit board PC and a gear seat GS are embedded therein. The circuit board PC controls the power supplied to the driver 60 described above to drive the driver 60. And the gear seat GS supports the above-mentioned rotation shaft 72a and the gear shaft 76a, 78a mentioned later.
다른 한편, 전술한 피동기어(76) 및 미들기어(78)는 중앙에 전술한 기어축(76a, 78a)이 제각기 설치된다.On the other hand, the above-described driven gear 76 and middle gear 78 are provided with the above-described gear shafts 76a and 78a in the center, respectively.
도 3을 참조하면, 스퍼어기어(72)는 도시된 바와 같이 회전축(72a)에 의해 회전가능한 상태로 케이스(52)의 내부에 고정된다. 스퍼어기어(72)는 도시된 바와 같이 미들기어(78)와 교합된다. 이러한 미들기어(78)는 도시된 바와 같이 드라이버(60)의 회전축에 고정된 구동기어(74) 및, 구동기어(74)에 교합된 피동기어(76)와 함께 기어트레인을 형성한다. 따라서, 스퍼어기어(72)는 기어트레인을 통해 드라이버(60)의 구동력을 전달받는다.Referring to FIG. 3, the spur gear 72 is fixed to the inside of the case 52 in a rotatable state by the rotation shaft 72a as shown. Spur gear 72 is mated with middle gear 78 as shown. The middle gear 78 forms a gear train together with the drive gear 74 fixed to the rotation axis of the driver 60 and the driven gear 76 engaged with the drive gear 74 as shown. Therefore, the spur gear 72 receives the driving force of the driver 60 through the gear train.
셀프베리어블 토션스프링(81)은 도시된 바와 같이 스퍼어기어(72)의 회전축(72a)에 끼워져서 고정된다. 셀프베리어블 토션스프링(81)은 확대 도시된 바와 같이 일단부(81a)가 케이스(52)의 돌출부위에 관통상태로 고정되어 고정단을 이루고, 타단부(81a)가 케이스(52)상에서 자유단을 이룬다. 이러한 셀프베리어블 토션스프링(81)은 확대 도시된 바와 같이 일단부(81a) 및 타단부(81b)에 전선(EW)이 제각기 연결되어 전선(EW)으로부터 제각기 양전류 및 음전류를 공급받는다.The self-variable torsion spring 81 is fitted and fixed to the rotation shaft 72a of the spur gear 72 as shown. As shown in the enlarged view, the self-variable torsion spring 81 is fixed at one end 81a through the protruding portion of the case 52 to form a fixed end, and the other end 81a is free on the case 52. To achieve. The self-variable torsion spring 81 has an electric wire EW connected to one end 81a and the other end 81b, respectively, as shown in an enlarged manner, and receives a positive current and a negative current from the electric wire EW, respectively.
한편, 스퍼어기어(72)는 도시된 바와 같이 회전축(72a)의 단부에 커플러(CP)가 연결된다. 그리고, 스퍼어기어(72)는 도시된 바와 같이 하부에 리턴어셈블리의 돌기(83)가 마련된다. 또한, 회로기판(PC) 및 기어시트(GS)는 도시된 바와 같이 적층상태로 케이스(52)에 내장된다.On the other hand, the spur gear 72 is a coupler (CP) is connected to the end of the rotation shaft (72a) as shown. In addition, the spur gear 72 is provided with a projection 83 of the return assembly at the lower portion as shown. In addition, the circuit board PC and the gear sheet GS are embedded in the case 52 in a stacked state as shown.
다른 한편, 케이스(52)는 도시된 바와 같이 전술한 돌기(83)를 수용하는 장공홀더(94)가 마련된다. 이러한 장공홀더(94)는 확대 도시된 바와 같이 케이스(52)에 장공형태로 형성된다. 장공홀더(94)는 후술되는 바와 같이 수용된 돌기(83)를 설정된 거리만큼만 이동시켜서 로터(70)의 회전각도를 제어하는 회전각도 제어수단이다. 장공홀더(94)는 로터(70)의 설정된 회전각도에 대응하는 길이로 형성되며, 돌기(83)의 이동이 가능하도록 도시된 바와 같이 원호형태로 형성된다.On the other hand, the case 52 is provided with a long hole holder 94 for receiving the above-described projections 83 as shown. The long hole holder 94 is formed in the form of a long hole in the case 52 as shown enlarged. The long hole holder 94 is a rotation angle control means for controlling the rotation angle of the rotor 70 by moving the received projection 83 only by a set distance as described below. The long hole holder 94 is formed to have a length corresponding to the set rotation angle of the rotor 70, and is formed in an arc shape as shown to enable the movement of the protrusion 83.
이상과 같이 구성된 본 발명의 실시예에 의한 페일세이프티 엑츄에이터의 작동을 첨부된 도 3 및 도 4를 참조하여 설명하면 다음과 같다.Referring to Figures 3 and 4 attached to the operation of the fail-safe actuator according to an embodiment of the present invention configured as described above are as follows.
도 3을 참조하면, 드라이버(60)는 회로기판(PC)에서 공급되는 전원에 의해 작동하면서 구동기어(74)와 피동기어(76) 및 미들기어(78)를 통해 스퍼어기어(72)를 회전시킨다. 이때, 스퍼어기어(72)는 드라이버(60)의 구동력에 의해 회전축(72a)을 중심으로 정회전(CW)이나 역회전(CCW)하면서 회전축(72a)의 단부에 설치된 커플러(CP)를 통해 미도시된 밸브를 개폐한다. 물론, 밸브는 커플러(CP)가 정회전(CW)될 경우 개방되고 역회전(CCW)될 경우 폐쇄된다.Referring to FIG. 3, the driver 60 operates the spur gear 72 through the driving gear 74, the driven gear 76, and the middle gear 78 while operating by the power supplied from the circuit board PC. Rotate At this time, the spur gear 72 is driven by the driving force of the driver 60 through the coupler CP provided at the end of the rotation shaft 72a while being rotated forward or reversely about the rotation shaft 72a (CCW). Open and close the not shown valve. Of course, the valve is open when the coupler CP is rotated forward (CW) and closed when the coupler CP is reversed (CCW).
도 4를 참조하면, 돌기(83)는 스퍼어기어(72)가 정회전(CW)할 경우 실선으로 도시된 바와 같이 이동하며, 스퍼어기어(72)가 역회전(CCW)할 경우 파선으로 도시된 바와 같이 이동한다. 이때, 셀프베리어블 토션스프링(81)은 타단부(81b)가 실선으로 도시된 바와 같은 위치에 그대로 위치한다.Referring to FIG. 4, the protrusion 83 moves as shown by the solid line when the spur gear 72 rotates forward (CW), and when the spur gear 72 rotates counterclockwise (CCW), the protrusion 83 moves in a broken line. Move as shown. At this time, the self-variable torsion spring 81 is located at the other end 81b as it is shown in the solid line.
이러한 셀프베리어블 토션스프링(81)은 전술한 드라이버(60)가 정회전(CW)된 후 오작동이나 고장에 의해 정지되어 돌기(83)가 실선으로 도시된 바와 같이 위치할 경우, 양단부(81a, 81b)의 전선(EW)을 통해 전원이 공급된다. 물론, 셀프베리어블 토션스프링(81)은 전원에 의해 가열되면서 파선으로 도시된 바와 같이 기억된 형상으로 형상변형한다. 이때, 셀프베리어블 토션스프링(81)은 형상변형되어 파선으로 도시된 바와 같이 이동하면서 돌기(83)를 약 10kgcm 내지 20kgcm의 탄성력으로 가압하면서 파선으로 도시된 바와 같이 형상변형한다. 따라서, 돌기(83)는 셀프베리어블 토션스프링(81)의 가압력에 의해 파선으로 도시된 바와 같이 이동한다. 즉, 돌기(83)는 셀프베리어블 토션스프링(81)의 가압력을 스퍼어기어(72)의 일부분에 전달한다.The self-variable torsion spring 81 is stopped by a malfunction or failure after the above-mentioned driver 60 is rotated forward (CW), so that the projections 83 are positioned as shown in solid lines. Power is supplied via the wire EW of 81b). Of course, the self-variable torsion spring 81 is deformed into a memorized shape as shown by the broken line while being heated by the power source. At this time, the self-variable torsion spring 81 is deformed and moved as shown by the broken line while deforming the shape as shown by the broken line while pressing the projection 83 with an elastic force of about 10kgcm to 20kgcm. Therefore, the projection 83 moves as shown by the broken line by the pressing force of the self-variable torsion spring 81. In other words, the protrusion 83 transmits the pressing force of the self-variable torsion spring 81 to a part of the spur gear 72.
한편, 스퍼어기어(72)는 파선으로 도시된 바와 같이 이동하는 돌기(83)에 의해 강제로 역회전(CCW)되면서 회전축(72a)을 회전시킨다. 즉, 스퍼어기어(72)는 돌기(83)를 통해 전달되는 셀프베리어블 토션스프링(81)의 가압력에 의해 역회전된다. 이때, 회전축(72a)은 단부에 설치된 전술한 커플러(CP)를 역회전시킨다. 따라서, 미도시된 밸브는 커플러(CP)에 의해 폐쇄된다.On the other hand, the spur gear 72 rotates the rotation shaft 72a while being forced to reverse rotation (CCW) by the projection 83 moving as shown by the broken line. That is, the spur gear 72 is reversely rotated by the pressing force of the self-variable torsion spring 81 transmitted through the protrusion 83. At this time, the rotating shaft 72a reversely rotates the above-described coupler CP installed at the end. Thus, the not shown valve is closed by the coupler CP.
다른 한편, 돌기(83)는 스퍼어기어(72)의 회전시 장공홀더(94)를 따라서 이동한다. 즉, 장공홀더(94)는 돌기(83)의 이동을 안내한다. 이러한 돌기(83)는 장공홀더(94)의 단부에 걸려서 고정된다. 따라서, 스퍼어기어(72)는 장공홀더(94)로 인해 회전각도가 제한된다.On the other hand, the projection 83 moves along the long hole holder 94 when the spur gear 72 rotates. That is, the long hole holder 94 guides the movement of the protrusion 83. The protrusion 83 is fixed to the end of the long hole holder 94. Therefore, the spur gear 72 has a limited rotation angle due to the long hole holder 94.
이상과 같은 본 발명의 실시예에 의한 페일세이프티 엑츄에이터는, 리턴어셈블리가 전원에 의한 발열작용에 의해 작동하는 형상기억합금재 셀프베리어블 토션스프링(81)으로 구성되므로 리턴어셈블리를 용이하게 작동시킬 수 있을 뿐만 아니라, 리턴어셈블리를 간단하게 구성할 수 있다.The failsafe actuator according to the embodiment of the present invention as described above, the return assembly is composed of a shape memory alloy material self-variable torsion spring 81 which is operated by the heat generation action by the power source can easily operate the return assembly. In addition, the return assembly can be easily configured.
또, 리턴어셈블리의 셀프베리어블 토션스프링(81)이 드라이버(60)의 미작동시에만 형상변형되면서 돌기(83)를 가압하여 로터(70)의 스퍼어기어(72)를 회전시키고, 평상시에는 돌기(83)의 가압을 해제하여 스퍼어기어(72)의 회전을 방해하지 않으므로, 종래 보다 적은 토크를 발산하는 저전력형의 소형 드라이버(60)를 적용할 수 있을 뿐만 아니라 제품의 소형화가 가능하다.In addition, while the self-variable torsion spring 81 of the return assembly is deformed only when the driver 60 is not operated, the protrusion 83 is pressed to rotate the spur gear 72 of the rotor 70, and the protrusion is normally used. Since the pressure of the 83 is not released to hinder the rotation of the spur gear 72, it is possible to apply the low-power type small driver 60 that dissipates less torque than in the related art, and to miniaturize the product.
또, 무빙부재를 회전식으로 이동하는 스퍼어기어(72)로 구성할 경우 기어의 구조적 특성에 의해 드라이버(60)의 구동력이 손실되는 것을 방지할 수 있으므로 별개의 다른 장치에 드라이버(60)의 구동력을 온전하게 전달할 수 있을 뿐만 아니라 안정적인 구동이 가능하다.In addition, when the moving member is constituted by a spur gear 72 which rotates, the driving force of the driver 60 can be prevented from being lost due to the structural characteristics of the gear. Not only can it be delivered completely but also stable driving is possible.
또한, 회전각도 제어수단인 장공홀더(94)를 통해 돌기(83)의 이동을 제한할 수 있으므로 정밀한 제어가 가능하다.In addition, since the movement of the projection 83 can be restricted through the long hole holder 94 which is a rotation angle control means, precise control is possible.
한편, 첨부된 도 5는 본 발명의 다른 실시예에 의한 리턴어셈블리의 구성을 도시한 평면도이다. 이러한 다른 실시예에 의한 리턴어셈블리는 전술한 셀프베리어블 토션스프링(81) 대신 도시된 바와 같이 스퍼어기어(72)의 회전축(72a)에 와인딩되는 금속재 토션스프링(85)이 적용되고, 이 토션스프링(85)의 타단부(85b)를 지지하는 스토퍼(87)가 마련된 것이 전술한 리턴어셈블리와의 차이점이다.On the other hand, Figure 5 is a plan view showing a configuration of a return assembly according to another embodiment of the present invention. The return assembly according to this other embodiment is applied to the metal torsion spring 85 is wound on the rotary shaft 72a of the spur gear 72, as shown instead of the above-described self-variable torsion spring 81, this torsion The stopper 87 is provided to support the other end 85b of the spring 85, which is different from the above-described return assembly.
도시된 바와 같이, 다른 실시예에 의한 리턴어셈블리는 도시된 바와 같이 토션스프링(85)의 일단부(85a)가 케이스(52)의 돌출부위에 고정되고, 타단부(85b)가 자유단을 이룬다. 이러한 토션스프링(85)은 타단부(85b)가 강제로 꺾여서 도시된 바와 같이 스토퍼(87)에 지지된다. 즉, 토션스프링(85)은 자유단을 이루는 타단부(85b)가 스토퍼(87)에 걸려서 이동가능하게 압축상태로 고정된다. 토션스프링(85)은 스퍼어기어(72)의 돌기(83)를 가압할 수 있는 탄성력을 갖도록 설계된다.As shown, the return assembly according to another embodiment of the present invention, as shown, one end 85a of the torsion spring 85 is fixed to the protrusion of the case 52, the other end 85b forms a free end. This torsion spring 85 is supported by the stopper 87 as shown in the other end 85b is forcibly bent. That is, the torsion spring 85 is fixed in a compressed state so that the other end portion 85b constituting the free end is caught by the stopper 87 and is movable. The torsion spring 85 is designed to have an elastic force capable of pressing the protrusion 83 of the spur gear 72.
스토퍼(87)는 형상변형합금으로 구성되며, 도면상의 확대도 "①"에 도시된 바와 같이 판상으로 형성된다. 스토퍼(87)는 확대도 "①"에 파선으로 도시된 바와 같이 절곡된 형태로 형상이 기억된 형상기억소자이며, 평상시 실선으로 도시된 바와 같이 일직선의 수직상태를 유지한다. 스토퍼(87)는 확대도 "①"에 도시된 바와 같이 수직상태로 토션스프링(85)의 타단부(85b)측 일측면을 지지한다. 이러한 스토퍼(87)는 확대도 "①"에 도시된 바와 같이 상단 및 하단에 제각기 전선(EW)이 연결된다.The stopper 87 is formed of a shape deformation alloy, and an enlarged view on the drawing is formed in a plate shape as shown in "1". The stopper 87 is a shape memory element whose shape is stored in a bent form as shown by a broken line in the enlarged view "1", and maintains a vertical state in a straight line as shown by the solid line. The stopper 87 supports one side of the other end 85b side of the torsion spring 85 in a vertical state as shown in the enlarged view "1". The stopper 87 is connected to the upper and lower wires (EW), respectively, as shown in the enlarged view "①".
이상과 같은 다른 실시예에 의한 리턴어셈블리는 전술한 드라이버(60)가 정회전(CW)한 후 미작동할 경우, 확대도 "①"에 도시된 바와 같이 스토퍼(87)의 양단측 전선(EW)을 통해 양전류 및 음전류가 제각기 공급된다. 이에 따라, 스토퍼(87)는 가열되어 파선으로 도시된 바와 같이 형상변형되면서 토션스프링(85)의 타단부(85b)측 지지상태를 해제한다. 이때, 토션스프링(85)은 압축된 탄성력에 의해 타단부(85b)가 튕겨나가면서 실선으로 도시된 돌기(83)를 가압한다. 따라서, 돌기(83)는 파선으로 도시된 바와 같이 장공홀더(94)를 따라 이동하면서 스퍼어기어(72)를 강제로 역회전(CCW)시킨다. 즉, 돌기(83)는 스퍼어기어(72)에 가압력을 제공하여 스퍼어기어(72)를 역회전시킨다. 물론, 스퍼어기어(72)는 회전축(72a)과 함께 회전되면서 회전축(72a) 및 미도시된 커플러(CP)를 통해 미도시된 밸브를 폐쇄한다.Return assembly according to another embodiment as described above, when the driver 60 is not operated after the forward rotation (CW), as shown in the enlarged view "①", both ends of the wire (EW) EW The positive and negative currents are supplied respectively. Accordingly, the stopper 87 is heated to release the supporting state of the other end 85b side of the torsion spring 85 while being deformed as shown by the broken line. At this time, the torsion spring 85 presses the protrusion 83 shown by a solid line while the other end 85b is bounced off by the compressed elastic force. Therefore, the projection 83 forcibly rotates the spur gear 72 while moving along the long hole holder 94 as shown by the broken line (CCW). That is, the projection 83 provides the pressing force to the spur gear 72 to reversely rotate the spur gear 72. Of course, the spur gear 72 rotates together with the rotation shaft 72a to close the valve (not shown) through the rotation shaft 72a and the coupler CP (not shown).
한편, 전술한 스토퍼(87)는 도면상의 확대도 "②"에 도시된 바와 같이 토션스프링(85)의 타단부(85b)와 대향하는 일측면의 단부에 곡선면(87a)이 마련될 수 있다. 이러한 곡선면(87a)은 스토퍼(87)의 형상변형시 형상적 특성에 의해 토션스프링(85)의 타단부(85b)를 돌기(83)측으로 원활하게 안내한다.On the other hand, the above-mentioned stopper 87 may be provided with a curved surface 87a at the end of one side facing the other end 85b of the torsion spring 85 as shown in the enlarged view "②" in the drawing. . The curved surface 87a smoothly guides the other end 85b of the torsion spring 85 to the protrusion 83 by the shape characteristic of the stopper 87 when the shape is changed.
또, 스토퍼(87)는 곡선면(87a)이 형성될 경우 도시된 바와 같은 스프링 안착홈(87b)이 마련될 수 있다. 이러한 스프링 안착홈(87b)은 스토퍼(87)의 미변형시 토션스프링(85)의 타단부(85b)를 안정적으로 구속한다.In addition, the stopper 87 may be provided with a spring seating groove 87b as shown when the curved surface 87a is formed. The spring seating groove 87b stably restrains the other end 85b of the torsion spring 85 when the stopper 87 is undeformed.
이상과 같은 다른 실시예에 의한 페일세이프티 엑츄에이터는 스토퍼(87)만 형상기억합금으로 제조하므로 전술한 실시예 보다 제조비용을 크게 절감할 수 있다.The fail safety actuator according to another embodiment as described above is manufactured only by the shape memory alloy stopper 87 can significantly reduce the manufacturing cost than the above-described embodiment.
다른 한편, 첨부된 도 6은 본 발명의 또 다른 실시예에 의한 리턴어셈블리의 종단면도이고, 도 7은 도 6에 도시된 리턴어셈블리의 작동상태를 도시한 종단면도이다.On the other hand, Figure 6 attached is a longitudinal cross-sectional view of a return assembly according to another embodiment of the present invention, Figure 7 is a longitudinal cross-sectional view showing an operating state of the return assembly shown in FIG.
도 6을 참조하면, 또 다른 실시예에 의한 리턴어셈블리는 도시된 바와 같이 회전링(88); 유니언너트(89); 코일스프링(CS); 셀프엘라스틱 스프링(89b) 및; 후술되는 회전방지부재;를 포함하여 구성된 것이 전술한 실시예들과의 차이점이다. 따라서, 이러한 차이점만을 설명하면 다음과 같다.Referring to FIG. 6, a return assembly according to another embodiment includes a rotating ring 88 as shown; Union nut 89; Coil springs CS; Self-elastic spring 89b and; The anti-rotation member described below is configured to include a difference from the above-described embodiments. Therefore, only these differences are explained as follows.
회전링(88)은 용접이나 볼팅에 의해 도시된 바와 같이 일단부가 로터(70)의 스퍼어기어(72)에 일제적으로 연결된다. 이러한 회전링(88)은 도시된 바와 같이 외주면에 급경사를 갖는 수나사(88a)가 형성된다. 이때, 수나사(88a)는 약 40° 내지 65°의 급경사를 갖는다. 이러한 수나사(88a)는 한줄 또는 두줄로 구성된다. 즉, 회전링(88)은 한줄나사 또는 두줄나사이다.As shown by welding or bolting, the rotary ring 88 has one end connected to the spur gear 72 of the rotor 70 in unison. The rotary ring 88 is formed with a male screw 88a having a steep slope on the outer circumferential surface as shown. At this time, the male screw 88a has a steep slope of about 40 ° to 65 °. This male screw 88a is composed of one or two lines. That is, the rotary ring 88 is a single row screw or two rows of screws.
유니언너트(89)는 도시된 바와 같이 내주면에 전술한 수나사(88a)와 나사결합되는 암나사(89a)를 갖는다. 유니언너트(89)는 도시된 바와 같이 일단부가 회전링(88)의 타단부에 약간 끼워진다. 이때, 암나사(89a)는 수나사(88)와 약간 나사결합된 상태를 이룬다. 따라서, 유니언너트(89)는 회전링(88)과 나사결합이 가능한 상태로 회전링(88)에 연결된다.The union nut 89 has a female screw 89a which is screwed with the aforementioned male screw 88a on the inner circumferential surface as shown. The union nut 89 has one end fitted to the other end of the rotary ring 88 slightly. At this time, the female screw (89a) forms a slightly screwed state with the male screw (88). Therefore, the union nut 89 is connected to the rotary ring 88 in a state capable of screwing the rotary ring 88.
코일스프링(CS)은 도시된 바와 같이 팽창된 상태로 회전링(88)에 끼워진다. 코일스프링(CS)은 도시된 바와 같이 유니언너트(89)의 일단부를 탄력적으로 지지한다. 따라서, 유니언너트(89)는 코일스프링(CS)으로 인해 회전링(88)을 따라 이동(상승)하지 못한다.Coil spring CS is fitted to the rotary ring 88 in an expanded state as shown. The coil spring CS elastically supports one end of the union nut 89 as shown. Therefore, the union nut 89 does not move (raise) along the rotation ring 88 due to the coil spring CS.
셀프엘라스틱 스프링(89b)은 도시된 바와 같이 코일형태로 형성된다. 셀프엘라스틱 스프링(89b)은 형상기억합금으로 이루어지며, 팽창된 상태가 기억되도록 가공된 후 도시된 바와 같이 압축된다. 따라서, 셀프엘라스틱 스프링(89b)은 평상시 도시된 바와 같이 압축된 상태를 유지한다.Self-elastic spring 89b is formed in the form of a coil as shown. The self-elastic spring 89b is made of a shape memory alloy, and is compressed as shown after being processed to store the expanded state. Thus, the self-elastic spring 89b remains compressed as shown normally.
셀프엘라스틱 스프링(89b)은 도시된 바와 같이 압축된 상태로 유니언너트(89)의 일측을 지지한다. 이때, 셀프엘라스틱 스프링(89b)은 도시된 바와 같이 일단부가 유니언너트(89)의 일측에 밀착된다.The self-elastic spring 89b supports one side of the union nut 89 in a compressed state as shown. At this time, one end of the self-elastic spring (89b) is in close contact with one side of the union nut (89).
이러한 셀프엘라스틱 스프링(89b)은 도시된 바와 같이 일단 및 타단측에 전선(EW)이 제각기 연결된다. 전선(EW)은 전술한 드라이버(60)의 미작동시 셀프엘라스틱 스프링(89b)의 양단부로 제각기 양전류 및 음전류를 인가한다.As shown in the self-elastic spring 89b, one end and the other end of the wire EW are connected to each other. The wire EW applies positive and negative currents to both ends of the self-elastic spring 89b when the driver 60 is not operated.
한편, 전술한 회전방지부재는 예컨대, 도시된 바와 같이 셀프엘라스틱 스프링(89b)의 일단부에 일체적으로 연결되는 결합돌기(89p) 및; 유니언너트(89)의 일측에 마련되어 결합돌기(89p)가 끼워져서 결합되는 홈(89') 형태의 돌기시트;로 구성할 수 있다.On the other hand, the anti-rotation member described above, for example, the engaging projection (89p) integrally connected to one end of the self-elastic spring (89b) and; It is provided on one side of the union nut (89) is a projection sheet of the groove (89 ') shape is coupled to the engaging projection (89p) can be configured;
결합돌기(89p)는 확대 도시된 바와 같이 블럭형태의 금속판을 사용할 수 있다. 하지만 결합돌기(89p)는 도시된 바와 달리 셀프엘라스틱 스프링(89b)의 일단부를 절곡하여 형성할 수도 있다. 이렇게 결합돌기(89p)를 형성하는 것은 당업자가 용이하게 이해할 수 있는 내용이므로 그 자세한 설명은 생략한다.The coupling protrusion 89p may use a metal plate in the form of a block as shown in an enlarged manner. However, the coupling protrusion 89p may be formed by bending one end of the self-elastic spring 89b, as shown. The formation of the coupling protrusion 89p is easily understood by those skilled in the art, and thus a detailed description thereof will be omitted.
결합돌기(89p)는 확대 도시된 바와 같이 유니언너트(89)에 마련된 홈(89')에 끼워져서 유니언너트(89)와 결합된다. 이러한 결합돌기(89b)는 홈(89')에 결합되어 유니언너트(89)의 회전을 방지한다. 즉, 유니언너트(89)는 일측의 홈(89')에 결합돌기(89p)가 걸리므로 회전이 방지된다.The coupling protrusion 89p is fitted into the groove 89 'provided in the union nut 89 to be coupled with the union nut 89 as shown in an enlarged view. The coupling protrusion 89b is coupled to the groove 89 'to prevent rotation of the union nut 89. That is, the union nut (89) is engaged with the engaging projection (89p) in the groove (89 ') of one side, the rotation is prevented.
이와 같은 회전방지부재는 전술한 바와 달리 유니언너트(89)의 외주면에 수직으로 끼워지는 봉이나 레일형태의 가이더(GD)를 파선으로 도시된 바와 같이 케이스(52)의 내측에 마련하여 유니언너트(89)의 회전이 방지되도록 구성할 수도 있다. 즉, 유니언너트(89)는 외주면에 봉이나 레일형태의 가이더(GD)가 끼워지므로 회전이 방지된다.Such rotation preventing member is provided with a rod or rail guider GD fitted vertically to the outer circumferential surface of the union nut 89 inside the case 52 as shown by the broken line, so that the union nut ( 89) may be configured to prevent rotation. That is, since the union nut 89 is fitted with a rod or rail guider GD on its outer circumferential surface, rotation is prevented.
도 7을 참조하면, 셀프엘라스틱 스프링(89b)은 미도시된 드라이버(60)의 미작동에 의해 전선(EW)에서 전원이 공급될 경우 도시된 바와 같이 신장되면서 기억된 형상으로 변형된다. 이러한 셀프엘라스틱 스프링(89b)은 신장되면서 유니언너트(89)를 가압한다. 이때, 유니언너트(89)는 확대 도시된 바와 같이 홈(89')에 끼워진 결합돌기(89p)로 인하여 회전되지 못하고 회전링(88)을 따라 이동(상승)한다. 물론, 유니언너트(89)는 도시된 바와 같이 코일스프링(CS)을 압축시키면서 상승한다. Referring to FIG. 7, the self-elastic spring 89b is deformed into a stored shape while being extended as shown when power is supplied from the wire EW by the non-operation of the driver 60 not shown. The self-elastic spring (89b) is extended to press the union nut (89). At this time, the union nut (89) is not rotated due to the engaging projection (89p) fitted in the groove (89 ') as shown in enlargement moves along the rotary ring (88). Of course, the union nut 89 is raised while compressing the coil spring (CS) as shown.
회전링(88)은 유니언너트(89)가 상승함에 따라 유니언너트(89)의 암나사(89a)와 결합된 수나사(88a)로 인하여 회전된다. 즉, 회전링(88)은 암나사(89a) 가 유니언너트(89)의 상승력에 의해 수나사(88a)에 강제로 나사결합되므로 회전된다. 이때, 암나사(89a) 및 수나사(89a)는 급경사로 형성됨에 따라 나사결합이 가능하다. 따라서, 회전링(88)은 회전되면서 드라이버(60)에 의해 정회전된 스퍼어기어(72)를 원위치로 역회전시킨다.The rotary ring 88 is rotated due to the male screw 88a coupled with the female screw 89a of the union nut 89 as the union nut 89 rises. That is, the rotary ring 88 is rotated because the female screw (89a) is forcibly screwed to the male screw (88a) by the lifting force of the union nut (89). At this time, the female screw (89a) and the male screw (89a) can be screwed together is formed as a steep slope. Accordingly, the rotary ring 88 rotates to reverse the spur gear 72 rotated forward by the driver 60 to its original position.
이상과 같은 또 다른 실시예에 의한 페일세이프티 엑츄에이터는, 형상기억합금으로 제조되는 셀프엘라스틱 스프링(89b)이 코일형태로 형성되므로 전술한 실시예 보다 큰 압력(탄성력)을 제공할 수 있을 뿐만 아니라, 피치의 간격이나 권선 횟수 등을 조절하여 압력(탄성력)을 용이하게 조정할 수 있다.Fail safety actuator according to another embodiment as described above, because the self-elastic spring (89b) made of a shape memory alloy is formed in the form of a coil can not only provide greater pressure (elastic force) than the above-described embodiment, The pressure (elastic force) can be easily adjusted by adjusting the pitch interval and the number of windings.
본 발명에 의한 페일세프티 엑츄에이터는 전술한 바와 같은 차량에 적용할 수 있으며, 이와 달리 각종 산업용 장치에 설치되어 산업용 장치의 안전한 운전을 가능하게 할 수 있다. 특히, 모터나 실린더와 같은 구동장치의 안전한 구동을 가능하게 할 수 있다.Fail safety actuator according to the present invention can be applied to the vehicle as described above, otherwise it can be installed in various industrial devices to enable safe operation of the industrial device. In particular, it is possible to enable safe driving of a driving device such as a motor or a cylinder.

Claims (7)

  1. 페일세이프티 기능을 갖는 엑츄에이터에 있어서,In an actuator having a failsafe function,
    구동력을 제공하는 드라이버;A driver providing a driving force;
    상기 드라이버의 구동력에 의해 이동되거나 원위치로 복귀하면서 드라이버의 구동력을 별개의 다른 장치에 전달하는 무빙부재; 및A moving member for transferring the driving force of the driver to another device while being moved by the driving force of the driver or returning to its original position; And
    상기 드라이버가 미작동됨에 따라 외부로부터 전원을 공급받고, 공급되는 전원에 의한 발열작용에 의해 작동하면서 상기 무빙부재의 일부분에 가압력을 제공하여 무빙부재를 원위치로 귀환시키는 리턴어셈블리;를 포함하는 페일세이프티 엑츄에이터.A return assembly for returning the moving member to its original position by supplying a pressing force to a portion of the moving member while receiving power from the outside as the driver is not operated and operating by a heating action by the supplied power. Actuator.
  2. 제 1 항에 있어서, 상기 이동부재는,The method of claim 1, wherein the moving member,
    상기 드라이버에서 제공되는 구동력에 의해 회전식으로 이동되고, 중앙에 회전축(72a)을 가지며, 상기 드라이버의 미작동에 의해 작동하는 상기 리턴에셈블리에 의해 원위치로 귀환되는 스퍼어기어(72);인 것을 특징으로 하는 페일세이프티 엑츄에이터.A spur gear 72 which is rotatably moved by a driving force provided by the driver, has a rotation axis 72a at the center thereof, and is returned to its original position by the return assembly operated by the non-operation of the driver; The failsafe actuator characterized by the above-mentioned.
  3. 제 2 항에 있어서, 상기 리턴어셈블리는,The method of claim 2, wherein the return assembly,
    상기 스퍼어기어(72)의 회전축(72a)에 와인딩되고, 고정단을 이루는 일단부(81a) 및 자유단을 이루는 타단부(81b)를 가지며, 공급되는 전원에 의한 발열작용에 의하여 타단부(81b)가 기억된 형태로 변형하면서 이동하는 형상기억합금으로 이루어진 셀프베리어블 토션스프링(81); 및It is wound on the rotation shaft 72a of the spur gear 72, and has one end portion 81a that forms a fixed end and the other end portion 81b that forms a free end. A self-variable torsion spring 81 made of a shape memory alloy which is moved while deforming to a shape in which 81b) is stored; And
    상기 스퍼어기어(72)에 돌출형성되고, 이동하는 상기 셀프베리어블 토션스프링(81)의 타단부(81b)가 걸려서 타단부(81b)와 함께 이동하면서 스퍼어기어(72)를 강제로 회전시키는 돌기(83);를 포함하는 페일세이프티 엑츄에이터.Protrudingly formed on the spur gear 72, the other end 81b of the moving self-variable torsion spring 81 is caught, and the spur gear 72 is forcibly rotated while moving together with the other end 81b. A fail safety actuator comprising a;
  4. 제 2 항에 있어서, 상기 리턴어셈블리는,The method of claim 2, wherein the return assembly,
    상기 스퍼어기어(72)에 돌출형성되는 돌기(83);A protrusion 83 protruding from the spur gear 72;
    상기 스퍼어기어(72)의 회전축(72a)에 와인딩되고, 고정단을 이루는 일단부(85a) 및 자유단을 이루면서 압축상태로 이동가능하게 고정되는 타단부(85b)를 가지며, 이 타단부(85b)의 고정상태가 해제됨에 따라 압축력에 의해 이동하면서 상기 돌기(83)를 회전시켜서 스퍼어기어(72)를 강제로 회전시키는 토션스프링(85); 및It is wound on the rotary shaft 72a of the spur gear 72, and has one end portion 85a constituting a fixed end and the other end portion 85b movably fixed in a compressed state while forming a free end. A torsion spring 85 forcibly rotating the spur gear 72 by rotating the protrusion 83 while moving by the compression force as the fixed state of the 85b) is released; And
    상기 토션스프링(85)의 타단부(85b)에 밀착되어 타단부(85b)의 일측면을 지지하면서 타단부(85b)를 압축상태로 이동가능하게 고정하고, 공급되는 전원에 의한 발열작용에 의해 기억된 형태로 절곡되면서 타단부(85b)의 지지상태를 해제하여 타단부(85b)의 이동을 가능하게 하는 형상기억합금으로 이루어진 스토퍼(87);를 포함하는 페일세이프티 엑츄에이터.The other end (85b) is in close contact with the other end (85b) of the torsion spring (85) while holding one side of the other end (85b) to fix the other end (85b) to be moved in a compressed state, by a heat generating action by the power supplied And a stopper (87) made of a shape memory alloy that allows the movement of the other end (85b) by releasing the support state of the other end (85b) while being bent in a memorized form.
  5. 제 3 항 또는 제 4 항에 있어서,The method according to claim 3 or 4,
    상기 돌기(83)를 설정된 거리만큼 이동시켜서 상기 스퍼어기어(72)의 회전각도를 제어하는 회전각도 제어수단;을 더 포함하며,Rotation angle control means for controlling the rotation angle of the spur gear 72 by moving the protrusion 83 by a predetermined distance, further comprising:
    상기 회전각도 제어수단은,The rotation angle control means,
    상기 스퍼어기어(72)의 설정된 회전각도에 대응하는 길이를 가지며, 상기 돌기(93)를 수용하여 돌기(83)의 회전을 안내하는 장공홀더(94);를 포함하는 페일세이프티 엑츄에이터.And a length holder corresponding to a set rotation angle of the spur gear 72, and a long hole holder 94 for receiving the protrusion 93 and guiding rotation of the protrusion 83.
  6. 제 2 항에 있어서, 상기 리턴어셈블리는,The method of claim 2, wherein the return assembly,
    상기 스퍼어기어(72)에 일제적으로 마련되고, 급경사를 갖는 수나사(88a)가 외주면에 형성되어 스퍼어기어(72)와 함께 회전하는 회전링(88);Rotating ring 88 is provided in the spur gear 72 at one time, the male screw 88a having a steep inclination is formed on the outer circumferential surface and rotates with the spur gear 72;
    상기 회전링(88)의 수나사(88a)와 나사결합하는 암나사(89a)가 마련되어 회전링(88)에 나사결합이 가능한 상태로 연결되는 유니언너트(89);Union nut (89) is provided with a female screw (89a) for screwing the male screw (88a) of the rotary ring 88 is connected to the rotating ring 88 in a state capable of screwing;
    상기 회전링(88)에 연결되는 상기 유니언너트(89)를 탄력적으로 지지하는 코일스프링(CS);A coil spring (CS) elastically supporting the union nut (89) connected to the rotary ring (88);
    상기 코일스프링(CS)에 탄력지지되는 상기 유니언너트(89)의 일측에 결합되어 유니언너트(89)의 회전을 방지하는 회전방지부재; 및A rotation preventing member coupled to one side of the union nut 89 that is elastically supported by the coil spring CS to prevent rotation of the union nut 89; And
    상기 회전방지부재에 의해 회전이 억제되는 상기 유니언너트(89)의 일측에 압축상태를 이루면서 일단부가 밀착되고, 공급되는 전원에 의한 발열작용에 의해 기억된 형태로 신장되면서 회전이 억제되는 유니언너트(89)를 가압하여, 유니언너트(89)와 나사결합된 상기 회전링(88)을 강제로 회전시키는 형상기억합금으로 이루어진 셀프엘라스틱 스프링(89b);을 포함하는 페일세이프티 엑츄에이터.Union nut which is one side of the union nut (89) in which the rotation is suppressed by the rotation preventing member is in a compressed state and the one end is in close contact with each other, and the rotation is suppressed while being elongated in a memorized form by the heating action of the supplied power ( 89. A fail-safe actuator comprising: a self-elastic spring (89b) formed of a shape memory alloy for forcibly rotating the rotary ring (88) screwed with the union nut (89).
  7. 제 6 항에 있어서, 상기 회전방지부재는,The method of claim 6, wherein the rotation preventing member,
    상기 셀프엘라스틱 스프링(89b)의 일단부에 일체적으로 마련되고, 상기 유니언너트(89)의 일부분과 결합되어 유니언너트(89)의 회전을 방지하는 결합돌기(89p); 및A coupling protrusion (89p) integrally provided at one end of the self-elastic spring (89b) and coupled with a portion of the union nut (89) to prevent rotation of the union nut (89); And
    상기 유니언너트(89)의 일측에 홈형태로 마련되고, 상기 결합돌기(89p)가 끼워져서 안착되는 돌기시트;를 포함하는 페일세이프티 엑츄에이터.And a projection sheet provided on one side of the union nut 89 in a groove shape and seated with the coupling protrusion 89p inserted therein.
PCT/KR2009/005510 2009-09-25 2009-09-25 Fail safety actuator WO2011037287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/005510 WO2011037287A1 (en) 2009-09-25 2009-09-25 Fail safety actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/005510 WO2011037287A1 (en) 2009-09-25 2009-09-25 Fail safety actuator

Publications (1)

Publication Number Publication Date
WO2011037287A1 true WO2011037287A1 (en) 2011-03-31

Family

ID=43796018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005510 WO2011037287A1 (en) 2009-09-25 2009-09-25 Fail safety actuator

Country Status (1)

Country Link
WO (1) WO2011037287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174587A1 (en) * 2012-05-23 2013-11-28 Magna Powertrain Ag & Co Kg Valve
EP4146966B1 (en) * 2020-05-08 2024-03-27 AUMA Riester GmbH & Co. KG Fail-safe drive and actuating drive with a fail-safe drive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294163A (en) * 1998-04-07 1999-10-26 Nippon Thermostat Kk Cooling control device for internal combustion engine
US6267352B1 (en) * 1999-11-11 2001-07-31 Ford Global Technologies, Inc. Electronic throttle return mechanism with default and gear backlash control
US20040084016A1 (en) * 2002-10-30 2004-05-06 Denso Corporation Electronically controlled throttle apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294163A (en) * 1998-04-07 1999-10-26 Nippon Thermostat Kk Cooling control device for internal combustion engine
US6267352B1 (en) * 1999-11-11 2001-07-31 Ford Global Technologies, Inc. Electronic throttle return mechanism with default and gear backlash control
US20040084016A1 (en) * 2002-10-30 2004-05-06 Denso Corporation Electronically controlled throttle apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174587A1 (en) * 2012-05-23 2013-11-28 Magna Powertrain Ag & Co Kg Valve
EP4146966B1 (en) * 2020-05-08 2024-03-27 AUMA Riester GmbH & Co. KG Fail-safe drive and actuating drive with a fail-safe drive

Similar Documents

Publication Publication Date Title
TW434981B (en) Actuator having electrostrictive braking element
US9470330B2 (en) Actuating device and method for displacing the actuating device
WO2011037287A1 (en) Fail safety actuator
KR101195700B1 (en) Variable stiffness actuation unit
CN205896365U (en) Foot -operated solenoid valve on -off control mechanism
CN112283431B (en) Low-torque electric gas gate valve
JP4094429B2 (en) Enable switch
WO2012053722A1 (en) Valve for cooling/heating device
CN112682539B (en) Ball-head type oil tank conversion valve with speed reducing mechanism
CN214477277U (en) Transmission mechanism and circuit breaker
KR20110092729A (en) Actuator for driving valve
CN219174088U (en) Winch clutch structure and winch
CN210042737U (en) Plug-in robot
CN215432390U (en) Thing networking gas table wisdom production is with material loading tongs and loading attachment
WO2016032180A1 (en) Sudden acceleration prevention apparatus for automobile
US6860464B1 (en) Electromechanical/pneumatic rocket engine valve actuator
CN115922730A (en) Robot cervical joint speed control device and control method
KR100414011B1 (en) Parking System for Auto Transmission of Vehicle
JPS6352985A (en) Exchanger for automatically mounting or dismantling tool in industrial robot
WO2012053725A1 (en) Valve capable of adjusting maximum opening limit
WO2015186885A1 (en) Actuator having emergency return means for valve
CN2340014Y (en) Electronic automatic temp. regulator
CN216923396U (en) Cam mechanism with adjustable
EP3068582B1 (en) Electromechanically-operated clamping fixture, particularly for clamping sheet-metal vehicle parts
CN214008260U (en) Passive point feedback mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/07/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09849861

Country of ref document: EP

Kind code of ref document: A1