WO2011037250A1 - Sodium-ion-type power storage device - Google Patents

Sodium-ion-type power storage device Download PDF

Info

Publication number
WO2011037250A1
WO2011037250A1 PCT/JP2010/066798 JP2010066798W WO2011037250A1 WO 2011037250 A1 WO2011037250 A1 WO 2011037250A1 JP 2010066798 W JP2010066798 W JP 2010066798W WO 2011037250 A1 WO2011037250 A1 WO 2011037250A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
storage device
sodium
doped
electrode
Prior art date
Application number
PCT/JP2010/066798
Other languages
French (fr)
Japanese (ja)
Inventor
滋和 大森
智 久世
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011037250A1 publication Critical patent/WO2011037250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage device.
  • the present invention relates to an electricity storage device capable of storing and discharging by movement of sodium ions.
  • a lithium ion capacitor has a positive electrode, a negative electrode, a separator, and an electrolyte, and graphite is used for the negative electrode.
  • lithium ions are inserted between graphite layers in the negative electrode, and anions in the electrolytic solution are adsorbed on the electrode surface in the positive electrode, so that an electric double layer is formed, thereby storing the lithium ion capacitor.
  • a lithium ion capacitor is promising as an electricity storage device in the above field because it has both the high output characteristics of an electric double layer capacitor and the large capacity characteristics of a lithium ion secondary battery.
  • Such a lithium ion capacitor is specifically described in Patent Document 1, for example.
  • An object of the present invention is to provide a large-capacity electricity storage device that uses resource-rich sodium.
  • the present inventors produced an electricity storage device in the same manner as the lithium ion capacitor except that the lithium salt contained in the electrolytic solution was changed to a sodium salt.
  • a charge / discharge test of the electricity storage device was performed, it was found that the electricity storage device was difficult to discharge and could not be used as an electricity storage device.
  • the inventors of the present invention have made various studies in order to solve the above problems, and have reached the present invention.
  • the present invention provides the following means.
  • a positive electrode, a negative electrode, and an electrolytic solution containing sodium ions and anions The positive electrode can adsorb and desorb anions, can be doped with anions and can be undoped;
  • the negative electrode can be doped and dedoped with sodium ions, and the negative electrode is an electrode pre-doped with sodium ions, Sodium ion storage device.
  • the carbon material is a non-graphitized carbon material.
  • ⁇ 4> The sodium ion type electricity storage device according to ⁇ 2> or ⁇ 3>, wherein the carbon material is a non-activated carbon material.
  • the negative electrode is preliminarily doped with sodium ions to a certain extent that the redox potential difference between the negative electrode and sodium metal preliminarily doped with sodium ions is 1.00 V or less.
  • ⁇ 6> The sodium ion storage battery device according to any one of ⁇ 1> to ⁇ 5>, further including a separator disposed between the positive electrode and the negative electrode.
  • the sodium ion type electricity storage device of the present invention has a positive electrode, a negative electrode, and an electrolytic solution containing sodium ions and anions.
  • the positive electrode can adsorb and desorb anions, or can be doped with anions and dedoped, and the negative electrode can be doped with sodium ions and dedoped.
  • the negative electrode is an electrode that can be doped and is pre-doped with sodium ions. According to the present invention, an irreversible capacity of an electrode can be reduced, and an electric storage device having a large capacity and extremely excellent cycle characteristics can be realized. Since sodium that is abundant in resources is used, an inexpensive electricity storage device can be realized.
  • the sodium ion storage device can also be called a sodium ion capacitor.
  • the positive electrode, the negative electrode, the electrolytic solution, the separator, and the shape of the device according to the sodium ion type electricity storage device of the present invention will be described.
  • the positive electrode in the present invention can adsorb and desorb anions, or can be doped with anions and dedoped.
  • Specific examples of the positive electrode include polarizable electrodes. In the polarizable electrode, the same number of anions as sodium ions occluded in the negative electrode during charging form an electric double layer on the surface of the positive electrode, and the electric charge is held by the electrostatic capacity of the electric double layer. This charge is dissipated during discharge.
  • the polarizable electrode is not limited as long as it is an electrochemically inactive electrode.
  • the polarizable electrode is preferably an electrode having a large specific surface area, which increases the amount of electricity that can be retained.
  • activated carbon also referred to as activated carbon material
  • activated carbon obtained by carbonizing organic airgel is preferable from the viewpoint of having a high specific surface area. Since activated carbon has a large anion adsorptivity and a large specific surface area, the electrostatic capacity of the obtained electricity storage device is increased.
  • the activation method include a method using an oxidizing gas, and specifically, a method of exposing a raw material or an intermediate during the production of activated carbon or activated carbon to the oxidizing gas at a high temperature for a certain time.
  • the oxidizing gas include H 2 O, CO 2 and O 2 .
  • activation is a method of treating activated carbon, raw materials or intermediates during the production of activated carbon, zinc chloride, phosphoric acid, potassium sulfide, potassium hydroxide, etc., and then treating the resulting mixture at a high temperature. It is done.
  • the method using the oxidizing gas is preferable because it can suppress the mixing of metal impurities.
  • As the oxidizing gas H 2 O and CO 2 are preferable.
  • the activated carbon is preferably activated carbon activated at an activation temperature of 200 ° C. or higher, and the pore volume tends to be improved.
  • the activated carbon is preferably activated carbon activated at an activation temperature of 1100 ° C. or lower, and the yield of activated carbon tends to be improved.
  • the activated carbon is preferably activated carbon activated with an activation time of 1 minute or longer, and the pore volume tends to be improved.
  • the activated carbon is preferably activated carbon activated with an activation time of 24 hours or less, and the yield of activated carbon tends to be improved.
  • a method of using activated carbon for an electrode for example, a method of using activated carbon in a carbonized state for an electrode, a method of using a crushed activated carbon for an electrode, a granulated shape, a granule shape, a fiber of crushed activated carbon
  • a method of forming into various shapes such as a shape, a felt shape, a fine shape, or a sheet shape and using the electrode.
  • the activated carbon used in the forming method has an average particle size of particles constituting the activated carbon of usually 50 ⁇ m or less, preferably 30 ⁇ m or less, particularly preferably 10 ⁇ m or less. In this case, it is preferable to use the activated carbon after pulverization.
  • finely pulverized activated carbon for the electrode the bulk density of the electrode can be improved and the internal resistance of the electrode can be reduced.
  • a chalcogen compound such as sulfide can also be used.
  • the sulfide are represented by M 1 S 2 (M 1 is one or more transition metal elements) such as TiS 2 , ZrS 2 , VS 2 , V 2 S 5 , TaS 2 , FeS 2, and NiS 2.
  • M 1 S 2 M 1 is one or more transition metal elements
  • Compounds and the like. can be used for electrodes as well as activated carbon. These compounds, like activated carbon, have an average particle size of usually 50 ⁇ m or less, preferably 30 ⁇ m or less, particularly preferably 10 ⁇ m or less. In this case, it is preferable to use these compounds after pulverization. .
  • the bulk density of the electrode can be improved and the internal resistance of the electrode can be reduced.
  • the pulverization for example, impact friction pulverizer, centrifugal pulverizer, ball mill (tube mill, compound mill, conical ball mill, rod mill), vibration mill, colloid mill, friction disk mill, jet mill, etc.
  • the pulverizer is preferably used.
  • the balls and the pulverization container are made of non-metal such as alumina, zirconia, agate, etc., in order to avoid mixing of metal powder.
  • a positive electrode is produced by forming a positive electrode active material layer on the current collector by adhering a mixture containing the like.
  • a mixed slurry obtained by adding a solvent to a mixture containing a positive electrode constituent material, a binder and a conductive agent is applied to a current collector by a doctor blade method or the like, A method of drying this, (2) a method of immersing the current collector in the mixed slurry and drying it, and (3) adding a solvent to a mixture containing a positive electrode constituent material, a binder and a conductive agent, and kneading.
  • a mixture containing a positive electrode constituent material, a binder, a conductive agent and a liquid lubricant is applied on a current collector to obtain a coated current collector, and the liquid lubricant is removed from the coated current collector. Examples thereof include a method of stretching the obtained sheet-like molded product in a uniaxial or multiaxial direction.
  • the thickness is usually about 5 to 500 ⁇ m.
  • the current collector constituting the positive electrode for example, nickel, aluminum, titanium, copper, gold, silver, platinum, aluminum alloy, stainless steel and other metal materials such as carbon material, activated carbon fiber, nickel, aluminum, Conductive agent for materials obtained by plasma spraying or arc spraying zinc, copper, tin, lead or alloys thereof, or resin such as rubber, styrene-ethylene-butylene-styrene copolymer (SEBS)
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • a conductive resin material in which is dispersed is particularly preferred.
  • aluminum is lightweight, excellent in electrical conductivity and electrochemically more stable.
  • Examples of the shape of the current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh-like flat plate). It is done. Irregularities may be formed on the current collector surface by etching treatment.
  • the conductive agent examples include conductive carbon such as graphite, carbon black, acetylene black, and ketjen black; graphite-based conductive agents such as natural graphite, thermally expanded graphite, scaly graphite, and expanded graphite; vapor grown carbon fiber, and the like Carbon fiber; Metal fine particles or metal fiber such as aluminum, nickel, copper, silver, gold, platinum; Conductive metal oxide such as ruthenium oxide or titanium oxide; Conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene Is mentioned. Carbon black, acetylene black, and ketjen black are particularly preferable from the viewpoint of effectively improving conductivity in a small amount.
  • the blending ratio of the conductive agent in the electrode is usually about 5 to 50 parts by weight, preferably about 10 to 30 parts by weight with respect to 100 parts by weight of the activated carbon of the present invention.
  • binder examples include a polymer of a fluorine compound.
  • fluorine compound examples include fluorinated alkyl (having 1 to 18 carbon atoms) (meth) acrylate, perfluoroalkyl (meth) acrylate [for example, perfluorododecyl (meth) acrylate, perfluoro n-octyl (meth) acrylate, Perfluoro n-butyl (meth) acrylate, etc.], perfluoroalkyl-substituted alkyl (meth) acrylate [eg, perfluorohexylethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, etc.], perfluorooxyalkyl (meth) Acrylate [for example, perfluorododecyloxyethyl (meth) acrylate and perfluorodecyloxyethyl (meth)
  • the binder may be a monomer addition polymer containing an ethylenic double bond not containing a fluorine atom.
  • monomers include (cyclo) alkyl (C1-22) (meth) acrylate [eg, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl] (Meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, etc.]; aromatic ring-containing (meth) acrylate [for example, benzyl (Meth) acrylate, phenylethyl (meth) acrylate, etc.]; mono (meth) acrylate of alkylene glycol or dial
  • the addition polymer may be a copolymer such as an ethylene-vinyl acetate copolymer, a styrene-butadiene copolymer, and an ethylene-propylene copolymer.
  • the carboxylic acid vinyl ester polymer may be partially or completely saponified, such as polyvinyl alcohol.
  • the binder may be a copolymer of a fluorine compound and a monomer containing an ethylenic double bond not containing a fluorine atom.
  • binders include polysaccharides such as starch, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylhydroxyethylcellulose, nitrocellulose, and derivatives thereof; phenol resins; melamine resins; polyurethane resins; Examples include urea resin: polyimide resin; polyamideimide resin; petroleum pitch; coal pitch.
  • binder a polymer of a fluorine compound is preferable, and polytetrafluoroethylene which is a polymer of tetrafluoroethylene is particularly preferable.
  • binders a plurality of types of binders may be used.
  • the mixing ratio of the binder in the electrode is usually about 0.5 to 30 parts by weight, preferably about 2 to 30 parts by weight with respect to 100 parts by weight of the activated carbon.
  • the solvent used for the binder include isopropyl alcohol (also referred to as IPA), alcohols such as ethanol and methanol, ethers, and ketones. If the binder thickens, a plasticizer may be used to easily apply the binder to the current collector.
  • the conductive adhesive is usually a mixture of the conductive agent and the binder, and preferably, a mixture of carbon black and polyvinyl alcohol. This mixture does not require an organic solvent and is prepared. Is easy and storage stability is excellent.
  • the negative electrode in the sodium ion type electricity storage device of the present invention can be doped with sodium ions that are cations and can be undoped.
  • the negative electrode usually has a negative electrode active material.
  • a negative electrode mixture containing a negative electrode active material, a binder, and a conductive agent as required can be doped with sodium ions and dedoped, and attached to the negative electrode current collector.
  • a negative electrode active material layer formed on a current collector can be used.
  • the negative electrode is usually in the form of a sheet.
  • a negative electrode mixture slurry obtained by adding a solvent to a negative electrode mixture containing a negative electrode active material and a binder is used as a negative electrode current collector by a doctor blade method or the like.
  • a method of immersing the current collector in the negative electrode mixture and drying it (3) A solvent is added to the negative electrode mixture containing the negative electrode active material and a binder
  • the kneaded product obtained by kneading is molded and dried to obtain a sheet, the sheet and the negative electrode current collector are joined with a conductive adhesive or the like to obtain a joined body, and the joined body is pressed and heated.
  • a mixture containing a negative electrode active material, a binder, and a liquid lubricant is applied onto the negative electrode current collector to obtain a coated current collector, and the liquid lubricant is removed from the coated current collector. And a method of stretching the sheet-like molded product obtained in the uniaxial or multiaxial direction.
  • the thickness is usually about 5 to 500 ⁇ m.
  • the negative electrode active material is not particularly limited as long as it is a material that can be doped with sodium ions and can be undoped, but preferably can be doped with sodium ions and be undoped. It is a carbon material that can be used.
  • the carbon material may be selected from carbon black, pyrolytic carbons, carbon fibers, organic material fired bodies, and the like.
  • the carbon material is preferably a non-graphitized carbon material (also referred to as “hard carbon”).
  • ICB trade name: Nika beads manufactured by Nippon Carbon Co., Ltd. can be mentioned.
  • Examples of the shape of the particles constituting the carbon material include a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, and an aggregate shape of fine particles.
  • the average particle diameter is preferably 0.01 ⁇ m or more and 30 ⁇ m or less, more preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the carbon material as the negative electrode active material is preferably a carbon material that has not been subjected to activation treatment, particularly preferably. It is a non-activated carbon material.
  • the non-activated carbon material is a carbon material that has been subjected to a deactivation treatment for the carbon material.
  • “Inactivation treatment” means treatment for removing the surface functional groups of the carbon material, and a specific treatment method is 600 ° C. or more and 2000 ° C. or less (preferably 800 ° C. in an inert gas atmosphere). The method of heat-processing at the temperature of 1800 degrees C or less) is mentioned.
  • the organic material fired body used for the negative electrode active material in the electricity storage device of the present invention can be doped with sodium ions and dedoped among carbon materials obtained by carbonization (firing) of various organic materials.
  • a carbon material that can be used may be used.
  • a non-graphitized carbon material, which is a suitable carbon material, can be obtained by firing an organic material that is unlikely to have a graphite crystal structure.
  • Organic materials used as raw materials for the organic material fired body include natural mineral resources such as petroleum and coal, various synthetic resins synthesized from these resources (thermosetting resin, thermoplastic resin, etc.), petroleum pitch, and coal pitch. And various plant residue oils such as spinning pitch, plant-derived organic materials such as wood, etc., and these can be used alone or in combination of two or more.
  • phenol resin resorcinol resin, furan resin, epoxy resin, urethane resin, unsaturated polyester resin, melamine resin, urea resin, aniline resin, bismaleimide resin, benzoxazine resin, polyacrylonitrile resin, polystyrene resin, Polyamide resin, cyanate resin, ketone resin, and the like can be given, and these can be used alone or in combination of two or more.
  • These resins may contain a curing agent and an additive.
  • the curing method is not particularly limited. For example, when a phenol resin is used, a thermal curing method, a thermal oxidation method, an epoxy curing method, an isocyanate curing method, and the like can be given. In the case of using an epoxy resin, a phenol resin curing method, an acid anhydride curing method, an amine curing method, and the like can be given.
  • the organic material is preferably an organic material having an aromatic ring.
  • a carbon material that can be doped with sodium ions and can be dedope can be obtained with high yield. Thereby, the environmental load is small, the manufacturing cost can be reduced, and the industrial utility value is higher.
  • organic material having an aromatic ring examples include, among the above synthetic resins, phenol resins (such as novolac type phenol resins and resol type phenol resins), epoxy resins (such as bisphenol type epoxy resins and novolac type epoxy resins), and aniline resins. , Bismaleimide resins and benzoxazine resins, and these can be used alone or in combination of two or more. These resins may contain a curing agent and an additive.
  • the organic material having an aromatic ring is preferably an organic material produced by polymerizing phenol or a derivative thereof and an aldehyde compound. Since the organic material is inexpensive among organic materials having an aromatic ring and has a large industrial production amount, a carbon material obtained by carbonizing the organic material is a preferable carbon material.
  • An example of an organic material obtained by polymerizing phenol or a derivative thereof and an aldehyde compound is a phenol resin.
  • Phenolic resins are inexpensive and have a large industrial production amount, which is preferable as a raw material for carbon materials.
  • the carbon material obtained by carbonizing the phenol resin is used as the negative electrode active material of the sodium ion type electricity storage device of the present invention, the charge / discharge capacity of the electricity storage device is particularly large when the charge / discharge is repeated, A carbon material obtained by carbonizing a phenol resin is preferable.
  • Phenol resin has a structure in which three-dimensional crosslinking is developed, and the carbon material obtained by carbonizing the resin is also a carbon material having a structure in which unique three-dimensional crosslinking is derived from the structure. It is estimated to be. Thereby, it is considered that the discharge capacity is particularly increased.
  • phenol or derivatives thereof include phenol, o-cresol, m-cresol, p-cresol, catechol, resorcinol, hydroquinone, xylenol, pyrogallol, bisphenol A, bisphenol F, p-phenylphenol, p-tert-butylphenol, Examples thereof include p-tert-octylphenol, ⁇ -naphthol, ⁇ -naphthol and the like, and these can be used alone or in combination of two or more.
  • aldehyde compounds include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, Examples thereof include phenylacetaldehyde, o-tolualdehyde, salicylaldehyde and the like, and these can be used alone or in combination of two or more.
  • the phenol resin is not particularly limited, and examples thereof include a resol type phenol resin and a novolac type phenol resin.
  • the resol type phenol resin can be obtained by polymerizing phenol or a derivative thereof and an aldehyde compound in the presence of a basic catalyst.
  • the novolac type phenol resin can be obtained by polymerizing phenol or a derivative thereof and an aldehyde compound in the presence of an acidic catalyst.
  • an acid or a curing agent may be added to the resol type phenol resin, or a novolac type phenol resin may be added to reduce the degree of curing. These may be combined and added to the resol type phenol resin.
  • novolak type phenol resin a type called a random novolak having a methylene group bonding position at the same ortho-position and para-position (this type is obtained by combining a phenol or its derivative and an aldehyde compound with a known organic acid and / or Alternatively, it can be obtained by a condensation reaction at a normal pressure of 100 ° C. for several hours using an inorganic acid catalyst, and water and unreacted monomers are removed from the resulting condensate), and there are many methylene group bonds at the ortho position.
  • a type called high ortho novolac (this type is an addition condensation reaction between phenol or its derivative and an aldehyde compound using a metal salt catalyst such as zinc acetate, lead acetate or zinc naphthenate under weak acidity. , Directly or by adding an acid catalyst, conducting a condensation reaction while further dehydrating, and removing unreacted materials as necessary Ri obtained) is known.
  • organic material having an aromatic ring in the molecular structure can be used as the organic material having an aromatic ring in the molecular structure.
  • the synthetic resin is generally a polymer in which monomers are polymerized.
  • the organic material having an aromatic ring an organic material in which several to several tens of monomers are polymerized can be used.
  • a by-product may be generated or an unpolymerized product may remain.
  • These by-products and unpolymerized materials can also be used as organic materials, and by reducing waste, the environmental impact can be reduced, and carbon materials can be obtained at low cost, resulting in more industrial utility value. high.
  • plant-derived organic materials include wood. Charcoal obtained by carbonizing these is preferable as a carbon material used for the negative electrode active material.
  • timber waste timber, waste timber generated in a wood processing process such as sawdust, forest thinned timber, and the like can also be used.
  • constituent components of wood three types of cellulose, hemicellulose and lignin are generally mentioned as the main components, and lignin is an organic material having an aromatic ring and is preferable.
  • Wood includes cycads, ginkgo, conifers (cedar, cypress, red pine, etc.), maize, etc., broadleaf trees (Mizunara, beech, poplar, harunire, oak, etc.), herbaceous plants, palms, bamboo Angiosperms and the like such as
  • cedar is widely used as a building material, and cedar sawdust is generated in the processing process.
  • Cedar sawdust is a preferable organic material, and can reduce the environmental load and obtain a carbon material at a low cost.
  • Bincho charcoal obtained by carbonizing oak is also preferable as a carbon material used for the negative electrode active material.
  • plant residual oil examples include various residual oils generated during the manufacture of various petrochemical products such as ethylene. More specifically, there can be mentioned petroleum heavy oil composed of distillation residue oil, fluid catalytic cracking residue oil, hydrodesulfurized oil thereof, or mixed oil thereof. Among these, a residual oil generated during the production of a petrochemical product having an aromatic ring is preferable, and specific examples of the residual oil include a residual oil generated during the production of resorcinol.
  • the carbon material used for the negative electrode active material can be obtained by carbonizing (baking) one or more organic materials among the above-described various organic materials.
  • the carbonization temperature is preferably 800 ° C. or higher and 2500 ° C. or lower.
  • Carbonization is preferably performed in an inert gas atmosphere.
  • the organic material may be carbonized as it is, or a heated product obtained by heating the organic material in the presence of an oxidizing gas of 400 ° C. or lower may be carbonized in an inert gas atmosphere.
  • the inert gas include nitrogen and argon
  • examples of the oxidizing gas include air, H 2 O, CO 2 , and O 2 . Carbonization may be performed under reduced pressure.
  • heating and carbonization may be performed using equipment such as a rotary kiln, a roller hearth kiln, a pusher kiln, a multistage furnace, and a fluidized furnace.
  • a rotary kiln is a general-purpose facility.
  • Carbon material obtained by carbonization may be pulverized as necessary.
  • the pulverization is, for example, an impact friction pulverizer, a centrifugal pulverizer, a ball mill (tube mill, compound mill, conical ball mill, rod mill), vibration mill, colloid mill, friction disk mill, or jet mill. Can be used.
  • a ball mill is a pulverizer generally used.
  • the contact portion with the carbon material in these pulverizers may be made of a non-metallic material such as alumina or agate.
  • the carbon material is pulverized so that the average particle size of the particles constituting the carbon material is usually 50 ⁇ m or less, preferably 30 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • a carbon material that can be doped with sodium ions and can be dedope may also serve as a conductive agent.
  • Examples of the negative electrode current collector include Cu, Ni, and stainless steel. Cu is preferable because it is difficult to form an alloy with sodium and it is easy to process into a thin film.
  • Examples of the shape of the negative electrode current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh-like flat plate). It is done. Concavities and convexities by etching treatment may be formed on the surface of the negative electrode current collector.
  • the negative electrode constituting the electricity storage device is an electrode pre-doped with sodium ions.
  • capacitance of an electrode can be reduced.
  • An electricity storage device having a large discharge capacity and excellent cycle characteristics can be obtained.
  • a sodium ion type electricity storage device that can be sufficiently used as an electricity storage device can be obtained.
  • the electrode pre-doped with sodium ions holds sodium in an ionic or metallic state.
  • a method using sodium metal is a method of electrically connecting the negative electrode and sodium metal.
  • this method is a method of electrically connecting the negative electrode and sodium metal.
  • a potential difference is generated between the sodium metal and the electrode (the negative electrode in the electricity storage device of the present invention) to form a local battery that is electrically shorted, and the sodium ions are eluted from the sodium metal.
  • the eluted sodium ions move to the electrode having a high potential.
  • the electrode (the negative electrode in the electricity storage device of the present invention) is pre-doped with sodium ions.
  • a more preferred method is a method of applying an external voltage between the negative electrode and sodium metal, that is, a method of electrolysis.
  • the positive pole of the power source is connected to sodium metal
  • the negative pole of the power source is connected to a negative electrode that is pre-doped.
  • Sodium ions are eluted from sodium metal by electrolysis, and the eluted sodium ions are taken into the negative electrode.
  • the amount of sodium ions doped in the negative electrode is large, and the doping rate of sodium ions is fast.
  • a method in which a liquid in which sodium metal is melted is brought into contact with the negative electrode can be mentioned.
  • the chemical reaction between the liquid in which sodium metal is melted and the negative electrode is promoted, and the negative electrode is pre-doped with sodium ions.
  • the negative electrode As a preferred method for pre-doping sodium ions into the negative electrode, there is a method in which the negative electrode is placed in a sodium vapor atmosphere obtained using sodium metal. In this method, the chemical reaction between sodium vapor and the negative electrode is promoted, and the negative electrode is pre-doped with sodium ions. In the present invention, even when sodium metal is deposited on the negative electrode surface, the negative electrode is regarded as being doped with sodium ions.
  • the amount of sodium ions preliminarily doped into the negative electrode is appropriately designed according to the material constituting the negative electrode.
  • the pre-doping amount is preferably 5% or more of the full charge capacity.
  • the amount of pre-doping is such that the redox potential difference between the negative electrode preliminarily doped with sodium ions and sodium metal is 1.00 V or less, 0.50 V or less, 0.30 V or less, 0.10 V or less, or 0. It is preferable that the amount be 05 V or less.
  • the negative electrode is preliminarily doped with sodium ions in this way, the discharge capacity and cycle characteristics of the obtained electricity storage device tend to be further improved.
  • an electrode in which a negative electrode active material, a binder, and, if necessary, a negative electrode mixture containing a conductive agent and the like are supported on the negative electrode current collector can be used.
  • the electrolytic solution contains sodium ions and anions.
  • the electrolytic solution is usually an electrolyte dissolved in an organic solvent.
  • the electrolytic solution is also referred to as a nonaqueous electrolytic solution.
  • the electrolyte dissolved in the organic solvent is decomposed into sodium ions (cations) and anions.
  • electrolyte examples include NaClO 4 , NaPF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (CF 3 SO 2 ) 2 , NaN (C 2 F 5 SO 2 ) 2 , NaC (CF 3 SO 2 ) 3 , Na 3 BO 3, NaF, NaAsF 6 , NaSbF 6, NaTaF 6, NaNbF 6, Na 2 SiF 6, NaCN, include sodium salts, such as NaAlF 4, NaAlCl 4.
  • the concentration of the electrolyte may be appropriately set in consideration of the solubility of the electrolyte in the electrolytic solution, and is usually about 0.2 to 5 mol (electrolyte) / L (electrolytic solution), preferably 0.3. About 3 to 3 mol (electrolyte) / L (electrolytic solution), particularly preferably about 0.8 to 1.5 mol / L mol (electrolyte) / L (electrolytic solution).
  • the concentration is 0.2 mol / L or more, the ionic conductivity of the electrolytic solution is increased, and the internal resistance of the obtained electricity storage device can be decreased.
  • the concentration is 5 mol / L or less, the viscosity of the electrolytic solution is reduced. As a result, the internal resistance can be reduced.
  • An organic polar solvent is used as the organic solvent for dissolving the electrolyte.
  • the water content in the electrolytic solution containing the organic polar solvent is usually 200 ppm by weight or less, preferably 50 ppm by weight or less, more preferably 20 ppm by weight or less. By suppressing the water content, it is possible to suppress the influence on the electrode due to the electrolysis of water, particularly the decrease in withstand voltage.
  • organic polar solvent examples include the following compounds (ether, fluorinated dioxolane, amide, nitrile, carboxylic acid ester, lactone, carbonate, sulfoxide, sulfone, nitro compound, other heterocyclic compounds, hydrocarbons, And silicon compounds).
  • ethers include Monoethers (for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol monophenyl ether, tetrahydrofuran, 3-methyltetrahydrofuran, etc.), diethers (for example, ethylene glycol dimethyl ether, ethylene glycol) Diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethyl ether, methyl isopropyl ether, etc.), triethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, cyclic ether [cyclic ether having 2 to 4 carbon atoms (for example, tetrahydrofuran, 2-methylteto Hydrofuran, 1,3-dioxolane, 1,4-dioxane, 2-methyl-1,3-dioxolane, etc.), 4-but
  • fluorinated dioxolanes examples include 2,2-di (trifluoromethyl) -1,3-dioxolane, 2,2-di (trifluoromethyl) -4,5-difluoro-1,3-dioxolane, 2,2-di (trifluoromethyl) -4,4,5,5-tetrafluoro-1,3-dioxolane, 2,2-dimethyl-4,4,5,5-tetrafluoro-1,3-dioxolane or 2,2-dimethyl-4,5 -Difluoro-1,3-dioxolane and the like.
  • amides include Formamides (eg, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, etc.), acetamides (eg, N-methylacetamide, N, N-dimethylacetamide, N- Ethylacetamide, N, N-diethylacetamide, etc.), propionamides (eg, N, N-dimethylpropionamide, etc.), hexamethylphosphorylamide, oxazolidinones (eg, N-methyl-2-oxazolidinone, 3,5- Dimethyl-2-oxazolidinone), 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone and the like.
  • Formamides eg, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, etc.
  • acetamides eg, N
  • nitriles include Acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, acrylonitrile, fluorine-containing propionitrile (one obtained by substituting one or more hydrogen atoms of propionitrile with a fluorine atom) and the like.
  • carboxylic acid esters examples include Examples include methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, methyl butyrate, methyl valerate, ethyl propionate, dimethyl malonate, diethyl malonate, maleic anhydride, and derivatives thereof.
  • lactones examples include ⁇ -butyrolactone, 3-methyl- ⁇ -butyrolactone, 2-methyl- ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -valerolactone, 3-methyl- ⁇ -valerolactone, ⁇ -valerolactone Etc.
  • carbonates examples include Ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, diethyl carbonate, 4-allyloxymethyl-1,3-dioxolan-2-one, 4- (1 '-Propenyloxymethyl) -1,3-dioxolan-2-one, 4-allyloxymethyl-5-vinyl-1,3-dioxolan-2-one, 4- (1'-propenyloxymethyl) -5- Vinyl-1,3-dioxolan-2-one, 4-acryloyloxymethyl-1,3-dioxolan-2-one, 4-methacryloyloxymethyl-1,3-dioxolan-2-one, 4-methacryloyloxymethyl- 5-vinyl-1 3-dioxolan-2-one, 4-methoxycarbonyloxymethyl-1,3-dio
  • sulfoxides include Dimethyl sulfoxide, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, fluorine-containing sulfolane (substitution of one or more hydrogen atoms of sulfolane with fluorine atoms), 1,3-propane sultone, 1,4-butane sultone, Examples include compounds in which one or more hydrogen atoms of these compounds are substituted with fluorine atoms.
  • sulfones examples include dimethyl sulfone, diethyl sulfone, di-n-propyl sulfone, diisopropyl sulfone, di-n-butyl sulfone, di-sec-butyl sulfone, and di-tert-butyl sulfone.
  • nitro compounds examples include Examples include nitromethane and nitroethane.
  • heterocyclic compounds examples include N-methyl-2-oxazolidinone, 3,5-dimethyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidinone and the like can be mentioned.
  • hydrocarbons examples include Aromatic solvents (for example, toluene, xylene, ethylfluorobenzene, fluorobenzene in which 1 to 6 hydrogen atoms of benzene are substituted with fluorine atoms), paraffinic solvents (for example, normal paraffin, isoparaffin, etc.) It is done.
  • Aromatic solvents for example, toluene, xylene, ethylfluorobenzene, fluorobenzene in which 1 to 6 hydrogen atoms of benzene are substituted with fluorine atoms
  • paraffinic solvents for example, normal paraffin, isoparaffin, etc.
  • silicon compounds include Compounds having a silicon atom in the molecule, such as oxazolidinone compounds (eg 3-trimethylsilyl-2-oxazolidinone, 3-trimethylsilyl-4-trifluoromethyl-2-oxazolidinone, 3-triethylsilyl-2-oxazolidinone), imidazole compounds (For example, N-trimethylsilylimidazole, N-trimethylsilyl-4-methyl-imidazole, N-triethylsilylimidazole, etc.), phosphate compounds (for example, tris (trimethylsilyl) phosphate, tris (triethylsilyl) phosphate, trimethylsilyldimethylphosphate, trimethylsilyldiallyl Phosphates, etc.), cyclic carbonate compounds (eg 4-trimethylsilyl-1,3-dioxolan-2-one, 4-trimethyl) Ryl-5-vinyl-1,3-dioxolan
  • the organic polar solvent may be a mixture of two or more different solvents (mixed solvent).
  • the organic polar solvent contained in the electrolytic solution is preferably a solvent mainly composed of ester solvents such as carbonates and lactones, and particularly preferably propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, It is an ester solvent mainly composed of at least one selected from the group consisting of isopropyl methyl carbonate, vinylene carbonate and diethyl carbonate.
  • “main component” means that the ester solvent occupies 50% by weight or more, preferably 70% by weight or more of the mixed solvent.
  • the electrolytic solution When the ester solvent is contained in the electrolytic solution, the electrolytic solution is excellent in oxidation resistance, so that the positive electrode potential during operation of the electricity storage device is increased. Thereby, the charge / discharge capacity (energy density) per unit volume as the electricity storage device can be further increased. The effect which suppresses rapid decomposition
  • a mixed solvent composed of a combination of ethylene carbonate and dimethyl carbonate is preferred as the organic polar solvent contained in the electrolytic solution.
  • phosphoric acid esters for example, trimethyl phosphate, triethyl phosphate, triallyl phosphate, etc.
  • phosphonic acids for suppressing gas generation and improving withstand voltage
  • fluorine containing for high capacity and high output examples include organosilicon compounds.
  • the fluorine-containing organosilicon compound is represented by the following formula. CF 3 CH 2 CH 2 Si (CH 3 ) 3 (CH 3 ) 3 Si—O—Si (CH 3 ) (CF 3 CH 2 CH 2 ) —Si (CH 3 )
  • the addition ratio of phosphoric acid esters and phosphonic acids is usually about 10% by weight or less with respect to the weight of the electrolyte from the viewpoint of the electrical conductivity of the electrolyte and the solubility in organic solvents, and the addition ratio of the fluorine-containing organosilicon compound Is usually about 0.1 to 5% by weight based on the weight of the electrolytic solution.
  • benzoic acids for example, benzoic acid alkyl esters such as methyl benzoate, ethyl benzoate, propyl benzoate, benzoic acid, etc.
  • benzoic acids for example, benzoic acid alkyl esters such as methyl benzoate, ethyl benzoate, propyl benzoate, benzoic acid, etc.
  • the addition ratio is usually about 0.001 to 10.0% by weight, preferably 0.005 to 5% by weight, particularly preferably 0.1 to 0.1% by weight based on the weight of the electrolyte. 1% by weight.
  • Benzoic acids can also be used as organic polar solvents.
  • the sodium ion type electricity storage device of the present invention may further have a separator.
  • the separator is disposed between the positive electrode and the negative electrode.
  • the separator suppresses a short circuit between both electrodes by separating the positive electrode and the negative electrode.
  • the separator may play a role of holding the electrolytic solution.
  • the separator is preferably an insulating film having a large ion permeability and a predetermined mechanical strength. Examples of the separator include paper made of viscose rayon, natural cellulose, kraft paper, manila paper, mixed paper obtained by making fibers such as cellulose or polyester, polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polybutylene terephthalate nonwoven fabric.
  • Non-woven fabric such as glass fiber non-woven fabric, aramid fiber non-woven fabric, polyethylene, polypropylene, polyester, aramid (para-type wholly aromatic polyamide, etc.), vinylidene fluoride, tetrafluoroethylene, copolymer of vinylidene fluoride and propylene hexafluoride And a porous film composed of a material such as fluorine-containing resin such as fluororubber.
  • the separator may be a molded product made of ceramic powder particles such as silica and the binder described above. The molded product is usually molded integrally with the positive electrode and the negative electrode.
  • a separator made of a material such as polyethylene or polypropylene may contain a surfactant or silica particles in order to improve the affinity with a polar solvent.
  • the separator may contain an organic solvent such as acetone and a plasticizer such as dibutyl phthalate (DBP).
  • DBP dibutyl phthalate
  • the separator may contain a proton conducting polymer.
  • the separator is more preferably a viscose rayon or natural cellulose paper, kraft paper, manila paper, a mixed paper obtained by making a cellulose or polyester fiber, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyester nonwoven fabric or a glass fiber nonwoven fabric.
  • the pore diameter of the separator is usually about 0.01 to 10 ⁇ m.
  • the thickness of the separator is usually about 1 to 300 ⁇ m, preferably about 5 to 30 ⁇ m.
  • a coin type manufacturing method includes a current collector (1-2), an electrode active material layer (1-3) on the inner bottom of a metal container (1-1) such as stainless steel.
  • the separator (1-4), the electrode active material layer (1-3), and the current collector (1-2) are sequentially laminated, and after injecting the electrolyte, the metal lid (1-5) and gasket (1- 6) and the like.
  • winding type production as shown in FIG.
  • a mixed slurry containing a conductive carbon material is applied to a current collector (2-2) and dried to form an electrode active material layer (2-3).
  • An electrode group obtained by preparing the formed laminated sheet and winding the two laminated sheets through the separator (2-4) is placed in a cylindrical metal container (2-1) such as aluminum or stainless steel.
  • a method of sealing with an electrode sealing plate (2-5) after inserting and injecting an electrolytic solution can be used.
  • the current collector is provided with a lead in advance, the lead (2-6) of one laminated sheet acts as a positive electrode, and the lead (2-6) of the other laminated sheet acts as a negative electrode. Charge and discharge. As shown in FIG.
  • a laminate type manufacturing method includes alternately laminating sheets of current collectors (3-2) and electrode active material layers (3-3) and separators (3-4). Method of inserting the obtained electrode group into a metal container (3-1) such as aluminum or stainless steel, injecting an electrolyte, and alternately connecting the current collector to the lead (3-5) and sealing As shown in FIG. 4, the laminated sheet of the current collector (4-2) and the electrode active material layer (4-3) and the separator (4-4) are alternately pressed, and the outer layer is sealed with a rubber material or the like. For example, a method of sealing after filling with an electrolytic solution may be used. As a bipolar structure including the gasket (4-6) as appropriate, a structure in which the working voltage can be arbitrarily set may be used.
  • a laminate pack type manufacturing method is a resin sheet in which an electrode group obtained by alternately laminating a laminate sheet of electrodes (5-2) and a separator (5-3) is vapor-deposited on aluminum.
  • a method may be used in which the electrode is inserted into a laminate pack (5-1), an electrolyte solution is injected, and the electrodes (5-2) are alternately connected to the leads (5-4) for sealing.
  • the bellows type (not shown) can be prepared in the same manner as the multilayer type using an electrode group obtained by laminating two sheets of electrodes while folding them in a bellows shape with a separator interposed therebetween.
  • Activated carbon manufactured by Kuraray Co., Ltd., RP20
  • PVDF Kureha Co., Ltd., PolyvinylideneDiFluoride
  • NMP N-methylpyrrolidone
  • NMP N-methylpyrrolidone
  • PVDF polyvinylidene fluoride
  • a spare cell was prepared as follows and sodium ions were pre-doped into the negative electrode.
  • the negative electrode, 1M NaClO 4 / propylene carbonate (PC) as a non-aqueous electrolyte, and a separator were used.
  • Sodium metal was prepared as a counter electrode, a separator was disposed between the counter electrode and the negative electrode, accommodated in a coin cell, and a non-aqueous electrolyte was injected to prepare a spare cell.
  • the spare cell was assembled in a glove box with an argon atmosphere.
  • a negative electrode preliminarily doped with sodium ions was obtained by discharging (current: constant current).
  • Example 1 (Production of electricity storage device) A negative electrode pre-doped with sodium ions, 1M NaClO 4 / PC as a non-aqueous electrolyte, a polypropylene porous membrane (film thickness 20 ⁇ m) as a separator, and the positive electrode are prepared. Then, a separator was disposed between the positive electrode and the negative electrode, accommodated in a coin cell, and a non-aqueous electrolyte was injected to produce the electricity storage device 1. The electrical storage device 1 was assembled in a glove box in an argon atmosphere.
  • the discharge capacity at the second cycle is 107 mAh / g as a value normalized by the weight of the negative electrode active material, which exceeds the value of the lithium ion capacitor.
  • a large-capacity electricity storage device with a large electrical energy stored per unit volume was obtained.
  • the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 2nd cycle was 89%, and the cycle characteristics were also good.
  • Example 2 A mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a ratio of 1: 1 (weight ratio) to the nonaqueous electrolytic solution was used.
  • An electricity storage device 2 was produced in the same manner as in Example 1 except that 1M NaClO 4 / (EC + DMC) was used as the non-aqueous electrolyte.
  • Example 2 For the electricity storage device 2, the same circuit as in Example 1 was constructed and tested under the same charge / discharge conditions.
  • the discharge capacity at the second cycle was 200 mAh / g as a value normalized by the weight of the negative electrode active material.
  • an extremely large capacity electricity storage device having an extremely large value exceeding the value of the lithium ion capacitor and a large electric energy stored per unit volume was obtained.
  • the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 2nd cycle discharge capacity retention ratio
  • Comparative Example 1 An electricity storage device 3 was produced in the same manner as in Example 1 except that the negative electrode pre-doped with sodium ions was used instead of the negative electrode pre-doped with sodium ions.
  • Example 3 a circuit similar to that in Example 1 was constructed and tested under the same charge / discharge conditions, but no effective charge current and discharge current were observed, and the device did not operate.
  • Comparative Example 2 An electricity storage device 4 was produced in the same manner as in Example 2 except that the negative electrode pre-doped with sodium ions was used instead of the negative electrode pre-doped with sodium ions.
  • Example 2 For the electricity storage device 4, a circuit similar to that of Example 2 was configured and tested under the same charge / discharge conditions. However, no effective charge current and discharge current were observed, and the device did not operate.
  • Example 3 A nonaqueous electrolytic solution was prepared using sodium hexafluorophosphate (NaPF 6 ) as an electrolyte and propylene carbonate (PC) as a solvent.
  • An electricity storage device 5 was produced in the same manner as in Example 1 except that 1M NaPF 6 / PC was used as the non-aqueous electrolyte.
  • the same circuit as in Example 1 was configured and the test was performed under the same charge / discharge conditions.
  • the discharge capacity at the second cycle was 140 mAh / min as a value normalized by the weight of the negative electrode active material.
  • an extremely large value that surpasses the value of the lithium ion capacitor, and an extremely large-capacity electricity storage device with a large electrical energy stored per unit volume was obtained.
  • the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 2nd cycle discharge capacity retention rate was 91%, and the cycle characteristics were also very good.
  • Comparative Example 3 An electricity storage device 6 was produced in the same manner as in Example 3 except that the negative electrode pre-doped with sodium ions was used instead of the negative electrode pre-doped with sodium ions.
  • Example 6 a circuit similar to that in Example 3 was configured and a test was performed under the same charge / discharge conditions. However, no effective charging current and discharging current were observed, and the device did not operate as an electricity storage device.
  • the electricity storage device of the present invention is a device that uses abundant sodium in terms of resources, has an excellent capacitance per unit volume, and can be used for storing electrical energy. In particular, because of its excellent characteristics, it can be suitably used for energy storage in the field of portable equipment and transportation equipment.

Abstract

Disclosed is a high-capacity power storage device produced using sodium which is an element contained in a great deal of resources. Specifically disclosed is a sodium-ion-type power storage device, which comprises a positive electrode, a negative electrode, and an electrolytic solution containing a sodium ion and an anion, wherein the positive electrode can adsorb and detach an anion or, alternatively, can be doped and dedoped with an anion, and the negative electrode can be doped and dedoped with a sodium ion and has been doped with a sodium ion previously.

Description

ナトリウムイオン型蓄電デバイスSodium ion storage device
 本発明は、蓄電デバイスに関する。特に、ナトリウムイオンの移動により蓄電および放電することができる蓄電デバイスに関する。 The present invention relates to a power storage device. In particular, the present invention relates to an electricity storage device capable of storing and discharging by movement of sodium ions.
 現在、深夜電力貯蔵などの分野では、大容量の電気エネルギーを貯蔵することのできる蓄電デバイスが求められている。電気自動車、ハイブリッド自動車などの輸送機器の分野や、携帯パソコン、携帯電話、携帯オーディオ機器などの携帯機器などの分野では、長時間稼動することのできる蓄電デバイス、具体的には、単位体積あたりに貯蔵される電気エネルギーが大きい蓄電デバイスが求められている。 Currently, in the field of late-night power storage and the like, a power storage device capable of storing a large amount of electric energy is required. In the field of transportation equipment such as electric vehicles and hybrid cars, and in the field of portable equipment such as mobile personal computers, mobile phones, and portable audio equipment, power storage devices that can operate for a long time, specifically, per unit volume There is a need for power storage devices that store large amounts of electrical energy.
 このような蓄電デバイスとしては、ハイブリッド型キャパシタが有望視されており、該キャパシタとして、リチウムイオンキャパシタが知られている。リチウムイオンキャパシタは、正極、負極、セパレータ、及び電解液を有し、該負極には黒鉛が使用されている。充電時には、負極ではリチウムイオンが黒鉛の層間に挿入され、正極では電極表面に電解液におけるアニオンが吸着され、電気二重層が構成されることにより、リチウムイオンキャパシタは蓄電する。リチウムイオンキャパシタは、電気二重層キャパシタの高出力特性と、リチウムイオン二次電池の大容量特性を併せ持つことから、上記分野での蓄電デバイスとして有望視されている。このようなリチウムイオンキャパシタは、例えば特許文献1に具体的に記載されている。 As such an electricity storage device, a hybrid capacitor is considered promising, and a lithium ion capacitor is known as the capacitor. A lithium ion capacitor has a positive electrode, a negative electrode, a separator, and an electrolyte, and graphite is used for the negative electrode. At the time of charging, lithium ions are inserted between graphite layers in the negative electrode, and anions in the electrolytic solution are adsorbed on the electrode surface in the positive electrode, so that an electric double layer is formed, thereby storing the lithium ion capacitor. A lithium ion capacitor is promising as an electricity storage device in the above field because it has both the high output characteristics of an electric double layer capacitor and the large capacity characteristics of a lithium ion secondary battery. Such a lithium ion capacitor is specifically described in Patent Document 1, for example.
特開2008-47853号公報JP 2008-47853 A
 リチウムイオンキャパシタは、高価で希少なリチウムを多く使用して製造することから、改良の余地がある。本発明の目的は、資源的に豊富なナトリウムを用い、且つ大容量の蓄電デバイスを提供することにある。 Since lithium ion capacitors are manufactured using a lot of expensive and rare lithium, there is room for improvement. An object of the present invention is to provide a large-capacity electricity storage device that uses resource-rich sodium.
 本発明者らは、電解液に含有されるリチウム塩を、ナトリウム塩に変更する他はリチウムイオンキャパシタと同様に蓄電デバイスを作製した。該蓄電デバイスの充放電試験を行ったところ、この蓄電デバイスは放電し難く、蓄電デバイスとしての使用に耐え得るものではないという知見を得た。本発明者らは、上記課題を解決すべく種々検討をさらに重ね、本発明に至った。本発明は、次の手段を提供する。
<1> 正極と、負極と、ナトリウムイオンおよびアニオンを含有する電解液とを有し、
 該正極は、アニオンを吸着することができかつ脱離することができ、またはアニオンでドープされることができかつ脱ドープされることができ、
 該負極はナトリウムイオンでドープされることができかつ脱ドープされることができ、かつ
 前記負極は、ナトリウムイオンで予備的にドープされた電極である、
ナトリウムイオン型蓄電デバイス。
<2> 負極が負極活物質を有し、該負極活物質が、ナトリウムイオンでドープされるこができかつ脱ドープされることができる炭素材料である<1>記載のナトリウムイオン型蓄電デバイス。
<3> 前記炭素材料が、非黒鉛化炭素材料である<2>記載のナトリウムイオン型蓄電デバイス。
<4> 前記炭素材料が、非賦活型炭素材料である<2>または<3>記載のナトリウムイオン型蓄電デバイス。
<5>
 前記負極が、予備的にナトリウムイオンでドープされた前記負極とナトリウム金属との酸化還元電位差が、1.00V以下である程度に、予備的にナトリウムイオンでドープされている、請求項1~4のいずれか記載のナトリウムイオン型蓄電デバイス。
<6> 正極と負極との間に配置されたセパレータをさらに有する<1>から<5>のいずれかに記載のナトリウムイオン型蓄電デバイス。
The present inventors produced an electricity storage device in the same manner as the lithium ion capacitor except that the lithium salt contained in the electrolytic solution was changed to a sodium salt. When a charge / discharge test of the electricity storage device was performed, it was found that the electricity storage device was difficult to discharge and could not be used as an electricity storage device. The inventors of the present invention have made various studies in order to solve the above problems, and have reached the present invention. The present invention provides the following means.
<1> A positive electrode, a negative electrode, and an electrolytic solution containing sodium ions and anions,
The positive electrode can adsorb and desorb anions, can be doped with anions and can be undoped;
The negative electrode can be doped and dedoped with sodium ions, and the negative electrode is an electrode pre-doped with sodium ions,
Sodium ion storage device.
<2> The sodium ion type electricity storage device according to <1>, wherein the negative electrode has a negative electrode active material, and the negative electrode active material is a carbon material that can be doped with sodium ions and dedoped.
<3> The sodium ion type electricity storage device according to <2>, wherein the carbon material is a non-graphitized carbon material.
<4> The sodium ion type electricity storage device according to <2> or <3>, wherein the carbon material is a non-activated carbon material.
<5>
The negative electrode is preliminarily doped with sodium ions to a certain extent that the redox potential difference between the negative electrode and sodium metal preliminarily doped with sodium ions is 1.00 V or less. The sodium ion type electrical storage device according to any one of the above.
<6> The sodium ion storage battery device according to any one of <1> to <5>, further including a separator disposed between the positive electrode and the negative electrode.
 本発明によれば、資源的に豊富なナトリウムを用い、且つ単位体積あたりに貯蔵される電気エネルギーが大きい大容量の蓄電デバイスを提供することができる。 According to the present invention, it is possible to provide a large-capacity electricity storage device that uses abundant sodium and has a large electrical energy stored per unit volume.
は、本発明の実施例及び比較例で用いられたコイン型のナトリウムイオン型蓄電デバイスの一例(概略図)を示す。These show an example (schematic diagram) of a coin-type sodium ion-type electricity storage device used in Examples and Comparative Examples of the present invention. は、捲回型のナトリウムイオン型蓄電デバイスの一例(概略図)を示す。These show an example (schematic diagram) of a wound sodium ion storage device. は、積層型のナトリウムイオン型蓄電デバイスの一例(概略図)を示す。These show an example (schematic diagram) of a stacked sodium ion type electricity storage device. は、図3とは異なる積層型のナトリウムイオン型蓄電デバイスの一例(概略図)を示す。These show an example (schematic diagram) of a stacked sodium ion type electricity storage device different from FIG. は、ラミネートフィルム型のナトリウムイオン型蓄電デバイスの一例(概略図)を示す。These show an example (schematic diagram) of a laminated film type sodium ion type electricity storage device.
 本発明のナトリウムイオン型蓄電デバイスは、正極と、負極と、ナトリウムイオンおよびアニオンを含有する電解液とを有する。該正極はアニオンを吸着することができかつ脱離することができ、またはアニオンでドープされることができかつ脱ドープされることができ、該負極はナトリウムイオンでドープされることができかつ脱ドープされることができ、かつ前記負極は、ナトリウムイオンで予備的にドープされた電極である。本発明により、電極の不可逆容量を低減することができ、大容量でしかもサイクル特性に極めて優れる蓄電デバイスを実現することができる。資源的に豊富なナトリウムを使用するため、安価な蓄電デバイスを実現することも可能である。本発明において、ナトリウムイオン型蓄電デバイスは、ナトリウムイオンキャパシタと呼ぶこともできる。 The sodium ion type electricity storage device of the present invention has a positive electrode, a negative electrode, and an electrolytic solution containing sodium ions and anions. The positive electrode can adsorb and desorb anions, or can be doped with anions and dedoped, and the negative electrode can be doped with sodium ions and dedoped. The negative electrode is an electrode that can be doped and is pre-doped with sodium ions. According to the present invention, an irreversible capacity of an electrode can be reduced, and an electric storage device having a large capacity and extremely excellent cycle characteristics can be realized. Since sodium that is abundant in resources is used, an inexpensive electricity storage device can be realized. In the present invention, the sodium ion storage device can also be called a sodium ion capacitor.
 以下、本発明のナトリウムイオン型蓄電デバイスに係る正極、負極、電解液、セパレータおよびデバイスの形状について説明する。 Hereinafter, the positive electrode, the negative electrode, the electrolytic solution, the separator, and the shape of the device according to the sodium ion type electricity storage device of the present invention will be described.
(正極)
 本発明における正極は、アニオンを吸着することができかつ脱離することができ、またはアニオンでドープされることができかつ脱ドープされることができる。正極の具体例としては分極性電極を挙げることができる。分極性電極では、充電時に負極に吸蔵されたナトリウムイオンと同数のアニオンが正極表面で電気二重層を形成し、電気二重層の静電容量によって電荷が保持される。この電荷は放電時に放散される。分極性電極は電気化学的に不活性な電極であれば限定されない。分極性電極は、比表面積が大きい電極であることが好ましく、保持できる電気量が大きくなる。このような分極性を示す正極を構成する材料の好適な例としては、活性炭(賦活型炭素材料ともいう。)が挙げられる。
(Positive electrode)
The positive electrode in the present invention can adsorb and desorb anions, or can be doped with anions and dedoped. Specific examples of the positive electrode include polarizable electrodes. In the polarizable electrode, the same number of anions as sodium ions occluded in the negative electrode during charging form an electric double layer on the surface of the positive electrode, and the electric charge is held by the electrostatic capacity of the electric double layer. This charge is dissipated during discharge. The polarizable electrode is not limited as long as it is an electrochemically inactive electrode. The polarizable electrode is preferably an electrode having a large specific surface area, which increases the amount of electricity that can be retained. As a suitable example of the material constituting the positive electrode exhibiting such polarizability, activated carbon (also referred to as activated carbon material) can be given.
 活性炭は、有機エアロゲルを炭化させた活性炭が高比表面積を持つ観点で好ましい。活性炭は、アニオンの吸着性が大きく、かつ大きい比表面積を持つため、得られる蓄電デバイスの静電容量が大きくなる。賦活方法の例として酸化性気体を用いる方法が挙げられ、具体的には活性炭、活性炭の製造時の原料または中間体を、高温下で酸化性気体に一定時間暴露する方法が挙げられる。酸化性気体の例としてはH2O、CO2、O2などが挙げられる。別の賦活の例として、活性炭、活性炭の製造時の原料または中間体と、塩化亜鉛、リン酸、硫化カリウム、水酸化カリウム等を混合した後、得られる混合物を高温で処理する方法などが挙げられる。前記の酸化性気体を用いる方法は、金属不純物の混入を抑制することができ、好ましい。酸化性気体としては、H2O、CO2が好ましい。 As the activated carbon, activated carbon obtained by carbonizing organic airgel is preferable from the viewpoint of having a high specific surface area. Since activated carbon has a large anion adsorptivity and a large specific surface area, the electrostatic capacity of the obtained electricity storage device is increased. Examples of the activation method include a method using an oxidizing gas, and specifically, a method of exposing a raw material or an intermediate during the production of activated carbon or activated carbon to the oxidizing gas at a high temperature for a certain time. Examples of the oxidizing gas include H 2 O, CO 2 and O 2 . Another example of activation is a method of treating activated carbon, raw materials or intermediates during the production of activated carbon, zinc chloride, phosphoric acid, potassium sulfide, potassium hydroxide, etc., and then treating the resulting mixture at a high temperature. It is done. The method using the oxidizing gas is preferable because it can suppress the mixing of metal impurities. As the oxidizing gas, H 2 O and CO 2 are preferable.
 活性炭は、200℃以上の賦活温度で賦活された活性炭であることが好ましく、細孔容積が向上する傾向がある。活性炭は、1100℃以下の賦活温度で賦活された活性炭であることが好ましく、活性炭の収率が向上する傾向がある。活性炭は、1分以上の賦活時間で賦活された活性炭であることが好ましく、細孔容積が向上する傾向がある。活性炭は、24時間以下の賦活時間で賦活された活性炭であることが好ましく、活性炭の収率が向上する傾向がある。 The activated carbon is preferably activated carbon activated at an activation temperature of 200 ° C. or higher, and the pore volume tends to be improved. The activated carbon is preferably activated carbon activated at an activation temperature of 1100 ° C. or lower, and the yield of activated carbon tends to be improved. The activated carbon is preferably activated carbon activated with an activation time of 1 minute or longer, and the pore volume tends to be improved. The activated carbon is preferably activated carbon activated with an activation time of 24 hours or less, and the yield of activated carbon tends to be improved.
 活性炭を電極に使用する方法としては、例えば、炭化した性状のままの活性炭を電極に使用する方法、活性炭を破砕したものを電極に使用する方法、破砕した活性炭を造粒形状、顆粒形状、繊維状、フェルト状、繊物状又はシート状等の各種形状に成形して電極に使用する方法などが挙げられる。成形する方法に用いられる活性炭は、活性炭を構成する粒子の平均粒径が、通常50μm以下、好ましくは30μm以下、とりわけ好ましくは10μm以下であり、この場合、活性炭を粉砕して用いることが好ましい。微細に粉砕された活性炭を電極に用いることにより、電極の嵩密度が向上し、電極の内部抵抗が低減されることができる。 As a method of using activated carbon for an electrode, for example, a method of using activated carbon in a carbonized state for an electrode, a method of using a crushed activated carbon for an electrode, a granulated shape, a granule shape, a fiber of crushed activated carbon For example, a method of forming into various shapes such as a shape, a felt shape, a fine shape, or a sheet shape and using the electrode. The activated carbon used in the forming method has an average particle size of particles constituting the activated carbon of usually 50 μm or less, preferably 30 μm or less, particularly preferably 10 μm or less. In this case, it is preferable to use the activated carbon after pulverization. By using finely pulverized activated carbon for the electrode, the bulk density of the electrode can be improved and the internal resistance of the electrode can be reduced.
 前記正極を構成する材料として、硫化物等のカルコゲン化合物を用いることもできる。硫化物としては、例えばTiS2、ZrS2、VS2、V25、TaS2、FeS2およびNiS2等のM12(M1は1種以上の遷移金属元素)で表される化合物等が挙げられる。これらの化合物は、活性炭と同様に、電極に使用することができる。これらの化合物は、活性炭と同様に、構成する粒子の平均粒径が、通常50μm以下、好ましくは30μm以下、とりわけ好ましくは10μm以下であり、この場合、これらの化合物を粉砕して用いることが好ましい。微細に粉砕されたこれらの化合物を電極に用いることにより、電極の嵩密度が向上し、電極の内部抵抗が低減されることができる。 As a material constituting the positive electrode, a chalcogen compound such as sulfide can also be used. Examples of the sulfide are represented by M 1 S 2 (M 1 is one or more transition metal elements) such as TiS 2 , ZrS 2 , VS 2 , V 2 S 5 , TaS 2 , FeS 2, and NiS 2. Compounds and the like. These compounds can be used for electrodes as well as activated carbon. These compounds, like activated carbon, have an average particle size of usually 50 μm or less, preferably 30 μm or less, particularly preferably 10 μm or less. In this case, it is preferable to use these compounds after pulverization. . By using these finely pulverized compounds for the electrode, the bulk density of the electrode can be improved and the internal resistance of the electrode can be reduced.
 前記の粉砕には、例えば、衝撃摩擦粉砕機、遠心力粉砕機、ボールミル(チューブミル、コンパウンドミル、円錐形ボールミル、ロッドミル)、振動ミル、コロイドミル、摩擦円盤ミル、ジェットミルなどの微粉砕用の粉砕機が好適に用いられる。ボールミルを用いる場合、金属粉の混入を避けるために、ボールや粉砕容器は、アルミナ、ジルコニア、メノウなどの非金属製であることが好ましい。 For the pulverization, for example, impact friction pulverizer, centrifugal pulverizer, ball mill (tube mill, compound mill, conical ball mill, rod mill), vibration mill, colloid mill, friction disk mill, jet mill, etc. The pulverizer is preferably used. When a ball mill is used, it is preferable that the balls and the pulverization container are made of non-metal such as alumina, zirconia, agate, etc., in order to avoid mixing of metal powder.
 正極を構成する材料として粉体状の材料(例えば、粉体状の活性炭、粉体状の前記化合物など)を用いる場合は、通常、集電体の上に正極構成材料、結合剤、導電剤等を含む混合物を付着することにより、集電体の上に正極活物質層を形成して正極を製造する。具体的な方法としては、例えば、(1)正極構成材料、結合剤および導電剤等を含む混合物に溶剤を添加して得た混合スラリーを、集電体に、ドクターブレード法などで塗布し、これを乾燥する方法、(2)該集電体を該混合スラリーに浸漬し、これを乾燥する方法、(3)正極構成材料、結合剤および導電剤等を含む混合物に溶剤を添加し混練して得た混練物を成形および乾燥してシートを得て、該シートと集電体を導電性接着剤等で接合して接合体を得て、該接合体をプレスして熱乾燥する方法、(4)正極構成材料、結合剤、導電剤及び液状潤滑剤等を含む混合物を集電体上に塗布して塗布集電体を得て、該塗布集電体から液状潤滑剤を除去して得られたシート状の成形物を一軸又は多軸方向に延伸処理する方法などが挙げられる。正極をシート状とする場合、その厚みは、通常、5~500μm程度である。 When a powdery material (eg, powdered activated carbon, powdered compound, etc.) is used as the material constituting the positive electrode, the positive electrode constituting material, the binder, and the conductive agent are usually placed on the current collector. A positive electrode is produced by forming a positive electrode active material layer on the current collector by adhering a mixture containing the like. As a specific method, for example, (1) a mixed slurry obtained by adding a solvent to a mixture containing a positive electrode constituent material, a binder and a conductive agent is applied to a current collector by a doctor blade method or the like, A method of drying this, (2) a method of immersing the current collector in the mixed slurry and drying it, and (3) adding a solvent to a mixture containing a positive electrode constituent material, a binder and a conductive agent, and kneading. Molding and drying the kneaded product obtained in this way to obtain a sheet, joining the sheet and a current collector with a conductive adhesive or the like to obtain a joined body, and pressing the joined body and thermally drying the method, (4) A mixture containing a positive electrode constituent material, a binder, a conductive agent and a liquid lubricant is applied on a current collector to obtain a coated current collector, and the liquid lubricant is removed from the coated current collector. Examples thereof include a method of stretching the obtained sheet-like molded product in a uniaxial or multiaxial direction. When the positive electrode is formed into a sheet shape, the thickness is usually about 5 to 500 μm.
 正極を構成する集電体の材料としては、例えば、ニッケル、アルミニウム、チタン、銅、金、銀、白金、アルミニウム合金、ステンレス等の金属材料、例えば、炭素材料、活性炭繊維に、ニッケル、アルミニウム、亜鉛、銅、スズ、鉛またはこれらの合金をプラズマ溶射、アーク溶射することによって得られた材料、または、例えば、ゴム、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)などの樹脂に導電剤を分散させた導電性樹脂材料などが挙げられる。特に軽量で導電性に優れ、電気化学的により安定なアルミニウムが好ましい。
 集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチングメタル状、エンボス状、あるいは、これらを組み合わせた形状(例えば、メッシュ状平板など)等が挙げられる。集電体表面にエッチング処理により凹凸が形成されていてもよい。
As a material of the current collector constituting the positive electrode, for example, nickel, aluminum, titanium, copper, gold, silver, platinum, aluminum alloy, stainless steel and other metal materials such as carbon material, activated carbon fiber, nickel, aluminum, Conductive agent for materials obtained by plasma spraying or arc spraying zinc, copper, tin, lead or alloys thereof, or resin such as rubber, styrene-ethylene-butylene-styrene copolymer (SEBS) For example, a conductive resin material in which is dispersed. Particularly preferred is aluminum which is lightweight, excellent in electrical conductivity and electrochemically more stable.
Examples of the shape of the current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh-like flat plate). It is done. Irregularities may be formed on the current collector surface by etching treatment.
 導電剤としては、例えば、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラック等の導電性カーボン;天然黒鉛、熱膨張黒鉛、鱗状黒鉛、膨張黒鉛等の黒鉛系導電剤;気相成長炭素繊維等の炭素繊維;アルミニウム、ニッケル、銅、銀、金、白金等の金属微粒子あるいは金属繊維;酸化ルテニウムあるいは酸化チタン等の導電性金属酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。少量で効果的に導電性が向上する観点で、カーボンブラック、アセチレンブラック及びケッチェンブラックが特に好ましい。電極における導電剤の配合割合は、本発明の活性炭100重量部に対し、通常、5~50重量部程度、好ましくは、10~30重量部程度である。 Examples of the conductive agent include conductive carbon such as graphite, carbon black, acetylene black, and ketjen black; graphite-based conductive agents such as natural graphite, thermally expanded graphite, scaly graphite, and expanded graphite; vapor grown carbon fiber, and the like Carbon fiber; Metal fine particles or metal fiber such as aluminum, nickel, copper, silver, gold, platinum; Conductive metal oxide such as ruthenium oxide or titanium oxide; Conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene Is mentioned. Carbon black, acetylene black, and ketjen black are particularly preferable from the viewpoint of effectively improving conductivity in a small amount. The blending ratio of the conductive agent in the electrode is usually about 5 to 50 parts by weight, preferably about 10 to 30 parts by weight with respect to 100 parts by weight of the activated carbon of the present invention.
 結合剤としては、例えば、フッ素化合物の重合体が挙げられる。フッ素化合物としては、例えば、フッ素化アルキル(炭素数1~18)(メタ)アクリレート、パーフルオロアルキル(メタ)アクリレート[例えば、パーフルオロドデシル(メタ)アクリレート、パーフルオロn-オクチル(メタ)アクリレート、パーフルオロn-ブチル(メタ)アクリレートなど]、パーフルオロアルキル置換アルキル(メタ)アクリレート[例えばパーフルオロヘキシルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレートなど]、パーフルオロオキシアルキル(メタ)アクリレート[例えば、パーフルオロドデシルオキシエチル(メタ)アクリレートおよびパーフルオロデシルオキシエチル(メタ)アクリレートなど]、フッ素化アルキル(炭素数1~18)クロトネート、フッ素化アルキル(炭素数1~18)マレートおよびフマレート、フッ素化アルキル(炭素数1~18)イタコネート、フッ素化アルキル置換オレフィン(炭素数2~10程度、フッ素原子数1~17程度)[例えばパーフロオロヘキシルエチレン、炭素数2~10程度、およびフッ素原子の数1~20程度の二重結合炭素にフッ素原子が結合したフッ素化オレフィン、テトラフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレンなど]が挙げられる。 Examples of the binder include a polymer of a fluorine compound. Examples of the fluorine compound include fluorinated alkyl (having 1 to 18 carbon atoms) (meth) acrylate, perfluoroalkyl (meth) acrylate [for example, perfluorododecyl (meth) acrylate, perfluoro n-octyl (meth) acrylate, Perfluoro n-butyl (meth) acrylate, etc.], perfluoroalkyl-substituted alkyl (meth) acrylate [eg, perfluorohexylethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, etc.], perfluorooxyalkyl (meth) Acrylate [for example, perfluorododecyloxyethyl (meth) acrylate and perfluorodecyloxyethyl (meth) acrylate, etc.], fluorinated alkyl (C1-18) crotonate, fluorinated amine Kill (carbon number 1 to 18) malate and fumarate, fluorinated alkyl (carbon number 1 to 18) itaconate, fluorinated alkyl-substituted olefin (about 2 to 10 carbon atoms, about 1 to 17 fluorine atoms) [for example perfluorohexyl Fluorinated olefin, tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropylene, etc. in which fluorine atoms are bonded to ethylene, a double bond carbon having about 2 to 10 carbon atoms, and about 1 to 20 fluorine atoms] Is mentioned.
 結合剤は、フッ素原子を含まないエチレン性二重結合を含む単量体の付加重合体でもよい。かかる単量体としては、例えば、(シクロ)アルキル(炭素数1~22)(メタ)アクリレート[例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート等];芳香環含有(メタ)アクリレート[例えば、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート等];アルキレングリコールもしくはジアルキレングリコール(アルキレン基の炭素数2~4)のモノ(メタ)アクリレート[例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート];(ポリ)グリセリン(重合度1~4)モノ(メタ)アクリレート;多官能(メタ)アクリレート[例えば、(ポリ)エチレングリコール(重合度1~100)ジ(メタ)アクリレート、(ポリ)プロピレングリコール(重合度1~100)ジ(メタ)アクリレート、2,2-ビス(4-ヒドロキシエチルフェニル)プロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等]などの(メタ)アクリル酸エステル系単量体;(メタ)アクリルアミド、(メタ)アクリルアミド系誘導体[例えば、N-メチロール(メタ)アクリルアミド、ダイアセトンアクリルアミド等]などの(メタ)アクリルアミド系単量体;(メタ)アクリロニトリル、2-シアノエチル(メタ)アクリレート、2-シアノエチルアクリルアミド等のシアノ基含有単量体;スチレンおよび炭素数7~18のスチレン誘導体[例えば、α-メチルスチレン、ビニルトルエン、p-ヒドロキシスチレンおよびジビニルベンゼン等]などのスチレン系単量体;炭素数4~12のアルカジエン[例えば、ブタジエン、イソプレン、クロロプレン等]などのジエン系単量体;カルボン酸(炭素数2~12)ビニルエステル[例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルおよびオクタン酸ビニル等]、カルボン酸(炭素数2~12)(メタ)アリルエステル[例えば、酢酸(メタ)アリル、プロピオン酸(メタ)アリルおよびオクタン酸(メタ)アリル等]などのアルケニルエステル系単量体;グリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル等のエポキシ基含有単量体;炭素数2~12のモノオレフィン[例えば、エチレン、プロピレン、1-ブテン、1-オクテンおよび1-ドデセン等]のモノオレフィン類;塩素、臭素またはヨウ素原子含有単量体、例えば塩化ビニルおよび塩化ビニリデンなどのフッ素以外のハロゲン原子含有単量体;アクリル酸、メタクリル酸などの(メタ)アクリル酸;ブタジエン、イソプレンなどの共役二重結合含有単量体などが挙げられる。付加重合体は、例えば、エチレン-酢酸ビニル共重合体、スチレン-ブタジエン共重合体、エチレン-プロピレン共重合体などの共重合体でもよい。カルボン酸ビニルエステル重合体は、ポリビニルアルコールなどのように、部分的又は完全にケン化されていてもよい。結合剤はフッ素化合物とフッ素原子を含まないエチレン性二重結合を含む単量体との共重合体でもよい。 The binder may be a monomer addition polymer containing an ethylenic double bond not containing a fluorine atom. Examples of such monomers include (cyclo) alkyl (C1-22) (meth) acrylate [eg, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl] (Meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, etc.]; aromatic ring-containing (meth) acrylate [for example, benzyl (Meth) acrylate, phenylethyl (meth) acrylate, etc.]; mono (meth) acrylate of alkylene glycol or dialkylene glycol (alkylene group having 2 to 4 carbon atoms) [for example, 2-hydroxyethyl (meth) acrylate, 2- Hi Roxypropyl (meth) acrylate, diethylene glycol mono (meth) acrylate]; (poly) glycerin (degree of polymerization 1 to 4) mono (meth) acrylate; polyfunctional (meth) acrylate [for example, (poly) ethylene glycol (degree of polymerization 1 To 100) di (meth) acrylate, (poly) propylene glycol (degree of polymerization 1 to 100) di (meth) acrylate, 2,2-bis (4-hydroxyethylphenyl) propane di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate monomers such as (meth) acrylate]; (meth) acrylamides such as (meth) acrylamide, (meth) acrylamide derivatives [eg, N-methylol (meth) acrylamide, diacetone acrylamide, etc.] Acrylamide monomer; ) Cyano group-containing monomers such as acrylonitrile, 2-cyanoethyl (meth) acrylate, 2-cyanoethylacrylamide; styrene and styrene derivatives having 7 to 18 carbon atoms [for example, α-methylstyrene, vinyltoluene, p-hydroxystyrene and Styrene monomers such as divinylbenzene] Diene monomers such as alkadienes having 4 to 12 carbon atoms [for example, butadiene, isoprene, chloroprene, etc.]; Carboxylic acid (2 to 12 carbon atoms) vinyl esters [for example, , Vinyl acetate, vinyl propionate, vinyl butyrate and vinyl octoate, etc.], carboxylic acid (2 to 12 carbon atoms) (meth) allyl ester [for example, (meth) allyl acetate, (meth) allyl propionate and octanoic acid ( Alkenyl ester based monomers such as (meth) allyl etc.] An epoxy group-containing monomer such as glycidyl (meth) acrylate and (meth) allyl glycidyl ether; a monoolefin having 2 to 12 carbon atoms [eg, ethylene, propylene, 1-butene, 1-octene, 1-dodecene, etc.] Monoolefins of: chlorine, bromine or iodine atom-containing monomers, for example, halogen atom-containing monomers other than fluorine such as vinyl chloride and vinylidene chloride; (meth) acrylic acid such as acrylic acid and methacrylic acid; butadiene, isoprene And conjugated double bond-containing monomers. The addition polymer may be a copolymer such as an ethylene-vinyl acetate copolymer, a styrene-butadiene copolymer, and an ethylene-propylene copolymer. The carboxylic acid vinyl ester polymer may be partially or completely saponified, such as polyvinyl alcohol. The binder may be a copolymer of a fluorine compound and a monomer containing an ethylenic double bond not containing a fluorine atom.
 結合剤のその他の例示としては、デンプン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ニトロセルロースなどの多糖類及びその誘導体;フェノール樹脂;メラミン樹脂;ポリウレタン樹脂;尿素樹脂:ポリイミド樹脂;ポリアミドイミド樹脂;石油ピッチ;石炭ピッチなどが挙げられる。 Other examples of binders include polysaccharides such as starch, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylhydroxyethylcellulose, nitrocellulose, and derivatives thereof; phenol resins; melamine resins; polyurethane resins; Examples include urea resin: polyimide resin; polyamideimide resin; petroleum pitch; coal pitch.
 結合剤としては、これらの中でも、フッ素化合物の重合体が好ましく、とりわけ、テトラフルオロエチレンの重合体であるポリテトラフルオロエチレンが好ましい。 Among these, as the binder, a polymer of a fluorine compound is preferable, and polytetrafluoroethylene which is a polymer of tetrafluoroethylene is particularly preferable.
 結合剤としては複数種の結合剤を使用してもよい。電極における結合剤の配合割合としては、活性炭100重量部に対し、通常0.5~30重量部程度、好ましくは2~30重量部程度である。結合剤に用いられる溶剤としては、例えば、イソプロピルアルコール(IPAともいう。)、エタノール、メタノールなどのアルコール類、エーテル類、ケトン類などが挙げられる。結合剤が増粘する場合には、結合剤を集電体に容易に塗布するために、可塑剤を使用してもよい。 As the binder, a plurality of types of binders may be used. The mixing ratio of the binder in the electrode is usually about 0.5 to 30 parts by weight, preferably about 2 to 30 parts by weight with respect to 100 parts by weight of the activated carbon. Examples of the solvent used for the binder include isopropyl alcohol (also referred to as IPA), alcohols such as ethanol and methanol, ethers, and ketones. If the binder thickens, a plasticizer may be used to easily apply the binder to the current collector.
 導電性接着剤は、通常、前記導電剤と前記結合剤との混合物であり、中でも、好ましくは、カーボンブラックとポリビニルアルコールとの混合物であり、この混合物は、有機溶媒が必要とされず、調製が容易であり、保存安定性にも優れる。 The conductive adhesive is usually a mixture of the conductive agent and the binder, and preferably, a mixture of carbon black and polyvinyl alcohol. This mixture does not require an organic solvent and is prepared. Is easy and storage stability is excellent.
(負極)
 本発明のナトリウムイオン型蓄電デバイスにおける負極は、カチオンであるナトリウムイオンでドープされることができかつ脱ドープされることができる。負極は、通常、負極活物質を有する。負極の例としては、ナトリウムイオンでドープされることができかつ脱ドープされることのできる負極活物質、結合剤および必要に応じて導電剤等を含む負極合剤を、負極集電体に付着したもの、すなわち、集電体の上に負極活物質層が形成されているものを挙げることができる。負極は、通常、シート状である。具体的な負極の製造方法としては、(1)負極活物質および結合剤等を含む負極合剤に溶剤を添加して得た負極合剤スラリーを、負極集電体に、ドクターブレード法などで塗布し、これを乾燥する方法、(2)該集電体を該負極合剤に浸漬し、これを乾燥する方法、(3)負極活物質および結合剤等を含む負極合剤に溶剤を添加し混練して得た混練物を成形および乾燥してシートを得て、該シートと負極集電体を導電性接着剤等で接合して接合体を得て、該接合体をプレスして熱乾燥する方法、(4)負極活物質、結合剤および液状潤滑剤等を含む混合物を負極集電体上に塗布して塗布集電体を得て、該塗布集電体から液状潤滑剤を除去して得られたシート状の成形物を一軸または多軸方向に延伸処理する方法などが挙げられる。負極がシート状である場合、その厚みは、通常、5~500μm程度である。
(Negative electrode)
The negative electrode in the sodium ion type electricity storage device of the present invention can be doped with sodium ions that are cations and can be undoped. The negative electrode usually has a negative electrode active material. As an example of the negative electrode, a negative electrode mixture containing a negative electrode active material, a binder, and a conductive agent as required can be doped with sodium ions and dedoped, and attached to the negative electrode current collector. In other words, a negative electrode active material layer formed on a current collector can be used. The negative electrode is usually in the form of a sheet. As a specific method for producing a negative electrode, (1) a negative electrode mixture slurry obtained by adding a solvent to a negative electrode mixture containing a negative electrode active material and a binder is used as a negative electrode current collector by a doctor blade method or the like. (2) A method of immersing the current collector in the negative electrode mixture and drying it, (3) A solvent is added to the negative electrode mixture containing the negative electrode active material and a binder The kneaded product obtained by kneading is molded and dried to obtain a sheet, the sheet and the negative electrode current collector are joined with a conductive adhesive or the like to obtain a joined body, and the joined body is pressed and heated. (4) A mixture containing a negative electrode active material, a binder, and a liquid lubricant is applied onto the negative electrode current collector to obtain a coated current collector, and the liquid lubricant is removed from the coated current collector. And a method of stretching the sheet-like molded product obtained in the uniaxial or multiaxial direction. When the negative electrode is in the form of a sheet, the thickness is usually about 5 to 500 μm.
 前記負極活物質は、ナトリウムイオンでドープされることができかつ脱ドープされることができる材料であれば特に制限はないが、好ましくはナトリウムイオンでドープされることができかつ脱ドープされることができる炭素材料である。該炭素材料は、カーボンブラック、熱分解炭素類、炭素繊維、有機材料焼成体などの中から選択すればよい。該炭素材料は、好ましくは非黒鉛化炭素材料(「ハードカーボン」ともいう)である。この中でも特に非黒鉛化炭素材料からなるカーボンマイクロビーズを挙げることができ、具体的には、日本カーボン社製のICB(商品名:ニカビーズ)が挙げられる。
 炭素材料を構成する粒子の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粒子の凝集体形状などが挙げられる。炭素材料を構成する粒子の形状が球状である場合、その平均粒径は好ましくは0.01μm以上30μm以下であり、より好ましくは0.1μm以上20μm以下である。
The negative electrode active material is not particularly limited as long as it is a material that can be doped with sodium ions and can be undoped, but preferably can be doped with sodium ions and be undoped. It is a carbon material that can be used. The carbon material may be selected from carbon black, pyrolytic carbons, carbon fibers, organic material fired bodies, and the like. The carbon material is preferably a non-graphitized carbon material (also referred to as “hard carbon”). Among these, carbon microbeads made of a non-graphitized carbon material can be mentioned, and specifically, ICB (trade name: Nika beads) manufactured by Nippon Carbon Co., Ltd. can be mentioned.
Examples of the shape of the particles constituting the carbon material include a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, and an aggregate shape of fine particles. When the shape of the particles constituting the carbon material is spherical, the average particle diameter is preferably 0.01 μm or more and 30 μm or less, more preferably 0.1 μm or more and 20 μm or less.
 本発明の蓄電デバイスにおいて、ナトリウムイオンのドープかつ脱ドープがスムーズに行われるためには、負極活物質としての炭素材料は、好ましくは、賦活処理が行われていない炭素材料であり、特に好ましくは非賦活型炭素材料である。非賦活型炭素材料は、炭素材料について不活性化処理が行われた炭素材料である。
 「不活性化処理」は、炭素材料の表面官能基を除去するための処理を意味し、具体的な処理方法としては、不活性ガス雰囲気下、600℃以上2000℃以下(好ましくは、800℃以上1800℃以下)の温度で熱処理する方法が挙げられる。
 賦活型炭素材料を負極活物質として使用した場合には、ナトリウムイオンのドープかつ脱ドープがスムーズに行われず、不可逆容量が大きくなる場合がある。
In the electricity storage device of the present invention, in order to smoothly dope and dedope sodium ions, the carbon material as the negative electrode active material is preferably a carbon material that has not been subjected to activation treatment, particularly preferably. It is a non-activated carbon material. The non-activated carbon material is a carbon material that has been subjected to a deactivation treatment for the carbon material.
“Inactivation treatment” means treatment for removing the surface functional groups of the carbon material, and a specific treatment method is 600 ° C. or more and 2000 ° C. or less (preferably 800 ° C. in an inert gas atmosphere). The method of heat-processing at the temperature of 1800 degrees C or less) is mentioned.
When the activated carbon material is used as the negative electrode active material, sodium ions are not doped and dedoped smoothly, and the irreversible capacity may increase.
 本発明の蓄電デバイスにおける負極活物質に用いる有機材料焼成体としては、種々の有機材料の炭化(焼成)により得られる炭素材料のうち、ナトリウムイオンでドープされることができかつ脱ドープされることができる炭素材料を用いればよい。好適な炭素材料である非黒鉛化炭素材料は、グラファイト結晶構造になりにくい有機材料を焼成して得ることができる。
 該有機材料焼成体の原料となる有機材料としては、石油や石炭等の天然鉱物資源、これら資源を原料として合成した各種合成樹脂(熱硬化性樹脂、熱可塑性樹脂など)、石油ピッチ、石炭ピッチ、紡糸用ピッチなどの種々のプラント残渣油、木材等の植物由来の有機材料等を挙げることができ、これらを単独または二種以上用いることが可能である。
The organic material fired body used for the negative electrode active material in the electricity storage device of the present invention can be doped with sodium ions and dedoped among carbon materials obtained by carbonization (firing) of various organic materials. A carbon material that can be used may be used. A non-graphitized carbon material, which is a suitable carbon material, can be obtained by firing an organic material that is unlikely to have a graphite crystal structure.
Organic materials used as raw materials for the organic material fired body include natural mineral resources such as petroleum and coal, various synthetic resins synthesized from these resources (thermosetting resin, thermoplastic resin, etc.), petroleum pitch, and coal pitch. And various plant residue oils such as spinning pitch, plant-derived organic materials such as wood, etc., and these can be used alone or in combination of two or more.
 上記合成樹脂としては、フェノール樹脂、レゾルシノール樹脂、フラン樹脂、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、ポリアクリロニトリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、シアネート樹脂、ケトン樹脂などを挙げることができ、これらを単独または二種以上用いることが可能である。これらの樹脂は硬化剤、添加剤を含有してもよい。硬化方法は、特に限定されず、例えばフェノール樹脂を用いる場合では、熱硬化法、熱酸化法、エポキシ硬化法、イソシアネート硬化法などが挙げられる。エポキシ樹脂を用いた場合では、フェノール樹脂硬化法、酸無水物硬化法、アミン硬化法等が挙げられる。 As the synthetic resin, phenol resin, resorcinol resin, furan resin, epoxy resin, urethane resin, unsaturated polyester resin, melamine resin, urea resin, aniline resin, bismaleimide resin, benzoxazine resin, polyacrylonitrile resin, polystyrene resin, Polyamide resin, cyanate resin, ketone resin, and the like can be given, and these can be used alone or in combination of two or more. These resins may contain a curing agent and an additive. The curing method is not particularly limited. For example, when a phenol resin is used, a thermal curing method, a thermal oxidation method, an epoxy curing method, an isocyanate curing method, and the like can be given. In the case of using an epoxy resin, a phenol resin curing method, an acid anhydride curing method, an amine curing method, and the like can be given.
 有機材料は、好ましくは芳香環を有する有機材料である。該有機材料を用いることにより、ナトリウムイオンでドープされることができかつ脱ドープされることができる炭素材料を、収率よく得ることができる。これにより環境負荷が小さく、製造コストも小さくすることもでき、工業的な利用価値がより高い。 The organic material is preferably an organic material having an aromatic ring. By using the organic material, a carbon material that can be doped with sodium ions and can be dedope can be obtained with high yield. Thereby, the environmental load is small, the manufacturing cost can be reduced, and the industrial utility value is higher.
 芳香環を有する有機材料としては、例えば、上記合成樹脂の中で、フェノール樹脂(ノボラック型フェノール樹脂、レゾール型フェノール樹脂など)、エポキシ樹脂(ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂など)、アニリン樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂を挙げることができ、これらを単独または二種以上用いることが可能である。これらの樹脂は、硬化剤、添加剤を含有してもよい。 Examples of the organic material having an aromatic ring include, among the above synthetic resins, phenol resins (such as novolac type phenol resins and resol type phenol resins), epoxy resins (such as bisphenol type epoxy resins and novolac type epoxy resins), and aniline resins. , Bismaleimide resins and benzoxazine resins, and these can be used alone or in combination of two or more. These resins may contain a curing agent and an additive.
 芳香環を有する有機材料としては、好ましくはフェノールまたはその誘導体とアルデヒド化合物とを重合させて製造された有機材料である。該有機材料は、芳香環を有する有機材料の中でも安価であり、工業的な生産量も多いことから、これを炭化して得られる炭素材料は好ましい炭素材料である。 The organic material having an aromatic ring is preferably an organic material produced by polymerizing phenol or a derivative thereof and an aldehyde compound. Since the organic material is inexpensive among organic materials having an aromatic ring and has a large industrial production amount, a carbon material obtained by carbonizing the organic material is a preferable carbon material.
 フェノールまたはその誘導体とアルデヒド化合物とを重合させて得られる有機材料としては、フェノール樹脂が挙げられる。フェノール樹脂は安価であり、工業的な生産量も多く、炭素材料の原料として好ましい。フェノール樹脂を炭化して得られる炭素材料を、本発明のナトリウムイオン型蓄電デバイスの負極活物質として用いた場合、蓄電デバイスの充放電容量、充放電を繰り返した際の放電容量が特に大きいため、フェノール樹脂を炭化して得られる炭素材料は好ましい。フェノール樹脂は、三次元架橋が発達した構造を有し、該樹脂を炭化して得られる炭素材料も、該構造に由来した特異な三次元架橋が発達した構造を有する炭素材料となっているものと推定される。これにより、前記の放電容量が特に大きくなるものと考えられる。 An example of an organic material obtained by polymerizing phenol or a derivative thereof and an aldehyde compound is a phenol resin. Phenolic resins are inexpensive and have a large industrial production amount, which is preferable as a raw material for carbon materials. When the carbon material obtained by carbonizing the phenol resin is used as the negative electrode active material of the sodium ion type electricity storage device of the present invention, the charge / discharge capacity of the electricity storage device is particularly large when the charge / discharge is repeated, A carbon material obtained by carbonizing a phenol resin is preferable. Phenol resin has a structure in which three-dimensional crosslinking is developed, and the carbon material obtained by carbonizing the resin is also a carbon material having a structure in which unique three-dimensional crosslinking is derived from the structure. It is estimated to be. Thereby, it is considered that the discharge capacity is particularly increased.
 フェノールまたはその誘導体としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、レゾルシノール、ヒドロキノン、キシレノール、ピロガロール、ビスフェノールA、ビスフェノールF、p-フェニルフェノール、p-tert-ブチルフェノール、p-tert-オクチルフェノール、α-ナフトール、β-ナフトール等を挙げることができ、これらを単独または二種以上用いることが可能である。 Examples of phenol or derivatives thereof include phenol, o-cresol, m-cresol, p-cresol, catechol, resorcinol, hydroquinone, xylenol, pyrogallol, bisphenol A, bisphenol F, p-phenylphenol, p-tert-butylphenol, Examples thereof include p-tert-octylphenol, α-naphthol, β-naphthol and the like, and these can be used alone or in combination of two or more.
 アルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド等を挙げることができ、これらを単独または二種以上用いることが可能である。 Examples of aldehyde compounds include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, Examples thereof include phenylacetaldehyde, o-tolualdehyde, salicylaldehyde and the like, and these can be used alone or in combination of two or more.
 フェノール樹脂は、特に限定されず、例えば、レゾール型フェノール樹脂、ノボラック型フェノール樹脂などが挙げられる。レゾール型フェノール樹脂は、フェノールまたはその誘導体とアルデヒド化合物とが塩基性触媒の存在下で重合することにより得ることができる。ノボラック型フェノール樹脂は、フェノールまたはその誘導体とアルデヒド化合物とが酸性触媒の存在下で重合することにより得ることができる。 The phenol resin is not particularly limited, and examples thereof include a resol type phenol resin and a novolac type phenol resin. The resol type phenol resin can be obtained by polymerizing phenol or a derivative thereof and an aldehyde compound in the presence of a basic catalyst. The novolac type phenol resin can be obtained by polymerizing phenol or a derivative thereof and an aldehyde compound in the presence of an acidic catalyst.
 自硬性のレゾール型フェノール樹脂を用いる場合は、該レゾール型フェノール樹脂に、酸や硬化剤を添加してもよいし、硬化度を低下させるためにノボラック型フェノール樹脂を添加してもよい。これらを組合せて該レゾール型フェノール樹脂に添加してもよい。 When a self-hardening resol type phenol resin is used, an acid or a curing agent may be added to the resol type phenol resin, or a novolac type phenol resin may be added to reduce the degree of curing. These may be combined and added to the resol type phenol resin.
 ノボラック型フェノール樹脂としては、メチレン基結合位置がオルソ位とパラ位が同程度のランダムノボラックと呼ばれているタイプ(このタイプは、フェノールまたはその誘導体とアルデヒド化合物とを、公知の有機酸および/または無機酸の触媒を用いて、常圧100℃で数時間縮合反応させ、得られた縮合物から水および未反応モノマーを除去する方法により得られる)と、オルソ位でのメチレン基結合の多いハイオルソノボラックと呼ばれているタイプ(このタイプは、フェノールまたはその誘導体とアルデヒド化合物とを、酢酸亜鉛、酢酸鉛、ナフテン酸亜鉛等の金属塩触媒を用いて、弱酸性下で付加縮合反応させ、直接あるいは酸触媒を添加して、さらに脱水しながら縮合反応を行い、必要に応じて未反応物を除去する方法により得られる)が知られている。 As a novolak type phenol resin, a type called a random novolak having a methylene group bonding position at the same ortho-position and para-position (this type is obtained by combining a phenol or its derivative and an aldehyde compound with a known organic acid and / or Alternatively, it can be obtained by a condensation reaction at a normal pressure of 100 ° C. for several hours using an inorganic acid catalyst, and water and unreacted monomers are removed from the resulting condensate), and there are many methylene group bonds at the ortho position. A type called high ortho novolac (this type is an addition condensation reaction between phenol or its derivative and an aldehyde compound using a metal salt catalyst such as zinc acetate, lead acetate or zinc naphthenate under weak acidity. , Directly or by adding an acid catalyst, conducting a condensation reaction while further dehydrating, and removing unreacted materials as necessary Ri obtained) is known.
 芳香環を分子構造中に有する有機材料としては、他にも多種多様な有機材料を利用することができる。 A wide variety of other organic materials can be used as the organic material having an aromatic ring in the molecular structure.
 合成樹脂は、モノマーが重合した高分子であることが一般的である。芳香環を有する有機材料として、数個~数十個程度のモノマーが重合した有機材料を用いることもできる。 The synthetic resin is generally a polymer in which monomers are polymerized. As the organic material having an aromatic ring, an organic material in which several to several tens of monomers are polymerized can be used.
 フェノールまたはその誘導体とアルデヒド化合物とが重合する際には、副生物が生成したり、未重合物が残存したりする場合もある。これらの副生物、未重合物を、有機材料として、利用することもでき、廃棄物を減らすことにより環境負荷を低減できるとともに、炭素材料を安価に得ることができ、工業的な利用価値がより高い。 When the phenol or its derivative and the aldehyde compound are polymerized, a by-product may be generated or an unpolymerized product may remain. These by-products and unpolymerized materials can also be used as organic materials, and by reducing waste, the environmental impact can be reduced, and carbon materials can be obtained at low cost, resulting in more industrial utility value. high.
 植物由来の有機材料として、木材等を挙げることができる。これらを炭化して得られる木炭は、負極活物質に用いる炭素材料として好ましい。木材として、廃棄材木、おが屑等の木材加工プロセスにおいて発生する廃棄木材、森林の間伐木材等を利用することもできる。木材の構成成分としては一般にセルロース、ヘミセルロースおよびリグニンの3種が主成分として挙げられ、リグニンは、芳香環を有する有機材料であり、好ましい。 Examples of plant-derived organic materials include wood. Charcoal obtained by carbonizing these is preferable as a carbon material used for the negative electrode active material. As the timber, waste timber, waste timber generated in a wood processing process such as sawdust, forest thinned timber, and the like can also be used. As the constituent components of wood, three types of cellulose, hemicellulose and lignin are generally mentioned as the main components, and lignin is an organic material having an aromatic ring and is preferable.
 木材としては、ソテツ類、イチョウ類、針葉樹類(スギ、ヒノキ、アカマツ等)、マオウ類等の裸子植物、広葉樹類(ミズナラ、ブナ、ポプラ、ハルニレ、カシ等)、草本植物、ヤシ類、竹類等の被子植物等が挙げられる。 Wood includes cycads, ginkgo, conifers (cedar, cypress, red pine, etc.), maize, etc., broadleaf trees (Mizunara, beech, poplar, harunire, oak, etc.), herbaceous plants, palms, bamboo Angiosperms and the like such as
 上記の木材の中でも、スギは建築材料として広く用いられており、その加工プロセスにおいてスギのおが屑が発生する。スギのおが屑は好ましい有機材料であり、環境負荷を低減できるとともに安価に炭素材料を得ることができる。カシを炭化して得られる備長炭も、負極活物質に用いる炭素材料として好ましい。 Among the above wood, cedar is widely used as a building material, and cedar sawdust is generated in the processing process. Cedar sawdust is a preferable organic material, and can reduce the environmental load and obtain a carbon material at a low cost. Bincho charcoal obtained by carbonizing oak is also preferable as a carbon material used for the negative electrode active material.
 負極活物質に用いる炭素材料として、プラント残渣油の炭化(焼成)により得られる炭素材料を用いることにより、資源を有効活用することができ、工業的な利用価値がより高い。 By using a carbon material obtained by carbonization (firing) of plant residue oil as the carbon material used for the negative electrode active material, resources can be effectively used and industrial utility value is higher.
 プラント残渣油としては、エチレンなど各種石油化学製品の製造時に発生する各種残渣油を挙げることができる。より具体的には、蒸留残渣油、流動接触分解残渣油、それらの水素化脱硫油、あるいはそれらの混合油から成る石油系重質油を挙げることができる。これらの中でも、芳香環を有する石油化学製品の製造時に発生する残渣油が好ましく、具体的には、該残渣油としてレゾルシノール製造時に発生する残渣油を挙げることができる。 Examples of plant residual oil include various residual oils generated during the manufacture of various petrochemical products such as ethylene. More specifically, there can be mentioned petroleum heavy oil composed of distillation residue oil, fluid catalytic cracking residue oil, hydrodesulfurized oil thereof, or mixed oil thereof. Among these, a residual oil generated during the production of a petrochemical product having an aromatic ring is preferable, and specific examples of the residual oil include a residual oil generated during the production of resorcinol.
 負極活物質に用いる炭素材料は、上述の種々の有機材料のうち、1種以上の有機材料を炭化(焼成)して得ることができる。炭化の温度は、800℃以上2500℃以下であることが好ましい。炭化は、不活性ガス雰囲気下で行うことが好ましい。有機材料をそのまま炭化してもよいし、有機材料を400℃以下の酸化性ガスの存在下で加熱して得られる加熱物を、不活性ガス雰囲気下で炭化してもよい。不活性ガスとしては、窒素、アルゴンなどを挙げることができ、酸化性ガスとしては、空気、H2O、CO2、O2などを挙げることができる。炭化は、減圧下で行ってもよい。これらの加熱、炭化は、例えば、ロータリーキルン、ローラーハースキルン、プッシャーキルン、多段炉、流動炉などの設備を用いて行えばよい。ロータリーキルンは、汎用的に用いられる設備である。 The carbon material used for the negative electrode active material can be obtained by carbonizing (baking) one or more organic materials among the above-described various organic materials. The carbonization temperature is preferably 800 ° C. or higher and 2500 ° C. or lower. Carbonization is preferably performed in an inert gas atmosphere. The organic material may be carbonized as it is, or a heated product obtained by heating the organic material in the presence of an oxidizing gas of 400 ° C. or lower may be carbonized in an inert gas atmosphere. Examples of the inert gas include nitrogen and argon, and examples of the oxidizing gas include air, H 2 O, CO 2 , and O 2 . Carbonization may be performed under reduced pressure. These heating and carbonization may be performed using equipment such as a rotary kiln, a roller hearth kiln, a pusher kiln, a multistage furnace, and a fluidized furnace. A rotary kiln is a general-purpose facility.
 炭化(焼成)して得られた炭素材料は、必要に応じて粉砕されてもよい。粉砕は、例えば、衝撃摩擦粉砕機、遠心力粉砕機、ボールミル(チューブミル、コンパウンドミル、円錐形ボールミル、ロッドミル)、振動ミル、コロイドミル、摩擦円盤ミルまたはジェットミルなどの微粉砕用の粉砕機を用いて行うことができる。ボールミルは、一般的に用いられる粉砕機である。粉砕時には、炭素材料への金属粉の混入を抑制するために、これらの粉砕機における炭素材料との接触部分は、アルミナ、メノウなど、非金属材料の材質で構成されていてもよい。粉砕により、炭素材料は、それを構成する粒子の平均粒径が、通常50μm以下、好ましくは30μm以下、とりわけ好ましくは10μm以下になるように、粉砕される。 Carbon material obtained by carbonization (firing) may be pulverized as necessary. The pulverization is, for example, an impact friction pulverizer, a centrifugal pulverizer, a ball mill (tube mill, compound mill, conical ball mill, rod mill), vibration mill, colloid mill, friction disk mill, or jet mill. Can be used. A ball mill is a pulverizer generally used. At the time of pulverization, in order to suppress the mixing of the metal powder into the carbon material, the contact portion with the carbon material in these pulverizers may be made of a non-metallic material such as alumina or agate. By the pulverization, the carbon material is pulverized so that the average particle size of the particles constituting the carbon material is usually 50 μm or less, preferably 30 μm or less, particularly preferably 10 μm or less.
 結合剤および導電剤は正極で用いられるものと同様のものを用いることができる。負極において、ナトリウムイオンでドープされることができかつ脱ドープされることができる炭素材料は、導電剤としての役割を果たす場合もある。 The same binder and conductive agent as those used for the positive electrode can be used. In the negative electrode, a carbon material that can be doped with sodium ions and can be dedope may also serve as a conductive agent.
 負極集電体としては、Cu、Ni、ステンレスなどを挙げることができ、ナトリウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuが好ましい。負極集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチングメタル状、エンボス状、またはこれらを組み合わせた形状(例えば、メッシュ状平板など)等が挙げられる。負極集電体表面にエッチング処理による凹凸が形成されていてもよい。 Examples of the negative electrode current collector include Cu, Ni, and stainless steel. Cu is preferable because it is difficult to form an alloy with sodium and it is easy to process into a thin film. Examples of the shape of the negative electrode current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh-like flat plate). It is done. Concavities and convexities by etching treatment may be formed on the surface of the negative electrode current collector.
 本発明のナトリウムイオン型蓄電デバイスにおいて、該蓄電デバイスを構成する負極は、ナトリウムイオンで予備的にドープされた電極である。これにより、電極の不可逆容量を低減することができる。大きな放電容量を持ち、サイクル特性に優れた蓄電デバイスを得ることができる。蓄電デバイスとして十分に使用可能なナトリウムイオン型蓄電デバイスを得ることができる。本発明において、ナトリウムイオンで予備的にドープされた電極は、ナトリウムをイオン状態または金属状態で保持している。 In the sodium ion type electricity storage device of the present invention, the negative electrode constituting the electricity storage device is an electrode pre-doped with sodium ions. Thereby, the irreversible capacity | capacitance of an electrode can be reduced. An electricity storage device having a large discharge capacity and excellent cycle characteristics can be obtained. A sodium ion type electricity storage device that can be sufficiently used as an electricity storage device can be obtained. In the present invention, the electrode pre-doped with sodium ions holds sodium in an ionic or metallic state.
 次に、本発明において、負極にナトリウムイオンを予備的にドープする具体的な方法を説明する。 Next, in the present invention, a specific method for pre-doping sodium ions into the negative electrode will be described.
 負極にナトリウムイオンを予備的にドープする好適な方法としては、例えばナトリウム金属を用いる方法が挙げられる。この方法は、具体的には、負極とナトリウム金属を電気的に接続する方法である。この方法では、ナトリウム金属と電極(本発明の蓄電デバイスにおける負極)との間に電位差が発生することにより、電気的にショートされた状態となる局部電池が形成され、ナトリウム金属からナトリウムイオンが溶出し、溶出したナトリウムイオンが高電位である電極に移動する。このようにして、電極(本発明の蓄電デバイスにおける負極)はナトリウムイオンで予備的にドープされる。 As a suitable method for preliminarily doping the negative electrode with sodium ions, for example, a method using sodium metal may be mentioned. Specifically, this method is a method of electrically connecting the negative electrode and sodium metal. In this method, a potential difference is generated between the sodium metal and the electrode (the negative electrode in the electricity storage device of the present invention) to form a local battery that is electrically shorted, and the sodium ions are eluted from the sodium metal. Then, the eluted sodium ions move to the electrode having a high potential. In this way, the electrode (the negative electrode in the electricity storage device of the present invention) is pre-doped with sodium ions.
 より好適な方法は、負極とナトリウム金属との間に外部電圧を印加する方法、すなわち、電解する方法である。この方法では、電源のプラス極をナトリウム金属につないで、電源のマイナス極を予備的にドープされる負極につなぐ。電解によりナトリウム金属からナトリウムイオンが溶出し、溶出したナトリウムイオンは負極に取り込まれる。負極にドープされるナトリウムイオン量は多く、ナトリウムイオンのドープ速度は速い。 A more preferred method is a method of applying an external voltage between the negative electrode and sodium metal, that is, a method of electrolysis. In this method, the positive pole of the power source is connected to sodium metal, and the negative pole of the power source is connected to a negative electrode that is pre-doped. Sodium ions are eluted from sodium metal by electrolysis, and the eluted sodium ions are taken into the negative electrode. The amount of sodium ions doped in the negative electrode is large, and the doping rate of sodium ions is fast.
 負極にナトリウムイオンを予備的にドープする好適な方法として、負極にナトリウム金属を溶融した液体を接触する方法も挙げられる。この方法では、ナトリウム金属を溶融した液体と負極との化学反応が促進され、負極はナトリウムイオンで予備的にドープされる。 As a suitable method for pre-doping sodium ions into the negative electrode, a method in which a liquid in which sodium metal is melted is brought into contact with the negative electrode can be mentioned. In this method, the chemical reaction between the liquid in which sodium metal is melted and the negative electrode is promoted, and the negative electrode is pre-doped with sodium ions.
 負極にナトリウムイオンを予備的にドープする好適な方法として、ナトリウム金属を用いて得られるナトリウム蒸気雰囲気下に、負極をおく方法も挙げられる。この方法では、ナトリウム蒸気と負極との化学反応が促進され、負極はナトリウムイオンで予備的にドープされる。本発明では、負極表面にナトリウム金属が蒸着した場合も、負極はナトリウムイオンでドープされたものとみなす。 As a preferred method for pre-doping sodium ions into the negative electrode, there is a method in which the negative electrode is placed in a sodium vapor atmosphere obtained using sodium metal. In this method, the chemical reaction between sodium vapor and the negative electrode is promoted, and the negative electrode is pre-doped with sodium ions. In the present invention, even when sodium metal is deposited on the negative electrode surface, the negative electrode is regarded as being doped with sodium ions.
 負極に予備的にドープされるナトリウムイオンの量(予備ドープ量)は、負極を構成する材料によって適宜設計する。予備ドープ量は、満充電容量の5%以上であることが好ましい。また、予備ドープ量は、予備的にナトリウムイオンでドープされた負極とナトリウム金属との酸化還元電位差が、1.00V以下、0.50V以下、0.30V以下、0.10V以下、又は0.05V以下になる量であることが好ましい。このように負極をナトリウムイオンによって予備的にドープする場合、得られる蓄電デバイスの放電容量、サイクル特性がより向上する傾向がある。この場合、負極としては、負極活物質、結合剤および必要に応じて導電剤等を含む負極合剤が負極集電体に担持された電極を、用いることができる。 The amount of sodium ions preliminarily doped into the negative electrode (preliminary dope amount) is appropriately designed according to the material constituting the negative electrode. The pre-doping amount is preferably 5% or more of the full charge capacity. In addition, the amount of pre-doping is such that the redox potential difference between the negative electrode preliminarily doped with sodium ions and sodium metal is 1.00 V or less, 0.50 V or less, 0.30 V or less, 0.10 V or less, or 0. It is preferable that the amount be 05 V or less. When the negative electrode is preliminarily doped with sodium ions in this way, the discharge capacity and cycle characteristics of the obtained electricity storage device tend to be further improved. In this case, as the negative electrode, an electrode in which a negative electrode active material, a binder, and, if necessary, a negative electrode mixture containing a conductive agent and the like are supported on the negative electrode current collector can be used.
(電解液)
 本発明のナトリウムイオン型蓄電デバイスにおいて、電解液は、ナトリウムイオンおよびアニオンを含有する。電解液は、通常、電解質が有機溶媒に溶解したものである。該電解液は、非水電解液ともいう。有機溶媒に溶解した電解質は、ナトリウムイオン(カチオン)とアニオンに分解する。電解質としては、例えば、NaClO4、NaPF6、NaBF4、NaCF3SO3、NaN(CF3SO22、NaN(C25SO22、NaC(CF3SO23、Na3BO3、NaF、NaAsF6、NaSbF6、NaTaF6、NaNbF6、Na2SiF6、NaCN、NaAlF4、NaAlCl4などのナトリウム塩が挙げられる。
(Electrolyte)
In the sodium ion type electricity storage device of the present invention, the electrolytic solution contains sodium ions and anions. The electrolytic solution is usually an electrolyte dissolved in an organic solvent. The electrolytic solution is also referred to as a nonaqueous electrolytic solution. The electrolyte dissolved in the organic solvent is decomposed into sodium ions (cations) and anions. Examples of the electrolyte include NaClO 4 , NaPF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (CF 3 SO 2 ) 2 , NaN (C 2 F 5 SO 2 ) 2 , NaC (CF 3 SO 2 ) 3 , Na 3 BO 3, NaF, NaAsF 6 , NaSbF 6, NaTaF 6, NaNbF 6, Na 2 SiF 6, NaCN, include sodium salts, such as NaAlF 4, NaAlCl 4.
 電解液において、電解質の濃度は、電解液に対する電解質の溶解度を考慮して、適宜設定すればよく、通常0.2~5mol(電解質)/L(電解液)程度であり、好ましくは0.3~3mol(電解質)/L(電解液)程度、特に好ましくは0.8~1.5mol/Lmol(電解質)/L(電解液)程度である。濃度が0.2mol/L以上であることにより、電解液のイオン伝導度が上昇し、得られる蓄電デバイスの内部抵抗が低下することができ、5mol/L以下であることにより、電解液の粘度が低下して内部抵抗が低下することができる。 In the electrolytic solution, the concentration of the electrolyte may be appropriately set in consideration of the solubility of the electrolyte in the electrolytic solution, and is usually about 0.2 to 5 mol (electrolyte) / L (electrolytic solution), preferably 0.3. About 3 to 3 mol (electrolyte) / L (electrolytic solution), particularly preferably about 0.8 to 1.5 mol / L mol (electrolyte) / L (electrolytic solution). When the concentration is 0.2 mol / L or more, the ionic conductivity of the electrolytic solution is increased, and the internal resistance of the obtained electricity storage device can be decreased. When the concentration is 5 mol / L or less, the viscosity of the electrolytic solution is reduced. As a result, the internal resistance can be reduced.
 電解質を溶解する有機溶媒としては、有機極性溶媒が用いられる。有機極性溶媒を含む電解液中の水分含有量としては、通常200重量ppm以下、好ましくは50重量ppm以下、さらに好ましくは20重量ppm以下である。水分含有量を抑制することにより、水の電気分解による電極への影響、特に耐電圧の低下を抑制することができる。 An organic polar solvent is used as the organic solvent for dissolving the electrolyte. The water content in the electrolytic solution containing the organic polar solvent is usually 200 ppm by weight or less, preferably 50 ppm by weight or less, more preferably 20 ppm by weight or less. By suppressing the water content, it is possible to suppress the influence on the electrode due to the electrolysis of water, particularly the decrease in withstand voltage.
 有機極性溶媒の具体例としては、以下の化合物(エーテル、フッ素化されたジオキソラン、アミド、ニトリル、カルボン酸エステル、ラクトン、カーボネート、スルホキシド、スルホン、ニトロ化合物、その他の複素環式化合物、炭化水素、ケイ素化合物など)が挙げられる。 Specific examples of the organic polar solvent include the following compounds (ether, fluorinated dioxolane, amide, nitrile, carboxylic acid ester, lactone, carbonate, sulfoxide, sulfone, nitro compound, other heterocyclic compounds, hydrocarbons, And silicon compounds).
エーテルの例としては、
モノエーテル(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、テトラヒドロフラン、3-メチルテトラヒドロフランなど)、ジエーテル(例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチルエーテル、メチルイソプロピルエーテルなど)、トリエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、環状エーテル[炭素数2~4の環状エーテル(例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、2-メチル-1,3-ジオキソランなど)、4-ブチルジオキソラン、炭素数5~18のクラウンエーテル]などが挙げられる。
Examples of ethers include
Monoethers (for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol monophenyl ether, tetrahydrofuran, 3-methyltetrahydrofuran, etc.), diethers (for example, ethylene glycol dimethyl ether, ethylene glycol) Diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethyl ether, methyl isopropyl ether, etc.), triethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, cyclic ether [cyclic ether having 2 to 4 carbon atoms (for example, tetrahydrofuran, 2-methylteto Hydrofuran, 1,3-dioxolane, 1,4-dioxane, 2-methyl-1,3-dioxolane, etc.), 4-butyl-dioxolane, and the like crown ether] of 5 to 18 carbon atoms.
フッ素化されたジオキソランの例としては、
2,2-ジ(トリフルオロメチル)-1,3-ジオキソラン、2,2-ジ(トリフルオロメチル)-4,5-ジフルオロ-1,3-ジオキソラン、2,2-ジ(トリフルオロメチル)-4,4,5,5-テトラフルオロ-1,3-ジオキソラン、2,2-ジメチル-4,4,5,5-テトラフルオロ-1,3-ジオキソラン又は2,2-ジメチル-4,5-ジフルオロ-1,3-ジオキソランなどが挙げられる。
Examples of fluorinated dioxolanes include
2,2-di (trifluoromethyl) -1,3-dioxolane, 2,2-di (trifluoromethyl) -4,5-difluoro-1,3-dioxolane, 2,2-di (trifluoromethyl) -4,4,5,5-tetrafluoro-1,3-dioxolane, 2,2-dimethyl-4,4,5,5-tetrafluoro-1,3-dioxolane or 2,2-dimethyl-4,5 -Difluoro-1,3-dioxolane and the like.
アミドの例としては、
ホルムアミド類(例えば、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミドなど)、アセトアミド類(例えば、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミドなど)、プロピオンアミド類(例えば、N,N-ジメチルプロピオンアミドなど)、ヘキサメチルホスホリルアミド、オキサゾリジノン類(例えば、N-メチル-2-オキサゾリジノン、3,5-ジメチル-2-オキサゾリジノンなど)、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどが挙げられる。
Examples of amides include
Formamides (eg, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, etc.), acetamides (eg, N-methylacetamide, N, N-dimethylacetamide, N- Ethylacetamide, N, N-diethylacetamide, etc.), propionamides (eg, N, N-dimethylpropionamide, etc.), hexamethylphosphorylamide, oxazolidinones (eg, N-methyl-2-oxazolidinone, 3,5- Dimethyl-2-oxazolidinone), 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone and the like.
ニトリルの例としては、
アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、アクリロニトリル、含フッ素プロピオニトリル(プロピオニトリルの水素原子1個以上をフッ素原子で置換したもの)などが挙げられる。
Examples of nitriles include
Acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, acrylonitrile, fluorine-containing propionitrile (one obtained by substituting one or more hydrogen atoms of propionitrile with a fluorine atom) and the like.
カルボン酸エステルの例としては、
蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、酪酸メチル、吉草酸メチル、プロピオン酸エチル、マロン酸ジメチル、マロン酸ジエチル、無水マレイン酸及びその誘導体などが挙げられる。
Examples of carboxylic acid esters include
Examples include methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, methyl butyrate, methyl valerate, ethyl propionate, dimethyl malonate, diethyl malonate, maleic anhydride, and derivatives thereof.
ラクトンの例としては、
γ-ブチロラクトン、3-メチル-γ-ブチロラクトン、2-メチル-γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、β-ブチロラクトン、γ-バレロラクトン、3-メチル-γ-バレロラクトン、δ-バレロラクトンなどが挙げられる。
Examples of lactones include
γ-butyrolactone, 3-methyl-γ-butyrolactone, 2-methyl-γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, 3-methyl-γ-valerolactone, δ-valerolactone Etc.
カーボネートの例としては、
エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジエチルカーボネート、4-アリルオキシメチル-1,3-ジオキソラン-2-オン、4-(1'-プロペニルオキシメチル)-1,3-ジオキソラン-2-オン、4-アリルオキシメチル-5-ビニル-1,3-ジオキソラン-2-オン、4-(1'-プロペニルオキシメチル)-5-ビニル-1,3-ジオキソラン-2-オン、4-アクリロイルオキシメチル-1,3-ジオキソラン-2-オン、4-メタクリロイルオキシメチル-1,3-ジオキソラン-2-オン、4-メタクリロイルオキシメチル-5-ビニル-1,3-ジオキソラン-2-オン、4-メトキシカルボニルオキシメチル-1,3-ジオキソラン-2-オン、4-アリルオキシカルボニルオキシメチル-1,3-ジオキソラン-2-オン、4-(1’-プロペニルオキシカルボニルオキシメチル)-1,3-ジオキソラン-2-オン、4-ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4,5,5-テトラメチル-1,3-ジオキソラン-2-オン、4,4,5,5-テトラエチル-1,3-ジオキソラン-2-オン、ビニレンカーボネート、4-メチルビニレンカー
ボネート、4,5-ジメチルビニレンカーボネート、5,5-ジメチル-1,3-ジオキサン-2-オン及び5,5-ジエチル-1,3-ジオキサン-2-オン、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、上記カーボネートの水素原子1個以上をフッ素原子で置換した化合物などが挙げられる。
Examples of carbonates include
Ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, diethyl carbonate, 4-allyloxymethyl-1,3-dioxolan-2-one, 4- (1 '-Propenyloxymethyl) -1,3-dioxolan-2-one, 4-allyloxymethyl-5-vinyl-1,3-dioxolan-2-one, 4- (1'-propenyloxymethyl) -5- Vinyl-1,3-dioxolan-2-one, 4-acryloyloxymethyl-1,3-dioxolan-2-one, 4-methacryloyloxymethyl-1,3-dioxolan-2-one, 4-methacryloyloxymethyl- 5-vinyl-1 3-dioxolan-2-one, 4-methoxycarbonyloxymethyl-1,3-dioxolan-2-one, 4-allyloxycarbonyloxymethyl-1,3-dioxolan-2-one, 4- (1′-propenyl) Oxycarbonyloxymethyl) -1,3-dioxolane-2-one, 4-vinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4,5,5-tetramethyl-1,3-dioxolan-2-one 4,4,5,5-tetraethyl-1,3-dioxolan-2-one, vinylene carbonate, 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 5,5-dimethyl-1,3-dioxane- 2-one and 5,5-diethyl-1,3-dioxane-2-one, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl ester Pills carbonate, and compounds obtained by substituting a hydrogen atom 1 or more fluorine atoms of the carbonate.
スルホキシドの例としては、
ジメチルスルホキシド、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、含フッ素スルホラン(スルホランの水素原子1個以上をフッ素原子に置換したもの)、1,3-プロパンスルトン、1,4-ブタンスルトン、これら化合物の水素原子1個以上をフッ素原子で置換した化合物などが挙げられる。
Examples of sulfoxides include
Dimethyl sulfoxide, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, fluorine-containing sulfolane (substitution of one or more hydrogen atoms of sulfolane with fluorine atoms), 1,3-propane sultone, 1,4-butane sultone, Examples include compounds in which one or more hydrogen atoms of these compounds are substituted with fluorine atoms.
スルホンの例としては、
ジメチルスルホン、ジエチルスルホン、ジ-n-プロピルスルホン、ジイソプロピルスルホン、ジ-n-ブチルスルホン、ジ-sec-ブチルスルホン、ジ-tert-ブチルスルホンなどが挙げられる。
Examples of sulfones are:
Examples thereof include dimethyl sulfone, diethyl sulfone, di-n-propyl sulfone, diisopropyl sulfone, di-n-butyl sulfone, di-sec-butyl sulfone, and di-tert-butyl sulfone.
ニトロ化合物の例としては、
ニトロメタン、ニトロエタンなどが挙げられる。
Examples of nitro compounds include
Examples include nitromethane and nitroethane.
その他の複素環式化合物の例としては、
N-メチル-2-オキサゾリジノン、3,5-ジメチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリジノンなどが挙げられる。
Examples of other heterocyclic compounds include
N-methyl-2-oxazolidinone, 3,5-dimethyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidinone and the like can be mentioned.
炭化水素の例としては、
芳香族系溶剤(例えば、トルエン、キシレン、エチルフルオロベンゼン、ベンゼンの水素原子がフッ素原子に1~6個置換されたフルオロベンゼンなど)、パラフィン系溶剤(例えば、ノルマルパラフィン、イソパラフィンなど)などが挙げられる。
Examples of hydrocarbons include
Aromatic solvents (for example, toluene, xylene, ethylfluorobenzene, fluorobenzene in which 1 to 6 hydrogen atoms of benzene are substituted with fluorine atoms), paraffinic solvents (for example, normal paraffin, isoparaffin, etc.) It is done.
ケイ素化合物の例としては、
ケイ素原子を分子内に有する化合物で、オキサゾリジノン化合物(例えば、3-トリメチルシリル-2-オキサゾリジノン、3-トリメチルシリル-4-トリフルオロメチル-2-オキサゾリジノン、3-トリエチルシリル-2-オキサゾリジノンなど)、イミダゾール化合物(例えば、N-トリメチルシリルイミダゾール、N-トリメチルシリル-4-メチル-イミダゾール、N-トリエチルシリルイミダゾール等)、ホスフェート化合物(例えば、トリス(トリメチルシリル)ホスフェート、トリス(トリエチルシリル)ホスフェート、トリメチルシリルジメチルホスフェート、トリメチルシリルジアリルホスフェート等)、環状カーボネート化合物(例えば、4-トリメチルシリル-1,3-ジオキソラン-2-オン、4-トリメチルシリル-5-ビニル-1,3-ジオキソラン-2-オン、4-トリメチルシリルメチル-1,3-ジオキソラン-2-オン等)、フェニル化合物(例えば、フェニルトリメチルシラン、フェニルトリエチルシラン、フェニルトリメトキシシラン、フェニルチオトリメチルシラン、フェニルチオトリエチルシラン等)、カーバメート化合物(例えば、メチル-N-トリメチルシリルカーバメート、メチル-N,N-ビストリメチルシリルカーバメート、エチル-N-トリメチルシリルカーバメート、メチル-N-トリエチルシリルカーバメート、ビニル-N-トリメチルシリルカーバメート等)、カーボネート化合物(例えば、メチルトリメチルシリルカーボネート、アリルトリメチルシリルカーボネート、エチルトリメチルシリルカーボネート等)、メトキシトリメチルシラン、ヘキサメチルジシロキサン、ペンタメチルジシロキサン、メトキシメチルトリメチルシラン、トリメチルクロロシラン、ブチルジフェニルクロロシラン、トリフルオロメチルトリメチルシラン、アセチルトリメチルシラン、3-トリメチルシリルシクロペンテン、アリルトリメチルシラン、ビニルトリメチルシラン、ヘキサメチルジシラザンなどが挙げられる。
Examples of silicon compounds include
Compounds having a silicon atom in the molecule, such as oxazolidinone compounds (eg 3-trimethylsilyl-2-oxazolidinone, 3-trimethylsilyl-4-trifluoromethyl-2-oxazolidinone, 3-triethylsilyl-2-oxazolidinone), imidazole compounds (For example, N-trimethylsilylimidazole, N-trimethylsilyl-4-methyl-imidazole, N-triethylsilylimidazole, etc.), phosphate compounds (for example, tris (trimethylsilyl) phosphate, tris (triethylsilyl) phosphate, trimethylsilyldimethylphosphate, trimethylsilyldiallyl Phosphates, etc.), cyclic carbonate compounds (eg 4-trimethylsilyl-1,3-dioxolan-2-one, 4-trimethyl) Ryl-5-vinyl-1,3-dioxolan-2-one, 4-trimethylsilylmethyl-1,3-dioxolan-2-one, etc.), phenyl compounds (eg, phenyltrimethylsilane, phenyltriethylsilane, phenyltrimethoxysilane) , Phenylthiotrimethylsilane, phenylthiotriethylsilane, etc.), carbamate compounds (eg, methyl-N-trimethylsilyl carbamate, methyl-N, N-bistrimethylsilyl carbamate, ethyl-N-trimethylsilyl carbamate, methyl-N-triethylsilyl carbamate, Vinyl-N-trimethylsilylcarbamate), carbonate compounds (eg, methyltrimethylsilylcarbonate, allyltrimethylsilylcarbonate, ethyltrimethylsilylcarbonate) Etc.), methoxytrimethylsilane, hexamethyldisiloxane, pentamethyldisiloxane, methoxymethyltrimethylsilane, trimethylchlorosilane, butyldiphenylchlorosilane, trifluoromethyltrimethylsilane, acetyltrimethylsilane, 3-trimethylsilylcyclopentene, allyltrimethylsilane, vinyltrimethyl Examples thereof include silane and hexamethyldisilazane.
 有機極性溶媒は、異なる2種類以上の溶媒の混合物(混合溶媒)でもよい。
 電解液に含まれる有機極性溶媒は、好ましくはカーボネート類及びラクトン類などのエステル系溶媒を主成分とする溶媒であり、特に好ましくはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート及びジエチルカーボネートからなる群より選ばれた少なくとも1種を主成分とするエステル系溶媒である。ここで「主成分とする」とは、混合溶媒のうち、50重量%以上、好ましくは70重量%以上、エステル系溶媒が占めることを意味する。エステル系溶媒が電解液に含まれる場合、電解液は耐酸化性に優れることから、蓄電デバイス動作時の正極電位が高くなる。これにより蓄電デバイスとしての単位体積あたりの充放電容量(エネルギー密度)がより大きくなることができる。電解液の急激な分解を抑制する効果も得られる。エチレンカーボネートおよびジメチルカーボネートの組み合わせからなる混合溶媒は、電解液に含まれる有機極性溶媒として好ましい。
The organic polar solvent may be a mixture of two or more different solvents (mixed solvent).
The organic polar solvent contained in the electrolytic solution is preferably a solvent mainly composed of ester solvents such as carbonates and lactones, and particularly preferably propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, It is an ester solvent mainly composed of at least one selected from the group consisting of isopropyl methyl carbonate, vinylene carbonate and diethyl carbonate. Here, “main component” means that the ester solvent occupies 50% by weight or more, preferably 70% by weight or more of the mixed solvent. When the ester solvent is contained in the electrolytic solution, the electrolytic solution is excellent in oxidation resistance, so that the positive electrode potential during operation of the electricity storage device is increased. Thereby, the charge / discharge capacity (energy density) per unit volume as the electricity storage device can be further increased. The effect which suppresses rapid decomposition | disassembly of electrolyte solution is also acquired. A mixed solvent composed of a combination of ethylene carbonate and dimethyl carbonate is preferred as the organic polar solvent contained in the electrolytic solution.
 電解液には、必要により種々の添加剤が添加される。具体的には、ガス発生を抑制し耐電圧を向上するためのリン酸エステル(例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリアリルなど)およびホスホン酸類、高容量高出力化のための含フッ素有機ケイ素化合物などが挙げられる。含フッ素有機ケイ素化合物は、下記式で表される。
   CF3CH2CH2Si(CH33
   (CH33Si-O-Si(CH3)(CF3CH2CH2)-Si(CH3
If necessary, various additives are added to the electrolytic solution. Specifically, phosphoric acid esters (for example, trimethyl phosphate, triethyl phosphate, triallyl phosphate, etc.) and phosphonic acids for suppressing gas generation and improving withstand voltage, fluorine containing for high capacity and high output Examples include organosilicon compounds. The fluorine-containing organosilicon compound is represented by the following formula.
CF 3 CH 2 CH 2 Si (CH 3 ) 3
(CH 3 ) 3 Si—O—Si (CH 3 ) (CF 3 CH 2 CH 2 ) —Si (CH 3 )
 リン酸エステルやホスホン酸類の添加割合は、電解質の電気伝導度と有機溶媒への溶解度の観点から、電解質の重量に対して、通常10重量%以下程度であり、含フッ素有機ケイ素化合物の添加割合は、電解液の重量に対して、通常0.1~5重量%程度である。 The addition ratio of phosphoric acid esters and phosphonic acids is usually about 10% by weight or less with respect to the weight of the electrolyte from the viewpoint of the electrical conductivity of the electrolyte and the solubility in organic solvents, and the addition ratio of the fluorine-containing organosilicon compound Is usually about 0.1 to 5% by weight based on the weight of the electrolytic solution.
 添加剤として、安息香酸類[例えば、安息香酸メチル、安息香酸エチル、安息香酸プロピルなど安息香酸アルキルエステル、安息香酸など]を使用してもよい。集電体からの金属溶出を防止する効果が得られる。添加剤として安息香酸類を用いる場合、その添加割合は、電解質の重量に対して、通常0.001~10.0重量%程度、好ましくは0.005~5重量%、特に好ましくは0.1~1重量%である。安息香酸類は、有機極性溶媒としても使用することができる。 As additives, benzoic acids [for example, benzoic acid alkyl esters such as methyl benzoate, ethyl benzoate, propyl benzoate, benzoic acid, etc.] may be used. An effect of preventing metal elution from the current collector can be obtained. When benzoic acids are used as additives, the addition ratio is usually about 0.001 to 10.0% by weight, preferably 0.005 to 5% by weight, particularly preferably 0.1 to 0.1% by weight based on the weight of the electrolyte. 1% by weight. Benzoic acids can also be used as organic polar solvents.
(セパレータ)
 本発明のナトリウムイオン型蓄電デバイスは、セパレータをさらに有することもできる。セパレータは、正極と負極との間に配置される。セパレータは、正極と負極とを分離することにより両電極の短絡を抑制する。セパレータは、電解液を保持する役割を担うこともある。セパレータは、好ましくは、大きなイオン透過度と所定の機械的強度を持つ絶縁性の膜である。
 セパレータとしては、例えば、ビスコースレーヨン、天然セルロースなどの抄紙、クラフト紙、マニラ紙、セルロース又はポリエステル等の繊維を抄紙して得られる混抄紙、ポリエチレン不織布、ポリプロピレン不織布、ポリエステル不織布、ポリブチレンテレフタレート不織布、ガラス繊維不織布、アラミド繊維不織布などの不織布、ポリエチレン、ポリプロピレン、ポリエステル、アラミド(パラ系全芳香族ポリアミドなど)、フッ化ビニリデン、テトラフルオロエチレン、フッ化ビニリデンと6フッ化プロピレンとの共重合体、フッ素ゴム等の含フッ素樹脂などの材料から構成される多孔質膜等が挙げられる。
 セパレータは、シリカなどのセラミック粉末粒子と上述した結合剤とからなる成形物でもよい。該成形物は、通常、正極及び負極と一体成形される。ポリエチレン、ポリプロピレンなどの材料から構成されるセパレータは、極性溶媒との親和性を向上させるために界面活性剤やシリカ粒子を含有してもよい。セパレータは、アセトン等の有機溶媒、ジブチルフタレート(DBP)等の可塑剤等を含有してもよい。
(Separator)
The sodium ion type electricity storage device of the present invention may further have a separator. The separator is disposed between the positive electrode and the negative electrode. The separator suppresses a short circuit between both electrodes by separating the positive electrode and the negative electrode. The separator may play a role of holding the electrolytic solution. The separator is preferably an insulating film having a large ion permeability and a predetermined mechanical strength.
Examples of the separator include paper made of viscose rayon, natural cellulose, kraft paper, manila paper, mixed paper obtained by making fibers such as cellulose or polyester, polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polybutylene terephthalate nonwoven fabric. , Non-woven fabric such as glass fiber non-woven fabric, aramid fiber non-woven fabric, polyethylene, polypropylene, polyester, aramid (para-type wholly aromatic polyamide, etc.), vinylidene fluoride, tetrafluoroethylene, copolymer of vinylidene fluoride and propylene hexafluoride And a porous film composed of a material such as fluorine-containing resin such as fluororubber.
The separator may be a molded product made of ceramic powder particles such as silica and the binder described above. The molded product is usually molded integrally with the positive electrode and the negative electrode. A separator made of a material such as polyethylene or polypropylene may contain a surfactant or silica particles in order to improve the affinity with a polar solvent. The separator may contain an organic solvent such as acetone and a plasticizer such as dibutyl phthalate (DBP).
 セパレータは、プロトン伝導型ポリマーを含有してもよい。
 セパレータは、より好ましくは、ビスコースレーヨン又は天然セルロースの抄紙、クラフト紙、マニラ紙、セルロース又はポリエステルの繊維を抄紙して得られる混抄紙、ポリエチレン不織布、ポリプロピレン不織布、ポリエステル不織布あるいはガラス繊維不織布である。
 セパレータの孔径は、通常0.01~10μm程度である。セパレータの厚さは、通常1~300μm程度、好ましくは5~30μm程度である。
The separator may contain a proton conducting polymer.
The separator is more preferably a viscose rayon or natural cellulose paper, kraft paper, manila paper, a mixed paper obtained by making a cellulose or polyester fiber, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyester nonwoven fabric or a glass fiber nonwoven fabric. .
The pore diameter of the separator is usually about 0.01 to 10 μm. The thickness of the separator is usually about 1 to 300 μm, preferably about 5 to 30 μm.
(蓄電デバイス)
 ナトリウムイオン型蓄電デバイスの形状としては、例えば、コイン型、捲回型、積層型、蛇腹型等、ラミネートパック型等が挙げられる。
 コイン型の製造法としては、図1に示したように、ステンレスなどの金属製容器(1-1)の内底に、集電体(1-2)、電極活物質層(1-3)、セパレータ(1-4)、電極活物質層(1-3)及び集電体(1-2)を順次積層し、電解液を注入したのち金属製蓋(1-5)及びガスケット(1-6)で封止する方法などが挙げられる。
 捲回型の製造例としては、図2に示したように、集電体(2-2)に導電性炭素材料を含む混合スラリーを塗布、乾燥し、電極活物質層(2-3)を形成させた積層シートを調製し、この積層シート2枚をセパレータ(2-4)を介して捲回して得られた電極群を円筒型のアルミニウム、ステンレス等の金属製容器(2-1)に挿入し、電解液を注入したのち電極封口板(2-5)で封止する方法などが挙げられる。集電体には予めリードが具備されており、一方の積層シートのリード(2-6)が正極として作用し、他方の積層シートのリード(2-6)が負極として作用し、蓄電デバイスは充電及び放電する。
 積層型の製造法としては、図3に示したように、集電体(3-2)及び電極活物質層(3-3)の積層シートとセパレータ(3-4)を交互に積層して得られた電極群を、アルミニウム、ステンレス等の金属製容器(3-1)に挿入し、電解液を注入し、集電体を交互にリード(3-5)と接続し、封止する方法;図4に示したように、集電体(4-2)及び電極活物質層(4-3)の積層シート並びにセパレータ(4-4)を交互に圧接し、外層をゴム材料等でシーリングし、電解液を充填したのち、封止する方法などが挙げられる。ガスケット(4-6)を適宜含むパイポーラ構造として、使用電圧を任意に設定できる構造であってもよい。
 ラミネートパック型の製造法としては図5に示したように、電極(5-2)の積層シートとセパレータ(5-3)を交互に積層して得られた電極群を、アルミ蒸着した樹脂シート等のラミネートパック(5-1)に挿入し、電解液を注入し、電極(5-2)は交互にリード(5-4)と接続され、封止する方法などが挙げられる。
 蛇腹型(図示せず)は、電極のシート2枚をセパレータを介して蛇腹状に折り返しながら積層して得られた電極群を用いて、積層型と同様に調製することができる。
(Electric storage device)
Examples of the shape of the sodium ion type electricity storage device include a coin type, a wound type, a laminated type, a bellows type, and a laminated pack type.
As shown in FIG. 1, a coin type manufacturing method includes a current collector (1-2), an electrode active material layer (1-3) on the inner bottom of a metal container (1-1) such as stainless steel. The separator (1-4), the electrode active material layer (1-3), and the current collector (1-2) are sequentially laminated, and after injecting the electrolyte, the metal lid (1-5) and gasket (1- 6) and the like.
As an example of winding type production, as shown in FIG. 2, a mixed slurry containing a conductive carbon material is applied to a current collector (2-2) and dried to form an electrode active material layer (2-3). An electrode group obtained by preparing the formed laminated sheet and winding the two laminated sheets through the separator (2-4) is placed in a cylindrical metal container (2-1) such as aluminum or stainless steel. For example, a method of sealing with an electrode sealing plate (2-5) after inserting and injecting an electrolytic solution can be used. The current collector is provided with a lead in advance, the lead (2-6) of one laminated sheet acts as a positive electrode, and the lead (2-6) of the other laminated sheet acts as a negative electrode. Charge and discharge.
As shown in FIG. 3, a laminate type manufacturing method includes alternately laminating sheets of current collectors (3-2) and electrode active material layers (3-3) and separators (3-4). Method of inserting the obtained electrode group into a metal container (3-1) such as aluminum or stainless steel, injecting an electrolyte, and alternately connecting the current collector to the lead (3-5) and sealing As shown in FIG. 4, the laminated sheet of the current collector (4-2) and the electrode active material layer (4-3) and the separator (4-4) are alternately pressed, and the outer layer is sealed with a rubber material or the like. For example, a method of sealing after filling with an electrolytic solution may be used. As a bipolar structure including the gasket (4-6) as appropriate, a structure in which the working voltage can be arbitrarily set may be used.
As shown in FIG. 5, a laminate pack type manufacturing method is a resin sheet in which an electrode group obtained by alternately laminating a laminate sheet of electrodes (5-2) and a separator (5-3) is vapor-deposited on aluminum. For example, a method may be used in which the electrode is inserted into a laminate pack (5-1), an electrolyte solution is injected, and the electrodes (5-2) are alternately connected to the leads (5-4) for sealing.
The bellows type (not shown) can be prepared in the same manner as the multilayer type using an electrode group obtained by laminating two sheets of electrodes while folding them in a bellows shape with a separator interposed therebetween.
 以下、実施例により本発明を更に詳細に説明する。本発明はこれら実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
(正極の作製)
 正極活物質としての活性炭(株式会社クラレ製、RP20)と、ポリフッ化ビニリデン(PVDF:株式会社クレハ製、PolyVinylideneDiFluoride)とを95:5の比率で混合したものに、更にN-メチルピロリドン(NMP:東京化成工業株式会社製)を適量加え混合し、スラリーを得た。得られたスラリーを、集電体である厚さ40μmのアルミ箔上に、アプリケータを用いて100μmの厚さで塗布し、これを乾燥機に入れ、NMPを除去させながら、十分に乾燥することによって電極シートを得た。この電極シートを電極打ち抜き機で直径1.5cmに打ち抜いた後、ハンドプレスにて十分に圧着し、正極を得た。
(Preparation of positive electrode)
Activated carbon (manufactured by Kuraray Co., Ltd., RP20) as a positive electrode active material and polyvinylidene fluoride (PVDF: Kureha Co., Ltd., PolyvinylideneDiFluoride) mixed at a ratio of 95: 5, and further N-methylpyrrolidone (NMP: An appropriate amount of Tokyo Chemical Industry Co., Ltd.) was added and mixed to obtain a slurry. The obtained slurry is applied to an aluminum foil having a thickness of 40 μm, which is a current collector, with a thickness of 100 μm using an applicator, and this is put into a dryer and sufficiently dried while removing NMP. As a result, an electrode sheet was obtained. This electrode sheet was punched out to a diameter of 1.5 cm with an electrode punching machine, and then sufficiently pressed with a hand press to obtain a positive electrode.
(負極の作製)
 負極活物質としての非黒鉛化炭素材料(日本カーボン製:ICB0510)と、ポリフッ化ビニリデン(PVDF)とを95:5の比率で混合したものに、N-メチルピロリドン(NMP)を適量加え混合し、スラリーを得た。得られたスラリーを集電体である厚さ10μmの銅箔上にアプリケータを用いて、100μmの厚さで塗布し、これを乾燥機に入れ、NMPを除去させながら、十分に乾燥することによって負極シートを得た。
 この負極シートを電極打ち抜き機で直径1.5cmに打ち抜いた後、ハンドプレスにて十分に圧着し、負極を得た。
(Preparation of negative electrode)
Add a suitable amount of N-methylpyrrolidone (NMP) to a mixture of non-graphitized carbon material (Nippon Carbon: ICB0510) as a negative electrode active material and polyvinylidene fluoride (PVDF) in a ratio of 95: 5. A slurry was obtained. Apply the obtained slurry onto a copper foil with a thickness of 10 μm, which is a current collector, with a thickness of 100 μm using an applicator, put it in a dryer, and dry it thoroughly while removing NMP. Thus, a negative electrode sheet was obtained.
This negative electrode sheet was punched to a diameter of 1.5 cm using an electrode punching machine, and then sufficiently pressed by a hand press to obtain a negative electrode.
(負極へのナトリウムイオンの予備ドープ)
 次のようにして予備セルを作製して、負極へのナトリウムイオンの予備ドープを行った。上記の負極と、非水電解液としての1MのNaClO4/プロピレンカーボネート(PC)と、セパレータとを用いた。対極としてナトリウム金属を用意して、対極と負極との間にセパレータを配置させて、コインセルに収容し、非水電解液を注入して、予備セルを作製した。予備セルの組み立てはアルゴン雰囲気のグローブボックス内で行った。
(Pre-doping of sodium ions into the negative electrode)
A spare cell was prepared as follows and sodium ions were pre-doped into the negative electrode. The negative electrode, 1M NaClO 4 / propylene carbonate (PC) as a non-aqueous electrolyte, and a separator were used. Sodium metal was prepared as a counter electrode, a separator was disposed between the counter electrode and the negative electrode, accommodated in a coin cell, and a non-aqueous electrolyte was injected to prepare a spare cell. The spare cell was assembled in a glove box with an argon atmosphere.
 電源を用意し、電源のプラス極をナトリウム金属側につなぎ、電源のマイナス極を予備ドープすべき負極側につなぐという回路を構成し、電位差が0.005Vになるまで0.007mAのCC(コンスタントカレント:定電流)放電をすることで、ナトリウムイオンで予備的にドープされた負極を得た。 Prepare a power supply, and configure a circuit that connects the positive electrode of the power supply to the sodium metal side, and connects the negative electrode of the power supply to the negative electrode side to be pre-doped, and a CC (constant of 0.007 mA until the potential difference becomes 0.005V. A negative electrode preliminarily doped with sodium ions was obtained by discharging (current: constant current).
 実施例1
(蓄電デバイスの作製)
 上記のナトリウムイオンで予備的にドープされた負極と、非水電解液としての1MのNaClO4/PCと、セパレータとしてのポリプロピレン多孔質膜(膜厚20μm)と、上記の正極とを用意して、正極と負極との間にセパレータを配置させて、コインセルに収容し、非水電解液を注入して、蓄電デバイス1を作製した。蓄電デバイス1の組み立てはアルゴン雰囲気のグローブボックス内で行った。
Example 1
(Production of electricity storage device)
A negative electrode pre-doped with sodium ions, 1M NaClO 4 / PC as a non-aqueous electrolyte, a polypropylene porous membrane (film thickness 20 μm) as a separator, and the positive electrode are prepared. Then, a separator was disposed between the positive electrode and the negative electrode, accommodated in a coin cell, and a non-aqueous electrolyte was injected to produce the electricity storage device 1. The electrical storage device 1 was assembled in a glove box in an argon atmosphere.
 電源を用意し、電源のプラス極を蓄電デバイス1の正極側につなぎ、電源のマイナス極を蓄電デバイス1の予備ドープされた負極側につなぐという回路を構成し、以下の条件で定電流充放電試験を実施した。
充放電条件:
 充電は、4.0Vまで0.004mAでCC(コンスタントカレント:定電流)充電で行った。放電は、該充電速度と同じ速度で、CC放電で行い、電圧1.5Vでカットオフした。次サイクル以降の充電、放電は、該充電速度と同じ速度で行い、1サイクル目と同様に、充電電圧4.0V、放電電圧1.5Vでカットオフした。
Prepare a power supply, configure a circuit that connects the positive electrode of the power supply to the positive electrode side of the electricity storage device 1, and connects the negative electrode of the power supply to the pre-doped negative electrode side of the electricity storage device 1, and performs constant current charge / discharge under the following conditions The test was conducted.
Charging / discharging conditions:
Charging was performed by CC (constant current: constant current) charging at 0.004 mA up to 4.0 V. Discharge was performed by CC discharge at the same rate as the charge rate, and was cut off at a voltage of 1.5V. Charging and discharging after the next cycle were performed at the same rate as the charging rate, and cut off at a charging voltage of 4.0 V and a discharging voltage of 1.5 V as in the first cycle.
 蓄電デバイス1について、定電流充放電試験を行った結果、2サイクル目の放電容量は、負極活物質の重量で規格化した値で107mAh/gであり、リチウムイオンキャパシタの値を凌駕する値であり、単位体積あたりに貯蔵される電気エネルギーが大きい大容量の蓄電デバイスが得られた。2サイクル目の放電容量に対する20サイクル目の放電容量の割合(放電容量維持率)は89%であり、サイクル特性も良好であった。 As a result of conducting a constant current charge / discharge test on the electricity storage device 1, the discharge capacity at the second cycle is 107 mAh / g as a value normalized by the weight of the negative electrode active material, which exceeds the value of the lithium ion capacitor. In addition, a large-capacity electricity storage device with a large electrical energy stored per unit volume was obtained. The ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 2nd cycle (discharge capacity retention ratio) was 89%, and the cycle characteristics were also good.
 実施例2
 非水電解液にエチレンカーボネート(EC)とジメチルカーボネート(DMC)とを1:1(重量比)となるように混合した混合溶媒を用いた。非水電解液として、1MのNaClO4/(EC+DMC)を使用した以外は実施例1と同様にして、蓄電デバイス2を作製した。
Example 2
A mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a ratio of 1: 1 (weight ratio) to the nonaqueous electrolytic solution was used. An electricity storage device 2 was produced in the same manner as in Example 1 except that 1M NaClO 4 / (EC + DMC) was used as the non-aqueous electrolyte.
 蓄電デバイス2について、実施例1と同様の回路を構成し、同様の充放電条件で試験を行ったところ、2サイクル目の放電容量は、負極活物質の重量で規格化した値で200mAh/gであり、リチウムイオンキャパシタの値を凌駕する極めて大きな値であり、単位体積あたりに貯蔵される電気エネルギーが大きい極めて大容量の蓄電デバイスが得られた。2サイクル目の放電容量に対する20サイクル目の放電容量の割合(放電容量維持率)は97%であり、サイクル特性も極めて良好であった。 For the electricity storage device 2, the same circuit as in Example 1 was constructed and tested under the same charge / discharge conditions. The discharge capacity at the second cycle was 200 mAh / g as a value normalized by the weight of the negative electrode active material. Thus, an extremely large capacity electricity storage device having an extremely large value exceeding the value of the lithium ion capacitor and a large electric energy stored per unit volume was obtained. The ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 2nd cycle (discharge capacity retention ratio) was 97%, and the cycle characteristics were also very good.
 比較例1
 ナトリウムイオンで予備的にドープされた負極の代わりに、ナトリウムイオンで予備的にドープされる前の状態の負極を用いる以外は、実施例1と同様にして蓄電デバイス3を作製した。
Comparative Example 1
An electricity storage device 3 was produced in the same manner as in Example 1 except that the negative electrode pre-doped with sodium ions was used instead of the negative electrode pre-doped with sodium ions.
 蓄電デバイス3について、実施例1と同様の回路を構成し、同様の充放電条件で試験を行ったが、有効な充電電流、放電電流は観測されず、蓄電デバイスとして動作しなかった。 Regarding the electricity storage device 3, a circuit similar to that in Example 1 was constructed and tested under the same charge / discharge conditions, but no effective charge current and discharge current were observed, and the device did not operate.
 比較例2
 ナトリウムイオンで予備的にドープされた負極の代わりに、ナトリウムイオンで予備的にドープされる前の状態の負極を用いる以外は、実施例2と同様にして蓄電デバイス4を作製した。
Comparative Example 2
An electricity storage device 4 was produced in the same manner as in Example 2 except that the negative electrode pre-doped with sodium ions was used instead of the negative electrode pre-doped with sodium ions.
 蓄電デバイス4について、実施例2と同様の回路を構成し、同様の充放電条件で試験を行ったが、有効な充電電流、放電電流は観測されず、蓄電デバイスとして動作しなかった。 For the electricity storage device 4, a circuit similar to that of Example 2 was configured and tested under the same charge / discharge conditions. However, no effective charge current and discharge current were observed, and the device did not operate.
 実施例3
 電解質としてヘキサフルオロりん酸ナトリウム(NaPF6)を用い、溶媒としてプロピレンカーボネート(PC)を用いて、非水電解液を調整した。非水電解液として、1MのNaPF6/PCを使用した以外は実施例1と同様にして、蓄電デバイス5を作製した。
Example 3
A nonaqueous electrolytic solution was prepared using sodium hexafluorophosphate (NaPF 6 ) as an electrolyte and propylene carbonate (PC) as a solvent. An electricity storage device 5 was produced in the same manner as in Example 1 except that 1M NaPF 6 / PC was used as the non-aqueous electrolyte.
 蓄電デバイス5について、実施例1と同様の回路を構成し、同様の充放電条件での試験を行ったところ、2サイクル目の放電容量は、負極活物質の重量で規格化した値で140mAh/gであり、リチウムイオンキャパシタの値を凌駕する極めて大きな値であり、単位体積あたりに貯蔵される電気エネルギーが大きい極めて大容量の蓄電デバイスが得られた。2サイクル目の放電容量に対する20サイクル目の放電容量の割合(放電容量維持率)は91%であり、サイクル特性も極めて良好であった。 Regarding the electricity storage device 5, the same circuit as in Example 1 was configured and the test was performed under the same charge / discharge conditions. As a result, the discharge capacity at the second cycle was 140 mAh / min as a value normalized by the weight of the negative electrode active material. g, an extremely large value that surpasses the value of the lithium ion capacitor, and an extremely large-capacity electricity storage device with a large electrical energy stored per unit volume was obtained. The ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 2nd cycle (discharge capacity retention rate) was 91%, and the cycle characteristics were also very good.
 比較例3
 ナトリウムイオンで予備的にドープされた負極の代わりに、ナトリウムイオンで予備的にドープされる前の状態の負極を用いる以外は、実施例3と同様にして蓄電デバイス6を作製した。
Comparative Example 3
An electricity storage device 6 was produced in the same manner as in Example 3 except that the negative electrode pre-doped with sodium ions was used instead of the negative electrode pre-doped with sodium ions.
 蓄電デバイス6について、実施例3と同様の回路を構成し、同様の充放電条件での試験を行ったが、有効な充電電流、放電電流は観測されず、蓄電デバイスとして動作しなかった。 Regarding the electricity storage device 6, a circuit similar to that in Example 3 was configured and a test was performed under the same charge / discharge conditions. However, no effective charging current and discharging current were observed, and the device did not operate as an electricity storage device.
 本発明の蓄電デバイスは、資源的に豊富なナトリウムを用いるデバイスであり、単位体積あたりの静電容量に優れ、電気エネルギーの貯蔵に利用することが可能となる。特にその優れた特性から、携帯機器分野や輸送機器分野におけるエネルギー貯蔵などに好適に利用することができる。 The electricity storage device of the present invention is a device that uses abundant sodium in terms of resources, has an excellent capacitance per unit volume, and can be used for storing electrical energy. In particular, because of its excellent characteristics, it can be suitably used for energy storage in the field of portable equipment and transportation equipment.
 1-1  金属製容器
 1-2  電極(正極または負極)における集電体
 1-3  電極(正極または負極)における活物質層
 1-4  セパレータ
 1-5  金属製蓋 
 1-6  ガスケット
 2-1  金属製容器
 2-2  電極(正極または負極)における集電体
 2-3  電極(正極または負極)における活物質層
 2-4  セパレータ
 2-5  電極封口板
 2-6  リード
 3-1  金属製容器
 3-2  電極(正極または負極)における集電体
 3-3  電極(正極または負極)における活物質層
 3-4  セパレータ
 3-5  リード
 3-6  端子
 3-7  安全弁
 4-1  加圧板及び端子
 4-2  電極(正極または負極)における集電体
 4-3  電極(正極または負極)における活物質層
 4-4  セパレータ
 4-6  ガスケット
 5-1  ラミネートパック
 5-2  電極(正極または負極)
 5-3  セパレータ
 5-4  リード
1-1 Metal container 1-2 Current collector in electrode (positive electrode or negative electrode) 1-3 Active material layer in electrode (positive electrode or negative electrode) 1-4 Separator 1-5 Metal lid
1-6 Gasket 2-1 Metal container 2-2 Current collector in electrode (positive electrode or negative electrode) 2-3 Active material layer in electrode (positive electrode or negative electrode) 2-4 Separator 2-5 Electrode sealing plate 2-6 Lead 3-1 Metal container 3-2 Current collector in electrode (positive electrode or negative electrode) 3-3 Active material layer in electrode (positive electrode or negative electrode) 3-4 Separator 3-5 Lead 3-6 Terminal 3-7 Safety valve 4- 1 Pressure plate and terminal 4-2 Current collector in electrode (positive electrode or negative electrode) 4-3 Active material layer in electrode (positive electrode or negative electrode) 4-4 Separator 4-6 Gasket 5-1 Laminate pack 5-2 Electrode (positive electrode) Or negative electrode)
5-3 Separator 5-4 Lead

Claims (6)

  1.  正極と、負極と、ナトリウムイオンおよびアニオンを含有する電解液とを有し、
     該正極は、アニオンを吸着することができかつ脱離することができ、またはアニオンでドープされることができかつ脱ドープされることができ、
     該負極はナトリウムイオンでドープされることができかつ脱ドープされることができ、かつ
     前記負極は、ナトリウムイオンで予備的にドープされた電極である、
    ナトリウムイオン型蓄電デバイス。
    A positive electrode, a negative electrode, and an electrolytic solution containing sodium ions and anions,
    The positive electrode can adsorb and desorb anions, can be doped with anions and can be undoped;
    The negative electrode can be doped and dedoped with sodium ions, and the negative electrode is an electrode pre-doped with sodium ions,
    Sodium ion storage device.
  2.  負極が負極活物質を有し、該負極活物質が、ナトリウムイオンでドープされることができかつ脱ドープされることができる炭素材料である請求項1記載のナトリウムイオン型蓄電デバイス。 The sodium ion-type electricity storage device according to claim 1, wherein the negative electrode has a negative electrode active material, and the negative electrode active material is a carbon material that can be doped with sodium ions and dedoped.
  3.  前記炭素材料が、非黒鉛化炭素材料である請求項2記載のナトリウムイオン型蓄電デバイス。 3. The sodium ion type electricity storage device according to claim 2, wherein the carbon material is a non-graphitized carbon material.
  4.  前記炭素材料が、非賦活型炭素材料である請求項2または3記載のナトリウムイオン型蓄電デバイス。 4. The sodium ion type electricity storage device according to claim 2, wherein the carbon material is a non-activated carbon material.
  5.  前記負極が、予備的にナトリウムイオンでドープされた前記負極とナトリウム金属との酸化還元電位差が、1.00V以下である程度に、予備的にナトリウムイオンでドープされている、請求項1~4のいずれか記載のナトリウムイオン型蓄電デバイス。 The negative electrode is preliminarily doped with sodium ions to a certain extent that the redox potential difference between the negative electrode and sodium metal preliminarily doped with sodium ions is 1.00 V or less. The sodium ion type electrical storage device according to any one of the above.
  6.  正極と負極との間に配置されたセパレータをさらに有する請求項1から5のいずれかに記載のナトリウムイオン型蓄電デバイス。 The sodium ion type electricity storage device according to any one of claims 1 to 5, further comprising a separator disposed between the positive electrode and the negative electrode.
PCT/JP2010/066798 2009-09-28 2010-09-28 Sodium-ion-type power storage device WO2011037250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009223201 2009-09-28
JP2009-223201 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011037250A1 true WO2011037250A1 (en) 2011-03-31

Family

ID=43795988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066798 WO2011037250A1 (en) 2009-09-28 2010-09-28 Sodium-ion-type power storage device

Country Status (1)

Country Link
WO (1) WO2011037250A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243924A (en) * 2011-05-19 2012-12-10 Sumitomo Electric Ind Ltd Capacitor
JP2013038170A (en) * 2011-08-05 2013-02-21 National Institute Of Advanced Industrial & Technology Sodium ion capacitor
JP2013109938A (en) * 2011-11-21 2013-06-06 Sumitomo Electric Ind Ltd Method for manufacturing molten salt battery
JP2013165161A (en) * 2012-02-10 2013-08-22 National Institute Of Advanced Industrial & Technology Capacitor
CN110510595A (en) * 2019-07-15 2019-11-29 电子科技大学 A kind of preparation method of the N/S codope porous carbon for lithium-sulfur cell
CN114614096A (en) * 2022-02-24 2022-06-10 复旦大学 Fast-charging electrolyte and application thereof in lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270080A (en) * 1997-03-27 1998-10-09 Sony Corp Nonaqueous electrolyte secondary battery
JP2000049053A (en) * 1998-07-28 2000-02-18 Tokin Corp Electric double-layer capacitor
JP2002203742A (en) * 2000-12-28 2002-07-19 Toyota Central Res & Dev Lab Inc Redox type capacitor
JP2008153122A (en) * 2006-12-19 2008-07-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270080A (en) * 1997-03-27 1998-10-09 Sony Corp Nonaqueous electrolyte secondary battery
JP2000049053A (en) * 1998-07-28 2000-02-18 Tokin Corp Electric double-layer capacitor
JP2002203742A (en) * 2000-12-28 2002-07-19 Toyota Central Res & Dev Lab Inc Redox type capacitor
JP2008153122A (en) * 2006-12-19 2008-07-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243924A (en) * 2011-05-19 2012-12-10 Sumitomo Electric Ind Ltd Capacitor
JP2013038170A (en) * 2011-08-05 2013-02-21 National Institute Of Advanced Industrial & Technology Sodium ion capacitor
JP2013109938A (en) * 2011-11-21 2013-06-06 Sumitomo Electric Ind Ltd Method for manufacturing molten salt battery
JP2013165161A (en) * 2012-02-10 2013-08-22 National Institute Of Advanced Industrial & Technology Capacitor
CN110510595A (en) * 2019-07-15 2019-11-29 电子科技大学 A kind of preparation method of the N/S codope porous carbon for lithium-sulfur cell
CN114614096A (en) * 2022-02-24 2022-06-10 复旦大学 Fast-charging electrolyte and application thereof in lithium ion battery
CN114614096B (en) * 2022-02-24 2024-03-08 复旦大学 Quick-charging electrolyte and application thereof in lithium ion battery

Similar Documents

Publication Publication Date Title
JP2012069894A (en) Sodium-ion-type power storage device
JP5463772B2 (en) Sodium secondary battery
JP5939990B2 (en) Method for producing long-life negative electrode plate and supercapacitor using the negative electrode plate
JP5228531B2 (en) Electricity storage device
KR100883748B1 (en) Electrochemical energy storage device with high capacity and high power using conductive polymer composite
Wang et al. Steam-etched spherical carbon/sulfur composite with high sulfur capacity and long cycle life for Li/S battery application
WO2011037250A1 (en) Sodium-ion-type power storage device
JP5018213B2 (en) Phosphorus compound composite activated carbon for electric double layer capacitor and method for producing the same
US20120099246A1 (en) Lithium ion capacitor
KR20140004773A (en) Polyimide capacitance battery and manufacturing method thereof
WO2013122115A1 (en) Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
JP2012114374A (en) Electrochemical device
JP2010272492A (en) Method of manufacturing sodium secondary battery, and sodium secondary battery
KR20170109028A (en) In a lithium ion capacitor, a poly-vinylidene difluoride anode binder
JP2014132592A (en) Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
KR20110003867A (en) Electrode for capacitor and electric double layer capacitor comprising the same
JP2014064030A (en) Electrochemical capacitor
JP5681753B2 (en) Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP2012089823A (en) Lithium ion capacitor and manufacturing method for the same
JP2018041921A (en) Nonaqueous lithium power storage element
JP2012252797A (en) Nonaqueous electrolyte secondary battery
JP2018014398A (en) Nonaqueous lithium power storage element
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
JP2005093779A (en) Electric double layer capacitor
JP2008047853A (en) Capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818920

Country of ref document: EP

Kind code of ref document: A1