WO2011036817A1 - Magnetic memory - Google Patents

Magnetic memory Download PDF

Info

Publication number
WO2011036817A1
WO2011036817A1 PCT/JP2009/066829 JP2009066829W WO2011036817A1 WO 2011036817 A1 WO2011036817 A1 WO 2011036817A1 JP 2009066829 W JP2009066829 W JP 2009066829W WO 2011036817 A1 WO2011036817 A1 WO 2011036817A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
write
pulse width
current
error
Prior art date
Application number
PCT/JP2009/066829
Other languages
French (fr)
Japanese (ja)
Inventor
純夫 池川
尚治 下村
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/066829 priority Critical patent/WO2011036817A1/en
Priority to US12/886,917 priority patent/US8347175B2/en
Publication of WO2011036817A1 publication Critical patent/WO2011036817A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a magnetic memory.
  • MRAM magnetoresistive random access memory
  • MTJ element magnetic tunnel junction element
  • spin injection magnetization reversal method There is a spin injection magnetization reversal method as one of the data write methods of MRAM.
  • a current (write current) greater than or equal to the current value in the MTJ element is passed.
  • a current (read current) is passed through the MTJ element.
  • the current value of the write current is set to a current value larger than a threshold value (hereinafter referred to as an inversion threshold value) at which magnetization reversal is caused by spin injection, and the read current value is A current value smaller than the inversion threshold is set.
  • a threshold value hereinafter referred to as an inversion threshold value
  • the inversion threshold varies from element to element due to variations in characteristics of a plurality of MTJ elements constituting the MRAM.
  • the inversion threshold value for the element fluctuates.
  • a write failure at the time of data writing a read disturbance due to a read current at the time of reading data, a failure in which magnetization is reversed due to a thermal disturbance at the time of data retention, and a retention failure occur.
  • the magnetization reversal of the MTJ element is a stochastic phenomenon, a defect occurs during the operation of the MRAM.
  • the present invention proposes a technique for improving the reliability and operating characteristics of a magnetic memory.
  • a magnetic memory includes a first magnetic layer whose magnetization direction is unchanged, a second magnetic layer whose magnetization direction is variable, and a gap between the first magnetic layer and the second magnetic layer. And detecting whether or not the first data written in the magnetoresistive effect element includes an error, and when the first data includes an error, the An error detection and correction circuit for outputting second data in which an error is corrected, a first write current having a first pulse width, and a second write having a second pulse width longer than the first pulse width A write circuit that generates one of the currents and causes the magnetoresistive effect element to flow, and when writing the second data to the magnetoresistive effect element, causes the second write current to flow to the magnetoresistive effect element Control the writing circuit And a control circuit.
  • the reliability and operating characteristics of the magnetic memory can be improved.
  • FIG. 1 is a diagram showing a basic example of a magnetic memory according to an embodiment.
  • the figure for demonstrating the magnetization reversal model which concerns on embodiment. The figure for demonstrating the magnetization reversal model which concerns on embodiment.
  • the figure for demonstrating the magnetization reversal model which concerns on embodiment.
  • the figure for demonstrating the magnetization reversal model which concerns on embodiment.
  • the figure for demonstrating the magnetization reversal model which concerns on embodiment. The figure for demonstrating the magnetization reversal model which concerns on embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a magnetic memory according to an embodiment.
  • 6 is a flowchart illustrating an operation example of the magnetic memory according to the embodiment.
  • the figure for demonstrating the effect with respect to the magnetic memory which concerns on embodiment The figure for demonstrating the effect with respect to the magnetic memory which concerns on embodiment.
  • the figure for demonstrating the effect with respect to the magnetic memory which concerns on embodiment. 6 is a flowchart illustrating an operation example of the magnetic memory according to the embodiment.
  • FIG. 1 shows an example of the configuration of the magnetic memory according to the present embodiment.
  • the magnetic memory includes a magnetoresistive effect element 1 and a switch Tr in the main memory 50.
  • the magnetoresistive effect element 1 and the switch Tr constitute one memory cell.
  • the magnetoresistive effect element 1 is used as a memory element.
  • the switch Tr is used as a selection element for the magnetoresistive effect element 1.
  • the magnetoresistive effect element 1 is connected to two bit lines BL and bBL. One end of the magnetoresistive effect element 1 is connected to the bit line BL, and the other end of the magnetoresistive effect element 1 is connected to the bit line bBL via the switch Tr.
  • the switch Tr is, for example, a field effect transistor (FET).
  • FET field effect transistor
  • the switch Tr is referred to as a selection transistor Tr.
  • One end (source / drain) of the current path of the selection transistor Tr is connected to the other end of the magnetoresistive effect element 1, and the other end (source / drain) of the current path of the selection transistor Tr is connected to the bit line bBL.
  • a control terminal (gate) of the selection transistor Tr is connected to the word line WL.
  • the word line WL extends in a direction crossing the extending direction of the bit lines BL and bBL.
  • FIG. 3 and 4 are cross-sectional views showing the configuration of the magnetoresistive effect element 1.
  • FIG. 1 As the magnetoresistive effect element 1, for example, an MTJ (magnetic tunnel junction) element using a change in magnetoresistance due to a spin-polarized tunnel effect is used.
  • the magnetoresistive effect element 1 is referred to as an MTJ element 1.
  • the MTJ element 1 has a stacked structure in which reference layers (also referred to as magnetization invariant layers) 11A and 11B, intermediate layers (nonmagnetic layers) 12A and 12B, and storage layers (also referred to as magnetization free layers) 13A and 13B are sequentially stacked. Have.
  • the reference layers 11A and 11B and the memory layers 13A and 13B may be stacked in reverse order.
  • the easy magnetization directions of the reference layer 11A and the storage layer 13A are parallel to the film surface.
  • the MTJ element 1 shown in FIG. 3 is called an in-plane magnetization type MTJ element.
  • the easy magnetization directions of the reference layer 11B and the storage layer 13B are perpendicular to the film surface (or the laminated surface).
  • the MTJ element shown in FIG. 3 is called a perpendicular magnetization type MTJ element.
  • the magnetic layer with in-plane magnetization has a magnetic anisotropy in the in-plane direction
  • the magnetic layer with perpendicular magnetization has a magnetic anisotropy in the direction perpendicular to the film surface.
  • the perpendicular magnetization type is used for the MTJ element 1, it is not necessary to control the element shape to determine the magnetization direction as in the in-plane magnetization type, and it is sufficient even if the volumes of the storage layers 13A and 13B are reduced. Therefore, there is an advantage that it is suitable for miniaturization of memory cells.
  • the storage layers 13A and 13B have variable (reversed) magnetization (or spin) directions.
  • the reference layers 11A and 11B have the same magnetization direction (fixed). “The magnetization directions of the reference layers 11A and 11B are unchanged” means that the magnetization reversal current (inversion threshold) used to reverse the magnetization directions of the storage layers 13A and 13B is applied to the reference layers 11A and 11B. This means that the magnetization directions of the reference layers 11A and 11B do not change when they are flowed.
  • the MTJ element 1 by using a magnetic layer having a large inversion threshold as the reference layers 11A and 11B and using a magnetic layer having a smaller inversion threshold than the reference layers 11A and 11B as the storage layers 13A and 13B,
  • the MTJ element 1 including the storage layers 13A and 13B having a variable magnetization direction and the reference layers 11A and 11B having a fixed magnetization direction is realized.
  • an antiferromagnetic layer (not shown) is provided adjacent to the reference layers 11A and 11B, and the reference layers 11A and 11B are exchanged with the antiferromagnetic layer.
  • the magnetization direction of the reference layers 11A and 11B can be fixed by the coupling.
  • an antiferromagnetic layer (not shown) may not be provided adjacent to the reference layer 11A.
  • the planar shape of the MTJ element 1 is not particularly limited, and any of a circle, an ellipse, a square, a rectangle, and the like may be used. Further, the shape may be a shape in which square corners or rectangular corners are rounded, or a shape with missing corners.
  • the reference layers 11A and 11B and the storage layers 13A and 13B are made of a magnetic material having a high coercive force, and preferably have a high magnetic anisotropic energy density of, for example, 1 ⁇ 10 6 erg / cc or more.
  • the intermediate layers 12A and 12B are made of a non-magnetic material, and for example, an insulator, a semiconductor, a metal, or the like can be used.
  • an insulator or a semiconductor is used for the intermediate layer 12
  • the intermediate layer 12 is called a tunnel barrier layer.
  • each of the reference layers 11A and 11B and the storage layers 13A and 13B is not limited to a single layer as illustrated, and may have a stacked structure including a plurality of ferromagnetic layers.
  • Each of the reference layers 11A and 11B and the storage layers 13A and 13B includes three layers of a first ferromagnetic layer / a nonmagnetic layer / a second ferromagnetic layer.
  • An antiferromagnetic coupling structure in which the magnetization directions are in an antiparallel state may be used, or the first and second ferromagnetic layers may have a magnetization direction in a parallel state.
  • a (exchange-coupled) ferromagnetic coupling structure may be used.
  • the MTJ element 1 may have a double junction structure.
  • the MTJ element 1 having a double junction structure has a stacked structure in which a first reference layer, a first intermediate layer, a storage layer, a second intermediate layer, and a second reference layer are stacked in this order.
  • Such a double junction structure has an advantage that it is easy to control the magnetization reversal of the storage layers 13A and 13B by spin injection.
  • the write circuit 2 is connected to the bit line BL.
  • the write circuit 2 When writing data to the MTJ element 1, the write circuit 2 generates write currents I w1 and I w2 and passes the generated currents I w1 and I w2 between the bit lines BL and bBL.
  • the write currents I w1 and I w2 flow through the MTJ element 1.
  • the write circuit 2 flows the write currents I w1 and I w2 bidirectionally from one end of the MTJ element 1 to the other end or from the other end of the MTJ element 1 to one end.
  • the operation of the writing circuit 2 is controlled by a control circuit 51 described later.
  • FIG. 2 shows an example of a pulse waveform of the write current.
  • the current value of the write current is shown as an absolute value.
  • the write circuit 2 supplies either the write current I w1 having the pulse width T wp1 or the write current I w2 having the pulse width T wp2 to the MTJ element 1.
  • Write currents I w1 and I w2 flow through the MTJ element 1.
  • Pulse width T wp2 is longer than the pulse width T wp1.
  • the pulse width of the current is defined by the full width at half maximum (FWHM) of the pulse.
  • the pulse widths T wp1 and T wp2 of the write currents I w1 and I w2 are pulse widths based on a value i w / 2 that is 1 ⁇ 2 of the maximum current value i w .
  • the pulse width T wp1 of the write current I w1 is a period between the time t ab and the time t cd .
  • Time t ab is the time period t a and the rise of the rise of the pulse current I w1 is started is completed t b substantially intermediate time, the time t cd is the fall of the pulse current I w1 is started This is a substantially intermediate time between the time t c and the time t d when the falling ends.
  • Pulse width T wp2 of the write current I w2 is the period between time t 12 and time t 34.
  • Time 12 is substantially intermediate the rise time is the time to start t 1 and time t 2 when the rising ends of the pulse current I w2
  • the time t 34 is the time the fall of the pulse current Iw2 starts t 3 and falling is substantially intermediate time period ending t 4.
  • the write current I w1 and the write current I w2 have, for example, the same current value iw.
  • the current value i w is set to be not less than the inversion threshold value i th of the storage layer and less than the inversion threshold value of the reference layer.
  • the error detection and correction circuit 52 detects whether or not there is an error in the data (hereinafter referred to as write data) stored (or held) by the MTJ element 1.
  • the error detection and correction circuit 52 corrects the error when there is an error in the data.
  • the corrected data (hereinafter referred to as corrected data) is written again in the MTJ element 1.
  • the control circuit 51 controls the operation of the entire magnetic memory.
  • the control circuit 51 performs the operation of the write circuit 2 so as to supply either the write current I w1 or the write current I w2 to the MTJ element 1 according to the operation status of the MTJ element 1 and the error detection / correction circuit 52. Control.
  • the control circuit 51 generates and outputs a write current I w2 having a longer pulse width T wp2 when writing correction data to the MTJ element 1 than when writing data input from the outside. To control the operation.
  • the control circuit 51 controls the operation of the write circuit 2 so as to generate and output a write current I w1 having a pulse width T wp1 .
  • a write current I (current I w1 or current I w2 in FIG. 2) flows in the MTJ element 1 when data is written.
  • the write current I flows bidirectionally in the MTJ element 1 according to the data to be written.
  • the direction in which the current flows is opposite to the direction in which the electrons move.
  • a parallel state (low resistance state) in which the magnetization directions of the reference layers 11A and 11B and the storage layers 13A and 13B are parallel will be described.
  • Majority electrons among the electrons that have passed through the reference layers 11A and 11B have a spin parallel to the magnetization direction of the reference layers 11A and 11B.
  • spin angular momentum of the majority electrons moves to the storage layers 13A and 13B
  • spin torque is applied to the storage layers 13A and 13B
  • the magnetization directions of the storage layers 13A and 13B are the magnetization directions of the reference layers 11A and 11B.
  • the MTJ element 1 has the smallest resistance value. This case is treated as “0” data, for example.
  • the majority electron has a spin antiparallel to the magnetization direction of the reference layers 11A and 11B.
  • spin angular momentum of the majority electrons moves to the storage layers 13A and 13B
  • spin torque is applied to the storage layers 13A and 13B
  • the magnetization directions of the storage layers 13A and 13B are the magnetization directions of the reference layers 11A and 11B.
  • anti-parallel In the antiparallel arrangement, the MTJ element 1 has the largest resistance value. This case is treated as “1” data, for example.
  • FIG. 5 shows the time dependence of the magnetization reversal probability in the spin injection magnetization reversal model described in the present embodiment.
  • the horizontal axis in FIG. 5 indicates time (unit: nsec (nanosecond)).
  • the vertical axis in FIG. 5 corresponds to the magnetization reversal probability.
  • Log 10 (1-P) is indicated on the vertical axis of FIG. “1-P” indicates a probability that magnetization is not reversed (data is not written).
  • the magnetization reversal probability is the probability that the magnetization direction of the storage layer is reversed when a certain current is passed through a certain MTJ element.
  • Each characteristic curve shown in FIG. 5 is a result obtained by a micromagnetic simulation using an LLG (Landau-Liftshitz-Gilbert) equation.
  • LLG Landau-Liftshitz-Gilbert
  • Each parameter used for this simulation is as follows.
  • the MTJ element used for the simulation is a perpendicular magnetization type MTJ element.
  • the film thickness of the MTJ element is set to 2.2 nm, and the diameter of the MTJ element is set to 30 nm.
  • the magnetization of the storage layer is perpendicular to the film surface, the magnetic layer has a magnetic anisotropy energy Ku of 3.5 Merg / cc, and the storage layer has a saturation magnetization Ms of 500 emu / cc.
  • the energy barrier ⁇ Ea is 86 k B T (k B : Boltzmann constant, T: absolute temperature).
  • the energy barrier ⁇ Ea indicates the size of the energy barrier that must be exceeded in the process of reversing the MTJ element from the parallel state to the antiparallel state or from the antiparallel state to the parallel state.
  • the temperature (absolute temperature) T is set to 300K.
  • the range of the current density J flowing through the MTJ element is set to 2.8 to 4 MA / cm 2 .
  • the simulation is executed using the current density ratio J / J C (22 nsec, midpoint) within the range of 0.934 to 1.436.
  • J indicates the current density of the pulse current
  • J C 22 nsec, midpoint
  • FIG. 5 also shows a first-order approximate characteristic line (dotted line in the figure) for the characteristic curve obtained from the simulation using each current density ratio of 0.934 to 1.436.
  • the spin injection magnetization reversal probability P (t) can be approximately expressed as (Equation 1).
  • P (t) indicates the probability that the magnetization of the storage layer is reversed when a current pulse having a pulse width t is passed through the MTJ element.
  • F 0 is the frequency at which the MTJ element receives thermal energy (phonon) per unit time.
  • F 0 is about 1 ⁇ 10 9 Hz.
  • I indicates the current value of the pulse current
  • I C0 indicates the magnetization reversal current at 0 K (absolute temperature) when the pulse width is set in the time of receiving one phonon (about 1 ns). Current value.
  • n is a constant of 1.5 to 2.
  • the probability Log 10 (1-P) shows a negative value with respect to the change of time.
  • Equation 1 immediately after the pulse current is applied to the MTJ element, the reversal of the magnetization of the storage layer does not occur, and the reversal of the magnetization occurs after the dead time t 0 has elapsed. Be started.
  • the spin injection magnetization reversal model of this embodiment will be described with reference to FIGS. 6 to 10, an example of a process in which the normalized magnetization Mz of the magnetic layer (storage layer) is reversed from 1 to ⁇ 1 in the spin injection magnetization reversal used in the magnetic memory will be described.
  • the time during which the magnetization Mz in the z-axis (vertical) direction changes from 1 to around ⁇ 1 after the write current starts to flow through the MTJ element is called a switching time T sw .
  • the switching time T sw fluctuates every time even when a write current of the same magnitude is supplied to the same magnetic material. That is, when data is written to a certain MTJ element using a current having a certain pulse width, the switching current I sw (inversion threshold i th ) fluctuates every time. Understanding these phenomena is important for reducing write failures.
  • spin transfer magnetization reversal which is one of the write principles of a magnetic memory (for example, MRAM)
  • spin transfer magnetization reversal described in the present embodiment is composed of the following three stages. That is, in the spin transfer magnetization reversal of this embodiment, the switching time T sw is decomposed into three.
  • FIG. 6 schematically shows the spin injection magnetization reversal model in the present embodiment.
  • the first stage is that the magnetization of each magnetic particle in the magnetic layer (storage layer) is precessed separately, and then the magnetic particles in the magnetic layer are precessed. This is the stage until the phases of magnetization are aligned and work together to start precession.
  • the phase of magnetization of each magnetic grain in the magnetic layer is aligned and precesses together is called “coherent precession”.
  • the time from the state where the magnetizations precessed separately until the start of coherent precession is called the coherent time t coh .
  • the magnetization Mz decreases from 1 to about 0.95.
  • the magnetization tends to become a coherent precession, but returns to a discrete precession. Therefore, the coherent time t coh fluctuates greatly.
  • the second stage coherent precession is amplified.
  • This time is called an amplification time t amp .
  • the magnetization Mz decreases from 0.95 to about 0.8.
  • the amplification time t amp also fluctuates.
  • the sum of the first stage time t coh and the second stage time t amp is referred to as “incubation delay time t id ”.
  • the incubation delay time t id fluctuates greatly.
  • the times t coh and t amp of the first and second stages are times until the magnetization Mz starts to decrease greatly and the main stage of magnetization reversal occurs, and this time is relatively long in the spin injection magnetization reversal. Therefore, the times t coh and t amp required for the first and second stages are called incubation delay times.
  • the precession of magnetization is further amplified and magnetization reversal occurs with the help of thermal disturbance.
  • the thermal activation process is mainly dominant, and the magnetization Mz decreases from 0.8 to around -1.
  • This time is called the reversal time trv .
  • the fluctuation of the reversal time t rv is small.
  • the inversion time t rv fluctuates to the same extent as the incubation delay time t id .
  • the coherent time t coh which is the first stage, is from the state where the magnetization precesses in the storage layer of the MTJ element to the start of precession where the magnetization phases are aligned. It was found that it was time.
  • magnetization reversal is started by the thermal activation process.
  • FIG. 7 is a graph obtained by analyzing one of the simulation results based on the LLG equation of the spin injection magnetization reversal of the perpendicular magnetization type MTJ element used in FIG.
  • the simulation was performed using, for example, a cell showing 32 magnetizations in the storage layer (magnetic layer).
  • the cell corresponds to a magnetic grain contained in the magnetic layer.
  • the horizontal axis represents time (unit: nsec).
  • a characteristic line indicated by a broken line corresponds to the left axis Mz-ave.
  • 7 represents an average value Mz-ave (unit: au (arbitrary unit)) of z components (vertical components) of magnetization.
  • Mz-ave of the z component of magnetization “1” indicates that the magnetization is directed upward with respect to the film surface of the storage layer, and “ ⁇ 1” indicates that the magnetization is with respect to the film surface of the storage layer. It shows a state of facing down.
  • the average value Mz-ave of the magnetization is substantially 1, and the magnetization is in the upward direction perpendicular to the film surface of the MTJ element. Then, at 0 nsec, the supply of the magnetization reversal current to the storage layer was started, and the process until the magnetization was reversed by spin injection and the average value Mz-ave became approximately ⁇ 1 was verified.
  • the average value Mz-ave of the magnetization hardly changes during the period from 0 nsec to 2.5 nsec. This can be regarded as a period in which the magnetization (spin) of the storage layer is not reversed.
  • FIG. 7 the characteristic curve indicated by the solid line corresponds to the right axis ⁇ and indicates the phase variation of the precession of 32 magnetizations in the storage layer.
  • FIG. 8 schematically shows a single magnetization cell. As shown in FIG. 8, the direction of magnetization can be expressed in polar coordinates using two declination angles ⁇ and ⁇ . As shown in FIG. 8, the magnetization of the perpendicular magnetization film precesses around the film surface perpendicular direction (z axis) as the rotation axis. The phase of precession in the equatorial plane c is defined as the declination angle ⁇ . In addition, the angle formed by the inclination of the magnetization M and the z-axis during precession is defined as a declination angle ⁇ .
  • phase variation of the precession is obtained by examining the variation of the declination ⁇ .
  • the declination ⁇ shown in polar coordinates becomes discontinuous or multivalued with a period of + ⁇ or ⁇ .
  • the phase dispersion ⁇ is expressed by the following (Expression 2) and (Expression 3).
  • N in (Equation 3) indicates the number of magnetizations (number of cells) included in the storage layer, which is 32 in this example.
  • “ ⁇ ” in (Expression 3) indicates that the sum (total value) of all the magnetizations (32 in this example) included in the storage layer is calculated.
  • “*” In (Expression 3) indicates a conjugate complex number.
  • “ ⁇ ” in (Expression 3) and (Expression 4) indicates an average value of all the magnetization cells (32 in this example) in the storage layer. Therefore, “ ⁇ ” in (Expression 3) indicates an average value of “ ⁇ ” of all the magnetizations in the storage layer.
  • 9 and 10 schematically show the magnetization cells arranged in the storage layer 17.
  • 9 and 10 show an example in which a plurality of cells 18 are two-dimensionally arranged. However, this is for the sake of simplification of description and is not limited to this. is there.
  • the phase dispersion ⁇ indicates “1”.
  • the phase dispersion ⁇ indicates “0”.
  • the phase dispersion ⁇ of the magnetization in the storage layer rapidly decreases, the time when the magnetization becomes a coherent precession, the magnetization starts to reverse, and the average value Mz-ave of the magnetization is The phenomenon that the average value Mz-ave starts decreasing after reaching about 0.95 is linked.
  • the coherent time t coh is considered to be the time from when the precession of magnetization becomes discrete as shown in FIG. 9 to the coherent precession as shown in FIG. be able to.
  • a period t ′ in FIG. 7 corresponds to a time until a coherent precession movement is reached.
  • the period t ′ from the initial state until the coherent precession is realized varies.
  • the phenomenon that magnetization reversal is started when the phase of magnetization in the storage layer is aligned and coherent precession is realized is reproduced.
  • the period t ′ in the spin injection magnetization reversal is a coherent state in which the phase of precession of each magnetization 18 is aligned from the state where the phase of precession of each magnetization 18 is not aligned (see FIG. 9) in the storage layer 17. It can be regarded as the time until the transition to (see FIG. 10). Then, when a period (time) t coh until the coherent precession is reached and a period (time) t amp until the coherent precession is amplified, the process proceeds to the thermal activation process, and the MTJ element It can be said that the spin inversion of the storage layer is substantially started.
  • the time until the magnetization precession becomes a coherent motion depends on the magnitude of the current I. When the magnitude of the current I decreases, the time until the magnetization precession becomes a coherent motion is To increase.
  • the time t 0 in (Equation 1) is included in the parameters of the spin injection magnetization reversal model described in this embodiment.
  • the condition for completing the spin injection magnetization reversal is that the spin of the memory layer does not return to the original state even when the current (pulse current) is turned off, and is reversed to the end. This means that in FIG. 8, the direction of magnetization rotates to the equator plane c, and the perpendicular component Mz of magnetization becomes “0”.
  • the magnetization reversal takes a finite time and the time fluctuates.
  • the spin injection magnetization reversal has a first stage, a second stage, and a third stage (see FIG. 6).
  • the spin transfer magnetization reversal there is a time t 0 when the magnetization reversal probability does not increase so much at the initial stage of the magnetization reversal.
  • the time t 0 is shown in FIG. 5 and (Equation 1).
  • the time (period) t 0 is approximately expressed by (Equation 4).
  • J write indicates the current density of the write current
  • J C0 indicates 0 K (absolute temperature) when the pulse width is set in the time for receiving one phonon (about 1 ns).
  • FIG. 11 shows the time dependence of the magnetization reversal probability similarly to FIG. 5, and shows the time dependence of the magnetization reversal probability of the MTJ element under the same conditions as FIG. Note that the result shown in FIG. 11 is calculated by micromagnetic simulation using the LLG equation.
  • the horizontal axis in FIG. 11 indicates time, and the vertical axis in FIG. 11 indicates Log 10 (1-P) as in FIG.
  • characteristic lines J1 and J2 indicate magnetization reversal probabilities in the case where write currents having current density J1 and current density J2 are used.
  • the characteristic lines J1 and J2 correspond to the primary approximate line of the magnetization reversal model of the present embodiment shown in (Equation 1).
  • the current density J1 is 3.8 MA / cm 2 and the current density J2 is 4.0 MA / cm 2 .
  • the characteristic line A is an approximate line of a magnetization reversal model by a conventional simple thermal activation process.
  • a conventional magnetization reversal model by a thermal activation process is represented by (Equation 5).
  • the time shown on the horizontal axis in FIG. 11 is the time (period) during which current is supplied to the MTJ element, and corresponds to the pulse width of the write current.
  • “ ⁇ T1” and “ ⁇ T2” in FIG. 11 correspond to periods in which the pulse widths of the write currents having the current densities J1 and J2 are increased by about 7%, respectively.
  • the probability that the magnetization does not reverse (1-P) decreases by an order of magnitude when the pulse width is increased by about 7% in the write currents having the current densities J1 and J2. If the pulse width of the write current is increased by about 14% to 15%, the probability that data cannot be written decreases by about two digits.
  • the write failure occurrence probability LOG 10 (1-P) has a write current higher than that of the conventional spin injection magnetization reversal model shown in (Equation 5). It greatly depends on the pulse width.
  • the characteristic line indicated by the solid line corresponds to the magnetization reversal model of the present embodiment shown in Expression (1), where ⁇ E / kBT in (Expression 1) is “60” and n is “2”. ", t 0 is” are respectively set to 7nsec ".
  • FIG. 12 shows the change of the magnetization reversal current (switching current) fluctuation ⁇ (I sw ) / I sw with respect to the pulse width of the write current.
  • the vertical axis corresponds to the fluctuation of the inversion threshold current
  • the horizontal axis corresponds to the supply time of the inversion threshold current, that is, the pulse width Twp of the write current.
  • FIG. 13 shows a change in the switching current I sw where the inversion probability is 0.5 with respect to the pulse width of the write current.
  • the switching current I sw is indicated by a current ratio I sw / I c0 .
  • the characteristic lines indicated by broken lines indicate the fluctuation ⁇ (I sw ) / I sw and the current ratio I sw / I c0 of the magnetization reversal model shown in (Equation 5), respectively. .
  • the magnetization reversal model (Equation 1) of this embodiment has a fluctuation ⁇ (I sw ) / in comparison with the magnetization reversal model (Equation 5). It is shown that I sw greatly depends on the current pulse width T wp , and the fluctuation ⁇ (I sw ) / I sw decreases as the pulse width T wp increases.
  • the switching current I sw supplied to a certain MTJ element depends on the pulse width T wp of the current, and when the pulse width T wp becomes longer, the rate of change becomes smaller.
  • the write current has an upper limit due to circuit restrictions such as the size of the selection transistor.
  • data stored (written) in the magnetoresistive effect element (MTJ element) 1 is output, and the output data is written back to the magnetoresistive effect element 1.
  • a write current having a long pulse width is used.
  • Data write-back (rewrite) is performed mainly when an error in data is corrected.
  • the magnetic memory according to the embodiment of the present invention includes an error detection and correction circuit 52 that detects and corrects an error in data output from the main memory 50.
  • the magnetic memory of this embodiment includes a control circuit 51 having a function 53 for controlling the pulse widths of the write currents I w1 and I w2 .
  • a write current I w1 having a certain pulse width T wp1 is supplied to the MTJ element 1.
  • the pulse width T wp1 corresponds to the dead time t 0 or more shown in FIG. 5 and (Equation 1), and the sum of the coherent time t coh and the amplification time t amp shown in FIG. delay time t id ) or more.
  • the error detection / correction circuit 52 performs error detection and correction on the data stored in the MTJ element 1 at the time of data writing or data reading. Then, the magnetic memory according to the present embodiment again writes the data corrected by the error detection / correction circuit 2 to the MTJ element 1 in the main memory 50.
  • the control circuit 51 in the magnetic memory according to the present embodiment determines whether data input from the outside is written or corrected data is written back.
  • the control circuit 51 When the corrected data is written back to the MTJ element 1, the control circuit 51 writes data corrected with respect to the pulse width T wp1 of the write current I w1 based on the error detection and correction by the error detection and correction circuit 52. Therefore , the operation of the write circuit 2 is controlled so as to increase the pulse width T wp2 of the write current I w2 for this purpose.
  • the data input from the outside uses the write current I w1 with the pulse width T wp1
  • the data with the error corrected uses the pulse width T wp2 ( A write current I w2 of> T wp1 ) is used.
  • the correction of data is performed, and when the corrected data is written back to the MTJ element 1, the write current I w2 having a long pulse width T wp2 is used, thereby reducing the probability that a write failure will occur. To do. For this reason, in the magnetic memory of this embodiment, the occurrence of defects in the data written to the MTJ element 1 is reduced.
  • the defect is an error of 1-bit data, which is often correctable by an error detection and correction technique. If the number of defects included in one block exceeds a certain number (for example, two or more), correction cannot be performed even using an error detection and correction technique. In this embodiment, the fact that a defect cannot be relieved by using an error detection and correction technique is called a malfunction.
  • the magnetic memory according to the present embodiment increases the pulse width of the write current only when writing the error-corrected data back to the MTJ element 1. Therefore, the operation time of the magnetic memory, in particular, the write operation time does not become excessively long. Therefore, the high speed performance of the magnetic memory is not impaired.
  • the magnetic memory according to the embodiment of the present invention has improved operation reliability and improved operation characteristics.
  • a configuration example of the magnetic memory according to the embodiment of the present invention will be described with reference to FIGS. 14 to 22.
  • Circuit A configuration example of a circuit of the magnetic memory according to the embodiment of the present invention will be described with reference to FIGS.
  • the magnetic memory of this configuration example is, for example, a magnetic random access memory (MRAM).
  • MRAM magnetic random access memory
  • the MRAM of this configuration example includes a main memory 50.
  • the main memory 50 has a function of writing data to a memory cell (MTJ element 1) in the main memory 50 and a function of reading data from a memory cell (MTJ element 1) in the main memory 50.
  • FIG. 15 shows an example of the internal configuration of the main memory 50, showing the circuit configuration in the vicinity of the memory cell array of the MRAM.
  • a plurality of memory cells MC are arranged in an array in the memory cell array 20.
  • FIG. 16 is a diagram showing an example of the structure of the memory cell MC provided in the memory cell array 20.
  • the upper end of the MTJ element 1 is connected to the upper bit line 32 via the upper electrode 31.
  • the lower end of the MTJ element 1 is connected to the source / drain diffusion layer 37a of the selection transistor Tr via the lower electrode 33, the lead wiring 34, and the plug 35.
  • the source / drain diffusion layer 37 b of the selection transistor Tr is connected to the lower bit line 42 via the plug 41.
  • a gate electrode 39 is formed via a gate insulating film 38.
  • the gate electrode of the selection transistor Tr functions as the word line WL.
  • the lower electrode 33 and the extraction electrode 34 may be omitted.
  • the MTJ element 1 is formed on the lead wiring 34.
  • the lead wiring 34 is omitted, the lower electrode 33 is formed on the plug 35.
  • the MTJ element 1 is formed on the plug 35.
  • the word line WL extends in the row direction and is connected to the gate of the selection transistor Tr constituting the memory cell MC.
  • One end of the word line WL is connected to the row control circuit 4.
  • the row control circuit 4 performs a selection operation on the word line WL.
  • bit lines BL and bBL extend in the column direction.
  • One end of the MTJ element 1 is connected to the bit line BL, and the bit line bBL is connected to one end of the current path of the selection transistor Tr.
  • the two bit lines BL and bBL constitute one set of bit line pairs.
  • Column control circuits 3A and 3B are connected to one end and the other end of the bit lines BL and bBL.
  • the write circuits 2A and 2B are connected to one end and the other end of the bit lines BL and bBL via the column control circuits 3A and 3B.
  • the write circuits 2A and 2B each include a source circuit such as a current source or a voltage source for generating the write currents I w1 and I w2 and a sink circuit for absorbing the write current.
  • the write circuits 2A and 2B are electrically isolated from the bit lines BL and bBL when the write operation is not executed.
  • the operations of the write circuits 2A and 2B are controlled by the control circuit 51 and a write pulse width control circuit 53 described later, and output write currents I w1 and I w2 shown in FIG.
  • the write circuits 2A and 2B supply write currents I w1 and I w2 to the MTJ element 1. Write currents I w1 and I w2 flow through the MTJ element 1.
  • the current values i w of the write currents I w1 and I w2 may be the same between the two currents I w1 and I w2 or may be different from each other.
  • the write currents I w1 and I w2 have the same current value.
  • the current values i w of the write currents I w1 and I w2 are preferably equal to or greater than the maximum value i th among the inversion thresholds of the plurality of MTJ elements included in the memory cell array 20.
  • the write current I w1 has a predetermined pulse width T wp1
  • the write current I w2 has a pulse width T wp2 longer than the pulse width T wp1 .
  • a value equal to or greater than time t 0 is used as the pulse width T wp1, and is set based on, for example, (Equation 4).
  • the pulse width T wp2 is set to a value longer by about 7% to 10% than the pulse width T wp1 , for example.
  • the pulse widths T wp1 and T wp2 of the write currents I w1 and I w2 are defined by the full width at half maximum of the pulse-shaped write current.
  • the read circuit 5 is connected to one end of the bit lines BL and bBL via the column control circuit 3B.
  • Readout circuit 5 includes, voltage or current source for generating a read current I r, a sense amplifier for sensing and amplifying a read signal, and a latch circuit for temporarily holding data.
  • the read circuit 5 is electrically isolated from the bit lines BL and bBL when the read operation is not executed.
  • the read circuit 5, a read operation outputs the read current I r.
  • Figure 17 shows the waveform of the read current I r is.
  • the maximum value of the current value i r of the read current I r is set to a value smaller than the inversion threshold value i th .
  • the current value i r of the read current I r is constantly output during a period from the time when the pulse current rise ends to the time when the fall starts.
  • the pulse width T rp of the read current I r is defined by the full width at half maximum of the pulse current.
  • the pulse width T rp may be shorter than the pulse width T wp1 of the write current I w1 and may be shorter than the dead time t 0 .
  • the read current current value i r of I r is sufficiently smaller than the inversion threshold i th
  • the pulse width of the read current I pulse width r T rp is write currents I w1, I w2 It may be T wp1 , T wp2 or more.
  • MR ratio magnetoresistance ratio
  • the information stored in the MTJ element 1 is read by detecting the fluctuation amount of the read current (bit line potential) caused by this MR ratio.
  • a switch circuit for controlling the conduction state between the bit lines BL and bBL and the write circuits 2A and 2B, and a switch circuit for controlling the conduction state between the bit lines BL and bBL and the read circuit 5 are provided. Is provided.
  • the switch circuit connected to the memory cell MC to be written is turned on, and the other switch circuits are turned off.
  • the row control circuit 4 turns on the selection transistor Tr in the selected memory cell MC. Then, a write current having a direction corresponding to the write data is supplied to the selected memory cell MC.
  • one of the write circuits 2A and 2B is on the source side, and the other write circuit 2B and 2A is on the sink side, depending on the direction of current flow.
  • the MRAM of this configuration example includes an error detection / correction circuit 52.
  • the error detection / correction circuit 52 has a function of detecting whether or not an error is included in the data output from the main memory 50 to the circuit 52 and a function of correcting an error included in the data.
  • the error detection / correction circuit 52 includes an encoding unit 61, an error detection unit 62, an error correction unit 63, and a decoding unit 64.
  • the encoding unit 61 adds a code (redundant bit) for detecting and correcting a data error to the data DT1 input from the outside via the buffer memory 54.
  • a code redundant bit
  • the code added to the data by the encoding unit 61 is referred to as an error detection / correction code.
  • the encoding unit 61 outputs the data nDT with the error detection code added thereto to the main memory 50.
  • the data nDT is handled as write data to be written to the selected cell in the main memory 50.
  • the encoding unit 61 outputs a control signal (first control signal) NWC to the write pulse width control circuit 53 when an error detection code is added to the input data DT1.
  • the control signal NWC is generated in the write pulse width control circuit 53 and the main memory 50 so as to generate and output a write current I w1 having a pulse width T wp1 when data nDT inputted from the outside is written in the main memory 50. This is a signal for controlling the operation of the write circuits 2A and 2B.
  • the control signal NWC is referred to as a normal write signal NWC.
  • the error detection unit 62 uses the error detection code of the data rDT output from the main memory 50 to check whether the data rDT read from the main memory 50 includes an error. When the data rDT includes an error, the error detection unit 62 outputs data erd including the error to the error correction unit 63. On the other hand, when the data rDT does not include an error, the error detection unit 62 outputs the data rDT to the decoding unit 64.
  • the error correction unit 63 corrects the error when the read data rDT includes an error.
  • the error correction unit 63 outputs data (hereinafter referred to as correction data) cDT in which the error is corrected to the main memory 50 and the decoding unit 64.
  • the correction data cDT output to the main memory 50 is written into a predetermined memory cell in the main memory 50.
  • the correction data cDT is written, for example, in the same memory cell (MTJ element) that is stored before being corrected.
  • the error correction unit 63 outputs a control signal (second control signal) RWC to the write pulse width control circuit 53 when the correction data is output to the main memory 50.
  • Control signal RWC when writing back corrected data CDT in the main memory 50, a pulse width T wp2 of the current I w2 used to write correction data CDT, longer than the pulse width T wp1 of normal write current I w1 As described above, this is a signal for controlling the operation of the write pulse width control circuit 53 and the write circuits 2A and 2B in the main memory 50.
  • the control signal RWC is referred to as a rewrite signal RWC.
  • the decoding unit 64 decodes the data rDT and cDT output from the error detection unit 62 or the error correction unit 63 during the read operation. Then, the decoding unit 64 outputs the decoded data to the buffer memory 54.
  • the error detection / correction circuit 52 detects and corrects an error included in the data using, for example, an extended Hamming code as an error detection / correction technique.
  • the error detection and correction code includes a Hamming code having a predetermined number of bits and a parity bit.
  • other error detection and correction techniques such as the Reed-Solomon method may be applied to the error detection and correction circuit 52.
  • the MRAM of this configuration example includes a buffer memory 54, for example.
  • the buffer memory 54 temporarily holds data DT1 input from the outside.
  • the buffer memory 54 temporarily holds the data output from the main memory 50 via the error detection and correction circuit 52, and outputs the held data DT2 to the outside.
  • the buffer memory 54 may be MRAM, DRAM (Dynamic RAM), or SRAM (Static RAM).
  • MRAM MRAM
  • DRAM Dynamic RAM
  • SRAM Static RAM
  • the probability of writing failure occurring in the MRAM serving as the buffer memory 54 is lower than the probability of writing failure occurring in the MRAM serving as the main memory 50.
  • the size of the selection transistor (for example, the channel length) is preferably larger than the size of the selection transistor Tr of the MRAM used for the main memory 50.
  • the current driving capability of the selection transistor in the buffer memory 54 is increased, and a sufficiently large write current can be supplied to the MTJ element in the buffer memory 54. Therefore, write defects in the buffer memory 54 are reduced.
  • a memory cell having a 2Tr + 1MTJ configuration including one MTJ element and two selection transistors may be used for the MRAM serving as the buffer memory 54.
  • the two selection transistors are used for one MTJ element, the substantial size of the selection transistor in one memory cell is increased. Therefore, similarly to increasing the size of one select transistor, a sufficiently large write current can be supplied to the MTJ element in the buffer memory 54 even when a 2Tr + 1MTJ type memory cell is used. As a result, write defects in the buffer memory 54 can be reduced.
  • the MRAM of this configuration example includes a control circuit 51 and a write pulse width control circuit 53.
  • the control circuit 51 controls the operation of the entire MRAM (chip) based on the command signal CMD and the address signal ADR input from the outside.
  • the command signal CMD indicates operations on the main memory 50 such as data writing, data reading, and data erasing.
  • the address signal ADR indicates the address of the memory cell to be operated.
  • the write pulse width control circuit 53 has a predetermined pulse width T wp1 as shown in FIG. 17 when the error detection / correction circuit 52 writes the external data nDT added with the error detection / correction code to the main memory 50.
  • the operation of the main memory 50 is controlled so as to use the write current Iw1 .
  • the write circuits 2A and 2B in the main memory 50A output a write current I w1 having a pulse width T wp1 when data is externally written. Writing using the writing current I w1 having the pulse width T wp1 is referred to as normal writing.
  • the write pulse width control circuit 53 makes the pulse width longer than the pulse width T wp1 of the write current I w1 when writing the error-corrected data cDT in the main memory 50, and the write current having the long pulse width T wp2
  • the operation of the main memory 50 particularly the operation of the write circuits 2A and 2B, is controlled so as to use Iw2 .
  • the write circuits 2A and 2B in the main memory 50A output a write current I w2 having a pulse width T wp2 when writing the corrected data. Writing using the writing current I w2 having the pulse width T wp2 is called rewriting or writing back.
  • the control of the pulse widths T wp1 and T wp2 is a period in which the write pulse width control circuit 53 activates the write circuits 2A and 2B, specifically, the write circuits 2A and 2B are electrically connected to the selected cell. It is executed by controlling the period.
  • the operation of the write pulse width control circuit 53 is controlled by the control circuit 51 and two control signals NWC and RWC.
  • the normal write signal NWC is output from the encoding unit 61 in the error detection / correction circuit 52 when an error detection / correction code is added to the input data.
  • the rewrite signal RWC is output from the error correction unit 63 in the error detection / correction circuit 52 when the error of the data rDT is corrected.
  • the write pulse width control circuit 53 outputs a control signal pwcs for outputting a write current I w1 having a pulse width T wp1 to the main memory 50.
  • Write pulse width control circuit 53 when the rewriting signal RWC is input, outputs a control signal pwcs for outputting the write current I w2 of the pulse width T wp2 the main memory 50.
  • the control signal pwcs is referred to as a pulse width control signal pwcs.
  • Pulse width control signal pwcs is, by showing that the use of one of the pulse width T wp1 or T wp2, to the pulse width of the write current may be controlled, by the presence or absence of the input of the pulse width control signal pwcs, write The pulse width of the current may be controlled.
  • the write pulse width control circuit 53 may be provided in the control circuit 51.
  • the control circuit 51 may have the same function as the write pulse width control circuit 53 without providing the write pulse width control circuit 53, and two control signals NWC and RWC may be input to the control circuit 51.
  • the MRAM of this configuration example may further include a command interface to which a command signal is input and an address buffer to which an address signal is input.
  • the MRAM according to the configuration example of the present embodiment uses a write current I w1 having a pulse width T wp1 when data input from the outside is normally written in the MTJ element 1. Further, the MRAM of this configuration example corrects an error in the data stored in the MTJ element 1 and increases the pulse width of the write current when the corrected data is written back to the MTJ element 1 and the pulse width T wp1. A write current I w2 having a longer pulse width T wp2 is used.
  • the MRAM of this configuration example can reduce write defects even if the characteristics (for example, the inversion threshold value) vary among the plurality of MTJ elements in the memory cell array 20. Further, the MRAM of this configuration example has a long pulse width T wp2 only when the data stored (written) in the MTJ element includes an error and the corrected data is written to the MTJ element 1 again. A write current Iw2 is used. Therefore, the operation cycle of the MRAM does not become excessively long, and high speed performance is not impaired.
  • the operation reliability is improved and the operation speed is improved.
  • (A) Operation example 1 The operation example 1 of the magnetic memory (MRAM) according to the configuration example of the present embodiment will be described with reference to FIG.
  • an operation example 1 of the MRAM of this configuration example writing of data used in the MRAM of this configuration example will be described.
  • a command signal CMD indicating writing, an address signal ADR, and data DT1 to be written are input from the outside (step ST1).
  • the command signal CMD and the address signal ADR are input into the control circuit 51, for example.
  • the data DT1 is input to the buffer memory 54, for example.
  • the data DT1 is stored in the buffer memory 54 (step ST2B).
  • the data DT1 is preferably stored in the buffer memory 54 with a block length (for example, 64 bits) of data (information bits) in the extended Hamming code as one unit.
  • the input data DT1 is stored in the buffer memory 54 and also input to the error detection / correction circuit 52 via the buffer memory 54.
  • the data DT1 is input to the encoding unit 61 in the error detection / correction circuit 52.
  • 8 redundant bits are added to the data DT1 as an error detection / correction code by the encoding unit 61.
  • Data nDT to which redundant bits are added is output from the encoding unit 61 to the main memory 50.
  • a control signal (normal write signal) NWC is output from the encoding unit 61 to the write pulse width control circuit 53.
  • the write pulse width control circuit 53 controls (adjusts) the pulse width of the write current for writing the data nDT based on the input normal write signal NWC.
  • a control signal (pulse width control signal) pwcs for setting the pulse width of the write current to “T wp1 ” is output from the write pulse width control circuit 53 to the main memory 50.
  • the word line indicated by the address signal ADR is activated by the row control circuit 4, and the bit line indicated by the address signal ADR is activated by the column control circuits 3A and 3B.
  • the write circuit 2A, 2B in the main memory 50 is controlled by a control signal pwcs, for example, it outputs the write current I w1 having a predetermined pulse width T wp1 shown in Figure 17.
  • the write current I w1 is, the bit lines BL, bBL flow, is supplied to the selected cell indicated by the address signal ADR (MTJ element), data nDT is written (step ST2A).
  • the pulse width T wp1 of the write current I w1 for writing the data nDT is set to, for example, the dead time t 0 or more shown in (Equation 4).
  • the pulse width T wp1 of the write current I w1 for example, the minimum time required for reversing the magnetization ( A pulse width corresponding to (period) is used.
  • the written data is read from the main memory 50 to the error detecting and correcting circuit 52 (step ST3 ).
  • the data read for verification is referred to as verification data.
  • the verify data rDT is input to the error detection unit 62 in the error detection / correction circuit 52.
  • the error detection unit 62 checks whether or not the data rDT stored in the MTJ element 1 includes an error, using redundant bits (error detection / correction code) added to the verification data rDT (step ST4).
  • step ST5 If an error is detected in the verify data rDT, the error is corrected (step ST5).
  • the verify data rDT including an error is output from the error detection unit 62 to the error correction unit 63.
  • the error of the verify data rDT is corrected by the error correction unit 63 based on the redundant bits. If there is no error in the data written to the MTJ element 1, the data writing is terminated (step ST7).
  • the error-corrected data (corrected data) cDT is output to the main memory 50 and written again into the MTJ element 1 in the memory cell array 20 (step ST6).
  • the correction data cDT is normally overwritten at the same address as the address written before the verify operation. That is, the correction data cDT is written to the same MTJ element 1 before and after correction.
  • step ST6 The writing of the corrected data (step ST6), the write current I w2 of long pulse width T wp2 than the pulse width T wp1 of the write current I w1 used for normal writing is used.
  • a control signal (rewrite signal) RWC indicating rewrite is sent from the error correction unit 63 in the error detection and correction circuit 52 to the write pulse width control circuit 53. Is output.
  • a pulse width control signal pwcs for increasing the pulse width of the write current is output from the write pulse width control circuit 53 to the main memory 50.
  • the pulse width control signal pwcs as shown in FIG. 17, the write current I w2 having the pulse width T wp2 (> T wp1 ) is output from the write circuit in the main memory 50, and the write current I w2 is selected. Supplied directly to the cell.
  • the pulse width of the write current is controlled by the pulse width control signal pwcs so as to be 1.10 times the pulse width of the current used in the previous data write.
  • the increase rate for increasing the pulse width of the write current is not limited to 1.10 times, and may be in the range of about 1.07 times to 1.15 times, for example.
  • the pulse width of the write current is set to a predetermined pulse width Twp1 or longer than the pulse width Twp1 .
  • the correction data cDT written back in the main memory 50 (hereinafter referred to as rewrite data) is again subjected to the verify operation (step ST3). Therefore, the rewritten data is output again from the main memory 50, and it is checked whether there is an error in the data. If an error is detected in the rewritten data, the error is corrected, and the corrected data is rewritten and then verified again. If there is no error in the rewritten data, the data writing ends (step ST7).
  • the pulse width of the write current may be increased at the same magnification (for example, 1.1 times).
  • the pulse width may be increased only during the first rewrite, and the pulse width of the write current used for the second and subsequent rewrites may be the same as the pulse width of the first write current.
  • the loop for rewriting data may continue indefinitely until there is no data error.
  • the data write loop is limited to a certain number of times, for example, 10 times, and if the data error is not eliminated even after 10 rewrite loops are performed, the MTJ element itself indicated by the selected address is not included. It is effective to determine that there is a defect and to change the correction data (write-back data) to be stored in another address of the main memory 50.
  • FIG. 19 shows a distribution of current values I c, mp of the current supplied to the MTJ element.
  • the current value I c, mp indicates a current value at which the magnetization reversal probability of the storage layer of the MTJ element becomes 0.5 when data is written to the MTJ element using a write current having a certain pulse width.
  • a distribution C indicates a distribution of currents I c and mp to be satisfied when data correction and rewriting are not executed.
  • a distribution D indicates a distribution when data correction and rewriting are executed. When the probability of malfunction occurrence is less than or equal to a certain specification value, the distribution D is corrected and rewritten, and therefore the variation may be larger than the distribution C.
  • FIG. 19 also shows the distribution of the write current Iwr .
  • the horizontal axis indicates the magnitudes of currents I c, mp , and I write
  • the vertical axis indicates the existence probability.
  • the distributions C and D of the currents I c and mp secure predetermined margin regions MR and CR with respect to the distribution of the current I wr .
  • the correction and rewriting of data is executed, so that the correction and rewriting of data indicated by the distribution C is not executed.
  • the tolerance of variation of the current I c, mp is widened. That is, even if there is a large variation between bits (MTJ elements) in the memory cell array, the malfunction probability can be suppressed.
  • the malfunction is a defect that cannot be corrected by the error detection and correction technique.
  • a defect that can be corrected by the error detection and correction technique is simply referred to as a defect, an error, or an error.
  • a magnetic memory for example, an MRAM
  • the magnetization reversal of a magnetic material is a stochastic phenomenon, write failure, read disturb, retention failure, and the like occur. It is preferable that the total probability of malfunction caused by these is guaranteed to be 1000 FIT (FailuresailIn Time) or less per chip. Therefore, here, the effect of this operation example (write operation) is described assuming 1000 FIT / chip. Note that 1000 FIT / chip is a specification for a general DRAM soft error.
  • an extended Hamming code is used as an error detection / correction code
  • an 8-bit error detection / correction code redundant bit
  • 64-bit data information bits
  • 72 bits are 1
  • the total number of blocks included in the MRAM is 1.68 ⁇ 10 7 .
  • the total number of times of writing is 3.15 ⁇ 10 15 times.
  • the total number of readings is also 3.15 ⁇ 10 15 times.
  • a write defect in one write to one bit Is preferably 2 ⁇ 10 ⁇ 10 or less.
  • the probability of occurrence of read disturbance q in one read for one bit q (Read) is preferably 2 ⁇ 10 ⁇ 10 or less.
  • the probability p 1 (write) that a 1-bit write failure occurs in one block (72 bits) in one data write is represented by (Equation 6).
  • Equation 8 The probability p 1 (read) that 1-bit read disturb occurs in one block in one data read is expressed by (Equation 8).
  • the total probability of malfunctions can be expressed by (Equation 11) from the above probability of defects.
  • data writing in the MRAM of this configuration example is performed by writing data from the outside into the MTJ element and then correcting the error included in the written data with the MTJ element.
  • the pulse width of the correction data write current is made longer than the pulse width of the external data write current. As a result, the probability p 1 (write) of 1-bit write failure is sufficiently reduced.
  • the probability of write failure p 1 (write) is reduced to about 1/10 and the pulse width is reduced.
  • the probability of write failure p 1 (write) decreases to about 1/100.
  • the write failure occurrence probability p 1 (write) is reduced to 1/10.
  • the read disturb occurrence probability p 1 (read) can be increased up to 1.9 times.
  • the pulse width of the write current is 14% to 15% longer than a certain pulse width, the probability of write failure p 1 (write) is reduced to 1/100. As a result, the read disturb occurrence probability p 1 (read) can be increased to 1.99 times.
  • the write failure occurrence probability p 1 (write) can be reduced to, for example, 1/100, as shown in FIG. 19, the current I c, mp is applied to a plurality of MTJ elements 1 of the memory cell array 20. It means that the tolerance of the variation of the spread is widened. This will be described with reference to FIGS.
  • the pulse width is written by the write current of 20 nsec.
  • the average of the write failure occurrence probability q (write) at the write current density J wr is set to be 1 ⁇ 10 ⁇ 10 .
  • the vertical axis indicates the probability
  • the horizontal axis indicates the current density.
  • a characteristic line f1 represents the normal distribution of the variation among elements of the current density J c
  • the characteristic line PA represents the probability of occurrence of writing failure
  • the product of the probability PA characteristic line S1 is a normal distribution f1 Is shown.
  • a line J wr indicates the current density of the set write current.
  • FIG. 21 shows a case where the pulse width of the write current used in the setting example shown in FIG. 20 is increased by 14%.
  • a characteristic line f2 represents a normal distribution of variation among elements of the current density J c
  • the characteristic line PB indicate the probability of occurrence of writing failure
  • characteristic line S2 represents the product of a normal distribution f2 probability PB ing.
  • a line J wr indicates the current density of the set write current.
  • the tolerance of the inter-element variation of the current density J c is 3 It corresponds to an increase from 5% to 5%.
  • write data input from the outside is stored in the main memory 50 and also temporarily stored in the buffer memory 54. Therefore, when a command signal CMD for reading data is input during a cycle in which detection, correction, and data write-back of data are executed, the data is read from the buffer memory 54. Therefore, the operation of the memory is not slowed down by the process of writing back the correction data. Therefore, the high-speed operation of the magnetic memory, for example, the MRAM is not impaired.
  • the magnetic memory according to the present embodiment writes data from the outside to the MTJ element 1 using the write current having the pulse width Twp1 when writing data. Then, the magnetic memory according to the present embodiment verifies whether or not the data written in the MTJ element 1 has been normally written. When the written data includes an error, the magnetic memory according to the present embodiment corrects the error and writes the corrected data to the MTJ element again. Corrected data using the write current I w2 of long pulse width T wp2 than the pulse width T wp1, written in the MTJ element 1. As a result, the time for writing data is not excessively lengthened, and the probability of writing failure is reduced.
  • the reliability of the operation can be improved and the operation characteristics can be improved.
  • FIG. 2 An operation example 2 of the magnetic memory (MRAM) according to the configuration example of this embodiment will be described with reference to FIG.
  • operation example 2 of the MRAM of this configuration example reading of data used in the MRAM of this configuration example will be described.
  • the circuit configuration of the MRAM is the same as that of the operation example 1, and the common configuration and operation (steps) will be described as necessary.
  • FIG. 22 is a flowchart showing the data read operation of the MRAM in this configuration example.
  • data is written to a selected cell (MTJ element 1) in the main memory 50 in an operation cycle of the MRAM (step ST10).
  • This data is, for example, normal writing, that is, data written using the write current I w1 having the pulse width T wp1 shown in FIG.
  • rewriting i.e., it may be data that has been written using a write current I w2 of the pulse width T wp2 shown in Figure 17.
  • a command signal CMD indicating a read command and an address signal ADR indicating a selected cell are input from the outside (step ST12).
  • the command signal CMD and the address signal ADR are input into the control circuit 51, for example.
  • Data is output from the main memory 50 based on the control of the control circuit 51.
  • the data output from the main memory 50 by the read command is called read data rDT.
  • Read data rDT is input to the error detector 62 in the error detection and correction circuit 52.
  • the read data rDT including the error detection / correction signal (redundant bit) is inspected by the error detection unit 62 to determine whether or not it includes an error (step ST13).
  • the read data rDT is output to the decoding unit 64 without being corrected.
  • the decryption unit 64 decrypts the input read data rDT.
  • the decrypted data is temporarily stored in the buffer memory 54.
  • data DT2 is output from the buffer memory 54 to the outside of the chip (step ST14). As a result, when there is no error in the read data, the data reading ends.
  • the error is corrected (step ST15).
  • the read data rDT is output to the error correction unit 63, and errors in the read data rDT are corrected by the error correction unit 63 based on the added redundant bits.
  • the corrected data is output to the decryption unit 64 and decrypted.
  • the decoded correction data cDT is output to the outside as output data DT2 via the buffer memory 54 (step ST16).
  • the correction data cDT is temporarily stored in the buffer memory 54 at the same time as being output to the outside (step ST17).
  • the correction data cDT is output to the outside, and the correction data cDT is written back to the main memory 50 (step ST18).
  • corrected data cDT is written back to main memory 50 writes, for example, as the write current I w2 shown in Figure 17, the pulse width T wp2 of the write current I w2 used for rewriting, usually used for writing than the pulse width T wp1 of the current I w1, it is lengthened.
  • This write current I w2 correction data cDT is rewritten in the MTJ element 1.
  • the rewritten data cDT is read again from the main memory 50 (MTJ element 1) to the error detection unit 62, and it is checked whether there is an error (step ST19).
  • the error of the data is corrected again (step ST20), and the corrected data is written in the main memory 50 again.
  • the pulse width of the write current is increased by 1.1 times.
  • a write current having the same pulse width may be used for the first rewrite and the second and subsequent rewrites.
  • the data corrected during this rewrite loop (ST18 to ST20) is temporarily stored in, for example, the buffer memory 54 (step ST17).
  • the stored data is rewritten at every rewrite loop.
  • the rewrite loop (ST18 to ST20) may be continued until there is no data error, and the rewrite loop may be limited to a predetermined number of times (for example, 10 times). For example, if the error does not disappear even if rewriting is performed 10 times for the same address (MTJ element 1), changing the address to write to another address in the main memory 50 is possible in the memory cell array. It is effective to reduce the data defects.
  • the pulse width of the write current used for rewriting is made longer than the pulse width of the write current used in normal writing, which occurs when data is written back by rewriting. Write defects can be reduced.
  • the data reading in this operation example 2 is also effective for a retention failure that occurs when data is retained due to thermal disturbance.
  • a defective bit caused by a read disturb failure, a write failure, a retention failure, or the like can be corrected to a correct bit at an early stage.
  • an error of 2 bits or more occurs in one block, and even if error detection and correction technology is used, it is possible to reduce the probability of malfunction that cannot correct data errors.
  • the reliability of the operation can be improved and the operation characteristics can be improved.
  • a determination signal (flag) added to the data may be used to determine whether normal writing or rewriting (data writing back).
  • FIG. 23 shows an internal configuration of an MRAM according to a modification of the present embodiment.
  • a determination signal for determining whether normal writing or correction writing is added to the data nDT and cDT. For example, when an error detection / correction code based on a normal Hamming code is used, 7 bits of redundant bits as an error detection / correction code are added to 64-bit data, and it is further determined whether normal writing or correction writing is performed.
  • a 1-bit decision signal (hereinafter referred to as a decision bit) is added. In this case, 72-bit data is handled as one block. For example, when the determination bit is “0”, normal writing is indicated, and when the determination bit is “1”, correction writing is indicated.
  • the encoding unit 61 sets the determination bit to “0” when data wDT is input or output.
  • the error correction unit 63 sets the determination bit to “1” when data rDT is input or output.
  • the write pulse width control circuit 53 is arranged adjacent to the main memory 50.
  • data nDT and cDT are input to the write pulse width control circuit 53 directly or via the main memory 50. Only the determination bits included in the data nDT and cDT may be input to the write pulse width control circuit 53.
  • the write pulse width control circuit 53 has a function of discriminating a determination bit included in one block of data. Depending on whether the determination bit is “1” or “0”, data writing is performed as normal writing or Determine correct write.
  • the write pulse width control circuit 53 generates and outputs the write current I w1 having the pulse width T wp1 shown in FIG. The operation of the write circuit in the main memory 50 is controlled. Further, the write pulse width control circuit 53 generates and outputs a write current I w2 having a pulse width T wp2 longer than the pulse width T wp1 shown in FIG. The operation of the write circuit is controlled.
  • One of the points of the MRAM according to the embodiment of the present invention is that a write current used for normal writing when data once read from the MTJ element 1 is written back to the MTJ element 1 in the operation cycle in the chip.
  • the pulse width of the write current I w2 used for rewriting is increased.
  • the probability of occurrence of a write failure is reduced, and data errors in the main memory (memory cell array) are reduced.
  • the operation of increasing the pulse width of the write current when rewriting data can be applied to the refresh operation (memory holding operation) for the main memory 50.
  • FIG. 24 shows an internal configuration of an MRAM according to a modification of the present embodiment
  • FIG. 25 shows a flowchart of an operation (refresh operation) of the MRAM according to the modification.
  • the MRAM in which the refresh operation of this modification is used includes a counter unit 59 that counts the number of times of reading.
  • step ST21 externally input data is written to the MTJ element in the main memory 50 (step ST21).
  • the data wDT is written by normal writing, and a write current I w1 having a pulse width T wp1 shown in FIG. 17 is used for writing data.
  • step ST22 the data stored in the main memory 50 is read (step ST22). Note that error detection and correction may be performed on the read data, or error detection and correction may not be performed.
  • the counter unit 59 in the control circuit 51 counts the number of times data is read (step ST23).
  • the counter unit 59 may count the input of a command signal CMD indicating a read command, or may count the output of data from the main memory 50.
  • the control circuit 51 compares the value (hereinafter referred to as a count value) N n counted by the counter unit 59 with a reference value N rfl for executing the refresh operation (step ST24).
  • the refresh operation is not executed, and the next operation (for example, data reading) or the operation ends. Even at the end of the operation, the counted counter value N n is held in the counter unit 59 as the counter value N n ⁇ 1 thus far.
  • step ST25 refresh operation is executed (step ST25). After the data stored in the main memory 50 is read once by the refresh operation, the data is written back into the main memory 50 again. Note that error detection and correction may be performed during the refresh operation.
  • the data read from the main memory 50 is written back into the main memory 50 using the write current I w2 having a pulse width longer than that when writing data from the outside (step ST26). ). That is, during the refresh operation, as shown in FIG. 17, the write current I w2 having a pulse width T wp2 longer than the pulse width T wp1 is used for data write back to the main memory 50.
  • a control signal RFL indicating the refresh operation is input from the control circuit 51 to the write pulse width control circuit 53. Based on the control signal RFL, the write pulse width control circuit 53 controls the operation of the write circuits 2A and 2B so as to increase the pulse width of the write current.
  • the refresh operation using the write current I w2 of long pulse width T wp2 for example, reading of data in the next operation cycle is executed.
  • the operation following the refresh operation may be data writing.
  • the write current I w2 for the write current I w1 and rewrite for normal writing is set to the same current value.
  • the pulse width T wp2 of the write current I w2 used for writing back the read data once to the MTJ element is the pulse width T wp1 of the write current I w1 for newly writing data from the outside to the MTJ element. If longer, the magnitudes of the current values of the two currents I w1 and I w2 may be different from each other.
  • the embodiment of the present invention has been described by taking as an example a magnetic memory (MRAM) in which a main memory is configured using a magnetoresistive element as a storage element.
  • MRAM magnetic memory
  • the present invention is not limited to this.
  • elements such as ReRAM (Resistive RAM) and PCRAM (Phase Change RAM) that store a device whose resistance value reversibly changes by controlling the pulse width of the write current (write voltage) are stored. It goes without saying that other memories used for the element can obtain the same effects as those described in the embodiment of the present invention.
  • the example of the present invention is not limited to the above-described embodiment, and can be embodied by modifying each component without departing from the scope of the invention.
  • Various inventions can be configured by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some constituent elements may be deleted from all the constituent elements disclosed in the above-described embodiments, or constituent elements of different embodiments may be appropriately combined.
  • 50 main memory
  • 51 control circuit
  • 52 error detection and correction circuit
  • 53 write pulse width control circuit
  • 54 buffer memory
  • 20 memory cell array
  • 1 magnetoresistive effect element
  • 2, 2A, 2B write circuit .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

A magnetic memory is provided with: a magnetoresistive effect element comprising a first magnetic layer wherein a magnetization direction is constant, a second magnetic layer wherein the magnetization direction is variable, and an interlayer provided between the first magnetic layer and the second magnetic layer; an error detection and correction circuit which detects whether first data written into the magnetoresistive effect element contains an error and which when the first data contains the error, outputs second data wherein the error is corrected; a writing circuit which generates a first writing current having a first pulse width or a second writing current having a second pulse width larger than the first pulse width and applies the same to the magnetoresistive effect element; and a control circuit which controls the writing circuit to apply the second writing current to the magnetoresistive effect element when writing the second data into the magnetoresistive effect element.

Description

磁気メモリMagnetic memory
 本発明は、磁気メモリに関する。 The present invention relates to a magnetic memory.
 近年、磁気トンネル接合素子(以下、MTJ素子とよぶ)を用いた磁気抵抗ランダムアクセスメモリ(MRAM:Magnetoresistive Random Access Memory)が注目されている。 Recently, a magnetoresistive random access memory (MRAM) using a magnetic tunnel junction element (hereinafter referred to as an MTJ element) has attracted attention.
 MRAMのデータの書き込み方式の1つとして、スピン注入磁化反転方式がある。スピン注入磁化反転方式は、MTJ素子にある電流値以上の電流(書き込み電流)を流す。データの読み出しにおいても、電流(読み出し電流)をMTJ素子に流す。 There is a spin injection magnetization reversal method as one of the data write methods of MRAM. In the spin injection magnetization reversal method, a current (write current) greater than or equal to the current value in the MTJ element is passed. In reading data, a current (read current) is passed through the MTJ element.
 従来は、電流の供給(スピン注入)によるMTJ素子の磁化反転過程は、単純な熱活性過程で示すことができると考えられてきた。しかし、MTJ素子に対する電流の供給開始した直後は、反転確率がほぼゼロである時間が存在し、その一定時間を経過した後で反転確率が増加するという磁化反転過程が、新たに提案されている(例えば、非特許文献1参照)。 Conventionally, it has been considered that the magnetization reversal process of the MTJ element by supplying current (spin injection) can be represented by a simple thermal activation process. However, immediately after the start of current supply to the MTJ element, there is a time when the reversal probability is almost zero, and a magnetization reversal process in which the reversal probability increases after a certain time has been newly proposed. (For example, refer nonpatent literature 1).
 スピン注入型MRAMにおいて、書き込み電流の電流値は、スピン注入によって磁化反転が生じるしきい値(以下、反転しきい値とよぶ)よりも大きい電流値に設定され、読み出し電流の電流値は、その反転しきい値よりも小さな電流値に設定される。 In the spin injection type MRAM, the current value of the write current is set to a current value larger than a threshold value (hereinafter referred to as an inversion threshold value) at which magnetization reversal is caused by spin injection, and the read current value is A current value smaller than the inversion threshold is set.
 しかし、MRAMを構成する複数のMTJ素子の特性ばらつきに起因して、反転しきい値は、素子毎にばらつく。また、同じMTJ素子に対して、データを繰り返して書き込んだ場合において、その素子に対する反転しきい値が揺らぐ現象が、存在する。 However, the inversion threshold varies from element to element due to variations in characteristics of a plurality of MTJ elements constituting the MRAM. In addition, when data is repeatedly written to the same MTJ element, there is a phenomenon that the inversion threshold value for the element fluctuates.
 そのため、データの書き込み時における書き込み不良、データの読み出し時における読み出し電流に起因した読み出しディスターブや、さらには、データの保持時における熱擾乱によって磁化が反転してしまう不良、リテンション不良が発生する。このように、MTJ素子(磁性体)の磁化反転が確率現象であるため、MRAMの動作中に、不良が発生する。 Therefore, a write failure at the time of data writing, a read disturbance due to a read current at the time of reading data, a failure in which magnetization is reversed due to a thermal disturbance at the time of data retention, and a retention failure occur. As described above, since the magnetization reversal of the MTJ element (magnetic material) is a stochastic phenomenon, a defect occurs during the operation of the MRAM.
 これらの不良に対処するため、データの読み出しに誤り訂正符号(ECC:Error Correction Coding)を適用したMRAMも検討されている(例えば、特許文献1参照)。 In order to deal with these defects, an MRAM in which an error correcting code (ECC: Error Correction Coding) is applied to data reading has been studied (for example, see Patent Document 1).
 特許文献1に開示される技術は、読み出されるデータに対して誤り訂正を行っても、MRAMに記憶されているデータ自体には、発生したデータの誤りが残る。そのため、データを読み出す度に、誤り訂正が実行され、動作速度が低下する。また、通常の誤り検出訂正技術では、所定のサイズのデータ(ブロック)内に所定のビット数以上の誤りが存在すると、訂正ができなくなる。 In the technique disclosed in Patent Document 1, even if error correction is performed on read data, the error of the generated data remains in the data itself stored in the MRAM. For this reason, every time data is read, error correction is performed, and the operation speed is reduced. Further, in the normal error detection and correction technique, if there are errors of a predetermined number of bits or more in data (blocks) of a predetermined size, correction cannot be performed.
米国特許第7,370,260号明細書US Pat. No. 7,370,260
 本発明は、磁気メモリの信頼性及び動作特性の向上を図る技術を提案する。 The present invention proposes a technique for improving the reliability and operating characteristics of a magnetic memory.
 本発明の例に関わる磁気メモリは、磁化方向が不変な第1の磁性層と、磁化方向が可変な第2の磁性層と、前記第1の磁性層と前記第2の磁性層の間に設けられた中間層とを有する磁気抵抗効果素子と、前記磁気抵抗効果素子に書き込まれた第1のデータが誤りを含むか否かを検出し、前記第1のデータが誤りを含む場合にその誤りが訂正された第2のデータを出力する誤り検出訂正回路と、第1のパルス幅を有する第1の書き込み電流及び前記第1のパルス幅より長い第2のパルス幅を有する第2の書き込み電流のいずれか一方を生成し、前記磁気抵抗効果素子に流す書き込み回路と、前記第2のデータを前記磁気抵抗効果素子に書き込む場合、前記第2の書き込み電流を前記磁気抵抗効果素子に流すように、前記書き込み回路を制御する制御回路と、を備える。 A magnetic memory according to an example of the present invention includes a first magnetic layer whose magnetization direction is unchanged, a second magnetic layer whose magnetization direction is variable, and a gap between the first magnetic layer and the second magnetic layer. And detecting whether or not the first data written in the magnetoresistive effect element includes an error, and when the first data includes an error, the An error detection and correction circuit for outputting second data in which an error is corrected, a first write current having a first pulse width, and a second write having a second pulse width longer than the first pulse width A write circuit that generates one of the currents and causes the magnetoresistive effect element to flow, and when writing the second data to the magnetoresistive effect element, causes the second write current to flow to the magnetoresistive effect element Control the writing circuit And a control circuit.
 本発明によれば、磁気メモリの信頼性及び動作特性を向上できる。 According to the present invention, the reliability and operating characteristics of the magnetic memory can be improved.
実施形態に係る磁気メモリの基本例を示す図。1 is a diagram showing a basic example of a magnetic memory according to an embodiment. 書き込み電流のパルス波形を示す図。The figure which shows the pulse waveform of write-in electric current. 磁気抵抗効果素子の一例を示す図。The figure which shows an example of a magnetoresistive effect element. 磁気抵抗効果素子の一例を示す図。The figure which shows an example of a magnetoresistive effect element. 実施形態に係る磁化反転モデルを説明するための図。The figure for demonstrating the magnetization reversal model which concerns on embodiment. 実施形態に係る磁化反転モデルを説明するための図。The figure for demonstrating the magnetization reversal model which concerns on embodiment. 実施形態に係る磁化反転モデルを説明するための図。The figure for demonstrating the magnetization reversal model which concerns on embodiment. 実施形態に係る磁化反転モデルを説明するための図。The figure for demonstrating the magnetization reversal model which concerns on embodiment. 実施形態に係る磁化反転モデルを説明するための図。The figure for demonstrating the magnetization reversal model which concerns on embodiment. 実施形態に係る磁化反転モデルを説明するための図。The figure for demonstrating the magnetization reversal model which concerns on embodiment. 電流のパルス幅に対する磁化反転の依存性を説明するための図。The figure for demonstrating the dependence of the magnetization reversal with respect to the pulse width of an electric current. 電流のパルス幅に対する磁化反転の依存性を説明するための図。The figure for demonstrating the dependence of the magnetization reversal with respect to the pulse width of an electric current. 電流のパルス幅に対する磁化反転の依存性を説明するための図。The figure for demonstrating the dependence of the magnetization reversal with respect to the pulse width of an electric current. 実施形態に係る磁気メモリの構成例を示すブロック図。1 is a block diagram showing a configuration example of a magnetic memory according to an embodiment. 主メモリの構成例を示す図。The figure which shows the structural example of a main memory. メモリセルの構造例を示す図。The figure which shows the structural example of a memory cell. 書き込み電流及び読み出し電流のパルス波形を示す図。The figure which shows the pulse waveform of a write current and a read current. 実施形態に係る磁気メモリの動作例を示すフローチャート。6 is a flowchart illustrating an operation example of the magnetic memory according to the embodiment. 実施形態に係る磁気メモリに対する効果を説明するための図。The figure for demonstrating the effect with respect to the magnetic memory which concerns on embodiment. 実施形態に係る磁気メモリに対する効果を説明するための図。The figure for demonstrating the effect with respect to the magnetic memory which concerns on embodiment. 実施形態に係る磁気メモリに対する効果を説明するための図。The figure for demonstrating the effect with respect to the magnetic memory which concerns on embodiment. 実施形態に係る磁気メモリの動作例を示すフローチャート。6 is a flowchart illustrating an operation example of the magnetic memory according to the embodiment. 実施形態に係る磁気メモリの変形例を示すブロック図。The block diagram which shows the modification of the magnetic memory which concerns on embodiment. 実施形態に係る磁気メモリの変形例を示すブロック図。The block diagram which shows the modification of the magnetic memory which concerns on embodiment. 実施形態に係る磁気メモリの動作例を示すフローチャート。6 is a flowchart illustrating an operation example of the magnetic memory according to the embodiment.
 以下、図面を参照しながら、本発明の例を実施するための形態について詳細に説明する。以下の説明において、同一の機能及び構成を有する要素については、同一符号を付し、重複する説明は必要に応じて行う。 Hereinafter, embodiments for carrying out examples of the present invention will be described in detail with reference to the drawings. In the following description, elements having the same function and configuration are denoted by the same reference numerals, and redundant description will be given as necessary.
 [実施形態]
 (1) 基本例 
 図1乃至図13を用いて、本発明の実施形態に係る磁気メモリの基本例について、説明する。
[Embodiment]
(1) Basic example
A basic example of a magnetic memory according to an embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施形態に係る磁気メモリの構成の一例を示している。 FIG. 1 shows an example of the configuration of the magnetic memory according to the present embodiment.
 図1に示すように、磁気メモリは、主メモリ50内に、磁気抵抗効果素子1とスイッチTrとを備える。磁気抵抗効果素子1及びスイッチTrは、1つのメモリセルを構成している。磁気抵抗効果素子1は、記憶素子として用いられる。スイッチTrは、磁気抵抗効果素子1に対する選択素子として用いられる。 As shown in FIG. 1, the magnetic memory includes a magnetoresistive effect element 1 and a switch Tr in the main memory 50. The magnetoresistive effect element 1 and the switch Tr constitute one memory cell. The magnetoresistive effect element 1 is used as a memory element. The switch Tr is used as a selection element for the magnetoresistive effect element 1.
 磁気抵抗効果素子1は、2つのビット線BL,bBLに接続される。磁気抵抗効果素子1の一端は、ビット線BLに接続され、磁気抵抗効果素子1の他端は、スイッチTrを経由して、ビット線bBLに接続される。 The magnetoresistive effect element 1 is connected to two bit lines BL and bBL. One end of the magnetoresistive effect element 1 is connected to the bit line BL, and the other end of the magnetoresistive effect element 1 is connected to the bit line bBL via the switch Tr.
 スイッチTrは、例えば、電界効果トランジスタ(FET:Field Effect Transistor)である。以下、スイッチTrのことを、選択トランジスタTrとよぶ。選択トランジスタTrの電流経路の一端(ソース/ドレイン)は、磁気抵抗効果素子1の他端に接続され、選択トランジスタTrの電流経路の他端(ソース/ドレイン)は、ビット線bBLに接続される。選択トランジスタTrの制御端子(ゲート)は、ワード線WLに接続される。ワード線WLは、例えば、ビット線BL,bBLの延在方向と交差する方向に延在している。データの書き込み時、図2に示される書き込み電流Iw1,Iw2が、2つのビット線BL,bBL間を流れ、磁気抵抗効果素子1に供給される。 The switch Tr is, for example, a field effect transistor (FET). Hereinafter, the switch Tr is referred to as a selection transistor Tr. One end (source / drain) of the current path of the selection transistor Tr is connected to the other end of the magnetoresistive effect element 1, and the other end (source / drain) of the current path of the selection transistor Tr is connected to the bit line bBL. . A control terminal (gate) of the selection transistor Tr is connected to the word line WL. For example, the word line WL extends in a direction crossing the extending direction of the bit lines BL and bBL. When writing data, the write currents I w1 and I w2 shown in FIG. 2 flow between the two bit lines BL and bBL and are supplied to the magnetoresistive effect element 1.
 図3及び図4は、磁気抵抗効果素子1の構成を示す断面図である。磁気抵抗効果素子1には、例えば、スピン偏極トンネル効果による磁気抵抗の変化を利用したMTJ(magnetic tunnel junction)素子が使用される。以下では、磁気抵抗効果素子1のことを、MTJ素子1とよぶ。 3 and 4 are cross-sectional views showing the configuration of the magnetoresistive effect element 1. FIG. As the magnetoresistive effect element 1, for example, an MTJ (magnetic tunnel junction) element using a change in magnetoresistance due to a spin-polarized tunnel effect is used. Hereinafter, the magnetoresistive effect element 1 is referred to as an MTJ element 1.
 MTJ素子1は、参照層(磁化不変層ともいう)11A,11B、中間層(非磁性層)12A,12B、記憶層(磁化自由層ともいう)13A,13B、が順に積層された積層構造を有する。尚、参照層11A,11Bと記憶層13A,13Bとは、積層順序が逆であってもよい。 The MTJ element 1 has a stacked structure in which reference layers (also referred to as magnetization invariant layers) 11A and 11B, intermediate layers (nonmagnetic layers) 12A and 12B, and storage layers (also referred to as magnetization free layers) 13A and 13B are sequentially stacked. Have. The reference layers 11A and 11B and the memory layers 13A and 13B may be stacked in reverse order.
 図3に示されるMTJ素子1は、参照層11A及び記憶層13Aの容易磁化方向が、膜面に対して平行になっている。図3に示されるMTJ素子1は、面内磁化型MTJ素子とよばれる。 
 図4に示されるMTJ素子1は、参照層11B及び記憶層13Bの容易磁化方向が、膜面(或いは積層面)に対して垂直になっている。図3に示されるMTJ素子は、垂直磁化型MTJ素子とよばれる。 
 面内磁化の磁性層は、面内方向の磁気異方性を有し、垂直磁化の磁性層は、膜面に垂直方向の磁気異方性を有している。MTJ素子1に垂直磁化型を用いた場合は、面内磁化型のように磁化方向を決定するのに素子形状を制御する必要がなく、且つ記憶層13A,13Bの体積を小さくしても十分な記憶保持特性を保つため、メモリセルの微細化に適しているという利点がある。
In the MTJ element 1 shown in FIG. 3, the easy magnetization directions of the reference layer 11A and the storage layer 13A are parallel to the film surface. The MTJ element 1 shown in FIG. 3 is called an in-plane magnetization type MTJ element.
In the MTJ element 1 shown in FIG. 4, the easy magnetization directions of the reference layer 11B and the storage layer 13B are perpendicular to the film surface (or the laminated surface). The MTJ element shown in FIG. 3 is called a perpendicular magnetization type MTJ element.
The magnetic layer with in-plane magnetization has a magnetic anisotropy in the in-plane direction, and the magnetic layer with perpendicular magnetization has a magnetic anisotropy in the direction perpendicular to the film surface. When the perpendicular magnetization type is used for the MTJ element 1, it is not necessary to control the element shape to determine the magnetization direction as in the in-plane magnetization type, and it is sufficient even if the volumes of the storage layers 13A and 13B are reduced. Therefore, there is an advantage that it is suitable for miniaturization of memory cells.
 記憶層13A,13Bは、磁化(或いはスピン)の方向が可変である(反転する)。参照層11A,11Bは、磁化の方向が不変である(固着している)。「参照層11A,11Bの磁化方向が不変である」とは、記憶層13A,13Bの磁化方向を反転させるために使用される磁化反転電流(反転しきい値)を、参照層11A,11Bに流した場合に、参照層11A,11Bの磁化方向が変化しないことを意味する。したがって、MTJ素子1において、参照層11A,11Bとして反転しきい値の大きな磁性層を用い、記憶層13A,13Bとして参照層11A,11Bよりも反転しきい値の小さい磁性層を用いることによって、磁化方向が可変の記憶層13A,13Bと磁化方向が不変の参照層11A,11Bとを備えたMTJ素子1が実現される。 The storage layers 13A and 13B have variable (reversed) magnetization (or spin) directions. The reference layers 11A and 11B have the same magnetization direction (fixed). “The magnetization directions of the reference layers 11A and 11B are unchanged” means that the magnetization reversal current (inversion threshold) used to reverse the magnetization directions of the storage layers 13A and 13B is applied to the reference layers 11A and 11B. This means that the magnetization directions of the reference layers 11A and 11B do not change when they are flowed. Therefore, in the MTJ element 1, by using a magnetic layer having a large inversion threshold as the reference layers 11A and 11B and using a magnetic layer having a smaller inversion threshold than the reference layers 11A and 11B as the storage layers 13A and 13B, The MTJ element 1 including the storage layers 13A and 13B having a variable magnetization direction and the reference layers 11A and 11B having a fixed magnetization direction is realized.
 また、参照層11A,11Bの磁化を固定する方法としては、参照層11A,11Bに隣接して反強磁性層(図示せず)を設け、参照層11A,11Bと反強磁性層との交換結合によって、参照層11A,11Bの磁化方向を固定することができる。但し、垂直磁化型のMTJ素子は、参照層11Aに隣接して反強磁性層(図示せず)を設けずともよい。MTJ素子1の平面形状については特に制限がなく、円、楕円、正方形、長方形等のいずれを用いてもよい。また、正方形の角或いは長方形の角が丸くなった形状、或いは角が欠けた形状であってもよい。 As a method of fixing the magnetization of the reference layers 11A and 11B, an antiferromagnetic layer (not shown) is provided adjacent to the reference layers 11A and 11B, and the reference layers 11A and 11B are exchanged with the antiferromagnetic layer. The magnetization direction of the reference layers 11A and 11B can be fixed by the coupling. However, in the perpendicular magnetization type MTJ element, an antiferromagnetic layer (not shown) may not be provided adjacent to the reference layer 11A. The planar shape of the MTJ element 1 is not particularly limited, and any of a circle, an ellipse, a square, a rectangle, and the like may be used. Further, the shape may be a shape in which square corners or rectangular corners are rounded, or a shape with missing corners.
 参照層11A,11B及び記憶層13A,13Bは、高い保磁力を持つ磁性材料から構成され、例えば、1×10erg/cc以上の高い磁気異方性エネルギー密度を有することが好ましい。 The reference layers 11A and 11B and the storage layers 13A and 13B are made of a magnetic material having a high coercive force, and preferably have a high magnetic anisotropic energy density of, for example, 1 × 10 6 erg / cc or more.
 中間層12A,12Bは、非磁性体からなり、例えば、絶縁体、半導体、金属などを用いることが可能である。中間層12に絶縁体或いは半導体が用いられた場合、中間層12はトンネルバリア層とよばれる。 The intermediate layers 12A and 12B are made of a non-magnetic material, and for example, an insulator, a semiconductor, a metal, or the like can be used. When an insulator or a semiconductor is used for the intermediate layer 12, the intermediate layer 12 is called a tunnel barrier layer.
 尚、参照層11A,11B及び記憶層13A,13Bの各々は、図示するような単層に限定されず、複数の強磁性層からなる積層構造であってもよい。また、参照層11A,11B及び記憶層13A,13Bの各々は、第1の強磁性層/非磁性層/第2の強磁性層の3層からなり、第1及び第2の強磁性層の磁化方向が反平行状態となるように磁気結合(交換結合)した反強磁性結合構造であってもよいし、第1及び第2の強磁性層の磁化方向が平行状態となるように磁気結合(交換結合)した強磁性結合構造であってもよい。 Note that each of the reference layers 11A and 11B and the storage layers 13A and 13B is not limited to a single layer as illustrated, and may have a stacked structure including a plurality of ferromagnetic layers. Each of the reference layers 11A and 11B and the storage layers 13A and 13B includes three layers of a first ferromagnetic layer / a nonmagnetic layer / a second ferromagnetic layer. An antiferromagnetic coupling structure in which the magnetization directions are in an antiparallel state (magnetic coupling (exchange coupling)) may be used, or the first and second ferromagnetic layers may have a magnetization direction in a parallel state. A (exchange-coupled) ferromagnetic coupling structure may be used.
 また、MTJ素子1は、ダブルジャンクション構造を有していてもよい。ダブルジャンクション構造のMTJ素子1は、第1の参照層、第1の中間層、記憶層、第2の中間層、第2の参照層が順に積層された積層構造を有する。このようなダブルジャンクション構造は、スピン注入による記憶層13A,13Bの磁化反転を制御しやすいという利点がある。 Further, the MTJ element 1 may have a double junction structure. The MTJ element 1 having a double junction structure has a stacked structure in which a first reference layer, a first intermediate layer, a storage layer, a second intermediate layer, and a second reference layer are stacked in this order. Such a double junction structure has an advantage that it is easy to control the magnetization reversal of the storage layers 13A and 13B by spin injection.
 ビット線BLには、書き込み回路2が接続される。書き込み回路2は、MTJ素子1に対するデータの書き込み時、書き込み電流Iw1,Iw2を生成し、その生成した電流Iw1,Iw2をビット線BL,bBL間に流す。そして、書き込み電流Iw1,Iw2は、MTJ素子1を流れる。書き込み回路2は、書き込み電流Iw1,Iw2を、MTJ素子1の一端から他端に、または、MTJ素子1の他端から一端に、双方向に流す。書き込み回路2の動作は、後述の制御回路51によって、制御される。 The write circuit 2 is connected to the bit line BL. When writing data to the MTJ element 1, the write circuit 2 generates write currents I w1 and I w2 and passes the generated currents I w1 and I w2 between the bit lines BL and bBL. The write currents I w1 and I w2 flow through the MTJ element 1. The write circuit 2 flows the write currents I w1 and I w2 bidirectionally from one end of the MTJ element 1 to the other end or from the other end of the MTJ element 1 to one end. The operation of the writing circuit 2 is controlled by a control circuit 51 described later.
 図2は、書き込み電流のパルス波形の一例を示している。図2において、書き込み電流の電流値は、絶対値で示されている。書き込み回路2は、制御回路51に基づいて、パルス幅Twp1を有する書き込み電流Iw1及びパルス幅Twp2を有する書き込み電流Iw2のいずれかを、MTJ素子1に供給する。書き込み電流Iw1,Iw2は、MTJ素子1内を流れる。パルス幅Twp2は、パルス幅Twp1よりも長い。 FIG. 2 shows an example of a pulse waveform of the write current. In FIG. 2, the current value of the write current is shown as an absolute value. Based on the control circuit 51, the write circuit 2 supplies either the write current I w1 having the pulse width T wp1 or the write current I w2 having the pulse width T wp2 to the MTJ element 1. Write currents I w1 and I w2 flow through the MTJ element 1. Pulse width T wp2 is longer than the pulse width T wp1.
 本実施形態において、電流のパルス幅は、パルスの半値全幅(FWHM:Full width at half maximum)で規定される。書き込み電流Iw1,Iw2のパルス幅Twp1,Twp2は、最大電流値iの1/2の値i/2を基準としたパルス幅である。書き込み電流Iw1のパルス幅Twp1は、時間tabと時間tcdとの間の期間である。時間tabは、パルス電流Iw1の立ち上がりが開始する時間tと立ち上がりが終了する時間tの実質的に中間の時間であり、時間tcdは、パルス電流Iw1の立ち下がりが開始する時間tと立ち下がりが終了する時間tの実質的に中間の時間である。 In the present embodiment, the pulse width of the current is defined by the full width at half maximum (FWHM) of the pulse. The pulse widths T wp1 and T wp2 of the write currents I w1 and I w2 are pulse widths based on a value i w / 2 that is ½ of the maximum current value i w . The pulse width T wp1 of the write current I w1 is a period between the time t ab and the time t cd . Time t ab is the time period t a and the rise of the rise of the pulse current I w1 is started is completed t b substantially intermediate time, the time t cd is the fall of the pulse current I w1 is started This is a substantially intermediate time between the time t c and the time t d when the falling ends.
 書き込み電流Iw2のパルス幅Twp2は、時間t12と時間t34との間の期間である。時間12は、パルス電流Iw2の立ち上がりが開始する時間tと立ち上がりが終了する時間tの実質的に中間の時間であり、時間t34は、パルス電流Iw2の立ち下がりが開始する時間tと立ち下がりが終了する時間tの実質的に中間の時間である。 Pulse width T wp2 of the write current I w2 is the period between time t 12 and time t 34. Time 12 is substantially intermediate the rise time is the time to start t 1 and time t 2 when the rising ends of the pulse current I w2, the time t 34 is the time the fall of the pulse current Iw2 starts t 3 and falling is substantially intermediate time period ending t 4.
 書き込み電流Iw1及び書き込み電流Iw2は、例えば、同じ電流値iwを有する。電流値iは、記憶層の反転しきい値ith以上、参照層の反転しきい値未満に、設定される。 The write current I w1 and the write current I w2 have, for example, the same current value iw. The current value i w is set to be not less than the inversion threshold value i th of the storage layer and less than the inversion threshold value of the reference layer.
 誤り検出訂正回路52は、MTJ素子1が記憶している(又は、保持している)データ(以下、書き込みデータとよぶ)に、誤りが有るか否かを検出する。誤り検出訂正回路52は、データに誤りがあった場合に、その誤りを訂正する。訂正されたデータ(以下、訂正データとよぶ)は、MTJ素子1に再び書き込まれる。 The error detection and correction circuit 52 detects whether or not there is an error in the data (hereinafter referred to as write data) stored (or held) by the MTJ element 1. The error detection and correction circuit 52 corrects the error when there is an error in the data. The corrected data (hereinafter referred to as corrected data) is written again in the MTJ element 1.
 制御回路51は、磁気メモリ全体の動作を制御する。制御回路51は、MTJ素子1及び誤り検出訂正回路52の動作状況に応じて、書き込み電流Iw1及び書き込み電流Iw2のいずれか一方をMTJ素子1に供給するように、書き込み回路2の動作を制御する。 The control circuit 51 controls the operation of the entire magnetic memory. The control circuit 51 performs the operation of the write circuit 2 so as to supply either the write current I w1 or the write current I w2 to the MTJ element 1 according to the operation status of the MTJ element 1 and the error detection / correction circuit 52. Control.
 制御回路51は、訂正データをMTJ素子1に書き込む場合、外部から入力されたデータを書き込む場合に比較して長いパルス幅Twp2を有する書き込み電流Iw2を生成及び出力するように、書き込み回路2の動作を制御する。外部から入力されたデータをMTJ素子1に書き込む場合、制御回路51は、パルス幅Twp1を有する書き込み電流Iw1を生成及び出力するように、書き込み回路2の動作を制御する。 The control circuit 51 generates and outputs a write current I w2 having a longer pulse width T wp2 when writing correction data to the MTJ element 1 than when writing data input from the outside. To control the operation. When writing data input from the outside to the MTJ element 1, the control circuit 51 controls the operation of the write circuit 2 so as to generate and output a write current I w1 having a pulse width T wp1 .
 以下、MTJ素子1の低抵抗状態及び高抵抗状態、及び、スピン注入によるデータの書き込みについて説明する。図3及び図4に示すように、データの書き込み時、書き込み電流I(図2中の電流Iw1又は電流Iw2)が、MTJ素子1内を流れる。そして、書き込み電流Iは、書き込むデータに応じて、MTJ素子1内を双方向に流れる。尚、電流が流れる向きと電子が移動する向きが反対なのは、もちろんである。 Hereinafter, the low resistance state and the high resistance state of the MTJ element 1 and data writing by spin injection will be described. As shown in FIGS. 3 and 4, a write current I (current I w1 or current I w2 in FIG. 2) flows in the MTJ element 1 when data is written. The write current I flows bidirectionally in the MTJ element 1 according to the data to be written. Of course, the direction in which the current flows is opposite to the direction in which the electrons move.
 参照層11A,11Bと記憶層13A,13Bとの磁化方向が平行となる平行状態(低抵抗状態)について説明する。 A parallel state (low resistance state) in which the magnetization directions of the reference layers 11A and 11B and the storage layers 13A and 13B are parallel will be described.
 参照層11A,11Bを通過した電子のうちマジョリティーな電子は、参照層11A,11Bの磁化方向と平行なスピンを有する。このマジョリティーな電子のスピン角運動量が記憶層13A,13Bに移動することにより、スピントルクが記憶層13A,13Bに印加され、記憶層13A,13Bの磁化方向は、参照層11A,11Bの磁化方向と平行に揃えられる。この平行配列のとき、MTJ素子1の抵抗値は最も小さくなる。この場合が、例えば、“0”データとして扱われる。 Majority electrons among the electrons that have passed through the reference layers 11A and 11B have a spin parallel to the magnetization direction of the reference layers 11A and 11B. As the spin angular momentum of the majority electrons moves to the storage layers 13A and 13B, spin torque is applied to the storage layers 13A and 13B, and the magnetization directions of the storage layers 13A and 13B are the magnetization directions of the reference layers 11A and 11B. Aligned in parallel. With this parallel arrangement, the MTJ element 1 has the smallest resistance value. This case is treated as “0” data, for example.
 次に、参照層11A,11Bと記憶層13A,13Bとの磁化方向が反平行となる反平行状態(高抵抗状態)について説明する。 Next, an antiparallel state (high resistance state) in which the magnetization directions of the reference layers 11A and 11B and the storage layers 13A and 13B are antiparallel will be described.
 参照層11A,11Bによって反射された電子のうちマジョリティーな電子は、参照層11A,11Bの磁化方向と反平行のスピンを有する。このマジョリティーな電子のスピン角運動量が記憶層13A,13Bに移動することにより、スピントルクが記憶層13A,13Bに印加され、記憶層13A,13Bの磁化方向は、参照層11A,11Bの磁化方向と反平行に揃えられる。この反平行配列のとき、MTJ素子1の抵抗値は最も大きくなる。この場合が、例えば、“1”データとして扱われる。 Among the electrons reflected by the reference layers 11A and 11B, the majority electron has a spin antiparallel to the magnetization direction of the reference layers 11A and 11B. As the spin angular momentum of the majority electrons moves to the storage layers 13A and 13B, spin torque is applied to the storage layers 13A and 13B, and the magnetization directions of the storage layers 13A and 13B are the magnetization directions of the reference layers 11A and 11B. And anti-parallel. In the antiparallel arrangement, the MTJ element 1 has the largest resistance value. This case is treated as “1” data, for example.
 以下、図5乃至図13を参照して、本実施形態のスピン注入磁化反転モデルについて、述べる。 Hereinafter, the spin-injection magnetization reversal model of this embodiment will be described with reference to FIGS.
 図5は、本実施形態で述べるスピン注入磁化反転モデルにおける、磁化反転確率の時間依存性を示している。図5の横軸は時間(単位:nsec(ナノ秒))を示している。図5の縦軸は、磁化反転確率に対応する。但し、磁化反転確率が“P”で示された場合、図5の縦軸において、Log10(1-P)が示されている。“1-P”は、磁化が反転しない(データが書き込まれない)確率を示す。尚、磁化反転確率とは、あるMTJ素子に一定の電流を流した場合に、記憶層の磁化方向が反転する確率である。 FIG. 5 shows the time dependence of the magnetization reversal probability in the spin injection magnetization reversal model described in the present embodiment. The horizontal axis in FIG. 5 indicates time (unit: nsec (nanosecond)). The vertical axis in FIG. 5 corresponds to the magnetization reversal probability. However, when the magnetization reversal probability is indicated by “P”, Log 10 (1-P) is indicated on the vertical axis of FIG. “1-P” indicates a probability that magnetization is not reversed (data is not written). The magnetization reversal probability is the probability that the magnetization direction of the storage layer is reversed when a certain current is passed through a certain MTJ element.
 図5に示される各特性曲線は、LLG(Landau-Liftshitz-Gilbert)方程式を用いたマイクロマグネティックシミュレーション(micromagnetic simulation)によって得られた結果である。このシミュレーションに用いた各パラメータは、以下のとおりである。 
 シミュレーションに用いられたMTJ素子は、垂直磁化型のMTJ素子である。MTJ素子の膜厚は、2.2nm、MTJ素子の直径は、30nmに設定されている。記憶層の磁化は、膜面に対して垂直方向に向いており、記憶層の磁気異方性エネルギーKuは、3.5Merg/cc、記憶層の飽和磁化Msは、500emu/ccである。エネルギーバリアΔEaは、86kT(k:ボルツマン定数,T:絶対温度)である。エネルギーバリアΔEaはMTJ素子が平行状態から反平行状態、あるいは反平行状態から平行状態に反転する過程で超えなければいけないエネルギーバリアの大きさを示している。温度(絶対温度)Tは300Kに設定される。また、MTJ素子に流れる電流密度Jの範囲は、2.8~4MA/cmに設定される。そして、0.934~1.436の範囲内における電流密度比J/J(22nsec,midpoint)を用いて、シミュレーションが実行されている。尚、“J”は、パルス電流の電流密度を示し、“J(22nsec,midpoint)”は、パルス幅が22nsecの書き込み電流を用いてMTJ素子にデータを書き込んだ場合に、そのMTJ素子の記憶層の磁化反転確率が0.5になる電流密度を示している。
Each characteristic curve shown in FIG. 5 is a result obtained by a micromagnetic simulation using an LLG (Landau-Liftshitz-Gilbert) equation. Each parameter used for this simulation is as follows.
The MTJ element used for the simulation is a perpendicular magnetization type MTJ element. The film thickness of the MTJ element is set to 2.2 nm, and the diameter of the MTJ element is set to 30 nm. The magnetization of the storage layer is perpendicular to the film surface, the magnetic layer has a magnetic anisotropy energy Ku of 3.5 Merg / cc, and the storage layer has a saturation magnetization Ms of 500 emu / cc. The energy barrier ΔEa is 86 k B T (k B : Boltzmann constant, T: absolute temperature). The energy barrier ΔEa indicates the size of the energy barrier that must be exceeded in the process of reversing the MTJ element from the parallel state to the antiparallel state or from the antiparallel state to the parallel state. The temperature (absolute temperature) T is set to 300K. The range of the current density J flowing through the MTJ element is set to 2.8 to 4 MA / cm 2 . The simulation is executed using the current density ratio J / J C (22 nsec, midpoint) within the range of 0.934 to 1.436. “J” indicates the current density of the pulse current, and “J C (22 nsec, midpoint)” indicates that the MTJ element has a write width of 22 nsec when data is written to the MTJ element. The current density at which the magnetization reversal probability of the storage layer is 0.5 is shown.
 図5においては、各電流密度比0.934~1.436を用いたシミュレーションから得られた特性曲線に対する1次近似特性線(図中、点線)も示されている。 FIG. 5 also shows a first-order approximate characteristic line (dotted line in the figure) for the characteristic curve obtained from the simulation using each current density ratio of 0.934 to 1.436.
 図5に示される各特性曲線に基づいて、スピン注入磁化反転確率P(t)は、(式1)のように近似的に表すことができる。
Figure JPOXMLDOC01-appb-M000001
Based on the characteristic curves shown in FIG. 5, the spin injection magnetization reversal probability P (t) can be approximately expressed as (Equation 1).
Figure JPOXMLDOC01-appb-M000001
 “P(t)”は、パルス幅tの電流パルスがMTJ素子に流されることにより、記憶層の磁化が反転する確率を示している。“f”は、MTJ素子が単位時間に熱エネルギー(フォノン)を受け取る頻度である。“f”は1×10Hz程度である。“I”はパルス電流の電流値を示し、“IC0”は、1個のフォノンを受け取る時間(~1ns程度)にパルス幅が設定された場合における0K(絶対温度)での磁化反転電流の電流値である。(式1)において、“n”は、1.5~2の定数である。 “P (t)” indicates the probability that the magnetization of the storage layer is reversed when a current pulse having a pulse width t is passed through the MTJ element. “F 0 ” is the frequency at which the MTJ element receives thermal energy (phonon) per unit time. “F 0 ” is about 1 × 10 9 Hz. “I” indicates the current value of the pulse current, and “I C0 ” indicates the magnetization reversal current at 0 K (absolute temperature) when the pulse width is set in the time of receiving one phonon (about 1 ns). Current value. In (Formula 1), “n” is a constant of 1.5 to 2.
 図5に示されるように、確率Log10(1-P)は、時間の変化に対して、負の値を示す。図5及び(式1)に示されるスピン注入磁化反転モデルにおいて、パルス電流がMTJ素子に与えられた直後、記憶層の磁化の反転は起こらず、不感時間tを経過した後に磁化の反転が開始される。 As shown in FIG. 5, the probability Log 10 (1-P) shows a negative value with respect to the change of time. In the spin injection magnetization reversal model shown in FIG. 5 and (Equation 1), immediately after the pulse current is applied to the MTJ element, the reversal of the magnetization of the storage layer does not occur, and the reversal of the magnetization occurs after the dead time t 0 has elapsed. Be started.
 図6乃至図10を用いて、本実施形態のスピン注入磁化反転モデルについて、説明する。図6乃至図10では、磁気メモリに用いられるスピン注入磁化反転において、磁性層(記憶層)の規格化した磁化Mzが1から-1へ反転する過程を例として、述べる。ここでは、書き込み電流をMTJ素子に流しはじめてからz軸(垂直)方向の磁化Mzが1から-1付近まで変化する時間を、スイッチング時間Tswとよぶ。 The spin injection magnetization reversal model of this embodiment will be described with reference to FIGS. 6 to 10, an example of a process in which the normalized magnetization Mz of the magnetic layer (storage layer) is reversed from 1 to −1 in the spin injection magnetization reversal used in the magnetic memory will be described. Here, the time during which the magnetization Mz in the z-axis (vertical) direction changes from 1 to around −1 after the write current starts to flow through the MTJ element is called a switching time T sw .
 磁性体の磁化反転は、確率現象であるため、同じ磁性体に同じ大きさの書き込み電流を流しても、スイッチング時間Tswは毎回揺らぐ。つまり、ある一定のパルス幅を有する電流を用いて、あるMTJ素子にデータが書き込まれる場合、スイッチング電流Isw(反転しきい値ith)が、毎回揺らぐことになる。これらの現象を理解することが、書き込み不良の減少のために重要である。 
 磁気メモリ(例えば、MRAM)の書き込み原理の1つであるスピン注入磁化反転において、本実施形態で述べるスピン注入磁化反転は、以下の3段階にからなる。つまり、本実施形態のスピン注入磁化反転において、スイッチング時間Tswは3つに分解される。
Since the magnetization reversal of the magnetic material is a stochastic phenomenon, the switching time T sw fluctuates every time even when a write current of the same magnitude is supplied to the same magnetic material. That is, when data is written to a certain MTJ element using a current having a certain pulse width, the switching current I sw (inversion threshold i th ) fluctuates every time. Understanding these phenomena is important for reducing write failures.
In spin transfer magnetization reversal, which is one of the write principles of a magnetic memory (for example, MRAM), spin transfer magnetization reversal described in the present embodiment is composed of the following three stages. That is, in the spin transfer magnetization reversal of this embodiment, the switching time T sw is decomposed into three.
 図6には、本実施形態におけるスピン注入磁化反転モデルが、模式的に示されている。 FIG. 6 schematically shows the spin injection magnetization reversal model in the present embodiment.
 図6に示されるスピン注入磁化反転モデルにおいて、第1段階は、磁性層(記憶層)内の各磁性粒の磁化が別々に歳差運動していた状態から、磁性層内の各磁性粒の磁化の位相が揃い、共動して歳差運動を始めるまでの段階である。本実施形態においては、磁性層内の各磁性粒の磁化の位相が揃い、共動して歳差運動することを、“コヒーレントな歳差運動”とよぶ。そして、磁化が別々に歳差運動していた状態からコヒーレントな歳差運動を始めるまでの時間のことを、コヒーレント時間tcohとよぶ。 In the spin injection magnetization reversal model shown in FIG. 6, the first stage is that the magnetization of each magnetic particle in the magnetic layer (storage layer) is precessed separately, and then the magnetic particles in the magnetic layer are precessed. This is the stage until the phases of magnetization are aligned and work together to start precession. In the present embodiment, the phase of magnetization of each magnetic grain in the magnetic layer is aligned and precesses together is called “coherent precession”. The time from the state where the magnetizations precessed separately until the start of coherent precession is called the coherent time t coh .
 コヒーレント時間tcohにおいて、磁化Mzは1から0.95程度まで減少する。このコヒーレント時間tcohにおいて、フォノンの影響の下に、磁化はコヒーレントな歳差運動になりかけるが、またばらばらな歳差運動に戻る、などの過程を経る。そのため、コヒーレント時間tcohは大きく揺らぐ。 In the coherent time t coh , the magnetization Mz decreases from 1 to about 0.95. In the coherent time t coh , under the influence of phonons, the magnetization tends to become a coherent precession, but returns to a discrete precession. Therefore, the coherent time t coh fluctuates greatly.
 第2段階において、コヒーレントな歳差運動が増幅する。この時間を増幅時間tampとよぶ。磁化Mzは0.95から0.8程度まで減少する。増幅時間tampにおいて、フォノンの影響の下に、磁化の歳差運動が少し増幅して、また減衰する、などの過程を経る。そのため、増幅時間tampも揺らぐ。この第1段階の時間tcohと第2段階の時間tampとの和を、“incubation delay time tid”とよぶ。MTJ素子の直径が単磁区化直径Dsより小さい場合、incubation delay time tidは、大きく揺らぐ。第1及び第2段階の時間tcoh,tampは、磁化Mzが大きく減少し始め、磁化反転の主段階が起きるまでの時間であり、スピン注入磁化反転ではこの時間が比較的長い。そのため、第1及び第2段階に要する時間tcoh,tampは、incubation delay timeとよばれている。 In the second stage, coherent precession is amplified. This time is called an amplification time t amp . The magnetization Mz decreases from 0.95 to about 0.8. At the amplification time t amp , under the influence of phonons, the magnetization precession is slightly amplified and attenuated. Therefore, the amplification time t amp also fluctuates. The sum of the first stage time t coh and the second stage time t amp is referred to as “incubation delay time t id ”. When the diameter of the MTJ element is smaller than the single domain diameter Ds, the incubation delay time t id fluctuates greatly. The times t coh and t amp of the first and second stages are times until the magnetization Mz starts to decrease greatly and the main stage of magnetization reversal occurs, and this time is relatively long in the spin injection magnetization reversal. Therefore, the times t coh and t amp required for the first and second stages are called incubation delay times.
 第3段階において、磁化の歳差運動がさらに増幅し、熱擾乱の助けを借りて、磁化反転が起こる。この段階では、主に熱活性過程が支配的であり、磁化Mzは0.8から-1付近まで減少する。この時間を反転時間trvとよぶ。MTJ素子の直径が単磁区化直径Dsより小さい場合、反転時間trvの揺らぎは小さい。MTJ素子の直径が単磁区化直径Dsより大きい場合、反転時間trvはincubation delay time tidと同程度に揺らぐ。 In the third stage, the precession of magnetization is further amplified and magnetization reversal occurs with the help of thermal disturbance. At this stage, the thermal activation process is mainly dominant, and the magnetization Mz decreases from 0.8 to around -1. This time is called the reversal time trv . When the diameter of the MTJ element is smaller than the single domain diameter Ds, the fluctuation of the reversal time t rv is small. When the diameter of the MTJ element is larger than the single domain diameter Ds, the inversion time t rv fluctuates to the same extent as the incubation delay time t id .
 上記のように、第一段階であるコヒーレント時間tcohは、MTJ素子の記憶層内で磁化がばらばらな位相で歳差運動していた状態から磁化の位相がそろった歳差運動を開始するまでの時間であることが見出された。 As described above, the coherent time t coh, which is the first stage, is from the state where the magnetization precesses in the storage layer of the MTJ element to the start of precession where the magnetization phases are aligned. It was found that it was time.
 そして、コヒーレント時間tcoh及び増幅時間tampに続く反転時間trvにおいて、熱活性過程により磁化反転が開始される。 Then, at the reversal time t rv following the coherent time t coh and the amplification time t amp , magnetization reversal is started by the thermal activation process.
 このような磁化反転モデルが、図5及び以下の実験及びシミュレーションによって実証された。 Such a magnetization reversal model was verified by FIG. 5 and the following experiment and simulation.
 図7は、図5で用いた垂直磁化型MTJ素子のスピン注入磁化反転のLLG方程式によるシミュレーション結果の1つを解析したグラフである。 
 そのシミュレーションは、例えば、記憶層(磁性層)内の32個の磁化を示すセルを用いて、実行された。セルは、磁性層内に含まれる磁性粒に対応する。図7において、横軸は時間(単位:nsec)を示している。
FIG. 7 is a graph obtained by analyzing one of the simulation results based on the LLG equation of the spin injection magnetization reversal of the perpendicular magnetization type MTJ element used in FIG.
The simulation was performed using, for example, a cell showing 32 magnetizations in the storage layer (magnetic layer). The cell corresponds to a magnetic grain contained in the magnetic layer. In FIG. 7, the horizontal axis represents time (unit: nsec).
 図7において、破線で示される特性線は、左側の軸Mz-aveに対応している。図7の左側の軸Mz-aveは、磁化のz成分(垂直成分)の平均値Mz-ave(単位:a.u.(arbitrary unit))を示している。尚、磁化のz成分のMz-aveにおいて、“1”は磁化が記憶層の膜面に対して上側を向いている状態を示し、“-1”は磁化が記憶層の膜面に対して下側を向いている状態を示している。 
 図7に示されるシミュレーションの初期状態(0nsec)において、磁化の平均値Mz-aveは、ほぼ1を示し、磁化はMTJ素子の膜面に対して垂直上向き方向を向いている。そして、0nsecにおいて、記憶層に対して磁化反転電流の供給を開始し、スピン注入によって磁化が反転して、平均値Mz-aveがほぼ-1になるまでの過程が、検証された。
In FIG. 7, a characteristic line indicated by a broken line corresponds to the left axis Mz-ave. 7 represents an average value Mz-ave (unit: au (arbitrary unit)) of z components (vertical components) of magnetization. In Mz-ave of the z component of magnetization, “1” indicates that the magnetization is directed upward with respect to the film surface of the storage layer, and “−1” indicates that the magnetization is with respect to the film surface of the storage layer. It shows a state of facing down.
In the initial state (0 nsec) of the simulation shown in FIG. 7, the average value Mz-ave of the magnetization is substantially 1, and the magnetization is in the upward direction perpendicular to the film surface of the MTJ element. Then, at 0 nsec, the supply of the magnetization reversal current to the storage layer was started, and the process until the magnetization was reversed by spin injection and the average value Mz-ave became approximately −1 was verified.
 図7に示されるシミュレーションにおいて、0nsecから2.5nsecまでの期間は、磁化の平均値Mz-aveの値は、ほとんど変化しない。これは、記憶層の磁化(スピン)が、反転していない期間とみなすことができる。 In the simulation shown in FIG. 7, the average value Mz-ave of the magnetization hardly changes during the period from 0 nsec to 2.5 nsec. This can be regarded as a period in which the magnetization (spin) of the storage layer is not reversed.
 図7において、実線で示される特性曲線は、右側の軸σΦに対応し、記憶層内の32個の磁化の歳差運動の位相ばらつきを示している。 
 図8は、1つの磁化のセルを模式的に示している。図8に示されるように、磁化の向きは2つの偏角θ及び偏角Φを用いた極座標で表わすことができる。図8に示されるように、垂直磁化膜の磁化は、膜面垂直方向(z軸)を回転軸として、歳差運動を行う。赤道面cにおける、歳差運動の位相を、偏角Φと定義する。また、歳差運動を行っている際に、磁化Mの傾きとz軸とがなす角を、偏角θと定義する。 
 歳差運動の位相ばらつきは、偏角Φのばらつきを調べることで得られる。しかし、極座標で示される偏角Φは、+π又は-πの周期で不連続になるか、あるいは多値になる。そのため、偏角Φを単に用いて位相の分散(位相のばらつき)を計算すると、数値が不連続な部分において正確な計算結果が得られない。 
 そこで、本実施形態では、偏角Φの代わりに、歳差運動の位相を複素数、つまり、“Φ=cosφ+isinφ”で表わすことによって、位相の分散σΦを計算し、位相のばらつきを求めた。このように、複素数を用いて偏角Φを表現することで、数値の不連続に起因する問題は解消され、比較的簡単に位相ばらつきを計算することができる。位相の分散σΦは以下の(式2)及び(式3)で表わされる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
In FIG. 7, the characteristic curve indicated by the solid line corresponds to the right axis σΦ and indicates the phase variation of the precession of 32 magnetizations in the storage layer.
FIG. 8 schematically shows a single magnetization cell. As shown in FIG. 8, the direction of magnetization can be expressed in polar coordinates using two declination angles θ and Φ. As shown in FIG. 8, the magnetization of the perpendicular magnetization film precesses around the film surface perpendicular direction (z axis) as the rotation axis. The phase of precession in the equatorial plane c is defined as the declination angle Φ. In addition, the angle formed by the inclination of the magnetization M and the z-axis during precession is defined as a declination angle θ.
The phase variation of the precession is obtained by examining the variation of the declination Φ. However, the declination Φ shown in polar coordinates becomes discontinuous or multivalued with a period of + π or −π. For this reason, if the phase dispersion (phase variation) is calculated simply by using the declination Φ, an accurate calculation result cannot be obtained at a portion where the numerical values are discontinuous.
Therefore, in this embodiment, the phase variance σΦ is calculated by expressing the phase of the precession as a complex number, that is, “Φ = cosφ + isinφ”, instead of the declination Φ, and the phase variation is obtained. Thus, by expressing the argument Φ using complex numbers, the problem caused by numerical discontinuity is solved, and phase variations can be calculated relatively easily. The phase dispersion σΦ is expressed by the following (Expression 2) and (Expression 3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 (式3)中の“n”は、記憶層が含む磁化の個数(セル数)を示し、本例では32個である。(式3)中の“Σ”は、記憶層が含む全ての磁化(本例では、32個)の和(合計値)を計算することを示している。(式3)中の“*”は共役複素数を示している。(式3)及び(式4)中の“  ̄ ”は、記憶層内の全ての磁化のセル(本例では、32個)の平均値であることを示している。よって、(式3)中の“μ”は、記憶層内の全ての磁化の“Φ”の平均値を示している。 “N” in (Equation 3) indicates the number of magnetizations (number of cells) included in the storage layer, which is 32 in this example. “Σ” in (Expression 3) indicates that the sum (total value) of all the magnetizations (32 in this example) included in the storage layer is calculated. “*” In (Expression 3) indicates a conjugate complex number. “ ̄” in (Expression 3) and (Expression 4) indicates an average value of all the magnetization cells (32 in this example) in the storage layer. Therefore, “μ” in (Expression 3) indicates an average value of “Φ” of all the magnetizations in the storage layer.
 図9及び図10は、記憶層17内に配置された磁化のセルを模式的に示している。尚、図9及び図10においては、複数のセル18が2次元に配置されている例を示しているが、これは、説明の簡単化のためであって、これに限定されないのはもちろんである。 9 and 10 schematically show the magnetization cells arranged in the storage layer 17. 9 and 10 show an example in which a plurality of cells 18 are two-dimensionally arranged. However, this is for the sake of simplification of description and is not limited to this. is there.
 例えば、図9に示すように、記憶層17内の各セル18の磁化19の位相が、全てランダムである場合には、位相の分散σΦは、“1”を示す。一方、図10に示すように、記憶層14内の全ての磁化19の位相が完全に揃い、且つ、偏角“Φ”の値が同じになる場合には、位相の分散σΦは“0”を示す。 
 図7に示すように、記憶層内の磁化の位相の分散σΦが急激に減少して、磁化がコヒーレントな歳差運動になる時間と、磁化が反転し始め、磁化の平均値Mz-aveが0.95程度になった後、平均値Mz-aveが減少し始める現象は、連動している。このため、コヒーレント時間tcohは、図9に示されるように磁化の歳差運動がばらばらな歳差運動から図10に示されるようにコヒーレントな歳差運動になるまでの時間であると、考えることができる。
For example, as shown in FIG. 9, when the phases of the magnetizations 19 of the cells 18 in the storage layer 17 are all random, the phase dispersion σΦ indicates “1”. On the other hand, as shown in FIG. 10, when the phases of all the magnetizations 19 in the storage layer 14 are perfectly aligned and the value of the declination “Φ” is the same, the phase dispersion σΦ is “0”. Indicates.
As shown in FIG. 7, the phase dispersion σΦ of the magnetization in the storage layer rapidly decreases, the time when the magnetization becomes a coherent precession, the magnetization starts to reverse, and the average value Mz-ave of the magnetization is The phenomenon that the average value Mz-ave starts decreasing after reaching about 0.95 is linked. For this reason, the coherent time t coh is considered to be the time from when the precession of magnetization becomes discrete as shown in FIG. 9 to the coherent precession as shown in FIG. be able to.
 尚、図7中の期間t’は、コヒーレントな歳差運動になるまでの時間に相当する。但し、同一条件でシミュレーションを繰り返して行った場合においても、初期状態からコヒーレントな歳差運動が実現するまでの期間t’は変動する。しかし、記憶層内の磁化の位相が揃い、コヒーレントな歳差運動が実現した時に、磁化の反転が開始される現象は再現される。 Note that a period t ′ in FIG. 7 corresponds to a time until a coherent precession movement is reached. However, even when the simulation is repeated under the same conditions, the period t ′ from the initial state until the coherent precession is realized varies. However, the phenomenon that magnetization reversal is started when the phase of magnetization in the storage layer is aligned and coherent precession is realized is reproduced.
 スピン注入磁化反転における期間t’は、記憶層17内において、各磁化18の歳差運動の位相がそろわない状態(図9参照)から各磁化18の歳差運動の位相がそろったコヒーレントな状態(図10参照)へ遷移するまでの時間であるとみなすことができる。そして、コヒーレントな歳差運動になるまでの期間(時間)tcohとコヒーレントな歳差運動が増幅されるまでの期間(時間)tampを経過することよって、熱活性過程に移行し、MTJ素子の記憶層のスピン反転が実質的に開始されるといえる。 
 この磁化の歳差運動がコヒーレントな運動になるまでの時間は、電流Iの大きさに依存し、電流Iの大きさが減少すると、磁化の歳差運動がコヒーレントな運動になるまでの時間は増加する。
The period t ′ in the spin injection magnetization reversal is a coherent state in which the phase of precession of each magnetization 18 is aligned from the state where the phase of precession of each magnetization 18 is not aligned (see FIG. 9) in the storage layer 17. It can be regarded as the time until the transition to (see FIG. 10). Then, when a period (time) t coh until the coherent precession is reached and a period (time) t amp until the coherent precession is amplified, the process proceeds to the thermal activation process, and the MTJ element It can be said that the spin inversion of the storage layer is substantially started.
The time until the magnetization precession becomes a coherent motion depends on the magnitude of the current I. When the magnitude of the current I decreases, the time until the magnetization precession becomes a coherent motion is To increase.
 このコヒーレントな歳差運動が実現するまでの期間(時間)t’が存在し、且つ、コヒーレントな歳差運動が実現した後、スピン反転が開始してからスピン反転が完了するまでに有限な時間が存在する。そのため、それらの期間(時間)を考慮して、(式1)内の時間tが、本実施形態で述べるスピン注入磁化反転モデルのパラメータに含まれている。 
 尚、ここでは、スピン注入磁化反転が完了する条件は、電流(パルス電流)をオフしても記憶層のスピンが元の状態にもどらず、最後まで反転することとする。これは、図8において、磁化の向きが赤道面cまで回転し、磁化の垂直成分Mzが、“0”になることを意味する。
There is a period (time) t ′ until the coherent precession is realized, and after the coherent precession is realized, a finite time from the start of the spin inversion to the completion of the spin inversion. Exists. Therefore, in consideration of those periods (time), the time t 0 in (Equation 1) is included in the parameters of the spin injection magnetization reversal model described in this embodiment.
Here, the condition for completing the spin injection magnetization reversal is that the spin of the memory layer does not return to the original state even when the current (pulse current) is turned off, and is reversed to the end. This means that in FIG. 8, the direction of magnetization rotates to the equator plane c, and the perpendicular component Mz of magnetization becomes “0”.
 以上のように、磁化反転に有限の時間がかかり、その時間が揺らぐ、換言すると、スピン注入磁化反転は第1段階、第2段階及び第3段階の過程(図6参照)がある。このため、スピン注入磁化反転は、その磁化反転の初期段階に、磁化反転確率があまり上昇しない時間tがある。その時間tは、図5及び(式1)に示されている。例えば、垂直磁化膜を用いたMTJ素子において、その素子の直径が単磁区化直径より小さい場合、時間(期間)tは、(式4)によって、近似的に示される。
Figure JPOXMLDOC01-appb-M000004
As described above, the magnetization reversal takes a finite time and the time fluctuates. In other words, the spin injection magnetization reversal has a first stage, a second stage, and a third stage (see FIG. 6). For this reason, in the spin transfer magnetization reversal, there is a time t 0 when the magnetization reversal probability does not increase so much at the initial stage of the magnetization reversal. The time t 0 is shown in FIG. 5 and (Equation 1). For example, in an MTJ element using a perpendicular magnetization film, when the diameter of the element is smaller than the single domain diameter, the time (period) t 0 is approximately expressed by (Equation 4).
Figure JPOXMLDOC01-appb-M000004
 (式4)において、“Jwrite”は書き込み電流の電流密度を示し、“JC0”は、1個のフォノンを受け取る時間(~1ns程度)にパルス幅が設定された場合における0K(絶対温度)での磁化反転電流の電流密度を示している。 In (Expression 4), “J write ” indicates the current density of the write current, and “J C0 ” indicates 0 K (absolute temperature) when the pulse width is set in the time for receiving one phonon (about 1 ns). ) Shows the current density of the magnetization reversal current.
 図11は、図5と同様に、磁化反転確率の時間依存性を示しており、図7と同一条件のMTJ素子の磁化反転確率の時間依存性を示している。尚、図11に示される結果は、LLG方程式を用いたマイクロマグネティックシミュレーションによって、演算されている。図11の横軸は、時間を示し、図11の縦軸は、図5と同様に、Log10(1-P)を示している。 FIG. 11 shows the time dependence of the magnetization reversal probability similarly to FIG. 5, and shows the time dependence of the magnetization reversal probability of the MTJ element under the same conditions as FIG. Note that the result shown in FIG. 11 is calculated by micromagnetic simulation using the LLG equation. The horizontal axis in FIG. 11 indicates time, and the vertical axis in FIG. 11 indicates Log 10 (1-P) as in FIG.
 図11において、特性線J1,J2は、電流密度J1及び電流密度J2をそれぞれ有する書き込み電流を用いた場合における磁化反転確率を示している。特性線J1,J2は、(式1)に示される本実施形態の磁化反転モデルの1次近似線に対応している。電流密度J1は、3.8MA/cmであり、電流密度J2は、4.0MA/cmである。 In FIG. 11, characteristic lines J1 and J2 indicate magnetization reversal probabilities in the case where write currents having current density J1 and current density J2 are used. The characteristic lines J1 and J2 correspond to the primary approximate line of the magnetization reversal model of the present embodiment shown in (Equation 1). The current density J1 is 3.8 MA / cm 2 and the current density J2 is 4.0 MA / cm 2 .
 尚、特性線Aは、従来の単純な熱活性過程による磁化反転モデルの近似線である。従来の熱活性過程による磁化反転モデルは、(式5)で示される。
Figure JPOXMLDOC01-appb-M000005
The characteristic line A is an approximate line of a magnetization reversal model by a conventional simple thermal activation process. A conventional magnetization reversal model by a thermal activation process is represented by (Equation 5).
Figure JPOXMLDOC01-appb-M000005
 図11の横軸に示される時間は、MTJ素子に電流を供給している時間(期間)であり、書き込み電流のパルス幅に、相当する。そして、図11の“ΔT1”及び“ΔT2”は、電流密度J1,J2を有する書き込み電流のパルス幅がそれぞれ7%程度長くされた期間に相当する。 The time shown on the horizontal axis in FIG. 11 is the time (period) during which current is supplied to the MTJ element, and corresponds to the pulse width of the write current. “ΔT1” and “ΔT2” in FIG. 11 correspond to periods in which the pulse widths of the write currents having the current densities J1 and J2 are increased by about 7%, respectively.
 図11に示されるように、電流密度J1,J2の書き込み電流において、そのパルス幅が7%程度長くなると、磁化が反転しない確率(1-P)が、1桁程度低下することが分かる。また、書き込み電流のパルス幅が、14%から15%程度長くなると、データを書き込めない確率が2桁程度低下する。 As shown in FIG. 11, it can be seen that the probability that the magnetization does not reverse (1-P) decreases by an order of magnitude when the pulse width is increased by about 7% in the write currents having the current densities J1 and J2. If the pulse width of the write current is increased by about 14% to 15%, the probability that data cannot be written decreases by about two digits.
 本実施形態で用いられる(式1)のスピン注入磁化反転モデルは、(式5)で示される従来のスピン注入磁化反転モデルよりも、書き込み不良の発生確率LOG10(1-P)が書き込み電流のパルス幅に対して大きく依存する。 In the spin injection magnetization reversal model of (Equation 1) used in this embodiment, the write failure occurrence probability LOG 10 (1-P) has a write current higher than that of the conventional spin injection magnetization reversal model shown in (Equation 5). It greatly depends on the pulse width.
 よって、スピン注入磁化反転を適用したMRAMにおいて、書き込み不良の発生確率Log10(1-P)を低減するには、書き込み電流のパルス幅を増大させることが有効である。 Therefore, in the MRAM to which the spin injection magnetization reversal is applied, it is effective to increase the pulse width of the write current in order to reduce the write failure occurrence probability Log 10 (1-P).
 図12及び図13において、実線で示される特性線は、式(1)に示される本実施形態の磁化反転モデルに対応して(式1)のΔE/kBTが“60”、nが“2”、tが“7nsec”にそれぞれ設定されている。 In FIG. 12 and FIG. 13, the characteristic line indicated by the solid line corresponds to the magnetization reversal model of the present embodiment shown in Expression (1), where ΔE / kBT in (Expression 1) is “60” and n is “2”. ", t 0 is" are respectively set to 7nsec ".
 図12は、書き込み電流のパルス幅に対する磁化反転電流(スイッチング電流)の揺らぎσ(Isw)/Iswの変化を示している。図12において、縦軸は反転しきい値電流の揺らぎに対応し、横軸は、反転しきい値電流の供給時間、つまり、書き込み電流のパルス幅Twpに対応している。図13は、書き込み電流のパルス幅に対する反転確率が0.5になるスイッチング電流Iswの変化を示している。尚、図13において、スイッチング電流Iswは、電流比Isw/Ic0で示されている。 FIG. 12 shows the change of the magnetization reversal current (switching current) fluctuation σ (I sw ) / I sw with respect to the pulse width of the write current. In FIG. 12, the vertical axis corresponds to the fluctuation of the inversion threshold current, and the horizontal axis corresponds to the supply time of the inversion threshold current, that is, the pulse width Twp of the write current. FIG. 13 shows a change in the switching current I sw where the inversion probability is 0.5 with respect to the pulse width of the write current. In FIG. 13, the switching current I sw is indicated by a current ratio I sw / I c0 .
 図12及び図13において、破線で示される特性線は、(式5)に示される磁化反転モデルの揺らぎσ(Isw)/Isw及び電流比Isw/Ic0が、それぞれ示されている。 12 and 13, the characteristic lines indicated by broken lines indicate the fluctuation σ (I sw ) / I sw and the current ratio I sw / I c0 of the magnetization reversal model shown in (Equation 5), respectively. .
 図12に示されるように、あるMTJ素子に電流を供給した場合、本実施形態の磁化反転モデル(式1)は、磁化反転モデル(式5)に比較して、揺らぎσ(Isw)/Iswが電流のパルス幅Twpに大きく依存し、そのパルス幅Twpが長くなると、揺らぎσ(Isw)/Iswが減少することが示されている。 As shown in FIG. 12, when a current is supplied to a certain MTJ element, the magnetization reversal model (Equation 1) of this embodiment has a fluctuation σ (I sw ) / in comparison with the magnetization reversal model (Equation 5). It is shown that I sw greatly depends on the current pulse width T wp , and the fluctuation σ (I sw ) / I sw decreases as the pulse width T wp increases.
 また、図13においても、あるMTJ素子に対して供給されるスイッチング電流Iswが、電流のパルス幅Twpに依存し、そのパルス幅Twpが長くなると、その変化の割合が小さくなる。 Also in FIG. 13, the switching current I sw supplied to a certain MTJ element depends on the pulse width T wp of the current, and when the pulse width T wp becomes longer, the rate of change becomes smaller.
 このように、図12及び図13に示される結果からも、電流のパルス幅Twpを長くすることで、MTJ素子(記憶層)に対する書き込み電流の揺らぎが減少し、データの書き込み不良が減少することがよくわかる。 Thus, also from the results shown in FIG. 12 and FIG. 13, by increasing the current pulse width T wp , fluctuations in the write current to the MTJ element (memory layer) are reduced, and data write failures are reduced. I understand that well.
 データが正常に書き込めない不良の発生確率を低減するために、書き込み電流の電流値を大きくする手段もあるが、これは次の2点の難点がある。第1に、例えば、選択トランジスタのサイズなど、回路上の制約から書き込み電流には上限がある。第2に、書き込み電流の電流値を増大させると、バックホッピング(Back-hopping)とよばれる過大な書き込み電流に起因する書込み不良が発生する。これらのため、書き込み電流の電流値を大きくすることは、書き込み不良を低減することに対して必ずしも有効であるとは言えない。 There is a means to increase the current value of the write current in order to reduce the probability of occurrence of a failure in which data cannot be normally written, but this has the following two drawbacks. First, the write current has an upper limit due to circuit restrictions such as the size of the selection transistor. Second, when the current value of the write current is increased, a write failure due to an excessive write current called back-hopping occurs. For these reasons, increasing the current value of the write current is not necessarily effective for reducing write defects.
 それゆえ、書き込み電流のパルス幅を大きくして、MTJ素子にデータを書き込むことが好ましい。但し、データの書き込みの全てに、長いパルス幅を有する書き込み電流を用いることは、データの書き込み時間が長くなることを意味する。そのため、磁気メモリ、例えば、MRAMの利点の1つである高速動作が、損なわれる。それゆえ、データの処理に要する時間が過剰に長くならないよう、別途工夫が必要である。 Therefore, it is preferable to increase the pulse width of the write current and write data to the MTJ element. However, using a write current having a long pulse width for all data writing means that the data writing time becomes long. Therefore, high-speed operation, which is one of the advantages of a magnetic memory, for example, MRAM, is impaired. Therefore, it is necessary to devise another method so that the time required for data processing does not become excessively long.
 本発明の実施形態の磁気メモリは、磁気抵抗効果素子(MTJ素子)1に記憶されている(書き込まれている)データが出力され、その出力されたデータを磁気抵抗効果素子1に書き戻すときに、長いパルス幅の書き込み電流を用いる。データの書き戻し(再書き込み)は、主に、データの誤りが訂正された場合に、実行される。 In the magnetic memory according to the embodiment of the present invention, data stored (written) in the magnetoresistive effect element (MTJ element) 1 is output, and the output data is written back to the magnetoresistive effect element 1. In addition, a write current having a long pulse width is used. Data write-back (rewrite) is performed mainly when an error in data is corrected.
 図1及び図2に示されるように、本発明の実施形態の磁気メモリは、主メモリ50から出力されたデータの誤りを検出及び訂正する誤り検出訂正回路52を備える。また、本実施形態の磁気メモリは、書き込み電流Iw1,Iw2のパルス幅を制御する機能53を有する制御回路51を備える。 As shown in FIGS. 1 and 2, the magnetic memory according to the embodiment of the present invention includes an error detection and correction circuit 52 that detects and corrects an error in data output from the main memory 50. In addition, the magnetic memory of this embodiment includes a control circuit 51 having a function 53 for controlling the pulse widths of the write currents I w1 and I w2 .
 本実施形態の磁気メモリは、外部から入力されたデータを主メモリ50内のMTJ素子1に通常に書き込む場合、あるパルス幅Twp1を有する書き込み電流Iw1を、MTJ素子1に流す。例えば、パルス幅Twp1は、図5及び(式1)に示される不感時間t以上の時間に対応し、図6に示されるコヒーレント時間tcohと増幅時間tampとの和の時間(incubation delay time tid)以上に設定される。 In the magnetic memory according to the present embodiment, when data input from the outside is normally written to the MTJ element 1 in the main memory 50, a write current I w1 having a certain pulse width T wp1 is supplied to the MTJ element 1. For example, the pulse width T wp1 corresponds to the dead time t 0 or more shown in FIG. 5 and (Equation 1), and the sum of the coherent time t coh and the amplification time t amp shown in FIG. delay time t id ) or more.
 本実施形態の磁気メモリにおいて、誤り検出訂正回路52は、データの書き込み時又はデータの読み出し時に、MTJ素子1が記憶するデータに対して、誤りの検出及び訂正を実行する。そして、本実施形態の磁気メモリは、誤り検出訂正回路2によって訂正されたデータを、主メモリ50内のMTJ素子1に再び書き込む。 In the magnetic memory of the present embodiment, the error detection / correction circuit 52 performs error detection and correction on the data stored in the MTJ element 1 at the time of data writing or data reading. Then, the magnetic memory according to the present embodiment again writes the data corrected by the error detection / correction circuit 2 to the MTJ element 1 in the main memory 50.
 本実施形態の磁気メモリ内の制御回路51は、外部から入力されたデータの書き込みか、訂正されたデータの書き戻しか、を判別する。 The control circuit 51 in the magnetic memory according to the present embodiment determines whether data input from the outside is written or corrected data is written back.
 訂正されたデータをMTJ素子1に書き戻す場合、制御回路51は、誤り検出訂正回路52による誤りの検出及び訂正に基づいて、書き込み電流Iw1のパルス幅Twp1よりも訂正されたデータを書き込むための書き込み電流Iw2のパルス幅Twp2を長くするように、書き込み回路2の動作を制御する。 When the corrected data is written back to the MTJ element 1, the control circuit 51 writes data corrected with respect to the pulse width T wp1 of the write current I w1 based on the error detection and correction by the error detection and correction circuit 52. Therefore , the operation of the write circuit 2 is controlled so as to increase the pulse width T wp2 of the write current I w2 for this purpose.
 このように、本実施形態の磁気メモリにおいて、外部から入力されたデータの書き込みは、パルス幅Twp1の書き込み電流Iw1が用いられ、誤りが訂正されたデータの書き込みは、パルス幅Twp2(>Twp1)の書き込み電流Iw2が用いられる。 As described above, in the magnetic memory of this embodiment, the data input from the outside uses the write current I w1 with the pulse width T wp1 , and the data with the error corrected uses the pulse width T wp2 ( A write current I w2 of> T wp1 ) is used.
 これによって、データの訂正が行われるのと共に、訂正されたデータがMTJ素子1に書き戻される時に、長いパルス幅Twp2の書き込み電流Iw2が用いられることによって、書き込み不良が発生する確率は減少する。そのため、本実施形態の磁気メモリにおいて、MTJ素子1に書き込まれたデータにおける不良の発生は、減少する。 As a result, the correction of data is performed, and when the corrected data is written back to the MTJ element 1, the write current I w2 having a long pulse width T wp2 is used, thereby reducing the probability that a write failure will occur. To do. For this reason, in the magnetic memory of this embodiment, the occurrence of defects in the data written to the MTJ element 1 is reduced.
 そして、MTJ素子1が記憶するデータの誤りが訂正されることによって、主メモリ50内の磁気抵抗効果素子1に生じる書き込み不良、読み出しディスターブ及びリテンション不良が、訂正される。つまり、本実施形態の磁気メモリにおいて、主メモリ50内のデータの不良が減少し、誤動作が減少する。ここで、不良(又は、エラー)とは、1ビットのデータの誤りであり、これは、誤り検出訂正技術によって、訂正可能な場合が多い。1ブロック中に含まれる不良がある個数以上(例えば、2個以上)になると、誤り検出訂正技術を用いても、訂正できなくなる。このように、誤り検出訂正技術を用いても不良が救済できないことを、本実施形態では、誤動作とよぶ。 Then, by correcting an error in data stored in the MTJ element 1, write defects, read disturbs and retention defects that occur in the magnetoresistive effect element 1 in the main memory 50 are corrected. That is, in the magnetic memory of this embodiment, data defects in the main memory 50 are reduced and malfunctions are reduced. Here, the defect (or error) is an error of 1-bit data, which is often correctable by an error detection and correction technique. If the number of defects included in one block exceeds a certain number (for example, two or more), correction cannot be performed even using an error detection and correction technique. In this embodiment, the fact that a defect cannot be relieved by using an error detection and correction technique is called a malfunction.
 また、本実施形態の磁気メモリは、誤りが訂正されたデータをMTJ素子1に書き戻す場合のみに、書き込み電流のパルス幅を長くする。そのため、磁気メモリの動作時間、特に、書き込み動作の時間は、過剰に長くならない。よって、磁気メモリの高速性は、損なわれない。 In addition, the magnetic memory according to the present embodiment increases the pulse width of the write current only when writing the error-corrected data back to the MTJ element 1. Therefore, the operation time of the magnetic memory, in particular, the write operation time does not become excessively long. Therefore, the high speed performance of the magnetic memory is not impaired.
 したがって、本発明の実施形態に係る磁気メモリは、その動作の信頼性が向上し、且つ、その動作特性が向上する。 Therefore, the magnetic memory according to the embodiment of the present invention has improved operation reliability and improved operation characteristics.
 [構成例] 
 図14乃至図22を参照して、本発明の実施形態に係る磁気メモリの構成例について、説明する
 (1) 回路 
 図14乃至図22を用いて、本発明の実施形態に係る磁気メモリの回路の構成例について述べる。本構成例の磁気メモリは、例えば、磁気ランダムアクセスメモリ(MRAM)である。
[Configuration example]
A configuration example of the magnetic memory according to the embodiment of the present invention will be described with reference to FIGS. 14 to 22. (1) Circuit
A configuration example of a circuit of the magnetic memory according to the embodiment of the present invention will be described with reference to FIGS. The magnetic memory of this configuration example is, for example, a magnetic random access memory (MRAM).
 図14に示すように、本構成例のMRAMは、主メモリ50を備える。主メモリ50は、データを主メモリ50内のメモリセル(MTJ素子1)に書き込む機能と、データを主メモリ50内のメモリセル(MTJ素子1)から読み出す機能とを有する。 As shown in FIG. 14, the MRAM of this configuration example includes a main memory 50. The main memory 50 has a function of writing data to a memory cell (MTJ element 1) in the main memory 50 and a function of reading data from a memory cell (MTJ element 1) in the main memory 50.
 図15は、主メモリ50の内部構成の一例を示し、MRAMのメモリセルアレイ近傍の回路構成を示している。 FIG. 15 shows an example of the internal configuration of the main memory 50, showing the circuit configuration in the vicinity of the memory cell array of the MRAM.
 複数のメモリセルMCは、メモリセルアレイ20内にアレイ状に配置される。 A plurality of memory cells MC are arranged in an array in the memory cell array 20.
 図16は、メモリセルアレイ20内に設けられるメモリセルMCの構造の一例を示す図である。MTJ素子1の上端は、上部電極31を介して上部ビット線32に接続される。また、MTJ素子1の下端は、下部電極33、引き出し配線34及びプラグ35を介して、選択トランジスタTrのソース/ドレイン拡散層37aに接続される。選択トランジスタTrのソース/ドレイン拡散層37bは、プラグ41を介して下部ビット線42に接続される。 FIG. 16 is a diagram showing an example of the structure of the memory cell MC provided in the memory cell array 20. The upper end of the MTJ element 1 is connected to the upper bit line 32 via the upper electrode 31. The lower end of the MTJ element 1 is connected to the source / drain diffusion layer 37a of the selection transistor Tr via the lower electrode 33, the lead wiring 34, and the plug 35. The source / drain diffusion layer 37 b of the selection transistor Tr is connected to the lower bit line 42 via the plug 41.
 ソース/ドレイン拡散層37a及びソース/ドレイン拡散層37b間の半導体基板(チャネル領域)36上には、ゲート絶縁膜38を介してゲート電極39が形成される。選択トランジスタTrのゲート電極は、ワード線WLとして機能する。 On the semiconductor substrate (channel region) 36 between the source / drain diffusion layer 37a and the source / drain diffusion layer 37b, a gate electrode 39 is formed via a gate insulating film 38. The gate electrode of the selection transistor Tr functions as the word line WL.
 尚、下部電極33及び引き出し電極34の少なくとも1つを省略してもよい。例えば、下部電極33を省略する場合には、MTJ素子1は、引き出し配線34上に形成される。また、引き出し配線34を省略する場合には、下部電極33は、プラグ35上に形成される。さらに、下部電極33及び引き出し電極34を省略する場合、MTJ素子1は、プラグ35上に形成される。 Note that at least one of the lower electrode 33 and the extraction electrode 34 may be omitted. For example, when the lower electrode 33 is omitted, the MTJ element 1 is formed on the lead wiring 34. When the lead wiring 34 is omitted, the lower electrode 33 is formed on the plug 35. Further, when the lower electrode 33 and the extraction electrode 34 are omitted, the MTJ element 1 is formed on the plug 35.
 ワード線WLは、ロウ方向に延び、メモリセルMCを構成する選択トランジスタTrのゲートに接続される。 The word line WL extends in the row direction and is connected to the gate of the selection transistor Tr constituting the memory cell MC.
 ワード線WLの一端は、ロウ制御回路4に接続される。ロウ制御回路4は、ワード線WLに対する選択動作を行う。 One end of the word line WL is connected to the row control circuit 4. The row control circuit 4 performs a selection operation on the word line WL.
 ビット線BL,bBLは、カラム方向に延在している。ビット線BLには、MTJ素子1の一端が接続され、ビット線bBLは、選択トランジスタTrの電流経路の一端に接続されている。2本のビット線BL,bBLが、1組のビット線対を構成している。 The bit lines BL and bBL extend in the column direction. One end of the MTJ element 1 is connected to the bit line BL, and the bit line bBL is connected to one end of the current path of the selection transistor Tr. The two bit lines BL and bBL constitute one set of bit line pairs.
 ビット線BL,bBLの一端及び他端には、カラム制御回路3A,3Bが接続される。 Column control circuits 3A and 3B are connected to one end and the other end of the bit lines BL and bBL.
 書き込み回路2A,2Bは、カラム制御回路3A,3Bを介して、ビット線BL,bBLの一端及び他端に接続される。書き込み回路2A,2Bは、書き込み電流Iw1,Iw2を生成するための電流源や電圧源などのソース回路、書き込み電流を吸収するためのシンク回路を、それぞれ備える。書き込み回路2A,2Bは、書き込み動作が実行されないとき、ビット線BL,bBLから電気的に分離される。 The write circuits 2A and 2B are connected to one end and the other end of the bit lines BL and bBL via the column control circuits 3A and 3B. The write circuits 2A and 2B each include a source circuit such as a current source or a voltage source for generating the write currents I w1 and I w2 and a sink circuit for absorbing the write current. The write circuits 2A and 2B are electrically isolated from the bit lines BL and bBL when the write operation is not executed.
 書き込み回路2A,2Bの動作は、制御回路51及び後述の書き込みパルス幅制御回路53に制御されて、図17に示される書き込み電流Iw1,Iw2を出力する。データの書き込み時、書き込み回路2A,2Bは、書き込み電流Iw1,Iw2をMTJ素子1に供給する。書き込み電流Iw1,Iw2は、MTJ素子1内を流れる。 The operations of the write circuits 2A and 2B are controlled by the control circuit 51 and a write pulse width control circuit 53 described later, and output write currents I w1 and I w2 shown in FIG. When writing data, the write circuits 2A and 2B supply write currents I w1 and I w2 to the MTJ element 1. Write currents I w1 and I w2 flow through the MTJ element 1.
 書き込み電流Iw1,Iw2の電流値iは、2つの電流Iw1,Iw2で同じであってもよいし、それぞれ異なる電流値であってもよい。 The current values i w of the write currents I w1 and I w2 may be the same between the two currents I w1 and I w2 or may be different from each other.
 図17において、書き込み電流Iw1,Iw2は、同じ電流値を有する。書き込み電流Iw1,Iw2の電流値iは、メモリセルアレイ20内に含まれる複数のMTJ素子の反転しきい値の中で最大値ith以上であることが好ましい。また、書き込み電流Iw1は、所定のパルス幅Twp1を有し、書き込み電流Iw2は、パルス幅Twp1より長いパルス幅Twp2を有する。パルス幅Twp1は、例えば、時間t以上の値が用いられ、例えば、(式4)に基づいて設定される。また、パルス幅Twp2は、例えば、パルス幅Twp1より、7%~10%程度長い値に設定される。 In FIG. 17, the write currents I w1 and I w2 have the same current value. The current values i w of the write currents I w1 and I w2 are preferably equal to or greater than the maximum value i th among the inversion thresholds of the plurality of MTJ elements included in the memory cell array 20. The write current I w1 has a predetermined pulse width T wp1 , and the write current I w2 has a pulse width T wp2 longer than the pulse width T wp1 . For example, a value equal to or greater than time t 0 is used as the pulse width T wp1, and is set based on, for example, (Equation 4). Further, the pulse width T wp2 is set to a value longer by about 7% to 10% than the pulse width T wp1 , for example.
 上述のように、書き込み電流Iw1,Iw2のパルス幅Twp1,Twp2は、パルス形状の書き込み電流の半値全幅によって、規定される。 As described above, the pulse widths T wp1 and T wp2 of the write currents I w1 and I w2 are defined by the full width at half maximum of the pulse-shaped write current.
 読み出し回路5は、カラム制御回路3Bを介して、ビット線BL,bBLの一端に接続される。読み出し回路5は、読み出し電流Iを発生する電圧源又は電流源や、読み出し信号の検知及び増幅を行うセンスアンプ、データを一時的に保持するラッチ回路などを含んでいる。読み出し回路5は、読み出し動作が実行されないとき、ビット線BL,bBLから電気的に分離される。 The read circuit 5 is connected to one end of the bit lines BL and bBL via the column control circuit 3B. Readout circuit 5 includes, voltage or current source for generating a read current I r, a sense amplifier for sensing and amplifying a read signal, and a latch circuit for temporarily holding data. The read circuit 5 is electrically isolated from the bit lines BL and bBL when the read operation is not executed.
 読み出し回路5は、読み出し動作時、読み出し電流Iを出力する。図17には、読み出し電流Iの波形が示されている。読み出し電流Iの電流値iの最大値は、例えば、反転しきい値ithよりも小さい値に設定される。読み出し電流Iの電流値iは、例えば、パルス電流の立ち上がりが終了する時間から立ち下がりが開始する時間までの期間に、一定に出力される。例えば、読み出し電流Iのパルス幅Trpは、パルス電流の半値全幅で規定される。パルス幅Trpは、例えば、書き込み電流Iw1のパルス幅Twp1より短く、さらには、不感時間tより短くてもよい。これによって、本構成例のMRAMにおいて、読み出しディスターブの発生が低減されてもよい。但し、これに限定されず、読み出し電流Iの電流値iが、反転しきい値ithより十分小さければ、読み出し電流Iのパルス幅Trpは書き込み電流Iw1,Iw2のパルス幅Twp1,Twp2以上でもよい。 The read circuit 5, a read operation, outputs the read current I r. Figure 17 shows the waveform of the read current I r is. For example, the maximum value of the current value i r of the read current I r is set to a value smaller than the inversion threshold value i th . For example, the current value i r of the read current I r is constantly output during a period from the time when the pulse current rise ends to the time when the fall starts. For example, the pulse width T rp of the read current I r is defined by the full width at half maximum of the pulse current. For example, the pulse width T rp may be shorter than the pulse width T wp1 of the write current I w1 and may be shorter than the dead time t 0 . Thereby, in the MRAM of this configuration example, occurrence of read disturb may be reduced. However, not limited thereto, the read current current value i r of I r is sufficiently smaller than the inversion threshold i th, the pulse width of the read current I pulse width r T rp is write currents I w1, I w2 It may be T wp1 , T wp2 or more.
 データの読み出しは、MTJ素子1に読み出し電流Iを流すことで行われる。平行状態の抵抗値を“R0”、反平行状態の抵抗値を“R1”とすると、“(R1-R0)/R0”で定義される値を磁気抵抗比(MR比)とよぶ。磁気抵抗比はMTJ素子1を構成する材料やプロセス条件によって異なるが、数10%から数100%程度の値を取り得る。 Data reading is performed by passing a read current I R in the MTJ element 1. When the resistance value in the parallel state is “R0” and the resistance value in the antiparallel state is “R1”, the value defined by “(R1−R0) / R0” is referred to as a magnetoresistance ratio (MR ratio). The magnetoresistance ratio varies depending on the material constituting the MTJ element 1 and the process conditions, but can take a value of several tens to several hundreds.
 このMR比に起因する読み出し電流(ビット線の電位)の変動量を、検知することで、MTJ素子1に記憶された情報が読み出される。 The information stored in the MTJ element 1 is read by detecting the fluctuation amount of the read current (bit line potential) caused by this MR ratio.
 カラム制御回路3A,3B内には、ビット線BL,bBLと書き込み回路2A,2Bとの導通状態を制御するスイッチ回路や、ビット線BL,bBLと読み出し回路5との導通状態を制御するスイッチ回路が設けられている。 In the column control circuits 3A and 3B, a switch circuit for controlling the conduction state between the bit lines BL and bBL and the write circuits 2A and 2B, and a switch circuit for controlling the conduction state between the bit lines BL and bBL and the read circuit 5 are provided. Is provided.
 書き込み動作時、カラム制御回路3A,3B内において、書き込み対象となるメモリセルMCに接続されたスイッチ回路がオンになり、その他のスイッチ回路がオフになる。また、ロウ制御回路4によって、選択されたメモリセルMC内の選択トランジスタTrがオンされる。そして、書き込みデータに応じた向きの書き込み電流が、選択されたメモリセルMCに供給される。データの書き込み時、電流を流す向きに応じて、いずれか一方の書き込み回路2A,2Bはソース側となり、他方の書き込み回路2B,2Aはシンク側となる。 During the write operation, in the column control circuits 3A and 3B, the switch circuit connected to the memory cell MC to be written is turned on, and the other switch circuits are turned off. In addition, the row control circuit 4 turns on the selection transistor Tr in the selected memory cell MC. Then, a write current having a direction corresponding to the write data is supplied to the selected memory cell MC. When writing data, one of the write circuits 2A and 2B is on the source side, and the other write circuit 2B and 2A is on the sink side, depending on the direction of current flow.
 本構成例のMRAMは、誤り検出訂正回路52を備える。誤り検出訂正回路52は、主メモリ50からその回路52に出力されたデータに誤りが含まれているか否か検出する機能と、データに含まれる誤りを訂正する機能を有する。 The MRAM of this configuration example includes an error detection / correction circuit 52. The error detection / correction circuit 52 has a function of detecting whether or not an error is included in the data output from the main memory 50 to the circuit 52 and a function of correcting an error included in the data.
 例えば、誤り検出訂正回路52は、符号化部61、誤り検出部62、誤り訂正部63及び復号化部64と、を有する。 For example, the error detection / correction circuit 52 includes an encoding unit 61, an error detection unit 62, an error correction unit 63, and a decoding unit 64.
 符号化部61は、バッファメモリ54を介して外部から入力されたデータDT1に、データの誤りを検出及び訂正するための符号(冗長ビット)を付加する。以下、符号化部61がデータに付加する符号のことを、誤り検出訂正符号とよぶ。 The encoding unit 61 adds a code (redundant bit) for detecting and correcting a data error to the data DT1 input from the outside via the buffer memory 54. Hereinafter, the code added to the data by the encoding unit 61 is referred to as an error detection / correction code.
 符号化部61は、誤り検出符号を付加したデータnDTを主メモリ50に出力する。そのデータnDTは、主メモリ50内の選択セルに書き込まれる書き込みデータとして扱われる。また。符号化部61は、入力されたデータDT1に誤り検出符合を付加した際に、制御信号(第1の制御信号)NWCを、書き込みパルス幅制御回路53に出力する。 The encoding unit 61 outputs the data nDT with the error detection code added thereto to the main memory 50. The data nDT is handled as write data to be written to the selected cell in the main memory 50. Also. The encoding unit 61 outputs a control signal (first control signal) NWC to the write pulse width control circuit 53 when an error detection code is added to the input data DT1.
 制御信号NWCは、外部から入力されたデータnDTを主メモリ50に書き込む場合に、パルス幅Twp1を有する書き込み電流Iw1を生成及び出力するように、書き込みパルス幅制御回路53及び主メモリ50内の書き込み回路2A,2Bの動作を制御するための信号である。以下、制御信号NWCのことを、通常書き込み信号NWCとよぶ。 The control signal NWC is generated in the write pulse width control circuit 53 and the main memory 50 so as to generate and output a write current I w1 having a pulse width T wp1 when data nDT inputted from the outside is written in the main memory 50. This is a signal for controlling the operation of the write circuits 2A and 2B. Hereinafter, the control signal NWC is referred to as a normal write signal NWC.
 誤り検出部62は、主メモリ50から出力されたデータrDTの誤り検出符号を用いて、主メモリ50から読み出されたデータrDTが誤りを含むか否か検査する。誤り検出部62は、そのデータrDTが誤りを含む場合、誤りを含むデータerdを誤り訂正部63に出力する。一方、誤り検出部62は、そのデータrDTが誤りを含まない場合、そのデータrDTを復号化部64に出力する。 The error detection unit 62 uses the error detection code of the data rDT output from the main memory 50 to check whether the data rDT read from the main memory 50 includes an error. When the data rDT includes an error, the error detection unit 62 outputs data erd including the error to the error correction unit 63. On the other hand, when the data rDT does not include an error, the error detection unit 62 outputs the data rDT to the decoding unit 64.
 誤り訂正部63は、読み出されたデータrDTに誤りが含まれていた場合に、その誤りを訂正する。誤り訂正部63は、誤りが訂正されたデータ(以下、訂正データとよぶ)cDTを、主メモリ50及び復号化部64に出力する。主メモリ50に出力された訂正データcDTは、主メモリ50内の所定のメモリセルに、書き込まれる。訂正データcDTは、例えば、訂正される前に記憶されていたのと同じメモリセル(MTJ素子)に書き込まれる。 The error correction unit 63 corrects the error when the read data rDT includes an error. The error correction unit 63 outputs data (hereinafter referred to as correction data) cDT in which the error is corrected to the main memory 50 and the decoding unit 64. The correction data cDT output to the main memory 50 is written into a predetermined memory cell in the main memory 50. The correction data cDT is written, for example, in the same memory cell (MTJ element) that is stored before being corrected.
 誤り訂正部63は、訂正データを主メモリ50に出力する際に、制御信号(第2の制御信号)RWCを、書き込みパルス幅制御回路53に出力する。 The error correction unit 63 outputs a control signal (second control signal) RWC to the write pulse width control circuit 53 when the correction data is output to the main memory 50.
 制御信号RWCは、訂正データcDTを主メモリ50に書き戻す場合に、訂正データcDTの書き込みに用いる電流Iw2のパルス幅Twp2を、通常の書き込み電流Iw1のパルス幅Twp1よりも長くするように、書き込みパルス幅制御回路53及び主メモリ50内の書き込み回路2A,2Bの動作を制御するための信号である。これによって、MRAMチップ内において、主メモリ50から一度出力されたデータ(訂正データcDT)が、主メモリ50に再び書き込まれる場合に、図17に示される長いパルス幅Twp2の書き込み電流Iw2が、データの書き込みに用いられる。以下、制御信号RWCのことを、再書き込み信号RWCとよぶ。 Control signal RWC, when writing back corrected data CDT in the main memory 50, a pulse width T wp2 of the current I w2 used to write correction data CDT, longer than the pulse width T wp1 of normal write current I w1 As described above, this is a signal for controlling the operation of the write pulse width control circuit 53 and the write circuits 2A and 2B in the main memory 50. As a result, when the data (corrected data cDT) once output from the main memory 50 is written again in the main memory 50 in the MRAM chip, the write current I w2 having the long pulse width T wp2 shown in FIG. Used for data writing. Hereinafter, the control signal RWC is referred to as a rewrite signal RWC.
 復号化部64は、読み出し動作の際、誤り検出部62又は誤り訂正部63から出力されたデータrDT,cDTを復号化する。そして、復号化部64は、復号化されたデータを、バッファメモリ54に出力する。 The decoding unit 64 decodes the data rDT and cDT output from the error detection unit 62 or the error correction unit 63 during the read operation. Then, the decoding unit 64 outputs the decoded data to the buffer memory 54.
 本構成例のMRAMにおいて、誤り検出訂正回路52は、例えば、誤り検出訂正技術として拡張ハミングコード(Extended Humming code)を用いて、データが含む誤りを検出及び訂正する。拡張ハミングコードが用いられた場合、誤り検出訂正符号は、所定のビット数のハミングコードとパリティビットとを含んでいる。但し、誤り検出訂正回路52には、リード・ソロモン法など、他の誤り検出訂正技術が適用されてもよい。 In the MRAM of this configuration example, the error detection / correction circuit 52 detects and corrects an error included in the data using, for example, an extended Hamming code as an error detection / correction technique. When the extended Hamming code is used, the error detection and correction code includes a Hamming code having a predetermined number of bits and a parity bit. However, other error detection and correction techniques such as the Reed-Solomon method may be applied to the error detection and correction circuit 52.
 また、本構成例のMRAMは、例えば、バッファメモリ54を備える。バッファメモリ54は、外部から入力されたデータDT1を一時的に保持する。また、バッファメモリ54は、誤り検出訂正回路52を経由して、主メモリ50から出力されたデータを、一時的に保持し、保持したデータDT2を、外部へ出力する。 Also, the MRAM of this configuration example includes a buffer memory 54, for example. The buffer memory 54 temporarily holds data DT1 input from the outside. The buffer memory 54 temporarily holds the data output from the main memory 50 via the error detection and correction circuit 52, and outputs the held data DT2 to the outside.
 バッファメモリ54は、MRAMでもよいし、DRAM(Dynamic RAM)又はSRAM(Static RAM)でもよい。例えば、バッファメモリ54がMRAMによって構成される場合、バッファメモリ54としてのMRAM内で生じる書き込み不良の発生確率は、主メモリ50としてのMRAM内の書き込み不良の発生確率よりも低いことが望ましい。 The buffer memory 54 may be MRAM, DRAM (Dynamic RAM), or SRAM (Static RAM). For example, when the buffer memory 54 is composed of an MRAM, it is desirable that the probability of writing failure occurring in the MRAM serving as the buffer memory 54 is lower than the probability of writing failure occurring in the MRAM serving as the main memory 50.
 そのため、バッファメモリ54に用いられるMRAMにおいて、その選択トランジスタのサイズ(例えば、チャネル長)が、主メモリ50に用いられているMRAMの選択トランジスタTrのサイズよりも大きくされることが好ましい。これによって、バッファメモリ54内の選択トランジスタの電流駆動力が大きくなり、バッファメモリ54内のMTJ素子に、十分大きな書き込み電流を流すことができる。それゆえ、バッファメモリ54内の書き込み不良は低減する。 Therefore, in the MRAM used for the buffer memory 54, the size of the selection transistor (for example, the channel length) is preferably larger than the size of the selection transistor Tr of the MRAM used for the main memory 50. As a result, the current driving capability of the selection transistor in the buffer memory 54 is increased, and a sufficiently large write current can be supplied to the MTJ element in the buffer memory 54. Therefore, write defects in the buffer memory 54 are reduced.
 尚、バッファメモリ54としてのMRAMに、1つのMTJ素子と2つの選択トランジスタとから構成された、2Tr+1MTJの構成を有するメモリセルが用いられてもよい。この場合、2つの選択トランジスタが1つのMTJ素子に対して用いられることで、1つのメモリセルにおける選択トランジスタの実質的なサイズは、大きくなる。よって、1つの選択トランジスタのサイズを大きくするのと同様に、2Tr+1MTJ型のメモリセルを用いた場合においても、バッファメモリ54内のMTJ素子に、十分大きな書き込み電流を流すことができる。これによって、バッファメモリ54内の書き込み不良を低減できる。 Note that a memory cell having a 2Tr + 1MTJ configuration including one MTJ element and two selection transistors may be used for the MRAM serving as the buffer memory 54. In this case, since the two selection transistors are used for one MTJ element, the substantial size of the selection transistor in one memory cell is increased. Therefore, similarly to increasing the size of one select transistor, a sufficiently large write current can be supplied to the MTJ element in the buffer memory 54 even when a 2Tr + 1MTJ type memory cell is used. As a result, write defects in the buffer memory 54 can be reduced.
 本構成例のMRAMは、制御回路51及び書き込みパルス幅制御回路53を、備える。制御回路51は、外部から入力されたコマンド信号CMD及びアドレス信号ADRに基づいて、MRAM(チップ)全体の動作を制御する。コマンド信号CMDは、データの書き込み、データの読み出し及びデータの消去など、主メモリ50に対する動作を示す。アドレス信号ADRは、動作の対象のメモリセルのアドレスを示す。 The MRAM of this configuration example includes a control circuit 51 and a write pulse width control circuit 53. The control circuit 51 controls the operation of the entire MRAM (chip) based on the command signal CMD and the address signal ADR input from the outside. The command signal CMD indicates operations on the main memory 50 such as data writing, data reading, and data erasing. The address signal ADR indicates the address of the memory cell to be operated.
 書き込みパルス幅制御回路53は、誤り検出訂正回路52が、誤り検出訂正符号を付加した外部からのデータnDTを主メモリ50に書き込む際に、図17に示すような所定のパルス幅Twp1を有する書き込み電流Iw1を用いるように、主メモリ50の動作、特に、書き込み回路2A,2Bの動作を制御する。書き込みパルス幅制御回路53の制御によって、主メモリ50A内の書き込み回路2A,2Bは、外部からのデータの書き込み時、パルス幅Twp1を有する書き込み電流Iw1を出力する。パルス幅Twp1の書き込み電流Iw1を用いた書き込みのことを、通常書き込みとよぶ。 The write pulse width control circuit 53 has a predetermined pulse width T wp1 as shown in FIG. 17 when the error detection / correction circuit 52 writes the external data nDT added with the error detection / correction code to the main memory 50. The operation of the main memory 50, particularly the operations of the write circuits 2A and 2B, is controlled so as to use the write current Iw1 . Under the control of the write pulse width control circuit 53, the write circuits 2A and 2B in the main memory 50A output a write current I w1 having a pulse width T wp1 when data is externally written. Writing using the writing current I w1 having the pulse width T wp1 is referred to as normal writing.
 書き込みパルス幅制御回路53は、誤りを訂正したデータcDTを主メモリ50に書き込む際に、書き込み電流Iw1のパルス幅Twp1よりもパルス幅を長くし、その長いパルス幅Twp2を有する書き込み電流Iw2を用いるように、主メモリ50の動作、特に、書き込み回路2A,2Bの動作を制御する。書き込みパルス幅制御回路53の制御によって、主メモリ50A内の書き込み回路2A,2Bは、訂正されたデータの書き込み時、パルス幅Twp2を有する書き込み電流Iw2を出力する。パルス幅Twp2の書き込み電流Iw2を用いた書き込みのことを、再書き込み或いは書き戻しとよぶ。 The write pulse width control circuit 53 makes the pulse width longer than the pulse width T wp1 of the write current I w1 when writing the error-corrected data cDT in the main memory 50, and the write current having the long pulse width T wp2 The operation of the main memory 50, particularly the operation of the write circuits 2A and 2B, is controlled so as to use Iw2 . Under the control of the write pulse width control circuit 53, the write circuits 2A and 2B in the main memory 50A output a write current I w2 having a pulse width T wp2 when writing the corrected data. Writing using the writing current I w2 having the pulse width T wp2 is called rewriting or writing back.
 パルス幅Twp1,Twp2の制御は、書き込みパルス幅制御回路53が書き込み回路2A,2Bを活性化させている期間、具体的には、書き込み回路2A,2Bと選択セルとを導通させている期間を制御するによって、実行される。 The control of the pulse widths T wp1 and T wp2 is a period in which the write pulse width control circuit 53 activates the write circuits 2A and 2B, specifically, the write circuits 2A and 2B are electrically connected to the selected cell. It is executed by controlling the period.
 書き込みパルス幅制御回路53の動作は、制御回路51及び2つの制御信号NWC,RWCによって、制御される。上述のように、通常書き込み信号NWCは、入力されたデータに誤り検出訂正符号が付加された時に、誤り検出訂正回路52内の符号化部61から出力される。再書き込み信号RWCは、データrDTの誤りが訂正された時に、誤り検出訂正回路52内の誤り訂正部63から出力される。書き込みパルス幅制御回路53は、通常書き込み信号NWCが入力されたとき、パルス幅Twp1の書き込み電流Iw1を出力させる制御信号pwcsを主メモリ50に出力する。書き込みパルス幅制御回路53は、再書き込み信号RWCが入力されたとき、パルス幅Twp2の書き込み電流Iw2を出力させる制御信号pwcsを主メモリ50に出力する。以下、制御信号pwcsのことを、パルス幅制御信号pwcsとよぶ。パルス幅制御信号pwcsが、パルス幅Twp1又はTwp2のいずれかを用いることを示すことによって、書き込み電流のパルス幅が制御されてもよいし、パルス幅制御信号pwcsの入力の有無によって、書き込み電流のパルス幅が制御されてもよい。 The operation of the write pulse width control circuit 53 is controlled by the control circuit 51 and two control signals NWC and RWC. As described above, the normal write signal NWC is output from the encoding unit 61 in the error detection / correction circuit 52 when an error detection / correction code is added to the input data. The rewrite signal RWC is output from the error correction unit 63 in the error detection / correction circuit 52 when the error of the data rDT is corrected. When the normal write signal NWC is input, the write pulse width control circuit 53 outputs a control signal pwcs for outputting a write current I w1 having a pulse width T wp1 to the main memory 50. Write pulse width control circuit 53, when the rewriting signal RWC is input, outputs a control signal pwcs for outputting the write current I w2 of the pulse width T wp2 the main memory 50. Hereinafter, the control signal pwcs is referred to as a pulse width control signal pwcs. Pulse width control signal pwcs is, by showing that the use of one of the pulse width T wp1 or T wp2, to the pulse width of the write current may be controlled, by the presence or absence of the input of the pulse width control signal pwcs, write The pulse width of the current may be controlled.
 尚、書き込みパルス幅制御回路53は、制御回路51内に設けられてもよい。また、書き込みパルス幅制御回路53を設けずに、制御回路51が、書き込みパルス幅制御回路53と同じ機能を有し、2つの制御信号NWC,RWCが制御回路51に入力されてもよい。また、本構成例のMRAMは、図14に示される構成のほかに、コマンド信号が入力されるコマンドインターフェイスや、アドレス信号が入力されるアドレスバッファを別途に備えてもよい。 Note that the write pulse width control circuit 53 may be provided in the control circuit 51. Alternatively, the control circuit 51 may have the same function as the write pulse width control circuit 53 without providing the write pulse width control circuit 53, and two control signals NWC and RWC may be input to the control circuit 51. In addition to the configuration shown in FIG. 14, the MRAM of this configuration example may further include a command interface to which a command signal is input and an address buffer to which an address signal is input.
 本実施形態の構成例に係るMRAMは、外部から入力されたデータをMTJ素子1に通常に書き込む場合、パルス幅Twp1の書き込み電流Iw1を用いる。また、本構成例のMRAMは、MTJ素子1が記憶するデータの誤りを訂正して、その訂正したデータをMTJ素子1に書き戻す場合に、書き込み電流のパルス幅を長くし、パルス幅Twp1より長いパルス幅Twp2の書き込み電流Iw2を用いる。 The MRAM according to the configuration example of the present embodiment uses a write current I w1 having a pulse width T wp1 when data input from the outside is normally written in the MTJ element 1. Further, the MRAM of this configuration example corrects an error in the data stored in the MTJ element 1 and increases the pulse width of the write current when the corrected data is written back to the MTJ element 1 and the pulse width T wp1. A write current I w2 having a longer pulse width T wp2 is used.
 これによって、本構成例のMRAMは、メモリセルアレイ20内の複数のMTJ素子に特性(例えば、反転しきい値)にばらつきがあっても、書き込み不良を低減できる。また、本構成例のMRAMは、MTJ素子に記憶された(書き込まれた)データが誤りを含み、その誤りが訂正されたデータをMTJ素子1に再び書き込む場合にのみ、長いパルス幅Twp2の書き込み電流Iw2を用いる。そのため、MRAMの動作サイクルが過剰に長くなることがなく、高速性が損なわれることが無い。 As a result, the MRAM of this configuration example can reduce write defects even if the characteristics (for example, the inversion threshold value) vary among the plurality of MTJ elements in the memory cell array 20. Further, the MRAM of this configuration example has a long pulse width T wp2 only when the data stored (written) in the MTJ element includes an error and the corrected data is written to the MTJ element 1 again. A write current Iw2 is used. Therefore, the operation cycle of the MRAM does not become excessively long, and high speed performance is not impaired.
 したがって、本発明の実施形態に係る磁気メモリは、その動作の信頼性が向上し、動作速度が向上する。 Therefore, in the magnetic memory according to the embodiment of the present invention, the operation reliability is improved and the operation speed is improved.
 (2) 動作 
 図18乃至図22を用いて、本発明の実施形態に係る磁気メモリの動作について、説明する。以下では、本実施形態の磁気メモリの動作について、磁気メモリの構成を示す図14乃至図17も適宜用いて説明する。尚、本実施形態の磁気メモリの動作においては、拡張ハミングコードを用いて、データの誤りを検出及び訂正する場合について述べる。但し、他の誤り検出訂正技術(例えば、リードソロモン法)を、本実施形態の磁気メモリに適用できるのは、もちろんである。
(2) Operation
The operation of the magnetic memory according to the embodiment of the present invention will be described with reference to FIGS. Hereinafter, the operation of the magnetic memory according to the present embodiment will be described with reference to FIGS. 14 to 17 showing the configuration of the magnetic memory. In the operation of the magnetic memory according to the present embodiment, a case will be described in which an error in data is detected and corrected using an extended Hamming code. However, it goes without saying that other error detection and correction techniques (for example, Reed-Solomon method) can be applied to the magnetic memory of this embodiment.
 (a) 動作例1 
 図18を用いて、本実施形態の構成例に係る磁気メモリ(MRAM)の動作例1について説明する。ここでは、本構成例のMRAMの動作例1として、本構成例のMRAMに用いられるデータの書き込みについて、述べる。
(A) Operation example 1
The operation example 1 of the magnetic memory (MRAM) according to the configuration example of the present embodiment will be described with reference to FIG. Here, as an operation example 1 of the MRAM of this configuration example, writing of data used in the MRAM of this configuration example will be described.
 図18に示すように、データの書き込み時、書き込みを示すコマンド信号CMD、アドレス信号ADR、書き込まれるデータDT1が、外部から入力される(ステップST1)。コマンド信号CMD及びアドレス信号ADRは、例えば、制御回路51内に入力される。データDT1は、例えば、バッファメモリ54に入力される。そのデータDT1は、バッファメモリ54に記憶される(ステップST2B)。例えば、データDT1は、拡張ハミングコードにおけるデータ(情報ビット)のブロック長(例えば、64ビット)を1つの単位として、バッファメモリ54内に格納されることが好ましい。 As shown in FIG. 18, when writing data, a command signal CMD indicating writing, an address signal ADR, and data DT1 to be written are input from the outside (step ST1). The command signal CMD and the address signal ADR are input into the control circuit 51, for example. The data DT1 is input to the buffer memory 54, for example. The data DT1 is stored in the buffer memory 54 (step ST2B). For example, the data DT1 is preferably stored in the buffer memory 54 with a block length (for example, 64 bits) of data (information bits) in the extended Hamming code as one unit.
 入力されたデータDT1は、バッファメモリ54に記憶されるとともに、バッファメモリ54を経由して、誤り検出訂正回路52に入力される。データDT1は、誤り検出訂正回路52内の符号化部61に入力される。データDT1は符号化部61によって、誤り検出訂正符号として、例えば、8ビットの冗長ビットが付加される。冗長ビットが付加されたデータnDTは、符号化部61から主メモリ50に出力される。 The input data DT1 is stored in the buffer memory 54 and also input to the error detection / correction circuit 52 via the buffer memory 54. The data DT1 is input to the encoding unit 61 in the error detection / correction circuit 52. For example, 8 redundant bits are added to the data DT1 as an error detection / correction code by the encoding unit 61. Data nDT to which redundant bits are added is output from the encoding unit 61 to the main memory 50.
 この際、制御信号(通常書き込み信号)NWCが、符号化部61から書き込みパルス幅制御回路53に出力される。 At this time, a control signal (normal write signal) NWC is output from the encoding unit 61 to the write pulse width control circuit 53.
 書き込みパルス幅制御回路53は、入力された通常書き込み信号NWCに基づいて、データnDTを書き込むための書き込み電流のパルス幅を制御(調整)する。書き込み電流のパルス幅を“Twp1”にするための制御信号(パルス幅制御信号)pwcsが、書き込みパルス幅制御回路53から主メモリ50に出力される。 The write pulse width control circuit 53 controls (adjusts) the pulse width of the write current for writing the data nDT based on the input normal write signal NWC. A control signal (pulse width control signal) pwcs for setting the pulse width of the write current to “T wp1 ” is output from the write pulse width control circuit 53 to the main memory 50.
 主メモリ50内において、アドレス信号ADRが示すワード線がロウ制御回路4によって活性化され、アドレス信号ADRが示すビット線がカラム制御回路3A,3Bによって、活性化される。主メモリ50内の書き込み回路2A,2Bは、制御信号pwcsによって制御され、例えば、図17に示される所定のパルス幅Twp1を有する書き込み電流Iw1を出力する。 In the main memory 50, the word line indicated by the address signal ADR is activated by the row control circuit 4, and the bit line indicated by the address signal ADR is activated by the column control circuits 3A and 3B. The write circuit 2A, 2B in the main memory 50 is controlled by a control signal pwcs, for example, it outputs the write current I w1 having a predetermined pulse width T wp1 shown in Figure 17.
 その書き込み電流Iw1が、ビット線BL,bBLを流れ、アドレス信号ADRが示す選択セル(MTJ素子)に供給され、データnDTが書き込まれる(ステップST2A)。通常書き込みにおいて、データnDTを書き込むための書き込み電流Iw1のパルス幅Twp1は、例えば、(式4)に示される不感時間t以上に設定されている。 The write current I w1 is, the bit lines BL, bBL flow, is supplied to the selected cell indicated by the address signal ADR (MTJ element), data nDT is written (step ST2A). In normal writing, the pulse width T wp1 of the write current I w1 for writing the data nDT is set to, for example, the dead time t 0 or more shown in (Equation 4).
 このように、符号化部61から出力されたデータnDTを主メモリ50内の選択セルに書き込む際、書き込み電流Iw1のパルス幅Twp1には、例えば、磁化の反転に要する最低限の時間(期間)に対応したパルス幅が、用いられる。 Thus, when writing data nDT output from the coding unit 61 to the selected cell in the main memory 50, the pulse width T wp1 of the write current I w1, for example, the minimum time required for reversing the magnetization ( A pulse width corresponding to (period) is used.
 書き込み電流Iw1を用いて主メモリ50内にデータnDTを書き込んだ後、書き込まれたデータに対するベリファイ動作のため、書き込まれたデータが主メモリ50から誤り検出訂正回路52内に読み出される(ステップST3)。ここでは、ベリファイされるために読み出されたデータのことを、ベリファイデータとよぶ。 After writing the data nDT write current I w1 main memory 50 using, for verification operation performed on the written data, the written data is read from the main memory 50 to the error detecting and correcting circuit 52 (step ST3 ). Here, the data read for verification is referred to as verification data.
 ベリファイデータrDTは、誤り検出訂正回路52内の誤り検出部62に入力される。誤り検出部62は、ベリファイデータrDTに付加された冗長ビット(誤り検出訂正符号)を用いて、MTJ素子1が記憶するデータrDTが誤りを含むか否か検査する(ステップST4)。 The verify data rDT is input to the error detection unit 62 in the error detection / correction circuit 52. The error detection unit 62 checks whether or not the data rDT stored in the MTJ element 1 includes an error, using redundant bits (error detection / correction code) added to the verification data rDT (step ST4).
 ベリファイデータrDTに誤りが検出された場合、その誤りが訂正される(ステップST5)。誤りを含むベリファイデータrDTは、誤り検出部62から誤り訂正部63へ出力される。ベリファイデータrDTの誤りは、冗長ビットに基づいて、誤り訂正部63によって、訂正される。MTJ素子1に書き込まれたデータに誤りが無い場合、データの書き込みは、終了する(ステップST7)。 If an error is detected in the verify data rDT, the error is corrected (step ST5). The verify data rDT including an error is output from the error detection unit 62 to the error correction unit 63. The error of the verify data rDT is corrected by the error correction unit 63 based on the redundant bits. If there is no error in the data written to the MTJ element 1, the data writing is terminated (step ST7).
 誤りが訂正されたデータ(訂正データ)cDTは、主メモリ50に出力され、メモリセルアレイ20内のMTJ素子1に、再び書き込まれる(ステップST6)。訂正データcDTは、通常、ベリファイ動作の前に書き込んだアドレスと同じアドレスに、重ね書きされる。つまり、訂正データcDTは、訂正の前後で同じMTJ素子1に書き込まれる。 The error-corrected data (corrected data) cDT is output to the main memory 50 and written again into the MTJ element 1 in the memory cell array 20 (step ST6). The correction data cDT is normally overwritten at the same address as the address written before the verify operation. That is, the correction data cDT is written to the same MTJ element 1 before and after correction.
 この訂正データの書き込み(ステップST6)は、通常書き込みに用いられる書き込み電流Iw1のパルス幅Twp1よりも長いパルス幅Twp2の書き込み電流Iw2が用いられる。 The writing of the corrected data (step ST6), the write current I w2 of long pulse width T wp2 than the pulse width T wp1 of the write current I w1 used for normal writing is used.
 本動作例1において、訂正データcDTがMTJ素子1に書き込まれる際、再書き込みを示す制御信号(再書き込み信号)RWCが、誤り検出訂正回路52内の誤り訂正部63から書き込みパルス幅制御回路53へ出力される。 In this operation example 1, when the correction data cDT is written to the MTJ element 1, a control signal (rewrite signal) RWC indicating rewrite is sent from the error correction unit 63 in the error detection and correction circuit 52 to the write pulse width control circuit 53. Is output.
 再書き込み信号RWCが書き込みパルス幅制御回路53に入力されることによって、書き込み電流のパルス幅を長くするためのパルス幅制御信号pwcsが、書き込みパルス幅制御回路53から主メモリ50に出力される。そのパルス幅制御信号pwcsによって、図17に示されるように、パルス幅Twp2(>Twp1)を有する書き込み電流Iw2が、主メモリ50内の書き込み回路から出力され、書き込み電流Iw2が選択セルに直接供給される。 When the rewrite signal RWC is input to the write pulse width control circuit 53, a pulse width control signal pwcs for increasing the pulse width of the write current is output from the write pulse width control circuit 53 to the main memory 50. By the pulse width control signal pwcs, as shown in FIG. 17, the write current I w2 having the pulse width T wp2 (> T wp1 ) is output from the write circuit in the main memory 50, and the write current I w2 is selected. Supplied directly to the cell.
 例えば、書き込み動作及びベリファイ動作のループにおいて、書き込み電流のパルス幅は、前のデータの書き込み時に用いられた電流のパルス幅の、1.10倍にするように、パルス幅制御信号pwcsによって制御される。尚、書き込み電流のパルス幅を大きくする増加率は、1.10倍に限定されず、例えば、1.07倍から1.15倍程度の範囲内でもよい。 For example, in the loop of the write operation and the verify operation, the pulse width of the write current is controlled by the pulse width control signal pwcs so as to be 1.10 times the pulse width of the current used in the previous data write. The The increase rate for increasing the pulse width of the write current is not limited to 1.10 times, and may be in the range of about 1.07 times to 1.15 times, for example.
 このように、誤り検出訂正回路52から出力される2つの制御信号NWC,RWCによって、データの書き込みが、通常書き込みであるか再書き込み(書き戻し)であるかが、判別される。これによって、書き込み電流のパルス幅を、所定のパルス幅Twp1にするか、パルス幅Twp1より長くするかが、判別される。 As described above, it is determined by the two control signals NWC and RWC output from the error detection and correction circuit 52 whether the data writing is normal writing or rewriting (writing back). Thus, it is determined whether the pulse width of the write current is set to a predetermined pulse width Twp1 or longer than the pulse width Twp1 .
 尚、データの書き込み時において、書き込みデータの誤りの検出、訂正及び再書き込みが実行されている期間中に、それらの処理が実行中のデータに対して、読み出し命令が入力された場合、そのデータに対応するバッファメモリ54に記憶されたデータが、外部へ読み出される(ステップST2B)。 When data is written, if a read command is input to data for which processing is being executed during detection, correction, and rewriting of the write data error, the data The data stored in the buffer memory 54 corresponding to is read out to the outside (step ST2B).
 主メモリ50内に書き戻された訂正データcDT(以下、再書き込みデータとよぶ)は、再びベリファイ動作(ステップST3)の対象となる。それゆえ、再書き込みデータは主メモリ50から再び出力され、データ内に誤りがあるか否か検査される。再書き込みデータに誤りが検出された場合、その誤りが訂正され、訂正されたデータが再び書き戻された後、再度ベリファイされる。再書き込みデータに誤りが無い場合、データの書き込みは終了する(ステップST7)。 The correction data cDT written back in the main memory 50 (hereinafter referred to as rewrite data) is again subjected to the verify operation (step ST3). Therefore, the rewritten data is output again from the main memory 50, and it is checked whether there is an error in the data. If an error is detected in the rewritten data, the error is corrected, and the corrected data is rewritten and then verified again. If there is no error in the rewritten data, the data writing ends (step ST7).
 尚、ベリファイ動作が繰り返し実行され、データの再書き込みが複数回実行された場合、1つのデータに対して再書き込みの回数を重ねるごとに、書き込み電流のパルス幅を大きくすることが、好ましい。この場合、書き込み電流のパルス幅を同じ倍率(例えば、1.1倍)で大きくしてもよい。但し、1回目の再書き込み時にのみパルス幅を長くし、2回目以降の再書き込みに用いる書き込み電流のパルス幅は、1回目の書き込み電流のパルス幅と同じ長さでもよい。 Note that when the verify operation is repeatedly performed and data rewrite is performed a plurality of times, it is preferable to increase the pulse width of the write current each time the number of rewrites is repeated for one data. In this case, the pulse width of the write current may be increased at the same magnification (for example, 1.1 times). However, the pulse width may be increased only during the first rewrite, and the pulse width of the write current used for the second and subsequent rewrites may be the same as the pulse width of the first write current.
 データを再書き込みするループは、データの誤りが無くなるまで無限に続けてもよい。しかし、データを書き戻すループは、一定の回数、例えば、10回までに制限し、10回の再書き込みのループを行っても、データの誤りがなくならない場合、選択アドレスが示すMTJ素子自体に欠陥があると判定して、主メモリ50の別のアドレスへ訂正データ(書き戻しデータ)を記憶するよう変更することが効果的である。 The loop for rewriting data may continue indefinitely until there is no data error. However, the data write loop is limited to a certain number of times, for example, 10 times, and if the data error is not eliminated even after 10 rewrite loops are performed, the MTJ element itself indicated by the selected address is not included. It is effective to determine that there is a defect and to change the correction data (write-back data) to be stored in another address of the main memory 50.
 データの再書き込みは、誤っていたビットのみが1つの選択セルに重ね書きされてもよいし、1ブロックに含まれる全ビットが、対応する各選択セルへ重ね書きされてもよい。但し、磁気メモリの消費電力を抑制するために、誤っていたビットのみを重ね書きすることが好ましい。 In the rewriting of data, only erroneous bits may be overwritten in one selected cell, or all bits included in one block may be overwritten in each corresponding selected cell. However, in order to suppress the power consumption of the magnetic memory, it is preferable to overwrite only the erroneous bits.
 <動作例1の効果> 
 図19乃至図21を用いて、本実施形態の磁気メモリ(MRAM)の動作例1の効果について、説明する。
<Effect of Operation Example 1>
The effect of the operation example 1 of the magnetic memory (MRAM) of this embodiment will be described with reference to FIGS.
 図19は、MTJ素子に供給される電流の電流値Ic,mpの分布を示している。電流値Ic,mpは、あるパルス幅の書き込み電流を用いてMTJ素子にデータを書き込んだ場合に、そのMTJ素子の記憶層の磁化反転確率が0.5になる電流値を示している。 FIG. 19 shows a distribution of current values I c, mp of the current supplied to the MTJ element. The current value I c, mp indicates a current value at which the magnetization reversal probability of the storage layer of the MTJ element becomes 0.5 when data is written to the MTJ element using a write current having a certain pulse width.
 図19において、分布Cは、データの訂正及び再書き込みが実行されない場合に満たすべき電流Ic,mpの分布を示している。この場合、誤動作の発生確率をある仕様値以下にするには、分布Cのばらつきを小さくする必要がある。分布Dは、データの訂正及び再書き込みが実行される場合の分布を示している。誤動作の発生確率をある仕様値以下にする場合、分布Dは、データの訂正及び再書き込みを行うので、分布Cよりもばらつきが大きくともよい。 In FIG. 19, a distribution C indicates a distribution of currents I c and mp to be satisfied when data correction and rewriting are not executed. In this case, in order to reduce the occurrence probability of malfunction to a certain specification value or less, it is necessary to reduce the variation of the distribution C. A distribution D indicates a distribution when data correction and rewriting are executed. When the probability of malfunction occurrence is less than or equal to a certain specification value, the distribution D is corrected and rewritten, and therefore the variation may be larger than the distribution C.
 また、図19には、書き込み電流Iwrの分布も示されている。図19において、横軸は、電流Ic,mp,Iwriteの大きさが示され、縦軸は、存在確率が示されている。 FIG. 19 also shows the distribution of the write current Iwr . In FIG. 19, the horizontal axis indicates the magnitudes of currents I c, mp , and I write , and the vertical axis indicates the existence probability.
 図19に示されるように、電流Ic,mpの分布C,Dは電流Iwrの分布に対して、所定のマージン領域MR,CRが確保される。本実施形態の動作例1において、図19の分布Dのように、データの訂正及び再書き込みが実行されることによって、分布Cで示されるデータの訂正及び再書き込みが実行されない場合に比較して、電流Ic,mpのばらつきの許容度が広がる利点がある。つまり、メモリセルアレイ内にビット(MTJ素子)間のばらつきが大きくとも、誤動作確率を抑制できる。本実施形態において、誤動作とは、誤り検出訂正技術によって訂正できない不良のことである。尚、本実施形態において、誤り検出訂正技術によって訂正できる不良のことは、単に、不良、エラー或いは誤りとよぶ。 As shown in FIG. 19, the distributions C and D of the currents I c and mp secure predetermined margin regions MR and CR with respect to the distribution of the current I wr . In the operation example 1 of the present embodiment, as shown in the distribution D of FIG. 19, the correction and rewriting of data is executed, so that the correction and rewriting of data indicated by the distribution C is not executed. There is an advantage that the tolerance of variation of the current I c, mp is widened. That is, even if there is a large variation between bits (MTJ elements) in the memory cell array, the malfunction probability can be suppressed. In this embodiment, the malfunction is a defect that cannot be corrected by the error detection and correction technique. In the present embodiment, a defect that can be corrected by the error detection and correction technique is simply referred to as a defect, an error, or an error.
 磁気メモリ、例えば、MRAMにおいて、磁性体の磁化反転が確率現象であるために、書き込み不良、読出しディスターブ及びリテンション不良などが起きる。これらに起因する誤動作の確率の合計は、1チップあたり1000FIT(Failures In Time)以下に保証されることが好ましい。それゆえ、ここでは、1000FIT/チップを想定して、本動作例(書き込み動作)の効果について、述べる。尚、1000FIT/チップは、一般的なDRAMのソフトエラーに対する仕様である。 In a magnetic memory, for example, an MRAM, since the magnetization reversal of a magnetic material is a stochastic phenomenon, write failure, read disturb, retention failure, and the like occur. It is preferable that the total probability of malfunction caused by these is guaranteed to be 1000 FIT (FailuresailIn Time) or less per chip. Therefore, here, the effect of this operation example (write operation) is described assuming 1000 FIT / chip. Note that 1000 FIT / chip is a specification for a general DRAM soft error.
 ここでは、1GビットのMRAMにおいて、例えば、誤り検出訂正符号として拡張ハミングコードを用い、64ビットのデータ(情報ビット)に8ビットの誤り検出訂正符号(冗長ビット)を付加し、72ビットを1ブロックとする。この場合、MRAMに含まれる総ブロック数は1.68×10個である。そして、1ブロックごとにデータの書き込みとデータの読み出しとを、10年間交互に繰り返した場合、書き込みの総回数は3.15×1015回である。読み出しの総回数も、3.15×1015回である。 Here, in a 1-Gbit MRAM, for example, an extended Hamming code is used as an error detection / correction code, an 8-bit error detection / correction code (redundant bit) is added to 64-bit data (information bits), and 72 bits are 1 Let it be a block. In this case, the total number of blocks included in the MRAM is 1.68 × 10 7 . When data writing and data reading are repeated alternately for 10 years for each block, the total number of times of writing is 3.15 × 10 15 times. The total number of readings is also 3.15 × 10 15 times.
 1回のデータの書き込みにおいて、1ブロック中に2ビットの不良が同時に発生する確率が、1000FIT/チップに抑制されるためには、1ビット(1つのMTJ素子)に対する1回の書き込みにおける書き込み不良の発生確率q(write)が、2×10-10以下であることが好ましい。また、1回のデータの読み出しにおいて、1ブロック中に2ビットの不良が同時に発生する確率が、1000FIT/チップに抑制されるためには、1ビットに対する1回の読み出しにおける読み出しディスターブの発生確率q(read)が、2×10-10以下であることが好ましい。 In order to suppress the probability of simultaneous occurrence of 2-bit defects in one block to 1000 FIT / chip in one data write, a write defect in one write to one bit (one MTJ element) Is preferably 2 × 10 −10 or less. In addition, in order to suppress the probability of simultaneous occurrence of 2-bit defects in one block to 1000 FIT / chip in one data read, the probability of occurrence of read disturbance q in one read for one bit q (Read) is preferably 2 × 10 −10 or less.
 ここでは、書き込み不良は、“0”データの書き込み又は“1”データの書き込みのいずれか一方で顕著になることを考慮した。また、ここでは、読み出しディスターブは、“0”データの読み出し又は“1”データの読み出しのいずれか一方でしか、発生しないことを考慮した。 Here, it is considered that the write failure becomes prominent in either “0” data write or “1” data write. Further, here, it is considered that the read disturb occurs only in either “0” data read or “1” data read.
 次に、メモリセルアレイ内の任意の1ブロックに着目して、誤動作の確率を考える。 
 1回のデータの書き込みにおいて、1ブロック(72ビット)内に1ビットの書き込み不良が発生する確率p(write)は、(式6)で示される。 
Figure JPOXMLDOC01-appb-M000006
Next, paying attention to an arbitrary block in the memory cell array, the probability of malfunction is considered.
The probability p 1 (write) that a 1-bit write failure occurs in one block (72 bits) in one data write is represented by (Equation 6).
Figure JPOXMLDOC01-appb-M000006
  1ブロック内に2ビット以上同時に書き込み不良が発生し、誤動作になる確率p2+(write)は、(式7)で示される。
Figure JPOXMLDOC01-appb-M000007
The probability p 2+ (write) in which a write failure occurs simultaneously in two blocks or more in one block and malfunctions is expressed by (Equation 7).
Figure JPOXMLDOC01-appb-M000007
 1回のデータの読み出しにおいて、1ブロック内に1ビットの読み出しディスターブが発生する確率p(read)は、(式8)で示される。
Figure JPOXMLDOC01-appb-M000008
The probability p 1 (read) that 1-bit read disturb occurs in one block in one data read is expressed by (Equation 8).
Figure JPOXMLDOC01-appb-M000008
  また、1ブロックに2ビット以上同時に、読み出しディスターブが発生し、誤動作になる確率p2+(read)は、(式9)で示される。
Figure JPOXMLDOC01-appb-M000009
Further, the probability p 2+ (read) in which two or more bits are simultaneously generated in one block and a malfunction occurs is expressed by (Equation 9).
Figure JPOXMLDOC01-appb-M000009
 データの書き込み及びデータの読み出しにおいて、同じ1ブロックに、1ビットの書き込み不良と1ビットの読み出しディスターブが発生して、誤動作になる確率は、(式10)で示される。
Figure JPOXMLDOC01-appb-M000010
In data writing and data reading, the probability that a 1-bit write failure and a 1-bit read disturb occur in the same block and malfunctions is represented by (Equation 10).
Figure JPOXMLDOC01-appb-M000010
 以上の不良の確率から誤動作の確率の合計は、(式11)で示すことができる。
Figure JPOXMLDOC01-appb-M000011
The total probability of malfunctions can be expressed by (Equation 11) from the above probability of defects.
Figure JPOXMLDOC01-appb-M000011
 図17及び図18を用いて説明したように、本構成例のMRAMにおけるデータの書き込みは、外部からのデータをMTJ素子に書き込んだ後、書き込まれたデータが含む誤りを訂正したデータをMTJ素子に再び書き込む場合、訂正データの書き込み電流のパルス幅を、外部からのデータの書き込み電流のパルス幅よりも長くする。これによって、1ビットの書き込み不良の確率p(write)は十分小さくされる。 As described with reference to FIG. 17 and FIG. 18, data writing in the MRAM of this configuration example is performed by writing data from the outside into the MTJ element and then correcting the error included in the written data with the MTJ element. When the data is written again, the pulse width of the correction data write current is made longer than the pulse width of the external data write current. As a result, the probability p 1 (write) of 1-bit write failure is sufficiently reduced.
 例えば、図11を用いて説明したように、ある書き込み電流のパルス幅に対して、パルス幅が7%長くなると、書き込み不良の確率p(write)は1/10程度に減少しパルス幅が14%~15%程度長くなると、書き込み不良の確率p(write)は1/100程度に減少する。 For example, as described with reference to FIG. 11, when the pulse width is increased by 7% with respect to a pulse width of a certain write current, the probability of write failure p 1 (write) is reduced to about 1/10 and the pulse width is reduced. When it becomes longer by about 14% to 15%, the probability of write failure p 1 (write) decreases to about 1/100.
 したがって、同じブロックにおいて、書き込みによって1ビットの書き込み不良が発生し、且つ、読み出しによって1ビットの読み出しディスターブが発生することによって、誤動作になる確率は、1/100に小さくできる。 Therefore, in the same block, a 1-bit write failure occurs due to writing, and a 1-bit read disturb occurs due to reading, so that the probability of malfunction can be reduced to 1/100.
 一般的なメモリ(例えば、DRAM)において、書き込み及び読み出し時における誤動作の発生のリスクを分散するため、不良の発生確率は、p(write)=p(read)に設定される。 In a general memory (for example, DRAM), the probability of occurrence of a defect is set to p 1 (write) = p 1 (read) in order to disperse the risk of malfunction during writing and reading.
 しかし、(式11)に示されるように、誤動作の発生確率は、1ビットの書き込み不良の発生確率p(write)と1ビットの読み出しディスターブの発生確率p(read)との和に相関関係を有するため、1ビットの書き込み不良の発生確率p(write)が十分小さくなれば、1ビットの読み出しディスターブの発生確率p(read)が、少し大きくなっても、MRAMの動作に大きな悪影響はない。 However, as shown in (Equation 11), the probability of occurrence of a malfunction, the correlation to the sum of the first bit of the writing failure probability p 1 (write) and 1 occurrence of bit read disturb probability p 1 (read) Therefore, if the occurrence probability p 1 (write) of 1-bit write failure is sufficiently small, even if the occurrence probability p 1 (read) of 1-bit read disturb is slightly increased, the operation of the MRAM is large. There is no adverse effect.
 上述のように、本構成例のMRAMの動作例1において、訂正したデータを主メモリ(MTJ素子1)に書き戻す場合、書き込み電流のパルス幅を長くして、書き込み不良の発生確率p(write)を十分に小さくする。 As described above, in operation example 1 of the MRAM of the present configuration example, if the write back corrected data to the main memory (MTJ element 1), by lengthening the pulse width of the write current, the writing failure probability p 1 ( (write) is made sufficiently small.
 上述のように、書き込み電流のパルス幅をあるパルス幅より7%長くした場合、書き込み不良の発生確率p(write)は、1/10に小さくなる。その結果、読み出しディスターブの発生確率p(read)は、1.9倍まで大きくできる。書き込み電流のパルス幅をあるパルス幅より14%~15%長くした場合、書き込み不良の確率p(write)は、1/100に小さくなる。その結果、読み出しディスターブの発生確率p(read)は、1.99倍まで大きくできる。 As described above, when the pulse width of the write current is made 7% longer than a certain pulse width, the write failure occurrence probability p 1 (write) is reduced to 1/10. As a result, the read disturb occurrence probability p 1 (read) can be increased up to 1.9 times. When the pulse width of the write current is 14% to 15% longer than a certain pulse width, the probability of write failure p 1 (write) is reduced to 1/100. As a result, the read disturb occurrence probability p 1 (read) can be increased to 1.99 times.
 また、読み出しディスターブ発生確率p(read)を1.9倍にできることによって、図17に示される読み出し電流Iの電流値iを、1.02倍にできる。このため、主メモリ50のメモリセルアレイ20内において、MTJ素子の抵抗値(MR比)のばらつきが大きくなっても、比較的大きな読み出し電流IをMTJ素子に供給できるため、読み出しのためのS/N比を十分大きく確保できる。このように、本構成例のMRAMの書き込み動作にともなって、データの読み出し時において、比較的大きな読み出し電流を用いることができるので、MTJ素子の抵抗値(MR比)が小さくとも精度のよいデータの読み出しを実行でき、また、読み出しに対するメモリセルアレイ20内のMTJ素子1のばらつきの許容度が大きくできる。 Further, by being able to read disturb occurrence probability p 1 a (read) to 1.9 times, the current value i r of the read current I r shown in FIG. 17, it is 1.02 times. Therefore, in the memory cell array 20 in the main memory 50, because even variations in the resistance of the MTJ element (MR ratio) is increased, it can supply a relatively large read current I r to the MTJ element, S for reading A sufficiently large / N ratio can be secured. As described above, since a relatively large read current can be used when reading data in accordance with the write operation of the MRAM of this configuration example, accurate data can be obtained even if the resistance value (MR ratio) of the MTJ element is small. Can be executed, and the tolerance of variation of the MTJ element 1 in the memory cell array 20 with respect to the reading can be increased.
 また、書き込み不良の発生確率p(write)を、例えば、1/100に小さくできることは、図19に示されるように、メモリセルアレイ20の複数のMTJ素子1に対して、電流Ic,mpのばらつきの許容度が広がることを意味する。これについて、図20及び図21を用いて、説明する。 Further, the fact that the write failure occurrence probability p 1 (write) can be reduced to, for example, 1/100, as shown in FIG. 19, the current I c, mp is applied to a plurality of MTJ elements 1 of the memory cell array 20. It means that the tolerance of the variation of the spread is widened. This will be described with reference to FIGS.
 図20及び図21は、反転しきい値がMTJ素子間でばらつく現象、及び、反転しきい値電流密度JがMTJ素子間でばらつく現象を考慮した典型的な書き込み電流密度の設定例を、示している。 20 and 21, a phenomenon in which inversion threshold varies between the MTJ elements, and a setting example of a typical write current density inversion threshold current density J c is taken into consideration the phenomenon that variation between MTJ element, Show.
 図20に示される例において、電流密度Jの素子間のばらつきが3%の場合において、データが、パルス幅が20nsecの書き込み電流によって書き込まれる。図20では、その書き込み電流の電流密度Jwrにおける書き込み不良の発生確率q(write)の平均が、1×10-10になるように設定されている。 In the example shown in FIG. 20, when the variation between the elements of the current density J c is 3% data, the pulse width is written by the write current of 20 nsec. In FIG. 20, the average of the write failure occurrence probability q (write) at the write current density J wr is set to be 1 × 10 −10 .
 図20において、縦軸は確率を示し、横軸は電流密度を示している。また、図20において、特性線f1は電流密度Jの素子間のばらつきの正規分布を示し、特性線PAは書き込み不良の発生確率を示し、特性線S1は正規分布f1と発生確率PAの積を示している。また、線Jwrは、設定された書き込み電流の電流密度を示している。 In FIG. 20, the vertical axis indicates the probability, and the horizontal axis indicates the current density. Further, in FIG. 20, a characteristic line f1 represents the normal distribution of the variation among elements of the current density J c, the characteristic line PA represents the probability of occurrence of writing failure, the product of the probability PA characteristic line S1 is a normal distribution f1 Is shown. A line J wr indicates the current density of the set write current.
 図21は、図20に示される設定例に用いた書き込み電流のパルス幅が14%増大された場合を、示している。図21において、特性線f2は電流密度Jの素子間のばらつきの正規分布を示し、特性線PBは書き込み不良の発生確率を示し、特性線S2は正規分布f2と発生確率PBの積を示している。また、線Jwrは、設定された書き込み電流の電流密度を示している。 FIG. 21 shows a case where the pulse width of the write current used in the setting example shown in FIG. 20 is increased by 14%. In Figure 21, a characteristic line f2 represents a normal distribution of variation among elements of the current density J c, the characteristic line PB indicate the probability of occurrence of writing failure, characteristic line S2 represents the product of a normal distribution f2 probability PB ing. A line J wr indicates the current density of the set write current.
 図21において、電流密度Jの素子間のばらつきは5%である。図21に示されるように、書き込み電流のパルス幅が14%増大された場合、電流密度Jの素子間ばらつきが5%程度まで大きくなっても、正規分布f1,f2と発生確率PA,PBとの積の値S1,S2を参照すると、図21に示される不良の発生確率q(write)の平均は、1×10-10程度になる。この値は、実質的に図20に示される例と同じである。 In Figure 21, variation among elements of the current density J c is 5%. As shown in FIG. 21, when the pulse width of the write current is increased by 14%, even inter-element variations in the current density J c is increased up to about 5%, normal distribution f1, f2 and probability PA, PB With reference to product values S1 and S2, the average of the occurrence probability q (write) of defects shown in FIG. 21 is about 1 × 10 −10 . This value is substantially the same as the example shown in FIG.
 このように、本構成例のMRAMの動作例1(データの書き込み)によって、書き込み不良の発生確率p(write)を減少させることは、電流密度Jの素子間ばらつきの許容度が、3%から5%に増大することに相当する。 As described above, by reducing the occurrence probability p 1 (write) of the write failure by the operation example 1 (data writing) of the MRAM of the present configuration example, the tolerance of the inter-element variation of the current density J c is 3 It corresponds to an increase from 5% to 5%.
 尚、上述のように、外部から入力された書き込みデータは、主メモリ50内に記憶されるとともに、バッファメモリ54内にも一時的に記憶される。そのため、データの誤りの検出、訂正及びデータの書き戻しが実行されているサイクル中に、そのデータを読み出すためのコマンド信号CMDが入力された場合、バッファメモリ54からそのデータが読み出される。それゆえ、訂正データを書き戻す工程によって、メモリの動作が遅くなることはない。それゆえ、磁気メモリ、例えば、MRAMの高速動作を損なうことはない。 As described above, write data input from the outside is stored in the main memory 50 and also temporarily stored in the buffer memory 54. Therefore, when a command signal CMD for reading data is input during a cycle in which detection, correction, and data write-back of data are executed, the data is read from the buffer memory 54. Therefore, the operation of the memory is not slowed down by the process of writing back the correction data. Therefore, the high-speed operation of the magnetic memory, for example, the MRAM is not impaired.
 以上のように、本実施形態に係る磁気メモリは、データの書き込み時、外部からのデータをパルス幅Twp1の書き込み電流を用いて、MTJ素子1に書き込む。そして、本実施形態に係る磁気メモリは、MTJ素子1に書き込まれたデータが、正常に書き込まれたか否か検証する。書き込まれたデータが誤りを含む場合、本実施形態に係る磁気メモリは、その誤りを訂正し、訂正したデータをMTJ素子に再び書き込む。訂正されたデータは、パルス幅Twp1より長いパルス幅Twp2の書き込み電流Iw2を用いて、MTJ素子1に書き込まれる。これによって、データの書き込みのための時間が過剰に長くならずに、書き込み不良の発生確率が低減される。 As described above, the magnetic memory according to the present embodiment writes data from the outside to the MTJ element 1 using the write current having the pulse width Twp1 when writing data. Then, the magnetic memory according to the present embodiment verifies whether or not the data written in the MTJ element 1 has been normally written. When the written data includes an error, the magnetic memory according to the present embodiment corrects the error and writes the corrected data to the MTJ element again. Corrected data using the write current I w2 of long pulse width T wp2 than the pulse width T wp1, written in the MTJ element 1. As a result, the time for writing data is not excessively lengthened, and the probability of writing failure is reduced.
 また、主メモリのメモリセルアレイ内の書き込み不良の発生が低減されるので、書き込み不良、読み出しディスターブ及びリテンション不良に起因する誤動作の発生も低減する。 Also, since the occurrence of write failures in the memory cell array of the main memory is reduced, the occurrence of malfunctions due to write failures, read disturbs and retention failures is also reduced.
 したがって、本発明の実施形態に係る磁気メモリによれば、その動作の信頼性を向上でき、且つ、動作特性を向上できる。 Therefore, according to the magnetic memory according to the embodiment of the present invention, the reliability of the operation can be improved and the operation characteristics can be improved.
 (b) 動作例2 
 図22を用いて、本実施形態の構成例に係る磁気メモリ(MRAM)の動作例2について説明する。ここでは、本構成例のMRAMの動作例2として、本構成例のMRAMに用いられるデータの読み出しについて、述べる。本動作例2において、MRAMの回路構成は動作例1と共通であり、共通する構成及び動作(ステップ)については、必要に応じて説明する。
(B) Operation example 2
An operation example 2 of the magnetic memory (MRAM) according to the configuration example of this embodiment will be described with reference to FIG. Here, as operation example 2 of the MRAM of this configuration example, reading of data used in the MRAM of this configuration example will be described. In this operation example 2, the circuit configuration of the MRAM is the same as that of the operation example 1, and the common configuration and operation (steps) will be described as necessary.
 図22は、本構成例のMRAMのデータ読み出し動作を示すフローチャートである。 FIG. 22 is a flowchart showing the data read operation of the MRAM in this configuration example.
 まず、図22に示されるように、MRAMのある動作サイクルの中で、主メモリ50内の選択セル(MTJ素子1)にデータが書き込まれる(ステップST10)。このデータは、例えば、通常書き込み、つまり、図17に示されるパルス幅Twp1の書き込み電流Iw1を用いて、書き込きこまれたデータである。但し、再書き込み、つまり、図17に示されるパルス幅Twp2の書き込み電流Iw2を用いて書き込まれたデータであってもよい。 First, as shown in FIG. 22, data is written to a selected cell (MTJ element 1) in the main memory 50 in an operation cycle of the MRAM (step ST10). This data is, for example, normal writing, that is, data written using the write current I w1 having the pulse width T wp1 shown in FIG. However, rewriting, i.e., it may be data that has been written using a write current I w2 of the pulse width T wp2 shown in Figure 17.
 データの読み出し時、読み出し命令を示すコマンド信号CMD及び選択セルを示すアドレス信号ADRが、外部から入力される(ステップST12)。コマンド信号CMD及びアドレス信号ADRは、例えば、制御回路51内に入力される。 When reading data, a command signal CMD indicating a read command and an address signal ADR indicating a selected cell are input from the outside (step ST12). The command signal CMD and the address signal ADR are input into the control circuit 51, for example.
 制御回路51の制御に基づいて、データが、主メモリ50内から出力される。本動作例では、読み出し命令によって主メモリ50内から出力されるデータのことを、読み出しデータrDTとよぶ。 Data is output from the main memory 50 based on the control of the control circuit 51. In this operation example, the data output from the main memory 50 by the read command is called read data rDT.
 読み出しデータrDTは、誤り検出訂正回路52内の誤り検出部62に入力される。誤り検出訂正信号(冗長ビット)を含む読み出しデータrDTは、誤り検出部62によって、誤りを含むか否かが検査される(ステップST13)。 Read data rDT is input to the error detector 62 in the error detection and correction circuit 52. The read data rDT including the error detection / correction signal (redundant bit) is inspected by the error detection unit 62 to determine whether or not it includes an error (step ST13).
 読み出しデータrDTに誤りが検出されなかった場合、データの訂正は実行されずに、読み出しデータrDTは、復号化部64に出力される。復号化部64は、入力された読み出しデータrDTを復号化する。復号化されたデータは、バッファメモリ54に一時的に格納される。そして、データDT2が、バッファメモリ54からチップの外部に出力される(ステップST14)。これによって、読み出されたデータに誤りが無かった場合において、データの読み出しは、終了する。 If no error is detected in the read data rDT, the read data rDT is output to the decoding unit 64 without being corrected. The decryption unit 64 decrypts the input read data rDT. The decrypted data is temporarily stored in the buffer memory 54. Then, data DT2 is output from the buffer memory 54 to the outside of the chip (step ST14). As a result, when there is no error in the read data, the data reading ends.
 一方、読み出しデータrDTに誤りが検出された場合、その誤りが訂正される(ステップST15)。読み出しデータrDTは誤り訂正部63に出力され、読み出しデータrDT内の誤りは、付加された冗長ビットに基づいて、誤り訂正部63によって訂正される。 On the other hand, when an error is detected in the read data rDT, the error is corrected (step ST15). The read data rDT is output to the error correction unit 63, and errors in the read data rDT are corrected by the error correction unit 63 based on the added redundant bits.
 訂正されたデータは、復号化部64に出力され、復号化される。復号化された訂正データcDTは、バッファメモリ54を経由して、出力データDT2として、外部へ出力される(ステップST16)。訂正データcDTは、外部に出力されるのと同時に、バッファメモリ54に一時的に記憶される(ステップST17)。訂正データcDTの再書き込み中に、そのデータに対する読み出し命令が入力された場合、バッファメモリ54に記憶されたデータが、外部へ出力される。 The corrected data is output to the decryption unit 64 and decrypted. The decoded correction data cDT is output to the outside as output data DT2 via the buffer memory 54 (step ST16). The correction data cDT is temporarily stored in the buffer memory 54 at the same time as being output to the outside (step ST17). When a read command for the data is input while the correction data cDT is being rewritten, the data stored in the buffer memory 54 is output to the outside.
 本動作例のデータの読み出し時において、訂正データcDTが外部へ出力されるのとともに、その訂正データcDTが主メモリ50に書き戻される(ステップST18)。 
 訂正データcDTが主メモリ50に書き戻される場合、例えば、図17に示される書き込み電流Iw2のように、再書き込みに用いられる書き込み電流Iw2のパルス幅Twp2は、通常書き込みに用いられる書き込み電流Iw1のパルス幅Twp1よりも、長くされる。この書き込み電流Iw2によって、訂正データcDTがMTJ素子1に再書き込みされる。
At the time of reading data in this operation example, the correction data cDT is output to the outside, and the correction data cDT is written back to the main memory 50 (step ST18).
If corrected data cDT is written back to main memory 50 writes, for example, as the write current I w2 shown in Figure 17, the pulse width T wp2 of the write current I w2 used for rewriting, usually used for writing than the pulse width T wp1 of the current I w1, it is lengthened. This write current I w2, correction data cDT is rewritten in the MTJ element 1.
 書き戻されたデータcDTは、主メモリ50(MTJ素子1)から誤り検出部62に再び読み出され、誤りがあるか否か検査される(ステップST19)。 The rewritten data cDT is read again from the main memory 50 (MTJ element 1) to the error detection unit 62, and it is checked whether there is an error (step ST19).
 書き戻された訂正データcDTが誤りを含まない場合、データの読み出し時におけるデータの訂正及びデータの再書き込みは、終了する。 When the correction data cDT written back does not contain an error, the data correction and data rewriting at the time of data reading are completed.
 書き戻されたデータcDTが再び誤りを含む場合、そのデータの誤りを再度訂正(ステップST20)し、その訂正データは、主メモリ50に再び書き込まれる。2回目の再書き込みには、1回目の再書き込みよりもさらに電流パルス幅を長くすることが、効果的である。例えば、データの訂正及び再書き込みのループ(ST18~ST20)の回数を重ねるごとに、書き込み電流のパルス幅を1.1倍ずつ大きくされる。但し、1回目の再書き込みと2回目以降の再書き込みとで、同じパルス幅の書き込み電流を用いてもよい。 When the rewritten data cDT includes an error again, the error of the data is corrected again (step ST20), and the corrected data is written in the main memory 50 again. For the second rewriting, it is effective to make the current pulse width longer than the first rewriting. For example, each time the number of data correction and rewrite loops (ST18 to ST20) is repeated, the pulse width of the write current is increased by 1.1 times. However, a write current having the same pulse width may be used for the first rewrite and the second and subsequent rewrites.
 この再書き込みのループ(ST18~ST20)中に訂正されたデータは、例えば、バッファメモリ54に一時的に格納される(ステップST17)。格納されたデータは、再書き込みのループのたびに書き改められる。 The data corrected during this rewrite loop (ST18 to ST20) is temporarily stored in, for example, the buffer memory 54 (step ST17). The stored data is rewritten at every rewrite loop.
 そして、書き戻されるデータに誤りが無くなった場合、データの再書き込みが終了する。 And when there is no error in the data to be written back, the data rewriting is completed.
 再書き込みのループ(ST18~ST20)は、データの誤りが無くなるまで続けてもよいし、再書き込みのループは、所定の回数(例えば、10回)までに制限してもよい。例えば、再書き込みを同じアドレス(MTJ素子1)に対して10回行っても、誤りがなくならない場合、主メモリ50内の別のアドレスへ書き込むように、アドレスを変更することが、メモリセルアレイ内のデータの不良を低減するために効果的である。 The rewrite loop (ST18 to ST20) may be continued until there is no data error, and the rewrite loop may be limited to a predetermined number of times (for example, 10 times). For example, if the error does not disappear even if rewriting is performed 10 times for the same address (MTJ element 1), changing the address to write to another address in the main memory 50 is possible in the memory cell array. It is effective to reduce the data defects.
 <動作例2の効果> 
 以下、本実施形態の磁気メモリ(MRAM)の動作例2の効果について、説明する。尚、動作例1で述べた効果と同様の効果については、ここでの説明は省略する。
<Effect of Operation Example 2>
Hereinafter, the effect of the operation example 2 of the magnetic memory (MRAM) of the present embodiment will be described. In addition, about the effect similar to the effect described in the operation example 1, description here is abbreviate | omitted.
 本動作例2で述べたMRAMのデータの読み出しが、MRAMに適用されることによって、通常書込み時に発生した書き込み不良を、データの読み出し時に訂正することができる。 When the data read from the MRAM described in this operation example 2 is applied to the MRAM, a write failure that has occurred during normal write can be corrected when the data is read.
 また、本動作例2のデータの読み出しにおいて、再書き込みに用いられる書き込み電流のパルス幅が通常書き込み時に用いられる書き込み電流のパルス幅より長くされることによって、再書き込みによるデータの書き戻し時に発生する書き込み不良を、低減できる。 Further, in the data reading in the second operation example, the pulse width of the write current used for rewriting is made longer than the pulse width of the write current used in normal writing, which occurs when data is written back by rewriting. Write defects can be reduced.
 さらに、本動作例2のデータの読み出しは、熱擾乱によるデータ保持時に発生するリテンション不良に対しても、有効である。 Furthermore, the data reading in this operation example 2 is also effective for a retention failure that occurs when data is retained due to thermal disturbance.
 つまり、本動作例2のデータ読み出しによれば、読出しディスターブ不良、書き込み不良、リテンション不良、などで生じた不良ビットを、早い段階で正しいビットに修正できる。その結果、1ブロック中に2ビット以上の誤りが発生し、誤り検出訂正技術を用いても、データの誤りを訂正できない誤動作の発生確率を減少することができる。 That is, according to the data reading in this operation example 2, a defective bit caused by a read disturb failure, a write failure, a retention failure, or the like can be corrected to a correct bit at an early stage. As a result, an error of 2 bits or more occurs in one block, and even if error detection and correction technology is used, it is possible to reduce the probability of malfunction that cannot correct data errors.
 また、上述の動作例1と同様に、訂正されたデータの再書き込み時のみ、書き込み電流のパルス幅を長くすることに起因してMRAMの高速動作が損なわれることはない。 Similarly to the above-described operation example 1, only when the corrected data is rewritten, the high-speed operation of the MRAM is not impaired by increasing the pulse width of the write current.
 したがって、本発明の実施形態に係る磁気メモリによれば、その動作の信頼性を向上でき、且つ、動作特性を向上できる。 Therefore, according to the magnetic memory according to the embodiment of the present invention, the reliability of the operation can be improved and the operation characteristics can be improved.
 [変形例] 
 図23乃至図25を参照して、構成例で述べた磁気メモリの構成及び動作の変形例について、説明する。尚、本変形例において、基本例及び構成例で述べた構成と同じ構成については、共通の符号を付し、詳細な説明は省略する。
[Modification]
A modification of the configuration and operation of the magnetic memory described in the configuration example will be described with reference to FIGS. In this modification, the same reference numerals are given to the same configurations as those described in the basic example and the configuration example, and detailed description thereof is omitted.
 図14では、誤り検出訂正回路52内に設けられた符号化部61及び誤り訂正部63からそれぞれ出力される制御信号NWC,RWCに基づいて、通常のデータの書き込みと訂正時のデータの再書き込みとを判別し、書き込み電流のパルス幅を制御する場合について、述べた。 In FIG. 14, normal data writing and data rewriting at the time of correction are performed based on the control signals NWC and RWC output from the encoding unit 61 and the error correction unit 63 provided in the error detection and correction circuit 52, respectively. As described above, the pulse width of the write current is controlled.
 これに対して、制御信号を用いる代わりに、データに付加した判定信号(フラグ)を用いて、通常書き込みであるか再書き込み(データの書き戻し)であるかを判別してもよい。 On the other hand, instead of using the control signal, a determination signal (flag) added to the data may be used to determine whether normal writing or rewriting (data writing back).
 図23は、本実施形態の一変形例のMRAMの内部構成を示している。 
 データnDT,cDTには、通常書き込みか訂正書き込みかを判定するための判定信号が付加される。例えば、通常ハミングコードによる誤り検出訂正符号が用いられた場合、64ビットのデータに対して、誤り検出訂正符号としての冗長ビットが、7ビット付加され、さらに、通常書き込みか訂正書き込みかを判別するための判定信号(以下、判定ビットとよぶ)が、1ビット付加される。この場合、72ビットのデータが、1ブロックとして扱われる。例えば、判定ビットが、“0”のとき通常書き込みを示し、“1”のとき訂正書き込みを示す。
FIG. 23 shows an internal configuration of an MRAM according to a modification of the present embodiment.
A determination signal for determining whether normal writing or correction writing is added to the data nDT and cDT. For example, when an error detection / correction code based on a normal Hamming code is used, 7 bits of redundant bits as an error detection / correction code are added to 64-bit data, and it is further determined whether normal writing or correction writing is performed. A 1-bit decision signal (hereinafter referred to as a decision bit) is added. In this case, 72-bit data is handled as one block. For example, when the determination bit is “0”, normal writing is indicated, and when the determination bit is “1”, correction writing is indicated.
 符号化部61は、データwDTの入力時又は出力時、判定ビットを“0”に設定する。誤り訂正部63は、データrDTの入力時又は出力時、判定ビットを“1”に設定する。 The encoding unit 61 sets the determination bit to “0” when data wDT is input or output. The error correction unit 63 sets the determination bit to “1” when data rDT is input or output.
 図23に示すように、書き込みパルス幅制御回路53は、主メモリ50に隣接して、配置されている。書き込みパルス幅制御回路53には、例えば、データnDT,cDTが、直接又は主メモリ50を経由して入力される。尚、データnDT,cDTに含まれる判定ビットのみが、書き込みパルス幅制御回路53に入力されてもよい。 23, the write pulse width control circuit 53 is arranged adjacent to the main memory 50. For example, data nDT and cDT are input to the write pulse width control circuit 53 directly or via the main memory 50. Only the determination bits included in the data nDT and cDT may be input to the write pulse width control circuit 53.
 書き込みパルス幅制御回路53は、1ブロックのデータに含まれる判定ビットを判別する機能を有し、判定ビットが“1”であるか“0”であるかによって、データの書き込みが、通常書き込み又は訂正書き込みを判別する。 The write pulse width control circuit 53 has a function of discriminating a determination bit included in one block of data. Depending on whether the determination bit is “1” or “0”, data writing is performed as normal writing or Determine correct write.
 これによって、図14に示される構成と同様に、書き込みパルス幅制御回路53は、通常書き込みの場合に、図17に示されるパルス幅Twp1を有する書き込み電流Iw1を生成及び出力するように、主メモリ50内の書き込み回路の動作を制御する。また、書き込みパルス幅制御回路53は、訂正書き込みの場合に、図17に示されるパルス幅Twp1よりも長いパルス幅Twp2を有する書き込み電流Iw2を生成及び出力するように、主メモリ50内の書き込み回路の動作を制御する。 Thus, similar to the configuration shown in FIG. 14, the write pulse width control circuit 53 generates and outputs the write current I w1 having the pulse width T wp1 shown in FIG. The operation of the write circuit in the main memory 50 is controlled. Further, the write pulse width control circuit 53 generates and outputs a write current I w2 having a pulse width T wp2 longer than the pulse width T wp1 shown in FIG. The operation of the write circuit is controlled.
 このように、MTJ素子に書き込まれるデータが含む判定ビットによって、通常書き込みか再書き込みかを判別でき、判別結果に応じ、所定のパルス幅の書き込み電流をそれぞれ用いて、データをMTJ素子に書き込むことができる。 In this way, it is possible to determine whether normal writing or rewriting is performed based on the determination bit included in the data written to the MTJ element, and writing data to the MTJ element using a write current having a predetermined pulse width according to the determination result. Can do.
 これによって、新たな制御信号をMRAMチップに設ける必要はなく、それに伴って、制御信号を供給するための配線も必要ないので、チップの全体の制御やチップ内の配線レイアウトに対する負荷は小さくなる。 Accordingly, it is not necessary to provide a new control signal to the MRAM chip, and accordingly, wiring for supplying the control signal is not required, so that the load on the entire control of the chip and the wiring layout in the chip is reduced.
 また、本発明の実施形態のMRAMのポイントの1つは、チップ内の動作サイクルにおいて、MTJ素子1から1度読み出されたデータをMTJ素子1に書き戻す場合に、通常書き込みに用いる書き込み電流Iw1に比較して、再書き込みに用いる書き込み電流Iw2のパルス幅を長くすることである。これによって、書き込み不良の発生確率は減少し、主メモリ(メモリセルアレイ)内のデータの誤りは低減する。 One of the points of the MRAM according to the embodiment of the present invention is that a write current used for normal writing when data once read from the MTJ element 1 is written back to the MTJ element 1 in the operation cycle in the chip. Compared to I w1 , the pulse width of the write current I w2 used for rewriting is increased. As a result, the probability of occurrence of a write failure is reduced, and data errors in the main memory (memory cell array) are reduced.
 データの再書き込み時に書き込み電流のパルス幅を長くするという動作は、主メモリ50に対するリフレッシュ動作(記憶保持動作)に対しても適用できる。 The operation of increasing the pulse width of the write current when rewriting data can be applied to the refresh operation (memory holding operation) for the main memory 50.
 図24は、本実施形態の一変形例のMRAMの内部構成を示し、図25は、本変形例のMRAMの動作(リフレッシュ動作)のフローチャートを示している。 FIG. 24 shows an internal configuration of an MRAM according to a modification of the present embodiment, and FIG. 25 shows a flowchart of an operation (refresh operation) of the MRAM according to the modification.
 例えば、図24に示すように、本変形例のリフレッシュ動作が用いられるMRAMは、読み出し回数をカウントするカウンタ部59を有する。 For example, as shown in FIG. 24, the MRAM in which the refresh operation of this modification is used includes a counter unit 59 that counts the number of times of reading.
 図25に示すように、外部から入力されたデータが主メモリ50内のMTJ素子に書き込まれる(ステップST21)。この際、データwDTは通常書き込みによって書き込まれ、図17に示されるパルス幅Twp1を有する書き込み電流Iw1が、データの書き込みに用いられる。 As shown in FIG. 25, externally input data is written to the MTJ element in the main memory 50 (step ST21). At this time, the data wDT is written by normal writing, and a write current I w1 having a pulse width T wp1 shown in FIG. 17 is used for writing data.
 この後、読み出し命令が入力されると、主メモリ50内に記憶されたデータが、読み出される(ステップST22)。尚、この読み出されたデータに対して、誤りの検出及び訂正が実行されてもよいし、誤りの検出及び訂正が実行されなくともよい。 Thereafter, when a read command is input, the data stored in the main memory 50 is read (step ST22). Note that error detection and correction may be performed on the read data, or error detection and correction may not be performed.
 制御回路51内のカウンタ部59は、データの読み出し回数をカウントする(ステップST23)。尚、カウンタ部59は、読み出し命令を示すコマンド信号CMDの入力をカウントしてもよいし、主メモリ50からのデータの出力をカウントしてもよい。 The counter unit 59 in the control circuit 51 counts the number of times data is read (step ST23). The counter unit 59 may count the input of a command signal CMD indicating a read command, or may count the output of data from the main memory 50.
 制御回路51は、カウンタ部59がカウントした値(以下、カウント値とよぶ)Nとリフレッシュ動作を実行するための参照値Nrflとを比較する(ステップST24)。 The control circuit 51 compares the value (hereinafter referred to as a count value) N n counted by the counter unit 59 with a reference value N rfl for executing the refresh operation (step ST24).
 カウント値Nが参照値Nrfl以下の場合、リフレッシュ動作は実行されずに、次の動作(例えば、データの読み出し)又は動作の終了になる。動作の終了であっても、カウントされたカウンタ値Nは、これまでのカウンタ値Nn-1として、カウンタ部59内に、保持される。 When the count value N n is equal to or smaller than the reference value N rfl , the refresh operation is not executed, and the next operation (for example, data reading) or the operation ends. Even at the end of the operation, the counted counter value N n is held in the counter unit 59 as the counter value N n−1 thus far.
 一方、カウント値Nが参照値Nrflより大きい場合、リフレッシュ動作が実行される(ステップST25)。リフレッシュ動作によって、主メモリ50内に記憶されたデータが一度読み出された後、そのデータが主メモリ50内に再び書き戻される。尚、リフレッシュ動作時に、誤りの検出及び訂正を実行してもよい。 On the other hand, the count value N n is greater than the reference value N rfl, refresh operation is executed (step ST25). After the data stored in the main memory 50 is read once by the refresh operation, the data is written back into the main memory 50 again. Note that error detection and correction may be performed during the refresh operation.
 リフレッシュ動作時において、主メモリ50から読み出されたデータは、外部からのデータを書き込む場合よりもパルス幅が長くされた書き込み電流Iw2を用いて、主メモリ50内に書き戻される(ステップST26)。つまり、リフレッシュ動作時において、図17に示すように、パルス幅Twp1よりも長いパルス幅Twp2の書き込み電流Iw2が、主メモリ50に対するデータの書き戻しに用いられる。 During the refresh operation, the data read from the main memory 50 is written back into the main memory 50 using the write current I w2 having a pulse width longer than that when writing data from the outside (step ST26). ). That is, during the refresh operation, as shown in FIG. 17, the write current I w2 having a pulse width T wp2 longer than the pulse width T wp1 is used for data write back to the main memory 50.
 尚、リフレッシュ動作時、リフレッシュ動作を示す制御信号RFLが、制御回路51から書き込みパルス幅制御回路53に入力される。その制御信号RFLに基づいて、書き込みパルス幅制御回路53は、書き込み電流のパルス幅を長くするように、書き込み回路2A,2Bの動作を制御する。 In the refresh operation, a control signal RFL indicating the refresh operation is input from the control circuit 51 to the write pulse width control circuit 53. Based on the control signal RFL, the write pulse width control circuit 53 controls the operation of the write circuits 2A and 2B so as to increase the pulse width of the write current.
 長いパルス幅Twp2の書き込み電流Iw2を用いたリフレッシュ動作の後、例えば、次の動作サイクルにおけるデータの読み出しが実行される。尚、リフレッシュ動作に続く動作が、データの書き込みであってもよいのは、もちろんである。 After the refresh operation using the write current I w2 of long pulse width T wp2, for example, reading of data in the next operation cycle is executed. Of course, the operation following the refresh operation may be data writing.
 以上の動作によって、本変形例のMRAMのリフレッシュ動作が終了する。 With the above operation, the refresh operation of the MRAM of this modification is completed.
 これによって、リフレッシュ動作において、主メモリ50(MTJ素子1)に記憶されたデータが主メモリ50に書き戻された時に、データの書き込み不良が発生するのを低減できる。また、リフレッシュ動作のときのデータの再書き込みのみに、それに用いる書き込み電流Iw2のパルス幅Twp2を長くするので、書き込み電流のパルス幅が長くなることによって、MRAMの高速動作が損なわれることは無い。 As a result, it is possible to reduce the occurrence of defective data writing when data stored in the main memory 50 (MTJ element 1) is written back to the main memory 50 in the refresh operation. Further, only the data rewriting at the time of the refresh operation, the longer the pulse width T wp2 of the write current I w2 used therefor, by the pulse width of the write current is increased, the high-speed operation of the MRAM is impaired No.
 [その他]
 本発明の実施形態において、図2及び図17に示すように、通常書き込みのための書き込み電流Iw1及び再書き込みのための書き込み電流Iw2と、同じ電流値に設定されている。但し、1度読み出したデータをMTJ素子に書き戻すために用いられる書き込み電流Iw2のパルス幅Twp2が、外部からのデータを新たにMTJ素子に書き込むための書き込み電流Iw1のパルス幅Twp1より長ければ、2つの電流Iw1,Iw2の電流値の大きさは、それぞれ異なっていてもよい。
[Others]
In an embodiment of the present invention, as shown in FIG. 2 and FIG. 17, the write current I w2 for the write current I w1 and rewrite for normal writing is set to the same current value. However, the pulse width T wp2 of the write current I w2 used for writing back the read data once to the MTJ element is the pulse width T wp1 of the write current I w1 for newly writing data from the outside to the MTJ element. If longer, the magnitudes of the current values of the two currents I w1 and I w2 may be different from each other.
 本発明の実施形態は、磁気抵抗効果素子を記憶素子として主メモリが構成される磁気メモリ(MRAM)を例に挙げて、説明されている。但し、これに限定されず、例えば、ReRAM(Resistive RAM)やPCRAM(Phase Change RAM)のように、書き込み電流(書き込み電圧)のパルス幅を制御することによって抵抗値が可逆的に変わる素子を記憶素子に用いた他のメモリが、本発明の実施形態で述べた効果と同様の効果が得られるのは、もちろんである。 The embodiment of the present invention has been described by taking as an example a magnetic memory (MRAM) in which a main memory is configured using a magnetoresistive element as a storage element. However, the present invention is not limited to this. For example, elements such as ReRAM (Resistive RAM) and PCRAM (Phase Change RAM) that store a device whose resistance value reversibly changes by controlling the pulse width of the write current (write voltage) are stored. It goes without saying that other memories used for the element can obtain the same effects as those described in the embodiment of the present invention.
 本発明の例は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、各構成要素を変形して具体化できる。また、上述の実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を構成できる。例えば、上述の実施形態に開示される全構成要素から幾つかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。 The example of the present invention is not limited to the above-described embodiment, and can be embodied by modifying each component without departing from the scope of the invention. Various inventions can be configured by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some constituent elements may be deleted from all the constituent elements disclosed in the above-described embodiments, or constituent elements of different embodiments may be appropriately combined.
 50:主メモリ、51:制御回路、52:誤り検出訂正回路、53:書き込みパルス幅制御回路、54:バッファメモリ、20:メモリセルアレイ、1:磁気抵抗効果素子、2,2A,2B:書き込み回路。 50: main memory, 51: control circuit, 52: error detection and correction circuit, 53: write pulse width control circuit, 54: buffer memory, 20: memory cell array, 1: magnetoresistive effect element, 2, 2A, 2B: write circuit .

Claims (7)

  1.  磁化方向が不変な第1の磁性層と、磁化方向が可変な第2の磁性層と、前記第1の磁性層と前記第2の磁性層の間に設けられた中間層とを有する磁気抵抗効果素子と、
     前記磁気抵抗効果素子に書き込まれた第1のデータが誤りを含むか否かを検出し、前記第1のデータが誤りを含む場合にその誤りが訂正された第2のデータを出力する誤り検出訂正回路と、
     第1のパルス幅を有する第1の書き込み電流及び前記第1のパルス幅より長い第2のパルス幅を有する第2の書き込み電流のいずれか一方を生成し、前記磁気抵抗効果素子に流す書き込み回路と、
     前記第2のデータを前記磁気抵抗効果素子に書き込む場合、前記第2の書き込み電流を前記磁気抵抗効果素子に流すように、前記書き込み回路を制御する制御回路と、
     を具備することを特徴とする磁気メモリ。
    Magnetoresistance having a first magnetic layer whose magnetization direction is invariable, a second magnetic layer whose magnetization direction is variable, and an intermediate layer provided between the first magnetic layer and the second magnetic layer An effect element;
    Error detection that detects whether or not the first data written in the magnetoresistive element includes an error, and outputs the second data in which the error is corrected when the first data includes an error A correction circuit;
    A write circuit for generating one of a first write current having a first pulse width and a second write current having a second pulse width longer than the first pulse width and passing the generated current through the magnetoresistive element When,
    A control circuit for controlling the write circuit so that the second write current flows through the magnetoresistive element when writing the second data to the magnetoresistive element;
    A magnetic memory comprising:
  2.  前記第1のデータを前記磁気抵抗効果素子に書き込む場合、
     前記制御回路は、前記第1の書き込み電流を前記磁気抵抗効果素子に流すように、前記書き込み回路を制御する、ことを特徴とする請求項1に記載の磁気メモリ。
    When writing the first data to the magnetoresistive element,
    2. The magnetic memory according to claim 1, wherein the control circuit controls the write circuit so that the first write current flows through the magnetoresistive element. 3.
  3.  前記第1のパルス幅は、前記記憶層の磁化がコヒーレントな歳差運動を開始するまでの期間と前記コヒーレントな歳差運動が増幅される期間との合計の期間以上に設定される、ことを特徴とする請求項2に記載の磁気メモリ。 The first pulse width is set to be equal to or greater than a total period of a period until the magnetization of the storage layer starts coherent precession and a period during which the coherent precession is amplified. The magnetic memory according to claim 2.
  4.  前記第1のデータに対応する第3のデータを一時的に記憶するバッファメモリを、さらに具備することを特徴とする請求項1に記載の磁気メモリ。 The magnetic memory according to claim 1, further comprising a buffer memory that temporarily stores third data corresponding to the first data.
  5.  前記第2のデータが前記磁気抵抗効果素子に書き込まれている間に、前記第1のデータの読み出しが要求された場合、前記第3のデータが前記バッファメモリから読み出される、ことを特徴とする請求項4に記載の磁気メモリ。 The third data is read from the buffer memory when the reading of the first data is requested while the second data is being written to the magnetoresistive effect element. The magnetic memory according to claim 4.
  6.  前記第1のデータが前記磁気抵抗効果素子に書き込まれる場合、前記誤り検出訂正回路は、第1の制御信号を前記制御回路に出力し、
     前記第2のデータが前記磁気抵抗効果素子に書き込まれる場合、前記誤り検出訂正回路は、第2の制御信号を前記制御回路に出力し、
     前記制御回路は、
     前記第1の制御信号が入力された場合に、前記第1の書き込み電流を前記磁気抵抗効果素子に流すように、前記書き込み回路を制御し、
     前記第2の制御信号が入力された場合に、前記第2の書き込み電流を前記磁気抵抗効果素子に流すように、前記書き込み回路を制御する、
     ことを特徴とする請求項2に記載の磁気メモリ。
    When the first data is written to the magnetoresistive effect element, the error detection and correction circuit outputs a first control signal to the control circuit;
    When the second data is written to the magnetoresistive effect element, the error detection and correction circuit outputs a second control signal to the control circuit;
    The control circuit includes:
    Controlling the write circuit so that the first write current flows through the magnetoresistive element when the first control signal is input;
    Controlling the write circuit so that the second write current flows through the magnetoresistive element when the second control signal is input;
    The magnetic memory according to claim 2.
  7.  前記第1のデータが前記第1の書き込み電流を用いて書き込まれることを示す第1の判定信号を含み、
     前記第2のデータが前記第2の書き込み電流を用いて書き込まれることを示す第2の判定信号を含み、
     前記制御回路は、
     前記第1の判定信号によって、前記第1の書き込み電流を前記磁気抵抗効果素子に流すように、前記書き込み回路を制御し、
     前記第2の判定信号によって、前記第2の書き込み電流を前記磁気抵抗効果素子に流すように、前記書き込み回路を制御する、
     ことを特徴とする請求項2に記載の磁気メモリ。
    Including a first determination signal indicating that the first data is written using the first write current;
    A second determination signal indicating that the second data is written using the second write current;
    The control circuit includes:
    Controlling the write circuit to cause the first write current to flow through the magnetoresistive element in accordance with the first determination signal;
    Controlling the write circuit so as to cause the second write current to flow through the magnetoresistive element in accordance with the second determination signal;
    The magnetic memory according to claim 2.
PCT/JP2009/066829 2009-09-28 2009-09-28 Magnetic memory WO2011036817A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/066829 WO2011036817A1 (en) 2009-09-28 2009-09-28 Magnetic memory
US12/886,917 US8347175B2 (en) 2009-09-28 2010-09-21 Magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066829 WO2011036817A1 (en) 2009-09-28 2009-09-28 Magnetic memory

Publications (1)

Publication Number Publication Date
WO2011036817A1 true WO2011036817A1 (en) 2011-03-31

Family

ID=43795587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066829 WO2011036817A1 (en) 2009-09-28 2009-09-28 Magnetic memory

Country Status (1)

Country Link
WO (1) WO2011036817A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157501A (en) * 2015-02-25 2016-09-01 株式会社東芝 Semiconductor storage device
WO2016185574A1 (en) * 2015-05-20 2016-11-24 株式会社日立製作所 Memory device
WO2016194175A1 (en) * 2015-06-03 2016-12-08 株式会社日立製作所 Storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068096A (en) * 2001-07-25 2003-03-07 Hewlett Packard Co <Hp> Data storage method for use in magnetoresistive solid- state storage device
JP2006527447A (en) * 2003-06-12 2006-11-30 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Magnetoresistive random access memory error detection and correction method and apparatus
WO2008053677A1 (en) * 2006-10-30 2008-05-08 Renesas Technology Corp. Write-in verifying mram

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068096A (en) * 2001-07-25 2003-03-07 Hewlett Packard Co <Hp> Data storage method for use in magnetoresistive solid- state storage device
JP2006527447A (en) * 2003-06-12 2006-11-30 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Magnetoresistive random access memory error detection and correction method and apparatus
WO2008053677A1 (en) * 2006-10-30 2008-05-08 Renesas Technology Corp. Write-in verifying mram

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157501A (en) * 2015-02-25 2016-09-01 株式会社東芝 Semiconductor storage device
WO2016185574A1 (en) * 2015-05-20 2016-11-24 株式会社日立製作所 Memory device
WO2016194175A1 (en) * 2015-06-03 2016-12-08 株式会社日立製作所 Storage system

Similar Documents

Publication Publication Date Title
JP4956640B2 (en) Magnetic memory
US8347175B2 (en) Magnetic memory
TWI622049B (en) Magnetic memory
US6704230B1 (en) Error detection and correction method and apparatus in a magnetoresistive random access memory
Naeimi et al. STTRAM SCALING AND RETENTION FAILURE.
JP5046194B2 (en) MRAM with variable word line drive potential
KR102354350B1 (en) Memory device and memory system including the same
US8559215B2 (en) Perpendicular magnetic random access memory (MRAM) device with a stable reference cell
US7835210B2 (en) Magnetic random access memory and data read method of the same
Salehi et al. Survey of STT-MRAM cell design strategies: Taxonomy and sense amplifier tradeoffs for resiliency
US20160147599A1 (en) Memory Systems that Perform Rewrites of Resistive Memory Elements and Rewrite Methods for Memory Systems Including Resistive Memory Elements
US8472242B2 (en) Magnetoresistive effect memory
Kwon et al. High-density and robust STT-MRAM array through device/circuit/architecture interactions
US11139012B2 (en) Resistive memory device having read currents for a memory cell and a reference cell in opposite directions
JP3788964B2 (en) Magnetic random access memory
Pajouhi et al. Device/circuit/architecture co-design of reliable STT-MRAM
KR20190022984A (en) Memory device configured to prevent read failure due to leakage current into bit line and method of opeerating the same
US9653182B1 (en) Testing method, manufacturing method, and testing device of memory device
WO2011036817A1 (en) Magnetic memory
US7746686B2 (en) Partitioned random access and read only memory
US8107285B2 (en) Read direction for spin-torque based memory device
Eken et al. A new field-assisted access scheme of STT-RAM with self-reference capability
TWI675378B (en) Semiconductor memory device
JP4922374B2 (en) Magnetic memory
Nair et al. Mitigating read failures in stt-mram

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849847

Country of ref document: EP

Kind code of ref document: A1