WO2011036716A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2011036716A1
WO2011036716A1 PCT/JP2009/004836 JP2009004836W WO2011036716A1 WO 2011036716 A1 WO2011036716 A1 WO 2011036716A1 JP 2009004836 W JP2009004836 W JP 2009004836W WO 2011036716 A1 WO2011036716 A1 WO 2011036716A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
anode
fuel cell
fuel
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2009/004836
Other languages
French (fr)
Japanese (ja)
Inventor
安田一浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to PCT/JP2009/004836 priority Critical patent/WO2011036716A1/en
Publication of WO2011036716A1 publication Critical patent/WO2011036716A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • Direct power methanol fuel cell (Direct Methanol Fuel Cell: DMFC) generates power (voltage) with time if it generates power continuously for a long time. This deterioration is not simply caused by the power generation time, but may occur significantly early depending on the power generation environment. Possible causes for this include a decrease in the activity of the anode and cathode catalyst, deterioration of the electrolyte membrane, and a decrease in the ability to diffuse fuel and oxygen at the anode and cathode.
  • DMFC Direct Methanol Fuel Cell
  • Patent Documents 1 and 2 as techniques for preventing the deterioration of such fuel cells.
  • Patent Document 1 discloses a fuel cell that can control the operation of the fuel cell by an external operation.
  • Patent Document 2 discloses a fuel cell system that can easily determine whether or not the supply of gas to the cathode can be interrupted after a power generation stop instruction.
  • deterioration that occurs at the anode occurs within 1000 hours of operation and is highly dependent on the power generation environment.
  • the amount of voltage decrease due to the deterioration of the anode after the first 1000 hours from the start of operation is the voltage due to the deterioration of the anode after the first 5000 hours. Accounts for about 40% of the amount of decrease. For this reason, suppression of deterioration of the anode has been a major issue.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a fuel cell system capable of maintaining a stable output for a long period of time by preventing a decrease in the activity of the anode catalyst of the fuel cell system. To do.
  • a fuel cell according to the present invention includes an anode catalyst layer, a cathode catalyst layer, a membrane electrode assembly including an electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, and an anode of the membrane electrode assembly
  • a first layer containing a carbon material and having porosity and water repellency on the catalyst layer side a fuel supply unit for supplying fuel to the anode catalyst layer via the first layer, and a fuel from the anode catalyst layer
  • a power generation section having an anode flow path having a fuel discharge section that discharges exhaust through the first layer, and is electrically connected to the power generation section and can be electrically connected to a load
  • a control unit wherein the control unit stops power supply from the power generation unit to the load, and prevents an oxidant from entering the power generation unit from the outside. Characterized by having That.
  • the fuel cell control method includes an anode catalyst layer, a cathode catalyst layer, a membrane electrode assembly including an electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, and the membrane.
  • a fuel cell system control method comprising: an anode flow path having a fuel discharge section that discharges an exhaust from an anode catalyst layer through the first layer; and a control method for the fuel cell system.
  • the method includes a step of stopping power supply from the power generation unit to a load and a step of preventing an oxidant from entering the power generation unit.
  • the control part of 1st Embodiment. Explanatory drawing of the estimation model of catalyst deterioration.
  • FIG. 1 shows the configuration of the fuel cell system according to the first embodiment.
  • the fuel cell system 10 includes a power generation unit 4, a fuel supply unit 42, a tank 43, a fuel discharge unit 46, an oxidant supply unit 52, an oxidant discharge unit 56, a fluid.
  • a supply unit 62, a tank 63, and a control unit 7 are included.
  • the power generation unit 4 will be described with reference to FIG.
  • the power generation unit 4 includes an anode 2 that oxidizes the fuel 41, a cathode 3 that reduces the oxidant-containing gas 51, and an electrolyte membrane (solid polymer electrolyte membrane) 1 that is sandwiched between the anode 2 and the cathode 3.
  • an anode carbon dense water repellent layer 26 an anode gas diffusion layer 22, and an anode flow path plate 23 are arranged in this order.
  • a cathode carbon dense water repellent layer 26 On the cathode catalyst layer 21, a cathode carbon dense water repellent layer 26, a cathode GDL 22, and a cathode flow path plate 23 are arranged in this order.
  • the electrolyte membrane 1 may be, for example, a Dupont Nafion membrane (trademark).
  • the electrolyte membrane 1 functions as a medium for transferring protons (H + ) generated in the catalyst layer 21 of the anode 2 (hereinafter referred to as the anode catalyst layer 21) to the catalyst layer of the cathode 3 (hereinafter referred to as the cathode catalyst layer 31). .
  • An anode catalyst layer 21 and a cathode catalyst layer 31 are disposed on both sides of the electrolyte membrane 1.
  • a Pt—Ru catalyst can be used for the anode catalyst layer 21.
  • a noble metal catalyst such as a Pt catalyst can be used for the cathode catalyst layer 31.
  • the anode catalyst layer 21 is prepared by mixing a Pt-Ru catalyst with a perfluorosulfonic acid resin solution (Nafion solution (trademark)), water, and ethylene glycol, and then dispersing the mixture on a fluororesin sheet such as Teflon (trademark).
  • the mixed solution can be applied by spraying, and then hot-pressed to be transferred onto the electrolyte membrane.
  • it can be produced by directly applying the material onto the electrolyte membrane by spraying.
  • the cathode catalyst 31 is prepared by mixing a Pt catalyst with a perfluorosulfonic acid resin solution (Nafion solution (trademark)), water, and ethylene glycol, and then dispersing the mixture in a fluororesin sheet such as Teflon (trademark). Can be applied by spraying and then hot-pressed to transfer onto the electrolyte membrane. As another method, it can be produced by directly spraying on the electrolyte membrane.
  • a carbon dense water repellent layer (Micro Porous Layer: MPL) is disposed on the anode catalyst layer 21.
  • MPL can be produced by mixing carbon particles and a water repellent (Teflon particles; Teflon is a trademark), layering them, and then heating. Since MPL has a space between the carbon particles and the water repellent, it has porosity. Moreover, since it contains a water repellent, it has water repellency.
  • the MPL may be formed on the GDL described later.
  • the anode MPL 26 provides a function of adjusting the fuel used for power generation.
  • the presence of MPL makes it possible to supply fuel to the catalyst layer in a gaseous state.
  • the concentration of methanol in the fuel supplied to the anode is about 3 to 15%.
  • the presence of MPL makes it possible to supply methanol and water in the fuel not as a liquid composition ratio but as a gas composition ratio.
  • the fuel ratio (methanol / water) supplied to the anode catalyst layer can be increased, and the fuel cell can be operated in a low ⁇ environment.
  • GDL Gas diffusion layer
  • GDL has a porous substrate and a water-repellent layer formed on the substrate.
  • Formation of the water repellent layer on the surface of the GDL is performed by immersing a solvent in which a water repellent (particles such as PTFE) is dispersed in the base material, followed by a heat treatment to fix the water repellent to the base material.
  • a water repellent particles such as PTFE
  • the substrate carbon paper, carbon cloth, carbon nonwoven fabric, or the like can be used.
  • the porosity of GDL is larger than that of MPL.
  • the anode GDL 22 provides a function of smoothly supplying fuel to the anode catalyst layer 21, discharging the product, and collecting current.
  • the porosity can be determined by measuring the ratio of vacancies per unit weight of GDL and MPL by mercury porosimetry.
  • a water repellent layer may be separately provided on the GDL, and the surface on which the water repellent layer is formed may be opposed to a flow path 25 described later.
  • the water repellent layer has a function of limiting the amount of fuel penetration.
  • An anode flow path plate 23 is further disposed on the anode GDL 22.
  • the anode flow path plate 23 has anode flow paths 25 (25a, 25b, 25c).
  • the anode channel 25 provided in the anode channel plate 23 can be, for example, a serpentine channel or a parallel channel in which a plurality of channels run in parallel.
  • the anode flow path 25 has a function of supplying fuel to the anode catalyst layer 21 through the anode GDL 22 and the anode MPL 26 and discharging a product (CO 2 or the like) generated by the anode reaction (Formula 1).
  • the function of the current collecting plate of the anode 2 can also be provided by using conductive carbon or the like for the anode flow path plate 23.
  • the region sandwiched between the anode channel plate 23 and the electrolyte membrane 1 the region excluding the anode channel plate 23 and the electrolyte membrane 1 is referred to as the anode 2. That is, in FIG. 6, the anode GDL 22, the anode MPL 26, and the anode catalyst layer 21 correspond to the anode 2.
  • anode flow path plate 25 carbon, metal, or the like can be used.
  • a metal having high corrosion resistance such as titanium or a metal having a surface subjected to corrosion resistance is preferable.
  • Cathode MPL, Cathode GDL Also on the cathode catalyst layer 31, a cathode MPL 36, a cathode GDL 32, and a cathode channel plate 33 are disposed.
  • the cathode MPL 36 and the cathode GDL 32 can also be produced by the same method as the anode MPL 26 and the anode GDL 32.
  • the cathode MPL 36 reduces the amount of water that moves from the cathode catalyst layer 31 to the cathode GDL 32, it has the effect of suppressing flooding of the cathode 3.
  • the cathode GDL 32 provides a function of smoothly supplying air to the cathode catalyst layer 31, discharging a product, and collecting current.
  • a cathode channel plate 33 is further disposed on the cathode GDL 32.
  • the cathode channel plate 33 has a cathode channel 35 (35a, 35b, 35c) of an oxidizing agent-containing gas.
  • the cathode channel 35 provided in the cathode channel plate 33 can be, for example, a serpentine channel or a parallel channel in which a plurality of channels run in parallel.
  • the cathode flow path plate 33 is used for the purpose of supplying the oxidant supply gas to the cathode catalyst layer 31 through the cathode GDL 32 and for the purpose of discharging the products (H 2 O, etc.) generated by the cathode reaction (Formula 2).
  • a flow path 35 is provided.
  • the cathode channel plate 33 can be provided with the function of a cathode current collecting plate by using conductive carbon or the like.
  • the region sandwiched between the cathode channel plate 33 and the electrolyte membrane 1 is defined as the cathode 3. That is, in FIG. 6, the cathode GDL 32, the cathode MPL 36, and the cathode catalyst layer 31 correspond to the cathode 3.
  • the cathode flow path plate 35 carbon, metal or the like can be used.
  • a metal having high corrosion resistance such as titanium or a metal having a surface subjected to corrosion resistance is preferable.
  • MEA membrane electrode assembly
  • is defined as a value obtained by subtracting the amount of generated water from the amount of water collected on the cathode side, and dividing that value by the amount of proton moving to the cathode, that is, the amount of entrained water per proton.
  • Low permeated water means that the value of ⁇ is in the range of ⁇ 1/6 to 1.5. Such a low ⁇ MEA has different characteristics from the conventional MEA in the management of the water of the anode 2.
  • the MEA 5 in which the anode MPL 26 is disposed can realize a so-called low permeate MEA (low ⁇ MEA) in which the methanol crossover is small.
  • a fuel cell using the low permeate water MEA may be referred to as a low permeate water fuel cell (low ⁇ fuel cell).
  • the value of ⁇ can be obtained by actually manufacturing and operating a fuel cell and measuring the current-voltage characteristics of the power generation unit 4 and the material balance of water. Specifically, it is as follows.
  • the ⁇ value is obtained by subtracting the product water and methanol crossover product water from the water collected from the cathode and dividing the remainder by the number of protons that contributed to power generation.
  • the current amount at this time is S ⁇ A (A).
  • the Faraday constant is F
  • the number of moles of electrons necessary to extract the current amount value S ⁇ A is (S ⁇ A) / F (mol).
  • the number of moles of electrons is equal to the number of moles of protons, and 0.5 water is generated for one electron.
  • the number of moles of carbon dioxide per second is ((P ⁇ Q) / 60/100) / (22.4 ⁇ 1000).
  • Carbon dioxide is generated at the cathode because methanol crosses over to the cathode, and 1 mol of methanol is required per 1 mol of carbon dioxide. At that time, 2 mol of water is produced. Therefore, the water produced by methanol crossover per second is 2 ⁇ (P ⁇ Q / 60/100) / (22.4 ⁇ 1000).
  • the above is calculated with water generated in 1 second in a single cell, but when evaluating over 1 second in a stack, the number of stacks and time (seconds) are added to items other than W in the above formula. Multiply and calculate. Needless to say, in order to obtain W, the humidity originally contained in the air supplied to the cathode is excluded.
  • the low ⁇ MEA5 can be produced as follows.
  • MPL and GDL are disposed on the catalyst layer. This is because the catalyst layer is thin and has good diffusivity, so that the amount of permeate cannot be reduced unless MPL is arranged.
  • a catalyst layer is produced by a spray method, a precursor layer of a catalyst layer is formed on a fluorine resin sheet, for example, a Teflon sheet (Teflon is a trademark) by a spray method, and this is hot-pressed on an electrolyte membrane. By transferring, a three-layer structure of catalyst layer / electrolyte membrane / catalyst layer can be produced.
  • the catalyst layer directly on the electrolyte membrane.
  • a method for producing the catalyst layer for example, a carbon-supported catalyst or a non-supported catalyst that does not use a support can be used for the catalyst layer.
  • the high water-repellent GDL and the catalyst layer replace the MPL even if there is no MPL because the catalyst layer is thick. ⁇ can be used.
  • FIG. 6 shows an example in which the MPL 26 and the GDL 22 are arranged on the anode 2, but the configuration and number of GDLs and MPLs are limited as long as ⁇ is within the range of ⁇ 1/6 to 1.5.
  • FIG. 7 shows an example of an MEA prepared by preparing two members obtained by bonding MPL and GDL and bringing them into contact with each other back to back.
  • the power generation unit 4 includes a measuring instrument 8 that measures current, voltage, and temperature.
  • the measuring instrument 8 is connected to the control unit 7 via a signal line E8.
  • the tank 43 stores the fuel 41.
  • an aqueous methanol solution adjusted to a predetermined concentration for example, 1 to 5 mol-CH 3 OH / L
  • a predetermined concentration for example, 1 to 5 mol-CH 3 OH / L
  • the tank 41 is connected to the anode 2 through the pipe L1.
  • a fuel supply unit 42 is interposed in the pipe L1.
  • the fuel supply unit 42 includes a valve 42a and a pump 42b.
  • the fuel supply unit 42 has a function of supplying, stopping, and adjusting the flow rate of the fuel 41 from the fuel container 43 in which the fuel 41 is stored to the anode flow path 25 (25a to 25c) of the anode 2.
  • the pipe L2 is connected to the cathode 3.
  • An oxidant supply unit 52 is inserted in the pipe L2.
  • the oxidant supply unit 52 includes a valve 52a and a pump 52b.
  • the oxidant supply unit 52 has a function of supplying, stopping, and adjusting the flow rate of the oxidant-containing gas 71 to the cathode channel 35 (35a to 35c) of the cathode 3.
  • the pump 52b is operated to supply external air to the cathode 3.
  • the pump 62b can be omitted.
  • the tank 63 stores the first fluid 61.
  • the tank 61 is connected to the anode 2 via a pipe L3.
  • a fluid supply unit 62 is inserted in the pipe L3.
  • the fluid supply unit 62 includes a valve 62a and a pump 62b.
  • the fluid supply unit 62 has a function of supplying, stopping, and adjusting the flow rate of the first fluid 61 from the tank 63 in which the first fluid 61 is stored to the anode flow path 25 (25a to 25c) of the anode 2.
  • pure water is supplied as the first fluid to prevent the oxidant from entering the power generation unit 4 from the outside.
  • an aqueous solution composed of the same compound as the fuel and water can be used.
  • an aqueous methanol solution in the case of a direct methanol supply type fuel cell, it is allowed to use an aqueous methanol solution. This is because the presence of methanol makes it possible to replace the fuel in the anode 2 in a short time at the time of restart, and to prevent contamination of MEA because it is composed of the same compound as the fuel.
  • the discharge from the fuel discharge unit 46 which will be described later, contains unused fuel and water as main components, the fuel is diluted by recirculating them to the fuel supply unit 42. Can do. This liquid may be used as the first fluid.
  • a pipe L4 is connected to the anode 2.
  • a fuel discharge part 46 is inserted in the pipe L4.
  • the fuel discharge part 46 has a valve 46a.
  • the fuel discharge unit 46 has a function of discharging the unreacted fuel and the discharged water such as water after the reaction from the anode 2.
  • a pipe L5 is connected to the cathode 3.
  • An oxidant discharge part 56 is inserted in the pipe L5.
  • the oxidant discharge part 56 has a valve 56a.
  • the oxidant discharge unit 55 has a function of discharging unreacted oxidant and water as a product after the reaction from the cathode 3.
  • a load 12 can be connected to the fuel cell system 10.
  • the load 12 is electrically connected between the anode 2 and the cathode 3.
  • Examples of the load provided outside the fuel cell system 10 include electronic devices (such as a personal computer) that operate using the fuel cell system 10 as a power source.
  • Examples of the load provided in the fuel cell system 10 include power storage devices such as a secondary battery that stores the electricity of the fuel cell system 10.
  • the load 12 is connected to the control unit 7 via a signal line E12.
  • the current / voltage exchanged between the power generation unit 4 and the load 12 and the connection state such as short circuit / opening with the fuel cell system are monitored and controlled via signal lines E8 and E12.
  • the fuel cell system according to the present embodiment has a control unit 7.
  • FIG. 8 shows the configuration of the control unit 7.
  • the control unit 7 includes an input / output control unit 71, an information storage unit 72, and an arithmetic processing unit 73.
  • the input / output control unit 71, the information storage unit 72, and the arithmetic processing unit 73 are connected so as to exchange signals with each other.
  • the input / output control unit 71 has these states for controllable elements (load 12, fuel supply unit 42, fuel discharge unit 46, oxidant supply unit 52, oxidant discharge unit 56, fluid supply unit 72).
  • each control unit in the first embodiment is as follows.
  • the load control unit 711 has the following functions.
  • the fuel supply unit control unit 712 has the following functions.
  • the fuel discharge control unit 713 has the following functions.
  • the valve 46a is instructed to open and close through the signal line E46a, and the state is monitored.
  • the oxidant supply unit control unit 714 has the following functions.
  • the oxidant discharge unit control unit 715 has the following functions.
  • the fluid supply control unit 716 has the following functions.
  • the power generation unit control unit 717 has the following functions.
  • the input / output control unit 71 does not always need to have all of these, and has a necessary control unit according to the embodiment. What is necessary is just to comprise.
  • Each control unit can be configured as an independent electric circuit.
  • a program for controlling each control unit may be stored in the information storage unit 72 and appropriately called by the arithmetic processing unit 73 to give instructions to each controllable element through each control unit. Is possible.
  • the information storage unit 72 is information on the operating state (current, voltage, temperature) of the power generation unit 4 collected, processed, and processed by the input / output control unit 71 and the arithmetic processing unit 73, information on the state of elements that are controllable, and the like. , Etc. can be stored. In addition, information serving as a criterion for issuing a control signal from the input / output control unit 71 can be stored.
  • the information storage unit 72 can be a storage medium such as a hard disk.
  • the arithmetic processing unit 74 exchanges information between the input / output control unit 71 and the information storage unit 72, arithmetic processing and processing of the information, storage in the information storage unit 72, control signal to the input / output control unit 71 The function of performing the output.
  • the arithmetic processing unit 73 can be a CPU such as an electronic computer.
  • the fuel 41 (methanol aqueous solution) is supplied to the anode flow path 25 through the fuel supply unit 42 (pump 42b), and is supplied to the anode catalyst layer 21 through the anode GDL22 and the anode MPL26.
  • the above-described anode reaction (formula 1) occurs.
  • protons (H + ) generated in the anode catalyst layer 21 flow from the anode catalyst layer 21 through the electrolyte membrane 1 to the cathode catalyst layer 31. Electrons (e ⁇ ) are carried to the cathode catalyst layer 31 via the anode GDL 22, the anode MPL 26, the anode flow path plate 23, the load 12, the cathode flow path plate 33, the cathode MPL 36, and the cathode GDL 32. Carbon dioxide (CO 2 ) generated in the anode catalyst layer 21 is discharged to the outside through the anode GDL 22, the anode MPL 26, and the anode flow path 25.
  • CO 2 Carbon dioxide
  • the oxidant-containing gas 51 supplied from the oxidant gas supply means 52 protons and electrons are consumed in the cathode reaction shown in (Formula 2) described above in the cathode catalyst layer 31.
  • the oxidant-containing gas 51 is supplied to the cathode catalyst layer 31 via the cathode channel 35, the cathode GDL 32, and the cathode MPL 36 of the cathode channel plate 33.
  • This catalyst deterioration prevention can be prevented by performing the following control via the control unit 7.
  • FIG. 10 is a process flow showing a procedure for preventing catalyst deterioration of the anode catalyst layer 21 in the first embodiment.
  • Start As a premise for starting the process flow (Start), it is assumed that the fuel cell system 10 is in an operating state.
  • (Oxidant supply stop step: S02) The supply of the oxidant to the fuel cell system 10 is stopped.
  • the oxidant supply unit control unit 714 issues an instruction to stop the oxidant supply unit 52 through the signal line E52. Specifically, the oxidant supply unit control unit 714 issues an instruction to close the valve 52a through the signal line E52a. Similarly, an instruction to stop the pump 52b is issued through the signal line E52b.
  • Fuel supply stop step: S03 The fuel supply to the fuel cell system 10 is stopped.
  • the fuel supply unit control unit 712 issues an instruction to stop the fuel supply unit 42 through the signal line E42.
  • the fuel supply unit control unit 712 issues an instruction to close the valve 42a through the signal line E42a.
  • an instruction to stop the pump 42b is issued through the signal line E42b.
  • the valve 42a is for preventing an adverse effect caused by excessive pressure applied to the fuel supply unit 42, the tank 43, etc. during the supply of pure water described later. Therefore, when there is no such fear, the operation of closing the valve 42a can be omitted. Specifically, in the case of a stop valve, such an operation is unnecessary.
  • valve 42a can be omitted for a pump (for example, a tube pump) in which the pump 42b also functions as a valve.
  • Pure water is supplied to the fuel cell system 10.
  • the fluid supply control unit 716 issues an instruction to supply pure water to the anode 2 to the fluid supply unit 62 via the signal line E62.
  • the fluid supply unit control unit 716 issues an instruction to open the valve 62a through the signal line E62a.
  • an instruction to operate the pump 62b is issued through the signal line E62b.
  • the fluid supply unit control unit 716 instructs the fluid supply unit 62 to stop through the signal line E62. Specifically, the fluid supply unit control unit 716 issues an instruction to close the valve 62a through the signal line E62a. Similarly, an instruction to stop the pump 62b is issued through the signal line E62b. Thereby, the supply of pure water to the power generation unit 4 is stopped.
  • the water / methanol ratio (molar ratio) actually supplied to the cell is not 1, but varies from about 1 to 19 depending on the fuel control and the structure of the MEA.
  • the excess water described above is water that moves with protons, and reducing this as much as possible is required to improve the energy efficiency and miniaturization of the fuel cell system.
  • the low permeate type means a fuel cell having an MEA having ⁇ of ⁇ 1/6 to 1.5.
  • the conventional system is sometimes referred to as a highly permeable water fuel cell system.
  • the fuel used in the conventional high permeation water fuel cell system is usually 1 to 2 mol-CH 3 OH / L.
  • an aqueous solution of 0.8 to 2 mol CH 3 OH / L is often used.
  • an aqueous solution of 2 to 10 mol CH 3 OH / L may be used.
  • an MPL is interposed between the anode catalyst layer 21 and the anode GDL 22 to provide a low permeation water fuel cell system.
  • FIG. 9A shows that a large amount of water 102 exists around the catalyst particles 101 and the binder 103 that conducts protons. A by-product 114 is also present in the water 102, but the oxidant 115 cannot approach the by-product 114 due to the presence of the water 102.
  • the progress rate of deterioration of the anode catalyst in the low permeate fuel cell system is not negligible compared to the high permeate fuel cell system.
  • the infiltration of the oxidant may occur not only through the piping such as the fuel supply unit and the fuel discharge unit but also through the gasket 24.
  • the gasket 24 is a member having a high oxygen permeability, there is an effect that the infiltration of the oxidizing agent can be suppressed.
  • Examples of the member having high oxygen permeability include silicon and EPDM.
  • Example of the first embodiment A low permeate water fuel cell system and a high permeate water fuel cell system were produced, and the effects of the first embodiment were verified. Specifically, each fuel cell system was produced by the following procedure.
  • Electromotive member used in this embodiment anode 10 mg / cm 2 of Pt-Ru (1: 1) catalyst, the cathode to the electrolyte membrane of the catalyst layer prepared 3 mg / cm 2 of Pt catalyst at each spray method ( Gore film) was hot pressed (130 ° C.). To this, GDL with MPL was further applied by hot pressing. Specifically, two layers of NOK2315 (manufactured by NOK Corporation) and LT2300W (manufactured by BASF) were stacked on the anode side, and LT2500W (manufactured by BASF) was used on the cathode side. In the single cell power generation test, an electromotive part having an electrode area of 12 cm 2 was used.
  • the electromotive member used for the high permeation water fuel cell is the MPL of anode and cathode among the constituent members of the electromotive member for the low permeation water fuel cell described above. It was prepared by changing the attached GDL to carbon paper.
  • FIGS. 13A and 13B show the anode for the low permeation water fuel cell system and the high permeation water fuel cell system produced as described above, with and without the operation shown in FIG. It shows changes over time of overvoltage. Curves A to D are as follows.
  • Curve A When the operation of FIG. 10 is not performed for the low permeate water fuel cell system
  • Curve B When the operation of FIG. 10 is performed for the low permeation water fuel cell system
  • Curve C About the high permeation water fuel cell system
  • Curve D When the operation of FIG. 10 is performed for the high permeation water fuel cell system
  • the above-described low permeation water fuel cell and high permeation water fuel cell were each subjected to a power generation test using a single cell.
  • the power generation conditions are as follows: the cell temperature is 60 ° C., the methanol aqueous solution used is 1 to 2 M, air is supplied as the oxidant, and power generation is continued for 8 to 12 hours under the condition of a constant load (150 mA / cm 2 ), and then 12 to 16 hours. By repeating the step of pausing.
  • FIG. 1 shows a mode in which the fuel supply unit 42 and the fluid supply unit 62 are provided separately, a system in which the fluid supply unit 62 for supplying pure water is shared with the fuel supply unit 42 may be employed.
  • a specific configuration is shown in FIG. Specifically, the valves 42a and 62a are changed to valves (three-way valves) 42c, and the pump 62b is omitted.
  • Fuel supply stop step: S03 The fuel supply to the fuel cell system 10 is stopped.
  • the fuel supply unit control unit 712 issues an instruction to stop the fuel supply unit 42 through the signal line E42.
  • the fuel supply unit control unit 712 issues an instruction to close the valve 42c through the signal line E42c.
  • an instruction to stop the pump 42b is issued through the signal line E42b.
  • the fuel supply unit control unit 712 issues an instruction to supply the pure water 61 stored in the tank 63 to the anode 2 through the signal line E42b.
  • the fuel supply unit control unit 712 instructs the fuel supply unit 42 to stop through the signal line E42. Thereby, the supply of pure water to the power generation unit 4 is stopped. Specifically, the fuel supply unit control unit 712 issues an instruction to close the valve 42a through the signal line E42c. Similarly, an instruction to stop the pump 42b is issued through the signal line E42b.
  • FIG. 1 illustrates a system for supplying pure water (second fluid) to the cathode 3 in addition to a mode for supplying pure water (first fluid) to the anode 2.
  • the valve 62a in FIG. 1 is changed to a valve (three-way valve) 62c.
  • the valve 62c is used in combination with a fluid supply unit to the anode 2 and a fluid supply unit to the cathode.
  • the fluid supply control unit 716 instructs the fluid supply unit 62 to supply pure water to the anode 2 and the cathode 3 via the signal line E62. Specifically, the fluid supply unit control unit 716 instructs the valve 62a to connect the fluid supply unit 62 to the anode 2 and the cathode 3 through the signal line E62a. Similarly, an instruction to operate the pump 62b is issued through the signal line E62b.
  • the fluid supply unit control unit 716 instructs the fluid supply unit 42 to stop through the signal line E62. Thereby, the supply of pure water to the power generation unit 4 is stopped. Specifically, the fluid supply unit control unit 716 issues an instruction to close the valve 62a through the signal line E62c. Similarly, an instruction to stop the pump 42b is issued through the signal line E42b.
  • FIG. 1 Pure water is used as the first fluid, but a system using this as an inert gas can also be adopted. A specific configuration is shown in FIG. A specific configuration is shown in FIG.
  • an inert gas 71 is stored in the tank 71 as the first fluid.
  • the tank 73 is connected to the anode 2 via the pipe L3.
  • a fluid supply part 72 (valve 72a) is inserted in the pipe L3.
  • the fluid supply part 72 has a valve 72a.
  • the valve 72a is connected to the fluid supply unit control unit 716 via the signal line E72a.
  • an inert gas (first fluid) is supplied to the power generation unit 4 in order to prevent an oxidant from entering from the outside.
  • Inert gas supply start step: 14 An inert gas is supplied to the fuel cell system 10.
  • the fluid control unit 716 issues an instruction to open the valve 72a via the signal line E72a.
  • the amount of oxidant remaining on the anode 2 can be reduced.
  • the by-product has volatility, the amount of the by-product remaining on the anode 2 can be reduced.
  • the inert gas is a compressive fluid, and if a pressure vessel is used, a large volume of fluid can be transported with a small volume, and in particular, the fuel cell system for portable use can be downsized. It becomes possible to contribute to.
  • FIG. 1 pure water is used as the first fluid, but a system in which the supply of the first fluid is omitted may be employed. Specifically, the tank 63 and the fluid supply unit 62 in FIG. 1 are omitted. A specific configuration is shown in FIG. In FIG. 5, the oxidant from the outside is prevented from entering the power generation unit 4 only by operating the valve without supplying the first fluid and the second fluid.
  • the flowchart according to the fifth embodiment is as shown in FIG. That is, the pure water supply start step (S04) and the pure water supply stop step (S05) are omitted from the flowchart of FIG.
  • the other load release step (S21), oxidant supply stop step (S22), fuel supply stop step (S23), and fuel cell sealing step (S24) are the same as those in the first embodiment.
  • the gasket 24 is a member having low oxygen permeability.
  • pure water, inert gas, and a fluid supply unit for supplying these are not required, and the fuel cell system 10 can be downsized.
  • Examples of the member having low oxygen permeability include Tygon (trademark), Noprene (trademark), Viton, fluorine rubber, high nitrile rubber, butyl rubber, urethane rubber, and polysulfide rubber.
  • SYMBOLS 1 Electrolyte membrane 2 ... Anode 3 ... Cathode 4 ... Power generation part 5 ...
  • Membrane electrode assembly (MEA) 7 Control unit 8: Measuring instrument (current measuring instrument, voltage measuring instrument, temperature measuring instrument) DESCRIPTION OF SYMBOLS 10 ... Fuel cell system 12 ... Load 21 ... Anode catalyst layer 22, 22a, 22b ... Anode gas diffusion layer (anode GDL layer) 24 ... Gaskets 25, 25a, 25b, 25c ... Anode channel 26 ... Anode microporous layer (anode MPL layer) 31 ... Cathode catalyst layer 32 ...
  • Cathode gas diffusion layer (cathode GDL layer) 33 ...
  • Cathode flow path plate (cathode current collector plate) 34 ... Gaskets 35, 35a, 35b, 35c ... Cathode channel 36 ...
  • Cathode microporous layer (cathode MPL layer) 41 ...
  • Fuel 42 Fuel supply parts 42a, 42c ... Valve 42b ... Pump 43 ...
  • Fuel container 46 ... Fuel discharge part 46a ... Valve 51 ... Gas containing oxidant (air) 52 ... Oxidant supply part 52a ... Valve 52b ... Pump 55 ... Valve (cathode discharge part) 56 ... Oxidant discharge part 56a ... Valve 61 ...

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system comprises: a membrane electrode assembly including an anode catalyst layer, a cathode catalyst layer, and an electrolyte membrane inserted between the anode catalyst layer and the cathode catalyst layer; a generator unit in which a first layer and an anode channel are disposed on the anode catalyst layer side of the membrane electrode assembly, the first layer including a carbon material and having porous and water-repellent properties, the anode channel having a fuel supply portion for supplying a fuel to the anode catalyst layer through the first layer and a fuel discharging portion for discharging a discharged material from the anode catalyst layer through the first layer; and a control unit electrically connected to the generator unit and electrically connectable to a load. The operation of the control unit includes a step of stopping power feeding from the generator unit to the load and a step of preventing an oxidation agent from intruding into the generator unit from the outside.

Description

燃料電池Fuel cell

 本発明は、燃料電池に関する。 The present invention relates to a fuel cell.

 直接メタノール供給型燃料電池(Direct Methanol Fuel Cell;DMFC)は、長期間継続して発電すると発電出力(電圧)が経時的に低下する。この劣化は単純に発電時間によって起こるのではなく、発電環境によって著しく早期に起こる場合がある。この原因として、アノード、カソード触媒の活性低下、電解質膜の劣化、アノード・カソードでの燃料・酸素の拡散能の低下などが考えられている。 Direct power methanol fuel cell (Direct Methanol Fuel Cell: DMFC) generates power (voltage) with time if it generates power continuously for a long time. This deterioration is not simply caused by the power generation time, but may occur significantly early depending on the power generation environment. Possible causes for this include a decrease in the activity of the anode and cathode catalyst, deterioration of the electrolyte membrane, and a decrease in the ability to diffuse fuel and oxygen at the anode and cathode.

 このような燃料電池の劣化防止手法として特許文献1、2がある。 There are Patent Documents 1 and 2 as techniques for preventing the deterioration of such fuel cells.

 特許文献1には外部操作により燃料電池の動作を制御することができる燃料電池が開示されている。特許文献2には発電停止指示後にカソードへの気体の供給を遮断できているか否かを簡単に判定できる燃料電池システムが開示されている。 Patent Document 1 discloses a fuel cell that can control the operation of the fuel cell by an external operation. Patent Document 2 discloses a fuel cell system that can easily determine whether or not the supply of gas to the cathode can be interrupted after a power generation stop instruction.

特開2009-54466号公報JP 2009-54466 A 特開2009-4369号公報JP 2009-4369 A

 劣化原因のうち、アノードで起こる劣化は、稼動して1000時間以内に起こり、発電環境依存性が高い。特に、低透過水型の直接メタノール供給型燃料電池の場合、運転開始から最初の1000時間経過後にアノードが劣化することによる電圧の低下量は、最初の5000時間経過後にアノードが劣化することによる電圧の低下量の約40%を占める。このため、アノードの劣化抑制が大きな課題であった。 Among the causes of deterioration, deterioration that occurs at the anode occurs within 1000 hours of operation and is highly dependent on the power generation environment. In particular, in the case of a low permeate water type direct methanol supply type fuel cell, the amount of voltage decrease due to the deterioration of the anode after the first 1000 hours from the start of operation is the voltage due to the deterioration of the anode after the first 5000 hours. Accounts for about 40% of the amount of decrease. For this reason, suppression of deterioration of the anode has been a major issue.

 本発明は係る問題点を解決するためになされたものであり、燃料電池システムのアノード触媒の活性低下を防止することにより、安定した出力を長期間維持する燃料電池システムを提供することを目的とする。 The present invention has been made to solve such problems, and an object of the present invention is to provide a fuel cell system capable of maintaining a stable output for a long period of time by preventing a decrease in the activity of the anode catalyst of the fuel cell system. To do.

  本発明に係る燃料電池は、アノード触媒層、カソード触媒層、及び前記アノード触媒層と前記カソード触媒層の間に介挿された電解質膜を含む膜電極接合体と、前記膜電極接合体のアノード触媒層側に、炭素材料を含有し多孔性および撥水性を有する第1の層と、前記アノード触媒層へ前記第1の層を介して燃料を供給する燃料供給部と前記アノード触媒層からの排出物を前記第1の層を介して排出する燃料排出部とを有するアノード流路と、を配置した発電部と、前記発電部に電気的に接続され、かつ、負荷に電気的に接続可能な制御部と、を有する燃料電池システムであって、前記制御部は、前記発電部から前記負荷への給電を停止するステップと、前記発電部への外部からの酸化剤の侵入を防ぐステップと、を有することを特徴とする。 A fuel cell according to the present invention includes an anode catalyst layer, a cathode catalyst layer, a membrane electrode assembly including an electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, and an anode of the membrane electrode assembly A first layer containing a carbon material and having porosity and water repellency on the catalyst layer side, a fuel supply unit for supplying fuel to the anode catalyst layer via the first layer, and a fuel from the anode catalyst layer A power generation section having an anode flow path having a fuel discharge section that discharges exhaust through the first layer, and is electrically connected to the power generation section and can be electrically connected to a load A control unit, wherein the control unit stops power supply from the power generation unit to the load, and prevents an oxidant from entering the power generation unit from the outside. Characterized by having That.

 また、本発明に係る燃料電池の制御方法は、アノード触媒層、カソード触媒層、及び前記アノード触媒層と前記カソード触媒層の間に介挿された電解質膜を含む膜電極接合体と、前記膜電極接合体のアノード触媒層側に、炭素材料を含有し多孔性および撥水性を有する第1の層と、前記アノード触媒層へ前記第1の層を介して燃料を供給する燃料供給部と前記アノード触媒層からの排出物を前記第1の層を介して排出する燃料排出部とを有するアノード流路と、を配置した発電部と、を有する燃料電池システムの制御方法であって、前記制御方法は前記発電部から負荷への給電を停止するステップと、前記発電部への酸化剤の侵入を防ぐステップと、を有することを特徴とする。 The fuel cell control method according to the present invention includes an anode catalyst layer, a cathode catalyst layer, a membrane electrode assembly including an electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, and the membrane. A first layer containing a carbon material and having porosity and water repellency on the anode catalyst layer side of the electrode assembly, a fuel supply unit for supplying fuel to the anode catalyst layer via the first layer, and A fuel cell system control method comprising: an anode flow path having a fuel discharge section that discharges an exhaust from an anode catalyst layer through the first layer; and a control method for the fuel cell system. The method includes a step of stopping power supply from the power generation unit to a load and a step of preventing an oxidant from entering the power generation unit.

 上記態様によれば、アノード触媒の活性低下を防止することにより、安定した出力を長期間維持する燃料電池システムを提供することができる。 According to the above aspect, it is possible to provide a fuel cell system that maintains a stable output for a long period of time by preventing a decrease in the activity of the anode catalyst.

第1の実施の形態に係る燃料電池システム。The fuel cell system which concerns on 1st Embodiment. 第2の実施の形態に係る燃料電池システム。The fuel cell system which concerns on 2nd Embodiment. 第3の実施の形態に係る燃料電池システム。The fuel cell system which concerns on 3rd Embodiment. 第4の実施の形態に係る燃料電池システム。A fuel cell system according to a fourth embodiment. 第5の実施の形態に係る燃料電池システム。The fuel cell system which concerns on 5th Embodiment. 第1の実施の形態に係る発電部の断面図。Sectional drawing of the electric power generation part which concerns on 1st Embodiment. 第1の実施の形態の変形例に係る発電部の断面図。Sectional drawing of the electric power generation part which concerns on the modification of 1st Embodiment. 第1の実施の形態の制御部。The control part of 1st Embodiment. 触媒劣化の推定モデルの説明図。Explanatory drawing of the estimation model of catalyst deterioration. 第1の実施の形態に係る制御方法のフローチャート。The flowchart of the control method which concerns on 1st Embodiment. 第4の実施の形態に係る制御方法のフローチャート。The flowchart of the control method which concerns on 4th Embodiment. 第5の実施の形態に係る制御方法のフローチャート。The flowchart of the control method which concerns on 5th Embodiment. 第1の実施の形態に係る燃料電池システムによる実験結果の例。The example of the experimental result by the fuel cell system concerning a 1st embodiment.

 次に、図面を参照して本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに限定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the embodiment described below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, The arrangement is not limited to the following. The technical idea of the present invention can be variously modified within the scope of the claims.

〔第1の実施の形態〕
 以下、本発明の第1の実施形態について図面を参照しながら説明する。なお、以下の説明においては、燃料にメタノール水溶液を用いた直接メタノール型の燃料電池システム(DMFC)を一例として説明する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In the following description, a direct methanol fuel cell system (DMFC) using a methanol aqueous solution as a fuel will be described as an example.

 図1は第1の実施の形態に係る燃料電池システムの構成を示したものである。 FIG. 1 shows the configuration of the fuel cell system according to the first embodiment.

 図1に示した、第1の実施の形態に係る燃料電池システム10は、発電部4、燃料供給部42、タンク43、燃料排出部46、酸化剤供給部52、酸化剤排出部56、流体供給部62、タンク63、制御部7を有する。 The fuel cell system 10 according to the first embodiment shown in FIG. 1 includes a power generation unit 4, a fuel supply unit 42, a tank 43, a fuel discharge unit 46, an oxidant supply unit 52, an oxidant discharge unit 56, a fluid. A supply unit 62, a tank 63, and a control unit 7 are included.

(発電部)
 発電部4について図6を参照しながら説明する。
(Power generation part)
The power generation unit 4 will be described with reference to FIG.

 発電部4は、燃料41を酸化するアノード2、酸化剤含有ガス51を還元するカソード3、およびアノード2とカソード3の間に挟持される電解質膜(固体高分子電解質膜)1とから構成される。アノード触媒層21の上には、順にアノードカーボン緻密撥水層26、アノードガス拡散層22、アノード流路板23が配置されている。カソード触媒層21の上には、順にカソードカーボン緻密撥水層26、カソードGDL22、カソード流路板23が配置されている。 The power generation unit 4 includes an anode 2 that oxidizes the fuel 41, a cathode 3 that reduces the oxidant-containing gas 51, and an electrolyte membrane (solid polymer electrolyte membrane) 1 that is sandwiched between the anode 2 and the cathode 3. The On the anode catalyst layer 21, an anode carbon dense water repellent layer 26, an anode gas diffusion layer 22, and an anode flow path plate 23 are arranged in this order. On the cathode catalyst layer 21, a cathode carbon dense water repellent layer 26, a cathode GDL 22, and a cathode flow path plate 23 are arranged in this order.

(電解質膜)
 直接メタノール型の燃料電池システム(DMFC)の場合、電解質膜1には、例えばDupont社のNafion膜(商標)を用いることができる。電解質膜1はアノード2の触媒層21(以下アノード触媒層21とする)で生成したプロトン(H)をカソード3の触媒層(以下、カソード触媒層31とする)へ移送する媒体として機能する。
(Electrolyte membrane)
In the case of a direct methanol fuel cell system (DMFC), the electrolyte membrane 1 may be, for example, a Dupont Nafion membrane (trademark). The electrolyte membrane 1 functions as a medium for transferring protons (H + ) generated in the catalyst layer 21 of the anode 2 (hereinafter referred to as the anode catalyst layer 21) to the catalyst layer of the cathode 3 (hereinafter referred to as the cathode catalyst layer 31). .

(アノード触媒層・カソード触媒層)
 この電解質膜1の両側にはアノード触媒層21及びカソード触媒層31が配置される。メタノール水溶液を燃料41とする場合、アノード触媒層21には、例えばPt-Ru触媒を用いることができる。また、カソード触媒層31にはPt触媒等の貴金属触媒を用いることができる。
(Anode catalyst layer / Cathode catalyst layer)
An anode catalyst layer 21 and a cathode catalyst layer 31 are disposed on both sides of the electrolyte membrane 1. When an aqueous methanol solution is used as the fuel 41, for example, a Pt—Ru catalyst can be used for the anode catalyst layer 21. Further, a noble metal catalyst such as a Pt catalyst can be used for the cathode catalyst layer 31.

 アノード触媒層21はPt-Ru触媒をパーフルオルスルホン酸樹脂溶液(ナフィオン溶液(商標))、水、及びエチレングリコールと混合して分散させた後、テフロン(商標)などのフッ素系樹脂シートにこの混合溶液をスプレーで塗布し、その後、熱プレスすること電解質膜の上に転写して作製することができる。他の方法としては、電解質膜の上に直接スプレーにより直接塗布して作製することができる。 The anode catalyst layer 21 is prepared by mixing a Pt-Ru catalyst with a perfluorosulfonic acid resin solution (Nafion solution (trademark)), water, and ethylene glycol, and then dispersing the mixture on a fluororesin sheet such as Teflon (trademark). The mixed solution can be applied by spraying, and then hot-pressed to be transferred onto the electrolyte membrane. As another method, it can be produced by directly applying the material onto the electrolyte membrane by spraying.

 カソード触媒31はPt触媒をパーフルオルスルホン酸樹脂溶液(ナフィオン溶液(商標))、水、及びエチレングリコールと混合して分散させた後、テフロン(商標)などのフッ素系樹脂シートにこの混合溶液をスプレーで塗布し、その後、熱プレスすることで電解質膜の上に転写して作製することができる。他の方法としては、電解質膜の上に直接スプレーにより塗布して作製することができる。 The cathode catalyst 31 is prepared by mixing a Pt catalyst with a perfluorosulfonic acid resin solution (Nafion solution (trademark)), water, and ethylene glycol, and then dispersing the mixture in a fluororesin sheet such as Teflon (trademark). Can be applied by spraying and then hot-pressed to transfer onto the electrolyte membrane. As another method, it can be produced by directly spraying on the electrolyte membrane.

(アノードMPL)
 アノード触媒層21の上にはカーボン緻密撥水層(マイクロポーラスレイヤ:Micro Porous Layer;MPL)が配置される。このMPLはカーボン粒子と撥水剤(テフロン粒子。テフロンは商標。)を混合し、これを層状にした後、加熱することにより作製することができる。MPLはカーボン粒子と撥水剤との間に空隙を有するので、多孔性を有する。また、撥水剤を含んでいるので撥水性を有する。MPLは後述するGDLの上に形成してもよい。
(Anode MPL)
A carbon dense water repellent layer (Micro Porous Layer: MPL) is disposed on the anode catalyst layer 21. This MPL can be produced by mixing carbon particles and a water repellent (Teflon particles; Teflon is a trademark), layering them, and then heating. Since MPL has a space between the carbon particles and the water repellent, it has porosity. Moreover, since it contains a water repellent, it has water repellency. The MPL may be formed on the GDL described later.

 アノードMPL26は発電に使用する燃料の調整を行う機能を提供する。MPLがあることで燃料を気体状態で触媒層に供給することが可能となる。一般に直接メタノール供給型燃料電池ではアノードに供給する燃料中のメタノール濃度は約3~15%である。ここで、このままの濃度の燃料がアノード触媒層に送られると後述する低αの環境を作り出すことはできない。すなわち、MPLが存在することにより燃料中のメタノールと水が液体組成比ではなく気体組成比として供給可能となる。この機能によりアノード触媒層に供給する燃料比(メタノール/水)を高めることができ、これにより低αの環境で燃料電池を作動させることができる。低αの環境を実現することで水回収機構を省略できる、カソードでのフラッディングによる性能低下の抑制できる、カソードへの送気量を低下させることができる、という利点がある。 The anode MPL 26 provides a function of adjusting the fuel used for power generation. The presence of MPL makes it possible to supply fuel to the catalyst layer in a gaseous state. In general, in a direct methanol supply type fuel cell, the concentration of methanol in the fuel supplied to the anode is about 3 to 15%. Here, when the fuel with the concentration as it is is sent to the anode catalyst layer, a low α environment described later cannot be created. That is, the presence of MPL makes it possible to supply methanol and water in the fuel not as a liquid composition ratio but as a gas composition ratio. With this function, the fuel ratio (methanol / water) supplied to the anode catalyst layer can be increased, and the fuel cell can be operated in a low α environment. By realizing a low α environment, there are advantages that the water recovery mechanism can be omitted, the performance degradation due to flooding at the cathode can be suppressed, and the amount of air supplied to the cathode can be reduced.

(アノードGDL)
 このMPLの上にはさらにガス拡散層(Gas Diffusion Layer;GDL)が配置される。GDLは多孔性を有する基材と、この基材の上に形成された撥水層を有する。
(Anode GDL)
A gas diffusion layer (Gas Diffusion Layer; GDL) is further disposed on the MPL. GDL has a porous substrate and a water-repellent layer formed on the substrate.

 GDLの表面への撥水層の形成は、基材に撥水剤(PTFEなどの粒子)を分散させた溶媒を浸漬処理して後熱処理を行って撥水剤を基材に定着させることにより形成できる。基材としてはカーボンペーパー、カーボンクロスもしくはカーボン不織布等を用いることができる。 Formation of the water repellent layer on the surface of the GDL is performed by immersing a solvent in which a water repellent (particles such as PTFE) is dispersed in the base material, followed by a heat treatment to fix the water repellent to the base material. Can be formed. As the substrate, carbon paper, carbon cloth, carbon nonwoven fabric, or the like can be used.

 GDLの空孔率はMPLの空孔率より大きい。これにより、アノードGDL22はアノード触媒層21への燃料供給、生成物排出、集電を円滑に行う機能を提供する。空孔率は水銀圧入法によりGDL、MPLの単位重量当たりの空孔の割合を測定することにより求めることができる。 The porosity of GDL is larger than that of MPL. Thereby, the anode GDL 22 provides a function of smoothly supplying fuel to the anode catalyst layer 21, discharging the product, and collecting current. The porosity can be determined by measuring the ratio of vacancies per unit weight of GDL and MPL by mercury porosimetry.

 なお、GDLの上に別途撥水層を配し、この撥水層を形成した面を後述する流路25に対向させてもよい。この場合、撥水層は燃料のしみ込み量を制限する作用を有する。 A water repellent layer may be separately provided on the GDL, and the surface on which the water repellent layer is formed may be opposed to a flow path 25 described later. In this case, the water repellent layer has a function of limiting the amount of fuel penetration.

(アノード流路板)
 アノードGDL22の上には、さらにアノード流路板23が配置される。アノード流路板23はアノード流路25(25a、25b、25c)を有する。アノード流路板23に設けられるアノード流路25は、例えば、サーペンタイン流路や、複数の流路が平行に走るパラレル流路とすることができる。
(Anode channel plate)
An anode flow path plate 23 is further disposed on the anode GDL 22. The anode flow path plate 23 has anode flow paths 25 (25a, 25b, 25c). The anode channel 25 provided in the anode channel plate 23 can be, for example, a serpentine channel or a parallel channel in which a plurality of channels run in parallel.

 アノード流路25はアノードGDL22、アノードMPL26を通じてアノード触媒層21へと燃料を供給する、アノード反応(式1)により生じた生成物(CO等)を排出する、という機能を有する。なお、アノード流路板23に導電性を有するカーボンなどを用いることによりアノード2の集電板の機能を併せて持たせることもできる。

Figure JPOXMLDOC01-appb-M000001
The anode flow path 25 has a function of supplying fuel to the anode catalyst layer 21 through the anode GDL 22 and the anode MPL 26 and discharging a product (CO 2 or the like) generated by the anode reaction (Formula 1). In addition, the function of the current collecting plate of the anode 2 can also be provided by using conductive carbon or the like for the anode flow path plate 23.
Figure JPOXMLDOC01-appb-M000001

 アノード流路板23と電解質膜1に挟まれた領域のうち、アノード流路板23と電解質膜1とを除いた領域をアノード2とする。すなわち、図6においては、アノードGDL22、アノードMPL26、アノード触媒層21がアノード2に相当する。 Of the region sandwiched between the anode channel plate 23 and the electrolyte membrane 1, the region excluding the anode channel plate 23 and the electrolyte membrane 1 is referred to as the anode 2. That is, in FIG. 6, the anode GDL 22, the anode MPL 26, and the anode catalyst layer 21 correspond to the anode 2.

 アノード流路板25としてはカーボン、金属等を用いることができる。金属としてはチタン等の耐食性の高い金属や表面に耐食処理を施した金属が好ましい。 As the anode flow path plate 25, carbon, metal, or the like can be used. As the metal, a metal having high corrosion resistance such as titanium or a metal having a surface subjected to corrosion resistance is preferable.

(カソードMPL、カソードGDL)
 カソード触媒層31の上にも、カソードMPL36、カソードGDL32、カソード流路板33が配置される。
(Cathode MPL, Cathode GDL)
Also on the cathode catalyst layer 31, a cathode MPL 36, a cathode GDL 32, and a cathode channel plate 33 are disposed.

 カソードMPL36、カソードGDL32もアノードMPL26、アノードGDL32と同様の方法で作製できる。 The cathode MPL 36 and the cathode GDL 32 can also be produced by the same method as the anode MPL 26 and the anode GDL 32.

 カソードMPL36はカソード触媒層31からカソードGDL32へ移動する水の量を低減させるので、カソード3のフラッディングを抑制する効果がある。 Since the cathode MPL 36 reduces the amount of water that moves from the cathode catalyst layer 31 to the cathode GDL 32, it has the effect of suppressing flooding of the cathode 3.

 カソードGDL32はカソード触媒層31への空気供給、生成物排出、集電を円滑に行う機能を提供する。 The cathode GDL 32 provides a function of smoothly supplying air to the cathode catalyst layer 31, discharging a product, and collecting current.

(カソード流路板)
 カソードGDL32の上には、さらにカソード流路板33が配置される。カソード流路板33は酸化剤含有ガスのカソード流路35(35a、35b、35c)を有する。カソード流路板33に設けられるカソード流路35は、例えば、サーペンタイン流路や、複数の流路が平行に走るパラレル流路とすることができる。
(Cathode channel plate)
A cathode channel plate 33 is further disposed on the cathode GDL 32. The cathode channel plate 33 has a cathode channel 35 (35a, 35b, 35c) of an oxidizing agent-containing gas. The cathode channel 35 provided in the cathode channel plate 33 can be, for example, a serpentine channel or a parallel channel in which a plurality of channels run in parallel.

 カソード流路板33はカソードGDL32を通じてカソード触媒層31へと酸化剤供給ガスを供給する目的と、カソード反応(式2)により生じた生成物(HO等)を排出する目的のためにカソード流路35が設けられたものである。なお、カソード流路板33に導電性を有するカーボンなどを用いることによりカソードの集電板の機能を併せて持たせることも可能である。

Figure JPOXMLDOC01-appb-M000002
The cathode flow path plate 33 is used for the purpose of supplying the oxidant supply gas to the cathode catalyst layer 31 through the cathode GDL 32 and for the purpose of discharging the products (H 2 O, etc.) generated by the cathode reaction (Formula 2). A flow path 35 is provided. The cathode channel plate 33 can be provided with the function of a cathode current collecting plate by using conductive carbon or the like.
Figure JPOXMLDOC01-appb-M000002

 カソード流路板33と電解質膜1に挟まれた領域のうち、カソード流路板33と電解質膜1とを除いた領域をカソード3とする。すなわち、図6においては、カソードGDL32、カソードMPL36、カソード触媒層31がカソード3に相当する。 Of the region sandwiched between the cathode channel plate 33 and the electrolyte membrane 1, the region excluding the cathode channel plate 33 and the electrolyte membrane 1 is defined as the cathode 3. That is, in FIG. 6, the cathode GDL 32, the cathode MPL 36, and the cathode catalyst layer 31 correspond to the cathode 3.

 カソード流路板35としてはカーボン、金属等を用いることができる。金属としてはチタン等の耐食性の高い金属や表面に耐食処理を施した金属が好ましい。 As the cathode flow path plate 35, carbon, metal or the like can be used. As the metal, a metal having high corrosion resistance such as titanium or a metal having a surface subjected to corrosion resistance is preferable.

(MEA)
 アノード2、電解質膜1、カソード3を順に積層した構造体を膜電極複合体(MEA)5と称することがある。
(MEA)
A structure in which the anode 2, the electrolyte membrane 1, and the cathode 3 are sequentially laminated may be referred to as a membrane electrode assembly (MEA) 5.

 ここで、αはカソード側で回収した水量から生成水量を差し引いて、その値をカソードに移動するプロトン量で割った値、すなわちプロトン1個あたりの同伴水量と定義される。そして、低透過水(低α)とはαの値が-1/6以上1.5以下の範囲となることをいう。このような低αMEAは、アノード2の水の管理において、従来のMEAとは異なる特性を有する。 Here, α is defined as a value obtained by subtracting the amount of generated water from the amount of water collected on the cathode side, and dividing that value by the amount of proton moving to the cathode, that is, the amount of entrained water per proton. Low permeated water (low α) means that the value of α is in the range of −1/6 to 1.5. Such a low αMEA has different characteristics from the conventional MEA in the management of the water of the anode 2.

 アノード2において、アノードMPL26が配置されたMEA5は、メタノールのクロスオーバーが少ない、いわゆる低透過水型MEA(低αMEA)を実現することができる。また、この低透過水型MEAを用いた燃料電池を低透過水型燃料電池(低α型燃料電池)と称することがある。 In the anode 2, the MEA 5 in which the anode MPL 26 is disposed can realize a so-called low permeate MEA (low αMEA) in which the methanol crossover is small. In addition, a fuel cell using the low permeate water MEA may be referred to as a low permeate water fuel cell (low α fuel cell).

 ここで、αの値は実際に燃料電池を作製・稼動し、発電部4の電流電圧特性と水の物質収支を測定することにより、求めることができる。具体的には次の通りである。 Here, the value of α can be obtained by actually manufacturing and operating a fuel cell and measuring the current-voltage characteristics of the power generation unit 4 and the material balance of water. Specifically, it is as follows.

 α値はカソードから回収した水から生成水とメタノールクロスオーバー生成水を差し引いて、その余りを発電に寄与したプロトン数で割ったものである。 The α value is obtained by subtracting the product water and methanol crossover product water from the water collected from the cathode and dividing the remainder by the number of protons that contributed to power generation.

 単セルの電極面積:S(cm)、一定負荷時の電流密度:A(A/cm)とするとこの時の電流量はS・A(A)となる。ファラデー定数をFとすると、
 電流量値S・Aを取り出すために必要な電子のmol数は(S・A)/F(mol)となる。DMFCのカソード反応(式(1))では、電子のmol数はプロトンのmol数と等しく、生成水は電子1個に対して0.5個生成する。よって、
 (生成水のmol数) = 0.5×(電子のmol数)
 メタノールクロスオーバーによる生成水は、カソード排出ガス中の二酸化炭素濃度P(vol%)、排出ガス量Q(mL/分)とすると、1秒間に排出される二酸化炭素量は(P・Q)/60/100(mL)となる。
When the electrode area of the single cell is S (cm 2 ) and the current density at a constant load is A (A / cm 2 ), the current amount at this time is S · A (A). If the Faraday constant is F,
The number of moles of electrons necessary to extract the current amount value S · A is (S · A) / F (mol). In the cathode reaction of DMFC (formula (1)), the number of moles of electrons is equal to the number of moles of protons, and 0.5 water is generated for one electron. Therefore,
(Mol number of generated water) = 0.5 × (mol number of electrons)
The water produced by methanol crossover is the carbon dioxide concentration P (vol%) in the cathode exhaust gas and the exhaust gas amount Q (mL / min). 60/100 (mL).

 標準状態として計算すると、1秒あたりの二酸化炭素のmol数は、((P・Q)/60/100)/(22.4×1000)となる。 When calculated as a standard state, the number of moles of carbon dioxide per second is ((P · Q) / 60/100) / (22.4 × 1000).

 カソードで二酸化炭素が生成するのはカソードにメタノールがクロスオーバーするためで、二酸化炭素1molあたり、1molのメタノールが必要となる。その際、2molの水が生成する。よって、1秒間あたりのメタノールクロスオーバーによる生成水は2×(P・Q/60/100)/(22.4×1000)となる。 Carbon dioxide is generated at the cathode because methanol crosses over to the cathode, and 1 mol of methanol is required per 1 mol of carbon dioxide. At that time, 2 mol of water is produced. Therefore, the water produced by methanol crossover per second is 2 × (P · Q / 60/100) / (22.4 × 1000).

 よって、1秒間にカソードで回収した水の量をW(mol)とすると
 総同伴水量(mol)=W-0.5×(S・A)/F-2×(P・Q/60/100)/(22.4×1000)
よって、
 α = 総同伴水量/((S・A)/F)
と求めることができる。
Therefore, if the amount of water collected at the cathode per second is W (mol), the total amount of entrained water (mol) = W−0.5 × (S · A) / F−2 × (P · Q / 60/100 ) / (22.4 × 1000)
Therefore,
α = total amount of water entrained / ((SA) / F)
It can be asked.

 上記は単セルでの1秒間での生成水で計算したが、スタックで1秒以上の時間をかけて評価した場合は、上記の式のW以外の項目に、スタック数と時間(秒)を掛けて計算する。なお、Wを求めるには、カソードへ供給する空気が元々含んでいる湿度は除外して求めることは言うまでもない。 The above is calculated with water generated in 1 second in a single cell, but when evaluating over 1 second in a stack, the number of stacks and time (seconds) are added to items other than W in the above formula. Multiply and calculate. Needless to say, in order to obtain W, the humidity originally contained in the air supplied to the cathode is excluded.

(MEAの製造方法)
 低αMEA5は、次のようにして作製することができる。
(Method for producing MEA)
The low αMEA5 can be produced as follows.

 アノード触媒層、カソード触媒層を上述のスプレー法の様に非常に薄い膜で作製する場合には、触媒層の上にMPL、GDLを配置する。触媒層が薄いため、拡散性が良いのでMPLを配置しないと透過水量を下げることができないためである。スプレー法で触媒層を作製する場合は、フッ素系樹脂のシート、例えばテフロンシート(テフロンは商標)の上にスプレー法で触媒層の前駆体層を形成し、これを電解質膜に熱プレスして転写することにより触媒層/電解質膜/触媒層の3層構造体を作製することができる。 When producing the anode catalyst layer and the cathode catalyst layer with very thin films as in the above-described spray method, MPL and GDL are disposed on the catalyst layer. This is because the catalyst layer is thin and has good diffusivity, so that the amount of permeate cannot be reduced unless MPL is arranged. When a catalyst layer is produced by a spray method, a precursor layer of a catalyst layer is formed on a fluorine resin sheet, for example, a Teflon sheet (Teflon is a trademark) by a spray method, and this is hot-pressed on an electrolyte membrane. By transferring, a three-layer structure of catalyst layer / electrolyte membrane / catalyst layer can be produced.

 なお、触媒層を直接電解質膜上に作製することも可能である。触媒層の作製方法として、例えば、触媒層にカーボン担持触媒や担持体を用いない無担持触媒を使用することも可能である。 Note that it is also possible to produce the catalyst layer directly on the electrolyte membrane. As a method for producing the catalyst layer, for example, a carbon-supported catalyst or a non-supported catalyst that does not use a support can be used for the catalyst layer.

 なお、アノード触媒層としてカーボン担持触媒を使用して触媒層を作製した場合には触媒層が厚いのでMPLがなくても、高撥水仕様のGDLと触媒層とがMPLの代役をして低αとすることができる。 Note that when a catalyst layer is prepared using a carbon-supported catalyst as the anode catalyst layer, the high water-repellent GDL and the catalyst layer replace the MPL even if there is no MPL because the catalyst layer is thick. α can be used.

 図6にはアノード2にMPL26とGDL22を配置した例を示しているが、αが-1/6以上1.5以下の範囲に含まれるMEAであれば、GDL、MPLの構成、枚数は限定されない。例として、図7にMPLとGDLとを張り合わせた部材を2つ用意し、これらをGDL同士背中合わせで接触させることにより作製したMEAの例を示す。 FIG. 6 shows an example in which the MPL 26 and the GDL 22 are arranged on the anode 2, but the configuration and number of GDLs and MPLs are limited as long as α is within the range of −1/6 to 1.5. Not. As an example, FIG. 7 shows an example of an MEA prepared by preparing two members obtained by bonding MPL and GDL and bringing them into contact with each other back to back.

(計測器)
 発電部4は電流、電圧、温度を測定する計測器8を有する。計測器8は制御部7と信号線E8を介して接続されている。
(Measuring instrument)
The power generation unit 4 includes a measuring instrument 8 that measures current, voltage, and temperature. The measuring instrument 8 is connected to the control unit 7 via a signal line E8.

(燃料供給部)
 次に、燃料電池システム10について図1を参照しながら説明する。
(Fuel supply part)
Next, the fuel cell system 10 will be described with reference to FIG.

 タンク43は燃料41を貯蔵する。燃料41には所定の濃度(例えば1~5mol-CHOH/L)に調整したメタノール水溶液を用いることができる。 The tank 43 stores the fuel 41. As the fuel 41, an aqueous methanol solution adjusted to a predetermined concentration (for example, 1 to 5 mol-CH 3 OH / L) can be used.

 タンク41は配管L1を介してアノード2に接続されている。配管L1には燃料供給部42が介挿されている。燃料供給部42はバルブ42a、ポンプ42bを有する。 The tank 41 is connected to the anode 2 through the pipe L1. A fuel supply unit 42 is interposed in the pipe L1. The fuel supply unit 42 includes a valve 42a and a pump 42b.

 燃料供給部42は、燃料41が貯蔵された燃料容器43からアノード2のアノード流路25(25a~25c)に燃料41を供給・停止・流量調整する機能を有する。 The fuel supply unit 42 has a function of supplying, stopping, and adjusting the flow rate of the fuel 41 from the fuel container 43 in which the fuel 41 is stored to the anode flow path 25 (25a to 25c) of the anode 2.

(酸化剤供給部)
 配管L2はカソード3に接続されている。配管L2には酸化剤供給部52が介挿されている。酸化剤供給部52はバルブ52a、ポンプ52bを有する。酸化剤供給部52は、カソード3のカソード流路35(35a~35c)に酸化剤含有ガス71を供給・停止・流量調整する機能を有する。
(Oxidant supply unit)
The pipe L2 is connected to the cathode 3. An oxidant supply unit 52 is inserted in the pipe L2. The oxidant supply unit 52 includes a valve 52a and a pump 52b. The oxidant supply unit 52 has a function of supplying, stopping, and adjusting the flow rate of the oxidant-containing gas 71 to the cathode channel 35 (35a to 35c) of the cathode 3.

 第1の実施の形態では、ポンプ52bを稼動して外部の空気をカソード3へ供給する。 なお、酸化剤含有ガスの供給源として加圧ボンベを用いた場合、ポンプ62bは省略することができる。 In the first embodiment, the pump 52b is operated to supply external air to the cathode 3. In addition, when a pressurized cylinder is used as a supply source of the oxidizing agent-containing gas, the pump 62b can be omitted.

(流体供給部)
 タンク63は第1の流体61を貯蔵する。タンク61は配管L3を介してアノード2に接続されている。配管L3には流体供給部62が介挿されている。流体供給部62はバルブ62a、ポンプ62bを有する。
(Fluid supply part)
The tank 63 stores the first fluid 61. The tank 61 is connected to the anode 2 via a pipe L3. A fluid supply unit 62 is inserted in the pipe L3. The fluid supply unit 62 includes a valve 62a and a pump 62b.

 流体供給部62は、第1の流体61が貯蔵されたタンク63からアノード2のアノード流路25(25a~25c)に第1の流体61を供給・停止・流量調整する機能を有する。 The fluid supply unit 62 has a function of supplying, stopping, and adjusting the flow rate of the first fluid 61 from the tank 63 in which the first fluid 61 is stored to the anode flow path 25 (25a to 25c) of the anode 2.

 第1の実施の形態では、発電部4へ外部からの酸化剤の侵入を防ぐために、第1の流体として純水を供給する。 In the first embodiment, pure water is supplied as the first fluid to prevent the oxidant from entering the power generation unit 4 from the outside.

 純水の以外の流体としては、燃料と同一の化合物と水とから構成される水溶液を用いることができる。例えば、直接メタノール供給型燃料電池の場合にはメタノール水溶液を用いることを許容する。メタノールが含有されていることで再起動時にアノード2の中の燃料の置換が短時間で済むこと、燃料と同じ化合物で構成されるためMEAの汚染を防ぐこと、が可能だからである。特に、燃料としての使用するメタノール水溶液の濃度よりも低い濃度のメタノール水溶液を用いることが好ましい。 As the fluid other than pure water, an aqueous solution composed of the same compound as the fuel and water can be used. For example, in the case of a direct methanol supply type fuel cell, it is allowed to use an aqueous methanol solution. This is because the presence of methanol makes it possible to replace the fuel in the anode 2 in a short time at the time of restart, and to prevent contamination of MEA because it is composed of the same compound as the fuel. In particular, it is preferable to use a methanol aqueous solution having a concentration lower than that of the methanol aqueous solution used as the fuel.

 その他の例として、後述する燃料排出部46からの排出物は未使用の燃料と水とを主成分として含んでいるので、これらを再度燃料供給部42に循環させることにより、燃料を希釈させることができる。この液を第1の流体として用いてもよい。 As another example, since the discharge from the fuel discharge unit 46, which will be described later, contains unused fuel and water as main components, the fuel is diluted by recirculating them to the fuel supply unit 42. Can do. This liquid may be used as the first fluid.

(燃料排出部)
 アノード2には配管L4が接続されている。配管L4には燃料排出部46が介挿されている。燃料排出部46はバルブ46aを有する。
(Fuel discharge part)
A pipe L4 is connected to the anode 2. A fuel discharge part 46 is inserted in the pipe L4. The fuel discharge part 46 has a valve 46a.

 燃料排出部46は、燃料排出部45はアノード2から未反応の燃料や反応後の水等の排出物を排出する機能を有する。 The fuel discharge unit 46 has a function of discharging the unreacted fuel and the discharged water such as water after the reaction from the anode 2.

(酸化剤排出部)
 カソード3には配管L5が接続されている。配管L5には酸化剤排出部56が介挿されている。酸化剤排出部56はバルブ56aを有する。
(Oxidant discharge section)
A pipe L5 is connected to the cathode 3. An oxidant discharge part 56 is inserted in the pipe L5. The oxidant discharge part 56 has a valve 56a.

 酸化剤排出部55はカソード3から未反応の酸化剤や反応後の生成物である水を排出する機能を有する。 The oxidant discharge unit 55 has a function of discharging unreacted oxidant and water as a product after the reaction from the cathode 3.

(負荷)
 燃料電池システム10は、負荷12が接続可能である。負荷12はアノード2及びカソード3の間に電気的に接続される。燃料電池システム10の外部に設けられる負荷としては、燃料電池システム10を電源として稼動する電子機器類(パーソナルコンピュータなど)が例示される。燃料電池システム10の内部に設けられた負荷としては、燃料電池システム10の電気を蓄電する二次電池などの蓄電機器が例示される。負荷12は信号線E12を介して制御部7に接続されている。また、発電部4と負荷12の間でやり取りされる電流・電圧や、燃料電池システムとの短絡・開放などの接続状態が信号線E8、E12を介して監視・制御される。
(load)
A load 12 can be connected to the fuel cell system 10. The load 12 is electrically connected between the anode 2 and the cathode 3. Examples of the load provided outside the fuel cell system 10 include electronic devices (such as a personal computer) that operate using the fuel cell system 10 as a power source. Examples of the load provided in the fuel cell system 10 include power storage devices such as a secondary battery that stores the electricity of the fuel cell system 10. The load 12 is connected to the control unit 7 via a signal line E12. In addition, the current / voltage exchanged between the power generation unit 4 and the load 12 and the connection state such as short circuit / opening with the fuel cell system are monitored and controlled via signal lines E8 and E12.

(制御部)
 本実施の形態に係る燃料電池システムは制御部7を有する。図8に制御部7の構成を示す。制御部7は入出力制御部71、情報格納部72、演算処理部73を有する。入出力制御部71、情報格納部72、及び演算処理部73は互いに信号をやり取り出来るように接続されている。
(Control part)
The fuel cell system according to the present embodiment has a control unit 7. FIG. 8 shows the configuration of the control unit 7. The control unit 7 includes an input / output control unit 71, an information storage unit 72, and an arithmetic processing unit 73. The input / output control unit 71, the information storage unit 72, and the arithmetic processing unit 73 are connected so as to exchange signals with each other.

(入出力制御部)
 入出力制御部71は、可制御である要素(負荷12、燃料供給部42、燃料排出部46、酸化剤供給部52、酸化剤排出部56、流体供給部72)に対して、これらの状態を制御する信号を信号線Ei(iは各要素の番号)を通じて指示する制御ユニットを有する。すなわち、負荷制御ユニット711、燃料供給部制御ユニット712、燃料排出部制御ユニット713、酸化剤供給部制御ユニット714、酸化剤排出部制御ユニット715、流体供給部制御ユニット716、発電部制御ユニット717である。
(I / O control unit)
The input / output control unit 71 has these states for controllable elements (load 12, fuel supply unit 42, fuel discharge unit 46, oxidant supply unit 52, oxidant discharge unit 56, fluid supply unit 72). A control unit for instructing a signal for controlling the signal line Ei (i is the number of each element). That is, the load control unit 711, the fuel supply unit control unit 712, the fuel discharge unit control unit 713, the oxidant supply unit control unit 714, the oxidant discharge unit control unit 715, the fluid supply unit control unit 716, and the power generation unit control unit 717 is there.

 第1の実施の形態における各制御ユニットの機能は次の通りである。 The function of each control unit in the first embodiment is as follows.

 負荷制御ユニット711は次の機能を有する。 The load control unit 711 has the following functions.

  負荷12に対して信号線E12を通じて負荷の短絡・開放の指示、状態の監視
 燃料供給部制御ユニット712は次の機能を有する。
Instructing the load 12 to short-circuit / open the load through the signal line E12 and monitoring the state The fuel supply unit control unit 712 has the following functions.

  バルブ42aに対して信号線E42aを通じて開閉の指示、状態の監視
  ポンプ42bに対して信号線E42bを通じて運転・停止の指示、状態の監視
 燃料排出部制御ユニット713は次の機能を有する。
Instruction for opening and closing the valve 42a through the signal line E42a and monitoring the state Operation and stop instruction for the pump 42b through the signal line E42b and state monitoring The fuel discharge control unit 713 has the following functions.

  バルブ46aに対して信号線E46aを通じて開閉の指示、状態の監視
 酸化剤供給部制御ユニット714は次の機能を有する。
The valve 46a is instructed to open and close through the signal line E46a, and the state is monitored. The oxidant supply unit control unit 714 has the following functions.

  バルブ52aに対して信号線E52aを通じて開閉の指示、状態の監視
  ポンプ52bに対して信号線E52bを通じて運転・停止の指示、状態の監視
 酸化剤排出部制御ユニット715は次の機能を有する。
Instruction for opening and closing the valve 52a through the signal line E52a and monitoring the state Operation and stop instruction for the pump 52b through the signal line E52b and state monitoring The oxidant discharge unit control unit 715 has the following functions.

  バルブ56aに対して信号線E56aを通じて開閉の指示、状態の監視
 流体供給部制御ユニット716は次の機能を有する。
Opening / closing instruction and state monitoring for the valve 56a through the signal line E56a The fluid supply control unit 716 has the following functions.

  バルブ62aに対して信号線E62aを通じて開閉の指示、状態の監視
  ポンプ62bに対して信号線E62bを通じて運転・停止の指示、状態の監視
 発電部制御ユニット717は次の機能を有する。
Instruction for opening and closing the valve 62a through the signal line E62a, monitoring of the state for the pump 62b Operation and stop instruction through the signal line E62b, monitoring of the state The power generation unit control unit 717 has the following functions.

  発電部4に対して信号線E8を通じて運転状態(電流・電圧・温度)の監視
 入出力制御部71はこれら全てを常に備える必要はなく、実施の形態に応じて必要な制御ユニットを有するように構成すればよい。
Monitoring of the operation state (current, voltage, temperature) through the signal line E8 with respect to the power generation unit 4 The input / output control unit 71 does not always need to have all of these, and has a necessary control unit according to the embodiment. What is necessary is just to comprise.

 各制御ユニットは独立した電気回路として構成することができる。また、それぞれの制御ユニットを制御するプログラムを情報格納部72に保存しておき、適宜これを演算処理部73で呼び出して各制御ユニットを通じて可制御である各要素に指示を出す構成とすることも可能である。 Each control unit can be configured as an independent electric circuit. Alternatively, a program for controlling each control unit may be stored in the information storage unit 72 and appropriately called by the arithmetic processing unit 73 to give instructions to each controllable element through each control unit. Is possible.

(情報格納部)
 情報格納部72は、入出力制御部71、演算処理部73で収集、加工、処理された発電部4の稼動状態(電流、電圧、温度)に関する情報、可制御である要素の状態等に関する情報、などを格納することができる。また、入出力制御部71から制御信号を発するための判断基準となる情報を格納することができる。情報格納部72にはハードディスクなどの記憶媒体を用いることができる。
(Information storage)
The information storage unit 72 is information on the operating state (current, voltage, temperature) of the power generation unit 4 collected, processed, and processed by the input / output control unit 71 and the arithmetic processing unit 73, information on the state of elements that are controllable, and the like. , Etc. can be stored. In addition, information serving as a criterion for issuing a control signal from the input / output control unit 71 can be stored. The information storage unit 72 can be a storage medium such as a hard disk.

(演算処理部)
 演算処理部74は、入出力制御部71、情報格納部72の相互間の情報のやり取り、前述の情報の演算処理や加工、情報格納部72への格納、入出力制御部71への制御信号の出力等を行う機能を有する。演算処理部73には電子計算機などのCPUを用いることができる。
(Calculation processing part)
The arithmetic processing unit 74 exchanges information between the input / output control unit 71 and the information storage unit 72, arithmetic processing and processing of the information, storage in the information storage unit 72, control signal to the input / output control unit 71 The function of performing the output. The arithmetic processing unit 73 can be a CPU such as an electronic computer.

(燃料電池システムの作用)
 次に図1に示した燃料電池システムの作用について説明する。
(Operation of fuel cell system)
Next, the operation of the fuel cell system shown in FIG. 1 will be described.

 まず、燃料41(メタノール水溶液)は燃料供給部42(ポンプ42b)を通じてアノード流路25へ供給され、アノードGDL22、アノードMPL26を通してアノード触媒層21へ供給される。膜電極複合体5のアノード触媒層21においては上述したアノード反応(式1)が起こる。 First, the fuel 41 (methanol aqueous solution) is supplied to the anode flow path 25 through the fuel supply unit 42 (pump 42b), and is supplied to the anode catalyst layer 21 through the anode GDL22 and the anode MPL26. In the anode catalyst layer 21 of the membrane electrode assembly 5, the above-described anode reaction (formula 1) occurs.

 (式1)に基づき、アノード触媒層21で生成したプロトン(H)はアノード触媒層21から電解質膜1を通りカソード触媒層31へと流れる。電子(e)はアノードGDL22、アノードMPL26、アノード流路板23、負荷12、カソード流路板33、カソードMPL36、カソードGDL32を経由してカソード触媒層31へと運ばれる。アノード触媒層21で生成した二酸化炭素(CO)はアノードGDL22、アノードMPL26、アノード流路25を通して外部へ排出される。 Based on (Formula 1), protons (H + ) generated in the anode catalyst layer 21 flow from the anode catalyst layer 21 through the electrolyte membrane 1 to the cathode catalyst layer 31. Electrons (e ) are carried to the cathode catalyst layer 31 via the anode GDL 22, the anode MPL 26, the anode flow path plate 23, the load 12, the cathode flow path plate 33, the cathode MPL 36, and the cathode GDL 32. Carbon dioxide (CO 2 ) generated in the anode catalyst layer 21 is discharged to the outside through the anode GDL 22, the anode MPL 26, and the anode flow path 25.

 酸化剤ガス供給手段52から供給される酸化剤含有ガス(例えば空気)51により、プロトン及びエレクトロンは、カソード触媒層31において上述した(式2)に示すカソード反応で消費される。図1において、酸化剤含有ガス51はカソード流路板33のカソード流路35、カソードGDL32、カソードMPL36を介してカソード触媒層31へ供給される。 Due to the oxidant-containing gas (for example, air) 51 supplied from the oxidant gas supply means 52, protons and electrons are consumed in the cathode reaction shown in (Formula 2) described above in the cathode catalyst layer 31. In FIG. 1, the oxidant-containing gas 51 is supplied to the cathode catalyst layer 31 via the cathode channel 35, the cathode GDL 32, and the cathode MPL 36 of the cathode channel plate 33.

 一般に、カソード反応(式2)が起こる際、プロトンの移動と共にメタノール(CHOH)および水(HO)も電解質膜1を通過して移動する(前者をメタノールのクロスオーバー、後者を水のクロスオーバー(またはプロトン同伴水)と呼ぶ)。このうち、電解質膜1を透過したメタノールは酸化剤ガス供給部52から供給される空気51によりカソード触媒層31において(式3)に示す酸化反応を起こし、水が生成される。

Figure JPOXMLDOC01-appb-M000003
In general, when the cathode reaction (formula 2) occurs, methanol (CH 3 OH) and water (H 2 O) also move through the electrolyte membrane 1 along with the movement of protons (the former is methanol crossover and the latter is water). Called crossover (or proton-entrained water). Of these, methanol that has permeated through the electrolyte membrane 1 undergoes an oxidation reaction shown in (Equation 3) in the cathode catalyst layer 31 by the air 51 supplied from the oxidant gas supply unit 52 to generate water.
Figure JPOXMLDOC01-appb-M000003

 また、カソード反応(式2)で生成した水、および透過した水の一部は電解質膜1を通してアノード触媒層21へ逆拡散する。アノードでの反応に必要な水が全てカソード生成水で賄われた場合、α=-1/6になる。残りの水は膜電極複合体5からカソード流路板33を通じて外部へと排出される。 Further, the water generated in the cathode reaction (formula 2) and a part of the permeated water are back-diffused to the anode catalyst layer 21 through the electrolyte membrane 1. When all the water necessary for the reaction at the anode is covered by the water produced by the cathode, α = −1 / 6. The remaining water is discharged from the membrane electrode assembly 5 to the outside through the cathode channel plate 33.

 ここで、負荷12を発電部4から開放し、負荷12への給電を停止した場合、そのまま放置すると、発電部4へ外部からの酸化剤(例えば空気)が侵入する。これにより、前述の触媒劣化の現象が始まる。低透過水型の場合、触媒層の劣化は主としてアノード側で生じることは前述の通りである。 Here, when the load 12 is released from the power generation unit 4 and the power supply to the load 12 is stopped, if left as it is, an oxidizing agent (for example, air) from the outside enters the power generation unit 4. As a result, the above-described phenomenon of catalyst deterioration starts. As described above, in the case of the low permeate type, the catalyst layer is deteriorated mainly on the anode side.

 この触媒劣化防止は制御部7を介して以下の制御を行うことにより、防止することができる。 This catalyst deterioration prevention can be prevented by performing the following control via the control unit 7.

(制御方法)
 以下、図10を参照し、この手順について説明する。図10は第1の実施の形態において、アノード触媒層21の触媒劣化を防止するための手順を示したプロセスフローである。プロセスフロー開始(Start)の前提として、燃料電池システム10は稼動状態にあるものとする。
(Control method)
Hereinafter, this procedure will be described with reference to FIG. FIG. 10 is a process flow showing a procedure for preventing catalyst deterioration of the anode catalyst layer 21 in the first embodiment. As a premise for starting the process flow (Start), it is assumed that the fuel cell system 10 is in an operating state.

(負荷開放ステップ:S01)
 まず、制御部7の負荷制御ユニット711は、負荷12に信号線E12を通じて、負荷を開放する指示を出す。
(Load release step: S01)
First, the load control unit 711 of the control unit 7 instructs the load 12 to release the load through the signal line E12.

(酸化剤供給停止ステップ:S02)
 燃料電池システム10への酸化剤供給を停止する。このために、酸化剤供給部制御ユニット714は、信号線E52を通じて酸化剤供給部52を停止する指示を出す。具体的には、酸化剤供給部制御ユニット714は、信号線E52aを通じてバルブ52aを閉じる指示を出す。また同様に、信号線E52bを通じてポンプ52bを停止する指示を出す。
(Oxidant supply stop step: S02)
The supply of the oxidant to the fuel cell system 10 is stopped. For this purpose, the oxidant supply unit control unit 714 issues an instruction to stop the oxidant supply unit 52 through the signal line E52. Specifically, the oxidant supply unit control unit 714 issues an instruction to close the valve 52a through the signal line E52a. Similarly, an instruction to stop the pump 52b is issued through the signal line E52b.

(燃料供給停止ステップ:S03)
 燃料電池システム10への燃料供給を停止する。このために、燃料供給部制御ユニット712は、信号線E42を通じて燃料供給部42を停止する指示を出す。具体的には、燃料供給部制御ユニット712は、信号線E42aを通じてバルブ42aを閉じる指示を出す。また同様に、信号線E42bを通じてポンプ42bを停止する指示を出す。
(Fuel supply stop step: S03)
The fuel supply to the fuel cell system 10 is stopped. For this purpose, the fuel supply unit control unit 712 issues an instruction to stop the fuel supply unit 42 through the signal line E42. Specifically, the fuel supply unit control unit 712 issues an instruction to close the valve 42a through the signal line E42a. Similarly, an instruction to stop the pump 42b is issued through the signal line E42b.

 なお、バルブ42aは後述する純水供給の際、過大な圧力が燃料供給部42、タンク43等に掛かることにより、悪影響を及ぼすことを防止するためのものである。よって、このようなおそれがない場合にはバルブ42aを閉じる操作を省略することも可能である。具体的には、ストップバルブの場合にはこのような操作不要である。 The valve 42a is for preventing an adverse effect caused by excessive pressure applied to the fuel supply unit 42, the tank 43, etc. during the supply of pure water described later. Therefore, when there is no such fear, the operation of closing the valve 42a can be omitted. Specifically, in the case of a stop valve, such an operation is unnecessary.

 また、ポンプ42bがバルブの機能も兼ねるポンプ(例えばチューブポンプの場合等)にはバルブ42aを省略することも可能である。 Further, the valve 42a can be omitted for a pump (for example, a tube pump) in which the pump 42b also functions as a valve.

(純水供給開始ステップ:S04)
 燃料電池システム10へ純水を供給する。このために、流体供給制御ユニット716は信号線E62を介して流体供給部62にアノード2へ純水を供給する指示を出す。具体的には、流体供給部制御ユニット716は、信号線E62aを通じてバルブ62aを開く指示を出す。また同様に、信号線E62bを通じてポンプ62bを運転する指示を出す。
(Pure water supply start step: S04)
Pure water is supplied to the fuel cell system 10. For this purpose, the fluid supply control unit 716 issues an instruction to supply pure water to the anode 2 to the fluid supply unit 62 via the signal line E62. Specifically, the fluid supply unit control unit 716 issues an instruction to open the valve 62a through the signal line E62a. Similarly, an instruction to operate the pump 62b is issued through the signal line E62b.

 所定の時間、純水をアノード2に流通させることのより、アノード2に残留する副生成物の量を低減させることができる。 By flowing pure water through the anode 2 for a predetermined time, the amount of by-products remaining on the anode 2 can be reduced.

(純水供給停止ステップ:S05)
 所定の時間が経過した後、流体供給部制御ユニット716から信号線E62を通じて流体供給部62へ停止を指示する。具体的には、流体供給部制御ユニット716は、信号線E62aを通じてバルブ62aを閉じる指示を出す。また同様に、信号線E62bを通じてポンプ62bを停止する指示を出す。これにより、発電部4への純水の供給が停止する。
(Pure water supply stop step: S05)
After a predetermined time has elapsed, the fluid supply unit control unit 716 instructs the fluid supply unit 62 to stop through the signal line E62. Specifically, the fluid supply unit control unit 716 issues an instruction to close the valve 62a through the signal line E62a. Similarly, an instruction to stop the pump 62b is issued through the signal line E62b. Thereby, the supply of pure water to the power generation unit 4 is stopped.

(燃料電池密閉ステップ:S06)
 燃料電池システム10への外部からの酸化剤の侵入を防ぐ。このために、燃料排出部制御ユニット713は信号線E46aを通じてバルブ46aを閉じる指示を出す。また、酸化剤排出部制御ユニット715は信号線E56aを通じてバルブ56aを閉じる指示を出す。
(Fuel cell sealing step: S06)
Intrusion of the oxidant from the outside to the fuel cell system 10 is prevented. For this purpose, the fuel discharge control unit 713 issues an instruction to close the valve 46a through the signal line E46a. Further, the oxidant discharge unit control unit 715 issues an instruction to close the valve 56a through the signal line E56a.

 以上の操作により、アノード2には純水が充填されているため、外部の酸化剤がアノードに侵入し、アノード触媒層21に接触する可能性を低減することが出来る。 By the above operation, since the anode 2 is filled with pure water, the possibility that an external oxidizing agent enters the anode and contacts the anode catalyst layer 21 can be reduced.

(技術的意義)
 第1の実施の形態の技術的意義は次の通りであると推測される。
(Technical significance)
The technical significance of the first embodiment is estimated as follows.

 燃料電池システムの発電の際にアノード反応で使用される燃料41は、式(1)に示すように、理論的には水:メタノール=1:1(mol比)である。しかし、アノードで生成するプロトンがカソードに移動する際に同伴水として3個程度の水が移動する。そのため、燃料電池システムにおいては、セルに実際に供給される水/メタノール比(モル比)は1ではなく、燃料制御やMEAの構造により1~19程度まで変化する。上記で述べた過剰の水とは、プロトンに同伴して移動する水のことで、これを極力減らすことが、燃料電池システムのエネルギー効率向上や小型化に求められる。 The fuel 41 used in the anode reaction in the power generation of the fuel cell system is theoretically water: methanol = 1: 1 (mol ratio) as shown in the equation (1). However, when protons generated at the anode move to the cathode, about three waters move as entrained water. Therefore, in the fuel cell system, the water / methanol ratio (molar ratio) actually supplied to the cell is not 1, but varies from about 1 to 19 depending on the fuel control and the structure of the MEA. The excess water described above is water that moves with protons, and reducing this as much as possible is required to improve the energy efficiency and miniaturization of the fuel cell system.

 このようなプロトンに同伴して移動する水を極力減らす方式として、低透過水型燃料電池システムがある。低透過水型の意味は前述の通り、αが-1/6以上1.5以下のMEAを有する燃料電池のことをいう。これに対し、従来の方式を高透過水型燃料電池システムということがある。 As a method for reducing the amount of water that moves along with protons as much as possible, there is a low permeation type fuel cell system. As described above, the low permeate type means a fuel cell having an MEA having α of −1/6 to 1.5. On the other hand, the conventional system is sometimes referred to as a highly permeable water fuel cell system.

 従来の高透過水型燃料電池システムに用いられる燃料は、通常1~2mol-CHOH/Lである。これに対し、第1の実施の形態に示す低透過水型燃料電池システムにおいては0.8~2molCHOH/Lの水溶液を用いることが多い。なお、GDL22に撥水処理が施され、かつ、触媒層が厚い場合には、2~10molCHOH/Lの水溶液が使用されることがある。 The fuel used in the conventional high permeation water fuel cell system is usually 1 to 2 mol-CH 3 OH / L. On the other hand, in the low permeation water fuel cell system shown in the first embodiment, an aqueous solution of 0.8 to 2 mol CH 3 OH / L is often used. When the GDL 22 is subjected to water repellent treatment and the catalyst layer is thick, an aqueous solution of 2 to 10 mol CH 3 OH / L may be used.

 そして、単位時間当たりの燃料41の供給量を落として供給したり、MEAの構造をアノード2に撥水性の高いカーボン多孔板を使用する等の工夫がなされている。第1の実施の形態においては、アノード触媒層21とアノードGDL22との間にMPLを介在させることで、低透過水型燃料電池システムとしている。 Further, various measures have been taken, such as supplying the fuel 41 by reducing the supply amount of fuel 41 per unit time, or using a highly water-repellent carbon porous plate for the anode 2 in the MEA structure. In the first embodiment, an MPL is interposed between the anode catalyst layer 21 and the anode GDL 22 to provide a low permeation water fuel cell system.

 ところで、発電部4から負荷12への給電を停止した場合、アノード反応の副生成物(残存活物質)、例えば蟻酸等を含む水溶液がアノード触媒層21から排出されることなく、触媒の周囲に残存すると考えられる。また低αの発電環境では発電休止後アノード触媒層21に残存する水が極端に少ないものと推測される。高αの発電環境に比較し、アノード触媒21に供給される水の量が極端に少ないためである。さらに、外部からの酸化剤としての酸素の供給が絶たれない場合、Pt-Ru触媒の周囲に存在する残存活物質は触媒近傍で酸素と会合することによりアノード触媒を劣化することと想定される。 By the way, when power supply from the power generation unit 4 to the load 12 is stopped, an aqueous solution containing a by-product (residual active material) of the anode reaction, such as formic acid, is not discharged from the anode catalyst layer 21 and around the catalyst. It is thought that it will remain. In a low α power generation environment, it is estimated that the amount of water remaining in the anode catalyst layer 21 after power generation is stopped is extremely small. This is because the amount of water supplied to the anode catalyst 21 is extremely small as compared with a high α power generation environment. Furthermore, when the supply of oxygen as an oxidant from the outside is not interrupted, it is assumed that the remaining active material present around the Pt-Ru catalyst degrades the anode catalyst by associating with oxygen in the vicinity of the catalyst. .

 したがって、触媒の劣化を防ぐためには、
 (条件A)アノード触媒の周囲に存在する副生成物(残留活物質)を除去する
 (条件B)発電部への外部からの酸化剤の侵入を防ぐ
のいずれかの操作を行うことが触媒からRuやPtの溶出を防ぐために必要となる。
Therefore, to prevent catalyst deterioration,
(Condition A) By-product (residual active material) present around the anode catalyst is removed. (Condition B) Any operation of preventing entry of oxidant from the outside to the power generation unit is performed from the catalyst. Necessary for preventing elution of Ru and Pt.

高透過水型燃料電池システムにおいては触媒近傍に水が多量に存在するため、副生成物の濃度は低濃度のままであり、かつ、これら副生成物が多量の水に包囲されているため、副生成物が酸化剤(空気)と接触することが妨げられる。これにより、高透過水型燃料電池システムのアノード触媒の劣化は生じ難かったと推測される。この概念を図9(A)に示す。図9(A)では、触媒粒子101とプロトンを伝導するバインダ103の周囲には大量の水102が存在している様子を示している。水102の中には副生成物114も存在するが、酸化剤115は水102が存在することにより副生成物114に近づくことができない。 In the high permeation water fuel cell system, a large amount of water is present in the vicinity of the catalyst, so the concentration of by-products remains low, and these by-products are surrounded by a large amount of water. By-products are prevented from contacting the oxidant (air). Thereby, it is estimated that the anode catalyst of the high permeation water fuel cell system was hardly deteriorated. This concept is shown in FIG. FIG. 9A shows that a large amount of water 102 exists around the catalyst particles 101 and the binder 103 that conducts protons. A by-product 114 is also present in the water 102, but the oxidant 115 cannot approach the by-product 114 due to the presence of the water 102.

 これに対し、低透過水型燃料電池システムにおいては、触媒近傍に水が少量しか存在しないため、副生成物の濃度は高濃度であり、かつ、これら副生成物を包囲する水が少ないため、副生成物と空気(酸化剤)との接触が容易であると推測される。この概念を図9(B)に示す。図9(B)では、図9(A)と異なり、触媒粒子101とプロトンを伝導するバインダ103の周囲には少量の水102しか存在しない。このため、酸化剤115は副生成物114に容易に近づくことができる。 On the other hand, in the low permeation water fuel cell system, since there is only a small amount of water near the catalyst, the concentration of by-products is high, and the amount of water surrounding these by-products is small. It is presumed that the contact between the by-product and air (oxidant) is easy. This concept is shown in FIG. In FIG. 9B, unlike FIG. 9A, only a small amount of water 102 exists around the catalyst particles 101 and the binder 103 that conducts protons. For this reason, the oxidizing agent 115 can easily approach the by-product 114.

 このことにより、低透過水型燃料電池システムにおけるアノード触媒の劣化の進行速度は、高透過水型燃料電池システムに比較し、無視できないものとなる。 Thus, the progress rate of deterioration of the anode catalyst in the low permeate fuel cell system is not negligible compared to the high permeate fuel cell system.

 そこで、低透過水型燃料電池システムにおいては、発電部から負荷への給電を停止した後に、少なくとも上記の(条件A)または(条件B)の操作が必要となると考えられる。 Therefore, in the low permeation water fuel cell system, it is considered that at least the operation of (Condition A) or (Condition B) described above is necessary after the power supply from the power generation unit to the load is stopped.

(第1の実施の形態の効果)
 第1の実施の形態によれば、発電部4を密閉する前に、アノード反応の副生成物がアノード触媒層21から除去されるため、確実な触媒劣化抑制効果を得ることができる。特に、酸化剤の浸入は燃料供給部、燃料排出部といった配管経由だけでなく、ガスケット24を介しても生じる場合がある。アノード2に純水を充填する第1の実施の形態においては、ガスケット24が酸素透過性の高い部材の場合であっても、酸化剤の浸入を抑制できるという効果がある。これにより、ガスケットの材料の選択の自由度が高まり、燃料電池システム10の設計の自由度が高まるという利点がある。
(Effects of the first embodiment)
According to the first embodiment, since the by-product of the anode reaction is removed from the anode catalyst layer 21 before the power generation unit 4 is sealed, a reliable catalyst deterioration suppressing effect can be obtained. In particular, the infiltration of the oxidant may occur not only through the piping such as the fuel supply unit and the fuel discharge unit but also through the gasket 24. In the first embodiment in which the anode 2 is filled with pure water, even if the gasket 24 is a member having a high oxygen permeability, there is an effect that the infiltration of the oxidizing agent can be suppressed. Thereby, there is an advantage that the degree of freedom in selecting the material of the gasket is increased and the degree of freedom in designing the fuel cell system 10 is increased.

 酸素透過性の高い部材としては、シリコン、EPDMが例示される。 Examples of the member having high oxygen permeability include silicon and EPDM.

(第1の実施の形態の実施例)
 低透過水型燃料電池システム、高透過水型燃料電池システムを作製し、第1の実施の形態の効果を検証した。具体的には以下の手順でそれぞれの燃料電池システムを作製した。
(Example of the first embodiment)
A low permeate water fuel cell system and a high permeate water fuel cell system were produced, and the effects of the first embodiment were verified. Specifically, each fuel cell system was produced by the following procedure.

(i)低透過水型燃料電池システムの作製
 低透過水型燃料電池用起電部は以下の方法で作製する。
(I) Production of Low Permeate Water Fuel Cell System The electromotive part for the low permeate water fuel cell is produced by the following method.

 本実施例に用いた起電部材はアノードに10mg/cmのPt-Ru(1:1)触媒、カソードには3mg/cmのPt触媒をそれぞれスプレー法で作製した触媒層を電解質膜(Gore膜)に熱プレス(130℃)して作製した。これにMPL付きGDLをさらに熱プレスで付与した。具体的には、アノード側にはNOK2315(NOK株式会社製)とLT2300W(BASF社製)を2枚重ねたものを、カソード側にはLT2500W(BASF社製)を用いた。なお単セル発電試験には電極面積は12cmの起電部を用いた。 Electromotive member used in this embodiment anode 10 mg / cm 2 of Pt-Ru (1: 1) catalyst, the cathode to the electrolyte membrane of the catalyst layer prepared 3 mg / cm 2 of Pt catalyst at each spray method ( Gore film) was hot pressed (130 ° C.). To this, GDL with MPL was further applied by hot pressing. Specifically, two layers of NOK2315 (manufactured by NOK Corporation) and LT2300W (manufactured by BASF) were stacked on the anode side, and LT2500W (manufactured by BASF) was used on the cathode side. In the single cell power generation test, an electromotive part having an electrode area of 12 cm 2 was used.

 (ii)高透過水型燃料電池システムの作製
 高透過水型燃料電池に使用する起電部材は、上述の低透過水型燃料電池用起電部材の構成部材の中から、アノード及びカソードのMPL付きGDLをカーボンペーパーに変更することにより作製した。
(Ii) Production of High Permeability Water Fuel Cell System The electromotive member used for the high permeation water fuel cell is the MPL of anode and cathode among the constituent members of the electromotive member for the low permeation water fuel cell described above. It was prepared by changing the attached GDL to carbon paper.

 なお、低透過水型燃料電池用起電部を用いても、発電時にカソードに供給する空気供給量を高める(化学両論比:4~10程度)ことで強制的に高α状態を実現することも不可能ではない。 Even when using a low permeate water fuel cell electromotive unit, it is possible to forcibly realize a high α state by increasing the amount of air supplied to the cathode during power generation (chemical stoichiometric ratio: about 4 to 10). Is not impossible.

 (iii)検証試験
 図13は、上述の通り作製した低透過水型燃料電池システム、高透過水型燃料電池システムのそれぞれについて、図10に示す操作を行った場合と行わなかった場合について、アノード過電圧の経時的変化を示したものである。曲線A乃至Dはそれぞれ次の通りである。
(Iii) Verification Test FIGS. 13A and 13B show the anode for the low permeation water fuel cell system and the high permeation water fuel cell system produced as described above, with and without the operation shown in FIG. It shows changes over time of overvoltage. Curves A to D are as follows.

 曲線A:低透過水型燃料電池システムについて図10の操作を行わなかった場合
 曲線B:低透過水型燃料電池システムについて図10の操作を行った場合
 曲線C:高透過水型燃料電池システムについて図10の操作を行わなかった場合
 曲線D:高透過水型燃料電池システムについて図10の操作を行った場合
 具体的な試験手順は次の通りである。
Curve A: When the operation of FIG. 10 is not performed for the low permeate water fuel cell system Curve B: When the operation of FIG. 10 is performed for the low permeation water fuel cell system Curve C: About the high permeation water fuel cell system When the operation of FIG. 10 is not performed Curve D: When the operation of FIG. 10 is performed for the high permeation water fuel cell system The specific test procedure is as follows.

 本実験は上述の低透過水型燃料電池、及び高透過水型燃料電池を各々単セルによる発電試験により行った。発電条件は共にセル温度60℃、使用したメタノール水溶液は1~2M、酸化剤として空気を供給し、一定負荷(150mA/cm)の条件で8~12時間連続発電し、その後12~16時間休止する工程を繰り返す方法による。 In this experiment, the above-described low permeation water fuel cell and high permeation water fuel cell were each subjected to a power generation test using a single cell. The power generation conditions are as follows: the cell temperature is 60 ° C., the methanol aqueous solution used is 1 to 2 M, air is supplied as the oxidant, and power generation is continued for 8 to 12 hours under the condition of a constant load (150 mA / cm 2 ), and then 12 to 16 hours. By repeating the step of pausing.

 低透過水型燃料電池では空気供給量を60mL/分に、高透過水型燃料電池では空気供給量を500mL/分の環境下で実験を行った。 Experiments were performed in an environment where the air supply amount was 60 mL / min for the low-permeability fuel cell and the air supply amount was 500 mL / min for the high-permeability fuel cell.

 実験途中でアノードの劣化を調べるために、アノード過電圧の経時変化を調べた。 In order to investigate the deterioration of the anode during the experiment, the change with time in the anode overvoltage was examined.

 曲線Aを参照すれば明らかなように、アノード過電圧は時間の経過と共に増加し、約1200時間経過後に0.36Vから0.40Vへと約60mVも上昇している。これに対し、曲線Bにおいては約1200時間経過後に0.345Vから0.349Vへと約4mVの上昇に抑制されている。 As is apparent from the curve A, the anode overvoltage increases with time, and increases by about 60 mV from 0.36 V to 0.40 V after about 1200 hours. On the other hand, in curve B, an increase of about 4 mV is suppressed from 0.345 V to 0.349 V after about 1200 hours.

 これに対し、高透過水型燃料電池システムについて、同様の操作における効果を検証した。その結果が曲線Cと曲線Dである。これによれば高透過水型燃料電池システムにおいて(条件A)、(条件B)の採否は過電圧の上昇にほとんど影響を与えない。1200時間経過後の曲線Aと曲線Bの過電圧の差分(Δ1)と曲線Cと曲線Dの過電圧の差分(Δ2)とを比較すると、Δ1はΔ2に比較し、著しく小さい。すなわち、高透過水型燃料電池システムの過電圧抑制に前述の(条件A)、(条件B)の操作は格別の効果を奏しない。これに対し、低透過水型燃料電池システムの過電圧抑制に前述の図10に示す操作は大きな効果を奏することが図13の結果からも明らかである。 In contrast, the effect of the same operation on the high permeation water fuel cell system was verified. The result is curve C and curve D. According to this, adoption of (Condition A) and (Condition B) in a highly permeable water fuel cell system has little effect on the increase in overvoltage. When the difference between the overvoltages (Δ1) of curve A and curve B after 1200 hours and the difference (Δ2) between the overvoltages of curve C and curve D are compared, Δ1 is significantly smaller than Δ2. That is, the operations of (Condition A) and (Condition B) described above do not have a special effect in suppressing the overvoltage of the highly permeable water fuel cell system. On the other hand, it is also clear from the results of FIG. 13 that the operation shown in FIG. 10 described above has a significant effect on the overvoltage suppression of the low permeation water fuel cell system.

〔第2の実施の形態〕
 図1は燃料供給部42と流体供給部62を個別に設ける形態であるが、純水を供給するための流体供給部62を燃料供給部42と共有させる方式を採用することも出来る。具体的な構成を図2に示す。具体的には、バルブ42a及び62aをバルブ(三方バルブ)42cに変更し、ポンプ62bを省略している。
[Second Embodiment]
Although FIG. 1 shows a mode in which the fuel supply unit 42 and the fluid supply unit 62 are provided separately, a system in which the fluid supply unit 62 for supplying pure water is shared with the fuel supply unit 42 may be employed. A specific configuration is shown in FIG. Specifically, the valves 42a and 62a are changed to valves (three-way valves) 42c, and the pump 62b is omitted.

 第1の実施の形態との変更点は以下の点となる。 The changes from the first embodiment are as follows.

(燃料供給停止ステップ:S03)
 燃料電池システム10への燃料供給を停止する。このために、燃料供給部制御ユニット712は、信号線E42を通じて燃料供給部42を停止する指示を出す。具体的には、燃料供給部制御ユニット712は、信号線E42cを通じてバルブ42cを閉じる指示を出す。また同様に、信号線E42bを通じてポンプ42bを停止する指示を出す。
(Fuel supply stop step: S03)
The fuel supply to the fuel cell system 10 is stopped. For this purpose, the fuel supply unit control unit 712 issues an instruction to stop the fuel supply unit 42 through the signal line E42. Specifically, the fuel supply unit control unit 712 issues an instruction to close the valve 42c through the signal line E42c. Similarly, an instruction to stop the pump 42b is issued through the signal line E42b.

(純水供給開始ステップ:S04)
 燃料電池システム10へ純水を供給する。このために、燃料供給制御ユニット712は信号線E42cを介してバルブ42cに燃料供給部42をタンク43への接続からタンク63への接続に変更する指示を出す。
(Pure water supply start step: S04)
Pure water is supplied to the fuel cell system 10. For this purpose, the fuel supply control unit 712 instructs the valve 42c to change the connection of the fuel supply unit 42 from the connection to the tank 43 to the connection to the tank 63 via the signal line E42c.

 また、燃料供給部制御ユニット712は信号線E42bを介してタンク63に蓄えられた純水61をアノード2に供給する指示を出す。 Further, the fuel supply unit control unit 712 issues an instruction to supply the pure water 61 stored in the tank 63 to the anode 2 through the signal line E42b.

 所定の時間、純水をアノード2に流通させることのより、アノード2に残留する副生成物の量を低減させることができる。 By flowing pure water through the anode 2 for a predetermined time, the amount of by-products remaining on the anode 2 can be reduced.

(純水供給停止ステップ:S05)
 所定の時間が経過した後、燃料供給部制御ユニット712から信号線E42を通じて燃料供給部42へ停止を指示する。これにより発電部4への純水の供給が停止する。具体的には、燃料供給部制御ユニット712は、信号線E42cを通じてバルブ42aを閉じる指示を出す。また同様に、信号線E42bを通じてポンプ42bを停止する指示を出す。
(Pure water supply stop step: S05)
After a predetermined time has elapsed, the fuel supply unit control unit 712 instructs the fuel supply unit 42 to stop through the signal line E42. Thereby, the supply of pure water to the power generation unit 4 is stopped. Specifically, the fuel supply unit control unit 712 issues an instruction to close the valve 42a through the signal line E42c. Similarly, an instruction to stop the pump 42b is issued through the signal line E42b.

(第2の実施の形態の効果)
 この場合、流体供給部62及びバルブの数を減らすことが出来るため、燃料電池システム10の小型化が可能となる。
(Effect of the second embodiment)
In this case, since the number of fluid supply units 62 and valves can be reduced, the fuel cell system 10 can be downsized.

〔第3の実施の形態〕
 図1では、アノード2にのみ第1の流体を供給する形態であるが、カソード3に第2の流体を供給する方式を採用することも出来る。具体的な構成を図3に示す。図3では、アノード2に純水(第1の流体)を供給する形態に加え、カソード3にも純水(第2の流体)を供給する方式を例示している。図1のバルブ62aがバルブ(三方バルブ)62cに変更されている。バルブ62cはアノード2への流体供給部およびカソードへの流体供給部に併用されている。
[Third Embodiment]
In FIG. 1, the first fluid is supplied only to the anode 2, but a method of supplying the second fluid to the cathode 3 can also be adopted. A specific configuration is shown in FIG. FIG. 3 illustrates a system for supplying pure water (second fluid) to the cathode 3 in addition to a mode for supplying pure water (first fluid) to the anode 2. The valve 62a in FIG. 1 is changed to a valve (three-way valve) 62c. The valve 62c is used in combination with a fluid supply unit to the anode 2 and a fluid supply unit to the cathode.

 第1の実施の形態との変更点は以下の点となる。 The changes from the first embodiment are as follows.

(純水供給開始ステップ:S04)
 燃料電池システム10へ純水を供給する。このために、流体供給制御ユニット716は信号線E62を介して流体供給部62にアノード2及びカソード3へ純水を供給する指示を出す。具体的には、流体供給部制御ユニット716は、信号線E62aを通じてバルブ62aに流体供給部62をアノード2およびカソード3へ接続するように指示を出す。また同様に、信号線E62bを通じてポンプ62bを運転する指示を出す。
(Pure water supply start step: S04)
Pure water is supplied to the fuel cell system 10. For this purpose, the fluid supply control unit 716 instructs the fluid supply unit 62 to supply pure water to the anode 2 and the cathode 3 via the signal line E62. Specifically, the fluid supply unit control unit 716 instructs the valve 62a to connect the fluid supply unit 62 to the anode 2 and the cathode 3 through the signal line E62a. Similarly, an instruction to operate the pump 62b is issued through the signal line E62b.

 所定の時間、純水をアノード2に流通させることのより、アノード2に残留する副生成物の量を低減させることができる。 By flowing pure water through the anode 2 for a predetermined time, the amount of by-products remaining on the anode 2 can be reduced.

(純水供給停止ステップ:S05)
 所定の時間が経過した後、流体供給部制御ユニット716から信号線E62を通じて流体供給部42へ停止を指示する。これにより発電部4への純水の供給が停止する。具体的には、流体供給部制御ユニット716は、信号線E62cを通じてバルブ62aを閉じる指示を出す。また同様に、信号線E42bを通じてポンプ42bを停止する指示を出す。
(Pure water supply stop step: S05)
After a predetermined time has elapsed, the fluid supply unit control unit 716 instructs the fluid supply unit 42 to stop through the signal line E62. Thereby, the supply of pure water to the power generation unit 4 is stopped. Specifically, the fluid supply unit control unit 716 issues an instruction to close the valve 62a through the signal line E62c. Similarly, an instruction to stop the pump 42b is issued through the signal line E42b.

(第3の実施の形態の効果)
 この場合、発電部4を密閉する前に、アノード反応の副生成物がアノード触媒層21から除去されることに加え、カソード側からも酸化剤が除去される。このため、カソード3から電解質膜1を介してアノード2へ透過する酸化剤を低減することができる。これにより、第1の実施の形態よりも更に確実な触媒劣化抑制効果を得ることができる。
(Effect of the third embodiment)
In this case, before the power generation unit 4 is sealed, in addition to the removal of byproducts of the anode reaction from the anode catalyst layer 21, the oxidant is also removed from the cathode side. For this reason, the oxidizing agent permeate | transmitted from the cathode 3 through the electrolyte membrane 1 to the anode 2 can be reduced. As a result, it is possible to obtain a more reliable catalyst deterioration suppressing effect than in the first embodiment.

〔第4の実施の形態〕
 図1では、第1の流体として純水を用いたが、これを不活性ガスとする方式を採用することも出来る。具体的な構成を図4に示す。具体的な構成を図4に示す。
[Fourth Embodiment]
In FIG. 1, pure water is used as the first fluid, but a system using this as an inert gas can also be adopted. A specific configuration is shown in FIG. A specific configuration is shown in FIG.

 図4ではタンク71に第1の流体として不活性ガス71が蓄えられている。タンク73は配管L3を介してアノード2に接続されている。配管L3には流体供給部72(バルブ72a)が介挿されている。流体供給部72はバルブ72aを有する。バルブ72aは信号線E72aを介して、流体供給部制御ユニット716に接続されている。 In FIG. 4, an inert gas 71 is stored in the tank 71 as the first fluid. The tank 73 is connected to the anode 2 via the pipe L3. A fluid supply part 72 (valve 72a) is inserted in the pipe L3. The fluid supply part 72 has a valve 72a. The valve 72a is connected to the fluid supply unit control unit 716 via the signal line E72a.

 すなわち、第4の実施の形態では、外部からの酸化剤の侵入を防ぐために、不活性ガス(第1の流体)を発電部4へ供給する。 That is, in the fourth embodiment, an inert gas (first fluid) is supplied to the power generation unit 4 in order to prevent an oxidant from entering from the outside.

 以下、図12を参照し、この手順について説明する。第1の実施の形態同様、前提として、燃料電池システム10は稼動状態にあるものとする。 Hereinafter, this procedure will be described with reference to FIG. As in the first embodiment, it is assumed that the fuel cell system 10 is in an operating state.

 負荷開放ステップ(S11)、酸化剤供給停止ステップ(S12)、燃料供給停止ステップ(S13)は第1の実施の形態と同様なので省略する。 Since the load release step (S11), the oxidant supply stop step (S12), and the fuel supply stop step (S13) are the same as those in the first embodiment, they are omitted.

(不活性ガス供給開始ステップ:14)
 燃料電池システム10へ不活性ガスを供給する。このために、流体制御ユニット716は信号線E72aを介してバルブ72aを開く指示を出す。所定の時間、不活性ガスをアノード2に流通させることにより、アノード2に残留する酸化剤の量を低減させることができる。また、副生成物が揮発性を有する場合、アノード2に残留する副生成物の量を低減させることができる。
(Inert gas supply start step: 14)
An inert gas is supplied to the fuel cell system 10. For this purpose, the fluid control unit 716 issues an instruction to open the valve 72a via the signal line E72a. By flowing an inert gas through the anode 2 for a predetermined time, the amount of oxidant remaining on the anode 2 can be reduced. Further, when the by-product has volatility, the amount of the by-product remaining on the anode 2 can be reduced.

(不活性ガス供給停止ステップ:S15)
 所定の時間が経過した後、流体供給制御ユニット716から信号線E72aを通じてバルブ72aを閉じる指示を出す。これにより、発電部4への不活性ガスの供給が停止する。
(Inert gas supply stop step: S15)
After a predetermined time has elapsed, the fluid supply control unit 716 issues an instruction to close the valve 72a through the signal line E72a. Thereby, supply of the inert gas to the power generation unit 4 is stopped.

(第4の実施の形態の効果)
 第4の実施の形態によれば、不活性ガスは圧縮性流体であり、圧力容器を用いれば少ない体積で大量の流体を可搬することが可能となり、特に携帯用途の燃料電池システムにおいて小型化に寄与することが可能となる。
(Effect of the fourth embodiment)
According to the fourth embodiment, the inert gas is a compressive fluid, and if a pressure vessel is used, a large volume of fluid can be transported with a small volume, and in particular, the fuel cell system for portable use can be downsized. It becomes possible to contribute to.

〔第5の実施の形態〕
 図1では、第1の流体として純水を用いたが、この第1の流体の供給を省略する方式を採用することも出来る。具体的には、図1におけるタンク63、流体供給部62を省略する。具体的な構成を図5に示す。図5では第1の流体、第2の流体を供給することなくバルブの操作のみで発電部4へ外部からの酸化剤の侵入を防ぐ。
[Fifth Embodiment]
In FIG. 1, pure water is used as the first fluid, but a system in which the supply of the first fluid is omitted may be employed. Specifically, the tank 63 and the fluid supply unit 62 in FIG. 1 are omitted. A specific configuration is shown in FIG. In FIG. 5, the oxidant from the outside is prevented from entering the power generation unit 4 only by operating the valve without supplying the first fluid and the second fluid.

 第5の実施の形態に係るフローチャートは図13に示す通りである。すなわち、図11のフローチャートから純水供給開始ステップ(S04)、純水供給停止ステップ(S05)が省略されている。これ以外の負荷開放ステップ(S21)、酸化剤供給停止ステップ(S22)、燃料供給停止ステップ(S23)、燃料電池密閉ステップ(S24)は第1の実施の形態と同様である。 The flowchart according to the fifth embodiment is as shown in FIG. That is, the pure water supply start step (S04) and the pure water supply stop step (S05) are omitted from the flowchart of FIG. The other load release step (S21), oxidant supply stop step (S22), fuel supply stop step (S23), and fuel cell sealing step (S24) are the same as those in the first embodiment.

(第5の実施の形態の効果)
 第5の実施の形態によれば、ガスケット24が酸素透過性の低い部材の場合に有効である。第5の実施の形態は純水や不活性ガス、及びこれらを供給する流体供給部が不要となり、燃料電池システム10の小型化が可能となる。
(Effect of 5th Embodiment)
According to the fifth embodiment, it is effective when the gasket 24 is a member having low oxygen permeability. In the fifth embodiment, pure water, inert gas, and a fluid supply unit for supplying these are not required, and the fuel cell system 10 can be downsized.

 酸素透過性の低い部材としては、タイゴン(商標)、ノープレン(商標)、バイトン、フッ素ゴム、高ニトリルゴム、ブチルゴム、ウレタンゴム、多硫化ゴムが例示される。
Examples of the member having low oxygen permeability include Tygon (trademark), Noprene (trademark), Viton, fluorine rubber, high nitrile rubber, butyl rubber, urethane rubber, and polysulfide rubber.

1 ・・・ 電解質膜
2 ・・・ アノード
3 ・・・ カソード
4 ・・・ 発電部
5 ・・・ 膜電極複合体(MEA)
7 ・・・ 制御部
8 ・・・ 計測器(電流計測器、電圧計測器、温度計測器)
10 ・・・ 燃料電池システム
12 ・・・ 負荷
21 ・・・ アノード触媒層
22、22a、22b ・・・ アノードガス拡散層(アノードGDL層)
24 ・・・ ガスケット
25、25a、25b、25c ・・・ アノード流路
26 ・・・ アノードマイクロポーラス層(アノードMPL層)
31 ・・・ カソード触媒層
32 ・・・ カソードガス拡散層(カソードGDL層)
33 ・・・ カソード流路板(カソード集電板)
34 ・・・ ガスケット
35、35a、35b、35c ・・・ カソード流路
36 ・・・ カソードマイクロポーラス層(カソードMPL層)
41 ・・・ 燃料
42 ・・・ 燃料供給部
42a、42c ・・・ バルブ
42b ・・・ ポンプ
43 ・・・ 燃料容器
46 ・・・ 燃料排出部
46a ・・・ バルブ
51 ・・・ 酸化剤含有ガス(空気)
52 ・・・ 酸化剤供給部
52a ・・・ バルブ
52b ・・・ ポンプ
55 ・・・ バルブ(カソード排出部)
56 ・・・ 酸化剤排出部
56a ・・・ バルブ
61 ・・・ 純水(第1の流体、第2の流体)
62 ・・・ 流体供給部
63 ・・・ 容器
71 ・・・ 不活性ガス(第1の流体)
72 ・・・ 流体供給部
72a ・・・ バルブ
101 ・・・ 触媒粒子
102 ・・・ 水
103 ・・・ プロトン伝導性バインダ
114 ・・・ 活物質(残留活物質)
115 ・・・ 活物質(酸化剤)
Ei ・・・ 信号線
Li ・・・ 配管
DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane 2 ... Anode 3 ... Cathode 4 ... Power generation part 5 ... Membrane electrode assembly (MEA)
7: Control unit 8: Measuring instrument (current measuring instrument, voltage measuring instrument, temperature measuring instrument)
DESCRIPTION OF SYMBOLS 10 ... Fuel cell system 12 ... Load 21 ... Anode catalyst layer 22, 22a, 22b ... Anode gas diffusion layer (anode GDL layer)
24 ... Gaskets 25, 25a, 25b, 25c ... Anode channel 26 ... Anode microporous layer (anode MPL layer)
31 ... Cathode catalyst layer 32 ... Cathode gas diffusion layer (cathode GDL layer)
33 ... Cathode flow path plate (cathode current collector plate)
34 ... Gaskets 35, 35a, 35b, 35c ... Cathode channel 36 ... Cathode microporous layer (cathode MPL layer)
41 ... Fuel 42 ... Fuel supply parts 42a, 42c ... Valve 42b ... Pump 43 ... Fuel container 46 ... Fuel discharge part 46a ... Valve 51 ... Gas containing oxidant (air)
52 ... Oxidant supply part 52a ... Valve 52b ... Pump 55 ... Valve (cathode discharge part)
56 ... Oxidant discharge part 56a ... Valve 61 ... Pure water (first fluid, second fluid)
62 ... Fluid supply part 63 ... Container 71 ... Inert gas (first fluid)
72 ... Fluid supply part 72a ... Valve 101 ... Catalyst particles 102 ... Water 103 ... Proton conductive binder 114 ... Active material (residual active material)
115 ・ ・ ・ Active material (oxidant)
Ei ... Signal line Li ... Piping

Claims (10)

 アノード触媒層、カソード触媒層、及び前記アノード触媒層と前記カソード触媒層の間に介挿された電解質膜を含む膜電極接合体と、前記膜電極接合体のアノード触媒層側に、炭素材料を含有し多孔性および撥水性を有する第1の層と、前記アノード触媒層へ前記第1の層を介して燃料を供給する燃料供給部と前記アノード触媒層からの排出物を前記第1の層を介して排出する燃料排出部とを有するアノード流路と、を配置した発電部と、前記発電部に電気的に接続され、かつ、負荷に電気的に接続可能な制御部と、
を有する燃料電池システムであって、
前記制御部は、前記発電部から前記負荷への給電を停止するステップと、前記発電部への外部からの酸化剤の侵入を防ぐステップと、を有することを特徴とする燃料電池システム。
A membrane electrode assembly including an anode catalyst layer, a cathode catalyst layer, and an electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, and a carbon material on the anode catalyst layer side of the membrane electrode assembly A first layer containing porosity and water repellency; a fuel supply unit that supplies fuel to the anode catalyst layer via the first layer; and an exhaust from the anode catalyst layer. An anode flow path having a fuel discharge section that discharges via a power generation section, a control section that is electrically connected to the power generation section and that can be electrically connected to a load,
A fuel cell system comprising:
The control unit includes a step of stopping power supply from the power generation unit to the load, and a step of preventing an oxidant from entering the power generation unit from the outside.
 前記アノード触媒層と前記アノード流路との間に、更に多孔性を有する基材と前記基材の上に形成された撥水層を有する第2の層を有し、前記第2の層の空孔率は前記第1の空孔率より大きいことを特徴とする請求項1に記載の燃料電池システム。 Between the anode catalyst layer and the anode channel, there is further provided a second layer having a porous substrate and a water-repellent layer formed on the substrate, and the second layer The fuel cell system according to claim 1, wherein a porosity is higher than the first porosity.  前記発電部への外部からの酸化剤の侵入を防ぐステップは前記燃料供給部及び前記燃料排出部を閉鎖することにより行うことを特徴とする請求項2に記載の燃料電池システム。 3. The fuel cell system according to claim 2, wherein the step of preventing an oxidant from entering the power generation unit from outside is performed by closing the fuel supply unit and the fuel discharge unit.  前記燃料電池システムは前記アノード触媒層への第1の流体を供給する第1流体供給部を更に有し、
前記発電部への外部からの酸化剤の侵入を防ぐステップは前記第1流体供給部から前記アノード触媒層へ前記第1の流体を供給することにより行うことを特徴とする請求項3に記載の燃料電池システム。
The fuel cell system further includes a first fluid supply unit that supplies a first fluid to the anode catalyst layer,
The step of preventing an oxidant from entering the power generation unit from the outside is performed by supplying the first fluid from the first fluid supply unit to the anode catalyst layer. Fuel cell system.
 前記第1の流体は、前記燃料と同一の化合物と水とから構成される水溶液、純水および不活性ガスからなる群から選択される少なくともいずれか1つを含むことを特徴とする請求項4に記載の燃料電池システム。 5. The first fluid includes at least one selected from the group consisting of an aqueous solution composed of the same compound as the fuel and water, pure water, and an inert gas. The fuel cell system described in 1.  前記燃料電池システムは前記カソード触媒層へ酸化剤を供給するための酸化剤供給部と、前記カソード触媒層から流体を排出するための酸化剤排出部と、を更に有し、
 前記発電部への外部からの酸化剤の侵入を防ぐステップは前記酸化剤供給部及び前記酸化剤排出部を閉鎖することにより行うことを特徴とする請求項5に記載の燃料電池システム。
The fuel cell system further includes an oxidant supply unit for supplying an oxidant to the cathode catalyst layer, and an oxidant discharge unit for discharging a fluid from the cathode catalyst layer,
6. The fuel cell system according to claim 5, wherein the step of preventing an oxidant from entering the power generation unit from outside is performed by closing the oxidant supply unit and the oxidant discharge unit.
 前記燃料電池システムは前記カソード触媒層への第2の流体を供給する第2流体供給部を更に有し、
前記発電部への外部からの酸化剤の侵入を防ぐステップは前記第2流体供給部から前記カソード触媒層へ前記第2の流体を供給することにより行うことを特徴とする請求項6に記載の燃料電池システム。
The fuel cell system further includes a second fluid supply unit that supplies a second fluid to the cathode catalyst layer,
The step of preventing an oxidant from entering the power generation unit from the outside is performed by supplying the second fluid from the second fluid supply unit to the cathode catalyst layer. Fuel cell system.
 前記第2の流体が水および不活性ガスからなる群から選択される少なくとも1つを含むことを特徴とする請求項7に記載の燃料電池システム。 The fuel cell system according to claim 7, wherein the second fluid includes at least one selected from the group consisting of water and an inert gas.  前記第2の流体を供給した後に前記酸化剤供給部及び前記酸化剤排出部を閉鎖することにより前記発電部への酸化剤の侵入を防ぐことを特徴とする請求項8に記載の燃料電池システム。 9. The fuel cell system according to claim 8, wherein after the second fluid is supplied, the oxidant supply unit and the oxidant discharge unit are closed to prevent the oxidant from entering the power generation unit. .  アノード触媒層、カソード触媒層、及び前記アノード触媒層と前記カソード触媒層の間に介挿された電解質膜を含む膜電極接合体と、前記膜電極接合体のアノード触媒層側に、炭素材料を含有し多孔性および撥水性を有する第1の層と、前記アノード触媒層へ前記第1の層を介して燃料を供給する燃料供給部と前記アノード触媒層からの排出物を前記第1の層を介して排出する燃料排出部とを有するアノード流路と、を配置した発電部と、を有する燃料電池システムの制御方法であって、前記制御方法は前記発電部から負荷への給電を停止するステップと、前記発電部への酸化剤の侵入を防ぐステップと、を有することを特徴とする燃料電池システムの制御方法。 A membrane electrode assembly including an anode catalyst layer, a cathode catalyst layer, and an electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, and a carbon material on the anode catalyst layer side of the membrane electrode assembly A first layer containing porosity and water repellency; a fuel supply unit that supplies fuel to the anode catalyst layer via the first layer; and an exhaust from the anode catalyst layer. A fuel cell system control method including an anode flow path having a fuel discharge section that discharges via a fuel discharge section, wherein the control method stops power supply from the power generation section to a load. And a step of preventing an oxidant from entering the power generation unit.
PCT/JP2009/004836 2009-09-24 2009-09-24 Fuel cell Ceased WO2011036716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004836 WO2011036716A1 (en) 2009-09-24 2009-09-24 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004836 WO2011036716A1 (en) 2009-09-24 2009-09-24 Fuel cell

Publications (1)

Publication Number Publication Date
WO2011036716A1 true WO2011036716A1 (en) 2011-03-31

Family

ID=43795490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004836 Ceased WO2011036716A1 (en) 2009-09-24 2009-09-24 Fuel cell

Country Status (1)

Country Link
WO (1) WO2011036716A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227787B2 (en) * 1983-09-01 1990-06-19 Fuji Denki Sogo Kenkyusho Kk
JPH1126003A (en) * 1997-06-27 1999-01-29 Fuji Electric Co Ltd Method of stopping power generation of fuel cell power generation system
JP2004179086A (en) * 2002-11-28 2004-06-24 Nissan Motor Co Ltd Polymer electrolyte fuel cell system and method of operating the same
JP2004192919A (en) * 2002-12-10 2004-07-08 Toyota Motor Corp Fuel cell system
JP2005158298A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Operation method of fuel cell power generation system and fuel cell power generation system
JP2005276669A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Fuel cell system
JP2007194157A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Fuel cell system
JP2008084538A (en) * 2006-09-25 2008-04-10 Toshiba Corp Direct methanol fuel cell
JP2009004369A (en) * 2007-05-18 2009-01-08 Yamaha Motor Co Ltd Fuel cell system
JP2009199988A (en) * 2008-02-25 2009-09-03 Toshiba Corp Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227787B2 (en) * 1983-09-01 1990-06-19 Fuji Denki Sogo Kenkyusho Kk
JPH1126003A (en) * 1997-06-27 1999-01-29 Fuji Electric Co Ltd Method of stopping power generation of fuel cell power generation system
JP2004179086A (en) * 2002-11-28 2004-06-24 Nissan Motor Co Ltd Polymer electrolyte fuel cell system and method of operating the same
JP2004192919A (en) * 2002-12-10 2004-07-08 Toyota Motor Corp Fuel cell system
JP2005158298A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Operation method of fuel cell power generation system and fuel cell power generation system
JP2005276669A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Fuel cell system
JP2007194157A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Fuel cell system
JP2008084538A (en) * 2006-09-25 2008-04-10 Toshiba Corp Direct methanol fuel cell
JP2009004369A (en) * 2007-05-18 2009-01-08 Yamaha Motor Co Ltd Fuel cell system
JP2009199988A (en) * 2008-02-25 2009-09-03 Toshiba Corp Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same

Similar Documents

Publication Publication Date Title
JP5118372B2 (en) Direct methanol fuel cell
JP5138914B2 (en) Direct methanol fuel cell
JPWO2009001560A1 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
US20100167099A1 (en) Membrance electrode assembly (mea) structure and manufacturing method thereof
JP2008311064A (en) Fuel cell system and fuel cell activation method
JP4969025B2 (en) Membrane electrode for fuel cell and fuel cell
US9472821B2 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2009245641A (en) Fuel cell system
JP4894385B2 (en) Passive hydrogen production apparatus and package type fuel cell power generation apparatus using the same
WO2011036716A1 (en) Fuel cell
US20070099060A1 (en) Direct liquid feed fuel cell
JP2009266681A (en) Fuel cell
JP2006318755A (en) Membrane electrode assembly for polymer electrolyte fuel cells
KR100719095B1 (en) Direct methanol fuel cell suppresses methanol crossover including fuel diffusion rate control layer
JP4947338B2 (en) Stand-alone hydrogen production system
JP2004192879A (en) Fuel cell
JP2008027606A (en) Fuel cell system
WO2013080415A1 (en) Fuel cell system
KR100717747B1 (en) Recovery Method of Stack for Direct Oxidation Fuel Cell
JP5339262B2 (en) Fuel cell
JP2011096468A (en) Fuel cell
JP2011096466A (en) Fuel cell
JP2008091043A (en) Fuel cell and fuel cell system
JP6852637B2 (en) Fuel cell system
JP2007188676A (en) Suppression of electrolyte layer damage in fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP