WO2011034270A1 - 선박 또는 육상 플랜트용 scr시스템 - Google Patents

선박 또는 육상 플랜트용 scr시스템 Download PDF

Info

Publication number
WO2011034270A1
WO2011034270A1 PCT/KR2010/002446 KR2010002446W WO2011034270A1 WO 2011034270 A1 WO2011034270 A1 WO 2011034270A1 KR 2010002446 W KR2010002446 W KR 2010002446W WO 2011034270 A1 WO2011034270 A1 WO 2011034270A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
scr
ship
scr system
reducing agent
Prior art date
Application number
PCT/KR2010/002446
Other languages
English (en)
French (fr)
Inventor
황계윤
황성철
Original Assignee
광성(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100034990A external-priority patent/KR100984547B1/ko
Priority claimed from KR1020100034991A external-priority patent/KR100984548B1/ko
Application filed by 광성(주) filed Critical 광성(주)
Publication of WO2011034270A1 publication Critical patent/WO2011034270A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an SCR system for reducing nitrogen oxides (NOx) in exhaust gas, and more particularly, to an SCR system for purifying exhaust gas generated from a ship.
  • the present invention is applicable to all ships and has been developed to satisfy various regulations.
  • the SCR system is used to reduce NOx in exhaust gas generated during ship operation.
  • SCR systems are also required to reduce nitrogen oxides in boilers mounted on ship engines or LNG carriers.
  • the SCR system is a NOx reduction system using a selective catalytic reduction method.
  • the SCR system is configured to react NOx with a reducing agent and reduce the nitrogen and water vapor while simultaneously passing the exhaust gas and the reducing agent in the catalyst.
  • the conventional SCR system includes a dust collector which occupies a complex and large volume at the rear end of the SCR reactor casing to reduce particulate matter (PM), dust, and fine dust contained in the exhaust gas which has been reacted in the SCR reactor. Therefore, the conventional SCR system increases the overall size of the SCR system due to the dust collector. Therefore, applying the conventional SCR system including a general dust collector to a relatively narrow vessel is very disadvantageous in that it further reduces the idle space of the vessel.
  • the SCR system should be designed in consideration of the conditions of the ship, the dust collector can be a cause that makes the overall design of the SCR system considering the conditions of the ship difficult.
  • the installation cost of the SCR system will be greatly increased due to the dust collector, and the cost incurred by the operation of the dust collector is also large.
  • the problem of the SCR system of the conventional vessel is that high pressure air is required to supply urea or NH3, which is a reducing agent, into the SCR reactor, and to connect such high pressure air to a line to which the reducing agent is supplied or to use a compressor.
  • urea or NH3 which is a reducing agent
  • the prior art also has a limitation in supplying urea or NH3 to the SCR reactor with high purity.
  • One problem to be solved by the present invention is that it is optimized for the treatment of off-gas from off-gas installations of ships or onshore plants, and it is more efficient to remove NOx and PM (particle material), dust and / or fine dust in the off-gas. It is to provide an SCR system for a ship or a land plant that can be reduced.
  • an SCR system for a ship or land plant for purifying and exhausting the exhaust gas from the off-gas installation in a ship or land plant.
  • the SCR system includes a NOx removal SCR reactor including a catalyst activated by exhaust gas from the exhaust gas facility, a reducing agent supply line for supplying NH3 or urea to the reducing agent supply position upstream of the SCR reactor or upstream thereof; Sensors for measuring at least components in the exhaust gas that have passed through the SCR reactor, and an ECU for controlling the amount of reducing agent supply through the reducing agent supply line using information obtained from the sensors.
  • the SCR system is configured to check for abnormalities of the sensors by the ECU.
  • the SCR system further comprises an air soot blower that blows air supplied from the air line to the catalyst to remove foreign matter trapped in the catalyst, more preferably, the amount of air poured into the catalyst Controlled by the ECU.
  • an air soot blower that blows air supplied from the air line to the catalyst to remove foreign matter trapped in the catalyst, more preferably, the amount of air poured into the catalyst Controlled by the ECU.
  • the ECU controls the supply amount of the reducing agent based on the NOx amount and NH3 amount information among the information obtained from the sensors.
  • the SCR system further includes an analyzer for analyzing the information measured by the sensors to provide to the ECU.
  • the SCR system further includes an OBM system for monitoring data acquired from the sensors while communicating with the ECU by wire or wirelessly.
  • OBM system for monitoring data acquired from the sensors while communicating with the ECU by wire or wirelessly.
  • the SCR system further comprises an OBM system in communication with the ECU in wire or wirelessly, for monitoring and storing data obtained from the sensors.
  • the OBM system is configured to be able to directly input the coefficient of the ship engine specifications, it is configured to display the monitor by switching the mode of the unit of the exhaust gas to the unit desired by the user.
  • the OBM system has a function of selecting the unit of the NOx, NH3, HC, SOx, SO2 or CO component in the exhaust gas to g / kWh or ppm to display on the monitor.
  • the OBM system has a function of selecting the unit of the PM component in the exhaust gas of mg / m3, g / kWh, or ppm to display on the monitor.
  • the OBM system has a function of displaying the unit of CO2 or O2 component in exhaust gas in% or ppm on the monitor.
  • the OBM system may cause all functions of the ECU to be switched to a mode by automatic control or manual control.
  • a flexible first connection structure and a second connection structure are respectively disposed in the front pipe and the rear pipe of the SCR reactor, and the SCR reactor or its connection is disposed between the first connection structure and the second connection structure.
  • a vibration isolator is installed to support the pipes on both sides of the connection.
  • the SCR system further comprises a bypass system for bypassing the exhaust gas from said exhaust gas facility from said SCR reactor in an abnormal state, wherein said bypass system is provided at both ends of said reactor.
  • bypass dampers connected to a rear end pipe and bypass dampers respectively provided at both ends of the bypass line to close the bypass line in a normal state and open the bypass line in an abnormal state. Controls the bypass dampers.
  • an SCR system for a ship or land plant for purifying and exhausting the exhaust gases from the off-gas installation in a ship or land plant.
  • the SCR system includes a NOx removal SCR reactor including a catalyst activated by exhaust gas from the exhaust gas facility, a reducing agent supply line for supplying NH3 or urea to the reducing agent supply position upstream of the SCR reactor or upstream thereof; A heater for heating the exhaust gas to burn SOOT, dust or foreign matter in the exhaust gas, and a Diesel Particulate Filter (DPF) device for reducing PM, dust or fine dust in the exhaust gas at the rear end of the heater.
  • DPF Diesel Particulate Filter
  • the heater and the DPF device are located between the exhaust gas facility and the SCR reactor. More preferably, the heater and the DPF device are located upstream of the reducing agent supply position.
  • the heater and the DPF device may be located downstream of the SCR reactor.
  • the ECU directly detects the pollutant at a certain position of the SCR system using a portable pollutant analyzer and manages the SCR system based on the measured result. And / or other information, the overall control of the SCR system can be achieved.
  • the OBM system can be provided for wired or wireless communication with the ECU, thereby operating the SCR system and Users can provide, monitor, and store various data necessary for management.
  • SCR for ship or land plant which is optimized for the treatment of off-gas from the off-gas plant of a ship or onshore plant, and can more efficiently reduce NOx and PM (Particle Material), dust and / or fine dust in the off-gas.
  • the system is implemented.
  • the SCR system according to the present embodiment effectively reduces NOx by the SCR reactor and its component (s) associated therewith, as well as PM in exhaust gas by a DPF system including a heater and a DPF device installed in place of the dust collector, Dust and fine dust can also be effectively removed. Since heaters are pre-burned by heaters of soot or foreign matter that are difficult to filter out by the DPF device, the DPF system can more efficiently remove contaminants in the exhaust gas. The DPF device can be regenerated and used by simply shaking off the filter.
  • FIG. 1 is a view for explaining the SCR system of a ship according to a first embodiment of the present invention.
  • FIG. 2 is a view for explaining the SCR system of a ship according to a second embodiment of the present invention.
  • FIG 3 is a view for explaining an SCR system of a ship according to a third embodiment of the present invention.
  • FIG. 4 shows a modification of the third embodiment shown in FIG.
  • FIG. 5 is a view for explaining the SCR system of the ship according to a fourth embodiment of the present invention.
  • FIG. 6 is a view showing a modification of the fourth embodiment shown in FIG.
  • FIG. 7 is a view showing an example in which the DPF system is disposed downstream of the SCR reactor according to another embodiment of the present invention.
  • FIG. 1 is a view for explaining the SCR system of a ship according to a first embodiment of the present invention.
  • the term 'vessel' includes not only ships in the general sense with propulsion engines but also floating structures that can float on the sea.
  • the SCR system of the present embodiment includes an SCR reactor 2 having a front end connected to an exhaust gas installation 1.
  • the exhaust gas installation 1 may be an engine for propulsion of a ship, an engine for other uses, a boiler in an LNG carrier, or various kinds of facilities for exhausting exhaust gas by combustion in a ship.
  • the SCR reactor 2 includes a catalyst for reducing NOx in exhaust gas by a selective catalytic reduction method. In the casing of the SCR reactor 2, NOx is reduced to nitrogen by reacting with a reducing agent in the presence of a catalyst.
  • the SCR system includes a catalyst which is activated and usable at 200 ° C. to 500 ° C. reaction temperature in the SCR reactor 2.
  • the activation temperature range of the catalyst i.e., 200 deg. C to 500 deg. C, is preferably determined based on the time point at which the exhaust gas passes through the SCR reactor 2.
  • the system of the present embodiment selects and uses a catalyst having an activation temperature corresponding to the exhaust gas temperature passing through the SCR reactor 2 in consideration of the decrease in temperature as the exhaust gas proceeds out of the exhaust gas installation 1.
  • two or more kinds of catalysts having different activation temperatures may be embedded in the SCR reactor 2. This may contribute to widening the temperature range at which the catalytic reaction takes place in the SCR reactor 2.
  • a catalyst for reducing other components may be further installed in addition to the catalyst for reducing NOx.
  • the SCR system of the ship which concerns on a present Example is not equipped with the dust collection facility in the rear end of the SCR reactor 2.
  • the system of this embodiment includes a DPF system in front of the SCR reactor 2.
  • a front side of the SCR reactor 2, that is, between the SCR reactor 2 and the exhaust gas installation 1, is provided with a DPF system comprising a heater 21 and a DPF device 20.
  • the heater 21 may use, for example, gas, electricity, steam, or air.
  • the DPF system i.e., the heater 21 and the DPF apparatus 20
  • the DPF system is arranged at a position where the reducing agent is supplied by the reducing agent supply line 4 described below, that is, upstream of the reducing agent supply position. Is preferred.
  • the heater 21 heats the exhaust gas from the exhaust gas installation 1 to the SCR reactor 2 to burn soot, dust or foreign matter in the exhaust gas.
  • the DPF device 20 filters and reduces PM, dust, or fine dust in the exhaust gas at the rear end of the heater 21. At this time, since the DPF apparatus 20 filters out only the components of the fine particles remaining by the heater 21, the DPF apparatus 20 can purify the exhaust gas more efficiently and send it to the SCR reactor 2.
  • the system of the present embodiment includes various sensors capable of detecting NO x, NH 3, PM, HC, SO 2 , CO, CO 2 , O 2, etc. in the exhaust gas at the rear end of the SCR reactor 2 .
  • (11) can be provided.
  • the system includes an analyzer for analyzing residual components in the exhaust gas such as NOx, NH 3 , PM, HC, SO 2 , CO, CO 2 , O 2 using information obtained from the sensor 11. ) Is provided at the rear end of the SCR reactor 2.
  • the various sensors 11 and the analyzer 7 described above are controlled by the ECU 5.
  • the ECU 5 electronically controls devices such as various valves or pumps as well as the sensor 11 and the analyzer 7.
  • the ECU 5 uses the information measured by the sensor 11 or by the analyzer 7 after being measured from the sensor 11 and the reducing agent supply line 4.
  • the associated component (s) is controlled to control the amount of reducing agent such as NH 3 or urea.
  • the information used by the ECU 5 includes a measured value of NOx and / or NH3 among various measured values by the sensors 11.
  • the ECU 5 may control an air soot blower system 8 described in detail below by a differential pressure gauge or a time difference, and may also control a temperature of the heater 21 of the DPF system. have.
  • the system of the present embodiment is an OBM system 6 (On Board Monitering System), which is responsible for controlling the entire system and / or monitoring the system, turning the system on and off, and displaying pollutant (especially NOx) reduction efficiency.
  • the OBM system 6 is configured to enable wired and wireless communication with the ECU 5 and has a function of mode switching of all functions of the ECU 5 to automatic control or manual control.
  • the OBM system 6 may serve to monitor and / or store data acquired from the sensors 11 such as NOx, NH3, HC, SOx, SO2, CO, PM, CO2, O2, etc. in a control room or in the field. Can be.
  • the OBM system 6 it can be displayed on the monitor if the mode of the unit of the exhaust gas used in the ship or the land plant to the desired unit.
  • the unit of exhaust gas is expressed in g / kWh according to IMO regulations. Therefore, it is necessary to input the coefficient of the ship engine specification to express the unit of exhaust gas in g / kWh.
  • the OBM system 6 according to the present embodiment is configured such that a user can directly input a coefficient of a ship engine specification for indicating g / kWh, which is a ship's exhaust gas unit.
  • NOx, NH3, HC, SOx, SO2 can be displayed on the monitor in g / kWh or ppm and PM can be displayed in mg / m3, or g / kWh or ppm on the monitor.
  • CO2, O2 can be displayed on the monitor in% or ppm.
  • the ship's SCR system includes an air line 3 for supplying air to an air soot blower system 8 in or near the SCR reactor 2. .
  • the air soot blower system 8 blows the air supplied from the air line 3 to the catalyst in the SCR reactor 2 to remove foreign matter trapped in the catalyst.
  • the SCR system of the ship includes a reducing agent supply line 4 to supply the reducing agent for NOx reduction as mentioned above into the SCR reactor 2.
  • the reducing agent supply line 4 supplies NH 3 or urea into the SCR reactor 2, and the supplied NH 3 or urea causes a reduction reaction with NO x in the exhaust gas in the presence of a catalyst.
  • the aforementioned air line 3 comprises a line branching from the line facing the soot blower system to the reducing agent supply line 4.
  • the structure of this airline 3 is hereinafter referred to as "two way".
  • the two-way airline 3 is provided in which one line participates in the operation of the air soot blower system 8 described above and the other line carries NH3 or urea into the injection nozzle 12 in the SCR reactor 2. It acts as a push out.
  • the SCR system of the ship according to the present embodiment is provided with a damper (9) at the inlet side of the SCR reactor 2 to distribute the exhaust gas evenly to the catalyst.
  • a mixer 10 for evenly mixing exhaust gas and urea / NH 3 is provided at the front end of the SCR reactor 2 upstream of the damper 9.
  • Various sensors 11 are installed at the front end of the SCR reactor 2, which are arranged before exhaust gas is purified, that is, before the exhaust gas passes through the SCR reactor 2. This is to measure and analyze the content of NOx, NH3, PM, HC, SO 2 , CO, CO 2 or O 2, etc. This analyzed information is based on the component information in the purified exhaust gas which has passed through the SCR reactor 2. Can be prepared.
  • Figure 2 shows well an SCR system of a ship according to a second embodiment of the present invention.
  • the ship's SCR system includes a reducing agent supply line (4) for supplying NH3 / urea to the SCR reactor (2), the reducing agent supply line (4), the foregoing implementation Without being connected to the example airline 3, it extends to the injection nozzle 12 in front of the SCR reactor 2.
  • the reducing agent supply line 4 sends NH3 / urea directly to the injection nozzle 12 in the front end of the SCR reactor 2 by itself, i.e., a supply means such as a self-contained pump, thereby simplifying the piping. More urea or NH3 can be used for NOx reduction.
  • the pump itself or a control line connected to the pump may be equipped with devices for controlling the flow rate of urea or NH3.
  • the air line 3 comprises one line which participates in the operation of the air soot blower system 8, hereinafter referred to as 'one-way air line'.
  • the rest of the configuration of this embodiment is the same as in the first embodiment, so detailed description thereof will be omitted.
  • FIG 3 shows an SCR system of a ship according to a third embodiment of the present invention.
  • a vibration isolator 14 for earthquake-proof / isolation- / vibration-proofing is installed in the SCR reactor 2. Since the ship moves by sea or by sea or the like, the vibration is severe and the load is variable.
  • the present system is constructed by providing a vibration isolator 14 in the SCR reactor 2. At this time, the vibration isolator 14 may consider a variety of structures, but the suspension structure is preferred.
  • the tubes of the front and rear ends of the SCR reactor 2 have a flexible connection structure so that the dustproof device 14 works well on the SCR reactor 2.
  • the flexible joint 13 was used for pipe connection at the front end and the rear end of the SCR reactor 2.
  • the system shown in FIG. 3 is a system comprising a one-way airline 3.
  • vibration isolator 14 may also be applied to a system including a two-way airline, and the configuration of the SCR system including the dustproof device 14 and the two-way airline 3 is illustrated in FIG. 4.
  • the remaining configuration is not significantly different from the foregoing first and second embodiments, and therefore, description of the remaining configuration will be omitted.
  • FIG 5 shows an SCR system of a ship according to a fourth embodiment of the present invention.
  • the SCR system of the ship when an abnormal situation and / or emergency occurs, maintains the operation of the exhaust gas facility 1 as it is, in particular, of the SCR reactor 2. It includes a bypass system that allows replacement or repair of faulty parts).
  • the bypass system includes a bypass line 16 and bypass dampers 17, 17. Both ends of the bypass line 16 are connected to the front end and the rear end of the SCR reactor 2, respectively.
  • the gas flowing through the SCR reactor 2 flows in a abnormal or emergency situation by bypassing the SCR reactor 2 through the bypass line 16 from the front end to the rear end of the SCR reactor 2 without passing through the SCR reactor 2.
  • the pair of bypass dampers 17 and 17 are respectively provided at both ends of the bypass line 16, and in a normal state, both ends of the bypass line 8 are closed and the passage of the SCR reactor 2 is opened. However, in an abnormal or emergency situation, both ends of the bypass line 16 are opened and the passage of the SCR reactor 2 is closed.
  • the bypass system is configured to be controlled by the ECU 5 when it is determined to be an emergency by the above-described sensor 11, the analyzer 7 and / or the OBM system 6.
  • the ECU 5 may simultaneously control the bypass dampers 17 and 17 to open both ends of the bypass line 16 and close the passage of the SCR reactor 2 in the event of an emergency.
  • the SCR system shown in FIG. 5 is an SCR system of a ship comprising a one-way airline 3.
  • the bypass line and the bypass dampers may also be applied to a system including the two-way airline, and the SCR system including the bypass line 16 and the bypass dampers 17 and the two-way airline 3 may be applied.
  • the configuration is shown in FIG.
  • the DPF system including the heater 21 and the DPF device 30 is installed upstream of the SCR reactor 2.
  • an SCR system of a ship or a land plant in which a DPF system including a heater 31 and a DPF device 30 is provided only downstream of the SCR reactor 2 may also be considered.
  • the DPF system downstream of the SCR reactor 2 is disposed between the SCR SCR reactor 2 and the sensor 11 downstream thereof with the heater 31 and the DPF device 30.
  • the heater 31 burns soot, dust or foreign matter in the exhaust gas
  • the DPF device 30 filters PM, dust or fine dust in the exhaust gas from the rear end of the heater 31. Take it out and reduce it.
  • the DPF system including the heater 21 and the DPF device 30 is installed upstream of the SCR reactor 2.
  • an SCR system of a ship or a land plant in which a DPF system including a heater 31 and a DPF device 30 is provided only downstream of the SCR reactor 2 may also be considered.
  • the DPF system downstream of the SCR reactor 2 is disposed between the SCR SCR reactor 2 and the sensor 11 downstream thereof with the heater 31 and the DPF device 30.
  • the heater 31 burns soot, dust or foreign matter in the exhaust gas
  • the DPF device 30 filters PM, dust or fine dust in the exhaust gas from the rear end of the heater 31. Take it out and reduce it.

Abstract

선박 또는 육상 플랜트에서 배출가스 설비로부터 나온 배기가스를 정화하여 배기하기 위한 선박 또는 육상 플랜트용 SCR 시스템이 개시된다. 이 SCR 시스템은, 상기 배출가스 설비로부터 나온 배기가스에 의해 활성화되는 촉매를 포함하는 NOx 제거용 SCR 리액터와, 상기 SCR 리액터 또는 그 상류의 환원제 공급 위치로 NH3 또는 우레아를 공급하는 환원제 공급라인과, 적어도 상기 SCR 리액터를 거친 배기가스 중의 성분들을 측정하기 위한 센서들과, 상기 센서들로부터 얻은 정보를 이용하여 상기 환원제 공급라인을 통한 환원제의 공급량을 제어하는 ECU를 포함한다.

Description

선박 또는 육상 플랜트용 SCR시스템
본 발명은 배기가스 중의 질소산화물(NOx)을 저감하는 SCR 시스템에 관한 것으로서, 특히, 선박에서 발생하는 배기가스를 정화하는 SCR 시스템에 관한 것이다. 본 발명은 모든 선박에 적용 가능하며 각종 규제에 만족하도록 개발된 것이다.
SCR 시스템이 선박 운전 중 발생하는 배기가스 중의 NOx 저감에 이용되고 있다. 예로써, 선박의 엔진 또는 LNG 운반선에 장착된 보일러의 질소산화물 저감을 위해서도 SCR 시스템이 요구되고 있다. SCR 시스템은, 선택적 촉매 환원법을 이용한 NOx 저감 시스템으로서, 촉매 중에 배기가스와 환원제를 동시에 통과시키면서 NOx를 환원제와 반응시켜 질소와 수증기로 환원처리하도록 구성된다. 근래 들어 선박의 SCR 시스템을 개선하기 위한 많은 노력이 있어 왔는데, 그러한 노력에도 불구하고, 선박이 갖는 특수성, 예컨대, 해상에서의 이동 및 진동, 그리고, 그에 따라 부하 변수의 많음으로 인해, 눈에 뜨일 만한 결과가 도출되지 못하고 있는 실정이다.
SCR 시스템은 NOx 저감을 위한 환원제로 NH3와 우레아를 이용한다. 종래의 SCR 시스템은, SCR 리액터에서 반응을 마친 배기가스 중에 내포된 PM(Particle Material), 분진, 미세 먼지를 감소시키기 위해, SCR 리액터 케이싱의 후단에 복잡하고 큰 용적을 차지하는 집진기를 구비한다. 따라서, 종래의 SCR 시스템은 집진기로 인해 SCR 시스템의 전체 크기가 증대된다. 따라서, 상대적으로 협소한 선박에 일반적인 집진기를 포함하는 종래 SCR 시스템을 적용하는 것은 선박의 유휴 공간을 더욱 줄인다는 점에서 매우 불리하다. 또한, SCR 시스템은 선박의 조건을 고려해 설계되어야 하는데, 집진기는 선박의 조건을 고려한 SCR 시스템의 전체적인 설계를 어렵게 하는 원인이 될 수 있다. 게다가, 집진기로 인해 SCR 시스템의 설치 비용이 크게 증가할 것이며, 집진기의 운전에 따른 비용 발생도 크다.
또한, 종래 선박의 SCR 시스템의 문제점으로는 환원제인 우레아 또는 NH3를 SCR 리액터 내로 공급하기 위해 고압의 에어가 요구되며, 이러한 고압의 에어를 환원제가 공급되는 라인으로 연결하기 위해 또는 콤프레서를 이용하기 위해 복잡한 배관이나 설비가 요구되는 문제점 있다. 또한, 종래의 기술은 우레아 또는 NH3를 높은 순도로 SCR 리액터에 공급하는데에도 한계가 있었다.
특히, 종래 선박의 SCR 시스템은 자체 또는 외력에 의한 진동에 취약하다는 문제점이 있다. 진동은 시스템의 파괴 및 손상을 야기할 수 있으므로 이에 대한 대처가 필요함을 본 발명의 발명자들은 알게 되었다. 특히, 선박은 높은 파도에 의해외부 충격이나 진동이 심하므로, 그에 설치되는 SCR 시스템 또한 외부 충격이나 진동에 대해 더 취약할 수밖에 없다.
또한, 종래의 선박 또는 육상 플랜트용 SCR 시스템에서는, 작업자가 직접 휴대형 오염성분 분석기를 이용해 SCR 시스템의 일정 위치에서의 오염성분을 직접 측정하고, 그 측정된 결과를 토대로 SCR 시스템을 관리하여 왔다. 따라서, 종래의 기술은 SCR 시스템을 전반적으로 제어 및 관리하는데 많은 한계가 있었다.
본 발명이 해결하고자 하는 하나의 과제는, 선박 또는 육상 플랜트의 배출가스 설비로부터 나온 배출가스 처리에 최적화되고, 그 배출가스 중의 NOx와 PM(Particle Material), 분진 및/또는 미세 먼지를 보다 더 효율적으로 저감할 수 있는 선박 또는 육상 플랜트용 SCR 시스템을 제공하는 것이다.
본 발명의 일측면에 따라, 선박 또는 육상 플랜트에서 배출가스 설비로부터 나온 배기가스를 정화하여 배기하기 위한 선박 또는 육상 플랜트용 SCR 시스템이 제공된다. 이 SCR 시스템은, 상기 배출가스 설비로부터 나온 배기가스에 의해 활성화되는 촉매를 포함하는 NOx 제거용 SCR 리액터와, 상기 SCR 리액터 또는 그 상류의 환원제 공급 위치로 NH3 또는 우레아를 공급하는 환원제 공급라인과, 적어도 상기 SCR 리액터를 거친 배기가스 중의 성분들을 측정하기 위한 센서들과, 상기 센서들로부터 얻은 정보를 이용하여 상기 환원제 공급라인을 통한 환원제 공급량을 제어하는 ECU를 포함한다.
바람직하게는, 상기 SCR 시스템은 상기 ECU에 의해 상기 센서들의 이상 유무가 체크되도록 구성된다.
바람직하게는, 상기 SCR 시스템은 상기 촉매에 끼인 이물질을 제거하기 위해, 에어라인으로부터 공급된 에어를 상기 촉매에 부는 에어 수트 블로워를 더 포함하며, 더 바람직하게는, 상기 촉매에 부는 에어의 양이 상기 ECU에 의해 제어된다.
바람직하게는, 상기 ECU는 상기 센서들로부터 얻은 정보들 중 NOx 양 및 NH3 양 정보를 기초로 상기 환원제의 공급량을 제어한다.
바람직하게는, 상기 SCR 시스템은 상기 센서들이 측정한 정보를 분석하여 상기 ECU에 제공하는 어낼라이저를 더 포함한다.
바람직하게는, 상기 SCR 시스템은, 상기 ECU와 유선 또는 무선으로 통신하면서 상기 센서들로부터 취득한 데이터의 모니터링을 위한 OBM 시스템을 더 포함한다.
더 바람직하게는, 상기 SCR 시스템은 상기 ECU와 유선 또는 무선으로 통신하며, 상기 센서들로부터 취득한 데이터를 모니터링하고 저장하는 OBM 시스템을 더 포함한다.
바람직하게는, 상기 OBM 시스템은, 선박 엔진 사양의 계수를 직접 입력 가능하도록 구성되며, 배기가스의 단위를 사용자가 원하는 단위로 모드 전환하여 모니터에 표시할 수 있게 구성된다.
일 실시예에 따라, 상기 OBM 시스템은 배기가스 중 NOx, NH3, HC, SOx, SO2 또는 CO 성분의 단위를 g/kWh 또는 ppm 중 하나로 선택하여 모니터에 표시하는 기능을 갖는다.
일 실시예에 따라, 상기 OBM 시스템은 배기가스 중 PM 성분의 단위를 mg/m3, g/kWh, 또는 ppm 중 하나로 선택하여 모니터에 표시하는 기능을 갖는다.
일 실시예에 따라, 상기 OBM 시스템은 배기가스 중 CO2 또는 O2 성분의 단위를 % 또는 ppm으로 모니터에 표시하는 기능을 갖는다.
바람직하게는, 상기 OBM 시스템은 상기 ECU의 모든 기능을 자동 제어 또는 수동 제어로 모드로 전환되게 할 수 있다.
바람직하게는, 상기 SCR 리액터의 전단 배관과 후단 배관에는 플렉시블한 제1 연결구조와 제2 연결구조가 각각 배치되며, 상기 제1 연결구조와 상기 제2 연결구조의 사이에는 상기 SCR 리액터 또는 그와 연결된 양측의 배관을 지지하는 방진장치가 설치된다.
바람직하게는, 상기 SCR 시스템은, 비정상 상태에서 상기 배출가스 설비로부터 나온 배출가스를 상기 SCR 리액터로부터 우회하여 흐르게 하는 바이패스 시스템을 더 포함하되, 상기 바이패스 시스템은, 양단 각각이 상기 리액터의 전단 및 후단 배관에 연결되는 바이패스 라인과, 상기 바이패스 라인의 양단에 각각 설치되어, 정상상태에서는 상기 바이패스 라인을 닫고, 비정상 상태에서는 상기 바이패스 라인을 여는 바이패스 댐퍼들을 포함하며, 상기 ECU는 상기 바이패스 댐퍼들을 제어한다.
본 발명의 다른 측면에 따라 선박 또는 육상 플랜트에서 배출가스 설비로부터 나온 배기가스를 정화하여 배기하기 위한 선박 또는 육상 플랜트용 SCR 시스템이 제공된다. 상기 SCR 시스템은, 상기 배출가스 설비로부터 나온 배기가스에 의해 활성화되는 촉매를 포함하는 NOx 제거용 SCR 리액터와, 상기 SCR 리액터 또는 그 상류의 환원제 공급 위치로 NH3 또는 우레아를 공급하는 환원제 공급라인과, 상기 배기가스를 가열하여 상기 배기가스 중의 SOOT, 먼지 또는 이물질을 태우는 히터와, 상기 히터의 후단에서 상기 배기가스 중의 PM, 분진 또는 미세 먼지를 저감하는 DPF(Diesel Particulate Filter) 장치를 포함한다.
바람직하게는, 상기 히터와 상기 DPF 장치는 상기 배출가스 설비와 상기 SCR 리액터 사이에 위치한다. 더 바람직하게는, 상기 히터와 상기 DPF 장치는 상기 환원제 공급 위치의 상류측에 위치한다.
또한, 상기 히터와 상기 DPF 장치는 상기 SCR 리액터의 하류 측에 위치할 수 있다.
본 발명에 따르면, 작업자가 직접 휴대형 오염성분 분석기를 이용해 SCR 시스템의 일정 위치에서의 오염성분을 직접 측정하고, 그 측정된 결과를 토대로 SCR 시스템을 관리하여 왔던 종래기술의 번거로움 없이, ECU가 센서들 및/또는 그 외 요소들로부터 제공되는 정보에 의해, SCR 시스템을 전반적으로 제어할 수 있다.또한, 본 발명에 따르면, OBM 시스템이 ECU와 유선 또는 무선 통신 가능하게 마련되어, SCR 시스템의 운전 및/또는 관리에 필요한 각종 데이터를 사용자에게 제공, 모니터링, 저장할 수 있다. 선박 또는 육상 플랜트의 배출가스 설비로부터 나온 배출가스 처리에 최적화되고, 그 배출가스 중의 NOx와 PM(Particle Material), 분진 및/또는 미세 먼지를 보다 더 효율적으로 저감할 수 있는 선박 또는 육상 플랜트용 SCR 시스템이 구현된다. 본 실시예 따른 SCR 시스템은 SCR 리액터 및 그와 연계되는 구성요소(들)에 의해 효과적으로 NOx를 저감함은 물론이고, 집진기 대신에 설치된 히터와 DPF 장치를 포함하는 DPF 시스템에 의해 배기가스 중의 PM, 분진, 미세 먼지도 효과적으로 제거할 수 있다. DPF 장치로 걸러내기 힘든 크기의 수트 또는 이물질을 히터에 의해 미리 태우므로, DPF 시스템은 보다 더 효율적으로 배기가스 중의 오염 성분을 제거할 수 있다. DPF 장치는 필터는 털어낸 것만으로도 재생하여 이용할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 선박의 SCR 시스템을 설명하기 위한 도면.
도 2는 본 발명의 제2 실시예에 따른 선박의 SCR 시스템을 설명하기 위한 도면.
도 3은 본 발명의 제3 실시예에 따른 선박의 SCR 시스템을 설명하기 위한 도면.
도 4는 도 3에 도시된 제3 실시예의 변형예를 보여주는 도면.
도 5는 본 발명의 제4 실시예에 따른 선박의 SCR 시스템을 설명하기 위한 도면.
도 6은 도 5에 도시된 제4 실시예의 변형예를 보여주는 도면.
도 7은 본 발명에 다른 실시예에 따라 SCR 리액터의 하류측에 DPF 시스템을 배치한 예를 보여주는 도면.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 또한, 아래의 표 1에는 첨부된 도면들에서 기호로 표시된 요소들 또는 신호의 명칭들이 설명되어 있다.
표 1
Figure PCTKR2010002446-appb-T000001
<제1 실시예>
도 1은 본 발명의 제1 실시예에 따른 선박의 SCR 시스템을 설명하기 위한 도면이다. 상세한 설명 및 특허청구범위에 쓰인 용어 '선박'은 추진기관이 있는 일반적 의미의 선박은 물론이고 해상에 떠 있을 수 있는 해상부유구조물을 포함한다.
도 1을 참조하면, 본 실시예의 SCR 시스템은 전단이 배출가스 설비(1)와 연결되어 있는 SCR 리액터(2)를 포함한다. 배출가스 설비(1)는 선박의 추진용 엔진, 또는 기타 다른 용도의 엔진이거나, 또는 LNG 운반선에서의 보일러, 또는, 선박에서 연소에 의해 배기가스를 배출하는 다양한 종류의 설비일 수 있다. SCR 리액터(2)는 선택적 촉매 환원 방식으로 배기가스 중의 NOx를 저감하는 촉매가 내장된다. SCR 리액터(2)의 케이싱 내에서는 NOx가 촉매 존재하에서 환원제와 반응하여 질소로 환원된다.
본 실시예에 따른 SCR 시스템은 상기 SCR 리액터(2) 내에 200℃ 내지 500℃ 반응 온도에서 활성화되어 사용가능한 촉매를 포함하고 있다. 촉매의 활성화 온도 범위, 즉, 200℃ 내지 500℃는 배기가스가 SCR 리액터(2)를 지나는 시점을 기준으로 정해지는 것이 좋다. 또한, 본 실시예의 시스템은, 배기가스가 배출가스 설비(1)로부터 나와 진행하면서 온도가 감소되는 것을 고려해, SCR 리액터(2)를 지나는 배기가스 온도에 상응하는 활성화 온도의 촉매를 선택해 이용한다.
또한, 상기 SCR 리액터(2) 내에는 서로 다른 활성화 온도를 갖는 2종 이상의 촉매가 내장될 수 있다. 이는 SCR 리액터(2)에서 촉매 반응이 이루어지는 온도 범위를 넓히는데 기여할 수 있다. 또한, SCR 리액터(2) 내에는 NOx 저감용 촉매 외에 다른 성분을 저감하는 촉매가 더 설치될 수 있다.
본 실시예에 따른 선박의 SCR 시스템은, 기존에 알려져 있는 시스템과 달리, SCR 리액터(2)의 후단에 집진설비를 구비하고 있지 않다. 그 대신, 본 실시예의 시스템은 SCR 리액터(2)의 전단에 DPF 시스템을 포함한다. SCR 리액터(2)의 전단 측, 즉, SCR 리액터(2)와 배출가스 설비(1) 사이에는 히터(21)와 DPF 장치(20)를 포함하는 DPF 시스템이 제공된다. 이때, SCR 리액터(2)의 상류 측에 DPF 시스템을 두는 것이 바람직하다. 하지만, SCR 리액터(2) 상류측에 DPF 시스템을 없애고, SCR 리액터(2)의 하류 측에 DPF 시스템을 두는 것도 고려될 수 있다. 상기 DPF 시스템이 히터(21)는 예를 들면, 가스, 전기, 증기, 에어 등을 이용할 수 있다.
본 실시예에서, 상기 DPF 시스템, 즉, 히터(21)와 DPF 장치(20)는, 이하 설명되는 환원제 공급라인(4)에 의해 환원제가 공급되는 위치, 즉, 환원제 공급 위치의 상류측에 배치되는 것이 선호된다. 환원제 공급 위치의 상류에서, 상기 히터(21)는 상기 배출가스 설비(1)로부터 SCR 리액터(2)로 향하는 배기가스를 가열하여, 상기 배기가스 중의 수트(soot), 먼지 또는 이물질을 태운다. 상기 DPF 장치(20)는 상기 히터(21)의 후단에서 상기 배기가스 중의 PM, 분진 또는 미세 먼지를 걸러내어 저감한다. 이때, DPF 장치(20)는, 히터(21)에 의해 타고 남은 미세 입자의 성분들만을 걸러내므로, 더욱 더 효율적으로 배기가스를 정화하여 SCR 리액터(2)로 보낼 수 있다.
앞에서 간략히 언급한 바와 같이, 본 실시예의 시스템은, SCR 리액터(2)의 후단에 배기가스 중의 NOx, NH3, PM, HC, SO2, CO, CO2, O2 등을 감지할 수 있는 각종 센서(11)를 구비할 수 있다. 또한, 상기 시스템은 상기 센서(11)로부터 얻은 정보를 이용해 NOx, NH3, PM, HC, SO2, CO, CO2, O2 등 배기가스 내 잔류 성분을 분석하기 위한 어낼라이저(analyzer; 7)를 SCR 리액터(2) 후단에 구비한다. 전술한 각종 센서(11)와 어낼라이저(7)는 ECU(5)에 의해 제어된다. 상기 ECU(5)는 상기 센서(11)와 어낼라이저(7)는 물론이고 각종 밸브 또는 펌프와 같은 기기를 전자적으로 제어한다. 보다 구체적으로, 상기 ECU(5)는 센서(11)로부터 측정되거나, 또는 상기 센서(11)로부터 측정된 후 상기 어낼라이저(7)에 의해 분석된 정보를 이용하여, 환원제 공급라인(4)과 연계된 부품(들)을 제어해, NH3 또는 우레와 같은 환원제의 공급량을 제어한다. 이때, 상기 ECU(5)가 이용하는 정보는 센서(11)들에 의한 여러 측정값 중 NOx 및/또는 NH3의 측정값을 포함한다. 또한, 상기 ECU(5)는 차압계 또는 시간차에 의해 이하 자세히 설명되는 수트 블로워 시스템(air soot blower system; 8)을 제어할 수 있으며, DPF 시스템의 히터(21)의 온도를 제어하는 역할도 할 수 있다.
또한, 본 실시예의 시스템은, 전체 시스템의 제어 및/또는 시스템의 모니터링, 시스템의 온/오프, 그리고 오염물질(특히, NOx) 저감 효율의 디스플레이를 담당하는 OBM 시스템(6; On Board Monitering System)을 포함할 수 있는데, 이 OBM 시스템(6)은, 상기 ECU(5)와 유무선 통신 가능하게 구성되어, 상기 ECU(5)의 모든 기능을 자동 제어 또는 수동 제어로 모드 전환하는 기능을 갖는다. 또한, 상기 OBM 시스템(6)은 NOx, NH3, HC, SOx, SO2, CO, PM, CO2, O2 등의 센서(11)들로부터 취득한 데이터를 제어실 또는 현장에서 모니터링 및/또는 저장하는 역할을 할 수 있다.
한편, OBM 시스템(6)의 이용에 있어서, 선박이나 육상 플랜트에서 사용되는 배기가스의 단위를 사용자가 원하는 단위로 모드 전환하면 모니터에 표시될 수 있다. 특히, 선박의 경우 IMO 규정에 의해 배기가스의 단위를 g/kWh로 나타내도록 되어 있다. 그러므로, 배기가스의 단위를 g/kWh로 나타내기 위한 선박엔진사양의 계수를 입력할 필요가 있다. 본 실시예에 따른 OBM 시스템(6)은 사용자가 선박의 배기가스 단위인 g/kWh를 나타내기 위한 선박엔진사양의 계수를 직접 입력 가능하도록 구성되어 있다. 본 실시예의 OBM 시스템을 이용하면, 예컨대, NOx, NH3, HC, SOx, SO2, CO는 g/kWh 또는 ppm으로 모니터에 나타낼 수 있고, PM은 mg/m3, 또는 g/kWh 또는 ppm으로 모니터에 나타낼 수 있고, CO2, O2는 % 또는 ppm으로 모니터에 나타낼 수 있다.
앞서 언급한 바와 같이, 본 실시예에 따른 선박의 SCR 시스템은 SCR 리액터(2) 내 또는 그 부근의 수트 블로워 시스템(air soot blower system; 8)으로 에어를 공급하는 에어라인(3)을 포함한다. 에어 수트 블로워 시스템(8)은 에어라인(3)으로부터 공급된 공기를 SCR 리액터(2) 내 촉매에 불어, 촉매에 끼인 이물질을 제거하는 기능을 수행한다.
본 실시예에 따른 선박의 SCR 시스템은, 앞서 언급한 바와 같은 NOx 저감용 환원제를 SCR 리액터(2) 내로 공급하기 위해, 환원제 공급라인(4)을 포함한다. 상기 환원제 공급라인(4)은 NH3 또는 우레아를 SCR 리액터(2) 내로 공급하며, 상기 공급된 NH3 또는 우레아는 촉매 존재하에서 배기가스 중의 NOx와 환원 반응을 일으킨다.
전술한 에어라인(3)은 상기 수트 블로워 시스템을 향하는 라인으로부터 분기되어 상기 환원제 공급라인(4)으로 이어진 라인을 포함한다. 이러한 에어라인(3)의 구조를 이하에서는 '투웨이'라 칭한다. 투웨이 에어라인(3)은, 하나의 라인이 전술한 수트 블로워 시스템(air soot blower system; 8)의 작동에 참여하고, 나머지 하나의 라인은 NH3 또는 우레아를 SCR 리액터(2) 내 주입 노즐(12)로 밀어내는 작용을 한다.
또한, 본 실시예에 따른 선박의 SCR 시스템은 SCR 리액터(2)의 입구 측에 배기가스가 촉매에 고르게 분포되도록 해주는 댐퍼(9)를 구비한다. 그리고, 댐퍼(9) 상류측의 SCR 리액터(2) 전단에는 배기가스와 우레아/NH3를 골고루 혼합시키기 위한 믹서(10)가 설치된다. 상기 SCR 리액터(2)의 전단에도 각종 센서(11)들이 설치되는데, 이 센서(11)들은, 배기가스가 정제되기 전, 즉, 배기가스가 SCR 리액터(2)를 통과하기 전에, 배기가스 중 NOx, NH3, PM, HC, SO2, CO, CO2 또는 O2 등의 함량을 측정하여 그를 분석하기 위함이며, 이 분석된 정보는 SCR 리액터(2)를 거친 정제된 배기가스 중의 성분 정보와 대비될 수 있다.
<제2 실시예: 원웨이 에어라인>
도 2는 본 발명의 제2 실시예에 따른 선박의 SCR 시스템을 잘 보여준다.
도 2를 참조하면, 본 실시예에 따른 선박의 SCR 시스템은 SCR 리액터(2)로 NH3/우레아를 공급하기 위한 환원제 공급라인(4)을 포함하되, 상기 환원제 공급라인(4)은, 앞선 실시예의 에어라인(3)에 연결됨 없이, 상기 SCR 리액터(2) 전단의 주입 노즐(12)로 연장된다. 상기 환원제 공급라인(4)은, 자체적으로 즉, 자체 구비된 펌프등의 공급수단으로 NH3/우레아를 바로 SCR 리액터(2)의 전단 내 주입 노즐(12)로 보내므로, 배관을 보다 단순화시킬 수 있고, 더욱 순도 높은 우레아 또는 NH3를 NOx 저감에 이용할 수 있다. 이를 위해, 펌프 자체 또는 펌프와 연결된 제어라인에는 우레아 또는 NH3의 유량을 제어하는 기기들이 설치될 수 있다. 이에 의해, 에어라인(3)은 수트 블로워 시스템(air soot blower system; 8)의 작동에 참여하는 하나의 라인을 포함하며, 이하에서는, 이러한 에어라인을 '원웨이 에어라인'으로 칭한다. 본 실시예의 나머지 구성은 앞선 제1 실시예와 같으므로 상세한 설명이 생략된다.
<제3 실시예: 내진/면진/제진을 위한 방진장치>
도 3은 본 발명의 제3 실시예에 따른 선박의 SCR 시스템을 잘 보여준다.
도 3을 참조하면, 본 실시예에 따른 선박의 SCR 시스템은 내진/면진/제진을 위한 방진장치(14)가 SCR 리액터(2)에 설치된다. 선박은 해상에서 자체적으로 또는 파랑 등에 의해 움직이므로, 진동이 심하고 부하의 변수가 많다. 이에 대응하여, 본 시스템은 상기 SCR 리액터(2)에 방진장치(14)를 설치하여 구성된다. 이때, 상기 방진장치(14)는 다양한 구조를 고려할 수 있으나 현가구조가 선호된다. 또한, SCR 리액터(2)에 방진장치(14)가 잘 작동하도록 상기 SCR 리액터(2)의 전단 및 후단 각각의 관들은 플렉시블한 연결구조를 갖는다. 본 실시예에서는, 플렉시블 조인트(13)를 SCR 리액터(2)의 전단 및 후단에서의 관 연결에 이용하였다. 도 3에 도시된 시스템은 원웨이 에어라인(3)을 포함하는 시스템이다.
하지만, 투웨이 에어라인을 포함하는 시스템에도 방진장치(14)는 적용될 수 있으며, 방진장치(14)와 투웨이 에어라인(3)을 포함하는 SCR 시스템의 구성은 도 4에 나타내었다.
나머지 구성은 앞선 제1 실시예 및 제2 실시예와 크게 다르지 않으며, 따라서, 나머지 구성에 대한 설명은 생략하기로 한다.
<제4 실시예: 바이패스 시스템>
도 5는 본 발명의 제4 실시예에 따른 선박의 SCR 시스템을 잘 보여준다.
도 5를 참조하면, 본 실시예에 따른 선박의 SCR 시스템은, 이상 상황 및/또는 긴급 상황 발생시, 배출가스 설비(1)의 작동을 그대로 유지한 채 이상 부위(특히, SCR 리액터(2)의 이상 부위)를 교체 또는 보수할 수 있게 해주는 바이패스 시스템을 포함한다.
본 실시예에서, 바이패스 시스템은, 바이패스 라인(16)과 바이패스 댐퍼(17, 17)들을 포함한다. 바이패스 라인(16)은 그 양단이 각각 SCR 리액터(2)의 전단과 후단에 연결된다. 정상 상태에서는 SCR 리액터(2)를 흐르던 가스는, 이상 또는 긴급 상황에서는, SCR 리액터(2) 전단으로부터 후단까지 바이패스 라인(16)을 통해 SCR 리액터(2)를 거치지 않고 우회하여 흐른다. 한 쌍의 상기 바이패스 댐퍼(17, 17)들은, 바이패스 라인(16)의 양단에 각각 설치되며, 정상 상태에서는, 바이패스 라인(8)의 양단부를 닫고 SCR 리액터(2)의 통로는 개방하되, 이상 또는 긴급 상황에서는 바이패스 라인(16)의 양단부는 개방하고, SCR 리액터(2)의 통로는 닫도록 구성된다.
이때, 상기 바이패스 시스템은, 전술한 센서(11), 어낼라이저(7) 및/또는 OBM 시스템(6)에 의해 긴급상황으로 판단된 경우, 상기 ECU(5)에 의해 제어되도록 구성된다. 상기 ECU(5)는, 긴급상황 발생시 바이패스 라인(16)의 양단부는 개방하고 SCR 리액터(2)의 통로는 닫도록, 바이패스 댐퍼(17, 17)들을 동시에 제어할 수 있다.
도 5에 도시된 SCR 시스템은 원웨이 에어라인(3)을 포함하는 선박의 SCR 시스템이다. 하지만, 투웨이 에어라인을 포함하는 시스템에도 바이패스 라인 및 바이패스 댐퍼들을 적용할 수 있으며, 바이패스 라인(16) 및 바이패스 댐퍼(17)들과 투웨이 에어라인(3)을 포함하는 SCR 시스템의 구성은 도 6에 나타내었다.
<변형 실시예>
앞선 실시예에서는 히터(21)와 DPF 장치(30)를 포함하는 DPF 시스템이 SCR 리액터(2)의 상류측에 설치되는 것이 주로 소개되었다. 하지만, 도 7에 도시된 바와 같이, 히터(31)와 DPF 장치(30)를 포함하는 DPF 시스템이 SCR 리액터(2)의 하류측에만 제공되는 선박 또는 육상 플랜트의 SCR 시스템도 고려될 수 있다. SCR 리액터(2) 하류의 DPF 시스템은 히터(31)와 DPF 장치(30)를 구비한 채 SCR SCR 리액터(2)와 그 하류측의 센서(11) 사이에 배치된다. 본 실시예에서도, 히터(31)는 배기가스 중의 수트(soot), 먼지 또는 이물질을 태우며, DPF 장치(30)는 상기 히터(31)의 후단에서 상기 배기가스 중의 PM, 분진 또는 미세 먼지를 걸러내어 저감한다.
<변형 실시예>
앞선 실시예에서는 히터(21)와 DPF 장치(30)를 포함하는 DPF 시스템이 SCR 리액터(2)의 상류측에 설치되는 것이 주로 소개되었다. 하지만, 도 7에 도시된 바와 같이, 히터(31)와 DPF 장치(30)를 포함하는 DPF 시스템이 SCR 리액터(2)의 하류측에만 제공되는 선박 또는 육상 플랜트의 SCR 시스템도 고려될 수 있다. SCR 리액터(2) 하류의 DPF 시스템은 히터(31)와 DPF 장치(30)를 구비한 채 SCR SCR 리액터(2)와 그 하류측의 센서(11) 사이에 배치된다. 본 실시예에서도, 히터(31)는 배기가스 중의 수트(soot), 먼지 또는 이물질을 태우며, DPF 장치(30)는 상기 히터(31)의 후단에서 상기 배기가스 중의 PM, 분진 또는 미세 먼지를 걸러내어 저감한다.

Claims (20)

  1. 선박 또는 육상 플랜트에서 배출가스 설비로부터 나온 배기가스를 정화하여 배기하기 위한 선박 또는 육상 플랜트용 SCR 시스템으로서,
    상기 배출가스 설비로부터 나온 배기가스에 의해 활성화되는 촉매를 포함하는 NOx 제거용 SCR 리액터;
    상기 SCR 리액터 또는 그 상류의 환원제 공급 위치로 NH3 또는 우레아를 공급하는 환원제 공급라인;
    적어도 상기 SCR 리액터를 거친 배기가스 중의 성분들을 측정하기 위한 센서들; 및
    상기 센서들로부터 얻은 정보를 이용하여 상기 환원제 공급라인을 통한 환원제의 공급량을 제어하는 ECU를 포함하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  2. 청구항 1에 있어서, 상기 ECU에 의해 상기 센서들의 이상 유무가 체크되도록 구성된 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  3. 청구항 1에 있어서, 상기 촉매에 끼인 이물질을 제거하기 위해, 에어라인으로부터 공급된 에어를 상기 촉매에 부는 에어 수트 블로워를 더 포함하며, 상기 촉매에 부는 에어의 양이 상기 ECU에 의해 제어되는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  4. 청구항 1에 있어서, 상기 ECU는 상기 센서들로부터 얻은 정보들 중 NOx 양 및 NH3 양 정보를 기초로 상기 환원제의 공급량을 제어하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  5. 청구항 1에 있어서, 상기 센서들이 측정한 정보를 분석하여 상기 ECU에 제공하는 어낼라이저를 더 포함하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  6. 청구항 1에 있어서, 상기 ECU와 유선 또는 무선으로 통신하며, 상기 센서들로부터 취득한 데이터를 모니터링하는 OBM 시스템을 더 포함하는 것을 특징으로 하는 선박 또는 육상 플랜트의 SCR 시스템.
  7. 청구항 1에 있어서, 상기 ECU와 유선 또는 무선으로 통신하며, 상기 센서들로부터 취득한 데이터를 모니터링하고 저장하는 OBM 시스템을 더 포함하는 것을 특징으로 하는 선박 또는 육상 플랜트의 SCR 시스템.
  8. 청구항 7에 있어서, 상기 OBM 시스템은, 선박 엔진 사양의 계수를 직접 입력 가능하도록 구성되며, 배기가스의 단위를 사용자가 원하는 단위로 모드 전환하여 모니터에 표시할 수 있게 구성된 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  9. 청구항 8에 있어서, 상기 OBM 시스템은 배기가스 중 NOx, NH3, HC, SOx, SO2 또는 CO 성분의 단위를 g/kWh 또는 ppm 중 하나로 선택하여 모니터에 표시하는 기능을 갖는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  10. 청구항 8에 있어서, 상기 OBM 시스템은 배기가스 중 PM 성분의 단위를 mg/m3, g/kWh, 또는 ppm 중 하나로 선택하여 모니터에 표시하는 기능을 갖는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  11. 청구항 8에 있어서, 상기 OBM 시스템은 배기가스 중 CO2 또는 O2 성분의 단위를 % 또는 ppm으로 모니터에 표시하는 기능을 갖는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  12. 청구항 6에 있어서, 상기 OBM 시스템은 상기 ECU의 모든 기능을 자동 제어 또는 수동 제어로 모드로 전환되게 하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  13. 청구항 1에 있어서, 상기 SCR 리액터의 전단 배관과 후단 배관에는 플렉시블한 제1 연결구조와 제2 연결구조가 각각 배치되며, 상기 제1 연결구조와 상기 제2 연결구조의 사이에는 상기 SCR 리액터 또는 그와 연결된 양측의 배관을 지지하는 방진장치가 설치되는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  14. 청구항 1에 있어서, 비정상 상태에서 상기 배출가스 설비로부터 나온 배출가스를 상기 SCR 리액터로부터 우회하여 흐르게 하는 바이패스 시스템을 더 포함하되, 상기 바이패스 시스템은, 양단 각각이 상기 리액터의 전단 및 후단 배관에 연결되는 바이패스 라인과, 상기 바이패스 라인의 양단에 각각 설치되어, 정상상태에서는 상기 바이패스 라인을 닫고, 비정상 상태에서는 상기 바이패스 라인을 여는 바이패스 댐퍼들을 포함하며, 상기 ECU는 상기 바이패스 댐퍼들을 제어하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  15. 청구항 1에 있어서, 상기 촉매는 200℃ 내지 500℃ 반응 온도에서 활성화되어 사용가능한 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  16. 청구항 1에 있어서, 상기 배기가스를 가열하여 상기 배기가스 중의 수트(soot), 먼지 또는 이물질을 태우는 히터와, 상기 히터의 후단에서 상기 배기가스 중의 PM, 분진 또는 미세 먼지를 저감하는 DPF(Diesel Particulate Filter) 장치를 포함하는 것을 특징으로 선박 또는 육상 플랜트용 SCR 시스템.
  17. 청구항 16에 있어서, 상기 히터와 상기 DPF 장치는 상기 배출가스 설비와 상기 SCR 리액터 사이에 위치하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  18. 청구항 17에 있어서, 상기 히터와 상기 DPF 장치는 상기 환원제 공급 위치의 상류측에 위치하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  19. 청구항 16에 있어서, 상기 히터와 상기 DPF 장치는 상기 SCR 리액터의 하류측에 위치하는 것을 특징으로 하는 선박 또는 육상 플랜트용 SCR 시스템.
  20. 선박 또는 육상 플랜트에서 배출가스 설비로부터 나온 배기가스를 정화하여 배기하기 위한 선박 또는 육상 플랜트용 SCR 시스템으로서,
    상기 배출가스 설비로부터 나온 배기가스에 의해 활성화되는 촉매를 포함하는 NOx 제거용 SCR 리액터;
    상기 SCR 리액터 또는 그 상류의 환원제 공급 위치로 NH3 또는 우레아를 공급하는 환원제 공급라인;
    상기 배기가스를 가열하여 상기 배기가스 중의 수트(soot), 먼지 또는 이물질을 태우는 히터; 및
    상기 히터의 후단에서 상기 배기가스 중의 PM, 분진 또는 미세 먼지를 저감하는 DPF(Diesel Particulate Filter) 장치를 포함하는 것을 특징으로 선박 또는 육상 플랜트용 SCR 시스템.
PCT/KR2010/002446 2009-09-18 2010-04-20 선박 또는 육상 플랜트용 scr시스템 WO2011034270A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20090088725 2009-09-18
KR10-2009-0088724 2009-09-18
KR10-2009-0088725 2009-09-18
KR20090088724 2009-09-18
KR1020100034990A KR100984547B1 (ko) 2009-09-18 2010-04-15 선박 또는 육상 플랜트용 scr시스템
KR1020100034991A KR100984548B1 (ko) 2009-09-18 2010-04-15 선박 또는 육상 플랜트용 scr시스템
KR10-2010-0034990 2010-04-15
KR10-2010-0034991 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011034270A1 true WO2011034270A1 (ko) 2011-03-24

Family

ID=43758845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002446 WO2011034270A1 (ko) 2009-09-18 2010-04-20 선박 또는 육상 플랜트용 scr시스템

Country Status (1)

Country Link
WO (1) WO2011034270A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821598A (zh) * 2014-03-21 2014-05-28 大连海事大学 船舶柴油机尾气选择性催化还原脱硝系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074825U (ja) * 1993-06-17 1995-01-24 ダイハツ工業株式会社 触媒コンバータの支持構造
JP2003184542A (ja) * 2001-12-13 2003-07-03 Isuzu Motors Ltd ディーゼルエンジンの排気ガス浄化システム
JP2006212591A (ja) * 2005-02-07 2006-08-17 Isuzu Motors Ltd 排気ガス浄化システム及びその排気ガス浄化方法
KR100629645B1 (ko) * 2002-11-26 2006-10-02 알스톰 테크놀러지 리미티드 배출물을 처리하기 위한 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074825U (ja) * 1993-06-17 1995-01-24 ダイハツ工業株式会社 触媒コンバータの支持構造
JP2003184542A (ja) * 2001-12-13 2003-07-03 Isuzu Motors Ltd ディーゼルエンジンの排気ガス浄化システム
KR100629645B1 (ko) * 2002-11-26 2006-10-02 알스톰 테크놀러지 리미티드 배출물을 처리하기 위한 방법
JP2006212591A (ja) * 2005-02-07 2006-08-17 Isuzu Motors Ltd 排気ガス浄化システム及びその排気ガス浄化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821598A (zh) * 2014-03-21 2014-05-28 大连海事大学 船舶柴油机尾气选择性催化还原脱硝系统

Similar Documents

Publication Publication Date Title
WO2011034240A1 (ko) 바이패스 시스템을 갖는 scr 시스템
KR100984547B1 (ko) 선박 또는 육상 플랜트용 scr시스템
KR100984548B1 (ko) 선박 또는 육상 플랜트용 scr시스템
US5203166A (en) Method and apparatus for treating diesel exhaust gas to remove fine particulate matter
KR101535938B1 (ko) Gps를 이용한 바이패스 시스템을 갖는 scr 시스템
WO2013111989A1 (ko) 후처리 시스템 장치 및 제어방법
EP2187013B1 (en) Construction for an exhaust after treatment device
WO2017039268A1 (ko) 배기가스 정화 시스템 및 이의 모니터링 방법
WO2012096513A2 (ko) 디젤엔진 배기가스 후처리 장치의 차압센서 취부구조
ATE417190T1 (de) Abgasreinigungsvorrichtung
KR20150113138A (ko) 다엽형 수트 블로워
WO2011052823A1 (ko) Scr시스템
ATE258272T1 (de) Abgaspartikelfilter für dieselmotor
WO2015190623A1 (ko) 건설차량
WO2011034270A1 (ko) 선박 또는 육상 플랜트용 scr시스템
WO2015099458A1 (ko) 배기가스 후처리 장치 및 그 제어 방법
WO2011034239A1 (ko) 방진장치를 갖는 scr 시스템
CN111156068B (zh) 发动机后处理系统及车辆
CN211692608U (zh) 发动机后处理系统及车辆
CN219492369U (zh) 一种天然气紧耦合后处理装置
CN210564728U (zh) 叉车
WO2013100261A1 (ko) 디젤엔진 배기가스 후처리장치
CN201056626Y (zh) 定型机与净化装置的组合联结结构
CN209195528U (zh) 一种应用于轨道机车的箱式尾气净化装置
KR20150001121A (ko) 세라믹필터가 구비된 필터부를 포함하는 배기가스 유해물질 동시 저감시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817339

Country of ref document: EP

Kind code of ref document: A1