WO2011034132A1 - Method for manufacturing transparent conductive film, method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, method for manufacturing transparent conductive base body, transparent conductive base body, and electronic apparatus - Google Patents

Method for manufacturing transparent conductive film, method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, method for manufacturing transparent conductive base body, transparent conductive base body, and electronic apparatus Download PDF

Info

Publication number
WO2011034132A1
WO2011034132A1 PCT/JP2010/066044 JP2010066044W WO2011034132A1 WO 2011034132 A1 WO2011034132 A1 WO 2011034132A1 JP 2010066044 W JP2010066044 W JP 2010066044W WO 2011034132 A1 WO2011034132 A1 WO 2011034132A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
light emitting
substrate
Prior art date
Application number
PCT/JP2010/066044
Other languages
French (fr)
Japanese (ja)
Inventor
英祐 横山
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2011034132A1 publication Critical patent/WO2011034132A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes

Definitions

  • the present invention relates to a method for producing a transparent conductive film, a method for producing a semiconductor light emitting device, a semiconductor light emitting device, a lamp, a method for producing a transparent conductive substrate, a transparent conductive substrate, and an electronic apparatus.
  • This application claims priority based on Japanese Patent Application No. 2009-214913 filed in Japan on September 16, 2009 and Japanese Patent Application No. 2010-202970 filed in Japan on September 10, 2010. This is incorporated here.
  • Group III nitride semiconductors such as the represented gallium nitride compound semiconductors are attracting attention.
  • Such a semiconductor is formed on a substrate made of sapphire single crystal, various oxides, III-V group compounds, or the like, by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). ) And the like.
  • an n-type semiconductor layer made of a group III nitride semiconductor, a light emitting layer, and a p-type semiconductor layer are laminated in this order on a substrate made of a sapphire single crystal or the like.
  • the substrate made of a sapphire single crystal is an insulator, the element structure is generally such that the positive electrode formed on the p-type semiconductor layer and the negative electrode formed on the n-type semiconductor layer are coplanar. It becomes the structure that exists above.
  • the semiconductor element having the above composition has a characteristic that current is injected only into the semiconductor directly under the electrode because the current diffusion in the lateral direction is small, so that the light emitted from the light emitting layer is the electrode. There is a problem that it is difficult to be taken out by being blocked. For this reason, in such a semiconductor light emitting element, a transparent conductive film is usually provided on the surface, and the current applied to the positive electrode side (p-type side) is diffused widely throughout the p-type semiconductor layer by this transparent electrode film. At the same time, light is extracted through the transparent electrode film (see, for example, Patent Documents 1 and 2).
  • the transparent conductive film a known conductive material and configuration such as a layer structure in which an oxide such as Ni or Co and Au as a contact metal are combined is used. Also, in recent years, a layer structure having a transparent structure with improved transparency by using a highly conductive transparent oxide such as ITO (indium tin oxide) to reduce the film thickness of the contact metal as much as possible. It has come to be adopted as a membrane. Thereby, it is set as the structure which can take out the light from a light emitting layer outside efficiently through a transparent conductive film.
  • ITO indium tin oxide
  • a transparent conductive film made of ITO is excellent in conductivity and transparency, but has a problem that manufacturing cost increases because it is a film using indium which is a rare metal. For this reason, recently, it has been proposed to reduce the cost by employing a low-cost material such as titanium oxide (TiO 2 ) containing a dopant instead of ITO for the transparent conductive film (for example, (See Patent Documents 3 to 6).
  • TiO 2 titanium oxide
  • titanium oxide used in the transparent conductive film described in Patent Documents 3 to 6 has a higher sheet resistance and inferior conductivity than ITO, it can diffuse current widely over the entire semiconductor layer. Due to the difficulty, there has been a problem that the light emission efficiency of the semiconductor light emitting device is lowered.
  • This invention is made
  • the present invention also provides a semiconductor light-emitting device that can diffuse a current over the entire semiconductor layer and produce a semiconductor light-emitting device with excellent light extraction efficiency by forming the transparent conductive film on a semiconductor substrate. It is an object of the present invention to provide a method for manufacturing a light emitting device and a semiconductor light emitting device obtained thereby. Furthermore, an object of the present invention is to provide a lamp that uses the semiconductor light emitting element and has excellent light emission characteristics.
  • the present invention provides a substrate (hereinafter referred to as a transparent conductive substrate) having a transparent conductive film excellent in conductivity and transparency by forming the transparent conductive film on the surface of a substrate of an inorganic material or a polymer material. It is also an object of the present invention to provide a transparent conductive substrate obtained by the production method.
  • the “substrate” includes, for example, a sheet-like material such as a polymer sheet. Accordingly, an object of the present invention is also to provide a method for producing a transparent conductive sheet using a polymer sheet as a substrate. Furthermore, this invention aims at providing the electronic device which uses the said transparent conductive film as a transparent electrode from another viewpoint.
  • the present inventor has reduced sheet resistance in the film by optimizing the doping concentration and film forming conditions for titanium oxide, and has improved conductivity and transparency. It discovered that the outstanding transparent conductive film was obtained and completed this invention. That is, the present invention relates to the following.
  • the sputtering atmosphere is an atmosphere containing at least 0.1 to 10% by volume of oxygen, and the balance is made of an inert gas, with a film formation rate of 0.01 to 1.0 nm / second.
  • the dopant element contained in the target is Nb, Ta, Mo, W, Te, Sb, Fe, Ru, Ge, Sn, Bi, Al, Hf, Si, Zr, Co, Cr, Ni, V , Mn, Re, Ce, Y, P and B.
  • [5] A method for manufacturing a semiconductor light emitting device, wherein a semiconductor layer is formed by sequentially laminating at least an n type semiconductor layer, a light emitting layer, and a p type semiconductor layer on a substrate, and a transparent conductive film is formed on the p type semiconductor layer. And the said transparent conductive film is formed using the manufacturing method as described in any one of said [1] thru
  • [6] A semiconductor light-emitting device obtained by the method for manufacturing a semiconductor light-emitting device according to [5].
  • [7] A lamp comprising the semiconductor light emitting device according to [6].
  • the sputtering atmosphere is an atmosphere containing at least 0.1 to 10% by volume of oxygen, with the balance being an inert gas, and a composition of 0.01 to 1.0 nm / second.
  • the transparent conductive film contains anatase type crystals means that the crystal form of titanium oxide constituting the transparent conductive film is an anatase type, a rutile type or a brookite type, for example, an X-ray by oblique incidence method. It means that the structure can be identified as anatase type based on diffraction data, and includes cases where other amorphous structures are included from the peak half-value width of X-ray diffraction data.
  • a target including a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less is used, and a sputtering atmosphere is formed with at least 0.1 to 10% by volume of oxygen.
  • a sputtering method is performed at a film formation rate of 0.01 to 1.0 nm / second, followed by annealing at a temperature of 250 ° C. or higher.
  • sheet resistance is significantly reduced. Thereby, a transparent conductive film excellent in conductivity and transparency can be formed.
  • a transparent conductive substrate of the present invention by forming a transparent conductive film on the surface of a substrate of an inorganic material or a polymer material, various transparent conductivity required to have excellent conductivity and transparency.
  • the substrate can be manufactured very easily.
  • a polymer sheet as a substrate of a transparent conductive substrate
  • a transparent conductive sheet excellent in conductivity and transparency can be easily produced.
  • the semiconductor forming the semiconductor light emitting element as the base of the transparent conductive substrate, a semiconductor light emitting element excellent in transparency and light extraction efficiency can be easily manufactured.
  • a semiconductor layer is formed by sequentially laminating at least an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer on a substrate, and on the p-type semiconductor layer, Since the transparent conductive film is formed using the method for manufacturing a transparent conductive film of the present invention, a current can be widely diffused over the entire semiconductor layer, and a semiconductor light emitting device having excellent light extraction efficiency can be manufactured. Become. Moreover, according to the semiconductor light emitting device of the present invention, since it is obtained by the production method of the present invention, it has high light extraction efficiency and excellent light emission characteristics.
  • the lamp according to the present invention uses the semiconductor light emitting device of the present invention, the lamp has excellent light emission characteristics.
  • the electronic device according to the present invention includes, for example, an electronic device using a transparent electrode such as an organic light emitting element or a photoelectric conversion element (solar cell), and is obtained by the method for producing a transparent conductive substrate of the present invention. It can be easily manufactured using a transparent conductive substrate.
  • a transparent conductive film manufacturing method a semiconductor light emitting device manufacturing method, a semiconductor light emitting device, a lamp, a transparent conductive substrate manufacturing method, a transparent conductive substrate, and an electronic device according to an embodiment of the present invention will be described. 1 to 5 will be described as appropriate. Further, in the present embodiment, the semiconductor light emitting element A in which the transparent conductive film 1 is provided on the p-type semiconductor layer 6 as shown in FIGS.
  • the method for producing a transparent conductive film of the present invention is a method of forming a film of a transparent conductive film 1 containing a titanium oxide (TiO 2 ) -based material by a sputtering method using a sputtering apparatus 40 as illustrated in FIG.
  • the transparent conductive film 1 is manufactured by performing sputtering film formation at a film formation rate of 0.01 to 1.0 nm / second and then annealing at a temperature of 250 ° C. or higher.
  • the film formation rate by sputtering is preferably set to 0.01 to 0.2 nm / second.
  • Transparent conductive film The transparent conductive film obtained by the production method of the present invention has conductivity and transparency, a film containing titanium oxide (TiO 2) containing dopant elements, titanium oxide containing a dopant element (TiO 2 ) Is preferably a film containing at least 50% by mass.
  • the illustrated transparent conductive film 1 is provided on the p-type semiconductor layer 6 constituting the semiconductor light emitting element A.
  • the transparent conductive film 1 is made of a titanium oxide material doped with an arbitrary impurity element (also referred to as a titanium oxide (TiO 2 ) -based material in this specification. Also simply referred to as a titanium oxide-based material). becomes, for example, other TiO 2, may be used reduced form TiO 2-X in which the TiO 2 partially reduced, as long as it contains a titanium oxide-based material of the conductive it is not particularly limited. Further, the material doped into titanium oxide is not particularly limited.
  • the transparent conductive film 1 has a reduced sheet resistance Rs by being formed by the manufacturing method of the present invention defined by each film forming condition described later. Thereby, when the transparent conductive film 1 is provided on the p-type semiconductor layer 6 constituting the semiconductor light-emitting element A, the current can be diffused widely over the entire p-type semiconductor 6. It becomes possible to improve the luminous efficiency of A.
  • the transparent conductive film 1 obtained by the present invention can use a wide range of titanium oxide materials having a crystal structure of an amorphous type, anatase type, rutile type, and brookite type, but from the viewpoint of easy generation of the crystal structure Therefore, it is preferable to use an anatase type titanium oxide material.
  • an anatase type titanium oxide material By forming the transparent conductive film 1 from a titanium oxide material whose crystal structure is a tetragonal anatase type, the specific resistance (or the one having a crystal structure such as an amorphous type or a rutile type) (or Sheet resistance Rs) can be controlled to be low, and the film has excellent conductivity.
  • a desired crystal structure can be obtained by employing various film forming conditions described later.
  • the sheet resistance Rs of the transparent conductive film 1 is preferably 500 ⁇ / ⁇ or less. As described above, by reducing the sheet resistance Rs of the transparent conductive film 1, the conductivity in the film is increased. Thereby, for example, when the transparent conductive film 1 is applied to the semiconductor light emitting device A, it becomes possible to diffuse current through the entire p-type semiconductor layer 6 by the transparent conductive film 1, and the light extraction efficiency is improved. Specifically, by setting the sheet resistance Rs of the transparent conductive film 1 to the above definition, the effect of improving the light extraction efficiency when applied to the semiconductor light emitting device A can be stably obtained. Further, the sheet resistance Rs of the transparent conductive film 1 is more preferably 200 ⁇ / ⁇ or less, and most preferably 80 ⁇ / ⁇ or less.
  • the method for controlling the sheet resistance Rs of the transparent conductive film 1 will be described in detail in the manufacturing method described later.
  • the dopant concentration contained in the target 47 is within the above range, and the oxygen concentration in the sputtering atmosphere or annealing is performed. It can be controlled by adjusting the temperature and the deposition rate.
  • the thickness of the transparent conductive film 1 is preferably 50 nm or more.
  • sheet resistance Rs specific resistance ⁇ / film thickness d between the sheet resistance Rs, the film thickness d, and the specific resistance ⁇ .
  • the thickness of the transparent conductive film 1 in the present invention is not particularly limited by the transparency to visible light by using the above materials, but in the case of the transparent conductive film 1 for a light emitting element. , 50 nm or more is preferable.
  • the sheet resistance Rs can be controlled to be low together with the film forming conditions described later.
  • the maximum thickness of the transparent conductive film 1 is preferably set to 1000 nm or less from the viewpoint of light extraction efficiency and production cost control.
  • this invention it is also possible to set it as the structure by which the unevenness
  • FIG. Thereby, when the transparent conductive film 1 is applied to the semiconductor light-emitting element A, the light extraction efficiency from the transparent conductive film 1 is improved, and the shape and dimensions of the unevenness are made appropriate, whereby the sheet of the transparent conductive film 1 is obtained. It is also possible to control the resistance Rs.
  • the structure of the transparent conductive film 1 can be used without any limitation, including a conventionally known structure.
  • the transparent conductive film 1 when the transparent conductive film 1 is applied to the semiconductor light emitting device A, the transparent conductive film 1 may be formed so as to cover almost the entire surface of the p-type semiconductor layer 6, or may be formed in a lattice shape or a tree shape with a gap. It is also possible.
  • the crystal structure of titanium oxide forming the transparent conductive film 1 can be made the anatase type as described above, so that the sheet resistance Rs Is obtained, and the transparent conductive film 1 having high conductivity can be realized.
  • a sputtering apparatus 40 as shown in FIG. 3 can be used as a film forming apparatus for the transparent conductive film 1 (titanium oxide film 1A).
  • a target plate 43 and a heater 44 are provided in a chamber 41, and a substrate on which the transparent conductive film 1 is formed (a wafer denoted by B in FIG. 3) is attached to the heater 44. It is done.
  • the heater 44 is supplied with a bias current to be applied to the substrate via the matching box 45, and the target plate 43 is supplied with a power current to be applied to the target 47 via the matching box 46.
  • the inside of the chamber 41 is a sputtering atmosphere filled with a gas having a predetermined composition to be described later.
  • the plasma is generated in the chamber 41 so that the material forming the target 47 is knocked out, and the titanium oxide film 1 ⁇ / b> A is formed on the wafer B attached to the heater 44.
  • a magnet 42 is provided below the target 47 (downward in FIG. 3), and the magnet 42 swings or rotates below the target 47 by a driving device (not shown). Has been. As a result, the target 47 on the target plate 43 is not biased out and can be used without unevenness.
  • the target 47 when the transparent conductive film 1 (titanium oxide film 1A) is formed by sputtering for example, a material containing a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less.
  • the sheet resistance Rs in the film is reduced by using the target 47 containing the dopant element as an impurity in the above range as the titanium oxide material and further defining the film forming conditions in the range described later.
  • the target including a titanium oxide material containing a dopant element in a proportion of 30% by mass or less preferably includes at least 50% by mass of the titanium oxide material.
  • the dopant element contained in the target 47 containing the titanium oxide-based material is not particularly limited, but for example, Nb is preferably used.
  • Nb is preferably used.
  • the dopant element contained in the target 47 containing a titanium oxide-based material is a ratio of 30% by mass or less, more preferably a ratio of 15% by mass or less, and a ratio of 10% by mass or less. More preferably it is.
  • the dopant element contained in the target 47 containing a titanium oxide-based material is contained at a ratio of at least 1% by mass in consideration of the effect.
  • the atmosphere when the transparent conductive film 1 (titanium oxide film 1A) is formed by sputtering is an atmosphere containing at least 0.1 to 10% by volume of oxygen and the balance being an inert gas.
  • argon (Ar) gas is introduced as an inert gas into the chamber 41 of the sputtering apparatus 40, and oxygen is introduced in an amount such that the concentration in the chamber 41 falls within the above range.
  • the sheet resistance Rs increases as the amount of oxygen (O 2 ) incorporated and contained in the film increases.
  • the sputtering atmosphere in the chamber 41 needs to be a gas atmosphere in which the oxygen concentration is optimized.
  • the efficiency of oxygen incorporation into the film varies depending on the deposition rate, it is necessary to adjust the oxygen concentration according to the deposition rate.
  • the amount of oxygen taken into the film during film formation can be set to an appropriate range by setting the sputtering atmosphere to an atmosphere in which the oxygen concentration range is as described above. It becomes possible. As a result, the sheet resistance of the transparent conductive film 1 (titanium oxide film 1A) after film formation can be effectively reduced.
  • the oxygen concentration contained in the sputtering atmosphere is more preferably in the range of 0.1 to 10% by volume, more preferably in the range of 0.3 to 5% by volume. More preferably, it is in the range of 0.3 to 1.6% by volume. Further, in the present invention, when the concentration of oxygen contained in the sputtering atmosphere is 0.1% by mass or less, an increase in sheet resistance can be suppressed by slowing the film formation rate. Since it takes time, it is not realistic in production.
  • the production method of the present invention is not limited to a sputtering atmosphere mainly composed of the inert gas as described above and containing a small amount of oxygen, for example, an atmosphere containing other gas such as nitrogen gas. It does not matter.
  • the film formation rate when the transparent conductive film 1 (titanium oxide film 1A) is formed by sputtering is set in the range of 0.01 to 1 nm / second.
  • the amount of oxygen (O2) taken into the film at the time of film formation is reduced, so that the transparent conductive film 1 ( The sheet resistance Rs of the titanium oxide film 1A) can be controlled to be low.
  • the film formation rate is too high, it is not preferable because damage to the target becomes a problem rather than the problem of the sheet resistance Rs as described above.
  • the film forming rate of the transparent conductive film 1 is more preferably in the range of 0.01 to 0.7 nm / second, and more preferably in the range of 0.01 to 0.3 nm / second. Is more preferable, and the range of 0.01 to 0.2 nm / second is most preferable.
  • this film is annealed at a temperature of 250 ° C. or higher, more preferably 300 ° C. or higher.
  • the formed titanium oxide film 1A is made transparent, the sheet resistance Rs (or specific resistance) is reduced, and the transparent conductive film 1 can be formed.
  • a titanium oxide film immediately after sputtering has a very high sheet resistance Rs.
  • the sheet resistance is higher than that of ITO, so that current is diffused throughout the semiconductor layer. In some cases, the luminous efficiency may be reduced.
  • the sheet resistance Rs is remarkably reduced by subjecting the titanium oxide film 1A formed by the sputtering method under the above conditions to an annealing treatment at an optimum annealing temperature, more preferably 300 ° C. or more.
  • the transparent conductive film 1 can be obtained.
  • the annealing temperature applied to the titanium oxide film 1A is more preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably in the range of 325 to 500 ° C. Further, this annealing treatment is desirably performed at a temperature of 900 ° C. or lower. Further, the annealing time under the above temperature conditions is not particularly limited, but is preferably in the range of 1 to 3600 seconds from the viewpoint that the sheet resistance Rs can be more effectively reduced, and in the range of 10 to 1200 seconds. More preferably, the range of 60 to 180 seconds is most preferable.
  • the power value applied to the target 47 side when the transparent conductive film 1 (titanium oxide film 1A) is formed by the sputtering method is not particularly limited, but is preferably, for example, 1000 W or more.
  • the film forming speed can be increased.
  • the sheet resistance Rs of the transparent conductive film 1 (titanium oxide film 1A) after film formation can be more effectively reduced. Is possible.
  • the bias value applied to the substrate side is not particularly limited, but for example, a range of 0 to 100 W is a good titanium oxide film while reducing sheet resistance. Is more preferable in that it is obtained.
  • the transparent conductive film under the following conditions:
  • the film 1 can be formed. First, using a target 47 containing a titanium oxide-based material containing a dopant element in a proportion of 10% by mass, in an argon (Ar) sputtering atmosphere containing an oxygen concentration of 2.5% by volume or less, un-GaN ( Insulator) A transparent conductive film 1 (titanium oxide film 1A) is formed on a substrate.
  • the transparent conductive film 1 (titanium oxide film 1A) is formed into a film having a film thickness of 250 nm by a sputtering method at a film formation rate of 0.2 nm / second or 0.1 nm / second, for example.
  • a transparent conductive film having a sheet resistance on the order of 105 ⁇ / cm to 107 ⁇ / cm is obtained.
  • the sheet resistance Rs can be reduced to a range of about 30 ⁇ / ⁇ to 100 ⁇ / ⁇ .
  • the correlation between the sheet resistance Rs after annealing and the oxygen concentration as described above varies somewhat depending on the deposition rate during sputtering deposition as shown in FIG. 4A.
  • the oxygen concentration is lower than in the case of a transparent conductive film annealed after film formation at a film formation speed of 0.2 nm / second.
  • the minimum sheet resistance Rs is shown in the concentration range.
  • the sheet resistance Rs after annealing of the transparent conductive film is affected by the film formation rate during sputtering film formation, but is about 30 ⁇ / cm to 100 ⁇ / cm. It can be reduced to a value in the range.
  • Method for producing transparent conductive substrate As an embodiment in the method for producing a transparent conductive substrate according to the present invention (this embodiment is also an embodiment in the method for producing a transparent conductive film according to the present invention), for example, 10% by mass of a dopant element is used.
  • the transparent conductive film 1 (titanium oxide film 1A) is formed at a film formation rate of 0.15 nm / second by a sputtering method
  • the transparent conductive film 1 (titanium oxide film 1A) is formed.
  • the relationship between the sheet resistance Rs and the annealing temperature is, for example, as illustrated in the graph of FIG. 4B.
  • the un-GaN substrate for example, an AlN buffer layer (for example, thickness 30 nm) and a GaN underlayer (for example, thickness 600 nm) are sequentially laminated on the main surface of a sapphire substrate having a predetermined thickness by MOCVD or sputtering. The substrate is used. As shown in FIG.
  • the sheet resistance of the transparent conductive film 1 exhibits a behavior that becomes minimum when the annealing temperature is 300 ° C. or higher and 600 ° C. or lower.
  • the sheet resistance Rs of the transparent conductive film 1 obtained by sputtering method can be reduced further by annealing treatment.
  • the crystallinity of the titanium oxide-based material preferably used in the present invention may be any of anatase type, rutile type, brookite type and amorphous, but is not limited. From the viewpoint of crystal stability and conductivity, it is preferable to have an anatase crystal. Furthermore, it is preferable to have a mixture of anatase and amorphous.
  • the oxygen concentration (volume%) is different at three points in the environment ( (1) 0.38% by volume, (2) 0.56% by volume, (3) 0.77% by volume) titanium oxide-based material (sample (sample) (1), sample (2) and sample
  • the X-ray crystal analysis result of (3) is shown in FIG.
  • identification can be performed with a general X-ray crystal analyzer (for example, X'Pert PRO MPD device manufactured by PANalytical).
  • the oblique incidence method (incident angle fixed: 2 degrees) is adopted. If the X-ray crystal analysis is performed by the normal method rather than the oblique incidence method, the diffraction lines of the GaN layer and the sapphire substrate which are the underlayer of the thin film are detected, which makes it difficult to identify the transparent conductive film, which is not preferable. From the analysis result of FIG. 6, in any case of the sample (1), the sample (2), and the sample (3), the conductive titanium oxide-based material containing the anatase crystal is formed.
  • sample (1) obtained under the condition of lower oxygen concentration has a wider half-width of the main peak and lower peak intensity than sample (2) and sample (3), and there are many amorphous substances. is doing. However, in this case, no brookite crystal or rutile crystal is observed in any of the samples (1), (2), and (3).
  • a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less As described above, according to the method for producing a transparent conductive film of the present invention (or the method for producing a transparent conductive substrate of the present invention), a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less.
  • a sputtering atmosphere is formed at a film formation rate of 0.01 to 1.0 nm / second using a target 47 containing an atmosphere containing at least 0.1 to 10% by volume of oxygen and the balance being an inert gas.
  • the sheet resistance is significantly reduced as compared with a conventional titanium oxide-based transparent conductive film. Thereby, it becomes possible to form the transparent conductive film 1 excellent in conductivity and transparency.
  • the transparent conductive film 1 after film formation is also appropriate. It will be in the state where the dopant was contained in the range. Thereby, the sheet resistance Rs of the transparent conductive film 1 can be suppressed to, for example, about 1 ⁇ 10 5 ⁇ / ⁇ (see the graph shown in FIG. 4A).
  • the titanium oxide film 1A formed at a predetermined speed using the target 47 is annealed at a temperature in the range of 300 to 500 ° C., for example, so that the sheet resistance Rs is about 30 ⁇ / It becomes possible to obtain the transparent conductive film 1 suppressed to about ⁇ to about 100 ⁇ / ⁇ (film thickness 250 nm). Even in the appropriate range where the sheet resistance Rs is low, the transparent conductive film containing the dopant preferably contains anatase crystals.
  • the light attenuation coefficient (absorption coefficient) in the transparent conductive film can be controlled to be low by performing the annealing treatment at the above temperature condition, so that it is higher than the conventional transparent conductive film containing a titanium oxide-based material. Transparency is obtained. Thereby, even if it is the transparent conductive film 1 containing a titanium oxide type material, transparency at the same level as ITO or IZO is obtained at least in a certain wavelength region.
  • the transparent conductive film 1 obtained by the production method of the present invention has light absorption suppressed in a blue region having a wavelength of 440 to 460 nm, for example, and a transparency higher than that of ITO or the like can be obtained.
  • the transparent conductive substrate of the present invention refers to the transparent conductive film containing the above-mentioned titanium oxide (TiO 2 ) containing a dopant element, which is produced by the method for producing a transparent conductive substrate of the present invention, an inorganic material or a polymer
  • the substrate is excellent in conductivity and transparency (hereinafter also referred to as a transparent conductive substrate), and the substrate material is an inorganic material having excellent conductivity and transparency. Any material or polymer material may be used, and the shape and structure of the substrate are not limited.
  • a transparent conductive sheet in which a transparent conductive film containing the above-described titanium oxide (TiO 2 ) containing a dopant element is provided on a transparent substrate of a polymer sheet can be given.
  • the characteristics of the transparent conductive film 1 such as crystallinity, composition, specific resistance (or sheet resistance Rs), film thickness, and surface unevenness have the same range as the above-mentioned “transparent conductive film”.
  • a transparent conductive film is formed on a substrate made of a semiconductor (particularly a compound semiconductor) constituting a semiconductor light emitting element.
  • the “base” includes not only a “base” made of one type of material but also a plurality of types of “base” formed integrally.
  • a “transparent conductive substrate” is manufactured by laminating a thin film of an inorganic material or a polymer material on a substrate of an inorganic material or a polymer material and forming a transparent conductive film thereon
  • a substrate excluding the transparent conductive film that is, a combination of the substrate and the thin film is referred to as a “substrate”.
  • the transparent conductive sheet (an example of a transparent conductive substrate) of the present invention is a sheet in which the transparent conductive film 1 containing the above-described titanium oxide (TiO 2 ) containing a dopant element is provided on a transparent substrate such as a polymer sheet. (Multi-layer film).
  • a transparent substrate such as a polymer sheet.
  • Multi-layer film characteristics such as crystallinity, composition, specific resistance (or sheet resistance Rs), film thickness, and surface unevenness of the transparent conductive film 1 have the same range as the above-mentioned “transparent conductive film”.
  • the transparent conductive film 1 used in the transparent conductive sheet of the present invention may be a transparent conductive film including at least two layers of titanium oxide (TiO 2 ) layers having different resistances.
  • the transparent conductive film 1 is laminated on the substrate side.
  • is titanium oxide (TiO 2) layer is, the the titanium oxide is stacked on highly crystalline titanium oxide in order not to inhibit the growth of (TiO 2) layer (TiO 2) layer is formed is preferable.
  • a titanium oxide (TiO 2 ) layer laminated on the substrate side has an extremely low crystallinity, a titanium oxide (TiO 2 ) layer having a predetermined conductivity (electricity) is formed on the upper part. There is a risk that it will not be formed.
  • the titanium oxide (TiO 2 ) layer stacked on the substrate side is preferably formed with high crystallinity.
  • titanium oxide (TiO 2) layer laminated on the substrate side may be a titanium oxide (TiO 2) layer containing no dopant elements.
  • the uppermost titanium oxide (TiO 2 ) layer of the transparent conductive sheet is preferably formed of a titanium oxide (TiO 2 ) layer having a small resistance value. That is, the transparent conductive sheet of the present invention has a configuration of at least substrate / high resistance layer / low resistance layer.
  • the thickness of the titanium oxide (TiO 2 ) layer of the high resistance layer is preferably 1 nm or more, and more preferably less than 200 nm. The film thickness is preferably in the range of 10 nm to 100 nm.
  • the thickness of the titanium oxide (TiO 2 ) layer of the high resistance layer is less than 1 nm, a layer having high crystallinity is not formed, and a low resistance titanium oxide (TiO 2 ) layer is hardly formed on the upper layer. End up.
  • the thickness of the titanium oxide (TiO 2 ) layer of the high resistance layer exceeds 200 nm, the total thickness becomes too large as a transparent conductive film of the transparent conductive sheet, which may cause deformation of the base sheet or the transparent conductive film itself. There is a risk that problems such as generation of microcracks or an increase in the surface resistance value of the transparent conductive film itself may result in an increase in production cost.
  • the thickness of the titanium oxide (TiO 2 ) layer of the low resistance layer is preferably 50 nm or more. Moreover, it is preferable to set it as 500 nm or less from the point of suppression of transparent electroconductivity and production cost. When the thickness of the titanium oxide (TiO 2 ) layer of the low resistance layer is less than 50 nm, it is not preferable because a sheet resistance Rs sufficient as a transparent conductive sheet cannot be obtained.
  • the sheet resistance Rs of the transparent conductive film 1 is more preferably 200 ⁇ / ⁇ or less, and most preferably 80 ⁇ / ⁇ or less.
  • a transparent conductive film 1 containing titanium oxide (TiO 2 ) containing a dopant element is sputtered as illustrated in FIG.
  • a method for forming a film on a transparent substrate by a sputtering method using the apparatus 40 is provided.
  • the transparent conductive sheet production method of the present invention using a target 47 comprising titanium oxide-containing material including a dopant element at a ratio of 30 mass% or less (titanium oxide containing a dopant element (TiO 2)), the sputtering atmosphere Is formed in an atmosphere containing at least 0.1 to 10% by volume of oxygen with the balance being an inert gas, and a sputtering film is formed on the substrate at a film formation rate of 0.01 to 1.0 nm / second. It is characterized by. And a transparent conductive sheet is manufactured by annealing the transparent conductive film 1 at the temperature of 250 degreeC or more. The film formation rate by sputtering is preferably 0.01 to 0.2 nm / second.
  • a titanium oxide-based material titanium oxide (TiO 2 ) containing a dopant element) containing a dopant element in a proportion of 30% by mass or less is used.
  • the atmosphere contains at least 0.1 to 10% by volume of oxygen, and the balance is made of an inert gas.
  • a sputtering film formation is formed on a substrate at a film formation rate of 0 nm / second.
  • the film formation rate by sputtering is preferably 0.01 to 0.2 nm / second.
  • the environment in which the sputtering atmosphere is changed in at least two stages is an environment in which the oxygen concentration during sputtering is changed in at least two stages.
  • the first stage is performed under a high oxygen concentration.
  • the step refers to a method performed under a low oxygen concentration.
  • the transparent conductive film including a titanium oxide (TiO 2 ) layer to be stacked has a crystallinity of the titanium oxide (TiO 2 ) layer as compared with a low oxygen concentration. High film quality and high resistance can be obtained.
  • a transparent conductive film including a titanium oxide (TiO 2 ) layer stacked under a low oxygen concentration has a low crystallinity, but a low-resistance film quality is obtained, and the surface layer of the transparent conductive film is a low-resistance multilayer.
  • a structure is preferable.
  • the transparent conductive film laminated in the first stage becomes too high, or if the film thickness is too large, there is a potential strain near the interface with the substrate (for example, a plastic sheet such as a polymer).
  • the substrate for example, a plastic sheet such as a polymer.
  • a transparent polymer (plastic) film or plate is used as the substrate used in the transparent conductive sheet (an example of a transparent conductive substrate) of the present invention.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyether ketone, polyether ether ketone (PEEK), polyether sulfone (PES), polycarbonate resin (PC), polymethyl methacrylate resin (PMMA), polyolefin resin, cyclopolyolefin resin, cellulose acetate (TAC) resin, fluorinated resin such as tetrafluoroethylene resin, allyl ester resin, transparent polyimide resin, organic silicon resin, epoxy resin and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEEK polyether ether ketone
  • PES polyether sulfone
  • PC polycarbonate resin
  • PMMA polymethyl methacrylate resin
  • TAC cellulose a
  • PET, PMMA and PC are preferably used because they are highly transparent and inexpensive.
  • cyclopolyolefin resin, polyolefin resin, fluorinated resin, or moderately acetic ester cellulose acetate is highly resistant to solvents and has transparent conductivity for applications such as wet solar cells that are treated with solvents such as acetonitrile. It is preferably used as a sheet.
  • PES, PEN, polyether ketone, PEEK, transparent polyimide resin, allyl ester resin, organic silicon resin, and epoxy resin are resins that are preferably used from the viewpoint of excellent heat resistance.
  • a transparent resin having a Tg (glass transition temperature) exceeding 300 ° C. can be preferably used, and examples thereof include “Silplus” (manufactured by Nippon Steel Chemical Co., Ltd.).
  • a known optical lens film having excellent properties such as high heat resistance, low thermal expansion, high transparency, low birefringence, and flexibility is widely used as a transparent resin film instead of glass. it can.
  • a transparent conductive film containing titanium oxide (TiO 2 ) containing a dopant element, formed by sputtering according to the method for producing a transparent conductive sheet of the present invention is taken out from a sputtering apparatus, and then a predetermined infrared lamp annealing heating apparatus ( RTA furnace), and annealing treatment can be performed at a predetermined temperature on the carbon tray.
  • RTA furnace predetermined infrared lamp annealing heating apparatus
  • the base material When the base material is concerned about the heat resistance with respect to the annealing temperature, it is brought into contact with the transparent conductive film containing titanium oxide (TiO 2 ) using a heating roll set at a predetermined temperature. Thus, the transparent conductive film can be annealed.
  • the transparent conductive film can be annealed.
  • the transparent conductive film 1 containing the above-mentioned titanium oxide (TiO 2 ) containing the dopant element is used as the transparent conductive film 1 (transparent) on the p-type semiconductor layer 6 of the semiconductor light emitting device.
  • the semiconductor light emitting element A provided as an electrode can be mentioned.
  • the characteristics of the applied transparent electrode such as crystallinity, composition, specific resistance (or sheet resistance Rs), film thickness, and surface unevenness have the same range as the above-mentioned “transparent conductive film”.
  • a semiconductor layer 20 is formed by sequentially laminating at least an n-type semiconductor layer 4, a light emitting layer 5 and a p-type semiconductor layer 6 on a substrate 10. Furthermore, the present invention relates to a method for forming the transparent conductive film 1 by the above-described method for producing a transparent electrode film of the present invention. In the present embodiment, the method for forming the transparent conductive film 1 is the same as the method for manufacturing the transparent electrode film described in the present embodiment, and a detailed description thereof is omitted.
  • a semiconductor layer 20 is formed on a substrate 10 by sequentially stacking an n-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer 6, and p
  • the transparent conductive film 1 of the present invention is formed on the type semiconductor layer 6 and is roughly configured.
  • the buffer layer 2 and the base layer 3 are sequentially formed on the substrate 10, and the n-type semiconductor layer 4 constituting the semiconductor layer 20 is stacked on the base layer 3. .
  • a positive electrode 8 is provided on the transparent conductive film 1, and a negative electrode 9 is provided in the exposed region 4 d of the n-type semiconductor layer 4 exposed by removing a part of the semiconductor layer 20.
  • the semiconductor light emitting device A of the example described in the present embodiment is configured as a light emitting diode (LED) as shown in the example with the above configuration.
  • LED light emitting diode
  • a material that can be used for the substrate 10 in the semiconductor light emitting device 1 of the present embodiment is not particularly limited as long as a group III nitride semiconductor crystal or the like is a substrate material that is epitaxially grown on the surface, and various materials are selected and used. be able to.
  • the material of the substrate 10 include lanthanum strontium aluminum tantalum oxide, strontium titanium oxide, titanium oxide, hafnium oxide, tungsten oxide, and molybdenum oxide.
  • sapphire it is particularly preferable to use sapphire, and the buffer layer 2, which will be described in detail later, is formed on the main surface made of the c-plane of the substrate 10 made of sapphire. preferable.
  • the buffer layer 2 is provided as a layer that matches the difference in lattice constant between the substrate 10 and the layer made of a group III nitride semiconductor, and is made of, for example, a group III nitride such as single-crystal AlGaN or AlN.
  • a group III nitride such as single-crystal AlGaN or AlN.
  • the symbol M represents a Group V element different from nitrogen (N), and 0 ⁇ A ⁇ 1) can be used without any limitation.
  • a group III nitride compound containing Ga that is, a GaN-based compound semiconductor is used, and in particular, single crystal AlGaN or GaN can be preferably used.
  • the n-type semiconductor layer 4 is formed by sequentially stacking an n-type contact layer 4a and an n-type cladding layer 4b.
  • the n-type contact layer 4a for example, similarly to the base layer 4a Al X Ga 1-X N layer layer (0 ⁇ x ⁇ 1, preferably 0 ⁇ x ⁇ 0.5, and more preferably 0 ⁇ x ⁇ 0 .1) can be used, and n-type impurities such as Si, Ge, or Sn are preferably doped.
  • the n-type cladding layer 4b can be formed of, for example, AlGaN, GaN, GaInN, or the like, or can be a heterojunction of these structures or a superlattice structure in which a plurality of layers are stacked.
  • the light emitting layer 5 is an active layer that is stacked on the n-type semiconductor layer 4 and the p-type semiconductor layer 6 is stacked thereon.
  • the barrier layers 5a and the well layers 5b are alternately stacked, and n The barrier layers 5a are stacked in the order in which the barrier layers 5a are arranged on the p-type semiconductor layer 4 side and the p-type semiconductor layer 6 side.
  • gallium indium nitride such as Ga 1-s In s N (0 ⁇ s ⁇ 0.4) can be used as a gallium nitride compound semiconductor containing indium.
  • barrier layer 5a for example, a nitride such as Al c Ga 1-c N (0 ⁇ c ⁇ 0.3) having a larger band gap energy than the well layer 5b made of a gallium nitride compound semiconductor containing indium.
  • Gallium-based compound semiconductors can be preferably used.
  • the p-type semiconductor layer 6 is formed on the light emitting layer 5 and usually has a configuration in which a p-type cladding layer 6a and a p-type contact layer 6b are sequentially stacked.
  • the p-type cladding layer 6a it is preferable to use a material having a composition larger than the band gap energy of the light emitting layer 5 and capable of confining carriers in the light emitting layer 5.
  • Al d Ga 1-d N (0 ⁇ A composition of d ⁇ 0.4, preferably 0.1 ⁇ d ⁇ 0.3) is preferred.
  • the p-type cladding layer 6a includes at least Al e Ga 1-e N (0 ⁇ e ⁇ 0.5, preferably 0 ⁇ e ⁇ 0.2, more preferably 0 ⁇ e ⁇ 0.1). It is preferable to comprise from the material which consists of. Thus, when the Al composition of the p-type cladding layer 6a is within the above range, it is preferable in terms of maintaining good crystallinity and good ohmic contact with the transparent conductive film 1 thereon.
  • the p-type semiconductor layer 6 having the above composition is preferably configured to be doped with a p-type impurity such as Mg.
  • the above-described transparent conductive film 1 of the present invention is provided on the p-type semiconductor layer 6, that is, on the p-type contact layer 6b.
  • the positive electrode 8 is an electrode formed on the transparent conductive film 1.
  • various structures using Au, Al, Ni, Cu, and the like are well known, and those of known materials and structures can be used without any limitation.
  • the negative electrode 9 is an electrode formed so as to be in contact with the n-type contact layer 4 b of the n-type semiconductor layer 4. When the negative electrode 9 is provided, a part of the p-type semiconductor layer 6, the light emitting layer 5, and the n-type semiconductor layer 4 is removed to form an exposed region of the n-type contact layer 4b, and the negative electrode 9 is formed thereon.
  • negative electrodes having various compositions and structures are well known, and these known negative electrodes can be used without any limitation.
  • the substrate 10 is introduced into, for example, a chamber of a sputtering apparatus, and the buffer layer 2 made of single crystal AlN is formed by sputtering.
  • a pretreatment method for the surface of the substrate 10 at this time for example, a wet process such as a conventionally known RCA cleaning method, a method of exposing the surface of the substrate 10 in plasma, or the like can be used.
  • Examples of the method for forming the buffer layer 2 on the substrate 10 include a sputtering method, a MOCVD method, a pulse laser deposition (PLD) method, a pulsed electron beam deposition (PED) method, and the like. Can be used.
  • the wafer on which the buffer layer 2 is formed on the substrate 10 is introduced into a reaction furnace of an MOCVD apparatus (not shown) to form the base layer 3 on the buffer layer 2.
  • MOCVD apparatus not shown
  • Each layer of the type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer 6 is sequentially stacked.
  • a gallium nitride compound semiconductor When a gallium nitride compound semiconductor is formed by MOCVD, hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas, trimethyl gallium (TMG) or triethyl gallium (TEG) is used as a Ga source as a group III source, an Al source As trimethylaluminum (TMA) or triethylaluminum (TEA), trimethylindium (TMI) or triethylindium (TEI) as an In source, ammonia (NH 3 ) as an N source as a group V source, hydrazine (N 2 H 4 ), etc. Is used.
  • hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas
  • trimethyl gallium (TMG) or triethyl gallium (TEG) is used as a Ga source as a group III source
  • germanium gas GeH 4
  • tetramethyl germanium (CH 3 ) 4 Ge)
  • organic germanium compounds such as tetraethylgermanium ((C 2 H 5 ) 4 Ge) can be used.
  • a source gas and an organic metal source to be supplied into a reaction furnace of a MOCVD apparatus (not shown)
  • a single crystal Al X Ga 1-X N An n-type contact layer 4a and an n-type cladding layer 4b of 0 ⁇ x ⁇ 1) are sequentially stacked.
  • the n-type impurity (dopant) as described above is supplied into the reactor to dope the n-type contact layer 4a and the n-type cladding layer 4b with the n-type impurity.
  • the light emitting layer 5 is formed by alternately laminating the barrier layers 5a and the well layers 5b on the n-type cladding layer 4b.
  • the light emitting layer 5 illustrated in FIG. 1 is formed, for example, six barrier layers 5a made of Si-doped GaN and five well layers made of non-doped Ga 0.8 In 0.2 N. 5b are alternately laminated.
  • the p-type semiconductor layer 6 including the p-type cladding layer 6 a and the p-type contact layer 6 b is formed on the light-emitting layer 5, that is, on the barrier layer 5 a that is the uppermost layer of the light-emitting layer 5.
  • a p-type cladding layer 6 a made of Al 0.1 Ga 0.9 N is formed on the light emitting layer 5 (the uppermost barrier layer 5 a).
  • a p-type contact layer 6b made of Al 0.02 Ga 0.98 N is formed.
  • the p-type impurity such as Mg into the reaction furnace, the p-type cladding layer 6a and the p-type contact layer 6b are doped with the p-type impurity.
  • the transparent conductive film 1 is laminated on the p-type semiconductor layer 6 using the same conditions and procedures as those of the above-described transparent conductive film manufacturing method of the present invention.
  • a wafer B in which a buffer layer 2, an underlayer 3, an n-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer 6 are sequentially stacked on a substrate 10 is illustrated in FIG. It attaches to the heater 44 of such a sputtering device 40.
  • FIG. using the same film formation conditions and procedure as described above, the titanium oxide film 1A is formed so as to cover the p-type contact layer 6b forming the p-type semiconductor layer 6.
  • the transparent conductive film 1 is formed by performing an annealing process under the same temperature conditions as described above to reduce the sheet resistance Rs of the titanium oxide 1A and make it transparent.
  • the transparent conductive film 1 by forming the transparent conductive film 1 on the p-type semiconductor layer 6 under the above conditions and procedures, the transparent conductive film 1 can be formed while controlling the sheet resistance Rs low. As a result, the conductivity of the transparent conductive film 1 is drastically improved, so that a current can be diffused throughout the p-type semiconductor layer 6, and the light emission efficiency of the semiconductor light emitting device A can be significantly improved. Is possible.
  • a positive electrode 8 is further formed on the transparent conductive film 1.
  • the positive electrode 8 is formed by sequentially laminating Ti, Al, and Au materials in order from the surface side of the transparent conductive film 1 to form a positive electrode 8 having a three-layer structure that is not illustrated in detail. can do.
  • a part of the semiconductor layer 20 formed of the light emitting layer 5, the p-type semiconductor layer 6 and the n-type semiconductor layer 4 formed on the substrate 10 is removed by a method such as dry etching. As a result, an exposed region 4d of the n-type contact layer 4b is formed.
  • each layer of Ni, Al, Ti, and Au is laminated in this order from the n-type contact layer 4b side by a conventionally known method on the exposed region 4d, thereby omitting detailed illustration of the four layers.
  • a negative electrode 9 having a structure can be formed.
  • the wafer obtained by the above process is ground and polished on the back surface of the substrate 10 to form a mirror-like surface, and then cut into, for example, a 350 ⁇ m square to obtain a chip-like semiconductor light emitting device.
  • the semiconductor layer 20 is formed by sequentially laminating at least the n-type semiconductor layer 4, the light emitting layer 5 and the p-type semiconductor layer 6 on the substrate 10. And since it is the method of forming the transparent conductive film 1 on the p-type semiconductor layer 6 using the manufacturing method of the said transparent conductive film of this invention, an electric current can be diffused widely in the whole semiconductor layer 20, and light extraction efficiency It is possible to manufacture a semiconductor light emitting device A that is excellent in the manufacturing process. Moreover, according to the semiconductor light emitting device A of the present invention, since it is obtained by the manufacturing method of the present invention, it has high light extraction efficiency and excellent light emission characteristics.
  • the lamp of the present invention uses the above-described semiconductor light emitting device of the present invention.
  • ramp of this invention the thing formed by combining the semiconductor light-emitting device of this invention and fluorescent substance can be mentioned, for example.
  • a lamp in which a semiconductor light emitting element and a phosphor are combined can have a configuration well known to those skilled in the art by means well known to those skilled in the art.
  • Conventionally, a technique for changing the emission color by combining a semiconductor light emitting element and a phosphor has been known, and such a technique can be employed in the lamp of the present invention without any limitation. .
  • FIG. 5 is a schematic view schematically showing an example of a lamp configured using the semiconductor light emitting device A according to the present invention.
  • the lamp 80 shown in FIG. 5 is a bullet type, and the semiconductor light emitting element A shown in FIGS. 2 and 3 is used.
  • the positive electrode 8 of the semiconductor light emitting device A is bonded to one of the two frames 81 and 82 (the frame 81 in FIG. 5) with a wire 83, and the negative electrode 9 of the semiconductor light emitting device A is connected to the wire 84.
  • the semiconductor light emitting element A is mounted by being joined to the other frame 82. Further, the periphery of the semiconductor light emitting element A is sealed with a mold 85 made of a transparent resin.
  • the lamp of the present invention uses the semiconductor light emitting device A provided with the transparent conductive film of the present invention, and therefore has excellent light emission characteristics.
  • the lamp of the present invention can be used for any purpose such as a bullet type for general use, a side view type for portable backlight use, and a top view type used for a display.
  • Examples of the electronic device provided with the transparent conductive substrate of the present invention include various electronic devices using the transparent conductive film 1 containing the above-described titanium oxide (TiO 2 ) containing a dopant element as a transparent electrode. it can.
  • specific examples of the “electronic device” to which the present invention can be applied include an organic electroluminescence element (organic EL, OLED), a liquid crystal display device, a photoelectric conversion element (solar cell), illumination in addition to the semiconductor light emitting element described above. Etc.
  • Examples 1 to 10 are examples of the method for producing a transparent conductive film of the present invention, and the method for producing a transparent conductive substrate of the present invention using a substrate made of an inorganic material and the transparent Examples of a conductive substrate, and further, a method of manufacturing a semiconductor light emitting device of the present invention using a semiconductor thin film laminated on a sapphire substrate as a substrate made of an inorganic material, an embodiment of the semiconductor light emitting device, and the present invention 1 is an embodiment of the inventive lamp.
  • Examples 11 and 12 are examples of the method for producing a transparent conductive film of the present invention, and the method for producing a transparent conductive substrate of the present invention using a substrate made of a polymer material and the transparent conductive substrate of the present invention. This is an example.
  • Example 1 a semiconductor light-emitting element in which a transparent conductive film was provided on a semiconductor layer was manufactured by the procedure described below (see FIGS. 1 and 2).
  • substrate 10 which has the main surface which consists of a (0001) C surface of a sapphire substrate was prepared. Then, a 50 nm thick buffer layer 2 made of AlN having a single crystal structure was formed on the main surface of the substrate 10 using an RF sputtering method.
  • the base layer 3 made of a group III nitride semiconductor was formed on the buffer layer 2 by using a low pressure MOCVD method.
  • the substrate 10 on which the buffer layer 2 was formed was introduced into the reactor of the MOCVD apparatus.
  • the temperature of the substrate 10 is raised to 1120 ° C. in a hydrogen atmosphere, and trimethylgallium (TMG) is supplied into the reaction furnace, whereby a 3 ⁇ m film is formed on the buffer layer 2.
  • TMG trimethylgallium
  • a base layer 3 made of undoped GaN (un-GaN) was grown.
  • an n-type contact layer 4a made of GaN was formed by the same MOCVD apparatus as that used for forming the underlayer 3. At this time, the n-type contact layer 4a was formed under the same conditions as the underlayer except that Si was doped and SiH 4 was circulated as a Si dopant material. Next, an n-type cladding layer 4b was stacked on the n-type contact layer 4a.
  • the light emitting layer 5 was laminated
  • the light emitting layer 5 having a multiple quantum well structure composed of the barrier layer 5a made of GaN and the well layer 5b made of Ga 0.85 In 0.15 N was formed.
  • a barrier layer 5a was formed on the n-type cladding layer 4b, and a well layer 5b made of Ga 0.85 In 0.15 N was formed on the barrier layer 5a.
  • the sixth barrier layer 5a is formed on the fifth stacked well layer 5b, and the barrier layers 5a are arranged on both sides of the light emitting layer 5 having the multiple quantum well structure.
  • the structure was as follows.
  • a p-type cladding layer 6 a made of GaN doped with Mg was formed on the light emitting layer 5 using an MOCVD apparatus.
  • a p-type contact layer 6b made of Mg-doped GaN having a thickness of 200 nm was formed on the p-type cladding layer 6a to form a p-type semiconductor layer 6.
  • the semiconductor layer 20 in which the n-type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer 6 are sequentially stacked is formed on the base layer 3, and the semiconductor layer 20 is formed on the substrate 10.
  • Wafer B was prepared.
  • the transparent conductive film 1 was formed on the wafer B obtained by the above procedure under the following conditions and procedure.
  • the wafer B was introduced into the chamber 41 of the sputtering apparatus 40 illustrated in FIG. 3, and the substrate 10 side was attached to the heater 44 so that the p-type semiconductor layer 6 side was exposed in the chamber 41.
  • a target made of titanium oxide manufactured by Toshima Seisakusho Co., Ltd.
  • the sputtering atmosphere in the chamber 41 was an argon gas atmosphere containing 1.5% by volume of oxygen.
  • a power of 2000 W was applied to the target 47 side (target plate 43 side), and a bias of 0 W was applied to the wafer B (substrate 10) side. Then, by setting various conditions based on the film formation rate data confirmed in advance, the film formation rate is set to 0.15 nm / second, and the Nb-doped film having a film thickness of 250 nm is formed on the p-type semiconductor layer 6. A titanium oxide film 1A was formed.
  • the titanium oxide film 1A formed by the above procedure was subjected to an annealing process at a temperature of 350 ° C. for 120 seconds.
  • the transparent conductive film 1 was formed on the p-type semiconductor layer 6 by the above procedures.
  • the sheet resistance ( ⁇ / ⁇ ) is used as a measuring instrument, and a sheet resistance measuring device (MCP-T360 probe: manufactured by Mitsubishi Chemical Analytech Co., Ltd .; The measurement was performed using a low current evaluation method for terminals, and the results are shown in Table 1 below.
  • a positive electrode 8 having a three-layer structure was formed by sequentially stacking Ti, Al, and Au on the surface of the transparent conductive film 1 by a known photolithography technique. At this time, the positive electrode bonding pad 8 was formed in a circular shape having a diameter of about 90 ⁇ m.
  • the wafer is cut into 240 ⁇ m ⁇ 600 ⁇ m square chips to form an LED (light emitting diode).
  • a chip semiconductor light emitting element A
  • the portion from the sapphire substrate 10 to the transparent conductive film 1 (the portion excluding the positive electrode 8 and the negative electrode 9 in FIG. 1). ) Is the “transparent conductive substrate” of the present invention, and the portion from the sapphire substrate 10 to the p-type semiconductor layer 6 excluding the transparent conductive film 1 is the “substrate”.
  • the chip semiconductor light-emitting element A
  • the lead frame 81 so that the positive electrode 8 and the negative electrode 9 are on the upper side, and is connected to the lead frame with a gold wire to thereby form a lamp. 80 was produced.
  • Example 2 to 10 and Comparative Examples 1 to 6 the materials of the transparent conductive film and various film forming conditions for forming the transparent conductive film were changed to the conditions shown in Table 1 below.
  • a 240 ⁇ m ⁇ 600 ⁇ m square semiconductor light emitting device chip was produced.
  • a lamp was manufactured using this semiconductor light emitting element chip.
  • the sheet resistance of the transparent conductive film was measured by the same method as described above, and the results are shown in Table 1 below. Then, by the same method as described above, the light emission output Po (mW) was measured when a forward current of 20 mA was passed between the p-side (positive electrode) and n-side (negative electrode) electrodes of the lamp.
  • Table 1 shows the film formation conditions of the transparent conductive film and the light emission output (Po) measurement results in Examples 1 to 10 and Comparative Examples 1 to 6.
  • Example 1 As shown in Table 1, in the sample of Example 1 in which the transparent conductive film made of Nb-doped titanium oxide was formed under the conditions specified in the present invention, the sheet resistance of the transparent conductive film was 180 ⁇ / ⁇ , It was confirmed that it was excellent in performance.
  • the light emission output (Po) at a forward current (I) of 20 mA was 18 mW, and a very excellent light emission output was obtained.
  • the sheet resistance of the transparent conductive film was 200 ⁇ / ⁇ or less, It became clear that it had excellent conductivity.
  • the light emission output (Po) at a forward current (I) of 20 mA was 18 mW or more, and it was confirmed that the light emission output was high.
  • the sheet resistance of the transparent conductive film is 300 ⁇ / ⁇ or more. It can be seen that the conductivity is inferior to Examples 1 to 10.
  • the light emission output (Po) at a forward current (I) of 20 mA is 16 mW or less, and the output is lower than those in the above examples.
  • the transparent conductive film formed is not suitable because the dopant content of the transparent conductive film made of titanium oxide, the sputtering atmosphere at the time of film formation, the film formation rate, or the annealing temperature is not appropriate. It is considered that the light emission intensity in the layer is reduced by increasing the sheet resistance and diffusing current throughout the semiconductor layer.
  • the method for producing a transparent conductive film of the present invention significantly reduces sheet resistance as compared with a conventional titanium oxide-based transparent conductive film, and provides a transparent conductive film excellent in conductivity and transparency. It is clear that it can be formed.
  • the method for manufacturing a semiconductor device of the present invention makes it possible to manufacture a semiconductor light emitting device that diffuses current over the entire semiconductor layer and has excellent light extraction efficiency.
  • Example 11 a transparent conductive sheet in which a transparent conductive film was formed on a polymer (plastic) sheet (substrate) was prepared by the procedure described below. First, on a main surface of “Silplus” (manufactured by Nippon Steel Chemical Co., Ltd.) having a predetermined size, it is introduced into a chamber 41 of a sputtering apparatus 40 as illustrated in FIG. The plastic sheet was attached to the heater 44 so that the main surface of. Then, a target made of titanium oxide (manufactured by Toshima Seisakusho Co., Ltd.) containing Nb as a 10 mass% dopant as the target 47 was placed on the target plate 43.
  • titanium oxide manufactured by Toshima Seisakusho Co., Ltd.
  • the sputtering atmosphere in the chamber 41 was an argon gas atmosphere containing 5% by volume of oxygen. Further, in order to generate plasma, a power of 2000 W was applied to the target 47 side (target plate 43 side), and a bias of 0 W was applied to the plastic sheet side. Then, by setting various conditions based on the film formation rate data confirmed in advance, the film formation rate is set to 0.2 nm / second, and the Nb-doped titanium oxide having a film thickness of 50 nm is formed on the plastic sheet. A film 1A was formed.
  • an Nb-doped titanium oxide film 1A having a thickness of 200 nm is further formed at the same film formation rate. Laminated.
  • the sputtering atmosphere environment in the chamber 41 was changed in two stages.
  • the titanium oxide film 1A formed by the above procedure was subjected to an annealing process at a temperature of 310 ° C. for 120 seconds.
  • the transparent conductive film 1 was formed on the plastic sheet by the above procedures.
  • the sheet resistance ( ⁇ / ⁇ ) of the transparent conductive film 1 formed on the plastic sheet is converted into a sheet resistance measuring device (MCP-T360 probe: manufactured by Mitsubishi Chemical Analytech Co., Ltd .; four-terminal low current evaluation method).
  • MCP-T360 probe manufactured by Mitsubishi Chemical Analytech Co., Ltd .; four-terminal low current evaluation method. The results are shown in Table 2 below.
  • Example 12 The same process as in Example 11 was performed except that the sputtering atmosphere in the chamber 41 was processed in one stage of an argon gas atmosphere containing an oxygen concentration of 1.5% by volume, and a film was formed on a plastic sheet. A transparent conductive film 1 was obtained. The results are shown in Table 2 below.
  • Example 7 The film was formed on a plastic sheet in the same manner as in Example 11 except that the sputtering atmosphere in the chamber 41 was processed in one stage of an argon gas atmosphere containing an oxygen concentration of 15% by volume. A transparent conductive film 1 was obtained. The results are shown in Table 2 below.
  • the method for producing a transparent conductive film of the present invention can form a film on a plastic sheet, compared with a conventional titanium oxide-based transparent conductive film. It was found that the sheet resistance can be significantly reduced. Moreover, in the transparent conductive sheet which consists of a plastic sheet represented by Example 11 and 12, it turned out that the transparent conductive film 1 can be formed into a film uniformly, and also the electric current was able to be spread
  • a transparent conductive film excellent in conductivity and transparency can be formed.
  • various transparent conductive substrates that require excellent conductivity and transparency can be produced very easily, and thus can be industrially utilized.
  • SYMBOLS 1 Transparent conductive film, 1A ... Titanium oxide film (transparent conductive film), 4 ... N-type semiconductor layer, 5 ... Light emitting layer, 6 ... P-type semiconductor layer, 10 ... Substrate, 20 ... Semiconductor layer, 47 ... Target (sputtering) Apparatus), 80 ... lamp, A ... semiconductor light emitting element, B ... wafer, Rs ... sheet resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Led Devices (AREA)
  • Laminated Bodies (AREA)
  • Led Device Packages (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Disclosed is a method for manufacturing a transparent conductive film, by which a transparent conductive film containing a titanium oxide (TiO2) material is formed using a sputtering method. The film is formed by sputtering at a film-forming speed of 0.01-1.0 nm/sec using a target which contains a titanium oxide material containing a dopant element at a ratio of 30 mass% or less, in sputtering atmosphere wherein at least 0.1-10 vol% of oxygen is contained and the rest contains an inert gas, then, the film is annealed at a temperature of 250°C or above.

Description

透明導電膜の製造方法、半導体発光素子の製造方法及び半導体発光素子、ランプ、透明導電性基体の製造方法及び透明導電性基体、並びに、電子機器Manufacturing method of transparent conductive film, manufacturing method of semiconductor light emitting device, semiconductor light emitting device, lamp, manufacturing method of transparent conductive substrate, transparent conductive substrate, and electronic device
 本発明は、透明導電膜の製造方法、半導体発光素子の製造方法及び半導体発光素子、ランプ、透明導電性基体の製造方法及び透明導電性基体、並びに、電子機器に関する。
 本願は、2009年9月16日に日本に出願された特願2009-214913号、2010年9月10日に日本に出願された特願2010-202970に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a transparent conductive film, a method for producing a semiconductor light emitting device, a semiconductor light emitting device, a lamp, a method for producing a transparent conductive substrate, a transparent conductive substrate, and an electronic apparatus.
This application claims priority based on Japanese Patent Application No. 2009-214913 filed in Japan on September 16, 2009 and Japanese Patent Application No. 2010-202970 filed in Japan on September 10, 2010. This is incorporated here.
近年、短波長の光を発する半導体発光素子用の材料として、一般式AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)等で表される窒化ガリウム系化合物半導体のような、III族窒化物半導体が注目を集めている。そして、このような半導体は、サファイア単結晶をはじめ種々の酸化物やIII-V族化合物等からなる基板の上に、有機金属化学気相成長法(MOCVD法)や分子線エピタキシー法(MBE法)等の各種方法によって形成される。 In recent years, as a material for a semiconductor light emitting device that emits light of a short wavelength, the general formula Al x Ga y In z N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) or the like. Group III nitride semiconductors such as the represented gallium nitride compound semiconductors are attracting attention. Such a semiconductor is formed on a substrate made of sapphire single crystal, various oxides, III-V group compounds, or the like, by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). ) And the like.
 上記材料が用いられた一般的な半導体発光素子では、サファイア単結晶等からなる基板の上に、III族窒化物半導体からなるn型半導体層、発光層及びp型半導体層がこの順で積層される。ここで、サファイア単結晶からなる基板は絶縁体であるので、その素子構造は、一般的に、p型半導体層上に形成された正極とn型半導体層上に形成された負極とが同一面上に存在する構造となる。 In a general semiconductor light emitting device using the above materials, an n-type semiconductor layer made of a group III nitride semiconductor, a light emitting layer, and a p-type semiconductor layer are laminated in this order on a substrate made of a sapphire single crystal or the like. The Here, since the substrate made of a sapphire single crystal is an insulator, the element structure is generally such that the positive electrode formed on the p-type semiconductor layer and the negative electrode formed on the n-type semiconductor layer are coplanar. It becomes the structure that exists above.
 ここで、上述のような組成を有する半導体素子は、横方向への電流拡散が小さいため、電極直下の半導体にのみ電流が注入されるという特性があることから、発光層で発光した光が電極に遮られて外部に取り出され難くなるという問題がある。このため、このような半導体発光素子においては、通常、透明導電膜が表面に設けられ、この透明電極膜によって正極側(p型側)に印加された電流をp型半導体層全体に広く拡散させるとともに、この透明電極膜を通して光が取り出される(例えば、特許文献1、2を参照)。 Here, the semiconductor element having the above composition has a characteristic that current is injected only into the semiconductor directly under the electrode because the current diffusion in the lateral direction is small, so that the light emitted from the light emitting layer is the electrode. There is a problem that it is difficult to be taken out by being blocked. For this reason, in such a semiconductor light emitting element, a transparent conductive film is usually provided on the surface, and the current applied to the positive electrode side (p-type side) is diffused widely throughout the p-type semiconductor layer by this transparent electrode film. At the same time, light is extracted through the transparent electrode film (see, for example, Patent Documents 1 and 2).
 従来、透明導電膜には、NiやCo等の酸化物と、コンタクト金属としてAu等とを組み合わせた層構造とされたもの等、周知の導電材料及び構成のものが用いられている。
また、近年では、ITO(酸化インジウムスズ)等、より導電性の高い透明性の酸化物を用いることにより、コンタクト金属の膜厚を極力薄くして透明性を高めた層構造のものが透明導電膜として採用されるようになっている。これにより、発光層からの光を、透明導電膜を介して効率良く外部に取り出すことができるような構成とされている。
Conventionally, as the transparent conductive film, a known conductive material and configuration such as a layer structure in which an oxide such as Ni or Co and Au as a contact metal are combined is used.
Also, in recent years, a layer structure having a transparent structure with improved transparency by using a highly conductive transparent oxide such as ITO (indium tin oxide) to reduce the film thickness of the contact metal as much as possible. It has come to be adopted as a membrane. Thereby, it is set as the structure which can take out the light from a light emitting layer outside efficiently through a transparent conductive film.
 一方、ITOからなる透明導電膜は、導電性や透明性に優れているものの、希少金属であるインジウムが用いられる膜であることから、製造コストが増大するという問題がある。このため、最近では、ITOに代わり、ドーパントを含有する酸化チタン(TiO)のような低コストの材料を透明導電膜に採用することにより、コストダウンを図ることが提案されている(例えば、特許文献3~6を参照)。
しかしながら、特許文献3~6に記載の透明導電膜に用いられている酸化チタンは、ITOに比べてシート抵抗が高く導電性に劣ることから、電流を半導体層全体に対して広く拡散させることが困難なため、半導体発光素子の発光効率が低下するという問題があった。
On the other hand, a transparent conductive film made of ITO is excellent in conductivity and transparency, but has a problem that manufacturing cost increases because it is a film using indium which is a rare metal. For this reason, recently, it has been proposed to reduce the cost by employing a low-cost material such as titanium oxide (TiO 2 ) containing a dopant instead of ITO for the transparent conductive film (for example, (See Patent Documents 3 to 6).
However, since titanium oxide used in the transparent conductive film described in Patent Documents 3 to 6 has a higher sheet resistance and inferior conductivity than ITO, it can diffuse current widely over the entire semiconductor layer. Due to the difficulty, there has been a problem that the light emission efficiency of the semiconductor light emitting device is lowered.
特開2001-215523号公報JP 2001-215523 A 特開2007-287845号公報JP 2007-287845 A 特開2005-256087号公報JP 2005-256087 A 特開2006-193804号公報JP 2006-193804 A 特開2008-57045号公報JP 2008-57045 A 特開2008-84824号公報JP 2008-84824 A
 本発明は上記課題に鑑みてなされたものであり、導電性及び透明性に優れた透明導電膜を製造することが可能な透明導電膜の製造方法を提供することを目的とする。
 また、本発明は、上記透明導電膜を半導体基体上に成膜することにより、半導体層全体に広く電流を拡散させることができ、光取り出し効率に優れる半導体発光素子を製造することが可能な半導体発光素子の製造方法、及び、それによって得られる半導体発光素子を提供することを目的とする。
 さらに、本発明は、上記半導体発光素子が用いられてなり、発光特性に優れたランプを提供することを目的とする。
 また、本発明は、上記透明導電膜を無機材料又は高分子材料の基体の表面に成膜することにより、導電性及び透明性に優れた透明導電膜を備えた基体(以下、透明導電性基体とも言う。)の製造方法、及び、それによって得られる透明導電性基体を提供することを目的とする。ここで、「基体」には例えば、高分子シートのようなシート状のものも含む。従って、本発明は、基体として高分子シートを用いた透明導電性シートの製造方法を提供することをも目的とする。
さらには、本発明は、他の観点から上記透明導電膜を透明電極として用いている電子機器を提供することを目的とする。
This invention is made | formed in view of the said subject, and it aims at providing the manufacturing method of the transparent conductive film which can manufacture the transparent conductive film excellent in electroconductivity and transparency.
The present invention also provides a semiconductor light-emitting device that can diffuse a current over the entire semiconductor layer and produce a semiconductor light-emitting device with excellent light extraction efficiency by forming the transparent conductive film on a semiconductor substrate. It is an object of the present invention to provide a method for manufacturing a light emitting device and a semiconductor light emitting device obtained thereby.
Furthermore, an object of the present invention is to provide a lamp that uses the semiconductor light emitting element and has excellent light emission characteristics.
In addition, the present invention provides a substrate (hereinafter referred to as a transparent conductive substrate) having a transparent conductive film excellent in conductivity and transparency by forming the transparent conductive film on the surface of a substrate of an inorganic material or a polymer material. It is also an object of the present invention to provide a transparent conductive substrate obtained by the production method. Here, the “substrate” includes, for example, a sheet-like material such as a polymer sheet. Accordingly, an object of the present invention is also to provide a method for producing a transparent conductive sheet using a polymer sheet as a substrate.
Furthermore, this invention aims at providing the electronic device which uses the said transparent conductive film as a transparent electrode from another viewpoint.
 本発明者は、上記問題を解決するために鋭意検討した結果、酸化チタンへのドーピング濃度や成膜条件等を適正化することにより、膜中のシート抵抗が低減され、導電性及び透明性に優れた透明導電膜が得られることを見出し、本発明を完成した。
 即ち、本発明は以下に関する。
As a result of intensive studies in order to solve the above problems, the present inventor has reduced sheet resistance in the film by optimizing the doping concentration and film forming conditions for titanium oxide, and has improved conductivity and transparency. It discovered that the outstanding transparent conductive film was obtained and completed this invention.
That is, the present invention relates to the following.
 [1] 酸化チタン(TiO)系材料を含む透明導電膜を、スパッタリング法を用いて成膜する透明導電膜の製造方法であって、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲットを用い、スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、0.01~1.0nm/秒の成膜速度でスパッタリング成膜した後、250℃以上の温度でアニールすることを特徴とする、透明導電膜の製造方法。
 [2]前記成膜速度が、0.01~0.2nm/秒であることを特徴とする、上記[1]に記載の透明導電膜の製造方法。
 [3] 前記ターゲットに含有されるドーパント元素が、Nb、Ta、Mo、W、Te、Sb、Fe、Ru、Ge、Sn、Bi、Al、Hf、Si、Zr、Co、Cr、Ni、V、Mn、Re、Ce、Y、P及びBからなる群より選ばれる少なくとも1種であることを特徴とする、上記[1]又は[2]のいずれかに記載の透明導電膜の製造方法。
 [4] 透明導電膜が、アナターゼ型結晶を含むことを特徴とする、上記[1]乃至[3]のいずれか一項に記載の透明導電膜の製造方法。
 [5] 基板上に、少なくともn型半導体層、発光層及びp型半導体層を順次積層して半導体層を形成し、前記p型半導体層上に透明導電膜を形成する半導体発光素子の製造方法であって、前記透明導電膜を、上記[1]乃至[4]のいずれか一項に記載の製造方法を用いて形成することを特徴とする、半導体発光素子の製造方法。
 [6] 上記[5]に記載の半導体発光素子の製造方法によって得られる半導体発光素子。
 [7] 上記[6]に記載の半導体発光素子が用いられてなることを特徴とするランプ。
 [8] 酸化チタン(TiO)系材料を含む透明導電膜を基体上にスパッタリング法を用いて成膜する透明導電性基体の製造方法であって、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲットを用い、スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、0.01~1.0nm/秒の成膜速度でスパッタリング成膜した後、250℃以上の温度でアニールすることを特徴とする、透明導電性基体の製造方法。
 [9]前記成膜速度が、0.01~0.2nm/秒であることを特徴とする、上記[8]に記載の透明導電性基体の製造方法。
 [10] 前記基体が、無機材料又は高分子材料のいずれかからなることを特徴とする、上記[8]又は[9]のいずれかに記載の透明導電性基体の製造方法。
 [11] 透明導電膜が、アナターゼ型結晶を含むことを特徴とする、上記[8]乃至[10]のいずれか一項に記載の透明導電性基体の製造方法。
 [12] 上記[8]乃至[11]のいずれか一項に記載の透明導電性基体の製造方法によって得られた透明導電性基体。
 [13] 上記[12]に記載の透明導電性基体を備えた電子機器。
[1] A method for producing a transparent conductive film in which a transparent conductive film containing a titanium oxide (TiO 2 ) -based material is formed using a sputtering method, the titanium oxide containing a dopant element in a proportion of 30% by mass or less Using a target containing a system material, the sputtering atmosphere is an atmosphere containing at least 0.1 to 10% by volume of oxygen, and the balance is made of an inert gas, with a film formation rate of 0.01 to 1.0 nm / second. A method for producing a transparent conductive film, comprising annealing at a temperature of 250 ° C. or higher after sputtering film formation.
[2] The method for producing a transparent conductive film according to [1], wherein the film formation rate is 0.01 to 0.2 nm / second.
[3] The dopant element contained in the target is Nb, Ta, Mo, W, Te, Sb, Fe, Ru, Ge, Sn, Bi, Al, Hf, Si, Zr, Co, Cr, Ni, V , Mn, Re, Ce, Y, P and B. The method for producing a transparent conductive film according to any one of [1] or [2] above, which is at least one selected from the group consisting of
[4] The method for producing a transparent conductive film according to any one of [1] to [3], wherein the transparent conductive film contains an anatase crystal.
[5] A method for manufacturing a semiconductor light emitting device, wherein a semiconductor layer is formed by sequentially laminating at least an n type semiconductor layer, a light emitting layer, and a p type semiconductor layer on a substrate, and a transparent conductive film is formed on the p type semiconductor layer. And the said transparent conductive film is formed using the manufacturing method as described in any one of said [1] thru | or [4], The manufacturing method of the semiconductor light-emitting device characterized by the above-mentioned.
[6] A semiconductor light-emitting device obtained by the method for manufacturing a semiconductor light-emitting device according to [5].
[7] A lamp comprising the semiconductor light emitting device according to [6].
[8] A method for producing a transparent conductive substrate in which a transparent conductive film containing a titanium oxide (TiO 2 ) -based material is formed on a substrate using a sputtering method, the dopant element being contained in a proportion of 30% by mass or less Using a target containing a titanium oxide-based material, the sputtering atmosphere is an atmosphere containing at least 0.1 to 10% by volume of oxygen, with the balance being an inert gas, and a composition of 0.01 to 1.0 nm / second. A method for producing a transparent conductive substrate, comprising sputtering at a film speed and then annealing at a temperature of 250 ° C. or higher.
[9] The method for producing a transparent conductive substrate according to [8] above, wherein the film formation rate is 0.01 to 0.2 nm / second.
[10] The method for producing a transparent conductive substrate according to any one of [8] or [9] above, wherein the substrate is made of either an inorganic material or a polymer material.
[11] The method for producing a transparent conductive substrate according to any one of [8] to [10] above, wherein the transparent conductive film contains anatase type crystals.
[12] A transparent conductive substrate obtained by the method for producing a transparent conductive substrate according to any one of [8] to [11].
[13] An electronic device comprising the transparent conductive substrate according to [12].
 尚、「透明導電膜がアナターゼ型結晶を含む」とは、透明導電膜を構成する酸化チタンの結晶形態がアナターゼ型、ルチル型、ブルーカイト(ブルッカイト)型のうち、例えば斜入射法によるX線回折データにより、アナターゼ型であることが特定できる構造であることを意味し、X線回折データのピーク半値幅からアモルファス構造をその他含有する場合も含む。 “The transparent conductive film contains anatase type crystals” means that the crystal form of titanium oxide constituting the transparent conductive film is an anatase type, a rutile type or a brookite type, for example, an X-ray by oblique incidence method. It means that the structure can be identified as anatase type based on diffraction data, and includes cases where other amorphous structures are included from the peak half-value width of X-ray diffraction data.
 本発明の透明導電膜の製造方法によれば、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲットを用い、スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、0.01~1.0nm/秒の成膜速度でスパッタリング成膜した後、250℃以上の温度でアニールする方法とすることにより、従来の酸化チタン系の透明導電膜に比べ、シート抵抗が顕著に低減される。これにより、導電性及び透明性に優れた透明導電膜を形成することが可能となる。
 本発明の透明導電性基体の製造方法によれば、透明導電膜を無機材料又は高分子材料の基体の表面に成膜することにより、優れた導電性や透明性が要求される各種透明導電性基体を極めて容易に製造することができる。本発明では、透明導電性基体の基体として高分子シートを用いた結果、導電性及び透明性に優れた透明導電性シートを容易に製造することができる。また、本発明では、透明導電性基体の基体として半導体発光素子を形成する半導体を用いた結果、透明性及び光取り出し効率に優れた半導体発光素子を容易に製造することができる。
According to the method for producing a transparent conductive film of the present invention, a target including a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less is used, and a sputtering atmosphere is formed with at least 0.1 to 10% by volume of oxygen. In the conventional oxidation method, a sputtering method is performed at a film formation rate of 0.01 to 1.0 nm / second, followed by annealing at a temperature of 250 ° C. or higher. Compared with a titanium-based transparent conductive film, sheet resistance is significantly reduced. Thereby, a transparent conductive film excellent in conductivity and transparency can be formed.
According to the method for producing a transparent conductive substrate of the present invention, by forming a transparent conductive film on the surface of a substrate of an inorganic material or a polymer material, various transparent conductivity required to have excellent conductivity and transparency. The substrate can be manufactured very easily. In the present invention, as a result of using a polymer sheet as a substrate of a transparent conductive substrate, a transparent conductive sheet excellent in conductivity and transparency can be easily produced. Further, in the present invention, as a result of using the semiconductor forming the semiconductor light emitting element as the base of the transparent conductive substrate, a semiconductor light emitting element excellent in transparency and light extraction efficiency can be easily manufactured.
 また、本発明の半導体発光素子の製造方法によれば、基板上に、少なくともn型半導体層、発光層及びp型半導体層を順次積層して半導体層を形成し、p型半導体層上に、上記本発明の透明導電膜の製造方法を用いて透明導電膜を形成する方法なので、半導体層全体に広く電流を拡散させることができ、光取り出し効率に優れる半導体発光素子を製造することが可能となる。
 また、本発明の半導体発光素子によれば、上記本発明の製造方法によって得られるものなので、高い光取り出し効率を有し、発光特性に優れたものとなる。
In addition, according to the method for manufacturing a semiconductor light emitting device of the present invention, a semiconductor layer is formed by sequentially laminating at least an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer on a substrate, and on the p-type semiconductor layer, Since the transparent conductive film is formed using the method for manufacturing a transparent conductive film of the present invention, a current can be widely diffused over the entire semiconductor layer, and a semiconductor light emitting device having excellent light extraction efficiency can be manufactured. Become.
Moreover, according to the semiconductor light emitting device of the present invention, since it is obtained by the production method of the present invention, it has high light extraction efficiency and excellent light emission characteristics.
 さらに、本発明に係るランプは、本発明の半導体発光素子が用いられてなるものであるので、発光特性に優れたものとなる。
また、本発明に係る電子機器としては例えば、有機発光素子や光電変換素子(太陽電池)等の透明電極を用いている電子機器を含み、本発明の透明導電性基体の製造方法によって得られた透明導電性基体を用いて容易に製造することができる。
Furthermore, since the lamp according to the present invention uses the semiconductor light emitting device of the present invention, the lamp has excellent light emission characteristics.
Moreover, the electronic device according to the present invention includes, for example, an electronic device using a transparent electrode such as an organic light emitting element or a photoelectric conversion element (solar cell), and is obtained by the method for producing a transparent conductive substrate of the present invention. It can be easily manufactured using a transparent conductive substrate.
本発明に係る透明導電膜の製造方法、半導体発光素子の製造方法及び半導体発光素子の一例を模式的に説明する図であり、基板上に半導体層が形成されるとともに、この半導体層上に透明導電膜が形成された半導体発光素子の積層構造を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining typically an example of the manufacturing method of the transparent conductive film which concerns on this invention, the manufacturing method of a semiconductor light-emitting device, and a semiconductor light-emitting device, and while a semiconductor layer is formed on a board | substrate, it is transparent on this semiconductor layer It is sectional drawing which shows the laminated structure of the semiconductor light-emitting device in which the electrically conductive film was formed. 本発明に係る透明導電膜の製造方法、半導体発光素子の製造方法及び半導体発光素子の一例を模式的に説明する図であり、図1に示す半導体発光素子の平面図である。It is a figure which illustrates typically an example of the manufacturing method of the transparent conductive film which concerns on this invention, the manufacturing method of a semiconductor light-emitting device, and a semiconductor light-emitting device, and is a top view of the semiconductor light-emitting device shown in FIG. 本発明に係る透明導電膜の製造方法、半導体発光素子の製造方法及び半導体発光素子の一例を模式的に説明する図であり、透明導電膜の成膜に用いられるスパッタリング装置の一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically an example of the manufacturing method of the transparent conductive film which concerns on this invention, the manufacturing method of a semiconductor light-emitting device, and a semiconductor light-emitting device, and is the schematic which shows an example of the sputtering device used for film-forming of a transparent conductive film It is. スパッタリング雰囲気中における酸素濃度と透明導電膜のシート抵抗との関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration in sputtering atmosphere, and the sheet resistance of a transparent conductive film. アニール温度と透明導電膜のシート抵抗との関係を示すグラフである。It is a graph which shows the relationship between annealing temperature and the sheet resistance of a transparent conductive film. 本発明に係る半導体発光素子を用いて構成したランプの一例を模式的に説明する概略図である。It is the schematic explaining typically an example of the lamp | ramp comprised using the semiconductor light-emitting device which concerns on this invention. 図4Aに示した△印表示の曲線において、酸素濃度の異なる3点の環境下((1)0.38体積%、(2)0.56体積%、(3)0.77体積%)で成膜した酸化チタン系材料(サンプル(試料)(1)、サンプル(2)及びサンプル(3))のX線結晶解析結果を示す。In the curve indicated by Δ shown in FIG. 4A, in three environments with different oxygen concentrations ((1) 0.38% by volume, (2) 0.56% by volume, (3) 0.77% by volume). The X-ray crystallographic analysis results of the titanium oxide-based material (sample (sample) (1), sample (2), and sample (3))) formed are shown.
 以下、本発明に係る透明導電膜の製造方法、半導体発光素子の製造方法及び半導体発光素子、ランプ、透明導電性基体の製造方法及び透明導電性基体、並びに、電子機器の一実施形態について、図1~図5を適宜参照しながら説明する。
 また、本実施形態においては、図1、2に示すような、p型半導体層6上に透明導電膜1が設けられた半導体発光素子Aを例に挙げ、詳しく説明する。
Hereinafter, a transparent conductive film manufacturing method, a semiconductor light emitting device manufacturing method, a semiconductor light emitting device, a lamp, a transparent conductive substrate manufacturing method, a transparent conductive substrate, and an electronic device according to an embodiment of the present invention will be described. 1 to 5 will be described as appropriate.
Further, in the present embodiment, the semiconductor light emitting element A in which the transparent conductive film 1 is provided on the p-type semiconductor layer 6 as shown in FIGS.
[透明導電膜の製造方法]
 本発明の透明導電膜の製造方法は、酸化チタン(TiO)系材料を含む透明導電膜1を、図3に例示するようなスパッタリング装置40を用いて、スパッタリング法で成膜する方法であり、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲット47を用い、スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、0.01~1.0nm/秒の成膜速度でスパッタリング成膜した後、250℃以上の温度でアニールすることにより、透明導電膜1を製造する方法である。本発明の透明導電膜の製造方法では、スパッタリングによる成膜速度を0.01~0.2nm/秒とすることが好ましい。また、本発明の透明導電膜の製造方法では、アニール温度を300℃以上に設けることが好ましい。
[Method for producing transparent conductive film]
The method for producing a transparent conductive film of the present invention is a method of forming a film of a transparent conductive film 1 containing a titanium oxide (TiO 2 ) -based material by a sputtering method using a sputtering apparatus 40 as illustrated in FIG. , Using a target 47 containing a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less, and a sputtering atmosphere containing at least 0.1 to 10% by volume of oxygen, with the balance being an inert gas In this method, the transparent conductive film 1 is manufactured by performing sputtering film formation at a film formation rate of 0.01 to 1.0 nm / second and then annealing at a temperature of 250 ° C. or higher. In the method for producing a transparent conductive film of the present invention, the film formation rate by sputtering is preferably set to 0.01 to 0.2 nm / second. Moreover, in the manufacturing method of the transparent conductive film of this invention, it is preferable to provide annealing temperature at 300 degreeC or more.
「透明導電膜」
 本発明の製造方法によって得られる透明導電膜は、導電性及び透明性を有し、ドーパント元素を含有する酸化チタン(TiO)を含む膜であって、ドーパント元素を含有する酸化チタン(TiO)を好ましくは少なくとも50質量%含む膜である。また、図示例の透明導電膜1は、半導体発光素子Aを構成するp型半導体層6上に設けられている。
"Transparent conductive film"
The transparent conductive film obtained by the production method of the present invention has conductivity and transparency, a film containing titanium oxide (TiO 2) containing dopant elements, titanium oxide containing a dopant element (TiO 2 ) Is preferably a film containing at least 50% by mass. The illustrated transparent conductive film 1 is provided on the p-type semiconductor layer 6 constituting the semiconductor light emitting element A.
 透明導電膜1は、上述のように、任意の不純物元素がドープされた酸化チタン材料(本明細書では、酸化チタン(TiO)系材料とも言う。単に酸化チタン系材料とも記載する。)からなり、例えば、TiOの他、このTiOを一部還元した還元型TiO2-Xを用いてもよく、導電性の酸化チタン系材料を含むものであれば、特に限定されない。
 また、酸化チタンにドープする材料としても、特に限定されないが、例えば、Nb、Ta、Mo、W、Te、Sb、Fe、Ru、Ge、Sn、Bi、Al、Hf、Si、Zr、Co、Cr、Ni、V、Mn、Re、Ce、Y、P及びBからなる群より選ばれる少なくとも1種を好適に採用することができる。中でも、Nb、Ta、Zr、Ce、Co、Vからなる群より選ばれる少なくとも1種を、より好適に使用することができる。
As described above, the transparent conductive film 1 is made of a titanium oxide material doped with an arbitrary impurity element (also referred to as a titanium oxide (TiO 2 ) -based material in this specification. Also simply referred to as a titanium oxide-based material). becomes, for example, other TiO 2, may be used reduced form TiO 2-X in which the TiO 2 partially reduced, as long as it contains a titanium oxide-based material of the conductive it is not particularly limited.
Further, the material doped into titanium oxide is not particularly limited. For example, Nb, Ta, Mo, W, Te, Sb, Fe, Ru, Ge, Sn, Bi, Al, Hf, Si, Zr, Co, At least one selected from the group consisting of Cr, Ni, V, Mn, Re, Ce, Y, P and B can be suitably employed. Among these, at least one selected from the group consisting of Nb, Ta, Zr, Ce, Co, and V can be used more suitably.
 透明導電膜1は、後述する各成膜条件で規定された本発明の製造方法によって形成することにより、シート抵抗Rsが低減されたものとなる。これにより、透明導電膜1を、半導体発光素子Aを構成するp型半導体層6上に設けた場合には、p型半導体6全体に対して広く電流を拡散させることが可能となり、半導体発光素子Aの発光効率を向上させることが可能となる。 The transparent conductive film 1 has a reduced sheet resistance Rs by being formed by the manufacturing method of the present invention defined by each film forming condition described later. Thereby, when the transparent conductive film 1 is provided on the p-type semiconductor layer 6 constituting the semiconductor light-emitting element A, the current can be diffused widely over the entire p-type semiconductor 6. It becomes possible to improve the luminous efficiency of A.
 本発明で得られる透明導電膜1は、結晶構造がアモルファス型、アナターゼ型、ルチル型、ブルーカイト型の酸化チタン系材料を幅広く利用することができるが、結晶構造の生成のし易さの観点から、アナターゼ型の酸化チタン系材料を用いることが好ましい。このように、透明導電膜1を、結晶構造が正方晶系のアナターゼ型とされた酸化チタン材料から構成することにより、アモルファス型やルチル型等の結晶構造を有するものに比べ、比抵抗(又はシート抵抗Rs)を低く制御することができ、導電性に優れた膜となる。このように、透明導電膜1をなす酸化チタンの結晶構造をアナターゼ型とする場合には、後述の各種成膜条件を採用することにより、所望の結晶構造が得られる。 The transparent conductive film 1 obtained by the present invention can use a wide range of titanium oxide materials having a crystal structure of an amorphous type, anatase type, rutile type, and brookite type, but from the viewpoint of easy generation of the crystal structure Therefore, it is preferable to use an anatase type titanium oxide material. Thus, by forming the transparent conductive film 1 from a titanium oxide material whose crystal structure is a tetragonal anatase type, the specific resistance (or the one having a crystal structure such as an amorphous type or a rutile type) (or Sheet resistance Rs) can be controlled to be low, and the film has excellent conductivity. As described above, when the crystal structure of titanium oxide forming the transparent conductive film 1 is anatase type, a desired crystal structure can be obtained by employing various film forming conditions described later.
 透明導電膜1のシート抵抗Rsは、500Ω/□以下であることが好ましい。上述したように、透明導電膜1のシート抵抗Rsを低くすることにより、膜中の導電性が高められる。これにより、例えば、透明導電膜1を半導体発光素子Aに適用した場合には、透明導電膜1によってp型半導体層6全体に電流を拡散させることが可能となり、光取り出し効率が向上する。具体的には、透明導電膜1のシート抵抗Rsを上記規定とすることにより、半導体発光素子Aに適用した際の光取り出し効率の向上効果が安定して得られる。
 また、透明導電膜1のシート抵抗Rsは、200Ω/□以下であることがより好ましく、80Ω/□以下であることが最も好ましい。
The sheet resistance Rs of the transparent conductive film 1 is preferably 500Ω / □ or less. As described above, by reducing the sheet resistance Rs of the transparent conductive film 1, the conductivity in the film is increased. Thereby, for example, when the transparent conductive film 1 is applied to the semiconductor light emitting device A, it becomes possible to diffuse current through the entire p-type semiconductor layer 6 by the transparent conductive film 1, and the light extraction efficiency is improved. Specifically, by setting the sheet resistance Rs of the transparent conductive film 1 to the above definition, the effect of improving the light extraction efficiency when applied to the semiconductor light emitting device A can be stably obtained.
Further, the sheet resistance Rs of the transparent conductive film 1 is more preferably 200Ω / □ or less, and most preferably 80Ω / □ or less.
 透明導電膜1のシート抵抗Rsを制御する方法としては、後述の製造方法において詳細を説明するが、ターゲット47に含有されるドーパント濃度を上記範囲としたうえで、スパッタリング雰囲気中の酸素濃度やアニール温度、成膜速度の調整によって制御することが可能である。 The method for controlling the sheet resistance Rs of the transparent conductive film 1 will be described in detail in the manufacturing method described later. The dopant concentration contained in the target 47 is within the above range, and the oxygen concentration in the sputtering atmosphere or annealing is performed. It can be controlled by adjusting the temperature and the deposition rate.
 透明導電膜1の厚さとしては、50nm以上であることが好ましい。
 一般に、シート抵抗Rsと膜厚d、比抵抗ρとの間には、シート抵抗Rs=比抵抗ρ/膜厚dの関係がある。本発明における透明導電膜1の厚さとしては、上記材料を用いることにより、可視域の光に対する透明性から特に制限されるものではないが、発光素子用の透明導電膜1とする場合には、50nm以上であることが好ましい。透明導電膜1の厚さを上記規定とすることで、後述の成膜条件と併せ、シート抵抗Rsを低く制御することが可能となる。また、透明導電膜1の最大厚さとしては、光取出し効率と生産コストの抑制の点から、1000nm以下とすることが好ましい。
The thickness of the transparent conductive film 1 is preferably 50 nm or more.
In general, there is a relationship of sheet resistance Rs = specific resistance ρ / film thickness d between the sheet resistance Rs, the film thickness d, and the specific resistance ρ. The thickness of the transparent conductive film 1 in the present invention is not particularly limited by the transparency to visible light by using the above materials, but in the case of the transparent conductive film 1 for a light emitting element. , 50 nm or more is preferable. By setting the thickness of the transparent conductive film 1 to the above definition, the sheet resistance Rs can be controlled to be low together with the film forming conditions described later. Further, the maximum thickness of the transparent conductive film 1 is preferably set to 1000 nm or less from the viewpoint of light extraction efficiency and production cost control.
 なお、本発明においては、透明導電膜1の表面に凹凸が形成された構成とすることも可能である。これにより、透明導電膜1を半導体発光素子Aに適用した場合に、透明導電膜1からの光取り出し効率が向上するとともに、凹凸の形状や寸法を適性化することで、透明導電膜1のシート抵抗Rsを制御することも可能となる。 In addition, in this invention, it is also possible to set it as the structure by which the unevenness | corrugation was formed in the surface of the transparent conductive film 1. FIG. Thereby, when the transparent conductive film 1 is applied to the semiconductor light-emitting element A, the light extraction efficiency from the transparent conductive film 1 is improved, and the shape and dimensions of the unevenness are made appropriate, whereby the sheet of the transparent conductive film 1 is obtained. It is also possible to control the resistance Rs.
 また、透明導電膜1の構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。例えば、透明導電膜1を半導体発光素子Aに適用した場合には、p型半導体層6上のほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成することも可能である。 Further, the structure of the transparent conductive film 1 can be used without any limitation, including a conventionally known structure. For example, when the transparent conductive film 1 is applied to the semiconductor light emitting device A, the transparent conductive film 1 may be formed so as to cover almost the entire surface of the p-type semiconductor layer 6, or may be formed in a lattice shape or a tree shape with a gap. It is also possible.
「製造方法」
 本発明に係る透明導電膜1の製造方法で規定される各種成膜条件について、以下に詳述する。
 上述したように、本発明の透明導電膜の製造方法では、酸化チタン系材料を含むターゲット47のドーパント濃度の他、チャンバ41のスパッタリング雰囲気ガスの組成、成膜速度やアニール温度、膜厚dを適性化することにより、透明導電膜1のシート抵抗Rsを低減させる。具体的には、各種成膜条件を、以下に説明する条件に規定することにより、透明導電膜1をなす酸化チタンの結晶構造を上述したようなアナターゼ型とすることができるので、シート抵抗Rsが格段に低減される効果が得られ、導電性の高い透明導電膜1が実現できる。
"Production method"
Various film-forming conditions prescribed | regulated with the manufacturing method of the transparent conductive film 1 which concerns on this invention are explained in full detail below.
As described above, in the method for producing a transparent conductive film according to the present invention, in addition to the dopant concentration of the target 47 containing the titanium oxide-based material, the composition of the sputtering atmosphere gas in the chamber 41, the film formation speed, the annealing temperature, and the film thickness d are set. By making it suitable, the sheet resistance Rs of the transparent conductive film 1 is reduced. Specifically, by defining the various film forming conditions to the conditions described below, the crystal structure of titanium oxide forming the transparent conductive film 1 can be made the anatase type as described above, so that the sheet resistance Rs Is obtained, and the transparent conductive film 1 having high conductivity can be realized.
(スパッタリング装置)
 本発明の製造方法においては、透明導電膜1(酸化チタン膜1A)の成膜装置として、例えば、図3に示すようなスパッタリング装置40を用いることができる。図3に例示するスパッタリング装置40では、チャンバ41内にターゲットプレート43及びヒータ44が設けられ、このヒータ44に、透明導電膜1を成膜する基板(図3中における符号Bのウェーハ)が取り付けられる。また、ヒータ44には、マッチングボックス45を介して、基板に印加するバイアス電流が供給され、ターゲットプレート43には、マッチングボックス46を介して、ターゲット47に印加するパワー電流が供給される。またさらに、チャンバ41内は、後述する所定の組成のガスが充填されたスパッタリング雰囲気とされている。
(Sputtering equipment)
In the manufacturing method of the present invention, for example, a sputtering apparatus 40 as shown in FIG. 3 can be used as a film forming apparatus for the transparent conductive film 1 (titanium oxide film 1A). In the sputtering apparatus 40 illustrated in FIG. 3, a target plate 43 and a heater 44 are provided in a chamber 41, and a substrate on which the transparent conductive film 1 is formed (a wafer denoted by B in FIG. 3) is attached to the heater 44. It is done. The heater 44 is supplied with a bias current to be applied to the substrate via the matching box 45, and the target plate 43 is supplied with a power current to be applied to the target 47 via the matching box 46. Furthermore, the inside of the chamber 41 is a sputtering atmosphere filled with a gas having a predetermined composition to be described later.
 そして、チャンバ41内でプラズマが発生することによってターゲット47をなす材料が叩き出され、ヒータ44に取り付けられたウェーハB上に酸化チタン膜1Aが成膜される。
 ここで、図示例のスパッタリング装置40は、ターゲット47の下方(図3の下方)にマグネット42が設けられ、該マグネット42が図示略の駆動装置によってターゲット47の下方で揺動又は回転する構成とされている。これにより、ターゲットプレート43上のターゲット47が偏って叩き出されることが無く、ムラ無く使用することが可能となる。
Then, the plasma is generated in the chamber 41 so that the material forming the target 47 is knocked out, and the titanium oxide film 1 </ b> A is formed on the wafer B attached to the heater 44.
Here, in the illustrated sputtering apparatus 40, a magnet 42 is provided below the target 47 (downward in FIG. 3), and the magnet 42 swings or rotates below the target 47 by a driving device (not shown). Has been. As a result, the target 47 on the target plate 43 is not biased out and can be used without unevenness.
(ターゲット)
 本発明においては、透明導電膜1(酸化チタン膜1A)をスパッタリング法によって成膜する際のターゲット47として、例えば、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むものを用いる。本発明においては、酸化チタン材料に、不純物であるドーパント元素を上記範囲で含有するターゲット47を用い、さらに、成膜条件を後述の範囲に規定することにより、膜中のシート抵抗Rsが低減される。これにより、酸化チタン系材料を含む膜でありながら、ITO並みの導電性を備える透明導電膜1を成膜することが可能となる。尚、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲットとは、前記酸化チタン系材料を好ましくは少なくとも50質量%含むものである
(target)
In the present invention, as the target 47 when the transparent conductive film 1 (titanium oxide film 1A) is formed by sputtering, for example, a material containing a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less. Use. In the present invention, the sheet resistance Rs in the film is reduced by using the target 47 containing the dopant element as an impurity in the above range as the titanium oxide material and further defining the film forming conditions in the range described later. The Accordingly, it is possible to form the transparent conductive film 1 having conductivity similar to that of ITO, although the film includes a titanium oxide-based material. The target including a titanium oxide material containing a dopant element in a proportion of 30% by mass or less preferably includes at least 50% by mass of the titanium oxide material.
 本発明において、酸化チタン系材料を含むターゲット47に含有されるドーパント元素としては、特に限定されないが、例えば、Nbを用いることが好ましい。ターゲット47として、Nbが10質量%以下の割合で含有された酸化チタン材料を用いることで、より効果的に膜中のシート抵抗Rsを低減することが可能となる。 In the present invention, the dopant element contained in the target 47 containing the titanium oxide-based material is not particularly limited, but for example, Nb is preferably used. By using a titanium oxide material containing Nb at a ratio of 10% by mass or less as the target 47, the sheet resistance Rs in the film can be more effectively reduced.
 なお、酸化チタン系材料を含むターゲット47に含有されるドーパント元素は、30質量%以下の割合であることが好ましく、15質量%以下の割合であることがより好ましく、10質量%以下の割合であることがさらに好ましい。
 また、酸化チタン系材料を含むターゲット47に含有されるドーパント元素は、その効果を考慮して、少なくとも1質量%以上の割合で含有されていることが好ましい。
In addition, it is preferable that the dopant element contained in the target 47 containing a titanium oxide-based material is a ratio of 30% by mass or less, more preferably a ratio of 15% by mass or less, and a ratio of 10% by mass or less. More preferably it is.
Moreover, it is preferable that the dopant element contained in the target 47 containing a titanium oxide-based material is contained at a ratio of at least 1% by mass in consideration of the effect.
(スパッタリング雰囲気)
 本発明においては、透明導電膜1(酸化チタン膜1A)をスパッタリング法によって成膜する際の雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とする。具体的には、スパッタリング装置40のチャンバ41内に、不活性ガスとしてアルゴン(Ar)ガスを導入するとともに、チャンバ41における濃度が上記範囲となる量で酸素を導入する。
(Sputtering atmosphere)
In the present invention, the atmosphere when the transparent conductive film 1 (titanium oxide film 1A) is formed by sputtering is an atmosphere containing at least 0.1 to 10% by volume of oxygen and the balance being an inert gas. To do. Specifically, argon (Ar) gas is introduced as an inert gas into the chamber 41 of the sputtering apparatus 40, and oxygen is introduced in an amount such that the concentration in the chamber 41 falls within the above range.
 一般に、酸化チタン等を含む透明の金属酸化膜においては、膜中に取り込まれて含有される酸素(O)の量が多くなるのに従ってシート抵抗Rs(又は比抵抗)が増大する。このため、透明導電膜1(酸化チタン膜1A)を成膜する際は、チャンバ41におけるスパッタリング雰囲気を、酸素濃度が最適化されたガス雰囲気とする必要がある。また、膜中への酸素の取り込み効率が成膜速度によって異なるため、成膜速度に応じた酸素濃度にする必要がある。
 本発明の透明導電膜の製造方法においては、スパッタリング雰囲気を、上述のような酸素濃度範囲とされた雰囲気とすることで、成膜時に膜中に取り込まれる酸素の量を適正範囲とすることが可能となる。これにより、成膜後の透明導電膜1(酸化チタン膜1A)のシート抵抗を効果的に低減することが可能となる。
In general, in a transparent metal oxide film containing titanium oxide or the like, the sheet resistance Rs (or specific resistance) increases as the amount of oxygen (O 2 ) incorporated and contained in the film increases. For this reason, when forming the transparent conductive film 1 (titanium oxide film 1A), the sputtering atmosphere in the chamber 41 needs to be a gas atmosphere in which the oxygen concentration is optimized. In addition, since the efficiency of oxygen incorporation into the film varies depending on the deposition rate, it is necessary to adjust the oxygen concentration according to the deposition rate.
In the method for producing a transparent conductive film of the present invention, the amount of oxygen taken into the film during film formation can be set to an appropriate range by setting the sputtering atmosphere to an atmosphere in which the oxygen concentration range is as described above. It becomes possible. As a result, the sheet resistance of the transparent conductive film 1 (titanium oxide film 1A) after film formation can be effectively reduced.
 本発明の製造方法においては、スパッタリング雰囲気中に含まれる酸素濃度を、0.1~10体積%の範囲とすることがより好ましく、0.3~5体積%の範囲とすることがより好ましく、0.3~1.6体積%の範囲とすることがさらに好ましい。
 また、本発明において、スパッタリング雰囲気に含有される酸素の濃度を0.1質量%以下とした場合、成膜速度を遅くすることでシート抵抗の上昇を抑制することができるが、成膜に長い時間を要するので生産上現実意的ではない。
In the production method of the present invention, the oxygen concentration contained in the sputtering atmosphere is more preferably in the range of 0.1 to 10% by volume, more preferably in the range of 0.3 to 5% by volume. More preferably, it is in the range of 0.3 to 1.6% by volume.
Further, in the present invention, when the concentration of oxygen contained in the sputtering atmosphere is 0.1% by mass or less, an increase in sheet resistance can be suppressed by slowing the film formation rate. Since it takes time, it is not realistic in production.
 なお、本発明の製造方法においては、上述のような不活性ガスを主体とし、酸素が微量で含有されたスパッタリング雰囲気のみには限定されず、例えば、窒素ガス等、他のガスを含有する雰囲気としても構わない。 The production method of the present invention is not limited to a sputtering atmosphere mainly composed of the inert gas as described above and containing a small amount of oxygen, for example, an atmosphere containing other gas such as nitrogen gas. It does not matter.
(成膜速度)
本発明においては、透明導電膜1(酸化チタン膜1A)をスパッタリング法によって成膜する際の成膜速度を、0.01~1nm/秒の範囲とする。酸化チタン系材料を含む膜の成膜速度を、上記範囲に規定することにより、成膜時に膜中に取り込まれる酸素(O2)の量が低減されるので、成膜後の透明導電膜1(酸化チタン膜1A)のシート抵抗Rsを低く制御することが可能となる。成膜速度が速過ぎる場合には、上述したようなシート抵抗Rsの問題よりも、ターゲットへのダメージが問題となることから好ましくない。
(Deposition rate)
In the present invention, the film formation rate when the transparent conductive film 1 (titanium oxide film 1A) is formed by sputtering is set in the range of 0.01 to 1 nm / second. By defining the film formation rate of the film containing the titanium oxide-based material within the above range, the amount of oxygen (O2) taken into the film at the time of film formation is reduced, so that the transparent conductive film 1 ( The sheet resistance Rs of the titanium oxide film 1A) can be controlled to be low. When the film formation rate is too high, it is not preferable because damage to the target becomes a problem rather than the problem of the sheet resistance Rs as described above.
 また、透明導電膜1(酸化チタン膜1A)の成膜速度は、0.01~0.7nm/秒の範囲とすることがより好ましく、0.01~0.3nm/秒の範囲とすることがさらに好ましく、0.01~0.2nm/秒の範囲とすることが最も好ましい。 Further, the film forming rate of the transparent conductive film 1 (titanium oxide film 1A) is more preferably in the range of 0.01 to 0.7 nm / second, and more preferably in the range of 0.01 to 0.3 nm / second. Is more preferable, and the range of 0.01 to 0.2 nm / second is most preferable.
(アニール温度)
 本発明においては、上述したスパッタリング法によって酸化チタン膜1Aを成膜した後、この膜に250℃以上、より好ましくは300℃以上の温度でアニール処理を施す。このようなアニール処理を施すことにより、成膜された酸化チタン膜1Aが透明化されるとともに、シート抵抗Rs(又は比抵抗)が低減され、透明導電膜1を形成することができる。
(Annealing temperature)
In the present invention, after forming the titanium oxide film 1A by the sputtering method described above, this film is annealed at a temperature of 250 ° C. or higher, more preferably 300 ° C. or higher. By performing such annealing treatment, the formed titanium oxide film 1A is made transparent, the sheet resistance Rs (or specific resistance) is reduced, and the transparent conductive film 1 can be formed.
 一般に、スパッタリング直後の酸化チタン膜はシート抵抗Rsが非常に高く、例えば、そのままで半導体発光素子等に用いた場合には、ITOと比べてシート抵抗が高いことから、半導体層全体に電流が拡散せず、発光効率が低下する等の問題が生じることがある。本発明においては、上記条件のスパッタリング法によって成膜された酸化チタン膜1Aに対し、最適なアニール温度、より望ましくは300℃以上でアニール処理を施すことにより、シート抵抗Rsを顕著に低減された透明導電膜1を得ることが可能となる。 In general, a titanium oxide film immediately after sputtering has a very high sheet resistance Rs. For example, when used as it is for a semiconductor light emitting device or the like, the sheet resistance is higher than that of ITO, so that current is diffused throughout the semiconductor layer. In some cases, the luminous efficiency may be reduced. In the present invention, the sheet resistance Rs is remarkably reduced by subjecting the titanium oxide film 1A formed by the sputtering method under the above conditions to an annealing treatment at an optimum annealing temperature, more preferably 300 ° C. or more. The transparent conductive film 1 can be obtained.
 なお、酸化チタン膜1Aに対して施すアニール処理の温度は、250℃以上とすることがより好ましく、300℃以上とすることがより好ましく、325~500℃の範囲とすることがさらに好ましい。また、このアニール処理は、900℃以下の温度で行なうのが望ましい。
 また、上記温度条件でアニールを施す時間としては、特に制限されないが、1~3600秒の範囲とすることが、シート抵抗Rsが一層効果的に低減できる点から好ましく、10~1200秒の範囲とすることがより好ましく、60~180秒の範囲とすることが最も好ましい
The annealing temperature applied to the titanium oxide film 1A is more preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably in the range of 325 to 500 ° C. Further, this annealing treatment is desirably performed at a temperature of 900 ° C. or lower.
Further, the annealing time under the above temperature conditions is not particularly limited, but is preferably in the range of 1 to 3600 seconds from the viewpoint that the sheet resistance Rs can be more effectively reduced, and in the range of 10 to 1200 seconds. More preferably, the range of 60 to 180 seconds is most preferable.
(パワー及びバイアス)
 本発明においては、透明導電膜1(酸化チタン膜1A)をスパッタリング法によって成膜する際の、ターゲット47側に印加するパワー値は、特に限定されないが、例えば、1000W以上とすることが好ましい。このような、高圧のパワーをターゲット47に印加することにより、成膜速度が速められる。これにより、成膜時に、膜中に取り込まれる酸素の量を低減することができるので、成膜後の透明導電膜1(酸化チタン膜1A)のシート抵抗Rsを、より効果的に低減することが可能となる。
(Power and bias)
In the present invention, the power value applied to the target 47 side when the transparent conductive film 1 (titanium oxide film 1A) is formed by the sputtering method is not particularly limited, but is preferably, for example, 1000 W or more. By applying such a high voltage power to the target 47, the film forming speed can be increased. Thereby, since the amount of oxygen taken into the film during film formation can be reduced, the sheet resistance Rs of the transparent conductive film 1 (titanium oxide film 1A) after film formation can be more effectively reduced. Is possible.
 また、基板側(ウェーハB、基板10)に印加されるバイアス値についても、特に限定はされないが、例えば、0~100Wの範囲とすることが、シート抵抗を低減しつつ、良好な酸化チタン膜が得られる点から、より好ましい。 Also, the bias value applied to the substrate side (wafer B, substrate 10) is not particularly limited, but for example, a range of 0 to 100 W is a good titanium oxide film while reducing sheet resistance. Is more preferable in that it is obtained.
 本発明に係る透明導電膜の製造方法における一実施形態(なお、この実施形態は、本発明に係る透明導電性基体の製造方法における一実施形態でもある)として、例えば、以下の条件で透明導電膜1を成膜することができる。
 まず、ドーパント元素を10質量%の割合で含有する酸化チタン系材料を含むターゲット47を用い、2.5体積%以下の酸素濃度を含有したアルゴン(Ar)のスパッタリング雰囲気下において、un-GaN(絶縁体)基板上に透明導電膜1(酸化チタン膜1A)を成膜する。この際、透明導電膜1(酸化チタン膜1A)を、0.2nm/秒又は0.1nm/秒の成膜速度で、スパッタリング法によって膜厚250nmの膜を成膜した場合には、例えば、図4Aのグラフに示すように、105Ω/cm~107Ω/cm台のシート抵抗を示す透明導電膜となる。これを、例えば、350℃の温度でアニールすることにより、約30Ω/□~100Ω/□の範囲のシート抵抗Rsに低減することができる。
As one embodiment in the method for producing a transparent conductive film according to the present invention (this embodiment is also one embodiment in the method for producing a transparent conductive substrate according to the present invention), for example, the transparent conductive film under the following conditions: The film 1 can be formed.
First, using a target 47 containing a titanium oxide-based material containing a dopant element in a proportion of 10% by mass, in an argon (Ar) sputtering atmosphere containing an oxygen concentration of 2.5% by volume or less, un-GaN ( Insulator) A transparent conductive film 1 (titanium oxide film 1A) is formed on a substrate. At this time, when the transparent conductive film 1 (titanium oxide film 1A) is formed into a film having a film thickness of 250 nm by a sputtering method at a film formation rate of 0.2 nm / second or 0.1 nm / second, for example, As shown in the graph of FIG. 4A, a transparent conductive film having a sheet resistance on the order of 105 Ω / cm to 107 Ω / cm is obtained. For example, by annealing at a temperature of 350 ° C., the sheet resistance Rs can be reduced to a range of about 30Ω / □ to 100Ω / □.
 このような、アニール後のシート抵抗Rsと酸素濃度との相関関係は、図4Aに示すように、スパッタ成膜時の成膜速度によって多少変動する。例えば、成膜速度を0.1nm/秒として成膜後にアニールを施した透明導電膜の場合、成膜速度を0.2nm/秒として成膜後にアニールした透明導電膜の場合よりも、低酸素濃度域で極小のシート抵抗Rsを示す。このように、本発明に係る透明導電膜の製造方法では、透明導電膜のアニール後のシート抵抗Rsは、スパッタ成膜時の成膜速度の影響を受けるものの、約30Ω/cm~100Ω/cmの範囲の値に低減することができる。 The correlation between the sheet resistance Rs after annealing and the oxygen concentration as described above varies somewhat depending on the deposition rate during sputtering deposition as shown in FIG. 4A. For example, in the case of a transparent conductive film annealed after film formation at a film formation rate of 0.1 nm / second, the oxygen concentration is lower than in the case of a transparent conductive film annealed after film formation at a film formation speed of 0.2 nm / second. The minimum sheet resistance Rs is shown in the concentration range. As described above, in the method for producing a transparent conductive film according to the present invention, the sheet resistance Rs after annealing of the transparent conductive film is affected by the film formation rate during sputtering film formation, but is about 30 Ω / cm to 100 Ω / cm. It can be reduced to a value in the range.
[透明導電性基体の製造方法]
 本発明に係る透明導電性基体の製造方法における実施形態(なお、この実施形態は、本発明に係る透明導電膜の製造方法における一実施形態でもある)としては、例えば、ドーパント元素を10質量%の割合で含有する酸化チタン系材料を含むターゲットを用い、1体積%の酸素濃度を含有したArのスパッタリング雰囲気下において、un-GaN(絶縁体)基板上に透明導電膜1(酸化チタン膜1A)を成膜する。この際、透明導電膜1(酸化チタン膜1A)を0.15nm/秒の成膜速度で、スパッタリング法によって膜厚250nmの膜を成膜した場合、透明導電膜1(酸化チタン膜1A)のシート抵抗Rsとアニール温度との関係は、例えば、図4Bのグラフに例示するような関係となる。ここで、un-GaN基板としては、例えば所定厚さを有するサファイア基板の主面上にAlNバッファ層(例えば、厚み30nm)とGaN下地層(例えば、厚み600nm)をMOCVD又はスパッタ法で順次積層した基板を用いている。図4Bに示すように、透明導電膜1のシート抵抗は、アニール温度が300℃以上600℃以下である場合に極小となる挙動を示す。
このように、本発明に係る透明導電膜の製造方法においては、スパッタリング法によって得られた透明導電膜1のシート抵抗Rsをアニール処理によってより一層低減させることができる。
本発明において好ましく用いられる酸化チタン系材料(例えばドーパント元素としてNb元素を有する酸化チタン(TiO))の結晶性は、アナターゼ型、ルチル型、ブルーカイト型及びアモルファスのいずれでもよく、制限されないが、結晶の安定性や導電性の点で、好ましくはアナターゼ型結晶を有しているのが良い。さらに、好ましくはアナターゼ及びアモルファスの混合体を有しているのが良い。
[Method for producing transparent conductive substrate]
As an embodiment in the method for producing a transparent conductive substrate according to the present invention (this embodiment is also an embodiment in the method for producing a transparent conductive film according to the present invention), for example, 10% by mass of a dopant element is used. A transparent conductive film 1 (titanium oxide film 1A) on an un-GaN (insulator) substrate in a sputtering atmosphere of Ar containing an oxygen concentration of 1% by volume using a target containing a titanium oxide-based material contained at a ratio of ). At this time, when the transparent conductive film 1 (titanium oxide film 1A) is formed at a film formation rate of 0.15 nm / second by a sputtering method, the transparent conductive film 1 (titanium oxide film 1A) is formed. The relationship between the sheet resistance Rs and the annealing temperature is, for example, as illustrated in the graph of FIG. 4B. Here, as the un-GaN substrate, for example, an AlN buffer layer (for example, thickness 30 nm) and a GaN underlayer (for example, thickness 600 nm) are sequentially laminated on the main surface of a sapphire substrate having a predetermined thickness by MOCVD or sputtering. The substrate is used. As shown in FIG. 4B, the sheet resistance of the transparent conductive film 1 exhibits a behavior that becomes minimum when the annealing temperature is 300 ° C. or higher and 600 ° C. or lower.
Thus, in the manufacturing method of the transparent conductive film which concerns on this invention, the sheet resistance Rs of the transparent conductive film 1 obtained by sputtering method can be reduced further by annealing treatment.
The crystallinity of the titanium oxide-based material preferably used in the present invention (for example, titanium oxide (TiO 2 ) having Nb element as a dopant element) may be any of anatase type, rutile type, brookite type and amorphous, but is not limited. From the viewpoint of crystal stability and conductivity, it is preferable to have an anatase crystal. Furthermore, it is preferable to have a mixture of anatase and amorphous.
 例えば、図4Aに示した△印表示の曲線(成膜速度が0.1nm/秒で成膜後350℃でアニール処理した場合)において、酸素濃度(体積%)の異なる3点の環境下((1)0.38体積%、(2)0.56体積%、(3)0.77体積%)で成膜した酸化チタン系材料(サンプル(試料)(1)、サンプル(2)及びサンプル(3))のX線結晶解析結果を図6に示す。X線結晶解析は、一般的なX線結晶解析装置(例えば、PANalytical製X‘PertPRO MPD装置)で同定を行なうことができる。なお、薄膜の結晶性を調べる為には、斜入射法(入射角固定:2度)を採用する。もしも、X線結晶解析を斜入射法でなく通常法で行なうと、薄膜の下地層であるGaN層やサファイア基板の回折線が検出され、透明導電膜の同定が難しくなり、好ましくない。 
図6の解析結果から、サンプル(1)、サンプル(2)及びサンプル(3)のいずれの場合でも、アナターゼ結晶が含まれた導電性の酸化チタン系材料が成膜されている。しかしながら、酸素濃度のより低い条件下で得られたサンプル(1)では、サンプル(2)及びサンプル(3)に比べ、主要ピークの半値幅が広く、またそのピーク強度は低く、アモルファスが多く存在している。しかしながら、この場合、サンプル(1)、サンプル(2)及びサンプル(3)のいずれの場合においても、ブルーカイト結晶やルチル結晶は見受けらない。
For example, in the curve indicated by Δ shown in FIG. 4A (when the film formation rate is 0.1 nm / second and the annealing process is performed at 350 ° C. after the film formation), the oxygen concentration (volume%) is different at three points in the environment ( (1) 0.38% by volume, (2) 0.56% by volume, (3) 0.77% by volume) titanium oxide-based material (sample (sample) (1), sample (2) and sample The X-ray crystal analysis result of (3)) is shown in FIG. In the X-ray crystal analysis, identification can be performed with a general X-ray crystal analyzer (for example, X'Pert PRO MPD device manufactured by PANalytical). In order to investigate the crystallinity of the thin film, the oblique incidence method (incident angle fixed: 2 degrees) is adopted. If the X-ray crystal analysis is performed by the normal method rather than the oblique incidence method, the diffraction lines of the GaN layer and the sapphire substrate which are the underlayer of the thin film are detected, which makes it difficult to identify the transparent conductive film, which is not preferable.
From the analysis result of FIG. 6, in any case of the sample (1), the sample (2), and the sample (3), the conductive titanium oxide-based material containing the anatase crystal is formed. However, sample (1) obtained under the condition of lower oxygen concentration has a wider half-width of the main peak and lower peak intensity than sample (2) and sample (3), and there are many amorphous substances. is doing. However, in this case, no brookite crystal or rutile crystal is observed in any of the samples (1), (2), and (3).
 以上説明したような、本発明の透明導電膜の製造方法(又は、本発明の透明導電性基体の製造方法)によれば、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲット47を用い、スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、0.01~1.0nm/秒の成膜速度でスパッタリング成膜した後、250℃以上の温度でアニールする方法とすることにより、従来の酸化チタン系の透明導電膜に比べ、シート抵抗が顕著に低減される。これにより、導電性及び透明性に優れた透明導電膜1を形成することが可能となる。 As described above, according to the method for producing a transparent conductive film of the present invention (or the method for producing a transparent conductive substrate of the present invention), a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less. A sputtering atmosphere is formed at a film formation rate of 0.01 to 1.0 nm / second using a target 47 containing an atmosphere containing at least 0.1 to 10% by volume of oxygen and the balance being an inert gas. By forming the film at a temperature of 250 ° C. or higher after annealing, the sheet resistance is significantly reduced as compared with a conventional titanium oxide-based transparent conductive film. Thereby, it becomes possible to form the transparent conductive film 1 excellent in conductivity and transparency.
 本発明においては、上述のように、例えばNb等のドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲット47を用いることにより、成膜後の透明導電膜1にも適正範囲でドーパントが含有された状態となる。これにより、透明導電膜1のシート抵抗Rsを、例えば1×10Ω/□程度(図4Aに示すグラフを参照)に抑制することが可能となる。
 また、本発明においては、上記ターゲット47を用いて所定速度で成膜した酸化チタン膜1Aに、例えば、300~500℃の範囲の温度でアニール処理を施すことにより、シート抵抗Rsが約30Ω/□~約100Ω/□程度(膜厚250nm)に抑制された透明導電膜1を得ることが可能となる。また、シート抵抗Rsの低い適正範囲においても、ドーパントが含有された透明導電膜には、アナターゼ結晶を含むのが好ましい。
In the present invention, as described above, by using the target 47 including a titanium oxide-based material containing a dopant element such as Nb at a ratio of 30% by mass or less, the transparent conductive film 1 after film formation is also appropriate. It will be in the state where the dopant was contained in the range. Thereby, the sheet resistance Rs of the transparent conductive film 1 can be suppressed to, for example, about 1 × 10 5 Ω / □ (see the graph shown in FIG. 4A).
In the present invention, the titanium oxide film 1A formed at a predetermined speed using the target 47 is annealed at a temperature in the range of 300 to 500 ° C., for example, so that the sheet resistance Rs is about 30Ω / It becomes possible to obtain the transparent conductive film 1 suppressed to about □ to about 100Ω / □ (film thickness 250 nm). Even in the appropriate range where the sheet resistance Rs is low, the transparent conductive film containing the dopant preferably contains anatase crystals.
 また、本発明では、上記温度条件のアニール処理を施すことにより、透明導電膜における光の減衰係数(吸収係数)を低く制御できるため、従来の酸化チタン系材料を含む透明導電膜に比べ、高い透明性が得られる。これにより、酸化チタン系材料を含む透明導電膜1であっても、少なくとも一定の波長領域においては、ITOやIZO並みの透明性が得られる。具体的には、本発明の製造方法で得られる透明導電膜1は、例えば、波長が440~460nmの青色領域において光吸収が抑制され、ITO等を上回る透明性が得られるものとなる。 Further, in the present invention, the light attenuation coefficient (absorption coefficient) in the transparent conductive film can be controlled to be low by performing the annealing treatment at the above temperature condition, so that it is higher than the conventional transparent conductive film containing a titanium oxide-based material. Transparency is obtained. Thereby, even if it is the transparent conductive film 1 containing a titanium oxide type material, transparency at the same level as ITO or IZO is obtained at least in a certain wavelength region. Specifically, the transparent conductive film 1 obtained by the production method of the present invention has light absorption suppressed in a blue region having a wavelength of 440 to 460 nm, for example, and a transparency higher than that of ITO or the like can be obtained.
 [透明導電性基体]
本発明の透明導電性基体とは、本発明の透明導電性基体の製造方法で製造される、ドーパント元素を含有する前述の酸化チタン(TiO)を含む透明導電膜を、無機材料又は高分子材料の基体の表面に成膜することにより、導電性及び透明性に優れた基体(以下、透明導電性基体とも言う。)であって、基体の材料としては導電性及び透明性に優れた無機材料又は高分子材料であればよく、基体の形状、構造等の制限も受けない。
本発明の透明導電性基体の一例として、高分子シートの透明基体上にドーパント元素を含有する前述の酸化チタン(TiO)を含む透明導電膜を設けた透明導電性シートを挙げることができる。ここで透明導電膜1の結晶性、組成、比抵抗(又はシート抵抗Rs)、膜厚及び表面凹凸等の特徴は、前述の「透明導電膜」と同等な範囲を有する。
 また、本発明の透明導電性基体の一例として、無機材料のからなる基体を用いるものの代表例として、半導体発光素子を構成する半導体(特に化合物半導体)からなる基体上に透明導電膜を形成したものや、有機発光素子や光電変換素子(太陽電池)等の電子機器において透明電極を形成する基板として用いられるガラス(石英ガラスを含む)等からなる基体上に透明導電膜を形成したもの、が挙げられる。
 尚、本発明において、「基体」としては、1種類の材料からなる「基体」だけでなく、複数種類の「基体」を一体に形成したものも含む。また、無機材料又は高分子材料の基板上に、無機材料又は高分子材料の薄膜を積層し、その上に透明導電膜を形成して「透明導電性基体」を製造する場合には、その「透明導電性基体」のうち透明導電膜を除いたもの、すなわち、基板と薄膜とを合わせたものを「基体」とする。
以下、具体例を用いて詳細に説明する。
[Transparent conductive substrate]
The transparent conductive substrate of the present invention refers to the transparent conductive film containing the above-mentioned titanium oxide (TiO 2 ) containing a dopant element, which is produced by the method for producing a transparent conductive substrate of the present invention, an inorganic material or a polymer By forming a film on the surface of the substrate of the material, the substrate is excellent in conductivity and transparency (hereinafter also referred to as a transparent conductive substrate), and the substrate material is an inorganic material having excellent conductivity and transparency. Any material or polymer material may be used, and the shape and structure of the substrate are not limited.
As an example of the transparent conductive substrate of the present invention, a transparent conductive sheet in which a transparent conductive film containing the above-described titanium oxide (TiO 2 ) containing a dopant element is provided on a transparent substrate of a polymer sheet can be given. Here, the characteristics of the transparent conductive film 1 such as crystallinity, composition, specific resistance (or sheet resistance Rs), film thickness, and surface unevenness have the same range as the above-mentioned “transparent conductive film”.
In addition, as an example of the transparent conductive substrate of the present invention, as a representative example of using a substrate made of an inorganic material, a transparent conductive film is formed on a substrate made of a semiconductor (particularly a compound semiconductor) constituting a semiconductor light emitting element. And a transparent conductive film formed on a substrate made of glass (including quartz glass) used as a substrate for forming a transparent electrode in an electronic device such as an organic light-emitting element or a photoelectric conversion element (solar cell). It is done.
In the present invention, the “base” includes not only a “base” made of one type of material but also a plurality of types of “base” formed integrally. Further, when a “transparent conductive substrate” is manufactured by laminating a thin film of an inorganic material or a polymer material on a substrate of an inorganic material or a polymer material and forming a transparent conductive film thereon, Of the “transparent conductive substrate”, a substrate excluding the transparent conductive film, that is, a combination of the substrate and the thin film is referred to as a “substrate”.
Hereinafter, it demonstrates in detail using a specific example.
 [透明導電性シート] 
本発明の透明導電性シート(透明導電性基体の一例)は、ドーパント元素を含有する前述の酸化チタン(TiO)を含む透明導電膜1を高分子シート等の透明基体上に設けられたシート(多層フィルム)からなることを特徴とする。ここで、透明導電膜1の結晶性、組成、比抵抗(又はシート抵抗Rs)、膜厚及び表面凹凸等の特徴は、前述の「透明導電膜」と同等な範囲を有する。
また、本発明の透明導電性シートで用いられる透明導電膜1は、抵抗の異なる酸化チタン(TiO)層の少なくとも2層を含む透明導電膜であってもよく、この場合、基体側に積層される酸化チタン(TiO)層は、その上部に積層される酸化チタン(TiO)層の成長を阻害しない為に結晶性の高い酸化チタン(TiO)層が形成されるのが好ましい。もしも、基体側に積層される酸化チタン(TiO)層の結晶性が極端に低いものを採用した場合は、その上部に所定の導電性(電動度)を有する酸化チタン(TiO)層が形成されなくなる虞が生じる。すなわち、基体側に積層される酸化チタン(TiO)層は、結晶性の高いものが形成されるのが良い。また、基体側に積層される酸化チタン(TiO)層は、結晶性が高ければ、ドーパント元素を含有しない酸化チタン(TiO)層であっても構わない。 特に、本発明において、透明導電性シートの最上部の酸化チタン(TiO)層は、抵抗値の小さい酸化チタン(TiO)層が形成されるのが好ましい。即ち、本発明の透明導電性シートは、少なくとも基体/高抵抗層/低抵抗層の構成を有する。ここで、高抵抗層の酸化チタン(TiO)層の厚みとしては、1nm以上であることが好ましく、200nm未満がさらに好ましい。また、その膜厚は、10nm~100nmの範囲が望ましい。高抵抗層の酸化チタン(TiO)層の厚みが1nm未満の場合は、結晶性の高い層が形成されず、またその上部に低抵抗の酸化チタン(TiO)層が形成されにくなってしまう。また、高抵抗層の酸化チタン(TiO)層の厚みが、200nmを超える場合は、透明導電性シートの透明導電膜として、トータル厚みが大きくなりすぎ、基体シートの変形や透明導電膜自体にマイクロクラックが発生したり、透明導電膜自体の表面抵抗値が上昇するなどの不具合を生じる虞があり、また生産コスト高となってしまう。
低抵抗層の酸化チタン(TiO)層の厚みとしては、50nm以上であることが好ましい。また、透明導電性と生産コストの抑制の点から、500nm以下とすることが好ましい。低抵抗層の酸化チタン(TiO)層の厚みが50nm未満であると、透明導電性シートとして十分なシート抵抗Rsが得られなくなり、好ましくない。
本発明の透明導電性シートとして、その透明導電膜1のシート抵抗Rsは、200Ω/□以下であることがより好ましく、80Ω/□以下であることが最も好ましい。
[Transparent conductive sheet]
The transparent conductive sheet (an example of a transparent conductive substrate) of the present invention is a sheet in which the transparent conductive film 1 containing the above-described titanium oxide (TiO 2 ) containing a dopant element is provided on a transparent substrate such as a polymer sheet. (Multi-layer film). Here, characteristics such as crystallinity, composition, specific resistance (or sheet resistance Rs), film thickness, and surface unevenness of the transparent conductive film 1 have the same range as the above-mentioned “transparent conductive film”.
The transparent conductive film 1 used in the transparent conductive sheet of the present invention may be a transparent conductive film including at least two layers of titanium oxide (TiO 2 ) layers having different resistances. In this case, the transparent conductive film 1 is laminated on the substrate side. is titanium oxide (TiO 2) layer is, the the titanium oxide is stacked on highly crystalline titanium oxide in order not to inhibit the growth of (TiO 2) layer (TiO 2) layer is formed is preferable. If a titanium oxide (TiO 2 ) layer laminated on the substrate side has an extremely low crystallinity, a titanium oxide (TiO 2 ) layer having a predetermined conductivity (electricity) is formed on the upper part. There is a risk that it will not be formed. In other words, the titanium oxide (TiO 2 ) layer stacked on the substrate side is preferably formed with high crystallinity. Further, titanium oxide (TiO 2) layer laminated on the substrate side, the higher the crystallinity, may be a titanium oxide (TiO 2) layer containing no dopant elements. In particular, in the present invention, the uppermost titanium oxide (TiO 2 ) layer of the transparent conductive sheet is preferably formed of a titanium oxide (TiO 2 ) layer having a small resistance value. That is, the transparent conductive sheet of the present invention has a configuration of at least substrate / high resistance layer / low resistance layer. Here, the thickness of the titanium oxide (TiO 2 ) layer of the high resistance layer is preferably 1 nm or more, and more preferably less than 200 nm. The film thickness is preferably in the range of 10 nm to 100 nm. When the thickness of the titanium oxide (TiO 2 ) layer of the high resistance layer is less than 1 nm, a layer having high crystallinity is not formed, and a low resistance titanium oxide (TiO 2 ) layer is hardly formed on the upper layer. End up. In addition, when the thickness of the titanium oxide (TiO 2 ) layer of the high resistance layer exceeds 200 nm, the total thickness becomes too large as a transparent conductive film of the transparent conductive sheet, which may cause deformation of the base sheet or the transparent conductive film itself. There is a risk that problems such as generation of microcracks or an increase in the surface resistance value of the transparent conductive film itself may result in an increase in production cost.
The thickness of the titanium oxide (TiO 2 ) layer of the low resistance layer is preferably 50 nm or more. Moreover, it is preferable to set it as 500 nm or less from the point of suppression of transparent electroconductivity and production cost. When the thickness of the titanium oxide (TiO 2 ) layer of the low resistance layer is less than 50 nm, it is not preferable because a sheet resistance Rs sufficient as a transparent conductive sheet cannot be obtained.
As the transparent conductive sheet of the present invention, the sheet resistance Rs of the transparent conductive film 1 is more preferably 200Ω / □ or less, and most preferably 80Ω / □ or less.
次に、本発明の透明導電性シート(透明導電性基体の一例)の製造方法は、ドーパント元素を含有する酸化チタン(TiO)を含む透明導電膜1を、図3に例示するようなスパッタリング装置40を用いて、スパッタリング法で透明基体上に成膜する方法を提供する。本発明の透明導電性シートの製造方法では、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料(ドーパント元素を含有する酸化チタン(TiO))を含むターゲット47を用い、スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、0.01~1.0nm/秒の成膜速度でスパッタリング成膜を基体上に形成することを特徴とする。そして、透明導電膜1を250℃以上の温度でアニールすることにより、透明導電性シートを製造する。また、スパッタリングによる成膜速度は0.01~0.2nm/秒とすることが好ましい。 Next, in the method for producing a transparent conductive sheet (an example of a transparent conductive substrate) of the present invention, a transparent conductive film 1 containing titanium oxide (TiO 2 ) containing a dopant element is sputtered as illustrated in FIG. A method for forming a film on a transparent substrate by a sputtering method using the apparatus 40 is provided. The transparent conductive sheet production method of the present invention, using a target 47 comprising titanium oxide-containing material including a dopant element at a ratio of 30 mass% or less (titanium oxide containing a dopant element (TiO 2)), the sputtering atmosphere Is formed in an atmosphere containing at least 0.1 to 10% by volume of oxygen with the balance being an inert gas, and a sputtering film is formed on the substrate at a film formation rate of 0.01 to 1.0 nm / second. It is characterized by. And a transparent conductive sheet is manufactured by annealing the transparent conductive film 1 at the temperature of 250 degreeC or more. The film formation rate by sputtering is preferably 0.01 to 0.2 nm / second.
本発明の透明導電性シート(透明導電性基体の一例)の製造方法では、ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料(ドーパント元素を含有する酸化チタン(TiO))を含むターゲット47を用い、スパッタリング雰囲気を、少なくとも2段階変化させた環境下において、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、0.01~1.0nm/秒の成膜速度でスパッタリング成膜を基体上に形成することを特徴とする。スパッタリングによる成膜速度は0.01~0.2nm/秒とすることが好ましい。
ここで、スパッタリング雰囲気を、少なくとも2段階変化させた環境下とは、スパッタリング時の酸素濃度を少なくとも2段階変化させる環境下であって、好ましくは第1段階は高い酸素濃度下で行い、第2段階は低い酸素濃度下で行う方法を言う。スパッタリング雰囲気として、高い酸素濃度下でスパッタリングを行なった場合は、積層される酸化チタン(TiO)層を含む透明導電膜は、低い酸素濃度下と比べ、酸化チタン(TiO)層の結晶性が高く、また抵抗値の高い膜質が得られる。即ち、低い酸素濃度下で積層される酸化チタン(TiO)層を含む透明導電膜は、結晶性が低いなるものの、抵抗値の低い膜質が得られ、透明導電膜の表層が低抵抗な多層構造となり、好ましい。
In the method for producing a transparent conductive sheet (an example of a transparent conductive substrate) of the present invention, a titanium oxide-based material (titanium oxide (TiO 2 ) containing a dopant element) containing a dopant element in a proportion of 30% by mass or less is used. In an environment where the sputtering atmosphere is changed in at least two stages using an included target 47, the atmosphere contains at least 0.1 to 10% by volume of oxygen, and the balance is made of an inert gas. A sputtering film formation is formed on a substrate at a film formation rate of 0 nm / second. The film formation rate by sputtering is preferably 0.01 to 0.2 nm / second.
Here, the environment in which the sputtering atmosphere is changed in at least two stages is an environment in which the oxygen concentration during sputtering is changed in at least two stages. Preferably, the first stage is performed under a high oxygen concentration. The step refers to a method performed under a low oxygen concentration. When sputtering is performed under a high oxygen concentration as a sputtering atmosphere, the transparent conductive film including a titanium oxide (TiO 2 ) layer to be stacked has a crystallinity of the titanium oxide (TiO 2 ) layer as compared with a low oxygen concentration. High film quality and high resistance can be obtained. That is, a transparent conductive film including a titanium oxide (TiO 2 ) layer stacked under a low oxygen concentration has a low crystallinity, but a low-resistance film quality is obtained, and the surface layer of the transparent conductive film is a low-resistance multilayer. A structure is preferable.
しかしながら、反面、第1段階で積層される透明導電膜の結晶性が高くなり過ぎたり、膜厚を大きくし過ぎると基体(例えば、高分子等のプラスチックシート)との界面付近で潜在的歪が発生し、結果的に第1段階で積層された透明導電膜自体にマイクロクラックが発生したり、熱処理等を施した際には、透明導電性シートが熱変形して大きくカールするなどの不具合を生じる虞が生じる。 On the other hand, however, if the crystallinity of the transparent conductive film laminated in the first stage becomes too high, or if the film thickness is too large, there is a potential strain near the interface with the substrate (for example, a plastic sheet such as a polymer). As a result, when the transparent conductive film itself laminated in the first stage is microcracked, or when heat treatment is performed, the transparent conductive sheet is thermally deformed and greatly curled. There is a risk that it will occur.
 本発明の透明導電性シート(透明導電性基体の一例)において使用する基体としては、透明な高分子(プラスチック)フィルムや板が用いられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルフォン(PES)、ポリカーボネート樹脂(PC)、ポリメタクリル酸メチル樹脂(PMMA)、ポリオレフィン樹脂、シクロポリオレフィン樹脂、酢酸セルロース(TAC)樹脂、テトラフルオロエチレン樹脂などのフッ素化樹脂、アリルエステル樹脂、透明ポリイミド樹脂、有機シリコン樹脂、エポキシ樹脂等が挙げられる。
これらは、単独又は積層又は混合して用いてもよく、透明で有れば限定されない。また、これらを適宜変成して用いてもよい。
特に、PET、PMMAやPCは、透明性が高く安価であり、好ましく用いられる。また、シクロポリオレフィン樹脂やポリオレフィン樹脂、フッ素化樹脂あるいは適度に酢酸エステル化された酢酸セルロースは、溶媒への耐性が強く、アセトニトリル等の溶媒処理が行なわれる湿式太陽電池等の用途への透明導電性シートとして好ましく用いられる。さらに、PESやPEN、ポリエーテルケトン、PEEK、透明ポリイミド樹脂、アリルエステル樹脂、有機シリコン樹脂、エポキシ樹脂は耐熱性に優れるという観点から好ましく用いられる樹脂である。
本発明においては、基体として用いられる基本的な透明樹脂の諸物性等については、(株)シーエムシー社発行の[光時代の透明性樹脂](井手文雄監修、2004年発行)を参照することができる。
さらに、本発明では、Tg(ガラス転移温度)が300℃を超える透明樹脂を好ましく使用することができ、例えば、「シルプラス」(新日鉄化学製)等を列挙することができる。そして、本発明では、ガラス代替の透明樹脂フィルムとして、高耐熱性、低熱膨張性、高透明性、低複屈折性、屈曲性など優れた特性を有する公知な光学レンズ用フィルムも広く用いることができる。
As the substrate used in the transparent conductive sheet (an example of a transparent conductive substrate) of the present invention, a transparent polymer (plastic) film or plate is used. For example, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyether ketone, polyether ether ketone (PEEK), polyether sulfone (PES), polycarbonate resin (PC), polymethyl methacrylate resin (PMMA), polyolefin resin, cyclopolyolefin resin, cellulose acetate (TAC) resin, fluorinated resin such as tetrafluoroethylene resin, allyl ester resin, transparent polyimide resin, organic silicon resin, epoxy resin and the like.
These may be used alone, laminated or mixed, and are not limited as long as they are transparent. These may be modified as appropriate.
In particular, PET, PMMA and PC are preferably used because they are highly transparent and inexpensive. In addition, cyclopolyolefin resin, polyolefin resin, fluorinated resin, or moderately acetic ester cellulose acetate is highly resistant to solvents and has transparent conductivity for applications such as wet solar cells that are treated with solvents such as acetonitrile. It is preferably used as a sheet. Furthermore, PES, PEN, polyether ketone, PEEK, transparent polyimide resin, allyl ester resin, organic silicon resin, and epoxy resin are resins that are preferably used from the viewpoint of excellent heat resistance.
In the present invention, for various physical properties of the basic transparent resin used as the substrate, see [Transparent Resin in the Light Age] (issued by Fumio Ide, published in 2004) published by CMC Co., Ltd. Can do.
Furthermore, in the present invention, a transparent resin having a Tg (glass transition temperature) exceeding 300 ° C. can be preferably used, and examples thereof include “Silplus” (manufactured by Nippon Steel Chemical Co., Ltd.). In the present invention, a known optical lens film having excellent properties such as high heat resistance, low thermal expansion, high transparency, low birefringence, and flexibility is widely used as a transparent resin film instead of glass. it can.
 次に、本発明の透明導電性シート(透明導電性基体の一例)の透明導電膜をアニールする方法について詳細に説明する。
本発明の透明導電性シートの製造方法によってスパッタリング成膜された、ドーパント元素を含有する酸化チタン(TiO)を含む透明導電膜は、スパッタ装置から取り出した後、所定の赤外線ランプアニール加熱装置(RTA炉)内に移し、カーボントレイ上で所定温度にアニール処理を行なうことができる。
また、基体材料がアニール処理温度に対して耐熱性の点で心配される場合には、所定温度に設定された加熱ロールを用いて、酸化チタン(TiO)を含む透明導電膜側に接触させることで透明導電膜をアニール処理することができる。
このように、本発明の透明導電性シートの製造方法では、透明導電膜を所定温度にアニールできればよく、アニール手段には制限を受けない。
Next, a method for annealing the transparent conductive film of the transparent conductive sheet (an example of a transparent conductive substrate) of the present invention will be described in detail.
A transparent conductive film containing titanium oxide (TiO 2 ) containing a dopant element, formed by sputtering according to the method for producing a transparent conductive sheet of the present invention, is taken out from a sputtering apparatus, and then a predetermined infrared lamp annealing heating apparatus ( RTA furnace), and annealing treatment can be performed at a predetermined temperature on the carbon tray.
When the base material is concerned about the heat resistance with respect to the annealing temperature, it is brought into contact with the transparent conductive film containing titanium oxide (TiO 2 ) using a heating roll set at a predetermined temperature. Thus, the transparent conductive film can be annealed.
Thus, in the manufacturing method of the transparent conductive sheet of this invention, what is necessary is just to be able to anneal a transparent conductive film to predetermined temperature, and there is no restriction | limiting in an annealing means.
[半導体発光素子の製造方法及び半導体発光素子]
本発明の透明導電性基体としては、前述の、ドーパント元素を含有する前述の酸化チタン(TiO)を含む透明導電膜1を半導体発光素子のp型半導体層6上の透明導電膜1(透明電極)として設けた半導体発光素子Aを挙げることができる。ここで、適用される透明電極の結晶性、組成、比抵抗(又はシート抵抗Rs)、膜厚及び表面凹凸等の特徴は、前述の「透明導電膜」と同等な範囲を有する。
[Method for Manufacturing Semiconductor Light-Emitting Element and Semiconductor Light-Emitting Element]
As the transparent conductive substrate of the present invention, the transparent conductive film 1 containing the above-mentioned titanium oxide (TiO 2 ) containing the dopant element is used as the transparent conductive film 1 (transparent) on the p-type semiconductor layer 6 of the semiconductor light emitting device. The semiconductor light emitting element A provided as an electrode can be mentioned. Here, the characteristics of the applied transparent electrode such as crystallinity, composition, specific resistance (or sheet resistance Rs), film thickness, and surface unevenness have the same range as the above-mentioned “transparent conductive film”.
 本発明の半導体発光素子の製造方法は、基板10上に、少なくともn型半導体層4、発光層5及びp型半導体層6を順次積層して半導体層20を形成し、p型半導体層6上に、上述した本発明の透明電極膜の製造方法によって透明導電膜1を形成する方法に関する。
 本実施形態においては、透明導電膜1を形成する方法については、本実施形態において説明した透明電極膜の製造方法と同様であり、その詳しい説明を省略する。 
In the method for manufacturing a semiconductor light emitting device of the present invention, a semiconductor layer 20 is formed by sequentially laminating at least an n-type semiconductor layer 4, a light emitting layer 5 and a p-type semiconductor layer 6 on a substrate 10. Furthermore, the present invention relates to a method for forming the transparent conductive film 1 by the above-described method for producing a transparent electrode film of the present invention.
In the present embodiment, the method for forming the transparent conductive film 1 is the same as the method for manufacturing the transparent electrode film described in the present embodiment, and a detailed description thereof is omitted.
「半導体発光素子」
 以下に、本発明の半導体発光素子の製造方法によって得られる半導体発光素子の構造について、図1、2に示す半導体発光素子Aを例に説明する。
 図示例のように、本実施形態の半導体発光素子Aは、基板10上に、n型半導体層4、発光層5及びp型半導体層6が順次積層されてなる半導体層20が形成され、p型半導体層6上に、上記本発明の透明導電膜1が形成され、概略構成されている。また、本実施形態で説明する例では、基板10上にバッファ層2及び下地層3が順次形成されており、下地層3上に半導体層20を構成するn型半導体層4が積層されている。また、透明導電膜1上には正極8が設けられるとともに、半導体層20の一部が除去されて露出したn型半導体層4の露出領域4dに負極9が設けられている。
 本実施形態で説明する例の半導体発光素子Aは、上記構成により、図示例のような発光ダイオード(LED)として構成される。
 以下、発光素子1の積層構造について詳しく説明する。
"Semiconductor light emitting device"
Hereinafter, the structure of the semiconductor light emitting device obtained by the method for manufacturing a semiconductor light emitting device of the present invention will be described using the semiconductor light emitting device A shown in FIGS.
As illustrated, in the semiconductor light emitting device A of this embodiment, a semiconductor layer 20 is formed on a substrate 10 by sequentially stacking an n-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer 6, and p The transparent conductive film 1 of the present invention is formed on the type semiconductor layer 6 and is roughly configured. In the example described in this embodiment, the buffer layer 2 and the base layer 3 are sequentially formed on the substrate 10, and the n-type semiconductor layer 4 constituting the semiconductor layer 20 is stacked on the base layer 3. . A positive electrode 8 is provided on the transparent conductive film 1, and a negative electrode 9 is provided in the exposed region 4 d of the n-type semiconductor layer 4 exposed by removing a part of the semiconductor layer 20.
The semiconductor light emitting device A of the example described in the present embodiment is configured as a light emitting diode (LED) as shown in the example with the above configuration.
Hereinafter, the laminated structure of the light emitting element 1 will be described in detail.
 本実施形態の半導体発光素子1において基板10に用いることができる材料としては、III族窒化物半導体結晶等が表面にエピタキシャル成長される基板材料であれば特に限定されず、各種材料を選択して用いることができる。例えば、サファイア、SiC、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、酸化ハフニウム、酸化タングステン、酸化モリブデン等が基板10の材料として挙げられる。また、上記各基板材料の中でも、特に、サファイアを用いることが好ましく、また、サファイアからなる基板10のc面からなる主面上に、詳細を後述するバッファ層2が形成されていることがより好ましい。 A material that can be used for the substrate 10 in the semiconductor light emitting device 1 of the present embodiment is not particularly limited as long as a group III nitride semiconductor crystal or the like is a substrate material that is epitaxially grown on the surface, and various materials are selected and used. be able to. For example, sapphire, SiC, silicon, zinc oxide, magnesium oxide, manganese oxide, zirconium oxide, manganese zinc iron oxide, magnesium aluminum oxide, zirconium boride, gallium oxide, indium oxide, lithium gallium oxide, lithium aluminum oxide, neodymium gallium oxide Examples of the material of the substrate 10 include lanthanum strontium aluminum tantalum oxide, strontium titanium oxide, titanium oxide, hafnium oxide, tungsten oxide, and molybdenum oxide. Of the above substrate materials, it is particularly preferable to use sapphire, and the buffer layer 2, which will be described in detail later, is formed on the main surface made of the c-plane of the substrate 10 made of sapphire. preferable.
バッファ層2は、基板10とIII族窒化物半導体からなる層との間の格子定数の違いを整合する層として設けられ、例えば、単結晶のAlGaNやAlN等のIII族窒化物からなる。このようなバッファ層2を備えることにより、その上に成膜されるIII族窒化物半導体は、良好な配向性及び結晶性を持つ結晶膜となる。 The buffer layer 2 is provided as a layer that matches the difference in lattice constant between the substrate 10 and the layer made of a group III nitride semiconductor, and is made of, for example, a group III nitride such as single-crystal AlGaN or AlN. By providing such a buffer layer 2, the group III nitride semiconductor film formed thereon becomes a crystal film having good orientation and crystallinity.
バッファ層2上に設けられる下地層3、n型半導体層4、発光層5、及びp型半導体層6の各層は、例えば、III族窒化物系半導体からなり、一般式AlGaIn1-A(0≦X≦1、0≦Y≦1、0≦Z≦1で且つ、X+Y+Z=1。記号Mは窒素(N)とは別の第V族元素を表し、0≦A<1である。)で表わされる窒化ガリウム系化合物半導体を何ら制限なく用いることができる。 Each layer of the base layer 3, the n-type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer 6 provided on the buffer layer 2 is made of, for example, a group III nitride semiconductor and has a general formula of Al X Ga Y In Z. N 1-A M A (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, and X + Y + Z = 1. The symbol M represents a Group V element different from nitrogen (N), and 0 ≦ A <1) can be used without any limitation.
下地層3としては、例えば、Gaを含むIII族窒化物化合物、即ちGaN系化合物半導体が用いられ、特に、単結晶のAlGaN又はGaNを好適に用いることができる。 As the underlayer 3, for example, a group III nitride compound containing Ga, that is, a GaN-based compound semiconductor is used, and in particular, single crystal AlGaN or GaN can be preferably used.
 n型半導体層4は、n型コンタクト層4a及びn型クラッド層4bが順次積層されてなる。n型コンタクト層4aとしては、例えば、下地層4aと同様にAlGa1―XN層層(0≦x≦1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)を用いることができ、また、Si、Ge又はSn等のn型不純物がドープされていることが好ましい。また、n型クラッド層4bとしては、例えば、AlGaN、GaN、GaInN等により成膜することが可能であり、また、これらの構造のヘテロ接合や複数回積層した超格子構造とすることもできる。 The n-type semiconductor layer 4 is formed by sequentially stacking an n-type contact layer 4a and an n-type cladding layer 4b. The n-type contact layer 4a, for example, similarly to the base layer 4a Al X Ga 1-X N layer layer (0 ≦ x ≦ 1, preferably 0 ≦ x ≦ 0.5, and more preferably 0 ≦ x ≦ 0 .1) can be used, and n-type impurities such as Si, Ge, or Sn are preferably doped. In addition, the n-type cladding layer 4b can be formed of, for example, AlGaN, GaN, GaInN, or the like, or can be a heterojunction of these structures or a superlattice structure in which a plurality of layers are stacked.
 発光層5は、n型半導体層4上に積層されるとともにp型半導体層6がその上に積層される活性層であり、例えば、障壁層5aと井戸層5bとが交互に積層され、n型半導体層4側及びp型半導体層6側に障壁層5aが配される順で積層されてなる。井戸層5bには、インジウムを含有する窒化ガリウム系化合物半導体として、例えば、Ga1-sInN(0<s<0.4)等の窒化ガリウムインジウムを用いることができる。また、障壁層5aとしては、例えば、インジウムを含有した窒化ガリウム系化合物半導体からなる井戸層5bよりもバンドギャップエネルギーが大きいAlGa1-cN(0≦c<0.3)等の窒化ガリウム系化合物半導体を、好適に用いることができる。 The light emitting layer 5 is an active layer that is stacked on the n-type semiconductor layer 4 and the p-type semiconductor layer 6 is stacked thereon. For example, the barrier layers 5a and the well layers 5b are alternately stacked, and n The barrier layers 5a are stacked in the order in which the barrier layers 5a are arranged on the p-type semiconductor layer 4 side and the p-type semiconductor layer 6 side. For the well layer 5b, for example, gallium indium nitride such as Ga 1-s In s N (0 <s <0.4) can be used as a gallium nitride compound semiconductor containing indium. Further, as the barrier layer 5a, for example, a nitride such as Al c Ga 1-c N (0 ≦ c <0.3) having a larger band gap energy than the well layer 5b made of a gallium nitride compound semiconductor containing indium. Gallium-based compound semiconductors can be preferably used.
p型半導体層6は、発光層5上に形成され、通常、p型クラッド層6a及びp型コンタクト層6bが順次積層された構成とされる。p型クラッド層6aとしては、発光層5のバンドギャップエネルギーより大きくなる組成で、発光層5へのキャリアの閉じ込めができる材料を用いることが好ましく、例えば、AlGa1-dN(0<d≦0.4、好ましくは0.1≦d≦0.3)なる組成のものが好ましい。また、p型クラッド層6aとしては、少なくともAlGa1-eN(0≦e<0.5、好ましくは0≦e≦0.2、より好ましくは0≦e≦0.1)を含んでなる材料から構成することが好ましい。このように、p型クラッド層6aのAl組成が上記範囲だと、良好な結晶性の維持及びその上の透明導電膜1との良好なオーミック接触の点で好ましい。また、上記組成からなるp型半導体層6は、Mg等のp型不純物がドープされた構成とすることが好ましい。 The p-type semiconductor layer 6 is formed on the light emitting layer 5 and usually has a configuration in which a p-type cladding layer 6a and a p-type contact layer 6b are sequentially stacked. As the p-type cladding layer 6a, it is preferable to use a material having a composition larger than the band gap energy of the light emitting layer 5 and capable of confining carriers in the light emitting layer 5. For example, Al d Ga 1-d N (0 < A composition of d ≦ 0.4, preferably 0.1 ≦ d ≦ 0.3) is preferred. The p-type cladding layer 6a includes at least Al e Ga 1-e N (0 ≦ e <0.5, preferably 0 ≦ e ≦ 0.2, more preferably 0 ≦ e ≦ 0.1). It is preferable to comprise from the material which consists of. Thus, when the Al composition of the p-type cladding layer 6a is within the above range, it is preferable in terms of maintaining good crystallinity and good ohmic contact with the transparent conductive film 1 thereon. The p-type semiconductor layer 6 having the above composition is preferably configured to be doped with a p-type impurity such as Mg.
そして、p型半導体層6上、即ちp型コンタクト層6b上には、上述した本発明の透明導電膜1が設けられる。 The above-described transparent conductive film 1 of the present invention is provided on the p-type semiconductor layer 6, that is, on the p-type contact layer 6b.
 正極8は、透明導電膜1上に形成される電極である。正極8としては、Au、Al、Ni及びCu等を用いた各種構造が周知であり、これら周知の材料、構造のものを何ら制限無く用いることができる。
負極9は、n型半導体層4のn型コンタクト層4bに接するように形成される電極である。負極9を設ける際は、p型半導体層6、発光層5及びn型半導体層4の一部を除去してn型コンタクト層4bの露出領域を形成し、この上に負極9を形成する。負極9の材料としては、各種組成および構造の負極が周知であり、これら周知の負極を何ら制限無く用いることができる。
The positive electrode 8 is an electrode formed on the transparent conductive film 1. As the positive electrode 8, various structures using Au, Al, Ni, Cu, and the like are well known, and those of known materials and structures can be used without any limitation.
The negative electrode 9 is an electrode formed so as to be in contact with the n-type contact layer 4 b of the n-type semiconductor layer 4. When the negative electrode 9 is provided, a part of the p-type semiconductor layer 6, the light emitting layer 5, and the n-type semiconductor layer 4 is removed to form an exposed region of the n-type contact layer 4b, and the negative electrode 9 is formed thereon. As materials for the negative electrode 9, negative electrodes having various compositions and structures are well known, and these known negative electrodes can be used without any limitation.
 「製造方法」
 図1、2に例示する本実施形態の半導体発光素子Aを製造する場合には、例えば、以下に説明するような方法とすることができる。
まず、基板10の表面に各種前処理を施した後、基板10を、例えば、スパッタリング装置のチャンバ内に導入し、スパッタリング法によって単結晶のAlNからなるバッファ層2を成膜する。この際の、基板10の表面の前処理方法としては、例えば、従来公知のRCA洗浄方法等の湿式処理や、プラズマ中に基板10の表面を曝す方法等を用いることができる。バッファ層2を基板10上に成膜する方法としては、スパッタリング法の他、例えば、MOCVD法、パルスレーザーデポジション(PLD)法、パルス電子線堆積(PED)法等が挙げられ、適宜選択して用いることができる。
"Production method"
When manufacturing the semiconductor light emitting device A of this embodiment illustrated in FIGS. 1 and 2, for example, a method as described below can be employed.
First, after various pretreatments are performed on the surface of the substrate 10, the substrate 10 is introduced into, for example, a chamber of a sputtering apparatus, and the buffer layer 2 made of single crystal AlN is formed by sputtering. As a pretreatment method for the surface of the substrate 10 at this time, for example, a wet process such as a conventionally known RCA cleaning method, a method of exposing the surface of the substrate 10 in plasma, or the like can be used. Examples of the method for forming the buffer layer 2 on the substrate 10 include a sputtering method, a MOCVD method, a pulse laser deposition (PLD) method, a pulsed electron beam deposition (PED) method, and the like. Can be used.
  次に、基板10上にバッファ層2が形成されたウェーハを、図示略のMOCVD装置の反応炉内に導入し、バッファ層2上に下地層3を形成した後、下地層3上に、n型半導体層4、発光層5及びp型半導体層6の各層を順次積層して成膜する。MOCVD法によって窒化ガリウム系化合物半導体を形成する場合、キャリアガスとして水素(H)又は窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてアンモニア(NH)、ヒドラジン(N)などが用いられる。また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)またはジシラン(Si)を、Ge原料としてゲルマンガス(GeH)や、テトラメチルゲルマニウム((CHGe)やテトラエチルゲルマニウム((CGe)等の有機ゲルマニウム化合物を利用できる。 Next, the wafer on which the buffer layer 2 is formed on the substrate 10 is introduced into a reaction furnace of an MOCVD apparatus (not shown) to form the base layer 3 on the buffer layer 2. Each layer of the type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer 6 is sequentially stacked. When a gallium nitride compound semiconductor is formed by MOCVD, hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas, trimethyl gallium (TMG) or triethyl gallium (TEG) is used as a Ga source as a group III source, an Al source As trimethylaluminum (TMA) or triethylaluminum (TEA), trimethylindium (TMI) or triethylindium (TEI) as an In source, ammonia (NH 3 ) as an N source as a group V source, hydrazine (N 2 H 4 ), etc. Is used. In addition, as a dopant, for n-type, monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used as a Si raw material, germanium gas (GeH 4 ) or tetramethyl germanium ((CH 3 ) 4 Ge) is used as a Ge raw material. And organic germanium compounds such as tetraethylgermanium ((C 2 H 5 ) 4 Ge) can be used.
 具体的には、まず、図示略のMOCVD装置の反応炉内部に供給する原料ガス及び有機金属原料を選択、調整することにより、バッファ層2上に、単結晶のAlGa1―XN(0≦x≦1)からなるn型コンタクト層4a及びn型クラッド層4bを順次積層する。この際、上述したようなn型不純物(ドーパント)を反応炉内に供給することにより、n型コンタクト層4a及びn型クラッド層4bにn型不純物をドープする。  Specifically, first, by selecting and adjusting a source gas and an organic metal source to be supplied into a reaction furnace of a MOCVD apparatus (not shown), a single crystal Al X Ga 1-X N ( An n-type contact layer 4a and an n-type cladding layer 4b of 0 ≦ x ≦ 1) are sequentially stacked. At this time, the n-type impurity (dopant) as described above is supplied into the reactor to dope the n-type contact layer 4a and the n-type cladding layer 4b with the n-type impurity.
 次いで、n型クラッド層4b上に、障壁層5a及び井戸層5bを交互の積層することによって発光層5を形成する。図1中に例示する発光層5を形成する場合には、例えば、SiドープのGaNからなる6層の障壁層5aと、ノンドープのGa0.8In0.2Nからなる5層の井戸層5bとを交互に積層して形成する。 Next, the light emitting layer 5 is formed by alternately laminating the barrier layers 5a and the well layers 5b on the n-type cladding layer 4b. When the light emitting layer 5 illustrated in FIG. 1 is formed, for example, six barrier layers 5a made of Si-doped GaN and five well layers made of non-doped Ga 0.8 In 0.2 N. 5b are alternately laminated.
 次いで、発光層5上、つまり、発光層5の最上層となる障壁層5a上に、p型クラッド層6a及びp型コンタクト層6bからなるp型半導体層6を形成する。p型半導体層6を形成する際は、例えば、Al0.1Ga0.9Nからなるp型クラッド層6aを発光層5(最上層の障壁層5a)上に形成し、その上に、Al0.02Ga0.98Nからなるp型コンタクト層6bを形成する。また、この際、反応炉内にMg等のp型不純物を供給することにより、p型クラッド層6a及びp型コンタクト層6bにp型不純物をドープする。 Next, the p-type semiconductor layer 6 including the p-type cladding layer 6 a and the p-type contact layer 6 b is formed on the light-emitting layer 5, that is, on the barrier layer 5 a that is the uppermost layer of the light-emitting layer 5. When forming the p-type semiconductor layer 6, for example, a p-type cladding layer 6 a made of Al 0.1 Ga 0.9 N is formed on the light emitting layer 5 (the uppermost barrier layer 5 a). A p-type contact layer 6b made of Al 0.02 Ga 0.98 N is formed. At this time, by supplying a p-type impurity such as Mg into the reaction furnace, the p-type cladding layer 6a and the p-type contact layer 6b are doped with the p-type impurity.
 次に、p型半導体層6上に、上述した本発明の透明導電膜の製造方法と同様の条件及び手順を用いて、透明導電膜1を積層する。  Next, the transparent conductive film 1 is laminated on the p-type semiconductor layer 6 using the same conditions and procedures as those of the above-described transparent conductive film manufacturing method of the present invention. *
 具体的には、まず、基板10上に、バッファ層2、下地層3、n型半導体層4、発光層5及びp型半導体層6が順次積層されてなるウェーハBを、図3に例示するようなスパッタリング装置40のヒータ44に取り付ける。
 そして、上記同様の成膜条件及び手順を用いて、p型半導体層6をなすp型コンタクト層6bを覆うように、酸化チタン膜1Aを成膜する。
次いで、上記同様の温度条件でアニール処理を行うことで、酸化チタン1Aのシート抵抗Rsを低減するとともに透明化することにより、透明導電膜1を形成する。 
Specifically, first, a wafer B in which a buffer layer 2, an underlayer 3, an n-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer 6 are sequentially stacked on a substrate 10 is illustrated in FIG. It attaches to the heater 44 of such a sputtering device 40. FIG.
Then, using the same film formation conditions and procedure as described above, the titanium oxide film 1A is formed so as to cover the p-type contact layer 6b forming the p-type semiconductor layer 6.
Next, the transparent conductive film 1 is formed by performing an annealing process under the same temperature conditions as described above to reduce the sheet resistance Rs of the titanium oxide 1A and make it transparent.
 本発明においては、上記各条件及び手順でp型半導体層6上に透明導電膜1を形成することにより、シート抵抗Rsを低く制御しながら透明導電膜1を形成することができる。これにより、透明導電膜1の導電性が飛躍的に高められるので、p型半導体層6全体に電流を拡散させられる構成とすることができ、半導体発光素子Aの発光効率を顕著に向上させることが可能となる。 In the present invention, by forming the transparent conductive film 1 on the p-type semiconductor layer 6 under the above conditions and procedures, the transparent conductive film 1 can be formed while controlling the sheet resistance Rs low. As a result, the conductivity of the transparent conductive film 1 is drastically improved, so that a current can be diffused throughout the p-type semiconductor layer 6, and the light emission efficiency of the semiconductor light emitting device A can be significantly improved. Is possible.
 次いで、透明導電膜1上に、さらに、正極8を形成する。この正極8は、例えば、透明導電膜1の表面側から順に、Ti、Al、Auの各材料を従来公知の方法で積層することにより、詳細な図示を省略する3層構造の正極8を形成することができる。
また、負極9を形成する際は、まず、基板10上に形成された発光層5、p型半導体層6及びn型半導体層4からなる半導体層20の一部をドライエッチング等の方法によって除去することにより、n型コンタクト層4bの露出領域4dを形成する。そして、この露出領域4d上に、例えば、n型コンタクト層4b側から順に、Ni、Al、Ti及びAuの各材料を、従来公知の方法で積層することにより、詳細な図示を省略する4層構造の負極9を形成することができる。
Next, a positive electrode 8 is further formed on the transparent conductive film 1. For example, the positive electrode 8 is formed by sequentially laminating Ti, Al, and Au materials in order from the surface side of the transparent conductive film 1 to form a positive electrode 8 having a three-layer structure that is not illustrated in detail. can do.
When forming the negative electrode 9, first, a part of the semiconductor layer 20 formed of the light emitting layer 5, the p-type semiconductor layer 6 and the n-type semiconductor layer 4 formed on the substrate 10 is removed by a method such as dry etching. As a result, an exposed region 4d of the n-type contact layer 4b is formed. Then, for example, each layer of Ni, Al, Ti, and Au is laminated in this order from the n-type contact layer 4b side by a conventionally known method on the exposed region 4d, thereby omitting detailed illustration of the four layers. A negative electrode 9 having a structure can be formed.
 そして、上述のような工程によって得られたウェーハを、基板10の裏面を研削及び研磨してミラー状の面とした後、例えば、350μm角の正方形に切断することにより、チップ状の半導体発光素子Aとすることができる。 Then, the wafer obtained by the above process is ground and polished on the back surface of the substrate 10 to form a mirror-like surface, and then cut into, for example, a 350 μm square to obtain a chip-like semiconductor light emitting device. A.
 以上説明したような、本発明の半導体発光素子の製造方法によれば、基板10上に、少なくともn型半導体層4、発光層5及びp型半導体層6を順次積層して半導体層20を形成し、p型半導体層6上に、上記本発明の透明導電膜の製造方法を用いて透明導電膜1を形成する方法なので、半導体層20全体に広く電流を拡散させることができ、光取り出し効率に優れる半導体発光素子Aを製造することが可能となる。
また、本発明の半導体発光素子Aによれば、上記本発明の製造方法によって得られるものなので、高い光取り出し効率を有し、発光特性に優れたものとなる。
According to the method for manufacturing a semiconductor light emitting element of the present invention as described above, the semiconductor layer 20 is formed by sequentially laminating at least the n-type semiconductor layer 4, the light emitting layer 5 and the p-type semiconductor layer 6 on the substrate 10. And since it is the method of forming the transparent conductive film 1 on the p-type semiconductor layer 6 using the manufacturing method of the said transparent conductive film of this invention, an electric current can be diffused widely in the whole semiconductor layer 20, and light extraction efficiency It is possible to manufacture a semiconductor light emitting device A that is excellent in the manufacturing process.
Moreover, according to the semiconductor light emitting device A of the present invention, since it is obtained by the manufacturing method of the present invention, it has high light extraction efficiency and excellent light emission characteristics.
[ランプ]
本発明のランプは、上述した本発明の半導体発光素子が用いられてなるものである。
本発明のランプとしては、例えば、本発明の半導体発光素子と蛍光体とを組み合わせてなるものを挙げることができる。半導体発光素子と蛍光体とを組み合わせたランプは、当業者周知の手段によって当業者周知の構成とすることができる。また、従来より、半導体発光素子と蛍光体と組み合わせることによって発光色を変える技術が知られており、本発明のランプにおいてもこのような技術を何ら制限されることなく採用することが可能である。
[lamp]
The lamp of the present invention uses the above-described semiconductor light emitting device of the present invention.
As a lamp | ramp of this invention, the thing formed by combining the semiconductor light-emitting device of this invention and fluorescent substance can be mentioned, for example. A lamp in which a semiconductor light emitting element and a phosphor are combined can have a configuration well known to those skilled in the art by means well known to those skilled in the art. Conventionally, a technique for changing the emission color by combining a semiconductor light emitting element and a phosphor has been known, and such a technique can be employed in the lamp of the present invention without any limitation. .
 図5は、本発明に係る半導体発光素子Aを用いて構成したランプの一例を模式的に示した概略図である。図5に示すランプ80は、砲弾型のものであり、図2及び図3に示す半導体発光素子Aが用いられている。図5に示すように、半導体発光素子Aの正極8がワイヤー83で2本のフレーム81、82の内の一方(図5ではフレーム81)に接着され、半導体発光素子Aの負極9がワイヤー84で他方のフレーム82に接合されることにより、半導体発光素子Aが実装されている。また、半導体発光素子Aの周辺は、透明な樹脂からなるモールド85で封止されている。 FIG. 5 is a schematic view schematically showing an example of a lamp configured using the semiconductor light emitting device A according to the present invention. The lamp 80 shown in FIG. 5 is a bullet type, and the semiconductor light emitting element A shown in FIGS. 2 and 3 is used. As shown in FIG. 5, the positive electrode 8 of the semiconductor light emitting device A is bonded to one of the two frames 81 and 82 (the frame 81 in FIG. 5) with a wire 83, and the negative electrode 9 of the semiconductor light emitting device A is connected to the wire 84. The semiconductor light emitting element A is mounted by being joined to the other frame 82. Further, the periphery of the semiconductor light emitting element A is sealed with a mold 85 made of a transparent resin.
本発明のランプは、本発明の透明導電膜を備えた半導体発光素子Aが用いられてなるものであるので、優れた発光特性を備えたものとなる。
なお、本発明のランプは、一般用途の砲弾型、携帯のバックライト用途のサイドビュー型、表示器に用いられるトップビュー型等いかなる用途にも用いることができる。
The lamp of the present invention uses the semiconductor light emitting device A provided with the transparent conductive film of the present invention, and therefore has excellent light emission characteristics.
Note that the lamp of the present invention can be used for any purpose such as a bullet type for general use, a side view type for portable backlight use, and a top view type used for a display.
[透明導電性基体を備えた電子機器]
本発明の透明導電性基体を備えた電子機器としては、前述の、ドーパント元素を含有する前述の酸化チタン(TiO)を含む透明導電膜1を透明電極に用いた各種電子機器を挙げることができる。ここで、本発明が適用できる「電子機器」の具体例としては、前述の半導体発光素子のほか、有機エレクトロルミネッセンス素子(有機EL、OLED)、液晶表示装置、光電変換素子(太陽電池)、照明等を挙げることができる。
[Electronic equipment with transparent conductive substrate]
Examples of the electronic device provided with the transparent conductive substrate of the present invention include various electronic devices using the transparent conductive film 1 containing the above-described titanium oxide (TiO 2 ) containing a dopant element as a transparent electrode. it can. Here, specific examples of the “electronic device” to which the present invention can be applied include an organic electroluminescence element (organic EL, OLED), a liquid crystal display device, a photoelectric conversion element (solar cell), illumination in addition to the semiconductor light emitting element described above. Etc.
 次に、本発明の透明導電膜の製造方法、半導体発光素子の製造方法及び半導体発光素子、透明導電性基体の製造方法及び透明導電性基体、及び、ランプに関し、実施例及び比較例を示してより詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。  Next, the manufacturing method of the transparent conductive film, the manufacturing method of the semiconductor light emitting device, the semiconductor light emitting device, the manufacturing method of the transparent conductive substrate, the transparent conductive substrate, and the lamp of the present invention will be described with reference to Examples and Comparative Examples. Although described in more detail, the present invention is not limited to these examples. *
 以下の実施例のうち、実施例1~10は、本発明の透明導電膜の製造方法の実施例であると共に、無機材料からなる基体を用いた本発明の透明導電性基体の製造方法及び透明導電性基体の実施例であり、さらに、無機材料からなる基体としてサファイア基板上に半導体薄膜を積層したものを用いた本発明の半導体発光素子の製造方法及び半導体発光素子の実施例、及び、本発明のランプの実施例である。
 また、実施例11及び12は、本発明の透明導電膜の製造方法の実施例であると共に、高分子材料からなる基体を用いた本発明の透明導電性基体の製造方法及び透明導電性基体の実施例である。
Of the following examples, Examples 1 to 10 are examples of the method for producing a transparent conductive film of the present invention, and the method for producing a transparent conductive substrate of the present invention using a substrate made of an inorganic material and the transparent Examples of a conductive substrate, and further, a method of manufacturing a semiconductor light emitting device of the present invention using a semiconductor thin film laminated on a sapphire substrate as a substrate made of an inorganic material, an embodiment of the semiconductor light emitting device, and the present invention 1 is an embodiment of the inventive lamp.
Examples 11 and 12 are examples of the method for producing a transparent conductive film of the present invention, and the method for producing a transparent conductive substrate of the present invention using a substrate made of a polymer material and the transparent conductive substrate of the present invention. This is an example.
(実施例1~10)
[実施例1]
 本実施例においては、以下に説明するような手順により、半導体層上に透明導電膜が備えられてなる半導体発光素子を作製した(図1及び図2を参照)。
(Examples 1 to 10)
[Example 1]
In this example, a semiconductor light-emitting element in which a transparent conductive film was provided on a semiconductor layer was manufactured by the procedure described below (see FIGS. 1 and 2).
(バッファ層及び下地層の形成)
 まず、サファイア基板の(0001)C面からなる主面を有する基板10を準備した。 そして、基板10の主面上に、RFスパッタリング法を用いて単結晶構造を有するAlNからなる厚さ50nmのバッファ層2を形成した。 
(Formation of buffer layer and underlayer)
First, the board | substrate 10 which has the main surface which consists of a (0001) C surface of a sapphire substrate was prepared. Then, a 50 nm thick buffer layer 2 made of AlN having a single crystal structure was formed on the main surface of the substrate 10 using an RF sputtering method.
 次いで、バッファ層2上に、減圧MOCVD法を用いてIII族窒化物半導体からなる下地層3を形成した。この際、まず、バッファ層2が形成された基板10をMOCVD装置の反応炉内に導入した。そして、アンモニアガスの流通を続けながら、水素雰囲気中において基板10の温度を1120℃に昇温させ、トリメチルガリウム(TMG)を反応炉内に供給することにより、バッファ層2上に、3μmの膜厚のアンドープのGaN(un-GaN)からなる下地層3を成長させた。 Next, the base layer 3 made of a group III nitride semiconductor was formed on the buffer layer 2 by using a low pressure MOCVD method. At this time, first, the substrate 10 on which the buffer layer 2 was formed was introduced into the reactor of the MOCVD apparatus. Then, while continuing the circulation of the ammonia gas, the temperature of the substrate 10 is raised to 1120 ° C. in a hydrogen atmosphere, and trimethylgallium (TMG) is supplied into the reaction furnace, whereby a 3 μm film is formed on the buffer layer 2. A base layer 3 made of undoped GaN (un-GaN) was grown.
(半導体層の形成)
 次いで、下地層3の形成に用いた装置と同じMOCVD装置により、GaNからなるn型コンタクト層4aを形成した。この際、n型コンタクト層4aにはSiをドープし、Siのドーパント原料としてSiHを流通させた以外は、下地層と同じ条件で成膜した。
 次いで、n型コンタクト層4a上にn型クラッド層4bを積層した。 
(Formation of semiconductor layer)
Next, an n-type contact layer 4a made of GaN was formed by the same MOCVD apparatus as that used for forming the underlayer 3. At this time, the n-type contact layer 4a was formed under the same conditions as the underlayer except that Si was doped and SiH 4 was circulated as a Si dopant material.
Next, an n-type cladding layer 4b was stacked on the n-type contact layer 4a.
 次いで、n型クラッド層4b上に発光層5を積層した。本実施例では、GaNからなる障壁層5aと、Ga0.85In0.15Nからなる井戸層5bとから構成される多重量子井戸構造を有する発光層5を形成した。この発光層5の形成にあたっては、まず、n型クラッド層4b上に障壁層5aを形成し、この障壁層5a上に、Ga0.85In0.15Nからなる井戸層5bを形成した。このような積層手順を5回繰り返した後、5番目に積層した井戸層5b上に、6番目の障壁層5aを形成し、多重量子井戸構造を有する発光層5の両側に障壁層5aを配した構造とした。 Subsequently, the light emitting layer 5 was laminated | stacked on the n-type clad layer 4b. In this example, the light emitting layer 5 having a multiple quantum well structure composed of the barrier layer 5a made of GaN and the well layer 5b made of Ga 0.85 In 0.15 N was formed. In forming the light emitting layer 5, first, a barrier layer 5a was formed on the n-type cladding layer 4b, and a well layer 5b made of Ga 0.85 In 0.15 N was formed on the barrier layer 5a. After repeating this stacking procedure five times, the sixth barrier layer 5a is formed on the fifth stacked well layer 5b, and the barrier layers 5a are arranged on both sides of the light emitting layer 5 having the multiple quantum well structure. The structure was as follows.
次いで、MOCVD装置を用いて、発光層5上に、MgをドープしたGaNよりなるp型クラッド層6aを成膜した。そして、このp型クラッド層6aの上に、膜厚が200nmのMgドープGaNからなるp型コンタクト層6bを成膜し、p型半導体層6とした。
このような手順により、下地層3上に、n型半導体層4、発光層5及びp型半導体層6が順次積層されてなる半導体層20を形成し、基板10上に半導体層20が形成されたウェーハBを作製した。 
Next, a p-type cladding layer 6 a made of GaN doped with Mg was formed on the light emitting layer 5 using an MOCVD apparatus. Then, a p-type contact layer 6b made of Mg-doped GaN having a thickness of 200 nm was formed on the p-type cladding layer 6a to form a p-type semiconductor layer 6.
By such a procedure, the semiconductor layer 20 in which the n-type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer 6 are sequentially stacked is formed on the base layer 3, and the semiconductor layer 20 is formed on the substrate 10. Wafer B was prepared.
(透明導電膜の形成)
 次いで、上記手順で得られたウェーハB上に、以下に示す条件及び手順で透明導電膜1を形成した。
 まず、ウェーハBを、図3に例示するようなスパッタリング装置40のチャンバ41内に導入し、p型半導体層6側がチャンバ41内に露出するように、基板10側をヒータ44に取り付けた。そして、ターゲット47として、10質量%のNbをドーパントとして含有する酸化チタン製ターゲット(株式会社豊島製作所製)を、ターゲットプレート43上に載置した。また、チャンバ41内のスパッタリング雰囲気は、酸素を1.5体積%で含有するアルゴンガス雰囲気とした。また、プラズマを発生させるため、ターゲット47側(ターゲットプレート43側)に2000Wのパワーを印加するとともに、ウェーハB(基板10)側には0Wのバイアスを印加した。
 そして、予め確認した成膜速度データに基づいて各種条件を設定することにより、成膜速度を0.15nm/秒に設定し、p型半導体層6上に、膜厚が250nmとされたNbドープの酸化チタン膜1Aを成膜した。 
(Formation of transparent conductive film)
Subsequently, the transparent conductive film 1 was formed on the wafer B obtained by the above procedure under the following conditions and procedure.
First, the wafer B was introduced into the chamber 41 of the sputtering apparatus 40 illustrated in FIG. 3, and the substrate 10 side was attached to the heater 44 so that the p-type semiconductor layer 6 side was exposed in the chamber 41. Then, a target made of titanium oxide (manufactured by Toshima Seisakusho Co., Ltd.) containing 10% by mass of Nb as a dopant was placed on the target plate 43 as the target 47. The sputtering atmosphere in the chamber 41 was an argon gas atmosphere containing 1.5% by volume of oxygen. In order to generate plasma, a power of 2000 W was applied to the target 47 side (target plate 43 side), and a bias of 0 W was applied to the wafer B (substrate 10) side.
Then, by setting various conditions based on the film formation rate data confirmed in advance, the film formation rate is set to 0.15 nm / second, and the Nb-doped film having a film thickness of 250 nm is formed on the p-type semiconductor layer 6. A titanium oxide film 1A was formed.
 次いで、スパッタリング装置40のチャンバ41内を窒素雰囲気に入れ替えた後、上記手順で成膜された酸化チタン膜1Aに、350℃の温度で、120秒のアニール処理を施した。
 上記各手順により、p型半導体層6上に、透明導電膜1を成膜した。 
Subsequently, after the inside of the chamber 41 of the sputtering apparatus 40 was replaced with a nitrogen atmosphere, the titanium oxide film 1A formed by the above procedure was subjected to an annealing process at a temperature of 350 ° C. for 120 seconds.
The transparent conductive film 1 was formed on the p-type semiconductor layer 6 by the above procedures.
 そして、p型半導体層6上に成膜された透明導電膜1について、シート抵抗(Ω/□)を、測定機器としてシート抵抗測定装置(MCP-T360プローブ:株式会社三菱化学アナリテック製;四端子の低電流評価法)を用いて測定し、下記表1に示した。 For the transparent conductive film 1 formed on the p-type semiconductor layer 6, the sheet resistance (Ω / □) is used as a measuring instrument, and a sheet resistance measuring device (MCP-T360 probe: manufactured by Mitsubishi Chemical Analytech Co., Ltd .; The measurement was performed using a low current evaluation method for terminals, and the results are shown in Table 1 below.
(正極及び負極の形成)
 次いで、公知のフォトリソグラフィー技術によって、透明導電膜1の表面に、Ti、Al及びAuを順に積層することにより、3層構造の正極8を形成した。この際、正極ボンディングパッド8を、直径が約90μmの円形状として形成した。
(Formation of positive electrode and negative electrode)
Next, a positive electrode 8 having a three-layer structure was formed by sequentially stacking Ti, Al, and Au on the surface of the transparent conductive film 1 by a known photolithography technique. At this time, the positive electrode bonding pad 8 was formed in a circular shape having a diameter of about 90 μm.
 また、半導体層20の一部にドライエッチングを施して除去することにより、n型コンタクト層4aが露出した露出領域4dを形成した後、この上にNi、Al、Ti及びAuの各層を順次積層することにより、図2及び図3に示すような負極9を形成した。 Further, by removing a part of the semiconductor layer 20 by dry etching to form an exposed region 4d in which the n-type contact layer 4a is exposed, Ni, Al, Ti, and Au layers are sequentially stacked thereon. As a result, a negative electrode 9 as shown in FIGS. 2 and 3 was formed.
(半導体発光素子チップへの分割)
 次いで、各電極が形成されたウェーハの基板10の裏面側を研削及び研磨してミラー状の面とした後、このウェーハを240μm×600μm角の長方形のチップに切断してLED(発光ダイオード)のチップ(半導体発光素子A)とした。
 なお、このLED(発光ダイオード)のチップ(半導体発光素子A)においては、図1を参照すれば、サファイア基板10から透明導電膜1までの部分(図1において、正極8及び負極9を除く部分)が本発明の「透明導電性基体」であり、そのうち、透明導電膜1を除くサファイア基板10からp型半導体層6までの部分を「基体」である。 
(Division into semiconductor light emitting device chips)
Next, after grinding and polishing the back side of the substrate 10 of the wafer on which each electrode is formed to form a mirror-like surface, the wafer is cut into 240 μm × 600 μm square chips to form an LED (light emitting diode). A chip (semiconductor light emitting element A) was obtained.
In this LED (light-emitting diode) chip (semiconductor light-emitting element A), referring to FIG. 1, the portion from the sapphire substrate 10 to the transparent conductive film 1 (the portion excluding the positive electrode 8 and the negative electrode 9 in FIG. 1). ) Is the “transparent conductive substrate” of the present invention, and the portion from the sapphire substrate 10 to the p-type semiconductor layer 6 excluding the transparent conductive film 1 is the “substrate”.
(半導体発光素子によるLEDランプの作製)
 そして、このチップ(半導体発光素子A)を、図5に示すように、正極8及び負極9側が上になるようにリードフレーム81上に載置し、金線でリードフレームに結線することによってランプ80を作製した。 
(Production of LED lamps with semiconductor light-emitting elements)
Then, as shown in FIG. 5, the chip (semiconductor light-emitting element A) is placed on the lead frame 81 so that the positive electrode 8 and the negative electrode 9 are on the upper side, and is connected to the lead frame with a gold wire to thereby form a lamp. 80 was produced.
 そして、上記方法で作製したランプのp側(正極8)及びn側(負極9)の電極間に20mAの順方向電流を流した際の発光出力Po(mW)を測定し、結果を下記表1に示した。  And the light emission output Po (mW) when a forward current of 20 mA was passed between the electrodes on the p side (positive electrode 8) and n side (negative electrode 9) of the lamp produced by the above method was measured, and the results are shown in the following table. It was shown in 1. *
[実施例2~10、比較例1~6]
 実施例2~10、比較例1~6においては、透明導電膜の材質、並びに透明導電膜を成膜する際の各種成膜条件を下記表1に示す条件とした点を除き、上記実施例1と同様の方法で、240μm×600μm角の長方形とされた半導体発光素子チップを作製した。そして、上記同様、この半導体発光素子チップを用いてランプを作製した。
[Examples 2 to 10, Comparative Examples 1 to 6]
In Examples 2 to 10 and Comparative Examples 1 to 6, the materials of the transparent conductive film and various film forming conditions for forming the transparent conductive film were changed to the conditions shown in Table 1 below. In the same manner as in No. 1, a 240 μm × 600 μm square semiconductor light emitting device chip was produced. In the same manner as described above, a lamp was manufactured using this semiconductor light emitting element chip.
 この際、p型半導体層上に透明導電膜を成膜した後、上記同様の方法で透明導電膜のシート抵抗を測定し、結果を下記表1に示した。
 そして、上記同様の方法で、ランプのp側(正極)及びn側(負極)の電極間に20mAの順方向電流を流した際の発光出力Po(mW)を測定した。
At this time, after forming a transparent conductive film on the p-type semiconductor layer, the sheet resistance of the transparent conductive film was measured by the same method as described above, and the results are shown in Table 1 below.
Then, by the same method as described above, the light emission output Po (mW) was measured when a forward current of 20 mA was passed between the p-side (positive electrode) and n-side (negative electrode) electrodes of the lamp.
 上記実施例1~10及び比較例1~6における透明導電膜の成膜条件並びに発光出力(Po)の測定結果を下記表1に示す。 Table 1 below shows the film formation conditions of the transparent conductive film and the light emission output (Po) measurement results in Examples 1 to 10 and Comparative Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価結果]
 表1に示すように、本発明で規定する条件でNbドープの酸化チタンからなる透明導電膜が成膜された実施例1のサンプルは、透明導電膜のシート抵抗が180Ω/□であり、導電性に優れていることが確認できた。また、実施例1においては、順方向電流(I)20mAにおける発光出力(Po)が18mWとなり、非常に優れた発光出力が得られた。また、透明導電膜を成膜する際の各条件を、本発明で規定する条件の範囲内で変化させた実施例2~6においても、透明導電膜のシート抵抗が200Ω/□以下であり、優れた導電性を備えていることが明らかとなった。また、実施例2~10では、順方向電流(I)20mAにおける発光出力(Po)が18mW以上となり、高い発光出力を備えていることが確認できた。
[Evaluation results]
As shown in Table 1, in the sample of Example 1 in which the transparent conductive film made of Nb-doped titanium oxide was formed under the conditions specified in the present invention, the sheet resistance of the transparent conductive film was 180Ω / □, It was confirmed that it was excellent in performance. In Example 1, the light emission output (Po) at a forward current (I) of 20 mA was 18 mW, and a very excellent light emission output was obtained. Also, in Examples 2 to 6 in which the conditions for forming the transparent conductive film were changed within the range defined by the present invention, the sheet resistance of the transparent conductive film was 200Ω / □ or less, It became clear that it had excellent conductivity. In Examples 2 to 10, the light emission output (Po) at a forward current (I) of 20 mA was 18 mW or more, and it was confirmed that the light emission output was high.
これに対して、透明導電膜の材料又は成膜条件が本発明の規定を満たしていない比較例1~6のサンプルでは、透明導電膜のシート抵抗が何れも300Ω/□以上であり、上記実施例1~10に比べて導電性に劣っていることがわかる。また、比較例1~5は、順方向電流(I)20mAにおける発光出力(Po)が16mW以下であり、上記各実施例と比べて低出力となっている。
 比較例1~6のサンプルは、酸化チタンからなる透明導電膜のドーパント含有量や、成膜時のスパッタリング雰囲気、成膜速度又はアニール温度の何れかが適正でないため、成膜された透明導電膜のシート抵抗が大きくなり、半導体層全体に電流を拡散させることが層における発光強度が低下したものと考えられる。
On the other hand, in the samples of Comparative Examples 1 to 6 in which the material of the transparent conductive film or the film formation conditions do not satisfy the provisions of the present invention, the sheet resistance of the transparent conductive film is 300Ω / □ or more. It can be seen that the conductivity is inferior to Examples 1 to 10. In Comparative Examples 1 to 5, the light emission output (Po) at a forward current (I) of 20 mA is 16 mW or less, and the output is lower than those in the above examples.
In the samples of Comparative Examples 1 to 6, the transparent conductive film formed is not suitable because the dopant content of the transparent conductive film made of titanium oxide, the sputtering atmosphere at the time of film formation, the film formation rate, or the annealing temperature is not appropriate. It is considered that the light emission intensity in the layer is reduced by increasing the sheet resistance and diffusing current throughout the semiconductor layer.
 上記実施例の結果により、本発明の透明導電膜の製造方法が、従来の酸化チタン系の透明導電膜に比べてシート抵抗を顕著に低減し、導電性及び透明性に優れた透明導電膜を形成することが可能となることが明らかである。
 また、本発明の半導体素子の製造方法が、半導体層全体に広く電流を拡散させ、光取り出し効率に優れる半導体発光素子を製造することが可能となることが明らかである。
As a result of the above examples, the method for producing a transparent conductive film of the present invention significantly reduces sheet resistance as compared with a conventional titanium oxide-based transparent conductive film, and provides a transparent conductive film excellent in conductivity and transparency. It is clear that it can be formed.
In addition, it is apparent that the method for manufacturing a semiconductor device of the present invention makes it possible to manufacture a semiconductor light emitting device that diffuses current over the entire semiconductor layer and has excellent light extraction efficiency.
(実施例11及び12)
[実施例11]
本実施例においては、以下に説明するような手順により、高分子(プラスチック)シート(基体)上に透明導電膜が成膜されてなる透明導電性シートを作製した。
 まず、所定の大きさを有する「シルプラス」(新日鉄化学製)の主面上に、図3に例示するようなスパッタリング装置40のチャンバ41内に導入し、「シルプラス」(以下、プラスチックシートとも言う。)の主面がチャンバ41内に露出するように、プラスチックシートをヒータ44に取り付けた。そして、ターゲット47として、Nbを10質量%ドーパントとして含有する酸化チタン製ターゲット(株式会社豊島製作所製)を、ターゲットプレート43上に載置した。また、チャンバ41内のスパッタリング雰囲気は、酸素を5体積%で含有するアルゴンガス雰囲気とした。また、プラズマを発生させるため、ターゲット47側(ターゲットプレート43側)に2000Wのパワーを印加するとともに、プラスチックシート側には0Wのバイアスを印加した。
 そして、予め確認した成膜速度データに基づいて各種条件を設定することにより、成膜速度を0.2nm/秒に設定し、プラスチックシート上に、膜厚が50nmとされたNbドープの酸化チタン膜1Aを成膜した。
 次に、チャンバ41内のスパッタリング雰囲気を、酸素濃度が1.5体積%で含有するアルゴンガス雰囲気に変更後、同じ成膜速度にてさらに200nmの膜厚としたNbドープの酸化チタン膜1Aを積層した。このように、本実施例ではチャンバ41内のスパッタリング雰囲気環境を2段階に変化させて実施した。
 次いで、スパッタリング装置40のチャンバ41内を窒素雰囲気に入れ替えた後、上記手順で成膜された酸化チタン膜1Aに、310℃の温度で、120秒のアニール処理を施した。
 上記各手順により、プラスチックシート上に、透明導電膜1を成膜した。
(Examples 11 and 12)
[Example 11]
In this example, a transparent conductive sheet in which a transparent conductive film was formed on a polymer (plastic) sheet (substrate) was prepared by the procedure described below.
First, on a main surface of “Silplus” (manufactured by Nippon Steel Chemical Co., Ltd.) having a predetermined size, it is introduced into a chamber 41 of a sputtering apparatus 40 as illustrated in FIG. The plastic sheet was attached to the heater 44 so that the main surface of. Then, a target made of titanium oxide (manufactured by Toshima Seisakusho Co., Ltd.) containing Nb as a 10 mass% dopant as the target 47 was placed on the target plate 43. The sputtering atmosphere in the chamber 41 was an argon gas atmosphere containing 5% by volume of oxygen. Further, in order to generate plasma, a power of 2000 W was applied to the target 47 side (target plate 43 side), and a bias of 0 W was applied to the plastic sheet side.
Then, by setting various conditions based on the film formation rate data confirmed in advance, the film formation rate is set to 0.2 nm / second, and the Nb-doped titanium oxide having a film thickness of 50 nm is formed on the plastic sheet. A film 1A was formed.
Next, after changing the sputtering atmosphere in the chamber 41 to an argon gas atmosphere containing an oxygen concentration of 1.5% by volume, an Nb-doped titanium oxide film 1A having a thickness of 200 nm is further formed at the same film formation rate. Laminated. Thus, in this embodiment, the sputtering atmosphere environment in the chamber 41 was changed in two stages.
Subsequently, after the inside of the chamber 41 of the sputtering apparatus 40 was replaced with a nitrogen atmosphere, the titanium oxide film 1A formed by the above procedure was subjected to an annealing process at a temperature of 310 ° C. for 120 seconds.
The transparent conductive film 1 was formed on the plastic sheet by the above procedures.
 そして、プラスチックシート上に成膜された透明導電膜1のシート抵抗(Ω/□)を、シート抵抗測定装置(MCP-T360プローブ:株式会社三菱化学アナリテック製;四端子の低電流評価法)を用いて測定し、下記表2に示した。 Then, the sheet resistance (Ω / □) of the transparent conductive film 1 formed on the plastic sheet is converted into a sheet resistance measuring device (MCP-T360 probe: manufactured by Mitsubishi Chemical Analytech Co., Ltd .; four-terminal low current evaluation method). The results are shown in Table 2 below.
[実施例12]
 チャンバ41内のスパッタリング雰囲気を、酸素濃度が1.5体積%で含有するアルゴンガス雰囲気の1段階で処理する方法とした以外は、実施例11と同様に実施して、プラスチックシート上に成膜された透明導電膜1を得た。結果を下記表2に示した。
[Example 12]
The same process as in Example 11 was performed except that the sputtering atmosphere in the chamber 41 was processed in one stage of an argon gas atmosphere containing an oxygen concentration of 1.5% by volume, and a film was formed on a plastic sheet. A transparent conductive film 1 was obtained. The results are shown in Table 2 below.
[比較例7]
 チャンバ41内のスパッタリング雰囲気を、酸素濃度が15体積%で含有するアルゴンガス雰囲気の1段階で処理する方法とした以外は、実施例11と同様に実施して、プラスチックシート上に成膜された透明導電膜1を得た。結果を下記表2に示した。
[Comparative Example 7]
The film was formed on a plastic sheet in the same manner as in Example 11 except that the sputtering atmosphere in the chamber 41 was processed in one stage of an argon gas atmosphere containing an oxygen concentration of 15% by volume. A transparent conductive film 1 was obtained. The results are shown in Table 2 below.
[評価結果]
 表2に示すように、実施例11及び12の結果により、本発明の透明導電膜の製造方法が、プラスチックシート上において成膜することができ、従来の酸化チタン系の透明導電膜に比べてシート抵抗を顕著に低減できることがわかった。
また、実施例11及び12に代表されるプラスチックシートからなる透明導電性シートでは、透明導電膜1が均一に成膜できることがわかり、さらにプラスチックシート全体に広く電流を拡散させることができた。本発明の透明導電膜の製造方法をプラスチックシート上に応用することにより、透明かつ導電性の安定した透明導電性シートを製造することが可能となる。
[Evaluation results]
As shown in Table 2, according to the results of Examples 11 and 12, the method for producing a transparent conductive film of the present invention can form a film on a plastic sheet, compared with a conventional titanium oxide-based transparent conductive film. It was found that the sheet resistance can be significantly reduced.
Moreover, in the transparent conductive sheet which consists of a plastic sheet represented by Example 11 and 12, it turned out that the transparent conductive film 1 can be formed into a film uniformly, and also the electric current was able to be spread | diffused widely to the whole plastic sheet. By applying the method for producing a transparent conductive film of the present invention on a plastic sheet, it becomes possible to produce a transparent conductive sheet that is transparent and stable in conductivity.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の透明導電膜の製造方法によれば、導電性及び透明性に優れた透明導電膜を形成することが可能となる。また、本発明の透明導電性基体の製造方法によれば、優れた導電性や透明性が要求される各種透明導電性基体を極めて容易に製造することができるので、産業上利用可能である。 According to the method for producing a transparent conductive film of the present invention, a transparent conductive film excellent in conductivity and transparency can be formed. Moreover, according to the method for producing a transparent conductive substrate of the present invention, various transparent conductive substrates that require excellent conductivity and transparency can be produced very easily, and thus can be industrially utilized.
1…透明導電膜、1A…酸化チタン膜(透明導電膜)、4…n型半導体層、5…発光層、6…p型半導体層、10…基板、20…半導体層、47…ターゲット(スパッタリング装置)、80…ランプ、A…半導体発光素子、B…ウェーハ、Rs…シート抵抗 DESCRIPTION OF SYMBOLS 1 ... Transparent conductive film, 1A ... Titanium oxide film (transparent conductive film), 4 ... N-type semiconductor layer, 5 ... Light emitting layer, 6 ... P-type semiconductor layer, 10 ... Substrate, 20 ... Semiconductor layer, 47 ... Target (sputtering) Apparatus), 80 ... lamp, A ... semiconductor light emitting element, B ... wafer, Rs ... sheet resistance

Claims (13)

  1.  酸化チタン(TiO)系材料を含む透明導電膜を、スパッタリング法を用いて成膜する透明導電膜の製造方法であって、
     ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲットを用い、
     スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、
     0.01~1.0nm/秒の成膜速度でスパッタリング成膜した後、250℃以上の温度でアニールすることを特徴とする、透明導電膜の製造方法。
    A method for producing a transparent conductive film in which a transparent conductive film containing a titanium oxide (TiO 2 ) -based material is formed using a sputtering method,
    Using a target containing a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less,
    The sputtering atmosphere is an atmosphere containing at least 0.1 to 10% by volume of oxygen, with the balance being an inert gas,
    A method for producing a transparent conductive film, comprising sputtering at a deposition rate of 0.01 to 1.0 nm / second and then annealing at a temperature of 250 ° C. or higher.
  2.  前記成膜速度が、0.01~0.2nm/秒であることを特徴とする、請求項1に記載の透明導電膜の製造方法。 2. The method for producing a transparent conductive film according to claim 1, wherein the film formation rate is 0.01 to 0.2 nm / second.
  3.  前記ターゲットに含有されるドーパント元素が、Nb、Ta、Mo、W、Te、Sb、Fe、Ru、Ge、Sn、Bi、Al、Hf、Si、Zr、Co、Cr、Ni、V、Mn、Re、Ce、Y、P及びBからなる群より選ばれる少なくとも1種であることを特徴とする、請求項1に記載の透明導電膜の製造方法。 The dopant elements contained in the target are Nb, Ta, Mo, W, Te, Sb, Fe, Ru, Ge, Sn, Bi, Al, Hf, Si, Zr, Co, Cr, Ni, V, Mn, The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive film is at least one selected from the group consisting of Re, Ce, Y, P and B.
  4.  透明導電膜がアナターゼ型結晶を含むことを特徴とする、請求項1に記載の透明導電膜の製造方法。 The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive film contains anatase type crystals.
  5.  基板上に、少なくともn型半導体層、発光層及びp型半導体層を順次積層して半導体層を形成し、前記p型半導体層上に透明導電膜を形成する半導体発光素子の製造方法であって、
     前記透明導電膜を、請求項1に記載の製造方法を用いて形成することを特徴とする、半導体発光素子の製造方法。
    A method for manufacturing a semiconductor light emitting device, comprising: forming a semiconductor layer by sequentially laminating at least an n type semiconductor layer, a light emitting layer, and a p type semiconductor layer on a substrate; and forming a transparent conductive film on the p type semiconductor layer. ,
    The method for manufacturing a semiconductor light emitting device, wherein the transparent conductive film is formed using the manufacturing method according to claim 1.
  6.  請求項5に記載の半導体発光素子の製造方法によって得られる半導体発光素子。 A semiconductor light emitting device obtained by the method for manufacturing a semiconductor light emitting device according to claim 5.
  7.  請求項6に記載の半導体発光素子が用いられてなることを特徴とするランプ。 A lamp comprising the semiconductor light emitting device according to claim 6.
  8.  酸化チタン(TiO)系材料を含む透明導電膜を基体上にスパッタリング法を用いて成膜する透明導電性基体の製造方法であって、
     ドーパント元素を30質量%以下の割合で含有する酸化チタン系材料を含むターゲットを用い、
     スパッタリング雰囲気を、少なくとも0.1~10体積%の酸素を含有し、残部が不活性ガスからなる雰囲気とし、
     0.01~1.0nm/秒の成膜速度でスパッタリング成膜した後、250℃以上の温度でアニールすることを特徴とする、透明導電性基体の製造方法。
    A method for producing a transparent conductive substrate in which a transparent conductive film containing a titanium oxide (TiO 2 ) -based material is formed on a substrate using a sputtering method,
    Using a target containing a titanium oxide-based material containing a dopant element in a proportion of 30% by mass or less,
    The sputtering atmosphere is an atmosphere containing at least 0.1 to 10% by volume of oxygen, with the balance being an inert gas,
    A method for producing a transparent conductive substrate, comprising sputtering at a deposition rate of 0.01 to 1.0 nm / second and then annealing at a temperature of 250 ° C. or higher.
  9.  前記成膜速度が、0.01~0.2nm/秒であることを特徴とする、請求項8に記載の透明導電性基体の製造方法。 The method for producing a transparent conductive substrate according to claim 8, wherein the film formation rate is 0.01 to 0.2 nm / second.
  10.  前記基体が、無機材料又は高分子材料のいずれかからなることを特徴とする、請求項8に記載の透明導電性基体の製造方法。 The method for producing a transparent conductive substrate according to claim 8, wherein the substrate is made of either an inorganic material or a polymer material.
  11.  透明導電膜がアナターゼ型結晶を含むことを特徴とする、請求項8に記載の透明導電性基体の製造方法。 The method for producing a transparent conductive substrate according to claim 8, wherein the transparent conductive film contains anatase type crystals.
  12.  請求項8乃至11のいずれか一項に記載の透明導電性基体の製造方法によって得られた透明導電性基体。 A transparent conductive substrate obtained by the method for producing a transparent conductive substrate according to any one of claims 8 to 11.
  13.  請求項12に記載の透明導電性基体を備えた電子機器。 An electronic device comprising the transparent conductive substrate according to claim 12.
PCT/JP2010/066044 2009-09-16 2010-09-16 Method for manufacturing transparent conductive film, method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, method for manufacturing transparent conductive base body, transparent conductive base body, and electronic apparatus WO2011034132A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009214913 2009-09-16
JP2009-214913 2009-09-16
JP2010-202970 2010-09-10
JP2010202970A JP2011086613A (en) 2009-09-16 2010-09-10 Method of manufacturing transparent conductive film, method of manufacturing semiconductor light emitting element, semiconductor light emitting device, lamp, transparent conductive substrate, transparent conductive substrate, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2011034132A1 true WO2011034132A1 (en) 2011-03-24

Family

ID=43758733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066044 WO2011034132A1 (en) 2009-09-16 2010-09-16 Method for manufacturing transparent conductive film, method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, method for manufacturing transparent conductive base body, transparent conductive base body, and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2011086613A (en)
WO (1) WO2011034132A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028244A1 (en) * 2015-09-18 2018-02-15 北京大学深圳研究生院 Transparent conductive film, preparation method therefor and application thereof
WO2019189606A1 (en) * 2018-03-30 2019-10-03 堺化学工業株式会社 Electrode material, electrode using same, and battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2974657B1 (en) * 2011-04-28 2013-04-12 Saint Gobain TRANSPARENT ELECTRICAL CONDUCTOR
KR101791175B1 (en) * 2011-06-30 2017-10-27 엘지이노텍 주식회사 Light emitting device and light emitting device package including the same
JP5824920B2 (en) * 2011-07-06 2015-12-02 株式会社豊田中央研究所 Transparent conductive film, conductive member and manufacturing method thereof
JP5803708B2 (en) * 2012-02-03 2015-11-04 豊田合成株式会社 Manufacturing method of semiconductor light emitting device
JP2015166287A (en) * 2012-07-09 2015-09-24 旭硝子株式会社 Method for producing laminate, and laminate
JP2019176076A (en) * 2018-03-29 2019-10-10 豊田合成株式会社 Light-emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070091A1 (en) * 2003-02-04 2004-08-19 Tdk Corporation Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same
JP2005256087A (en) * 2004-03-11 2005-09-22 Nippon Sheet Glass Co Ltd Target for sputtering and thin dielectric optical film formed by using the same, and its manufacturing method
JP2008057045A (en) * 2007-10-09 2008-03-13 Agc Ceramics Co Ltd Oxide sintered compact sputtering target
JP2008084824A (en) * 2006-03-20 2008-04-10 Kanagawa Acad Of Sci & Technol Manufacturing method of conductor
JP2008103705A (en) * 2006-09-20 2008-05-01 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008294306A (en) * 2007-05-25 2008-12-04 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor light emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070091A1 (en) * 2003-02-04 2004-08-19 Tdk Corporation Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same
JP2005256087A (en) * 2004-03-11 2005-09-22 Nippon Sheet Glass Co Ltd Target for sputtering and thin dielectric optical film formed by using the same, and its manufacturing method
JP2008084824A (en) * 2006-03-20 2008-04-10 Kanagawa Acad Of Sci & Technol Manufacturing method of conductor
JP2008103705A (en) * 2006-09-20 2008-05-01 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008294306A (en) * 2007-05-25 2008-12-04 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor light emitting element
JP2008057045A (en) * 2007-10-09 2008-03-13 Agc Ceramics Co Ltd Oxide sintered compact sputtering target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028244A1 (en) * 2015-09-18 2018-02-15 北京大学深圳研究生院 Transparent conductive film, preparation method therefor and application thereof
WO2019189606A1 (en) * 2018-03-30 2019-10-03 堺化学工業株式会社 Electrode material, electrode using same, and battery
JPWO2019189606A1 (en) * 2018-03-30 2021-04-01 堺化学工業株式会社 Electrode material and electrodes using it, batteries
JP7307925B2 (en) 2018-03-30 2023-07-13 堺化学工業株式会社 Electrode materials and electrodes and batteries using the same

Also Published As

Publication number Publication date
JP2011086613A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
WO2011034132A1 (en) Method for manufacturing transparent conductive film, method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, method for manufacturing transparent conductive base body, transparent conductive base body, and electronic apparatus
JP5522032B2 (en) Semiconductor light emitting device and manufacturing method thereof
US8487344B2 (en) Optical device and method of fabricating the same
JP5068475B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device, gallium nitride compound semiconductor light emitting device, and lamp
US8502254B2 (en) Group III nitride semiconductor light-emitting device and method of manufacturing the same, and lamp
KR100988143B1 (en) Semiconductor light emitting element, method for fabricating semiconductor light emitting element and lamp
JP5397369B2 (en) Semiconductor light emitting device, method for manufacturing the semiconductor light emitting device, and lamp using the semiconductor light emitting device
WO2010150501A1 (en) Light emitting element, method of producing same, lamp, electronic equipment, and mechanical apparatus
WO2009093683A1 (en) Compound semiconductor light emitting element and manufacturing method for same, conductive translucent electrode for compound semiconductor light emitting element, lamp, electronic device, and mechanical apparatus
WO2008072681A1 (en) Compound semiconductor light emitting element and method for producing the compound semiconductor light emitting element
JP2007157853A (en) Semiconductor light-emitting element, and method of manufacturing same
JP4901115B2 (en) Gallium nitride semiconductor device
JPWO2009072365A1 (en) Amorphous transparent conductive film for gallium nitride compound semiconductor light emitting device
WO2011086755A1 (en) Semiconductor element and process for producing semiconductor element
WO2010100900A1 (en) Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
JP2001148508A (en) Nitride semiconductor device and manufacturing method therefor
KR20070068537A (en) Development of highly transparent thermally decomposed nitride-based multi n-type ohmic contact layer and group iii nitride light emitting devices with the same n-type electrodes
TWI242896B (en) Group III-nitride-based compound semiconductor device
JP2005244128A (en) Semiconductor light emitting element
JP2011159801A (en) Semiconductor light-emitting element, method of manufacturing the same, and lamp
KR101232031B1 (en) Gallium nitride-based compound semiconductor light-emitting device
JP2012084667A (en) Compound semiconductor light-emitting element, method of manufacturing the same, lamp, electronic device, and mechanical apparatus
JP2011082248A (en) Semiconductor light emitting element and method of manufacturing the same, and lamp
JP2011222599A (en) Semiconductor light-emitting element, manufacturing method of semiconductor light-emitting element, lamp, electronic equipment and mechanical device
JP5692596B2 (en) Method for controlling conductivity of β-Ga 2 O 3 single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817245

Country of ref document: EP

Kind code of ref document: A1