JP5824920B2 - Transparent conductive film, conductive member and manufacturing method thereof - Google Patents

Transparent conductive film, conductive member and manufacturing method thereof Download PDF

Info

Publication number
JP5824920B2
JP5824920B2 JP2011150450A JP2011150450A JP5824920B2 JP 5824920 B2 JP5824920 B2 JP 5824920B2 JP 2011150450 A JP2011150450 A JP 2011150450A JP 2011150450 A JP2011150450 A JP 2011150450A JP 5824920 B2 JP5824920 B2 JP 5824920B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
atoms
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011150450A
Other languages
Japanese (ja)
Other versions
JP2013014832A (en
Inventor
学 北原
学 北原
俊男 堀江
俊男 堀江
鈴木 伸明
伸明 鈴木
松原 賢東
賢東 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2011150450A priority Critical patent/JP5824920B2/en
Publication of JP2013014832A publication Critical patent/JP2013014832A/en
Application granted granted Critical
Publication of JP5824920B2 publication Critical patent/JP5824920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種の薄型ディスプレイ、タッチパネル、太陽電池、バイオ刺激電極などに利用され得る透明導電膜、導電部材およびその製造方法に関するものである。   The present invention relates to a transparent conductive film that can be used for various thin displays, touch panels, solar cells, biostimulation electrodes, and the like, a conductive member, and a method for manufacturing the same.

液晶ディスプレイ等の電子機器に用いられている透明導電膜は、主にITO(Indium Tin Oxide)からなるが、その主原料であるInは希少金属であり、資源リスクがある。そこで資源的に豊富な酸化亜鉛(ZnO)にAl3+を加えたAlドープZnO(AZO)からなる透明導電膜や、そのZnOにGa3+を加えたGaドープZnO(GZO)からなる透明導電膜が提案されている。 The transparent conductive film used for electronic devices such as liquid crystal displays is mainly made of ITO (Indium Tin Oxide), but In, which is the main material, is a rare metal and has a resource risk. Therefore, there is a transparent conductive film made of Al-doped ZnO (AZO) in which Al 3+ is added to resource-rich zinc oxide (ZnO), and a transparent conductive film made of Ga-doped ZnO (GZO) in which Ga 3+ is added to ZnO. Proposed.

また最近では、資源的に豊富であると共に化学的にも安定なTi系透明導電膜も提案されている。例えば、TiNからなる透明導電膜、TiOにNbを加えたNbドープTiOからなる透明導電膜(非特許文献1)、さらにはTiONからなる透明導電膜(特許文献1)等である。 Recently, a Ti-based transparent conductive film, which is abundant in resources and chemically stable, has been proposed. For example, a transparent conductive film made of TiN, a transparent conductive film made of Nb-doped TiO 2 in which Nb is added to TiO 2 (Non-patent Document 1), a transparent conductive film made of TiON (Patent Document 1), and the like.

特開2011−21237号公報JP 2011-21237 A

Y.Furubayashi, et al. ,"A transparent metal: Nb-doped anatase TiO2",APPLIED PHYSICS LETTERS, Vol.86, 252101, 2005.Y. Furubayashi, et al., "A transparent metal: Nb-doped anatase TiO2", APPLIED PHYSICS LETTERS, Vol.86, 252101, 2005.

ZnO系の透明導電膜は、耐熱性や耐湿性の点で問題がある。TiNからなる透明導電膜は、抵抗率は小さく導電性には優れるものの、茶色または黄金色を帯びており透明性の点で問題がある。NbドープTiOからなる透明導電膜は、Nbが希少金属であるため資源リスクを伴う。 A ZnO-based transparent conductive film has a problem in terms of heat resistance and moisture resistance. A transparent conductive film made of TiN has a low resistivity and excellent conductivity, but has a brown or golden color and has a problem in transparency. A transparent conductive film made of Nb-doped TiO 2 involves a resource risk because Nb is a rare metal.

本発明は、このような事情に鑑みて為されたものであり、このような従来の透明導電膜とは根本的に異なり、資源的リスクが少なく、優れた導電性および透明性を発揮する新たな透明導電膜を提供することを目的とする。また、その透明導電膜を基材上に成膜した導電部材とその製造方法も併せて提供することを目的とする。   The present invention has been made in view of such circumstances, and is fundamentally different from such a conventional transparent conductive film, has a low resource risk, and exhibits a new conductivity and transparency. An object of the present invention is to provide a transparent conductive film. Moreover, it aims at providing the conductive member which formed the transparent conductive film into a film on a base material, and its manufacturing method collectively.

本発明者は、この課題を解決すべく鋭意研究し試行錯誤を重ねた結果、従来の透明導電膜と組成が異なり、チタン(Ti)、リン(P)、酸素(O)および窒素(N)からなる皮膜が非常に優れた透明性および導電性を発現することを新たに見出した。本発明者はこの画期的な成果を発展させることにより、以降に述べる種々の発明を完成させるに至った。   As a result of intensive research and trial and error in order to solve this problem, the present inventor has a composition different from that of the conventional transparent conductive film. It has been newly found that a film made of a material exhibits very excellent transparency and conductivity. The present inventor has developed various innovative inventions described below by developing this epoch-making result.

《透明導電膜》
(1)すなわち本発明の透明導電膜は、Ti、P、OおよびNを必須元素とし、Tiの原子数とNの原子数との合計に対するNの原子数の割合であるN原子比(N/Ti+N)が0.35〜0.65であり、透明性および導電性を有することを特徴とする。
<Transparent conductive film>
(1) That is, the transparent conductive film of the present invention contains Ti, P, O, and N as essential elements, and an N atomic ratio that is a ratio of the number of N atoms to the total number of Ti atoms and N atoms ( N / Ti + N) is 0.35-0.65, and wherein the Rukoto to have a transparent and conductive.

(2)本発明の透明導電膜は、Ti、P、OおよびNにより構成され、資源リスクのある希少元素を必要としない。従って本発明によれば、特性に優れる透明導電膜を、安定的に低コストで供給することが可能となる。また本発明の透明導電膜は、Ti系透明導電膜であることから、その少なくとも一部は耐食性にも優れると考えられる。 (2) The transparent conductive film of the present invention is composed of Ti, P, O and N, and does not require a rare element with a resource risk. Therefore, according to the present invention, a transparent conductive film having excellent characteristics can be stably supplied at a low cost. Moreover, since the transparent conductive film of the present invention is a Ti-based transparent conductive film, it is considered that at least a part thereof is excellent in corrosion resistance.

ところで、本発明の透明導電膜が優れた透明性および導電性を発現する理由は、必ずしも定かではない。現状では次のように考えられる。先ず前述したように、TiO膜は透明性が高いが、抵抗率が大きく導電性が低い。逆に、TiN膜は抵抗率が小さく導電性に優れるが、透明性に劣る。 By the way, the reason why the transparent conductive film of the present invention exhibits excellent transparency and conductivity is not necessarily clear. The current situation is considered as follows. First, as described above, the TiO 2 film has high transparency, but has high resistivity and low conductivity. Conversely, a TiN film has low resistivity and excellent conductivity, but is inferior in transparency.

本発明の透明導電膜は、そのようなTi系膜にPが加わることによりTiの一部がPに置換されて、TiO膜の透明性とTiN膜の導電性が高次元で両立した新たな透明導電膜が形成されるようになったと考えられる。なお、本発明の透明導電膜は、透明性と導電性のいずれか一方のみに特化したものでも良い。つまり本発明の透明導電膜は、その要求仕様に応じて、透明性または導電性のいずれか一方を他方に対して優先的に高めたものでもよい。 In the transparent conductive film of the present invention, a part of Ti is replaced by P by adding P to such a Ti-based film, and the transparency of the TiO 2 film and the conductivity of the TiN film are compatible at a high level. It is considered that a transparent conductive film has been formed. The transparent conductive film of the present invention may be specialized for only one of transparency and conductivity. That is, the transparent conductive film of the present invention may be one in which either transparency or conductivity is preferentially enhanced with respect to the other according to the required specifications.

(3)本発明者が鋭意研究したところ、本発明に係る透明導電膜の少なくとも一部はアモルファス構造であることがわかっている。もちろん、透明性等が確保される限り、本発明の透明導電膜は、非晶質相のみでも、非晶質相と結晶相が混在等したものでもよい。 (3) As a result of intensive studies by the inventors, it has been found that at least a part of the transparent conductive film according to the present invention has an amorphous structure. Of course, as long as transparency and the like are ensured, the transparent conductive film of the present invention may be an amorphous phase alone or a mixture of an amorphous phase and a crystalline phase.

《導電部材》
(1)本発明は、透明導電膜としてのみならず、基材の表面上にその透明導電膜を設けた導電部材としても把握される。すなわち、本発明は、基材と、該基材の少なくとも一部の表面に形成された本発明の透明導電膜と、からなることを特徴とする導電部材であってもよい。
《Conductive member》
(1) This invention is grasped | ascertained not only as a transparent conductive film but as a conductive member which provided the transparent conductive film on the surface of a base material. In other words, the present invention may be a conductive member comprising a base material and the transparent conductive film of the present invention formed on at least a part of the surface of the base material.

(2)本明細書でいう基材は、材質、特性、形状、大きさ等を問わない。例えば、基材はガラス等の透明体であっても、金属、樹脂、セラミック等の不透明体であってもよい。 (2) The base material referred to in this specification may be any material, characteristic, shape, size, or the like. For example, the substrate may be a transparent body such as glass or an opaque body such as metal, resin, or ceramic.

《導電部材の製造方法》
本発明の透明導電膜の成膜方法や導電部材の製造方法は問わない。例えば、上述した導電部材は、物理的または化学的な蒸着(PVDまたはCVD)により、Ti、P、OおよびNからなる膜を基材上に形成する成膜工程により、容易に行える。
<< Method for Producing Conductive Member >>
The method for forming the transparent conductive film and the method for manufacturing the conductive member of the present invention are not limited. For example, the conductive member described above can be easily performed by a film forming process in which a film made of Ti, P, O, and N is formed on a substrate by physical or chemical vapor deposition (PVD or CVD).

《その他》
(1)本発明の透明導電膜は、上述した必須元素(Ti、P、OおよびN)以外に、透明導電膜の特性を改善するか、その特性に悪影響を与えない「任意元素」または「不可避不純物」を含み得る。任意元素は、例えば、バナジウム(V)、マンガン(Mn)、ケイ素(Si)、鉄(Fe)、ニッケル(Ni)等の一種以上である。なお、不可避不純物は、コスト的または技術的な理由等により除去することが困難な元素である。
<Others>
(1) In addition to the essential elements (Ti, P, O, and N) described above, the transparent conductive film of the present invention improves the characteristics of the transparent conductive film or does not adversely affect the characteristics. Inevitable impurities ". An arbitrary element is 1 or more types, such as vanadium (V), manganese (Mn), silicon (Si), iron (Fe), nickel (Ni), for example. Inevitable impurities are elements that are difficult to remove for cost or technical reasons.

(2)本明細書でいう「透明性」は、例えば透過率により指標される。その程度は問わないが、敢えていうと40%以上である。 (2) “Transparency” as used herein is indicated by, for example, transmittance. The degree is not limited, but it is 40% or more.

(3)本明細書でいう「導電性」は、例えば(体積)抵抗率により指標される。その程度は問わないが、敢えていうと1×10−3Ω・m以下さらには1×10−4Ω・m以下であると好ましい。 (3) “Conductivity” as used herein is indicated by, for example, (volume) resistivity. The degree is not limited, but dare to say, it is preferably 1 × 10 −3 Ω · m or less, more preferably 1 × 10 −4 Ω · m or less.

(4)本発明の透明導電膜は、透明性および導電性に加えて、耐食性(化学的安定性)にも優れると好ましい。この場合の「耐食性」」は、例えば腐食電流密度(交換電流密度)により指標される。その程度は問わないが、敢えていうと100μA/cm以下(5%硫酸中)である。 (4) The transparent conductive film of the present invention is preferably excellent in corrosion resistance (chemical stability) in addition to transparency and conductivity. “Corrosion resistance” in this case is indicated by, for example, a corrosion current density (exchange current density). The degree is not limited, but it is 100 μA / cm 2 or less (in 5% sulfuric acid).

(5)特に断らない限り、本明細書でいう「x〜y」は、下限値xおよび上限値yを含む。さらに本明細書中に記載した数値やその「x〜y」に含まれる任意の数値を適宜組合わせて、新たな任意の数値範囲「a〜b」を構成し得る。 (5) Unless otherwise specified, “x to y” in this specification includes the lower limit value x and the upper limit value y. Furthermore, a new arbitrary numerical range “ab” can be configured by appropriately combining numerical values described in the present specification and arbitrary numerical values included in “x to y” thereof.

試料No.1に係る皮膜の透明性を示す写真である。Sample No. 1 is a photograph showing transparency of a film according to 1. 試料No.2に係る皮膜の透明性を示す写真である。Sample No. 2 is a photograph showing transparency of a film according to 2; 試料No.C1に係る皮膜の透明性を示す写真である。Sample No. It is a photograph which shows the transparency of the film | membrane which concerns on C1. 試料No.2に係るX線回折パターンを示すグラフである。Sample No. 2 is a graph showing an X-ray diffraction pattern according to 2;

発明の実施形態を挙げて本発明をより詳しく説明する。本明細書で説明する内容は、本発明に係る透明導電膜のみならず導電部材、それらの製造方法(または成膜方法)にも該当し得る。本明細書中から任意に選択した一つまたは二つ以上の構成要素を、上述した本発明の構成要素に付加することができる。プロダクトバイプロセスとして理解すれば、製造方法等に関する内容も透明導電膜や導電部材に関する構成要素ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. The contents described in this specification can be applied not only to the transparent conductive film according to the present invention but also to a conductive member and a manufacturing method (or a film forming method) thereof. One or two or more components arbitrarily selected from the present specification can be added to the above-described components of the present invention. If understood as a product-by-process, the content relating to the manufacturing method and the like can be a constituent element relating to the transparent conductive film and the conductive member. Note that which embodiment is the best depends on the target, required performance, and the like.

《透明導電膜》
(1)組成
本発明の透明導電膜の少なくとも一部は、従来の透明導電膜のように結晶質ではなく、非晶質である。このため本発明の透明導電膜は、透明性および導電性を発現する必須元素(Ti、P、OおよびN)の比率が相対的に広範囲となり得る。
<Transparent conductive film>
(1) Composition At least a part of the transparent conductive film of the present invention is not crystalline as in the conventional transparent conductive film, but is amorphous. For this reason, the transparent conductive film of the present invention can have a relatively wide ratio of essential elements (Ti, P, O, and N) that exhibit transparency and conductivity.

もっとも、現状では、透明導電膜全体を100原子%(単に「%」という。)としたとき、P:13〜25%さらには15〜20%、O:7〜40%さらには9〜25%、N:10〜50%さらには30〜47%であり、残部がTiと任意の改質元素(任意元素)および/または不可避不純物からなると好適であると考えられる。なお、敢えていうと、Tiは20〜70%さらには25〜50%であると好適である。これら必須元素の一種以上が過少または過多になると、透明導電膜の透明性または導電性は低下し得る。   However, at present, when the entire transparent conductive film is 100 atomic% (simply referred to as “%”), P: 13 to 25%, further 15 to 20%, O: 7 to 40%, or 9 to 25%. N: 10 to 50%, further 30 to 47%, and it is considered that the balance is preferably composed of Ti and an optional modifying element (optional element) and / or inevitable impurities. Note that Ti is preferably 20 to 70%, more preferably 25 to 50%. When one or more of these essential elements are too small or excessive, the transparency or conductivity of the transparent conductive film may be lowered.

またTiの原子数とPの原子数との合計に対するTiの原子数の割合であるTi原子比(Ti/(Ti+P))が、0.5〜0.8さらには0.6〜0.7となるとき、透明導電膜は透明性および導電性の両方に特に優れる。   The Ti atomic ratio (Ti / (Ti + P)), which is the ratio of the number of Ti atoms to the total number of Ti atoms and P atoms, is 0.5 to 0.8, and further 0.6 to 0.7. The transparent conductive film is particularly excellent in both transparency and conductivity.

このことは、Tiの原子数とNの原子数との合計に対するNの原子数の割合であるN原子比(N/Ti+N)が、0.35〜0.7さらには0.35〜0.65のときも同様である。   This means that the N atomic ratio (N / Ti + N), which is the ratio of the number of N atoms to the total number of Ti atoms and N atoms, is 0.35 to 0.7, and further 0.35 to 0.00. The same applies to 65.

本発明の透明導電膜は、上述の必須元素以外に、前述したような種々の任意元素を含み得る。透明導電膜が非晶質体である限り、任意元素の割合も相対的に広範囲となる。例えば、V:0.5〜10%さらには3〜7%、Ni:0.5〜10%さらには0.5〜3%、Si:0.5〜10%さらには3〜7%であると好ましい。このような範囲であれば、透明性および導電性に優れた透明導電膜が得られる。なお、これら元素以外に、例えば、マンガン(Mn)、コバルト(Co)、クロム(Cr)、ボロン(B)なども任意元素となり得る。   The transparent conductive film of the present invention may contain various optional elements as described above in addition to the essential elements described above. As long as the transparent conductive film is an amorphous material, the ratio of the arbitrary element is relatively wide. For example, V: 0.5 to 10%, further 3 to 7%, Ni: 0.5 to 10%, further 0.5 to 3%, Si: 0.5 to 10%, further 3 to 7%. And preferred. If it is such a range, the transparent conductive film excellent in transparency and electroconductivity will be obtained. In addition to these elements, for example, manganese (Mn), cobalt (Co), chromium (Cr), boron (B), and the like can be optional elements.

(2)構造
本発明の透明導電膜を構成する非晶質体は、明確な結晶構造をとらないため、基本的に均質的または等方的である。このため、腐食の起点等になる結晶粒界や格子欠陥などもほとんどなく、透明性のみならず、耐食性にも優れ得る。
(2) Structure Since the amorphous body constituting the transparent conductive film of the present invention does not have a clear crystal structure, it is basically homogeneous or isotropic. For this reason, there are almost no crystal grain boundaries or lattice defects, which become the starting point of corrosion, and it can be excellent not only in transparency but also in corrosion resistance.

この非晶質体は、X線回折装置(XRD)で強い回折が検出されない程度であれば足り、結晶構造を完全にもたない非晶質の他、XRDで弱い回折が検出される潜晶質も含む。   This amorphous body is sufficient if it does not allow strong diffraction to be detected by an X-ray diffractometer (XRD). In addition to an amorphous crystal that does not have a complete crystal structure, a latent crystal that can detect weak diffraction by XRD. Including quality.

また、最表層から基材に至る厚さ方向に関して組成範囲が非晶質体内で変化してもよい。さらには非晶質体の領域によって組成範囲が変化してもよい。   In addition, the composition range may change in the amorphous body in the thickness direction from the outermost layer to the substrate. Furthermore, the composition range may vary depending on the amorphous region.

本発明の透明導電膜は、膜厚が小さいときは勿論、膜厚が比較的大きいときでも、導電性と共に十分な透明性を発現し得る。もっとも透明導電膜の膜厚は、透明性と耐久性等を両立させる観点から、10〜1000nmさらには50〜300nmであると好ましい。   The transparent conductive film of the present invention can exhibit sufficient transparency as well as conductivity even when the film thickness is relatively small as well as when the film thickness is small. However, the film thickness of the transparent conductive film is preferably 10 to 1000 nm, more preferably 50 to 300 nm, from the viewpoint of achieving both transparency and durability.

《導電部材》
本発明の導電部材は、上述した透明導電膜が基材の少なくとも一部の表面に形成されたものであればよい。この導電部材は、組成の異なる透明導電膜が多層に積層されたもので良い。なお、基材の表面に透明導電膜の下地層または支持層となる中間層があってもよい。また透明導電膜は、単に基材表面を被覆しているだけではなく、その表面近傍で基材と一体化したものでもよい。
《Conductive member》
The conductive member of the present invention may be any member as long as the above-described transparent conductive film is formed on at least a part of the surface of the substrate. This conductive member may be a laminate of transparent conductive films having different compositions. In addition, the intermediate layer used as the base layer or support layer of a transparent conductive film may be on the surface of a base material. The transparent conductive film may not only simply cover the surface of the substrate, but may be integrated with the substrate in the vicinity of the surface.

《製造方法》
(1)成膜工程
透明導電膜を基材上に形成する成膜工程の具体的な方法は問わない。例えば、スパッタリングを含む蒸着法(PVD、CVD)、反応性雰囲気下での蒸着法(反応性スパッタリング等)を用いることができる。基材の材質・形態・特性、透明導電膜の組成や膜厚などを考慮して適切な方法が選択される得る。そのなかでも、均一な透明導電膜を効率的に形成できるスパッタリングが好ましい。
"Production method"
(1) Film-forming process The specific method of the film-forming process which forms a transparent conductive film on a base material does not ask | require. For example, a vapor deposition method including sputtering (PVD, CVD) or a vapor deposition method under a reactive atmosphere (reactive sputtering or the like) can be used. An appropriate method may be selected in consideration of the material / morphology / characteristics of the substrate, the composition and film thickness of the transparent conductive film, and the like. Among these, sputtering that can efficiently form a uniform transparent conductive film is preferable.

特に成膜工程がマグネトロンスパッタリングによりなされると、成膜速度が比較的速く、生産性の点で好ましい。   In particular, when the film forming process is performed by magnetron sputtering, the film forming speed is relatively fast, which is preferable in terms of productivity.

本発明の透明導電膜中に含まれるNは、スパッタリングする際の処理雰囲気を調整することにより、膜中へ導入可能である。すなわち、成膜工程は、少なくともTiおよびPを含むターゲットを用いて、不活性ガスと窒素(N)ガスの混合ガスからなる処理雰囲気中でスパッタリングする反応性スパッタリング工程とすることができる。 N contained in the transparent conductive film of the present invention can be introduced into the film by adjusting the treatment atmosphere during sputtering. That is, the film forming process can be a reactive sputtering process in which sputtering is performed in a processing atmosphere composed of a mixed gas of an inert gas and nitrogen (N 2 ) gas using a target containing at least Ti and P.

反応性スパッタリングを行うと、複雑な系のターゲットを用いずとも、スパッタリングを行え、スパッタリング時に組成ズレを起こしやすいガス成分の元素を安定的に供給できるため、所望組成の膜を成膜できて好ましい。   When reactive sputtering is performed, sputtering can be performed without using a complicated system target, and an element of a gas component that easily causes a composition shift at the time of sputtering can be stably supplied. Therefore, a film having a desired composition can be formed. .

透明導電膜を構成するOは、ターゲットを供給源としても良いし、反応性スパッタリングの処理雰囲気中に反応ガスとして酸素(O)ガスを混在させてもよい。 O constituting the transparent conductive film may use a target as a supply source, or may mix oxygen (O 2 ) gas as a reactive gas in the reactive sputtering treatment atmosphere.

透明導電膜の特性や組成等は、成膜方法のみならず、ターゲットの特性にも影響される。蒸着(スパッタリングを含む)により透明導電膜を成膜する場合、放電プラズマ焼結法(SPS)等により得られたターゲットを用いると、高融点化合物ターゲットを緻密に作製できるので好ましい。ちなみにSPSは、ターゲットとなる原料粉末の圧粉体の粒子間隙へ、低電圧でパルス状の大電流を投入し、粒子間に瞬時に発生する放電プラズマエネルギーにより、各粒子間を焼結させる方法である。   The characteristics and composition of the transparent conductive film are influenced not only by the film forming method but also by the characteristics of the target. In the case of forming a transparent conductive film by vapor deposition (including sputtering), it is preferable to use a target obtained by a discharge plasma sintering method (SPS) or the like because a refractory compound target can be densely produced. Incidentally, SPS is a method in which a large amount of pulsed current is applied at a low voltage to the particle gap of the green compact of the raw material powder that is the target, and each particle is sintered by the discharge plasma energy generated instantaneously between the particles. It is.

この他、真空チャンバー内に設置したターゲットに、チャンバー外部からレーザー光を照射して、ターゲットから発生させた基本元素の原子を基材上に堆積させるパルスレーザーデポジション(PLD)法により透明導電膜を成膜してもよい。この際、ターゲットをアブレーション(気化、昇華、剥離など)させるレーザーのパルス数を調整すると、成膜速度の精密な制御が可能となる。   In addition, a transparent conductive film is formed by a pulsed laser deposition (PLD) method in which a target placed in a vacuum chamber is irradiated with laser light from outside the chamber and atoms of basic elements generated from the target are deposited on a substrate. May be formed. At this time, if the number of laser pulses for ablating the target (evaporation, sublimation, peeling, etc.) is adjusted, the film forming speed can be precisely controlled.

なお、透明導電膜を形成する必須元素の一部(特にTi)は、成膜方法に応じて、基材側から供給され得る。また、透明導電膜を構成するNは、ガス窒化、イオン窒化、塩浴窒化などの窒化法により膜中へ導入することもあり得る。   Note that a part of the essential elements (particularly Ti) forming the transparent conductive film can be supplied from the substrate side depending on the film forming method. Further, N constituting the transparent conductive film may be introduced into the film by a nitriding method such as gas nitriding, ion nitriding, salt bath nitriding or the like.

《用途》
本発明の透明導電膜の用途は特に限定されず、種々の物へ利用が考えられる。例えば、前述したように、薄型ディスプレイ、タッチパネル、太陽電池、バイオ刺激電極等に好適である。なお、この透明導電膜を基材上に有する導電部材は、最終製品またはそれに近い形態に限らず、中間部材等であってもよい。
<Application>
The use of the transparent conductive film of the present invention is not particularly limited, and it can be used for various things. For example, as described above, it is suitable for thin displays, touch panels, solar cells, biostimulation electrodes, and the like. The conductive member having the transparent conductive film on the substrate is not limited to the final product or a form close thereto, and may be an intermediate member or the like.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
(1)アルミナシリカガラスからなる透明なガラス基板(基材)を用意した。この基板上に、マグネトロンスパッタ法を用いて皮膜を成膜した(成膜工程)。このとき用いたターゲットは、TiP粉末(10〜100μm)とTi粉末(10〜100μm)を揺動混合器で均一に混合した混合粉末を、放電プラズマ焼結(SPS)させて得た。このターゲット中に存在するTiおよびPの原子割合(Ti原子比:Ti/(Ti+P))は、0.75(Ti:P=3:1)とした。
The present invention will be described more specifically with reference to examples.
<Production of sample>
(1) A transparent glass substrate (base material) made of alumina silica glass was prepared. A film was formed on this substrate by magnetron sputtering (film formation process). The target used at this time was obtained by spark plasma sintering (SPS) of a mixed powder in which TiP powder (10 to 100 μm) and Ti powder (10 to 100 μm) were uniformly mixed with a rocking mixer. The atomic ratio of Ti and P existing in the target (Ti atomic ratio: Ti / (Ti + P)) was 0.75 (Ti: P = 3: 1).

なお、皮膜中に導入するOは、上記の混合粉末の粒子表面に付着している酸素(酸化物)を供給源とした。もちろん、酸化チタン等を介してターゲットへOを混在させてもよいし、スパッタ雰囲気(処理雰囲気)中へ反応ガスとなる酸素を導入してもよい。   Note that O introduced into the film was oxygen (oxide) attached to the particle surface of the mixed powder as a supply source. Of course, O may be mixed into the target via titanium oxide or the like, or oxygen as a reactive gas may be introduced into the sputtering atmosphere (processing atmosphere).

さらに表1に示す任意元素を膜中へ導入する場合、各元素の純粉末をターゲットの原料となる混合粉末中に混在させた。   Furthermore, when introducing the arbitrary elements shown in Table 1 into the film, pure powder of each element was mixed in the mixed powder serving as the target raw material.

マグネトロンスパッタは、Ar(放電ガス)とN(反応ガス)の混合合ガス雰囲気(スパッタ雰囲気)中で、100W、1時間、0.5Paの条件下で行った(反応性スパッタリング工程)。スパッタ雰囲気中のArとNの流量(単位:sccm)の比率は表1に示した。なお、成膜する基板の温度(基板温度)は25℃とした。 Magnetron sputtering was performed in a mixed gas atmosphere (sputtering atmosphere) of Ar (discharge gas) and N 2 (reactive gas) under conditions of 100 W, 1 hour, and 0.5 Pa (reactive sputtering step). Table 1 shows the ratio of Ar and N 2 flow rates (unit: sccm) in the sputtering atmosphere. Note that the temperature of the substrate on which the film was formed (substrate temperature) was 25 ° C.

こうしてガラス基板上に成膜した表1に示す各試料を得た(試料No.1〜5)。   In this way, each sample shown in Table 1 formed into a film on the glass substrate was obtained (sample No. 1-5).

(2)上記のターゲットに替えて、TiNをターゲットとした試料も、上述したスパッタリングにより同様に製造した。この試料も併せて表1に示した(試料No.C1)。 (2) Instead of the above target, a sample using TiN as a target was similarly produced by the above-described sputtering. This sample is also shown in Table 1 (Sample No. C1).

《皮膜の観察》
(1)表1に示した各試料について、ラザフォード後方散乱分析(RBS)により皮膜の組成分析を行った。このときの測定は、イオン種:He、イオンエネルギー:1.8MeV、散乱角:160°、散乱槽の真空度:3×10−6Torrの条件下で行った。その結果を表1に示した。また、その分析結果に基く原子比も表1に併せて示した。
<Observation of film>
(1) About each sample shown in Table 1, the composition analysis of the film | membrane was performed by Rutherford backscattering analysis (RBS). The measurement at this time was performed under the conditions of ion species: He, ion energy: 1.8 MeV, scattering angle: 160 °, and vacuum degree of scattering tank: 3 × 10 −6 Torr. The results are shown in Table 1. The atomic ratios based on the analysis results are also shown in Table 1.

(2)各試料の皮膜の結晶構造をX線回折装置(XRD)で解析した。いずれの場合も、シャープなピークが現れず、各皮膜はアモルファス構造であることが確認された。その一例として試料No.2に関するX線回折パターンを図2に示した。 (2) The crystal structure of the film of each sample was analyzed with an X-ray diffractometer (XRD). In either case, a sharp peak did not appear, and it was confirmed that each film had an amorphous structure. As an example, sample no. The X-ray diffraction pattern for 2 is shown in FIG.

(3)いずれの試料も、図1に示すように、成膜したガラス基板の背面側に配置した模様を十分に看取できた。もっとも試料No.C1の膜厚は、他の試料の膜厚の約1/3であった。ちなみに各試料の膜厚は、触針式表面形状測定器により測定した。この結果も表1に併せて示した。 (3) As for all the samples, as shown in FIG. 1, the pattern arrange | positioned on the back side of the film-formed glass substrate was fully appreciable. However, sample no. The film thickness of C1 was about 1/3 of the film thickness of other samples. Incidentally, the film thickness of each sample was measured with a stylus type surface shape measuring instrument. The results are also shown in Table 1.

《導電性》
各試料の皮膜の導電性の指標となる体積抵抗率は四端子法で測定した。
"Conductivity"
The volume resistivity, which is an index of the conductivity of the film of each sample, was measured by the four probe method.

《評価》
(1)表1および図1から明らかなように、Ti、P、OおよびN(必須元素)からなる透明導電膜はいずれも、膜厚が相当大きくても、優れた透明性(高透過度)を発現すると共に、抵抗率も十分に小さくて高導電性であることがわかった。この傾向は、V、Mn、SiまたはFe(任意元素)を含む場合でも同様であった。
<Evaluation>
(1) As is clear from Table 1 and FIG. 1, the transparent conductive film composed of Ti, P, O, and N (essential elements) has excellent transparency (high transmittance) even when the film thickness is considerably large. ), And the resistivity is sufficiently small to be highly conductive. This tendency was the same even when V, Mn, Si or Fe (arbitrary element) was included.

(2)TiNからなる皮膜もかなり透明ではあったが、それは膜厚が相当に薄いためと考えられる。 (2) Although the film made of TiN was also quite transparent, it is considered that the film thickness was considerably thin.

Claims (9)

チタン(Ti)、リン(P)、酸素(O)および窒素(N)を必須元素とし、
Tiの原子数とNの原子数との合計に対するNの原子数の割合であるN原子比(N/Ti+N)が0.35〜0.65であり、
透明性および導電性を有することを特徴とする透明導電膜。
Titanium (Ti), phosphorus (P), oxygen (O) and nitrogen (N) are essential elements ,
The N atomic ratio (N / Ti + N), which is the ratio of the number of N atoms to the total number of Ti atoms and N atoms, is 0.35 to 0.65,
The transparent conductive film according to claim Rukoto to have a transparent and conductive.
非晶質体からなる請求項1に記載の透明導電膜。   The transparent conductive film according to claim 1, comprising an amorphous body. 全体を100原子%(単に「%」という。)としたときに、P:13〜25%、O:7〜40%およびN:10〜50%であり、残部がTiおよび不可避不純物からなる請求項1または2に記載の透明導電膜。   P: 13 to 25%, O: 7 to 40% and N: 10 to 50% when the whole is 100 atomic% (simply referred to as “%”), and the balance is made of Ti and inevitable impurities Item 3. The transparent conductive film according to Item 1 or 2. Tiの原子数とPの原子数との合計に対するTiの原子数の割合であるTi原子比(Ti/(Ti+P))が0.5〜0.8である請求項3に記載の透明導電膜。   The transparent conductive film according to claim 3, wherein a Ti atomic ratio (Ti / (Ti + P)), which is a ratio of the number of Ti atoms to the total number of Ti atoms and P atoms, is 0.5 to 0.8. . さらに、バナジウム(V)、マンガン(Mn)、ケイ素(Si)または鉄(Fe)の一種以上である任意元素を含む請求項1〜4のいずれかに記載の透明導電膜。   Furthermore, the transparent conductive film in any one of Claims 1-4 containing the arbitrary elements which are 1 or more types of vanadium (V), manganese (Mn), silicon (Si), or iron (Fe). 蒸着により基材上に成膜する成膜工程を有し、
請求項1〜5のいずれかに記載した透明導電膜で被覆された該基材からなる導電部材を得ることを特徴とする導電部材の製造方法。
Having a film forming step of forming a film on a substrate by vapor deposition;
A method for producing a conductive member, comprising obtaining a conductive member comprising the base material coated with the transparent conductive film according to claim 1.
前記成膜工程は、少なくともTiおよびPを含むターゲットを用いて、不活性ガスと窒素(N)ガスの混合ガスからなる処理雰囲気中でスパッタリングする反応性スパッタリング工程である請求項6に記載の導電部材の製造方法。 The film-forming step, at least by using a target containing Ti and P, inert gas and nitrogen (N 2) according to claim 6, wherein the reactive sputtering step of sputtering in the treatment atmosphere comprising a mixed gas of the gas A method for producing a conductive member. 前記混合ガスは、さらに酸素(O)ガスを含む請求項7に記載の導電部材の製造方法。 The method for manufacturing a conductive member according to claim 7, wherein the mixed gas further contains oxygen (O 2 ) gas. 基材と、
該基材の少なくとも一部の表面に形成された請求項1〜5のいずれかに記載の透明導電膜と、
からなることを特徴とする導電部材。
A substrate;
The transparent conductive film according to any one of claims 1 to 5, formed on at least a part of the surface of the substrate,
A conductive member comprising:
JP2011150450A 2011-07-06 2011-07-06 Transparent conductive film, conductive member and manufacturing method thereof Expired - Fee Related JP5824920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011150450A JP5824920B2 (en) 2011-07-06 2011-07-06 Transparent conductive film, conductive member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011150450A JP5824920B2 (en) 2011-07-06 2011-07-06 Transparent conductive film, conductive member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013014832A JP2013014832A (en) 2013-01-24
JP5824920B2 true JP5824920B2 (en) 2015-12-02

Family

ID=47687766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150450A Expired - Fee Related JP5824920B2 (en) 2011-07-06 2011-07-06 Transparent conductive film, conductive member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5824920B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277855B2 (en) * 1997-08-27 2002-04-22 ヤマハ株式会社 Method for forming wiring of semiconductor device
JP2001156024A (en) * 1999-09-13 2001-06-08 Tokyo Electron Ltd TiN-BASED THIN FILM AND FILM-FORMING METHOD THEREFOR, FILM-FORMING APPARATUS, FILM STRUCTURAL BODY INCLUDING TiN-BASED THIN FILM AND MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE
JP5173512B2 (en) * 2008-03-25 2013-04-03 財団法人神奈川科学技術アカデミー Conductor and manufacturing method thereof
JP2011021237A (en) * 2009-07-15 2011-02-03 Nippon Telegr & Teleph Corp <Ntt> Transparent conductive film and method for forming the same
JP2011086613A (en) * 2009-09-16 2011-04-28 Showa Denko Kk Method of manufacturing transparent conductive film, method of manufacturing semiconductor light emitting element, semiconductor light emitting device, lamp, transparent conductive substrate, transparent conductive substrate, and electronic apparatus
JP5779988B2 (en) * 2011-05-31 2015-09-16 株式会社豊田中央研究所 Corrosion-resistant conductive film, method for producing the same, and corrosion-resistant conductive material

Also Published As

Publication number Publication date
JP2013014832A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
Salunkhe et al. Investigation on tailoring physical properties of Nickel Oxide thin films grown by dc magnetron sputtering
Windisch Jr et al. Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides
JP5005772B2 (en) Conductive laminate and manufacturing method thereof
Boltz et al. Low temperature sputter deposition of SnOx: Sb films for transparent conducting oxide applications
Huang et al. Investigation on structural, electrical and optical properties of tungsten-doped tin oxide thin films
KR20130029365A (en) Transparent conductive films
Ribeiro et al. Compositional analysis by RBS, XPS and EDX of ZnO: Al, Bi and ZnO: Ga, Bi thin films deposited by dc magnetron sputtering
Sook Oh et al. Improvement of electrical and optical properties of molybdenum oxide thin films by ultralow pressure sputtering method
TWI603938B (en) Niobium oxide sputtering target, method of producing the same, and niobium oxide film
Boutwell et al. Optical and structural properties of NiMgO thin films formed by sol–gel spin coating
Duan et al. Structure, electrical and optical properties of TiNx films by atmospheric pressure chemical vapor deposition
Nguyen et al. Studying the influence of deposition temperature and nitrogen contents on the structural, optical, and electrical properties of N-doped SnO2 films prepared by direct current magnetron sputtering
Li et al. Influence of post-annealing on structural, electrical and optical properties of manganese oxide thin films grown by atomic layer deposition
Yu et al. Synthesis and characterization of multi-element oxynitride semiconductor film prepared by reactive sputtering deposition
Wang et al. Tunable electrical resistivity of oxygen-deficient zinc oxide thin films
Usha et al. Effect of substrate temperatures on structural, optical and dispersion energy parameters of RF sputtered nickel oxide thin films
Chen et al. Effect of substrate temperature on the structure, electrical and optical properties of Mo doped ZnO films
Chen et al. Pulsed laser deposited InGaZnO thin film on silica glass
Komornicki et al. Structural properties of TiO 2–WO 3 thin films prepared by rf sputtering
JP5824920B2 (en) Transparent conductive film, conductive member and manufacturing method thereof
Reddy et al. Influence of oxygen partial pressure on the structural, optical and electrical properties of Cu-doped NiO thin films
Ben Jemaa et al. Structural, optical and electrical investigations on Nb doped TiO 2 radio-frequency sputtered thin films from a powder target
JP2004143584A (en) Article coated with zirconium compound film, method for producing the article, and sputtering target used for coating with the film
Laurikaitis et al. Deposition of zirconium oxynitride films by reactive cathodic arc evaporation and investigation of physical properties
Shi et al. Influence of selenization temperature on synthesis, morphology, and properties of nanostructured CoSe2 films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5824920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees