WO2011033980A1 - Magnetic sensor and production method therefor - Google Patents

Magnetic sensor and production method therefor Download PDF

Info

Publication number
WO2011033980A1
WO2011033980A1 PCT/JP2010/065476 JP2010065476W WO2011033980A1 WO 2011033980 A1 WO2011033980 A1 WO 2011033980A1 JP 2010065476 W JP2010065476 W JP 2010065476W WO 2011033980 A1 WO2011033980 A1 WO 2011033980A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
magnetic layer
pattern portion
conductive layer
Prior art date
Application number
PCT/JP2010/065476
Other languages
French (fr)
Japanese (ja)
Inventor
武也 猪俣
一郎 徳永
昌廣 川村
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2011033980A1 publication Critical patent/WO2011033980A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Abstract

Disclosed is a magnetic sensor that is capable of adjusting the fixed magnetization direction of each magnetic detection element on the same substrate with a high degree of accuracy by changing the method for controlling fixed magnetization, and is also capable of controlling the same in a weak magnetic field. An electrically conducting layer (6) is formed upon the substrate, and at this time, a plurality of pattern sections are formed with differing orientations, through which a current is run when applied to the electrically conducting layer. A first magnetic layer (13a) is formed upon each pattern section, and the first magnetic layer is formed while applying an external magnetic field, which is generated by running a current in the electrically conducting layer (6), to the first magnetic layer. A second magnetic layer (13c) is formed upon the first magnetic layer (13a) via a nonmagnetic intermediate layer (13b), and at this time, the aforementioned second magnetic layer is formed while applying an external magnetic field, which is generated by running a current in the electrically conducting layer (6), to the aforementioned first magnetic layer (13a). An RKKY coupling magnetic field is generated via the nonmagnetic intermediate layer between the first magnetic layer and the second magnetic layer, and the fixed magnetization direction of the first magnetic layer and the second magnetic layer can be controlled in an anti-parallel state.

Description

磁気センサ及びその製造方法Magnetic sensor and manufacturing method thereof
 本発明は、磁化固定方向が異なる複数の磁気検出素子を備える磁気センサ及びその製造方法に関する。 The present invention relates to a magnetic sensor including a plurality of magnetic detection elements having different magnetization fixed directions, and a manufacturing method thereof.
 従来、ポテンショメータ等に使用される磁気センサは、支持板上に、磁化固定方向(PIN方向)が異なる磁気検出素子を備える複数のチップが搭載された構成となっている。 Conventionally, a magnetic sensor used for a potentiometer or the like has a configuration in which a plurality of chips including magnetic detection elements having different magnetization fixed directions (PIN directions) are mounted on a support plate.
 検出磁界が作用すると、磁気検出素子を構成するフリー磁性層の磁化方向が変動し、固定磁性層の前記磁化固定方向との角度差で抵抗値が変化し、その抵抗変化に基づく出力により回転角度等の検知を行うことが可能となっている。 When the detection magnetic field acts, the magnetization direction of the free magnetic layer constituting the magnetic detection element fluctuates, the resistance value changes due to the angle difference from the magnetization fixed direction of the pinned magnetic layer, and the rotation angle depends on the output based on the resistance change. Etc. can be detected.
 従来では、磁気検出素子の磁化固定を、反強磁性層と軟磁性層との反強磁性結合及び、軟磁性層間での積層フェリ結合で制御していた。 Conventionally, the magnetization fixing of the magnetic detection element has been controlled by the antiferromagnetic coupling between the antiferromagnetic layer and the soft magnetic layer and the laminated ferrimagnetic coupling between the soft magnetic layers.
 従来の磁気センサの製造方法を説明すると、まず、ウエハ状の大基板上に多数の磁気検出素子を成膜し、ウエハ面内に配置している多数の前記磁気検出素子に対して同一磁場方向での磁場中熱処理を施した。このため、各磁気検出素子の固定磁性層の磁化固定方向(PIN方向)は全て同一方向となった。続いて、各磁気検出素子ごとに前記大基板を切り出して多数のチップを形成した。続いて、複数のチップを共通の支持板上に搭載するが、このとき、機械的に、各チップの支持板に対するマウント角度を変えることで、各磁気検出素子の磁化固定方向を異なる方向に調整していた。 A conventional magnetic sensor manufacturing method will be described. First, a large number of magnetic detection elements are formed on a large wafer-shaped substrate, and the same magnetic field direction is applied to the large number of magnetic detection elements arranged on the wafer surface. Heat treatment was performed in a magnetic field. For this reason, the magnetization fixed direction (PIN direction) of the fixed magnetic layer of each magnetic detection element is all the same direction. Subsequently, the large substrate was cut out for each magnetic detection element to form a large number of chips. Subsequently, multiple chips are mounted on a common support plate. At this time, the magnetization fixing direction of each magnetic detection element is adjusted in a different direction by mechanically changing the mounting angle of each chip with respect to the support plate. Was.
特表平11-505931号公報Japanese National Patent Publication No. 11-505931 特開2002-299728号公報JP 2002-299728 A
 しかしながら従来での磁化固定の制御方法は、高温での相変態で反強磁性結合させる反強磁性層を用いるものであり、かかる制御方法では、高温(数百℃)で且つ強磁場(数kOe~数十kOe)を必要とした。 However, the conventional magnetization fixing control method uses an antiferromagnetic layer that is antiferromagnetically coupled by phase transformation at a high temperature. In such a control method, a high magnetic field (several kOe) at a high temperature (several hundred degrees Celsius) is used. ~ Tens of kOe).
 このため従来では、同一基板上に、磁化固定方向が異なる複数の磁気検出素子を形成することは出来なかった。 For this reason, conventionally, it was not possible to form a plurality of magnetic detection elements having different magnetization fixed directions on the same substrate.
 そこで従来では、高温且つ強磁場の磁場中熱処理により磁化固定方向が全て同一とされた多数の磁気検出素子をチップ化し、複数のチップを共通の支持板上に搭載する際、マウント角度を異ならせることで、共通の支持板上に搭載する各磁気検出素子の磁化固定方向を異ならせていた。 Therefore, conventionally, a large number of magnetic detection elements whose magnetization fixing directions are all the same by heat treatment in a magnetic field of high temperature and strong magnetic field are made into chips, and when mounting a plurality of chips on a common support plate, the mount angles are made different. Thus, the magnetization fixed directions of the magnetic detection elements mounted on the common support plate are different.
 しかしながら、各磁気検出素子の磁化固定方向を機械的なマウント角度の調整により制御する従来の制御方法では、マウント角度のばらつきにより、各磁気検出素子の磁化固定方向が所定方向からずれやすく、磁気センサの角度検出精度が低下する問題があった。また従来では、ダイボンダーを用いて機械的なマウント角度の調整及びダイボンド工程を必要とし、生産コストが上昇しまた煩雑な製造工程が必要となった。 However, in the conventional control method in which the magnetization fixed direction of each magnetic detection element is controlled by adjusting the mechanical mount angle, the magnetization fixed direction of each magnetic detection element is likely to deviate from a predetermined direction due to variations in the mount angle. There has been a problem that the angle detection accuracy of the lowering. Further, conventionally, a mechanical mounting angle adjustment and a die bonding step using a die bonder are required, resulting in an increase in production cost and a complicated manufacturing step.
 特許文献1には、磁気検出素子の上方に導体経路を位置させたセンサ素子の発明が開示されている。特許文献1では、前記導体経路に電流を流し、そのときに生じる磁界によりバイアス層部を磁化する。 Patent Document 1 discloses an invention of a sensor element in which a conductor path is positioned above a magnetic detection element. In Patent Document 1, a current is passed through the conductor path, and the bias layer portion is magnetized by a magnetic field generated at that time.
 しかしながら特許文献1に記載された発明では、個別のウエハに導体経路とセンサ素子を形成し、近接させる方法をとっている為、センサ素子に対する導体経路の位置決めが必要となり、結局、各センサ素子の磁化固定方向を高精度に制御することができない。 However, in the invention described in Patent Document 1, since the conductor path and the sensor element are formed on individual wafers and brought close to each other, it is necessary to position the conductor path with respect to the sensor element. The magnetization fixed direction cannot be controlled with high accuracy.
 特許文献2に記載された発明は、反強磁性層を備え、固定磁性層との間で高温の磁場中熱処理を施すものであり、上記した従来課題を解決できていない(特許文献2の[0026]欄参照)。更に、特許文献2に記載された発明では、磁場印加用磁性層の残留磁化を用いて複数のトンネル型磁気抵抗効果素子の固定磁性層の磁化を異なる方向に固定するものであるが、残留磁化を用いる方法では、各磁化固定方向を高精度に制御することが困難であり、ばらつきが生じやすい。また交換結合磁界を生じさせるために非常に強い磁場を必要とする。 The invention described in Patent Document 2 includes an antiferromagnetic layer and performs heat treatment in a high-temperature magnetic field between the pinned magnetic layer and cannot solve the above-described conventional problems ([Patent Document 2 [[ [0026] column). Furthermore, in the invention described in Patent Document 2, the magnetization of the pinned magnetic layers of a plurality of tunnel type magnetoresistive effect elements is pinned in different directions using the remanent magnetization of the magnetic layer for applying a magnetic field. In the method using, it is difficult to control each magnetization fixed direction with high accuracy, and variations tend to occur. In addition, a very strong magnetic field is required to generate an exchange coupling magnetic field.
 そこで本発明は、上記従来の課題を解決するためのものであり、同一基板上で、複数の磁気検出素子を、弱磁場を用いて異なる磁化固定方向に高精度に制御できる磁気センサ及びその製造方法を提供することを目的とする。 Therefore, the present invention is to solve the above-described conventional problems, and a magnetic sensor capable of controlling a plurality of magnetic detection elements on a same substrate in different magnetization fixed directions with high accuracy using a weak magnetic field, and its manufacture It aims to provide a method.
 本発明は、検出磁界を生じる磁界発生手段と、非接触に設けられた、前記検出磁界を検知する磁気検出素子を備えた磁気センサにおいて、
 複数の前記磁気検出素子が同一の基板上に形成され、
 各磁気検出素子は、下から、磁化方向が固定される固定磁性層、非磁性材料層及び、前記検出磁界に対して磁化方向が変動するフリー磁性層の順に積層された積層部分を有し、
 各固定磁性層は、下から第1磁性層、非磁性中間層、第2磁性層の順に積層され、前記第1磁性層と前記第2磁性層の磁化固定方向が反平行である積層フェリ構造であり、
 各固定磁性層と前記基板との間には、通電により生じた外部磁場を前記第1磁性層及び前記第2磁性層の成膜時に印加するための導電層が形成されている。
The present invention provides a magnetic sensor comprising a magnetic field generating means for generating a detection magnetic field and a magnetic detection element provided in a non-contact manner for detecting the detection magnetic field.
A plurality of the magnetic sensing elements are formed on the same substrate;
Each magnetic detection element has, from below, a laminated portion in which a pinned magnetic layer whose magnetization direction is fixed, a nonmagnetic material layer, and a free magnetic layer whose magnetization direction varies with respect to the detection magnetic field, are laminated in this order.
Each pinned magnetic layer is laminated in order of the first magnetic layer, the nonmagnetic intermediate layer, and the second magnetic layer from the bottom, and the laminated ferrimagnetic structure in which the magnetization pinned directions of the first magnetic layer and the second magnetic layer are antiparallel. And
Between each pinned magnetic layer and the substrate, a conductive layer for applying an external magnetic field generated by energization when forming the first magnetic layer and the second magnetic layer is formed.
 そして、前記導電層には、通電時に電流の流れる方向が異なる複数のパターン部が形成されており、各磁気検出素子は、各パターン部に対向して形成されて、2つ以上の各磁気検出素子の各第1磁性層の磁化固定方向が異なる方向に制御されていることを特徴とするものである。 The conductive layer is formed with a plurality of pattern portions having different directions of current flow when energized, and each magnetic detection element is formed to face each pattern portion, so that two or more magnetic detection elements are formed. The magnetization fixed direction of each first magnetic layer of the element is controlled in a different direction.
 本発明では、基板表面内にて直交する方向をX1-X2方向とY1-Y2方向としたとき、
 前記導電層には、通電時に電流の流れる方向がY1方向の第1パターン部、電流の流れる方向がX1方向の第2パターン部、電流の流れる方向がY2方向の第3パターン部、電流の流れる方向がX2方向の第4パターン部が夫々形成されており、
 各磁気検出素子が、前記第1パターン部、前記第2パターン部、前記第3パターン部及び前記第4パターン部に夫々、対向して形成されて、各磁気検出素子の第1磁性層の磁化固定方向が90度ずつ異なる方向に制御されていることが好ましい。例えば本発明の磁気センサをポテンショメータに搭載できる。
In the present invention, when the orthogonal directions in the substrate surface are the X1-X2 direction and the Y1-Y2 direction,
The conductive layer has a first pattern portion in which the current flows in the Y1 direction when energized, a second pattern portion in which the current flows in the X1 direction, a third pattern portion in which the current flows in the Y2 direction, and a current flows in the conductive layer. A fourth pattern portion whose direction is the X2 direction is formed respectively.
Each magnetic detection element is formed to face the first pattern portion, the second pattern portion, the third pattern portion, and the fourth pattern portion, respectively, and the magnetization of the first magnetic layer of each magnetic detection element It is preferable that the fixing direction is controlled in different directions by 90 degrees. For example, the magnetic sensor of the present invention can be mounted on a potentiometer.
 また本発明では、前記第1磁性層及び前記第2磁性層はCoを含む磁性材料で形成され、前記非磁性中間層は、Ru、Rh、Ir、Cr、Re、Cuのうち少なくともいずれか1種で形成されることが好適である。前記非磁性中間層の膜厚は、2Å~10Åの範囲内であることが好ましい。これにより、第1磁性層と第2磁性層間の非磁性中間層を介して生じるRKKY結合磁界を大きくでき、第1磁性層と第2磁性層の磁化固定方向を安定して反平行状態に制御できる。 In the present invention, the first magnetic layer and the second magnetic layer are made of a magnetic material containing Co, and the nonmagnetic intermediate layer is at least one of Ru, Rh, Ir, Cr, Re, and Cu. It is preferred that the seed is formed. The film thickness of the nonmagnetic intermediate layer is preferably in the range of 2 to 10 mm. As a result, the RKKY coupling magnetic field generated via the nonmagnetic intermediate layer between the first magnetic layer and the second magnetic layer can be increased, and the magnetization fixed directions of the first magnetic layer and the second magnetic layer can be stably controlled to be antiparallel. it can.
 また本発明は、検出磁界を生じる磁界発生手段と非接触に設けられ、前記検出磁界を検知する磁気検出素子を備えた磁気センサの製造方法において、
 基板上に導電層を形成し、このとき、前記導電層への通電時に前記電流の流れる方向が異なる複数のパターン部を形成する工程、
 各パターン部上に第1磁性層を成膜し、このとき、前記導電層に電流を流して生じる外部磁場を前記第1磁性層に印加しながら前記第1磁性層を成膜する工程、
 前記第1磁性層上に非磁性中間層を介して第2磁性層を成膜して、前記第1磁性層、前記非磁性中間層及び前記第2磁性層の積層フェリ構造から成る固定磁性層を形成し、このとき、前記導電層に電流を流して生じる外部磁場を前記第1磁性層に印加しながら前記第2磁性層を成膜する工程、
 前記第2磁性層上に非磁性材料層及びフリー磁性層を成膜して、前記固定磁性層、前記非磁性材料層及び前記フリー磁性層の積層構造を有し、第1磁性層の磁化固定方向が異なる複数の前記磁気検出素子を形成する工程、
 を有することを特徴とするものである。
According to another aspect of the present invention, there is provided a magnetic sensor manufacturing method including a magnetic detection element that is provided in a non-contact manner with a magnetic field generation unit that generates a detection magnetic field and detects the detection magnetic field.
Forming a conductive layer on the substrate, and at this time, forming a plurality of pattern portions in which the current flows in different directions when the conductive layer is energized;
Forming a first magnetic layer on each pattern portion, and forming the first magnetic layer while applying an external magnetic field generated by passing a current through the conductive layer to the first magnetic layer;
A pinned magnetic layer comprising a laminated ferrimagnetic structure of the first magnetic layer, the nonmagnetic intermediate layer, and the second magnetic layer, wherein a second magnetic layer is formed on the first magnetic layer via a nonmagnetic intermediate layer. Forming the second magnetic layer while applying an external magnetic field generated by passing a current through the conductive layer to the first magnetic layer,
A nonmagnetic material layer and a free magnetic layer are formed on the second magnetic layer to have a laminated structure of the pinned magnetic layer, the nonmagnetic material layer, and the free magnetic layer, and the magnetization of the first magnetic layer is fixed. Forming a plurality of the magnetic sensing elements having different directions;
It is characterized by having.
 本発明では、前記導電層上の全面に、前記積層フェリ構造の固定磁性層を成膜し、このとき、第1磁性層及び第2磁性層を前記導電層に電流を流しながら成膜し、更に前記固定磁性層上に非磁性材料層及びフリー磁性層を成膜して前記積層構造を形成し、
 前記導電層の各パターン部との対向位置に前記積層構造を残して、第1磁性層の磁化固定方向が異なる複数の前記磁気検出素子をパターン形成することが好ましい。
In the present invention, the pinned magnetic layer having the laminated ferri structure is formed on the entire surface of the conductive layer, and at this time, the first magnetic layer and the second magnetic layer are formed while passing a current through the conductive layer, Further, a nonmagnetic material layer and a free magnetic layer are formed on the pinned magnetic layer to form the laminated structure,
It is preferable that the plurality of magnetic sensing elements having different magnetization fixed directions of the first magnetic layer are pattern-formed while leaving the stacked structure at positions facing the pattern portions of the conductive layer.
 また本発明では、基板表面内にて直交する方向をX1-X2方向とY1-Y2方向としたとき、
 前記導電層には、電流の流れる方向がY1方向の第1パターン部、電流の流れる方向がX1方向の第2パターン部、電流の流れる方向がY2方向の第3パターン部、電流の流れる方向がX2方向の第4パターン部を夫々形成し、
 各磁気検出素子を、前記第1パターン部、前記第2パターン部、前記第3パターン部及び前記第4パターン部と対向する位置に夫々、形成して、各磁気検出素子の第1磁性層の磁化固定方向を90度ずつ異なる方向に制御することが好ましい。
In the present invention, when the directions perpendicular to the substrate surface are the X1-X2 direction and the Y1-Y2 direction,
The conductive layer has a first pattern portion in which the current flows in the Y1 direction, a second pattern portion in which the current flows in the X1 direction, a third pattern portion in which the current flows in the Y2 direction, and a current flow direction in the Y1 direction. Forming a fourth pattern portion in the X2 direction,
Each magnetic detection element is formed at a position facing the first pattern portion, the second pattern portion, the third pattern portion, and the fourth pattern portion, respectively, and the first magnetic layer of each magnetic detection element is formed. It is preferable to control the magnetization fixed direction in different directions by 90 degrees.
 また本発明では、前記第1磁性層及び前記第2磁性層をCoを含む磁性材料で形成し、前記非磁性中間層を、Ru、Rh、Ir、Cr、Re、Cuのうち少なくともいずれか1種で形成することが好ましい。また、前記非磁性中間層の膜厚を、2Å~10Åの範囲内で形成することが好ましい。これにより、第1磁性層と第2磁性層間の非磁性中間層を介して生じるRKKY結合磁界を大きくでき、第1磁性層と第2磁性層を安定して反平行状態に磁化固定できる。 In the present invention, the first magnetic layer and the second magnetic layer are formed of a magnetic material containing Co, and the nonmagnetic intermediate layer is at least one of Ru, Rh, Ir, Cr, Re, and Cu. It is preferable to form with seeds. Further, it is preferable that the film thickness of the nonmagnetic intermediate layer is in the range of 2 to 10 mm. Thereby, the RKKY coupling magnetic field generated via the nonmagnetic intermediate layer between the first magnetic layer and the second magnetic layer can be increased, and the first magnetic layer and the second magnetic layer can be stably fixed in the antiparallel state.
 また本発明では、大基板に区切られた各領域上を通るように前記導電層を形成し、前記導電層上に多数の磁気検出素子を形成し、大基板を各領域ごとに切断して個々に分離することで、多数の磁気センサを簡単に製造することが出来、また従来のようにダイシング後に、複数のチップを共通の支持板上にマウントしダイボンドする工程が必要なく製造時間を大幅に短縮することが可能である。 In the present invention, the conductive layer is formed so as to pass over each region partitioned by the large substrate, a large number of magnetic detection elements are formed on the conductive layer, and the large substrate is cut into each region individually. In this way, a large number of magnetic sensors can be easily manufactured, and after dicing as in the past, multiple chips are mounted on a common support plate and die bonding is not required, greatly increasing manufacturing time. It can be shortened.
 本発明における磁気センサは、各固定磁性層と基板との間に導電層が形成されており、また前記固定磁性層が第1磁性層/非磁性中間層/第2磁性層の積層フェリ構造で形成されている。そして、前記導電層には、第1磁性層及び第2磁性層の成膜時に通電され、前記第1磁性層に前記通電により生じた外部磁場が印加される。 In the magnetic sensor of the present invention, a conductive layer is formed between each pinned magnetic layer and the substrate, and the pinned magnetic layer has a laminated ferrimagnetic structure of a first magnetic layer / nonmagnetic intermediate layer / second magnetic layer. Is formed. The conductive layer is energized when the first magnetic layer and the second magnetic layer are formed, and an external magnetic field generated by the energization is applied to the first magnetic layer.
 このように本発明は反強磁性層を用いず、導電層に重ねて、積層フェリ構造の固定磁性層を形成する形態とし、しかも第1磁性層及び第2磁性層の成膜時に、導電層に通電して、第1磁性層に外部磁場を印加し続けている。第1磁性層は外部磁場の方向に磁化固定され、一方、第2磁性層はRKKY結合磁界により第1磁性層とは反平行に磁化固定される。 Thus, the present invention does not use an antiferromagnetic layer, but forms a pinned magnetic layer having a laminated ferrimagnetic structure over the conductive layer, and the conductive layer is formed during the formation of the first magnetic layer and the second magnetic layer. And an external magnetic field is continuously applied to the first magnetic layer. The first magnetic layer is magnetization fixed in the direction of the external magnetic field, while the second magnetic layer is magnetization fixed antiparallel to the first magnetic layer by the RKKY coupling magnetic field.
 本発明では、複数の磁気検出素子を形成する基板上に、予め、通電方向が異なる複数のパターン部を備えた前記導電層を形成し、各パターン部に各磁気検出素子を対向配置させている。これにより、前記導電層に通電することで、各パターン部から各磁気検出素子の第1磁性層に異なる方向の外部磁場を印加でき、したがって1チップ構成で、磁化固定方向が異なる複数の磁気検出素子を備えた磁気センサを形成することが可能になる。 In the present invention, the conductive layer having a plurality of pattern portions having different energization directions is formed in advance on a substrate on which a plurality of magnetic detection elements are formed, and the magnetic detection elements are arranged to face each pattern portion. . Thus, by applying current to the conductive layer, an external magnetic field in a different direction can be applied from each pattern portion to the first magnetic layer of each magnetic detection element. Therefore, a plurality of magnetic detections having different magnetization fixed directions in a single chip configuration. It becomes possible to form a magnetic sensor provided with an element.
 本発明では、上記した磁化固定の制御方法を採用することで、第1磁性層に磁気飽和する程度の弱磁場を作用させ、第1磁性層の磁化を外部磁場の方向に保持したうえで、第2磁性層まで成膜し、これにより、第1磁性層と第2磁性層との間に適切にRKKY結合磁界を生じさせ、第1磁性層と第2磁性層とを強固に反平行に磁化固定できる。 In the present invention, by adopting the above-described magnetization fixing control method, a weak magnetic field that causes magnetic saturation is applied to the first magnetic layer, and the magnetization of the first magnetic layer is maintained in the direction of the external magnetic field. The film is formed up to the second magnetic layer, whereby an RKKY coupling magnetic field is appropriately generated between the first magnetic layer and the second magnetic layer, and the first magnetic layer and the second magnetic layer are strongly anti-parallel. Magnetization can be fixed.
 更に本発明では、各磁気検出素子の形成と同じ基板上に通電時に電流の流れる方向が異なる複数のパターン部を備える前記導電層を形成し、このとき、前記導電層を薄膜技術及びフォトリソグラフィ技術等の微細加工技術を用いて形成できるので、前記の各パターン部を高精度に形成できる。そして、各パターン部に各磁気検出素子を対向配置し、上記した磁化固定の制御方法を用いて各パターン部から各磁気検出素子の第1磁性層に弱磁場の外部磁場を印加した際、各第1磁性層に対する磁場印加方向を高精度に制御でき且つ、異なる方向の外部磁場間での磁場干渉を小さくでき、したがって、同一基板上で各磁気検出素子の磁化固定方向を高精度に制御できる。 Furthermore, in the present invention, the conductive layer including a plurality of pattern portions having different current flow directions when energized is formed on the same substrate as that of each magnetic detection element. At this time, the conductive layer is formed by a thin film technique and a photolithography technique. Therefore, the pattern portions can be formed with high accuracy. Then, when each magnetic detection element is arranged opposite to each pattern portion, and an external magnetic field of weak magnetic field is applied from each pattern portion to the first magnetic layer of each magnetic detection element using the above-described magnetization fixed control method, The magnetic field application direction with respect to the first magnetic layer can be controlled with high accuracy, and magnetic field interference between external magnetic fields in different directions can be reduced. Therefore, the magnetization fixed direction of each magnetic detection element can be controlled with high accuracy on the same substrate. .
 以上により本発明では、導電層及び積層フェリ構造を備える複数の磁気検出素子を同一基板上に弱磁場にて異なる磁化固定方向に高精度に制御でき、検出精度に優れた1チップ構成の磁気センサを形成することができる。1チップ構成にできることで、磁気センサの小型化を促進できる。 As described above, according to the present invention, a plurality of magnetic detection elements having a conductive layer and a laminated ferrimagnetic structure can be controlled with high accuracy in different magnetization fixed directions in a weak magnetic field on the same substrate, and a single-chip magnetic sensor excellent in detection accuracy. Can be formed. The one-chip configuration can facilitate downsizing of the magnetic sensor.
 本発明の磁気センサ及びその製造方法によれば、同一基板上で、複数の磁気検出素子を、弱磁場を用いて異なる磁化固定方向に高精度に制御できる。 According to the magnetic sensor and the manufacturing method thereof of the present invention, a plurality of magnetic detection elements can be controlled with high accuracy in different magnetization fixed directions using a weak magnetic field on the same substrate.
本実施形態における磁気センサの部分平面図、The partial top view of the magnetic sensor in this embodiment, 図1のA-A線から切断し矢印方向から見た磁気センサの部分拡大縦断面図、FIG. 1 is a partially enlarged longitudinal sectional view of a magnetic sensor taken along line AA in FIG. 本実施形態の磁気センサの製造方法を示す工程図(縦断面の模式図)、Process drawing (schematic diagram of longitudinal section) showing a method for manufacturing the magnetic sensor of the present embodiment, 磁気センサの製造工程を示す平面図、Plan view showing the manufacturing process of the magnetic sensor, 多数の磁気センサを製造するためのウエハ状の大基板を示す平面図。The top view which shows the wafer-like large board | substrate for manufacturing many magnetic sensors.
 図1は本実施形態における磁気センサ1の部分平面図を示す(ただし導電層と各磁気検出素子間に形成される絶縁層を省略した)。図2は図1に示すA-A線から切断し矢印方向から見た磁気センサの部分拡大縦断面図を示す。 FIG. 1 shows a partial plan view of a magnetic sensor 1 in this embodiment (however, an insulating layer formed between a conductive layer and each magnetic detection element is omitted). FIG. 2 is a partially enlarged longitudinal sectional view of the magnetic sensor taken along the line AA shown in FIG. 1 and viewed from the arrow direction.
 図1に示す磁気センサ1は、1チップ構成であり、同一の基板10上に4個の磁気検出素子2~5が成膜されている。 The magnetic sensor 1 shown in FIG. 1 has a one-chip configuration, and four magnetic detection elements 2 to 5 are formed on the same substrate 10.
 図1に示すように、各磁気検出素子2~5の下方には導電層(コイル層)6が形成されている。 As shown in FIG. 1, a conductive layer (coil layer) 6 is formed below each magnetic detection element 2-5.
 図1に示すように導電層6は、基板10の表面で屈曲したパターン形状を備え、X1-X2方向及びY1-Y2方向に延びる複数のパターン部が連結した形状となっている。なお、X1-X2方向及びY1-Y2方向は基板表面内にて直交する2方向を指す。 As shown in FIG. 1, the conductive layer 6 has a pattern shape which is bent on the surface of the substrate 10, and has a shape in which a plurality of pattern portions extending in the X1-X2 direction and the Y1-Y2 direction are connected. Note that the X1-X2 direction and the Y1-Y2 direction indicate two directions orthogonal to each other within the substrate surface.
 電流Iが導電層6内に図1に示す矢印方向から流れたとすると、導電層6の第1パターン部6aには電流IがY1方向に流れ、導電層6の第2パターン部6bには電流IがX1方向に流れ、導電層6の第3パターン部6cには電流IがY2方向に流れ、導電層6の第4パターン部6dには電流IがX2方向に流れる。 If the current I flows in the conductive layer 6 from the direction of the arrow shown in FIG. 1, the current I flows in the first pattern portion 6a of the conductive layer 6 in the Y1 direction, and the current I flows in the second pattern portion 6b of the conductive layer 6. I flows in the X1 direction, the current I flows in the Y2 direction in the third pattern portion 6c of the conductive layer 6, and the current I flows in the X2 direction in the fourth pattern portion 6d of the conductive layer 6.
 そして図1に示すように、第1磁気検出素子2は、第1パターン部6aの上方に重ねて成膜され、第2磁気検出素子3は、第2パターン部6bの上方に重ねて形成され、第3磁気検出素子4は第3パターン部6cの上方に重ねて形成され、第4磁気検出素子5は第4パターン部6dの上方に重ねて形成されている。 As shown in FIG. 1, the first magnetic detection element 2 is formed so as to overlap above the first pattern portion 6a, and the second magnetic detection element 3 is formed so as to overlap above the second pattern portion 6b. The third magnetic detection element 4 is formed over the third pattern portion 6c, and the fourth magnetic detection element 5 is formed over the fourth pattern portion 6d.
 図2に示すように本実施形態における磁気検出素子2~5は、下から固定磁性層13、非磁性材料層14、フリー磁性層15の順に積層された積層部分を備える。なお図2は、図1に示す第3磁気検出素子4の部分(A-A線の部分)の縦断面図を示しているが、第3磁気検出素子4以外の磁気検出素子2,3,5についても同様の積層構造で形成されている。 As shown in FIG. 2, the magnetic detection elements 2 to 5 in the present embodiment include a laminated portion in which a pinned magnetic layer 13, a nonmagnetic material layer 14, and a free magnetic layer 15 are laminated in this order from the bottom. 2 shows a longitudinal sectional view of the portion of the third magnetic detection element 4 (the portion along the line AA) shown in FIG. 1, but the magnetic detection elements 2, 3, and 3 other than the third magnetic detection element 4 are shown. 5 is formed in the same laminated structure.
 図2に示すように、導電層6上から基板10上にかけて、Al23やSiO2等の絶縁材料から成る絶縁層11が形成されている。 As shown in FIG. 2, an insulating layer 11 made of an insulating material such as Al 2 O 3 or SiO 2 is formed from the conductive layer 6 to the substrate 10.
 そして図2に示すように、導電層6上に前記絶縁層11を介して磁気検出素子4が成膜されている。 As shown in FIG. 2, the magnetic detection element 4 is formed on the conductive layer 6 via the insulating layer 11.
 磁気検出素子4は下からシード層12、固定磁性層13、非磁性材料層14、フリー磁性層15及び保護層16の順に積層されている。 The magnetic detecting element 4 is laminated in order of a seed layer 12, a pinned magnetic layer 13, a nonmagnetic material layer 14, a free magnetic layer 15, and a protective layer 16.
 基板10は例えばシリコンであり、表面に熱酸化シリコン層が形成されている。
 シード層12は、Ni-Fe-CrまたはCr、あるいはRu等によって形成される。またシード層12と絶縁層11との間にTa等の非磁性元素で形成された下地層(図示しない)が形成されてもよい。
The substrate 10 is, for example, silicon, and a thermally oxidized silicon layer is formed on the surface.
The seed layer 12 is formed of Ni—Fe—Cr or Cr, Ru, or the like. An underlayer (not shown) made of a nonmagnetic element such as Ta may be formed between the seed layer 12 and the insulating layer 11.
 図2に示すようにシード層12上に固定磁性層13が形成される。すなわち本実施形態ではシード層12と固定磁性層13との間に反強磁性層が形成されていない。 As shown in FIG. 2, the pinned magnetic layer 13 is formed on the seed layer 12. That is, in this embodiment, no antiferromagnetic layer is formed between the seed layer 12 and the pinned magnetic layer 13.
 図2に示すように、固定磁性層13は、下から第1磁性層13a、非磁性中間層13b、第2磁性層13cの順で積層された積層フェリ構造である。非磁性中間層13bを介したRKKY結合磁界により前記第1磁性層13aと第2磁性層13cの磁化固定方向は互いに反平行状態にされる。図3に示すように、第3磁気検出素子4における第1磁性層13aの磁化固定方向M1はX2方向であり、第2磁性層13cの磁化固定方向M2はX1方向である。 As shown in FIG. 2, the pinned magnetic layer 13 has a laminated ferrimagnetic structure in which a first magnetic layer 13a, a nonmagnetic intermediate layer 13b, and a second magnetic layer 13c are laminated in this order from the bottom. Due to the RKKY coupling magnetic field via the nonmagnetic intermediate layer 13b, the magnetization fixed directions of the first magnetic layer 13a and the second magnetic layer 13c are made antiparallel to each other. As shown in FIG. 3, the magnetization fixed direction M1 of the first magnetic layer 13a in the third magnetic detection element 4 is the X2 direction, and the magnetization fixed direction M2 of the second magnetic layer 13c is the X1 direction.
 第1磁性層13a及び第2磁性層13cは、共に、Co-Fe,Ni-Fe,Co-Fe-Ni,Coなどの磁性材料で形成されるが、Coを含む磁性材料(Co-Fe等)であることが好適である。また非磁性中間層13bは、Ru、Rh、Ir、Cr、Re、Cuなどの非磁性導電材料で形成されるが特にRuで形成されることが好適である。一例を示すと固定磁性層13は、第1磁性層13a;Co-Fe/非磁性中間層13b;Ru/第2磁性層13c;Co-Feの積層フェリ構造である。 The first magnetic layer 13a and the second magnetic layer 13c are both formed of a magnetic material such as Co—Fe, Ni—Fe, Co—Fe—Ni, or Co, but a magnetic material containing Co (such as Co—Fe). ) Is preferred. The nonmagnetic intermediate layer 13b is made of a nonmagnetic conductive material such as Ru, Rh, Ir, Cr, Re, or Cu, but is preferably made of Ru. For example, the pinned magnetic layer 13 has a laminated ferrimagnetic structure of a first magnetic layer 13a; Co—Fe / nonmagnetic intermediate layer 13b; Ru / second magnetic layer 13c; Co—Fe.
 また、第1磁性層13a及び第2磁性層13cは、夫々、10Å~20Å程度の膜厚で形成され、非磁性中間層13bは2Å~10Å程度の膜厚で形成される。また第1磁性層13aと第2磁性層13cのMs・t(Msは飽和磁化、tは膜厚)は特に規定しないが、ほぼ同等となるように調整することで、耐熱、耐外部磁場性に優れ、リニアリティ精度の高い磁気センサを得ることが出来る。 The first magnetic layer 13a and the second magnetic layer 13c are each formed with a thickness of about 10 to 20 mm, and the nonmagnetic intermediate layer 13b is formed with a thickness of about 2 to 10 mm. Further, Ms · t (Ms is saturation magnetization, t is film thickness) of the first magnetic layer 13a and the second magnetic layer 13c is not particularly defined, but by adjusting them to be approximately equal, heat resistance and external magnetic field resistance are improved. And a magnetic sensor with high linearity accuracy can be obtained.
 前記固定磁性層13上に形成された非磁性材料層14は、例えばCuで形成される。非磁性材料層14の膜厚は、10Å~30Å程度である。なお、図2に示す実施形態では磁気検出素子4はCIP(current in the plane)型の巨大磁気抵抗効果素子(GMR素子)で形成されるが、トンネル型磁気抵抗効果素子(TMR素子)で形成される場合、非磁性材料層14は、Mg-O、Ti-O、Al-O等から成る絶縁障壁層で形成される。トンネル型磁気抵抗効果素子やCPP(current perpendicular to the plane)型の巨大磁気抵抗効果素子の場合、図2に示す固定磁性層13の下側と、フリー磁性層15の上側に夫々電極層が設けられる。 The nonmagnetic material layer 14 formed on the pinned magnetic layer 13 is made of Cu, for example. The film thickness of the nonmagnetic material layer 14 is about 10 to 30 mm. In the embodiment shown in FIG. 2, the magnetic sensing element 4 is formed of a CIP (current-in-the-plane) type giant magnetoresistive element (GMR element), but is formed of a tunnel type magnetoresistive element (TMR element). In this case, the nonmagnetic material layer 14 is formed of an insulating barrier layer made of Mg—O, Ti—O, Al—O or the like. In the case of a tunnel type magnetoresistive effect element or a CPP (current perpendicular to the plane) type giant magnetoresistive effect element, an electrode layer is provided below the fixed magnetic layer 13 and above the free magnetic layer 15 shown in FIG. It is done.
 フリー磁性層15は下からエンハンス層17,軟磁性層18の順に積層されて構成される。エンハンス層17の形成は必須でないが、エンハンス層17を設けることで、抵抗変化率(ΔR/R)を大きくできるので、磁気感度を向上させるにはエンハンス層17を設けることが好ましい。エンハンス層17は例えばCo-Feで形成される。 The free magnetic layer 15 is formed by laminating an enhancement layer 17 and a soft magnetic layer 18 in this order from the bottom. The formation of the enhancement layer 17 is not essential, but since the resistance change rate (ΔR / R) can be increased by providing the enhancement layer 17, it is preferable to provide the enhancement layer 17 in order to improve magnetic sensitivity. The enhancement layer 17 is made of, for example, Co—Fe.
 また軟磁性層18は、エンハンス層17よりも低保磁力、低異方性磁界である等、軟磁気特性に優れた材質である。軟磁性層18は例えばNi-Feで形成されることが好適である。軟磁性層18の膜厚は、10Å~30Å程度で形成されることが好適である。 Further, the soft magnetic layer 18 is a material excellent in soft magnetic characteristics such as a lower coercive force and a lower anisotropic magnetic field than the enhancement layer 17. The soft magnetic layer 18 is preferably made of, for example, Ni—Fe. The thickness of the soft magnetic layer 18 is preferably about 10 to 30 mm.
 保護層16はTa等の非磁性材料で形成され、30Å~60Å程度の膜厚で形成される。
 上記した各層の成膜は真空中で行う。
The protective layer 16 is made of a nonmagnetic material such as Ta and has a thickness of about 30 to 60 mm.
The above layers are formed in a vacuum.
 本実施形態では、図2に示すように、基板10と固定磁性層13との間に導電層6を設けた構成に加えて、固定磁性層13を積層フェリ構造とし、更に各磁気検出素子2~5に反強磁性層を設けていない。 In the present embodiment, as shown in FIG. 2, in addition to the configuration in which the conductive layer 6 is provided between the substrate 10 and the pinned magnetic layer 13, the pinned magnetic layer 13 has a laminated ferrimagnetic structure, and each magnetic detection element 2. No antiferromagnetic layer is provided in .about.5.
 本実施形態では、導電層6に電流Iを流しながら図2に示す積層フェリ構造の固定磁性層13を成膜する。この結果、右ねじの法則により、図1に示すように、第1パターン部6a上に重ねて位置する第1磁気検出素子2の第1磁性層13aにはX1方向の外部磁場Bが進入し、第2パターン部6b上に重ねて位置する第2磁気検出素子3の第1磁性層13aにはY2方向の外部磁場Cが進入し、第3パターン部6c上に重ねて位置する第3磁気検出素子4の第1磁性層13aにはX2方向の外部磁場Dが進入し、第4パターン部6d上に重ねて位置する第4磁気検出素子5の第1磁性層13aにはY1方向の外部磁場Eが進入する。 In this embodiment, the pinned magnetic layer 13 having the laminated ferrimagnetic structure shown in FIG. As a result, the external magnetic field B in the X1 direction enters the first magnetic layer 13a of the first magnetic detection element 2 positioned on the first pattern portion 6a as shown in FIG. The external magnetic field C in the Y2 direction enters the first magnetic layer 13a of the second magnetic detection element 3 positioned over the second pattern portion 6b, and the third magnetic layer positioned over the third pattern portion 6c. An external magnetic field D in the X2 direction enters the first magnetic layer 13a of the detection element 4, and the first magnetic layer 13a of the fourth magnetic detection element 5 located on the fourth pattern portion 6d is external in the Y1 direction. Magnetic field E enters.
 導電層6はCu等の良導体で形成されることが好ましいが材質を特に限定するものではない。導電層6は、基板10上の全面にスパッタ法等の薄膜技術を用いて成膜した後、フォトリソグラフィ技術を用いて図1に示すパターンにて高精度に形成することができる。したがって導電層6の第1パターン部6a及び第3パターン部6cをY1-Y2方向に沿って高精度にパターン形成でき、導電層6の第2パターン部6b及び第4パターン部6dをX1-X2方向に沿って高精度にパターン形成できる。よって第1パターン部6aへの通電により生じた外部磁場Bの第1磁気検出素子2に対する進入方向をX1方向に高精度に制御でき、第2パターン部6bへの通電により生じた外部磁場Cの第2磁気検出素子3に対する進入方向をY2方向に高精度に制御でき、第3パターン部6cへの通電により生じた外部磁場Dの第3磁気検出素子4に対する進入方向をX2方向に高精度に制御でき、第4パターン部6dへの通電により生じた外部磁場Eの第4磁気検出素子5に対する進入方向をY1方向に高精度に制御できる。 The conductive layer 6 is preferably formed of a good conductor such as Cu, but the material is not particularly limited. The conductive layer 6 can be formed on the entire surface of the substrate 10 using a thin film technique such as sputtering, and then formed with high accuracy with the pattern shown in FIG. 1 using a photolithography technique. Therefore, the first pattern portion 6a and the third pattern portion 6c of the conductive layer 6 can be patterned with high precision along the Y1-Y2 direction, and the second pattern portion 6b and the fourth pattern portion 6d of the conductive layer 6 are X1-X2 Patterns can be formed with high accuracy along the direction. Therefore, the approach direction of the external magnetic field B generated by energizing the first pattern portion 6a to the first magnetic detection element 2 can be controlled with high accuracy in the X1 direction, and the external magnetic field C generated by energizing the second pattern portion 6b can be controlled. The approach direction with respect to the second magnetic detection element 3 can be controlled with high accuracy in the Y2 direction, and the approach direction of the external magnetic field D generated by energizing the third pattern portion 6c with respect to the third magnetic detection element 4 with high accuracy in the X2 direction. It is possible to control the approach direction of the external magnetic field E generated by energization of the fourth pattern portion 6d to the fourth magnetic detection element 5 in the Y1 direction with high accuracy.
 各磁気検出素子2~5の第1磁性層13aの磁化固定方向(図3に示すM1)は、夫々、外部磁場B~Eの方向と平行に制御される。また各磁気検出素子2~5の第2磁性層13cは、RKKY結合磁界により第1磁性層13aの磁化固定方向に対して反平行に磁化固定される。 The magnetization fixed direction (M1 shown in FIG. 3) of the first magnetic layer 13a of each of the magnetic detection elements 2 to 5 is controlled in parallel with the directions of the external magnetic fields B to E, respectively. Further, the second magnetic layer 13c of each of the magnetic detection elements 2 to 5 is magnetization fixed in antiparallel to the magnetization fixed direction of the first magnetic layer 13a by the RKKY coupling magnetic field.
 図1に示すように、各磁気検出素子2~5は例えばミアンダ形状で形成される。第1磁気検出素子2及び第3磁気検出素子4はX1-X2方向に平行に向く素子部、及び第2磁気検出素子3及び第4磁気検出素子5はY1-Y2方向に平行に向く素子部が夫々、図2に示す積層構造で形成され、それ以外の各素子部の端部間を連結する部分は非磁性導電層や永久磁石層等で形成できる。なお図1に示すミアンダ形状全体を図2に示す積層構造で形成することもできる。また各磁気検出素子2~5間を接続する部分(配線部)についても非磁性導電層で形成することができる。 As shown in FIG. 1, each of the magnetic detection elements 2 to 5 is formed in a meander shape, for example. The first magnetic detection element 2 and the third magnetic detection element 4 are element parts oriented parallel to the X1-X2 direction, and the second magnetic detection element 3 and the fourth magnetic detection element 5 are element parts oriented parallel to the Y1-Y2 direction. 2 are formed by the laminated structure shown in FIG. 2, and the other portions connecting the end portions of the respective element portions can be formed by a nonmagnetic conductive layer, a permanent magnet layer, or the like. The entire meander shape shown in FIG. 1 can also be formed by the laminated structure shown in FIG. In addition, a portion (wiring portion) connecting the magnetic detection elements 2 to 5 can also be formed of a nonmagnetic conductive layer.
 図1に示すように、各磁気検出素子2~5の幅寸法T1は、各磁気検出素子2~5の下方に位置する導電層6の幅寸法T2よりも小さく形成されてもよい。これにより、導電層6の各パターン部6a~6dの上方に適切に磁気検出素子2~5を重ねて形成することが出来る。 As shown in FIG. 1, the width dimension T1 of each magnetic detection element 2-5 may be formed smaller than the width dimension T2 of the conductive layer 6 located below each magnetic detection element 2-5. Thereby, the magnetic detection elements 2 to 5 can be appropriately overlapped and formed above the pattern portions 6a to 6d of the conductive layer 6.
 本実施形態の磁気センサの製造方法を図3を用いて説明する。
 図3は、本実施形態における磁気センサ1の特に磁気検出素子2~5の部分の製造方法を示す工程図である。図3(a)~図3(d)は製造工程中における第3磁気検出素子4の縦断面を模式的に示したものである。なお他の磁気検出素子2,3,5も図3と同様の製造方法にて形成される。
A method for manufacturing the magnetic sensor of this embodiment will be described with reference to FIG.
FIG. 3 is a process diagram showing a method of manufacturing the magnetic sensor 1, particularly the magnetic detection elements 2 to 5, in the present embodiment. FIGS. 3A to 3D schematically show a longitudinal section of the third magnetic detection element 4 during the manufacturing process. The other magnetic detection elements 2, 3, and 5 are also formed by the same manufacturing method as in FIG.
 図3(a)に示す工程では、基板10上に導電層(コイル層)6を形成する。Cu等から成る導電層6を基板10上の全面にスパッタ等の薄膜技術を用いて成膜し、更に、図2に示す平面パターンにフォトリソグラフィ技術を用いてパターン形成する。これにより導電層6に第1パターン部6a,第2パターン部6b,第3パターン部6c,第4パターン部6dを高精度に形成することができる。 In the step shown in FIG. 3A, a conductive layer (coil layer) 6 is formed on the substrate 10. A conductive layer 6 made of Cu or the like is formed on the entire surface of the substrate 10 using a thin film technique such as sputtering, and further, a pattern is formed on the planar pattern shown in FIG. 2 using a photolithography technique. As a result, the first pattern portion 6a, the second pattern portion 6b, the third pattern portion 6c, and the fourth pattern portion 6d can be formed in the conductive layer 6 with high accuracy.
 図3(a)の工程では、導電層6上に絶縁層11をスパッタ法等の薄膜技術を用いて成膜する。絶縁層11を導電層6上から図2のように導電層6の周囲に広がる基板10上の全面に成膜する。 3A, the insulating layer 11 is formed on the conductive layer 6 by using a thin film technique such as sputtering. The insulating layer 11 is formed on the entire surface of the substrate 10 extending from the conductive layer 6 to the periphery of the conductive layer 6 as shown in FIG.
 次に図3(b)の工程では、絶縁層11上にシード層12をスパッタ法等の薄膜技術を用いて成膜し、更にシード層12上に積層フェリ構造の固定磁性層13を構成する第1磁性層13aをスパッタ法等の薄膜技術を用いて成膜する。 Next, in the step of FIG. 3B, a seed layer 12 is formed on the insulating layer 11 by using a thin film technique such as sputtering, and a fixed magnetic layer 13 having a laminated ferri structure is formed on the seed layer 12. The first magnetic layer 13a is formed using a thin film technique such as sputtering.
 本実施形態では、導電層6に電流を流しながらCo-Fe等の第1磁性層13aを成膜する。これにより、導電層6からは右ねじの法則により外部磁場が生じ、第1磁気検出素子2を構成する第1磁性層13aには図1に示すX1方向の外部磁場Bが印加され、第2磁気検出素子3を構成する第1磁性層13aには図1に示すY2方向の外部磁場Cが印加され、第3磁気検出素子4を構成する第1磁性層13aには図1に示すX2方向の外部磁場Dが印加され、第4磁気検出素子5を構成する第1磁性層13aには図1に示すY1方向の外部磁場Eが印加される。したがって各磁気検出素子2~5の第1磁性層13aの磁化方向M1は、夫々、印加される外部磁場B~Eと平行な方向に保持される。 In the present embodiment, the first magnetic layer 13a such as Co—Fe is formed while a current is passed through the conductive layer 6. As a result, an external magnetic field is generated from the conductive layer 6 according to the right-handed screw law, and the external magnetic field B in the X1 direction shown in FIG. 1 is applied to the first magnetic layer 13a constituting the first magnetic detection element 2, and the second An external magnetic field C in the Y2 direction shown in FIG. 1 is applied to the first magnetic layer 13a constituting the magnetic detection element 3, and the X2 direction shown in FIG. 1 is applied to the first magnetic layer 13a constituting the third magnetic detection element 4. The external magnetic field D is applied, and the first magnetic layer 13a constituting the fourth magnetic detection element 5 is applied with the external magnetic field E in the Y1 direction shown in FIG. Therefore, the magnetization direction M1 of the first magnetic layer 13a of each of the magnetic detection elements 2 to 5 is maintained in a direction parallel to the applied external magnetic fields B to E, respectively.
 このとき本実施形態では、第1磁性層13aが磁気飽和する程度の弱磁場(数十(Oe))を印加すれば、第1磁性層13aを単磁区化でき安定した磁化状態を保つことが出来る。 At this time, in this embodiment, if a weak magnetic field (several tens (Oe)) that causes the first magnetic layer 13a to be magnetically saturated is applied, the first magnetic layer 13a can be made into a single magnetic domain and can maintain a stable magnetization state. I can do it.
 次に図3(c)に示す工程では、第1磁性層13a上にRu等の非磁性中間層13bを所定厚にてスパッタ法等の薄膜技術を用いて成膜し、更に非磁性中間層13b上にCo-Fe等の第2磁性層13cをスパッタ法等の薄膜技術を用いて成膜する。 Next, in the step shown in FIG. 3C, a nonmagnetic intermediate layer 13b such as Ru is formed on the first magnetic layer 13a at a predetermined thickness using a thin film technique such as sputtering, and further, the nonmagnetic intermediate layer is formed. A second magnetic layer 13c of Co—Fe or the like is formed on 13b using a thin film technique such as sputtering.
 本実施形態では図3(c)に示すように、導電層6に電流Iを流し続けて、各磁気検出素子2~5の第1磁性層13aに外部磁場B~Eを印加し第1磁性層13aの磁化方向M1を前記外部磁場B~Eの方向に保持した状態で、第2磁性層13cを成膜する。なお、非磁性中間層13bの成膜中、導電層6に電流Iを流すのは任意であるが、固定磁性層13の成膜中、導電層6にずっと電流Iを流し続けておくことが好ましい。 In this embodiment, as shown in FIG. 3 (c), the current I continues to flow through the conductive layer 6, and the external magnetic fields B to E are applied to the first magnetic layers 13a of the magnetic detection elements 2 to 5, respectively. The second magnetic layer 13c is formed in a state where the magnetization direction M1 of the layer 13a is maintained in the direction of the external magnetic fields B to E. While it is optional to pass the current I through the conductive layer 6 during the formation of the nonmagnetic intermediate layer 13b, it is possible to keep the current I flowing through the conductive layer 6 during the formation of the pinned magnetic layer 13. preferable.
 図3(c)の工程では、各第1磁性層13aの磁化方向M1を各外部磁場B~Eの方向に保持し続けた状態で第2磁性層13cを成膜することで、各第2磁性層13cは、RKKY結合磁界により、エネルギー的に最も安定な第1磁性層13aの磁化方向に対して反平行に磁化され(図3(c)のM2方向)、本実施形態によれば、反強磁性層を用いることなく低磁場にて、第1磁性層13aと第2磁性層13cとを強固に反平行状態で磁化固定することが出来る。そして、導電層6への通電を停止しても、第1磁性層13aと第2磁性層13cは安定して反平行状態で磁化固定されている。 In the step of FIG. 3C, the second magnetic layer 13c is formed in a state where the magnetization direction M1 of each first magnetic layer 13a is kept in the direction of each external magnetic field B to E. The magnetic layer 13c is magnetized antiparallel to the magnetization direction of the first magnetic layer 13a, which is the most stable in terms of energy, by the RKKY coupling magnetic field (the M2 direction in FIG. 3C), and according to the present embodiment, The first magnetic layer 13a and the second magnetic layer 13c can be strongly fixed in an antiparallel state in a low magnetic field without using an antiferromagnetic layer. Even when the conduction to the conductive layer 6 is stopped, the first magnetic layer 13a and the second magnetic layer 13c are stably magnetized and fixed in an antiparallel state.
 図3(d)の工程では、固定磁性層13上に、下から非磁性材料層14、エンハンス層17、軟磁性層18、保護層16を順に積層する。各層をスパッタ法等の薄膜技術を用いて成膜する。なお固定磁性層13上の各層を成膜する際、既に積層フェリ構造の固定磁性層13は磁化固定されているので、導電層6を通電する必要は無い。
 なお上記した各層の成膜は真空中で行う。
3D, a nonmagnetic material layer 14, an enhancement layer 17, a soft magnetic layer 18, and a protective layer 16 are sequentially laminated on the pinned magnetic layer 13 from the bottom. Each layer is formed using thin film technology such as sputtering. When each layer on the pinned magnetic layer 13 is formed, the pinned magnetic layer 13 having a laminated ferrimagnetic structure is already pinned by magnetization, so that it is not necessary to energize the conductive layer 6.
The above-described layers are formed in a vacuum.
 本実施形態における磁気センサ及びその製造方法は、従来と異なる磁化固定の制御方法を採用するものである。 The magnetic sensor and the manufacturing method thereof in the present embodiment employ a magnetization fixing control method different from the conventional one.
 本実施形態における磁気センサ1は、各固定磁性層13と基板10との間に導電層6が形成されている点、及び、前記固定磁性層13が第1磁性層13a/非磁性中間層13b/第2磁性層13cの積層フェリ構造で形成されている点に特徴的部分がある。そして、前記導電層6には、図3(b)(c)に示すように、第1磁性層13a及び第2磁性層13cの成膜時に通電され、これにより前記第1磁性層13aに対して前記通電により生じた外部磁場が印加される。 In the magnetic sensor 1 according to the present embodiment, the conductive layer 6 is formed between each pinned magnetic layer 13 and the substrate 10, and the pinned magnetic layer 13 is a first magnetic layer 13a / nonmagnetic intermediate layer 13b. / There is a characteristic part in that it is formed of a laminated ferrimagnetic structure of the second magnetic layer 13c. Then, as shown in FIGS. 3B and 3C, the conductive layer 6 is energized during the formation of the first magnetic layer 13a and the second magnetic layer 13c, whereby the first magnetic layer 13a is energized. Thus, an external magnetic field generated by the energization is applied.
 本実施形態では、このように、導電層6に通電して生じる外部磁場B~Eを利用して磁化固定を行う。このとき、本実施形態では反強磁性層を用いず、導電層6の上方に重ねて、積層フェリ構造の固定磁性層13を形成する形態とし、しかも図3(b)(c)で説明したように、第1磁性層13a及び第2磁性層13cの成膜時に、導電層6に通電して、第1磁性層13aに外部磁場を印加し続けている。 In this embodiment, magnetization is fixed by using the external magnetic fields B to E generated by energizing the conductive layer 6 as described above. At this time, in this embodiment, the antiferromagnetic layer is not used, and the pinned magnetic layer 13 having a laminated ferrimagnetic structure is formed over the conductive layer 6 and is described with reference to FIGS. As described above, when the first magnetic layer 13a and the second magnetic layer 13c are formed, the conductive layer 6 is energized and an external magnetic field is continuously applied to the first magnetic layer 13a.
 本実施形態では、複数の磁気検出素子2~5を形成する基板10上に、予め、通電方向が異なる複数のパターン部6a~6dを備えた前記導電層6を形成し、各パターン部6a~6dに各磁気検出素子2~5を対向配置させている。これにより、前記導電層6に通電することで、各パターン部6a~6dから各磁気検出素子2~5の第1磁性層13aに異なる方向の外部磁場B~Eを印加でき、したがって1チップ構成で、磁化固定方向が異なる複数の磁気検出素子2~5を備えた磁気センサ1を形成することが可能になる。 In the present embodiment, the conductive layer 6 having a plurality of pattern portions 6a to 6d having different energization directions is formed in advance on the substrate 10 on which the plurality of magnetic detection elements 2 to 5 are formed, and each pattern portion 6a to The magnetic detection elements 2 to 5 are arranged to face each other on 6d. Thus, by applying current to the conductive layer 6, the external magnetic fields B to E in different directions can be applied from the pattern portions 6a to 6d to the first magnetic layers 13a of the magnetic detection elements 2 to 5, and thus a one-chip configuration. Thus, it is possible to form the magnetic sensor 1 including the plurality of magnetic detection elements 2 to 5 having different magnetization fixed directions.
 本実施形態では、上記した磁化固定の制御方法を採用することで、第1磁性層13aに磁気飽和する程度の弱磁場(数十~数百Oe程度)を作用させて、第1磁性層13aの磁化方向を外部磁場の方向に保持したうえで、第2磁性層13cまで成膜し、これにより、第1磁性層13aと第2磁性層13cとの間にRKKY結合磁界を適切に生じさせ、第1磁性層13aと第2磁性層13cとを強固に反平行に磁化固定できる。なお本実施形態では、外部磁場の印加時、加熱の必要はない(常温でよい)。 In the present embodiment, by adopting the above-described magnetization fixing control method, a weak magnetic field (several tens to several hundreds Oe) that causes magnetic saturation is applied to the first magnetic layer 13a, thereby causing the first magnetic layer 13a to operate. The magnetization direction is maintained in the direction of the external magnetic field, and the film is formed up to the second magnetic layer 13c, whereby an RKKY coupling magnetic field is appropriately generated between the first magnetic layer 13a and the second magnetic layer 13c. The first magnetic layer 13a and the second magnetic layer 13c can be strongly magnetized and fixed in antiparallel. In the present embodiment, heating is not required when an external magnetic field is applied (normal temperature is acceptable).
 更に、本実施形態では、図1に示すように、各磁気検出素子2~5の形成と同じ基板10上に通電時に電流の流れる方向が異なる複数のパターン部6a~6dを備える導電層6を形成し、このとき、前記導電層6を薄膜技術及びフォトリソグラフィ技術等の微細加工技術を用いて形成できるので、前記の各パターン部6a~6dを高精度に形成できる。そして、各パターン部6a~6dに各磁気検出素子2~5を対向配置し、上記した磁化固定の制御方法を用いて各パターン部6a~6dから各磁気検出素子2~5の第1磁性層13aに弱磁場の外部磁場B~Eを印加した際、各第1磁性層13aに対する異なる磁場印加方向を高精度に制御でき、且つ異なる方向の外部磁場間での磁場干渉を小さくでき、したがって、同一の基板10上に複数の磁気検出素子2~5の磁化固定方向を高精度に制御できる。 Furthermore, in the present embodiment, as shown in FIG. 1, the conductive layer 6 including a plurality of pattern portions 6a to 6d having different directions of current flow when energized is formed on the same substrate 10 as the formation of the magnetic detection elements 2 to 5. At this time, since the conductive layer 6 can be formed using a fine processing technique such as a thin film technique and a photolithography technique, the pattern portions 6a to 6d can be formed with high accuracy. Then, the magnetic detection elements 2 to 5 are arranged opposite to the pattern portions 6a to 6d, and the first magnetic layers of the magnetic detection elements 2 to 5 are transferred from the pattern portions 6a to 6d using the magnetization fixing control method described above. When the weak external magnetic fields B to E are applied to 13a, the different magnetic field application directions to the first magnetic layers 13a can be controlled with high accuracy, and the magnetic field interference between the external magnetic fields in the different directions can be reduced. The magnetization fixed directions of the plurality of magnetic detection elements 2 to 5 on the same substrate 10 can be controlled with high accuracy.
 また本実施形態では、外部磁場を弱磁場とすればよいから導電層6に流す電流値が小さくて済み導電層6及び電源装置への負担を小さくできる。 In this embodiment, since the external magnetic field only needs to be a weak magnetic field, the value of the current flowing through the conductive layer 6 can be small, and the burden on the conductive layer 6 and the power supply device can be reduced.
 以上のように、本実施形態によれば、導電層6及び積層フェリ構造を備える複数の磁気検出素子2~5を同一基板10上に弱磁場にて異なる磁化固定方向に高精度に制御でき、検出精度に優れた1チップ構成の磁気センサ1を形成できる。1チップ構成にできることで、磁気センサ1の小型化を促進できる。 As described above, according to the present embodiment, the plurality of magnetic detection elements 2 to 5 having the conductive layer 6 and the laminated ferrimagnetic structure can be controlled with high accuracy in different magnetization fixed directions in the weak magnetic field on the same substrate 10. The magnetic sensor 1 having a one-chip configuration with excellent detection accuracy can be formed. The one-chip configuration can facilitate downsizing of the magnetic sensor 1.
 第1磁性層13aと第2磁性層13cとの間に生じるRKKY結合磁界の大きさは例えば非磁性中間層13bの膜厚を制御することで強くでき、第1磁性層13aと第2磁性層13cとを安定した反平行状態に磁化固定できる。例えば、非磁性中間層13bを上記したように、2Å~10Å程度(好ましくは3Å~5Å程度)に薄く形成することで、値が大きいファーストピークのRKKY結合磁界を生じさせることができ、第1磁性層13aと第2磁性層13cを安定で、かつ強固な反平行状態で磁化固定することが出来る。 The magnitude of the RKKY coupling magnetic field generated between the first magnetic layer 13a and the second magnetic layer 13c can be increased by controlling the film thickness of the nonmagnetic intermediate layer 13b, for example. The first magnetic layer 13a and the second magnetic layer 13c can be fixed in a stable antiparallel state. For example, by forming the nonmagnetic intermediate layer 13b as thin as about 2 to 10 mm (preferably about 3 to 5 mm) as described above, a first peak RKKY coupling magnetic field having a large value can be generated. The magnetization of the magnetic layer 13a and the second magnetic layer 13c can be fixed in a stable and strong antiparallel state.
 なお本実施形態では、図4に示すようにシード層12から保護層16までの積層膜20を基板10上の全面に1回、成膜する。このとき、図3(b)(c)工程の導電層6への通電により積層膜20を各領域20a~20dごとに、第1磁性層13aの磁化固定方向M1が90度ずつ異なる方向に制御できる。そして図3(d)工程の次に、各領域20a~20dに図1に示す例えばミアンダ形状となる各磁気検出素子2~5を、フォトリソグラフィ技術を用いて高精度にパターン形成する。これにより、同一の基板10上に複数の磁気検出素子2~5を同じ成膜工程、及び各第1磁性層13a及び各第2磁性層13cを同じ通電工程で形成でき、各磁気検出素子2~5の形成を容易化でき、且つ各磁気検出素子2~5の磁気、電気、温度の各特性を合わせ込むことが出来る。 In the present embodiment, as shown in FIG. 4, the laminated film 20 from the seed layer 12 to the protective layer 16 is formed once on the entire surface of the substrate 10. At this time, by energizing the conductive layer 6 in the steps (b) and (c) of FIG. 3, the laminated film 20 is controlled so that the magnetization fixed direction M1 of the first magnetic layer 13a differs by 90 degrees for each of the regions 20a to 20d. it can. Then, after the step of FIG. 3D, the magnetic detection elements 2 to 5 having, for example, the meander shape shown in FIG. 1 are patterned with high accuracy in the regions 20a to 20d by using the photolithography technique. As a result, the plurality of magnetic sensing elements 2 to 5 can be formed on the same substrate 10 in the same film forming step, and each first magnetic layer 13a and each second magnetic layer 13c can be formed in the same energizing step. Can be easily formed, and the magnetic, electrical, and temperature characteristics of the magnetic detection elements 2 to 5 can be combined.
 また図5に示すように、本実施形態ではウエハ状の大基板30上に導電層31を形成する。図5では導電層31はX1-X2方向に直線状となっているが、実際には図1のように屈曲したパターン形状が、大基板30の点線で区切られた各領域30aに夫々形成されている。図5に示す点線で区切られた各領域30aが図1に示す基板10と同じ大きさである。導電層31は全ての領域30aを通るように形成される。導電層31は一本で無く複数設けられてもよい。ただし導電層31を一本とすることで、導電層31の電流回路が1つとなり製造管理を容易化できる。 Further, as shown in FIG. 5, in the present embodiment, a conductive layer 31 is formed on a wafer-like large substrate 30. In FIG. 5, the conductive layer 31 is linear in the X1-X2 direction, but in reality, a bent pattern shape as shown in FIG. 1 is formed in each region 30a separated by the dotted line of the large substrate 30. ing. Each region 30a delimited by a dotted line shown in FIG. 5 has the same size as the substrate 10 shown in FIG. The conductive layer 31 is formed so as to pass through all the regions 30a. A plurality of conductive layers 31 may be provided instead of one. However, by making the conductive layer 31 one, the current circuit of the conductive layer 31 becomes one and manufacturing management can be facilitated.
 次に図4で説明したと同様に、大基板30上の全面に、積層膜20を形成し、このとき固定磁性層13を構成する第1磁性層13a及び第2磁性層13cを、導電層31を通電しながら成膜する。そして、前記積層膜20を図1に示すようなミアンダ形状の多数の磁気検出素子2~5にパターン形成した後、図5に示す各領域をダイシングして多数の磁気センサ1を製造する。このように多数の磁気センサ1を同時に製造でき、また従来のようにマウント角度の調整やダイボンディング工程等が必要なく、簡単な製造方法を実現できる。 Next, as described with reference to FIG. 4, the laminated film 20 is formed on the entire surface of the large substrate 30, and at this time, the first magnetic layer 13 a and the second magnetic layer 13 c constituting the pinned magnetic layer 13 are formed as conductive layers. The film is formed while energizing 31. Then, after patterning the laminated film 20 on a large number of meander-shaped magnetic detecting elements 2 to 5 as shown in FIG. 1, the regions shown in FIG. 5 are diced to manufacture a large number of magnetic sensors 1. In this way, a large number of magnetic sensors 1 can be manufactured at the same time, and a simple manufacturing method can be realized without the need for adjustment of the mount angle and the die bonding process as in the prior art.
 図1に示す磁気センサ1は、例えばポテンショメータに使用される。図1に示す磁気センサ1では、各磁気検出素子2~5の第1磁性層13a及び第2磁性層13cの磁化固定方向が90度ずつ異なっている。なお抵抗変化に直接寄与する層は固定磁性層13のうち第2磁性層13cとフリー磁性層15である。そして各磁気検出素子2~5がフルブリッジ回路あるいは分圧回路に配線されている。 1 is used for a potentiometer, for example. In the magnetic sensor 1 shown in FIG. 1, the magnetization fixed directions of the first magnetic layer 13a and the second magnetic layer 13c of the magnetic detection elements 2 to 5 are different by 90 degrees. The layers that directly contribute to the resistance change are the second magnetic layer 13 c and the free magnetic layer 15 of the pinned magnetic layer 13. The magnetic detection elements 2 to 5 are wired to a full bridge circuit or a voltage dividing circuit.
 磁気センサ1には非接触の磁石(磁界発生手段)が対向配置されており、前記磁石が回転することで前記磁気センサ1に検出磁界が作用する。この検出磁界が各磁気検出素子2~5に作用し、各磁気検出素子2~5の抵抗変化に基づく出力値により磁石の回転角度を検知することが可能になっている。 A non-contact magnet (magnetic field generating means) is disposed opposite to the magnetic sensor 1, and a detection magnetic field acts on the magnetic sensor 1 by rotating the magnet. This detection magnetic field acts on each of the magnetic detection elements 2 to 5, and the rotation angle of the magnet can be detected from the output value based on the resistance change of each of the magnetic detection elements 2 to 5.
 本実施形態における磁気センサ1は、ポテンショメータに限らず、磁気エンコーダ、磁気スイッチ等として使用することも出来る。本実施形態は、同一の基板10上に成膜される各磁気検出素子の磁化固定方向が少なくとも2方向で異なるように制御される全ての磁気センサに適用される。例えば180度ずつ異なる方向に磁化固定方向を規制できる。 The magnetic sensor 1 in this embodiment can be used not only as a potentiometer but also as a magnetic encoder, a magnetic switch, or the like. This embodiment is applied to all magnetic sensors that are controlled so that the magnetization fixed directions of the magnetic detection elements formed on the same substrate 10 are different in at least two directions. For example, the magnetization fixed direction can be regulated in different directions by 180 degrees.
 また本実施形態における製品としての磁気センサ1には、図1に示すような連続した経路パターンを備える導電層6が残されていなくてもよい。すなわち、導電層6は製造過程で使用されるものであるから、磁化固定制御後、不要な部分の導電層6を除去等することが可能である。ただし残された導電層6の存在により、第1磁性層及び第2磁性層の成膜時に、前記導電層6に通電して外部磁場を前記第1磁性層に印加していたことを推測することが出来る。 Further, the magnetic sensor 1 as a product in the present embodiment does not have to be left with the conductive layer 6 having a continuous path pattern as shown in FIG. That is, since the conductive layer 6 is used in the manufacturing process, an unnecessary portion of the conductive layer 6 can be removed after the magnetization fixation control. However, due to the presence of the remaining conductive layer 6, it is presumed that the conductive layer 6 was energized and an external magnetic field was applied to the first magnetic layer when the first magnetic layer and the second magnetic layer were formed. I can do it.
1 磁気センサ
2~5 磁気検出素子
6、31 導電層(コイル層)
6a~6d 各パターン部
10 基板
13 固定磁性層
13a 第1磁性層
13b 非磁性中間層
13c 第2磁性層
14 非磁性材料層
15 フリー磁性層
20 積層膜
30 大基板
B~E 外部磁場
I 電流
M1 第1磁性層の磁化固定方向
M2 第2磁性層の磁化固定方向
1 Magnetic sensor 2 to 5 Magnetic detection element 6, 31 Conductive layer (coil layer)
6a to 6d Each pattern portion 10 Substrate 13 Fixed magnetic layer 13a First magnetic layer 13b Nonmagnetic intermediate layer 13c Second magnetic layer 14 Nonmagnetic material layer 15 Free magnetic layer 20 Laminated film 30 Large substrate B to E External magnetic field I Current M1 Magnetization fixed direction M2 of the first magnetic layer Magnetization fixed direction of the second magnetic layer

Claims (10)

  1.  検出磁界を生じる磁界発生手段と非接触に設けられ、前記検出磁界を検知する磁気検出素子を備えた磁気センサにおいて、
     複数の前記磁気検出素子が同一の基板上に形成され、
     各磁気検出素子は、下から、磁化方向が固定される固定磁性層、非磁性材料層及び、前記検出磁界に対して磁化方向が変動するフリー磁性層の順に積層された積層部分を有し、
     各固定磁性層は、下から第1磁性層、非磁性中間層、第2磁性層の順に積層され、前記第1磁性層と前記第2磁性層の磁化固定方向が反平行である積層フェリ構造であり、
     各固定磁性層と前記基板との間には、通電により生じた外部磁場を前記第1磁性層及び前記第2磁性層の成膜時に印加するための導電層が形成されており、
     前記導電層には、通電時に電流の流れる方向が異なる複数のパターン部が形成されており、各磁気検出素子は、各パターン部に対向して形成されて、2つ以上の各磁気検出素子の各第1磁性層の磁化固定方向が異なる方向に制御されていることを特徴とする磁気センサ。
    In a magnetic sensor comprising a magnetic detection element that is provided in non-contact with a magnetic field generating means for generating a detection magnetic field and detects the detection magnetic field,
    A plurality of the magnetic sensing elements are formed on the same substrate;
    Each magnetic detection element has, from below, a layered portion in which a pinned magnetic layer whose magnetization direction is fixed, a nonmagnetic material layer, and a free magnetic layer whose magnetization direction varies with respect to the detection magnetic field are stacked in this order.
    Each pinned magnetic layer is laminated in order of a first magnetic layer, a nonmagnetic intermediate layer, and a second magnetic layer from below, and a laminated ferrimagnetic structure in which the magnetization pinned directions of the first magnetic layer and the second magnetic layer are antiparallel. And
    Between each pinned magnetic layer and the substrate, a conductive layer for applying an external magnetic field generated by energization when forming the first magnetic layer and the second magnetic layer is formed,
    In the conductive layer, a plurality of pattern portions having different directions of current flow when energized are formed, and each magnetic detection element is formed to face each pattern portion, and two or more magnetic detection elements A magnetic sensor, wherein the magnetization fixed directions of the first magnetic layers are controlled in different directions.
  2.  基板表面内にて直交する方向をX1-X2方向とY1-Y2方向としたとき、
     前記導電層には、通電時に電流の流れる方向がY1方向の第1パターン部、電流の流れる方向がX1方向の第2パターン部、電流の流れる方向がY2方向の第3パターン部、電流の流れる方向がX2方向の第4パターン部が夫々形成されており、
     各磁気検出素子が、前記第1パターン部、前記第2パターン部、前記第3パターン部及び前記第4パターン部に夫々、対向して形成されて、各磁気検出素子の第1磁性層の磁化固定方向が90度ずつ異なる方向に制御されている請求項1記載の磁気センサ。
    When the orthogonal directions in the substrate surface are the X1-X2 direction and the Y1-Y2 direction,
    The conductive layer has a first pattern portion in which the current flows in the Y1 direction when energized, a second pattern portion in which the current flows in the X1 direction, a third pattern portion in which the current flows in the Y2 direction, and a current flows in the conductive layer. A fourth pattern portion whose direction is the X2 direction is formed respectively.
    Each magnetic detection element is formed to face the first pattern portion, the second pattern portion, the third pattern portion, and the fourth pattern portion, respectively, and the magnetization of the first magnetic layer of each magnetic detection element The magnetic sensor according to claim 1, wherein the fixing directions are controlled in different directions by 90 degrees.
  3.  前記第1磁性層及び前記第2磁性層はCoを含む磁性材料で形成され、前記非磁性中間層は、Ru、Rh、Ir、Cr、Re、Cuのうち少なくともいずれか1種で形成される請求項1又は2に記載の磁気センサ。 The first magnetic layer and the second magnetic layer are made of a magnetic material containing Co, and the nonmagnetic intermediate layer is made of at least one of Ru, Rh, Ir, Cr, Re, and Cu. The magnetic sensor according to claim 1 or 2.
  4.  前記非磁性中間層の膜厚は、2Å~10Åの範囲内である請求項3記載の磁気センサ。 The magnetic sensor according to claim 3, wherein the film thickness of the nonmagnetic intermediate layer is in the range of 2 to 10 mm.
  5.  検出磁界を生じる磁界発生手段と非接触に設けられ、前記検出磁界を検知する磁気検出素子を備えた磁気センサの製造方法において、
     基板上に導電層を形成し、このとき、前記導電層への通電時に電流の流れる方向が異なる複数のパターン部を形成する工程、
     各パターン部上に第1磁性層を成膜し、このとき、前記導電層に電流を流して生じる外部磁場を前記第1磁性層に印加しながら前記第1磁性層を成膜する工程、
     前記第1磁性層上に非磁性中間層を介して第2磁性層を成膜して、前記第1磁性層、前記非磁性中間層及び前記第2磁性層の積層フェリ構造から成る固定磁性層を形成し、このとき、前記導電層に電流を流して生じる外部磁場を前記第1磁性層に印加しながら前記第2磁性層を成膜する工程、
     前記第2磁性層上に非磁性材料層及びフリー磁性層を成膜して、前記固定磁性層、前記非磁性材料層及び前記フリー磁性層の積層構造を有し、第1磁性層の磁化固定方向が異なる複数の前記磁気検出素子を形成する工程、
     を有することを特徴とする磁気センサの製造方法。
    In a method of manufacturing a magnetic sensor provided with a magnetic detection element that is provided in non-contact with a magnetic field generating means for generating a detection magnetic field and detects the detection magnetic field,
    Forming a conductive layer on the substrate, and at this time, forming a plurality of pattern portions having different current flow directions when the conductive layer is energized;
    Forming a first magnetic layer on each pattern portion, and forming the first magnetic layer while applying an external magnetic field generated by passing a current through the conductive layer to the first magnetic layer;
    A pinned magnetic layer comprising a laminated ferrimagnetic structure of the first magnetic layer, the nonmagnetic intermediate layer, and the second magnetic layer, wherein a second magnetic layer is formed on the first magnetic layer via a nonmagnetic intermediate layer. Forming the second magnetic layer while applying an external magnetic field generated by passing a current through the conductive layer to the first magnetic layer,
    A nonmagnetic material layer and a free magnetic layer are formed on the second magnetic layer to have a laminated structure of the pinned magnetic layer, the nonmagnetic material layer, and the free magnetic layer, and the magnetization of the first magnetic layer is fixed. Forming a plurality of the magnetic sensing elements having different directions;
    A method of manufacturing a magnetic sensor, comprising:
  6.  前記導電層上の全面に、前記積層フェリ構造の固定磁性層を成膜し、このとき、第1磁性層及び第2磁性層を前記導電層に電流を流しながら成膜し、更に前記固定磁性層上に非磁性材料層及びフリー磁性層を成膜して前記積層構造を形成し、
     前記導電層の各パターン部との対向位置に前記積層構造を残して、第1磁性層の磁化固定方向が異なる複数の前記磁気検出素子をパターン形成する請求項5記載の磁気センサの製造方法。
    A pinned magnetic layer having the laminated ferri structure is formed on the entire surface of the conductive layer. At this time, the first magnetic layer and the second magnetic layer are formed while a current is passed through the conductive layer, and the fixed magnetic layer is further formed. A nonmagnetic material layer and a free magnetic layer are formed on the layer to form the laminated structure,
    The method of manufacturing a magnetic sensor according to claim 5, wherein the plurality of magnetic sensing elements having different magnetization fixed directions of the first magnetic layer are patterned while leaving the stacked structure at positions facing the pattern portions of the conductive layer.
  7.  基板表面内にて直交する方向をX1-X2方向とY1-Y2方向としたとき、
     前記導電層に、電流の流れる方向がY1方向の第1パターン部、電流の流れる方向がX1方向の第2パターン部、電流の流れる方向がY2方向の第3パターン部、電流の流れる方向がX2方向の第4パターン部を夫々形成し、
     各磁気検出素子を、前記第1パターン部、前記第2パターン部、前記第3パターン部及び前記第4パターン部と対向する位置に夫々、形成して、各磁気検出素子の第1磁性層の磁化固定方向を90度ずつ異なる方向に制御する請求項5又は6に記載の磁気センサの製造方法。
    When the orthogonal directions in the substrate surface are the X1-X2 direction and the Y1-Y2 direction,
    In the conductive layer, a current flowing direction is a first pattern portion in the Y1 direction, a current flowing direction is a second pattern portion in the X1 direction, a current flowing direction is a third pattern portion in the Y2 direction, and a current flowing direction is X2. Forming a fourth pattern part in each direction,
    Each magnetic detection element is formed at a position facing the first pattern portion, the second pattern portion, the third pattern portion, and the fourth pattern portion, respectively, and the first magnetic layer of each magnetic detection element is formed. The method for manufacturing a magnetic sensor according to claim 5, wherein the magnetization fixed direction is controlled to be different by 90 degrees.
  8.  前記第1磁性層及び前記第2磁性層をCoを含む磁性材料で形成し、前記非磁性中間層を、Ru、Rh、Ir、Cr、Re、Cuのうち少なくともいずれか1種で形成する請求項5ないし7のいずれか1項に記載の磁気センサの製造方法。 The first magnetic layer and the second magnetic layer are formed of a magnetic material containing Co, and the nonmagnetic intermediate layer is formed of at least one of Ru, Rh, Ir, Cr, Re, and Cu. Item 8. A method for manufacturing a magnetic sensor according to any one of Items 5 to 7.
  9.  前記非磁性中間層の膜厚を、2Å~10Åの範囲内で形成する請求項8記載の磁気センサの製造方法。 The method for manufacturing a magnetic sensor according to claim 8, wherein the film thickness of the nonmagnetic intermediate layer is within a range of 2 mm to 10 mm.
  10.  大基板に区切られた各領域上を通るように前記導電層を形成し、前記導電層上に多数の磁気検出素子を形成し、大基板を各領域ごとに切断して個々に分離する請求項5ないし9のいずれか1項に記載の磁気センサの製造方法。 The conductive layer is formed so as to pass over each region partitioned by a large substrate, a plurality of magnetic detection elements are formed on the conductive layer, and the large substrate is cut into each region and separated individually. The method for manufacturing a magnetic sensor according to any one of 5 to 9.
PCT/JP2010/065476 2009-09-17 2010-09-09 Magnetic sensor and production method therefor WO2011033980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009215668 2009-09-17
JP2009-215668 2009-09-17

Publications (1)

Publication Number Publication Date
WO2011033980A1 true WO2011033980A1 (en) 2011-03-24

Family

ID=43758588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065476 WO2011033980A1 (en) 2009-09-17 2010-09-09 Magnetic sensor and production method therefor

Country Status (1)

Country Link
WO (1) WO2011033980A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511873A (en) * 1994-04-15 1996-12-10 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Magnetic field sensor, device comprising such a sensor and method of manufacturing such a sensor
JPH11505966A (en) * 1995-06-01 1999-05-25 シーメンス アクチエンゲゼルシヤフト Magnetic field sensor with bridge circuit of magnetoresistive bridge element
JP2002303536A (en) * 2001-04-03 2002-10-18 Alps Electric Co Ltd Rotation angle detecting sensor
JP2008166530A (en) * 2006-12-28 2008-07-17 Alps Electric Co Ltd Tunnel magnetism detection element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511873A (en) * 1994-04-15 1996-12-10 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Magnetic field sensor, device comprising such a sensor and method of manufacturing such a sensor
JPH11505966A (en) * 1995-06-01 1999-05-25 シーメンス アクチエンゲゼルシヤフト Magnetic field sensor with bridge circuit of magnetoresistive bridge element
JP2002303536A (en) * 2001-04-03 2002-10-18 Alps Electric Co Ltd Rotation angle detecting sensor
JP2008166530A (en) * 2006-12-28 2008-07-17 Alps Electric Co Ltd Tunnel magnetism detection element

Similar Documents

Publication Publication Date Title
US8564282B2 (en) Angle sensor, angle sensor manufacturing method, and angle detection device using the angle sensor
JP6420665B2 (en) Magnetoresistive sensor for measuring magnetic fields
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
EP3092505B1 (en) Magnetoresistance element with an improved seed layer to promote an improved response to magnetic fields
US6501678B1 (en) Magnetic systems with irreversible characteristics and a method of manufacturing and repairing and operating such systems
JP3623366B2 (en) Magnetic field sensor provided with giant magnetoresistive effect element, manufacturing method and manufacturing apparatus thereof
JP5452006B2 (en) Manufacturing method of magnetic device and manufacturing method of magnetic field angle sensor
JP5686635B2 (en) Magnetic sensor and manufacturing method thereof
EP1399748A2 (en) Semimanufacture for a sensor for measuring a magnetic field
JP2015125019A (en) Current sensor, current measuring module, and smart meter
JP2011047928A (en) Magnetic sensor
JP2011101026A (en) Magneto-resistive laminate structure, and gradiometer including the same
JP2008134181A (en) Magnetic detector and its manufacturing method
JP2008286739A (en) Magnetic field detector, and rotation angle detector
US11428758B2 (en) High sensitivity TMR magnetic sensor
WO2012090631A1 (en) Electromagnetic proportional current sensor
CN111615636A (en) Magnetic detection device and method for manufacturing the same
JP5447616B2 (en) Manufacturing method of magnetic sensor
JP2012119613A (en) Magnetic detection element and magnetic sensor using the same
JP6484940B2 (en) Magnetoresistive element, magnetic sensor and current sensor
JP2011027633A (en) Magnetic sensor and manufacturing method thereof
JP6525314B2 (en) Magnetic field detector
JP2000338211A (en) Magnetic sensor and its manufacture
EP4022330A1 (en) Magnetic sensor with dual tmr films and the method of making the same
WO2011033980A1 (en) Magnetic sensor and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP