JP2002303536A - Rotation angle detecting sensor - Google Patents

Rotation angle detecting sensor

Info

Publication number
JP2002303536A
JP2002303536A JP2001104377A JP2001104377A JP2002303536A JP 2002303536 A JP2002303536 A JP 2002303536A JP 2001104377 A JP2001104377 A JP 2001104377A JP 2001104377 A JP2001104377 A JP 2001104377A JP 2002303536 A JP2002303536 A JP 2002303536A
Authority
JP
Japan
Prior art keywords
gmr
rotation angle
gmr element
magnetization
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001104377A
Other languages
Japanese (ja)
Other versions
JP3895556B2 (en
Inventor
Ichiro Tokunaga
一郎 徳永
Seiji Kikuchi
誠二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2001104377A priority Critical patent/JP3895556B2/en
Publication of JP2002303536A publication Critical patent/JP2002303536A/en
Application granted granted Critical
Publication of JP3895556B2 publication Critical patent/JP3895556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotation angle detecting sensor with excellent sensitivity, requiring small exclusive space and with large variation of the output of voltage from the sensor. SOLUTION: Pairs of GMR elements Ra1 and Ra2, and Rb1 and Rb2 are located opposite to each other with the line of the rotation axis of a magnet in-between in such a way that the directions of magnetization of pinned magnetic layers of the GMR elements Ra1 and Ra2, and Rb1 and Rb2 are opposite to each other. The rotation angel of the rotation axis is detected by the variation of values of the resistance of the GMR elements Ra1, Ra2, Rb1 and Rb2 generated in the angels between the directions of magnetization g1, g2, g3 and g4 of the pinned magnetic layers and the direction of magnetization of free magnetic layers corresponding to the direction of the magnetic field Hex of the magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転角検出センサ
に関し、例えば自動車のステアリングシャフトに連結さ
れて、ステアリングホィールの回転角度を検出する回転
角検出センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation angle detection sensor, for example, a rotation angle detection sensor connected to a steering shaft of an automobile to detect a rotation angle of a steering wheel.

【0002】[0002]

【従来の技術】本発明の従来技術の回転角検出センサを
図17,図18に基づいて説明する。図17は従来技術
の回転角検出センサの平面図、図18は従来技術の回転
角検出センサの正面図である。
2. Description of the Related Art A conventional rotation angle detecting sensor according to the present invention will be described with reference to FIGS. FIG. 17 is a plan view of a conventional rotation angle detection sensor, and FIG. 18 is a front view of a conventional rotation angle detection sensor.

【0003】従来技術の回転角検出センサ21は、回転
軸22に固定され回転中心を通る中性点m(二点鎖線で
示す)を有する様、2極に着磁された円板状の磁石23
と、この円板状の磁石23の側縁面23aに対向させて
設けられ、回転軸22の回転方向に対して位相のずれた
位置で磁石23の側縁面23aに対向するように配線板
24に固定されているホール素子25,26により構成
されている。
A rotation angle detection sensor 21 of the prior art is a two-pole magnetized disk-shaped magnet having a neutral point m (shown by a two-dot chain line) fixed to a rotation shaft 22 and passing through the center of rotation. 23
And a wiring board provided so as to face the side edge surface 23a of the disk-shaped magnet 23 and face the side edge surface 23a of the magnet 23 at a position out of phase with respect to the rotation direction of the rotating shaft 22. It is constituted by Hall elements 25 and 26 fixed to 24.

【0004】磁石23は、円板状で中央部に孔23bを
有し、この孔23bに外部の回転体(図示せず)の回転
を伝える回転軸22が嵌入し固定されている。また、磁
石23の円板は中性点Mが円板の中心を通る様にN極と
S極の2極に着磁が施されている。
The magnet 23 is disk-shaped and has a hole 23b at the center thereof. A rotating shaft 22 for transmitting the rotation of an external rotating body (not shown) is fitted into and fixed to the hole 23b. The disk of the magnet 23 is magnetized on two poles, an N pole and an S pole, such that the neutral point M passes through the center of the disk.

【0005】ホール素子25,26は2個設けられ、2
個のホール素子25,26は配線板24にはんだ付け等
の周知の方法で電気的に接続され、磁石23の側縁面2
3aに対向し、配線板24上で、回転軸22の回転軸線
dの回転方向に関してπ/2(rad)位相のずれた位
置で固定されている。
Two Hall elements 25 and 26 are provided.
The Hall elements 25 and 26 are electrically connected to the wiring board 24 by a known method such as soldering.
3a, and is fixed on the wiring board 24 at a position shifted by π / 2 (rad) with respect to the rotation direction of the rotation axis d of the rotation shaft 22.

【0006】以上の構成による従来技術の回転角検出セ
ンサ21の回転角検出方法を概略説明する。回転軸22
が反時計方向へ回転してホール素子25に対して円板状
の磁石23のS極が最も接近すると、ホール素子25の
感磁面を横切って入射する磁力線Bが最大になるので、
ホ−ル素子25の出力は最大値を取り、更に同一方向に
回転軸22が回転して磁石23のN極がホール素子25
に最も接近すると、反対方向の磁力線の密度が最大にな
るのでホール素子の出力は最小値を取る。このようにし
て、ホール素子25の出力は、回転軸22を同一方向に
回転していくと1回転で1周期の正弦波となる。ホール
素子26の出力は、回転軸22の回転軸線dに関してπ
/2(rad)ずれた位置に配置されているため、ホー
ル素子25の出力とπ/2(rad)位相のずれた正弦
波の出力を発生する。これら互いにπ/2(rad)位
相のずれた2つの正弦波を用いて、周知の方法を使って
回転角を検出する。
A method of detecting a rotation angle of the rotation angle detection sensor 21 according to the prior art having the above-described configuration will be schematically described. Rotating shaft 22
Is rotated counterclockwise and the S pole of the disc-shaped magnet 23 comes closest to the Hall element 25, so that the magnetic flux B incident across the magneto-sensitive surface of the Hall element 25 becomes maximum.
The output of the hall element 25 takes the maximum value, and the rotating shaft 22 further rotates in the same direction so that the N pole of the magnet 23 is
, The output of the Hall element takes a minimum value because the density of the magnetic field lines in the opposite direction becomes maximum. In this way, the output of the Hall element 25 becomes a sine wave of one cycle per rotation as the rotating shaft 22 rotates in the same direction. The output of the Hall element 26 is π with respect to the rotation axis d of the rotation shaft 22.
Since it is arranged at a position shifted by / 2 (rad), a sine wave output having a phase shifted by π / 2 (rad) from the output of the Hall element 25 is generated. Using these two sine waves having a phase difference of π / 2 (rad), the rotation angle is detected using a known method.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記した
従来技術の回転角センサにおいては、磁石の周囲にホー
ル素子を2個取り付け、そのスペースを確保しなければ
ならず、全体として装置が大きくなってしまうと共に、
素子の位置精度を正確に割り出す必要がある。また、ホ
ール素子を使っているため出力電圧の変化は一般的に1
%程度以下で小さく、センサ感度が悪く、30〜50倍
程度の増幅率の大きな増幅器を使用する必要があるとい
う問題があった。
However, in the rotation angle sensor of the prior art described above, two Hall elements must be mounted around the magnet to secure the space, and the device becomes large as a whole. Along with
It is necessary to accurately determine the position accuracy of the element. Also, since a Hall element is used, the change in output voltage is generally 1 unit.
% Or less, the sensor sensitivity is poor, and it is necessary to use an amplifier having a large amplification factor of about 30 to 50 times.

【0008】本発明の目的は、波形精度が良好で、専有
するスペースが小さく、センサ出力電圧の出力変化が大
きくセンサ感度の良い回転角検出センサを提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rotation angle detection sensor having a good waveform accuracy, a small occupied space, a large change in sensor output voltage, and a high sensor sensitivity.

【0009】[0009]

【課題を解決するための手段】本発明の回転角検出セン
サは、フリー磁性層とピン止め磁性層とを有するGMR
素子を基板上に少なくとも2対設け、各対の前記GMR
素子同士を直列に接続し、前記GMR素子と対向させて
回転可能に磁石を配設し、この磁石によって前記GMR
素子に飽和磁界を印加させ、前記GMR素子面と平行な
磁力線の向きが回転するように磁界を発生させ、各対と
なる前記GMR素子を前記磁石の回転軸の回転軸線を挟
んで対向する位置となるように配置すると共に前記GM
R素子の前記ピン止め磁性層の磁化の向きが互いに逆向
きであるようにし、前記磁石の磁力線の向きに従う前記
フリー磁性層の磁化の向きと前記ピン止め磁性層の磁化
の向きのなす角度により発生する前記GMR素子の抵抗
値の変化によって回転軸の回転角度を検出するようにし
た。この構成により、素子を回転軸線の周りに近接して
配置でき、専有するスペースが小さく、GMR素子を使
うので、センサ出力電圧の出力変化が大きくセンサ感度
の良い回転角検出センサを得ることができる。
SUMMARY OF THE INVENTION A rotation angle detection sensor according to the present invention has a GMR having a free magnetic layer and a pinned magnetic layer.
At least two pairs of elements are provided on a substrate, and the GMR of each pair is provided.
The elements are connected in series, and a magnet is rotatably arranged facing the GMR element.
A saturation magnetic field is applied to the element, a magnetic field is generated such that the direction of the magnetic field lines parallel to the GMR element surface rotates, and the pair of GMR elements oppose each other with the rotation axis of the magnet rotating axis interposed therebetween. And the GM
The directions of magnetization of the pinned magnetic layers of the R element are set to be opposite to each other, and the angle between the direction of the magnetization of the free magnetic layer and the direction of the magnetization of the pinned magnetic layer according to the direction of the line of magnetic force of the magnet is determined. The rotation angle of the rotating shaft is detected based on the change in the resistance value of the GMR element. According to this configuration, the elements can be arranged close to each other around the rotation axis, the space occupied by the elements is small, and the GMR element is used. Therefore, a rotation angle detection sensor having a large sensor output voltage output change and good sensor sensitivity can be obtained. .

【0010】また、本発明の回転角検出センサは、前記
各対となる前記GMR素子を前記回転軸に対して対称な
位置に配置した。この構成により、より正確に回転角を
検出ことができる。
Further, in the rotation angle detecting sensor according to the present invention, the paired GMR elements are arranged at symmetrical positions with respect to the rotation axis. With this configuration, the rotation angle can be detected more accurately.

【0011】また、本発明の回転角検出センサは、前記
少なくとも2対の前記GMR素子を前記回転軸に対して
同一半径上に位置させた。この構成により、4個のGM
R素子を回転軸を中心にまとめることができ、回転角検
出センサを更に小型化できる。
Further, in the rotation angle detection sensor according to the present invention, the at least two pairs of the GMR elements are located on the same radius with respect to the rotation axis. With this configuration, four GMs
The R elements can be integrated around the rotation axis, and the rotation angle detection sensor can be further reduced in size.

【0012】また、本発明の回転角検出センサは、前記
少なくとも2対の前記GMR素子の個々の前記GMR素
子を前記回転軸の回りにπ/2(rad)の角度間隔で
配置した。この構成により、互いに正確にπ/2(ra
d)位相のずれた2つの正弦波を得ることができ、より
正確な回転角の検出ができる。
In the rotation angle detecting sensor according to the present invention, the GMR elements of the at least two pairs of GMR elements are arranged at an angular interval of π / 2 (rad) around the rotation axis. With this configuration, π / 2 (ra
d) Two sine waves having different phases can be obtained, and a more accurate rotation angle can be detected.

【0013】また、本発明の回転角検出センサは、隣接
する全ての前記GMR素子同士の前記ピン止め磁性層の
磁化の向きが互いに近づく向きの関係と互いに遠のく向
きの関係が交互に現れるようにした。この構成により、
4本の棒磁石を互いにN極とS極が反対になるように束
ねるだけの簡単な構造の棒磁石ブロックで着磁できるの
で、着磁のための準備がより簡単になる。
Further, the rotation angle detecting sensor according to the present invention is arranged such that the magnetization directions of the pinned magnetic layers of all of the adjacent GMR elements are alternately closer to each other and farther away from each other. did. With this configuration,
Since the four bar magnets can be magnetized by a bar magnet block having a simple structure in which the north pole and the south pole are simply bundled so as to be opposite to each other, preparation for the magnetization becomes easier.

【0014】また、本発明の回転角検出センサは、前記
少なくとも2対の前記GMR素子を同一基板上に形成し
た。この構成により、各GMR素子の膜質が同じになる
ので、電気的、磁気的特性の揃ったGMR素子を得るこ
とができ、各素子のばらつきによる検出誤差がなくな
り、より正確な回転角検出ができる。
Further, in the rotation angle detecting sensor according to the present invention, the at least two pairs of the GMR elements are formed on the same substrate. With this configuration, since the film quality of each GMR element is the same, a GMR element having uniform electric and magnetic characteristics can be obtained, and a detection error due to variation of each element is eliminated, and more accurate rotation angle detection can be performed. .

【0015】[0015]

【発明の実施の形態】本発明の第1実施形態の回転角検
出センサを図1〜図11を用いて説明する。図1は本発
明の第1実施形態の回転角検出センサの平面図、図2は
当該回転角検出センサの正面図、図3は当該回転角検出
センサのセンサ基板を示す平面図、図4は図3のD部拡
大図、図5は図4の5−5断面図、図6は当該回転角検
出センサのセンサ基板上のGMR素子の着磁方法を示す
図、図7は前記GMR素子へ着磁する時の着磁用棒磁石
から出る磁力線の方向を示す図、図8は当該回転角検出
センサのセンサ基板上の回路を示す回路図、図9は前記
センサ基板の電極Aの出力を示すグラフ、図10は前記
センサ基板の電極A、電極Bの出力を両方示すグラフ、
図11は第1の実施形態の回転角検出センサの変形例を
示す図、をそれぞれ示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A rotation angle detection sensor according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a rotation angle detection sensor according to a first embodiment of the present invention, FIG. 2 is a front view of the rotation angle detection sensor, FIG. 3 is a plan view showing a sensor substrate of the rotation angle detection sensor, and FIG. 3 is an enlarged view of a portion D in FIG. 3, FIG. 5 is a sectional view taken along line 5-5 in FIG. 4, FIG. 6 is a view showing a method of magnetizing a GMR element on a sensor substrate of the rotation angle detection sensor, and FIG. FIG. 8 is a diagram showing the direction of magnetic lines of force emitted from a magnetizing rod magnet when magnetizing, FIG. 8 is a circuit diagram showing a circuit on a sensor substrate of the rotation angle detection sensor, and FIG. 9 is a diagram showing an output of an electrode A of the sensor substrate. FIG. 10 is a graph showing both the outputs of the electrodes A and B of the sensor substrate,
FIG. 11 is a diagram showing a modification of the rotation angle detection sensor according to the first embodiment.

【0016】本発明の第1実施形態の回転角検出センサ
1は、回転軸4に固定され回転中心を通る中性点M(2
点鎖線で示す)を有する様、2極に着磁された円板状の
磁石2と、この円板状の磁石2の回転軸4と直交する平
面内に、磁石2の回転軸4の端面4aにセンサ基板3が
対向して設けられている。
The rotation angle detection sensor 1 according to the first embodiment of the present invention has a neutral point M (2) fixed to the rotation shaft 4 and passing through the center of rotation.
(Indicated by a dashed line), a disk-shaped magnet 2 magnetized into two poles, and an end face of the rotation axis 4 of the magnet 2 in a plane orthogonal to the rotation axis 4 of the disk-shaped magnet 2. The sensor substrate 3 is provided facing 4a.

【0017】磁石2は、円板状で中央部に孔2aを有し
た強磁性体で、この孔2aにsウテアリング等の回転体
(図示せず)の回転を伝える回転軸4が嵌入し固定さ
れ、回転軸線Cを中心にして回転するようになってい
る。また、円板状の磁石2の円板は中性点Mが円板の中
心Cを通る様にN極とS極の2極に着磁が施されてい
る。磁石2のN極からは磁力線が出て、S極に入り、円
板状の磁石2の下面には磁界に伴う磁力線Hexが発生
している。また、磁石2によって、GMR素子Ra1R
a2、Rb1、Rb2に飽和磁界が加えられている。
The magnet 2 is a disk-shaped ferromagnetic material having a hole 2a in the center, and a rotating shaft 4 for transmitting rotation of a rotating body (not shown) such as stearing is fitted and fixed in the hole 2a. The rotation is made about the rotation axis C. The disk of the disk-shaped magnet 2 is magnetized on two poles, an N pole and an S pole, such that the neutral point M passes through the center C of the disk. Lines of magnetic force exit from the N pole of the magnet 2 and enter the S pole, and lines of magnetic force Hex associated with the magnetic field are generated on the lower surface of the disc-shaped magnet 2. Further, the GMR element Ra1R is generated by the magnet 2.
A saturation magnetic field is applied to a2, Rb1, and Rb2.

【0018】センサ基板3は、シリコン基板3a上に電
極Vcc、電極A、電極B、電極GNDとGMR素子R
a1、GMR素子Ra2、GMR素子Rb1、GMR素
子Rb2が設けられており、これら電極とGMR素子と
をリードL1、リードL2、リードL3、リードL4、
リードL5が接続している。図3,8に示すように、電
極VccとGMR素子Ra1の一端はリードL1によっ
て接続され、GMR素子Ra1の他端とGMR素子Ra
2の一端とはリードL2によって接続され、リードL2
はまた、電極Aに接続され、GMR素子Ra2の他端は
リードL3により電極GNDに接続されている。即ち、
GMR素子Ra1,Ra2は直列に接続され2つのGM
R素子Ra1,Ra2の間から電極Aが引き出されてい
る。また、電極VccとGMR素子Rb1の一端はリー
ドL4によって接続され、GMR素子Rb1の他端とG
MR素子Rb2の一端とはリードL5によって接続さ
れ、リードL5はまた、電極Bに接続され、GMR素子
Rb2の他端はリードL3により電極GNDに接続され
ている。即ち、GMR素子Rb1,Rb2は直列に接続
され2つのGMR素子Rb1,Rb2の間から電極Bが
引き出されている。また、GMR素子Ra1,Ra2が
直列に接続されたものと、GMR素子Rb1,Rb2が
直列に接続されたものの両端は、それぞれ電極Vccと
電極GNDに接続されている。シリコン基板3a上で、
電極A,B,Vcc,GND以外の部分は全体に絶縁コ
ートが施されている。
The sensor substrate 3 includes an electrode Vcc, an electrode A, an electrode B, an electrode GND and a GMR element R on a silicon substrate 3a.
a1, a GMR element Ra2, a GMR element Rb1, and a GMR element Rb2 are provided, and these electrodes and the GMR element are connected to a lead L1, a lead L2, a lead L3, a lead L4,
Lead L5 is connected. As shown in FIGS. 3 and 8, the electrode Vcc and one end of the GMR element Ra1 are connected by a lead L1, and the other end of the GMR element Ra1 is connected to the GMR element Ra.
2 is connected to one end of a lead L2.
Is connected to the electrode A, and the other end of the GMR element Ra2 is connected to the electrode GND by a lead L3. That is,
The GMR elements Ra1 and Ra2 are connected in series and
The electrode A is drawn out from between the R elements Ra1 and Ra2. The electrode Vcc and one end of the GMR element Rb1 are connected by a lead L4, and the other end of the GMR element Rb1 is
One end of the MR element Rb2 is connected by a lead L5, the lead L5 is also connected to the electrode B, and the other end of the GMR element Rb2 is connected to the electrode GND by a lead L3. That is, the GMR elements Rb1 and Rb2 are connected in series, and the electrode B is drawn out from between the two GMR elements Rb1 and Rb2. Both ends of the GMR elements Ra1 and Ra2 connected in series and the GMR elements Rb1 and Rb2 connected in series are connected to the electrode Vcc and the electrode GND, respectively. On the silicon substrate 3a,
Parts other than the electrodes A, B, Vcc, and GND are entirely coated with an insulating coating.

【0019】各GMR素子Ra1,Ra2,Rb1,R
b2は、それぞれ帯状の小抵抗体r1,r2,r3と折
り返し電極e1,e2からなり、図4に示すように、そ
れぞれ帯状の小抵抗部r1,r2,r3が直列に接続さ
れ、折り返し電極e1,e2を介して各小抵抗部r1,
r2,r3が互いに平行になるように折り返して配置さ
れている。また、各GMR素子の中心位置は、回転軸4
の回転軸線Cがセンサ基板3と交差する点C’に対して
略等距離の位置にあり、各GMR素子の帯状の小抵抗部
r1,r2,r3を長手方向に延長すると、ほぼ点C’
を通っている。また、各GMR素子はそれぞれ後述する
ピン止め磁性層とフリー磁性層とを有し、センサ基板3
上の点C’に関して点対称に設けられているGMR素子
Ra1とGMR素子Ra2ではピン止め磁性層の磁化の
向きg1,g2が互いに逆向きとなっている。また、同
様にGMR素子Rb1とGMR素子Rb2もセンサ基板
3上の点C’に関して点対称に設けられ、ピン止め磁性
層とフリー磁性層を有し、互いにピン止め磁性層の磁化
の向きが逆向きとなっている。また、GMR素子Ra1
とGMR素子Ra2それぞれの中心位置を結ぶ線とGM
R素子Rb1とGMR素子Rb2それぞれの中心位置を
結ぶ線とは直角に交わっている。
Each GMR element Ra1, Ra2, Rb1, R
b2 includes strip-shaped small resistors r1, r2, and r3 and folded electrodes e1 and e2, respectively. As shown in FIG. 4, the strip-shaped small resistor portions r1, r2, and r3 are connected in series, and the folded electrode e1 is formed. , E2, each small resistance part r1,
r2 and r3 are folded back and arranged so as to be parallel to each other. In addition, the center position of each GMR element is
Is substantially equidistant from a point C ′ where the rotation axis C intersects with the sensor substrate 3, and when the strip-shaped small resistance portions r1, r2, r3 of each GMR element are extended in the longitudinal direction, the point C ′ is almost
Pass through. Further, each GMR element has a pinned magnetic layer and a free magnetic layer, which will be described later, respectively.
In the GMR element Ra1 and GMR element Ra2 provided point-symmetrically with respect to the upper point C ′, the magnetization directions g1 and g2 of the pinned magnetic layer are opposite to each other. Similarly, the GMR element Rb1 and the GMR element Rb2 are also provided point-symmetrically with respect to the point C ′ on the sensor substrate 3, have a pinned magnetic layer and a free magnetic layer, and have the magnetization directions of the pinned magnetic layers opposite to each other. Orientation. Also, the GMR element Ra1
Connecting the center position of each of the GMR elements Ra2 with the GM
A line connecting the center positions of the R element Rb1 and the GMR element Rb2 intersects at right angles.

【0020】GMR素子Ra1,Ra2,Rb1,Rb
2は、図5に示すように、下地層5、反強磁性層7、ピ
ン止め磁性層8、非磁性導電層9、フリー磁性層10、
保護層11が順次積層し、両端に電極層6を設けて構成
され、反強磁性層7とピン止め磁性層8の交換結合によ
って、磁化された反強磁性層7の磁化の向きにピン止め
磁性層8の磁化の向きが従い、紙面に垂直方向で紙面の
裏へ向かう向きに固定されている。フリー磁性層10は
強磁性体材料によって形成され、磁化方向は固定され
ず、磁石2の磁界の磁力線Hexの向きによって磁化の
向きが決められる。この時、磁力線Hexによって向き
の変化したフリー磁性層10の磁化の向きがピン止め層
8の磁化の向きと同じになるとGMR素子Ra1,Ra
2,Rb1,Rb2の抵抗値は最小になり、フリー磁性
層10の磁化の向きがピン止め磁性層8の磁化の向きと
反対になると、GMR素子Ra1,Ra2,Rb1,R
b2の抵抗値は最大になる。GMR素子Ra1について
は、センサ基板3上でピン止め磁性層8の磁化の向きは
反強磁性層7の磁化の向きにより、帯状の小抵抗部r
1,r2,r3の長手方向に対して直角方向で図3にお
けるg1の向きに向いている。他のGMR素子Ra2,
Rb1,Rb2のピン止め層もそれぞれ帯状の小抵抗部
r1,r2,r3の長手方向に対して直角方向に磁化方
向が固定されている。
GMR elements Ra1, Ra2, Rb1, Rb
2, a base layer 5, an antiferromagnetic layer 7, a pinned magnetic layer 8, a nonmagnetic conductive layer 9, a free magnetic layer 10,
The protective layer 11 is sequentially laminated, and the electrode layer 6 is provided at both ends. The exchange coupling of the antiferromagnetic layer 7 and the pinned magnetic layer 8 causes pinning in the magnetization direction of the magnetized antiferromagnetic layer 7. The direction of magnetization of the magnetic layer 8 follows and is fixed in a direction perpendicular to the plane of the paper toward the back of the paper. The free magnetic layer 10 is formed of a ferromagnetic material, the magnetization direction is not fixed, and the direction of magnetization is determined by the direction of the magnetic field line Hex of the magnetic field of the magnet 2. At this time, if the direction of magnetization of the free magnetic layer 10 whose direction has been changed by the line of magnetic force Hex becomes the same as the direction of magnetization of the pinned layer 8, the GMR elements Ra1 and Ra
2, the resistance values of Rb1 and Rb2 are minimized, and when the direction of magnetization of the free magnetic layer 10 is opposite to the direction of magnetization of the pinned magnetic layer 8, the GMR elements Ra1, Ra2, Rb1, R
The resistance value of b2 becomes maximum. Regarding the GMR element Ra1, the direction of magnetization of the pinned magnetic layer 8 on the sensor substrate 3 depends on the direction of magnetization of the antiferromagnetic layer 7, and the band-shaped small resistance portion r
The direction perpendicular to the longitudinal direction of 1, r2 and r3 is directed to the direction of g1 in FIG. Other GMR elements Ra2,
The magnetization directions of the pinned layers of Rb1 and Rb2 are also fixed in the direction perpendicular to the longitudinal direction of the small resistance portions r1, r2, and r3, respectively.

【0021】上記したセンサ基板3について、その製造
方法を説明する。シリコン基板3a上に下地層としてア
ルミナ(酸化アルミニウム)層5がスパッタリングによ
り成膜され、その上に、反強磁性層7としてPtMn
(白金マンガン)合金層、ピン止め磁性層8としてCo
Fe(コバルト鉄)合金層が、非磁性導電層9としてC
u(銅)層が、フリー磁性層10としてNiFe(ニッ
ケル鉄)合金層が、保護層11としてTa(タンタル)
層が、それぞれ順次スパッタリングにより積層される。
この積層膜をフォトリソグラフィーによりパターン形成
し、4個のGMR素子Ra1,Ra2,Rb1,Rb2
の帯状の小抵抗部r1,r2,r3を形成する。最後に
再度スパッタリングにより、電極6としてCr(クロ
ム)層とAu(金)層を積層して成膜し、フォトリソグ
ラフィーにより4個のGMR素子Ra1,Ra2,Rb
1,Rb2の電極6のパターン形成を行う。次に、各G
MR素子Ra1,Ra2,Rb1,Rb2のピン止め磁
性層8を固定するために着磁をする。図6に示すよう
に、4本の角柱状棒磁石12a,12b,12c,12
dを互いに磁極の極性が反対になるように束ね、棒磁石
ブロック12を作成し、この棒磁石ブロック12の下端
面をセンサ基板3の表面に近接させる。このとき、棒磁
石ブロック12の下端面には、図7に示すように、下端
面に表出した4個の磁極N,S,N,Sにより4方向の
互いに近接した磁力線H1,H2,H3,H4が発生す
る。GMR素子Ra1,Ra2のそれぞれには、互いに
逆向きの磁力線H1,H2が発生するよう磁界が印加さ
れ、GMR素子Rb1,Rb2には、互いに逆向きの磁
力線H1,H2が発生するよう磁界が印加される。セン
サ基板3に棒磁石ブロック12を近接させた状態で保持
し、真空中で数時間、高温のアニールを行い着磁を完了
する。この着磁工程により、GMR素子Ra1とGMR
素子Ra2のピン止め磁性層の磁化の向きは互いに逆向
きのg1,g2に固定される。また、GMR素子Rb1
とGMR素子Rb2のピン止め磁性層の磁化の向きも互
いに逆向きのg3,g4に固定される。この着磁工程で
は、4本の棒磁石12a,12b,12c,12dを互
いに磁極の極性が反対になるように束ねるだけの簡単な
方法で着磁用の棒磁石ブロック12を作成できるので、
着磁の準備が簡単になる。尚、上述した各層の材質は上
述した材質に限定されるものではない。
A method of manufacturing the above-described sensor substrate 3 will be described. An alumina (aluminum oxide) layer 5 is formed as a base layer on the silicon substrate 3a by sputtering, and a PtMn layer as an antiferromagnetic layer 7 is formed thereon.
(Platinum manganese) alloy layer, Co as pinned magnetic layer 8
Fe (cobalt iron) alloy layer is used as nonmagnetic conductive layer 9
u (copper) layer, NiFe (nickel iron) alloy layer as free magnetic layer 10, Ta (tantalum) as protective layer 11
The layers are each successively laminated by sputtering.
The laminated film is patterned by photolithography, and four GMR elements Ra1, Ra2, Rb1, Rb2 are formed.
, Small band resistance portions r1, r2, and r3 are formed. Finally, a Cr (chromium) layer and an Au (gold) layer are laminated and formed as electrodes 6 by sputtering again, and four GMR elements Ra1, Ra2, Rb are formed by photolithography.
The pattern formation of the electrodes 6 of 1 and Rb2 is performed. Next, each G
Magnetization is performed to fix the pinned magnetic layers 8 of the MR elements Ra1, Ra2, Rb1, and Rb2. As shown in FIG. 6, four prismatic bar magnets 12a, 12b, 12c, 12
The poles d are bundled so that the polarities of the magnetic poles are opposite to each other to form a bar magnet block 12, and the lower end surface of the bar magnet block 12 is brought close to the surface of the sensor substrate 3. At this time, as shown in FIG. 7, four magnetic poles N, S, N, S exposed on the lower end surface form magnetic lines of force H1, H2, H3 close to each other in four directions, as shown in FIG. , H4 are generated. A magnetic field is applied to each of the GMR elements Ra1 and Ra2 so as to generate magnetic field lines H1 and H2 in opposite directions, and a magnetic field is applied to the GMR elements Rb1 and Rb2 so as to generate magnetic field lines H1 and H2 in opposite directions. Is done. The magnet block 12 is held in a state in which the bar magnet block 12 is brought close to the sensor substrate 3, and is annealed at a high temperature for several hours in a vacuum to complete the magnetization. By this magnetization step, the GMR element Ra1 and the GMR element
The magnetization directions of the pinned magnetic layer of the element Ra2 are fixed to g1 and g2, which are opposite to each other. Also, the GMR element Rb1
And the magnetization directions of the pinned magnetic layers of the GMR element Rb2 are also fixed to g3 and g4, which are opposite to each other. In this magnetizing step, the magnet bar 12 can be formed by a simple method of bundling the four bar magnets 12a, 12b, 12c, and 12d so that the polarities of the magnetic poles are opposite to each other.
Preparation for magnetization is simplified. In addition, the material of each layer described above is not limited to the material described above.

【0022】次に、本発明の第1実施形態の回転角検出
センサの動作を説明する。ステアリング等の外部の回転
体の回転が回転軸4に伝えられ、円板状の磁石2を回転
させると円板状の磁石2の下面に発生している磁力線H
exが回転する。磁力線Hexはセンサ基板3の表面に
平行で均一に存在し、あるいは平行で均一とみなすこと
ができる程度に、基板3に比べて磁石2は十分大きく形
成されている。また、磁力線Hexは各GMR素子Ra
1,Ra2,Rb1,Rb2を横切り、それらが飽和す
るのに十分な磁界を与えている。センサ基板3の電極V
ccには5Vの定電圧が印加されていて、電極GNDは
アースに接続されている。電極AはGMR素子Ra1,
Ra2の接続点での電圧出力をA出力として取り出す電
極で、電極BはGMR素子Rb1,Rb2の接続点での
電圧出力をB出力として取り出す電極である。尚、A出
力及びB出力の後段には、図示を省略するが、2.5V
の電圧が一方の入力端子に接続され、増幅率12倍、基
準電圧2.5Vの差動増幅器に接続されいる。
Next, the operation of the rotation angle detection sensor according to the first embodiment of the present invention will be described. The rotation of an external rotator such as a steering is transmitted to the rotating shaft 4, and when the disk-shaped magnet 2 is rotated, the magnetic field lines H generated on the lower surface of the disk-shaped magnet 2 are generated.
ex rotates. The magnet lines 2 are formed sufficiently large compared to the substrate 3 so that the lines of magnetic force Hex are parallel and uniform on the surface of the sensor substrate 3 or can be regarded as parallel and uniform. The lines of magnetic force Hex correspond to the GMR elements Ra.
1, Ra2, Rb1, Rb2, giving a magnetic field sufficient to saturate them. Electrode V of sensor substrate 3
A constant voltage of 5 V is applied to cc, and the electrode GND is connected to the ground. The electrode A is a GMR element Ra1,
An electrode for extracting a voltage output at the connection point of Ra2 as an A output, and an electrode B is an electrode for extracting a voltage output at a connection point of the GMR elements Rb1 and Rb2 as a B output. It should be noted that, although not shown, a 2.5 V
Is connected to one input terminal, and is connected to a differential amplifier having an amplification factor of 12 and a reference voltage of 2.5 V.

【0023】初めに、図3において、磁石2の磁力線の
向きHexがセンサ基板3の表面上で下方のGMR素子
Ra2から上方のGMR素子Ra1へ向かう基準の向き
Z(角度0radに相当)と同じである場合を考える
と、GMR素子Ra1のピン止め層8の磁化の向きg1
と磁力線Hexの向きは直角であるからGMR素子Ra
1の抵抗値は磁力線Hexによる抵抗値変化の最大値と
最小値の中間の値となり、GMR素子Ra2のピン止め
磁性層8の向きg2も磁力線Hexの向きと直角である
から、やはりGMR素子Ra2の抵抗値は最大値と最小
値の中間の値となる。GMR素子Ra1,Ra2は同一
基板上にほぼ同一条件で形成されているものなので、そ
れらの磁気特性はほぼ同じと考えられ、GMR素子Ra
1,Ra2の磁界Hexによる抵抗変化も同一であるた
め、それぞれの最大値、最小値、最大値と最小値の中間
の値もほぼ同じである。従って、磁石2の磁力線Hex
の向きがセンサ基板3上の基準の向きZと同じときは、
上記したようにGMR素子Ra1,Ra2の抵抗値は同
じ値となり、従って約2.5Vの電圧が差動増幅器に入
力され、よって差動増幅器の入力端側の電圧差は0とな
り増幅されても0であるので基準値の2.5Vが加わっ
て電極AのA出力は2.5Vとなる。次に、磁石2の磁
力線Hexが反時計方向に回転角π/2(rad)回転
すると、磁力線Hexの向きとGMR素子Ra1のピン
止め磁性層8の磁化の向きg1は同じ向きになるので、
GMR素子Ra1の抵抗値は小さくなって最小値、即
ち、この場合はGMR素子の抵抗値変化率5%のものを
使用しているので初期の抵抗値の2.5%小さい値をと
る。GMR素子Ra2の抵抗値はGMR素子Ra2のピ
ン止め磁性層8の磁化の向きg2と磁力線Hexが逆向
きなので最大値、即ち、この場合にGMR素子の抵抗値
変化率は5%のものを使用しているので初期の抵抗値よ
り2.5%大きい値をとる。従って、約2.563Vの
電圧が差動増幅器に入力され、よって差動増幅器の入力
端側の電圧差は0.063Vとなり12倍に増幅されて
0.76Vの信号が得られ、基準値の2.5Vが加わっ
て電極AのA出力は最大の3.26Vとなる。次に、磁
石2の磁力線Hexが反時計方向に更にπ/2(ra
d)回転する、即ち基準の向きZから反時計方向に回転
角π(rad)回転すると、磁力線Hexの向きとGM
R素子Ra1のピン止め磁性層8の磁化の向きg1およ
びGMR素子Ra2のピン止め磁性層8の磁化の向きg
2は直角になるので、磁石2の磁力線Hexと基準の向
きZが一致したときと同様に、A出力は約2.5Vにな
る。次に、磁石2の磁力線Hexが反時計方向に更にπ
/2(rad)回転する、即ち、基準の向きZから反時
計方向へ3π/2(rad)回転すると、磁力線Hex
の向きとGMR素子Ra1のピン止め磁性層8の磁化の
向きg1は逆向きになるので、GMR素子Ra1の抵抗
値は大きくなって最大値をとる。GMR素子Ra2の抵
抗値はGMR素子Ra2のピン止め磁性層8の磁化の向
きg2と磁力線Hexが同じ向きなので最小値をとる。
従って、電極AのA出力は前述と同様に計算して最小値
の約1.74Vになった。次に、更に磁石2の磁力線H
exが反時計方向にπ/2(rad)回転する、即ち、
基準の向きZから反時計方向へ2π(rad)回転する
と、1周期が終わり、初めの状態と同じになり、A出力
は約2.5Vとなる。更に磁石2の磁力線Hexを回転
すると、電極AのA出力は1周期目の出力変化を繰り返
す。
First, in FIG. 3, the direction Hex of the line of magnetic force of the magnet 2 is the same as the reference direction Z (corresponding to an angle of 0 rad) from the lower GMR element Ra2 to the upper GMR element Ra1 on the surface of the sensor substrate 3. Is considered, the magnetization direction g1 of the pinned layer 8 of the GMR element Ra1 is
And the direction of the line of magnetic force Hex are perpendicular, so the GMR element Ra
The resistance value of 1 is an intermediate value between the maximum value and the minimum value of the resistance change due to the magnetic flux Hex, and the direction g2 of the pinned magnetic layer 8 of the GMR element Ra2 is also perpendicular to the direction of the magnetic flux Hex. Has an intermediate value between the maximum value and the minimum value. Since the GMR elements Ra1 and Ra2 are formed on the same substrate under substantially the same conditions, their magnetic characteristics are considered to be substantially the same.
Since the resistance change due to the magnetic field Hex of 1 and Ra2 is the same, the maximum value, the minimum value, and the intermediate value between the maximum value and the minimum value are almost the same. Therefore, the line of magnetic force Hex of the magnet 2
Is the same as the reference direction Z on the sensor substrate 3,
As described above, the resistance values of the GMR elements Ra1 and Ra2 have the same value. Therefore, a voltage of about 2.5 V is input to the differential amplifier. Since it is 0, the reference value of 2.5 V is applied, and the A output of the electrode A becomes 2.5 V. Next, when the line of magnetic force Hex of the magnet 2 rotates counterclockwise by the rotation angle π / 2 (rad), the direction of the line of magnetic force Hex and the direction g1 of magnetization of the pinned magnetic layer 8 of the GMR element Ra1 become the same.
The resistance value of the GMR element Ra1 is reduced to a minimum value, that is, a value smaller than the initial resistance value by 2.5% because the GMR element having a change rate of the resistance value of 5% is used in this case. The resistance value of the GMR element Ra2 is the maximum value because the direction g2 of magnetization of the pinned magnetic layer 8 of the GMR element Ra2 and the line of magnetic force Hex are opposite, that is, the rate of change of the resistance value of the GMR element is 5%. Therefore, it takes a value 2.5% larger than the initial resistance value. Therefore, a voltage of about 2.563 V is input to the differential amplifier, and the voltage difference between the input terminals of the differential amplifier is 0.063 V, which is amplified by a factor of 12 to obtain a signal of 0.76 V. When 2.5 V is applied, the A output of the electrode A becomes 3.26 V at the maximum. Next, the line of magnetic force Hex of the magnet 2 further moves in the counterclockwise direction by π / 2 (ra
d) When rotated, that is, when rotated by a rotation angle π (rad) counterclockwise from the reference direction Z, the direction of the magnetic force line Hex and the GM
The magnetization direction g1 of the pinned magnetic layer 8 of the R element Ra1 and the magnetization direction g of the pinned magnetic layer 8 of the GMR element Ra2
2 is a right angle, so that the A output becomes about 2.5 V as in the case where the magnetic force line Hex of the magnet 2 and the reference direction Z match. Next, the line of magnetic force Hex of the magnet 2 is further increased by π in the counterclockwise direction.
/ 2 (rad), that is, 3π / 2 (rad) counterclockwise from the reference direction Z, the magnetic field line Hex
Is opposite to the direction g1 of magnetization of the pinned magnetic layer 8 of the GMR element Ra1, the resistance of the GMR element Ra1 increases and takes the maximum value. The resistance value of the GMR element Ra2 takes a minimum value because the direction g2 of magnetization of the pinned magnetic layer 8 of the GMR element Ra2 and the line of magnetic force Hex are the same.
Accordingly, the output A of the electrode A was calculated to be the same as described above, and became the minimum value of about 1.74V. Next, the magnetic field line H of the magnet 2 is further increased.
ex rotates counterclockwise by π / 2 (rad), that is,
When the rotation is 2π (rad) in the counterclockwise direction from the reference direction Z, one cycle ends, the state becomes the same as the initial state, and the A output becomes about 2.5V. When the magnetic force line Hex of the magnet 2 is further rotated, the output A of the electrode A repeats the output change in the first cycle.

【0024】B電極からのB出力は、GMR素子Rb
1,Rb2のピン止め磁性層8の磁化の向きg3,g4
がGMR素子Ra1,Ra2のピン止め磁性層8の磁化
の向きg1,g2よりπ/2(rad)反時計方向に進
んでいるので、A電極からのA出力より、π/2(ra
d)進んでいる出力電圧となる。磁石2の回転角は互い
にπ/2(rad)ずれたA出力とB出力から周知の方
法で検出される。以上のように、本発明の第1実施形態
の回転角検出センサは、素子を回転軸線の周りに近接し
て配置でき、専有するスペースが小さく、抵抗変化率が
5%程度であるGMR素子を使うので、センサ出力電圧
の出力変化が大きくセンサ感度が良く、増幅率の小さい
増幅器を用いることができ、正確な回転角を検出するこ
とができる。
The B output from the B electrode is applied to the GMR element Rb
1, Rb2 magnetization directions g3, g4 of the pinned magnetic layer 8
Is advanced in the π / 2 (rad) counterclockwise direction from the magnetization directions g1 and g2 of the pinned magnetic layers 8 of the GMR elements Ra1 and Ra2, so that π / 2 (ra) is obtained from the A output from the A electrode.
d) The output voltage is advanced. The rotation angle of the magnet 2 is detected by a known method from the A output and the B output shifted from each other by π / 2 (rad). As described above, in the rotation angle detection sensor according to the first embodiment of the present invention, the GMR element in which the elements can be arranged close to each other around the rotation axis, occupies a small space, and has a resistance change rate of about 5% is used. Since it is used, an output change of the sensor output voltage is large, the sensor sensitivity is good, an amplifier with a small amplification factor can be used, and an accurate rotation angle can be detected.

【0025】尚、上記第1実施形態では4個のGMR素
子を同一基板の上に設けた場合を記載し、その場合には
4つのGMR素子Ra1,Ra2,Rb1,Rb2を近
接して配置できるので、図5で示す各層の膜厚ををほぼ
同じにして容易に特性を揃えることが可能であり、回転
角検出センサの精度を高めることが容易であるが、本発
明は、これに限定されることなく、図11に示されてい
るように、4個の基板S1,s2,s3,s4の上にそ
れぞれGMR素子j1,j2,j3,j4を搭載し、そ
れぞれのGMR素子j1,j2,j3,j4のピン止め
磁性層の磁化の向きf1,f2,f3,f4がπ/2
(rad)ずつ向きがずれる位置に4個の基板s1,s
2,s3,s4を固定してセンサ基板13とし、回転角
検出センサを構成してもよい。
In the first embodiment, the case where four GMR elements are provided on the same substrate is described. In this case, the four GMR elements Ra1, Ra2, Rb1, and Rb2 can be arranged close to each other. Therefore, the characteristics can be easily made uniform by making the thicknesses of the respective layers shown in FIG. 5 substantially the same, and the accuracy of the rotation angle detection sensor can be easily increased. However, the present invention is not limited to this. 11, GMR elements j1, j2, j3, and j4 are mounted on four substrates S1, s2, s3, and s4, respectively, and the GMR elements j1, j2, and The magnetization directions f1, f2, f3, and f4 of the pinned magnetic layers j3 and j4 are π / 2.
(Rad) Four substrates s1 and s
2, s3, and s4 may be fixed to form the sensor substrate 13 to constitute a rotation angle detection sensor.

【0026】次に、本発明の第2実施形態の回転角検出
センサを図12から図16を用いて説明する。図12は
本発明の第2実施形態の回転角検出センサのセンサ基板
を示す平面図、図13,14は前記センサ基板上のGM
R素子とリード部を示す回路図、図15は前記GMR素
子の電極A−の電圧を基準とした電極A+の出力を示す
グラフ、図16は前記GMR素子の電極A−の電圧を基
準にした電極A+の電圧であるα出力をおよび電極B−
の電圧を基準にした電極B+の電圧であるβ出力を両方
示すグラフ、をそれぞれ示している。第2実施形態の説
明中、第1実施形態と同じまたは同様な部分はその名称
または番号を引用しその説明を省略し、同様な説明につ
いてはこれを割愛する。
Next, a rotation angle detection sensor according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 12 is a plan view showing a sensor substrate of a rotation angle detection sensor according to a second embodiment of the present invention, and FIGS.
15 is a circuit diagram showing an R element and a lead portion, FIG. 15 is a graph showing the output of the electrode A + based on the voltage of the electrode A− of the GMR element, and FIG. 16 is based on the voltage of the electrode A− of the GMR element. The α output which is the voltage of the electrode A + and the electrode B−
Respectively showing the β output which is the voltage of the electrode B + with respect to the voltage of FIG. In the description of the second embodiment, parts that are the same as or similar to the first embodiment are referred to by their names or numbers, description thereof is omitted, and similar descriptions are omitted.

【0027】本発明の第2実施形態の回転角検出センサ
の構成は、第1実施形態の回転角検出センサとはセンサ
基板14が異なるだけであるので、センサ基板14の説
明とその動作のみを説明する。
The configuration of the rotation angle detection sensor according to the second embodiment of the present invention is different from the rotation angle detection sensor according to the first embodiment only in the sensor substrate 14, so that only the description of the sensor substrate 14 and its operation will be described. explain.

【0028】センサ基板14は、シリコン基板14a上
に電極Vcc1、電極Vcc2、電極A+、電極A−、
電極B+、電極B−、電極GND1、電極GND2とG
MR素子ra1,ra2,ra3,ra4、GMR素子
rb1,rb2,rb3,rb4が設けられており、こ
れら電極とGMR素子とをリード部l1,l2,l3,
l4,l5,l6,l7,l7’,l8が接続してい
る。GMR素子ra1とGMR素子ra2とはリード部
l2を介して直列に接続され、電極Vcc1と電極GN
D1との間にリード部l1,l4を介して接続され、G
MR素子ra3とGMR素子ra4もまたリード部l3
を介して直列に接続され、電極Vcc1と電極GND1
との間にリード部l1,l4を介して接続されている。
即ち、電極Vcc1と電極GND1との間には、GMR
素子ra1とGMR素子ra2が直列接続されたものと
GMR素子ra3とGMR素子ra4が直列接続された
ものとが並列に接続されている。同様に、GMR素子r
b1とGMR素子rb2とはリード部l6を介して直列
に接続され、電極Vcc2と電極GND2との間にリー
ド部l5,l8を介して接続され、GMR素子rb3と
GMR素子rb4もまたリード部l7,l7’を介して
直列に接続され、電極Vcc2と電極GND2との間に
リード部l5,l8を介して接続されている。即ち、電
極Vcc2と電極GND2との間には、GMR素子rb
1とGMR素子rb2が直列接続されたものとGMR素
子rb3とGMR素子rb4が直列接続されたものとが
並列に接続されている。シリコン基板14a上で、電極
A+,A−,B+,B−,Vcc1,Vcc2,GND
1,GND2以外の部分は全体に絶縁コートが施されて
いる。
The sensor substrate 14 has electrodes Vcc1, Vcc2, A +, A-, and Vcc1 on a silicon substrate 14a.
Electrode B +, electrode B-, electrode GND1, electrodes GND2 and G
An MR element ra1, ra2, ra3, ra4 and a GMR element rb1, rb2, rb3, rb4 are provided, and these electrodes and the GMR element are connected to the lead portions l1, l2, l3.
14, 15, 16, 17, 17 ′ and 18 are connected. The GMR element ra1 and the GMR element ra2 are connected in series via a lead l2, and the electrode Vcc1 and the electrode GN
D1 and D1 are connected via leads l1 and l4.
The MR element ra3 and the GMR element ra4 also have a lead l3.
And the electrode Vcc1 and the electrode GND1
Are connected via the leads l1 and l4.
That is, GMR is provided between the electrode Vcc1 and the electrode GND1.
An element in which the element ra1 and the GMR element ra2 are connected in series and an element in which the GMR element ra3 and the GMR element ra4 are connected in series are connected in parallel. Similarly, the GMR element r
b1 and the GMR element rb2 are connected in series via a lead 16 and the electrodes Vcc2 and GND2 are connected via leads 15 and 18; the GMR element rb3 and the GMR element rb4 also have a lead 17 , 17 ', and connected between the electrode Vcc2 and the electrode GND2 via the leads 15, 18. That is, the GMR element rb is provided between the electrode Vcc2 and the electrode GND2.
1 and a GMR element rb2 connected in series, and a GMR element rb3 and a GMR element rb4 connected in series are connected in parallel. On the silicon substrate 14a, the electrodes A +, A-, B +, B-, Vcc1, Vcc2, GND
Parts other than 1 and GND2 are entirely coated with insulation.

【0029】各GMR素子は帯状の小抵抗部が折り返し
て直列に接続され、GMR素子ra1とGMR素子ra
3、GMR素子ra2とGMR素子ra4、GMR素子
rb1とGMR素子rb3、GMR素子rb2とGMR
素子rb4はそれぞれの帯状の小抵抗部が平行になるよ
うに隣接して配置され、互いのピン止め磁性層8の磁化
の向きは逆向きになっている。各GMR素子の中心位置
は、回転軸4の回転軸線Cがセンサ基板14と交差する
点C’’に対して略等距離の位置にあり、各GMR素子
の帯状の小抵抗部の長手方向を延長すると、ほぼ点
C’’を通っている。GMR素子ra1,ra2と、G
MR素子ra3,ra4と、GMR素子rb1,rb2
及び、GMR素子rb3,rb4はそれぞれ互いにセン
サ基板14上の点C’’に関して略点対称の位置に設け
られ、互いにピン止め磁性層8の磁化方向が逆向きとな
っている。また、GMR素子ra1とGMR素子ra2
それぞれの中心位置を結ぶ線とGMR素子rb1とGM
R素子rb2それぞれの中心位置を結ぶ線とは直角に交
わっている。更に、GMR素子ra3とGMR素子ra
4それぞれの中心位置を結ぶ線とGMR素子rb3とG
MR素子rb4それぞれの中心位置を結ぶ線とは直角に
交わっている。
Each of the GMR elements is connected in series with a small band-shaped resistance portion folded back, and a GMR element ra1 and a GMR element ra are connected.
3, GMR element ra2 and GMR element ra4, GMR element rb1 and GMR element rb3, GMR element rb2 and GMR
The elements rb4 are arranged adjacent to each other so that the strip-shaped small resistance portions are parallel to each other, and the magnetization directions of the pinned magnetic layers 8 are opposite to each other. The center position of each GMR element is located at a position substantially equidistant from a point C ″ where the rotation axis C of the rotating shaft 4 intersects the sensor substrate 14, and the longitudinal direction of the band-shaped small resistance portion of each GMR element is When extended, it almost passes through point C ''. GMR elements ra1 and ra2 and G
MR elements ra3, ra4 and GMR elements rb1, rb2
The GMR elements rb3 and rb4 are provided at substantially point-symmetric positions with respect to a point C ″ on the sensor substrate 14, and the magnetization directions of the pinned magnetic layers 8 are opposite to each other. The GMR element ra1 and the GMR element ra2
Lines connecting the respective center positions, GMR elements rb1 and GM
A line connecting the center positions of the R elements rb2 intersects at right angles. Further, the GMR element ra3 and the GMR element ra
4 A line connecting the center positions of the GMR elements rb3 and G
A line connecting the center positions of the MR elements rb4 intersects at right angles.

【0030】次に、本発明の第2実施形態の回転角検出
センサの動作を説明する。外部の回転体の回転が回転軸
4に伝えられ、円板状の磁石2を回転させると円板状の
磁石2の下面に発生している磁力線Hexの向きが回転
する。磁力線Hexはセンサ基板14の表面に平行に存
在し、各GMR素子ra1,ra2,ra3,ra4,
rb1,rb2,rb3,rb4に磁力線Hexを与え
ている。電極Vcc1,Vcc2には5Vの定電圧が印
加されていて、電極GND1,GND2はアースに接続
されている。電極A+はGMR素子ra1,ra2の接
続点での電圧出力を取り出す電極で、電極A−はGMR
素子ra3,ra4の接続点での電圧出力を取り出す電
極であり、電極A+と電極A−間の電圧をここでは図示
しないが、増幅率6倍で基準電圧2.5Vの差動増幅器
に入力してα出力として取り出し使用する。電極B+は
GMR素子rb1,rb2の接続点での電圧出力を取り
出す電極で、電極B−はGMR素子rb3,rb4の接
続点での電圧出力を取り出す電極であり、電極B+と電
極B−間の電圧を、ここでは図示しないが、増幅率6倍
で基準電圧2.5Vの差動増幅器に入力してβ出力とし
て取り出し、α出力と共に回転角検出に使用する。尚、
差動増幅器を利用しているので、温度変化やノイズによ
って同じ傾向をもって出力値が変化した場合には、その
影響をキャンセルできる。
Next, the operation of the rotation angle detection sensor according to the second embodiment of the present invention will be described. The rotation of the external rotator is transmitted to the rotation shaft 4, and when the disk-shaped magnet 2 is rotated, the direction of the magnetic force line Hex generated on the lower surface of the disk-shaped magnet 2 rotates. The lines of magnetic force Hex exist parallel to the surface of the sensor substrate 14, and the GMR elements ra1, ra2, ra3, ra4,
The lines of magnetic force Hex are given to rb1, rb2, rb3, and rb4. A constant voltage of 5 V is applied to the electrodes Vcc1 and Vcc2, and the electrodes GND1 and GND2 are connected to the ground. An electrode A + is an electrode for extracting a voltage output at a connection point of the GMR elements ra1 and ra2, and an electrode A− is a GMR element.
This is an electrode for extracting a voltage output at a connection point between the elements ra3 and ra4. The voltage between the electrode A + and the electrode A- is input to a differential amplifier having an amplification factor of 6 and a reference voltage of 2.5 V (not shown). And use it as α output. The electrode B + is an electrode for extracting a voltage output at a connection point between the GMR elements rb1 and rb2, and the electrode B− is an electrode for extracting a voltage output at a connection point between the GMR elements rb3 and rb4. Although not shown here, the voltage is input to a differential amplifier having an amplification factor of 6 and a reference voltage of 2.5 V, taken out as β output, and used together with α output for rotation angle detection. still,
Since the differential amplifier is used, when the output value changes with the same tendency due to a temperature change or noise, the influence can be canceled.

【0031】図12において、初めに、磁石2の磁力線
Hexの向きがセンサ基板14の表面上で下方のGMR
素子ra2から上方のGMR素子ra1へ向かう基準の
向きZ1(角度0radに相当)と同じである場合を考
えると、GMR素子ra1,ra2,ra3,ra4,
rb1,rb2,rb3,rb4のフリー磁性層10の
磁化の向きは磁力線Hexの向きに従うので、GMR素
子ra1のピン止め磁性層8の磁化の向きh1と磁力線
Hexの向きが直角である時は、GMR素子ra1の抵
抗値は磁力線Hexの向きによる抵抗値変化の最大値と
最小値の中間の値となり、GMR素子ra2のピン止め
磁性層8の磁化の向きh2は磁力線Hexの向きと直角
であるから、やはりGMR素子ra2の抵抗値は最大値
と最小値の中間の値となる。GMR素子ra1,ra2
は同一基板上にほぼ同一条件で形成されているものなの
で、それらの磁気特性はほぼ同じと考えられ、GMR素
子ra1,ra2の磁力線Hexの向きによる抵抗変化
も同一であるため、それぞれの最大値、最小値、最大値
と最小値の中間の値もほぼ同じである。従って、磁石2
の磁力線Hexの向きが基準の向きZ1と同じときは、
電極A+での出力電圧は電極Vccに印加された電圧5
Vの半分の2.5Vとなる。電極A−での出力電圧も同
様に2.5Vとなる。従って、電極A−を基準にした電
極A+の電圧であるα出力は2.5Vとなる。即ち、差
動増幅器の入力端側の電圧差は0Vとなり、増幅されて
も0Vであり、基準値の2.5Vが出力される。
In FIG. 12, first, the direction of the magnetic force line Hex of the magnet 2 is lower than the GMR on the surface of the sensor substrate 14.
Considering the case where the reference direction Z1 (corresponding to the angle 0 rad) from the element ra2 to the upper GMR element ra1 is the same, the GMR elements ra1, ra2, ra3, ra4
Since the directions of magnetization of the free magnetic layers 10 of rb1, rb2, rb3, and rb4 follow the directions of the lines of magnetic force Hex, when the direction of magnetization h1 of the pinned magnetic layer 8 of the GMR element ra1 is perpendicular to the direction of the lines of magnetic force Hex, The resistance value of the GMR element ra1 is an intermediate value between the maximum value and the minimum value of the resistance change depending on the direction of the magnetic field line Hex, and the magnetization direction h2 of the pinned magnetic layer 8 of the GMR element ra2 is perpendicular to the direction of the magnetic line Hex. Therefore, the resistance value of the GMR element ra2 is also an intermediate value between the maximum value and the minimum value. GMR elements ra1, ra2
Are formed on the same substrate under substantially the same conditions, their magnetic properties are considered to be substantially the same, and the resistance changes of the GMR elements ra1 and ra2 due to the direction of the magnetic force line Hex are also the same. , The minimum value, and the intermediate value between the maximum value and the minimum value are almost the same. Therefore, magnet 2
Is the same as the reference direction Z1.
The output voltage at the electrode A + is the voltage 5 applied to the electrode Vcc.
It becomes 2.5V which is half of V. The output voltage at the electrode A- is also 2.5V. Therefore, the α output, which is the voltage of the electrode A + based on the electrode A−, is 2.5V. That is, the voltage difference on the input terminal side of the differential amplifier is 0 V, and even if amplified, it is 0 V, and a reference value of 2.5 V is output.

【0032】次に、磁石2の磁力線Hexの向きが基準
の向きZ1から反時計方向に回転角π/2(rad)回
転すると、GMR素子ra1のピン止め磁性層8の磁化
の向きh1は磁力線Hexの向きと逆向きになるので、
GMR素子ra1の抵抗値は最大値をとり、GMR素子
ra2のピン止め磁性層8の磁化の向きh2は磁力線H
exの向きと同じ向きなのでGMR素子ra2の抵抗値
は最小値になり、電極A+の出力は下がり最小値を取
る。即ち、5%の抵抗変化率のGMR素子を使用して、
5VX0.975/(1.025+0.975)=2.
438Vの出力となる。また、GMR素子ra3のピン
止め層の磁化の向きh3は磁力線Hexと同じ向きにな
るのでGMR素子ra3の抵抗値は最小値になり、GM
R素子ra4のピン止め磁性層8の磁化の向きh4は磁
力線Hexの向きと逆向きになるのでGMR素子ra3
の抵抗値は最大値になり、電極A−の出力電圧は上がり
最大値をとる。即ち、5VX1.025/(1.025
+0.975)=2.563Vの出力になる。よって、
差動増幅器の入力端側の電圧差は2.563−2.43
8=0.125となり6倍に増幅されて0.75Vの信
号が得られ、基準値の2.5Vが加わってα出力は最大
値の3.25Vとなる。
Next, when the direction of the line of magnetic force Hex of the magnet 2 rotates counterclockwise from the reference direction Z1 by a rotation angle π / 2 (rad), the magnetization direction h1 of the pinned magnetic layer 8 of the GMR element ra1 becomes Hex is the opposite direction,
The resistance value of the GMR element ra1 takes the maximum value, and the magnetization direction h2 of the pinned magnetic layer 8 of the GMR element ra2 is
Since the direction is the same as the direction of ex, the resistance value of the GMR element ra2 becomes the minimum value, and the output of the electrode A + decreases and takes the minimum value. That is, using a GMR element having a resistance change rate of 5%,
5VX0.975 / (1.025 + 0.975) = 2.
The output is 438V. Further, since the magnetization direction h3 of the pinned layer of the GMR element ra3 is in the same direction as the line of magnetic force Hex, the resistance value of the GMR element ra3 becomes the minimum value, and GM
Since the direction h4 of magnetization of the pinned magnetic layer 8 of the R element ra4 is opposite to the direction of the line of magnetic force Hex, the GMR element ra3
Has the maximum value, and the output voltage of the electrode A- rises to the maximum value. That is, 5VX1.025 / (1.025
+0.975) = 2.563V. Therefore,
The voltage difference between the input terminals of the differential amplifier is 2.563-2.43.
8 = 0.125, which is amplified by a factor of 6 to obtain a signal of 0.75V. When the reference value of 2.5V is added, the α output becomes the maximum value of 3.25V.

【0033】次に、磁石2の磁力線Hexの向きが反時
計方向に更にπ/2(rad)回転する、即ち基準の向
きZ1から反時計方向に回転角π(rad)回転する
と、磁力線Hexの向きとGMR素子ra1のピン止め
磁性層8の磁化の向きh1およびGMR素子ra2のピ
ン止め磁性層8の磁化の向きh2は直角になるので、磁
石2の磁力線Hexと基準の向きZ1が一致したときと
同様に、電極A+と電極A−の出力電圧は2.5Vにな
る。従って、α出力も前述と同様に2.5Vになる。
Next, when the direction of the line of magnetic force Hex of the magnet 2 further rotates π / 2 (rad) in the counterclockwise direction, ie, when the rotation angle π (rad) rotates counterclockwise from the reference direction Z1, the direction of the line of magnetic force Hex becomes Since the direction and the direction h1 of magnetization of the pinned magnetic layer 8 of the GMR element ra1 and the direction h2 of magnetization of the pinned magnetic layer 8 of the GMR element ra2 are at right angles, the magnetic field line Hex of the magnet 2 and the reference direction Z1 coincide. As before, the output voltage of the electrodes A + and A- becomes 2.5V. Therefore, the α output becomes 2.5 V similarly to the above.

【0034】次に、磁石2の磁力線Hexの向きが更に
反時計方向にπ/2(rad)回転する、即ち基準の向
きZ1から反時計方向へ3π/2(rad)回転する
と、GMR素子ra1のピン止め層の磁化の向きh1
は、磁力線Hexの向き同じ向きになるので、GMR素
子ra1の抵抗値は最小値となり、GMR素子ra2の
ピン止め磁性層8の磁化の向きh2と磁力線Hexの向
きが逆向きになるので、GMR素子ra2の抵抗値は最
大値をとり、電極A+の出力電圧は上がり2.563V
になる。また、GMR素子ra3のピン止め磁性層8の
磁化の向きh3は磁力線Hexの向きと逆向きになるの
でGMR素子ra3の抵抗値は最大値になり、GMR素
子ra4のピン止め磁性層8の磁化の向きh4は磁力線
Hexの向きと同じ向きになるのでGMR素子ra4の
抵抗値は最小値になり、電極A−の出力電圧は上がり
2.438Vとなる。従って、α出力は最小値をとる。
即ち、差動増幅器の入力端子側の電圧差は2.438V
−2.563V=−0.125Vとなり6倍に増幅され
て−0.75Vの信号が得られ、基準値の2.5Vが加
わってα出力は最小値の1.75Vとなる。
Next, when the direction of the magnetic force line Hex of the magnet 2 further rotates counterclockwise by π / 2 (rad), that is, by 3π / 2 (rad) counterclockwise from the reference direction Z1, the GMR element ra1 H1 of the magnetization of the pinned layer
Is the same as the direction of the magnetic force line Hex, the resistance value of the GMR element ra1 becomes the minimum value, and the magnetization direction h2 of the pinned magnetic layer 8 of the GMR element ra2 and the direction of the magnetic force line Hex become opposite. The resistance value of the element ra2 takes the maximum value, and the output voltage of the electrode A + rises to 2.563V.
become. In addition, since the magnetization direction h3 of the pinned magnetic layer 8 of the GMR element ra3 is opposite to the direction of the line of magnetic force Hex, the resistance value of the GMR element ra3 becomes the maximum value, and the magnetization of the pinned magnetic layer 8 of the GMR element ra4. Is the same as the direction of the line of magnetic force Hex, the resistance value of the GMR element ra4 becomes the minimum value, and the output voltage of the electrode A- rises to 2.438V. Therefore, the α output takes the minimum value.
That is, the voltage difference between the input terminals of the differential amplifier is 2.438 V
-2.563V = -0.125V, which is amplified by a factor of 6 to obtain a signal of -0.75V. When the reference value of 2.5V is added, the α output becomes the minimum value of 1.75V.

【0035】次に、磁石2の磁力線Hexの向きが反時
計方向に更にπ/2(rad)回転する、即ち基準の向
きZ1から反時計方向に回転角2π(rad)回転する
と、磁力線Hexの向きと基準の向きZ1が一致するの
で、磁力線Hexの向きの回転の最初の状態と同じにな
り、電極A+と電極A−の出力電圧は2.5Vになる。
従って、α出力は2.5Vになる。これで1周期が終わ
り、更なる磁力線Hexの向きの回転は、1周期目のα
出力の出力変化を繰り返す。
Next, when the direction of the line of magnetic force Hex of the magnet 2 further rotates by π / 2 (rad) in the counterclockwise direction, that is, when the rotation angle is rotated by 2π (rad) in the counterclockwise direction from the reference direction Z1, the direction of the line of magnetic force Hex becomes Since the direction and the reference direction Z1 coincide with each other, the state is the same as the initial state of the rotation of the direction of the line of magnetic force Hex, and the output voltages of the electrodes A + and A- become 2.5V.
Therefore, the α output becomes 2.5V. This completes one cycle, and the rotation of the direction of the line of magnetic force Hex further becomes α in the first cycle.
The output changes repeatedly.

【0036】電極B+の出力電圧の変化は、GMR素子
rb1,rb2のピン止め磁性層8の磁化の向きi1,
i2と磁力線Hexの向きとの関係がGMR素子ra
1,ra2のピン止め磁性層8の磁化の向きh1,h2
と磁力線Hexの向きとの関係よりπ/2(rad)反
時計方向に進んでいるので、電極A+の出力電圧の変化
よりπ/2(rad)反時計方向に進んでいる。電極B
−の出力電圧の変化も、GMR素子rb3,rb4のピ
ン止め磁性層8の磁化の向きi3,i4と磁力線Hex
の向きとの関係がGMR素子ra3,ra4のピン止め
磁性層8の磁化の向きh3,h4と磁力線Hexの向き
との関係よりπ/2(rad)反時計方向に進んでいる
ので、電極A−の出力電圧の変化よりπ/2(rad)
反時計方向に進んでいる。従って、電極B−を基準にし
た電極B+の電圧であるβ出力は、電極A−を基準にし
た電極A+の電圧であるα出力より、π/2(rad)
反時計方向に進んでいる。磁石2の回転角は互いにπ/
2(rad)ずれたα出力とβ出力の正弦波の値から周
知の方法により検出される。上記したように、α出力と
β出力は、それぞれ出力変化は1.5V(最大値−最小
値)であり、半分の増幅率の差動増幅器を使用している
のにもかかわらず第1実施形態のA出力とB出力の出力
変化(最大値−最小値)とほぼ同等とすることができ、
センサ感度が2倍になる。また、入力オフセット電圧の
小さな差動増幅器を用いなくともいいので、安価に作成
できる。
The change in the output voltage of the electrode B + depends on the magnetization directions i1, i1 of the pinned magnetic layer 8 of the GMR elements rb1, rb2.
The relationship between i2 and the direction of the line of magnetic force Hex is the GMR element ra
1, ra2 magnetization directions h1, h2 of the pinned magnetic layer 8
And the direction of the line of magnetic force Hex, it is moving in the π / 2 (rad) counterclockwise direction due to the change in the output voltage of the electrode A +. Electrode B
The change of the output voltage of-also indicates the magnetization directions i3 and i4 of the pinned magnetic layers 8 of the GMR elements rb3 and rb4 and the lines of magnetic force Hex.
Is more advanced in the counterclockwise direction by π / 2 (rad) than the relationship between the magnetization directions h3 and h4 of the pinned magnetic layers 8 of the GMR elements ra3 and ra4 and the direction of the line of magnetic force Hex. From the change in the output voltage of-, π / 2 (rad)
Moving in a counterclockwise direction. Therefore, the β output, which is the voltage of the electrode B + based on the electrode B−, is π / 2 (rad) more than the α output, which is the voltage of the electrode A + based on the electrode A−.
Moving in a counterclockwise direction. The rotation angles of the magnets 2 are π /
It is detected by a known method from the sine wave values of the α output and β output shifted by 2 (rad). As described above, the output change between the α output and the β output is 1.5 V (maximum value−minimum value), and the first implementation is performed despite the fact that a differential amplifier having a half amplification factor is used. The output change (maximum value-minimum value) of the A output and the B output of the form can be made substantially equal to
The sensor sensitivity is doubled. Further, since it is not necessary to use a differential amplifier having a small input offset voltage, it can be produced at low cost.

【0037】[0037]

【発明の効果】上記したように、本発明の回転角検出セ
ンサは、フリー磁性層とピン止め磁性層とを有するGM
R素子を基板上に少なくとも2対設け、各対のGMR素
子同士を直列に接続し、GMR素子と対向させて回転可
能に磁石を配設し、この磁石の磁界を基板面方向に発生
させ、各対となるGMR素子を磁石の回転軸の回転軸線
を挟んで対向する位置となるように配置すると共にGM
R素子のピン止め磁性層の磁化の向きが互いに逆向きで
あるようにし、磁石の磁界の向きに従うフリー磁性層の
磁化の向きとピン止め磁性層の磁化の向きのなす角度に
より発生するGMR素子の抵抗値の変化によって回転軸
の回転角度を検出するようにしたので、素子を回転軸の
周りに近接して配置でき、所定の位相差を有する電圧を
出力し回転角を検出する、専有するスペースが小さく、
センサ出力電圧の出力変化が大きくセンサ感度の良い回
転角検出センサを得ることができる。
As described above, the rotation angle detecting sensor of the present invention has a GM having a free magnetic layer and a pinned magnetic layer.
At least two pairs of R elements are provided on a substrate, each pair of GMR elements is connected in series, a magnet is rotatably arranged facing the GMR element, and a magnetic field of the magnet is generated in the direction of the substrate surface. The paired GMR elements are arranged so as to be opposed to each other with the rotation axis of the rotation axis of the magnet interposed therebetween.
The pinned magnetic layers of the R element have the magnetization directions opposite to each other, and the GMR element generated by the angle between the magnetization direction of the free magnetic layer and the magnetization direction of the pinned magnetic layer according to the direction of the magnetic field of the magnet. The rotation angle of the rotation axis is detected by a change in the resistance value of the rotation axis, so that the elements can be arranged close to each other around the rotation axis and output a voltage having a predetermined phase difference to detect the rotation angle. Space is small,
A rotation angle detection sensor having a large sensor output voltage output change and a high sensor sensitivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の回転角検出センサの平
面図である。
FIG. 1 is a plan view of a rotation angle detection sensor according to a first embodiment of the present invention.

【図2】本発明の第1実施形態の回転角検出センサの正
面図である。
FIG. 2 is a front view of the rotation angle detection sensor according to the first embodiment of the present invention.

【図3】本発明の第1実施形態の回転角検出センサのセ
ンサ基板を示す平面図である。
FIG. 3 is a plan view showing a sensor substrate of the rotation angle detection sensor according to the first embodiment of the present invention.

【図4】図3のD部拡大図である。FIG. 4 is an enlarged view of a portion D in FIG. 3;

【図5】図4の5−5断面図である。FIG. 5 is a sectional view taken along line 5-5 in FIG. 4;

【図6】本発明の第1実施形態の回転角検出センサのセ
ンサ基板上のGMR素子への着磁方法を示す図である。
FIG. 6 is a diagram illustrating a method of magnetizing a GMR element on a sensor substrate of the rotation angle detection sensor according to the first embodiment of the present invention.

【図7】本発明の第1実施形態の回転角検出センサのセ
ンサ基板上のGMR素子へ着磁する時の着磁用棒磁石か
ら出る磁力線の方向を示す図である。
FIG. 7 is a diagram showing directions of magnetic force lines emitted from a magnetizing rod magnet when magnetizing a GMR element on a sensor substrate of the rotation angle detection sensor according to the first embodiment of the present invention.

【図8】本発明の第1実施形態の回転角検出センサのセ
ンサ基板上の回路を示す回路図である。
FIG. 8 is a circuit diagram showing a circuit on a sensor substrate of the rotation angle detection sensor according to the first embodiment of the present invention.

【図9】本発明の第1実施形態の回転角検出センサのセ
ンサ基板の電極Aの出力を示すグラフである。
FIG. 9 is a graph showing an output of an electrode A of a sensor substrate of the rotation angle detection sensor according to the first embodiment of the present invention.

【図10】本発明の第1実施形態の回転角検出センサの
センサ基板の電極A、電極Bの出力を両方示すグラフで
ある。
FIG. 10 is a graph showing both outputs of electrodes A and B on a sensor substrate of the rotation angle detection sensor according to the first embodiment of the present invention.

【図11】本発明の第1実施形態の回転角検出センサの
変形例を示す図である。
FIG. 11 is a diagram showing a modification of the rotation angle detection sensor according to the first embodiment of the present invention.

【図12】本発明の第2実施形態の回転角検出センサの
センサ基板を示す平面図である。
FIG. 12 is a plan view showing a sensor substrate of a rotation angle detection sensor according to a second embodiment of the present invention.

【図13】本発明の第2実施形態の回転角検出センサの
センサ基板上の一組みのGMR素子と電極とリード部を
示す回路図である。
FIG. 13 is a circuit diagram showing a set of GMR elements, electrodes, and leads on a sensor substrate of a rotation angle detection sensor according to a second embodiment of the present invention.

【図14】本発明の第2実施形態の回転角検出センサの
センサ基板上の他の組みのGMR素子と電極とリード部
を示す回路図である。
FIG. 14 is a circuit diagram showing another set of GMR elements, electrodes and leads on a sensor substrate of the rotation angle detection sensor according to the second embodiment of the present invention.

【図15】本発明の電極A−の電圧を基準にした電極A
+の電圧であるα出力を示すグラフである。
FIG. 15 shows an electrode A based on the voltage of the electrode A- of the present invention.
6 is a graph showing α output which is a + voltage.

【図16】本発明の第2実施形態の回転角検出センサの
センサ基板上の電極A−の電圧を基準にした電極A+の
電圧であるα出力をおよび電極B−の電圧を基準にした
電極B+の電圧であるβ出力を両方示すグラフである。
FIG. 16 is a diagram illustrating an α output that is a voltage of an electrode A + based on a voltage of an electrode A− on a sensor substrate and an electrode based on a voltage of an electrode B− of a rotation angle detection sensor according to a second embodiment of the present invention. It is a graph which shows both the β output which is the voltage of B +.

【図17】従来技術の回転角検出センサの平面図であ
る。
FIG. 17 is a plan view of a conventional rotation angle detection sensor.

【図18】従来技術の回転角検出センサの正面図であ
る。
FIG. 18 is a front view of a conventional rotation angle detection sensor.

【符号の説明】[Explanation of symbols]

1 回転角検出センサ 2 磁石 3 センサ基板 3a シリコン基板 4 回転軸 8 ピン止め磁性層 10 フリー磁性層 12 棒磁石ブロック C 回転軸線 Hex 磁力線 g1,g2,g3,g4 ピン止め磁性層の磁化の向き Ra1,Ra2,Rb1,Rb2 GMR素子 DESCRIPTION OF SYMBOLS 1 Rotation angle detection sensor 2 Magnet 3 Sensor substrate 3a Silicon substrate 4 Rotation axis 8 Pinned magnetic layer 10 Free magnetic layer 12 Bar magnet block C Rotation axis line Hex Magnetic field line g1, g2, g3, g4 Direction of magnetization of pinned magnetic layer Ra1 , Ra2, Rb1, Rb2 GMR element

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フリー磁性層とピン止め磁性層とを有す
るGMR素子を基板上に少なくとも2対設け、各対の前
記GMR素子同士を直列に接続し、前記GMR素子と対
向させて回転可能に磁石を配設し、この磁石によって前
記GMR素子に飽和磁界を印加させ、前記GMR素子面
と平行な磁力線の向きが回転するように磁界を発生さ
せ、各対となる前記GMR素子を前記磁石の回転軸の回
転軸線を挟んで対向する位置となるように配置すると共
に前記GMR素子の前記ピン止め磁性層の磁化の向きが
互いに逆向きであるようにし、前記磁石の磁力線の向き
に従う前記フリー磁性層の磁化の向きと前記ピン止め磁
性層の磁化の向きのなす角度により発生する前記GMR
素子の抵抗値の変化によって回転軸の回転角度を検出す
るようにしたことを特徴とする回転角検出センサ。
At least two pairs of GMR elements each having a free magnetic layer and a pinned magnetic layer are provided on a substrate, and each pair of the GMR elements is connected in series, and is rotatable facing the GMR element. A magnet is provided, a saturation magnetic field is applied to the GMR element by the magnet, and a magnetic field is generated so that the direction of a magnetic line of force parallel to the GMR element surface is rotated. The pinned magnetic layers of the GMR element are arranged so as to be opposed to each other with the rotation axis of the rotation axis interposed therebetween, and the directions of magnetization of the pinned magnetic layers of the GMR element are opposite to each other, and the free magnetism follows the direction of the magnetic force line of the magnet. GMR generated by the angle between the direction of magnetization of the layer and the direction of magnetization of the pinned magnetic layer
A rotation angle detection sensor wherein a rotation angle of a rotation shaft is detected by a change in a resistance value of an element.
【請求項2】 前記各対となる前記GMR素子を前記回
転軸に対して対称な位置に配置したことを特徴とする請
求項1記載の回転角検出センサ。
2. The rotation angle detection sensor according to claim 1, wherein said pair of said GMR elements are arranged at positions symmetrical with respect to said rotation axis.
【請求項3】 前記少なくとも2対の前記GMR素子を
前記回転軸に対して同一半径上に位置させたことを特徴
とする請求項1または2記載の回転角検出センサ。
3. The rotation angle detection sensor according to claim 1, wherein the at least two pairs of the GMR elements are located on the same radius with respect to the rotation axis.
【請求項4】 前記少なくとも2対の前記GMR素子の
個々の前記GMR素子を前記回転軸の回りにπ/2(r
ad)の角度間隔で配置したことを特徴とする請求項2
記載の回転角検出センサ。
4. The method according to claim 1, wherein each of said at least two pairs of said GMR elements comprises a π / 2 (r
3. The arrangement according to claim 2, wherein the arrangement is at an angular interval of ad).
The rotation angle detection sensor according to any one of the preceding claims.
【請求項5】 隣接する全ての前記GMR素子同士の前
記ピン止め磁性層の磁化の向きが互いに近づく向きの関
係と互いに遠のく向きの関係が交互に現れるようにした
ことを特徴とする請求項1記載の回転角検出センサ。
5. The apparatus according to claim 1, wherein the directions of the magnetization directions of the pinned magnetic layers of all of the adjacent GMR elements approach each other and the directions of the directions further away alternately appear. The rotation angle detection sensor according to any one of the preceding claims.
【請求項6】 前記少なくとも2対の前記GMR素子を
同一基板上に形成したことを特徴とする請求項1乃至5
記載の回転角検出センサ。
6. The GMR element according to claim 1, wherein said at least two pairs of said GMR elements are formed on a same substrate.
The rotation angle detection sensor according to any one of the preceding claims.
JP2001104377A 2001-04-03 2001-04-03 Rotation angle detection sensor Expired - Fee Related JP3895556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001104377A JP3895556B2 (en) 2001-04-03 2001-04-03 Rotation angle detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104377A JP3895556B2 (en) 2001-04-03 2001-04-03 Rotation angle detection sensor

Publications (2)

Publication Number Publication Date
JP2002303536A true JP2002303536A (en) 2002-10-18
JP3895556B2 JP3895556B2 (en) 2007-03-22

Family

ID=18957242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104377A Expired - Fee Related JP3895556B2 (en) 2001-04-03 2001-04-03 Rotation angle detection sensor

Country Status (1)

Country Link
JP (1) JP3895556B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493988A2 (en) * 2003-06-30 2005-01-05 Alps Electric Co., Ltd. Magnetoresistive angle sensor
WO2005028993A1 (en) * 2003-09-17 2005-03-31 Nsk Ltd. Steering angle sensor
JP2006145323A (en) * 2004-11-18 2006-06-08 Tdk Corp Rotation angle detector
WO2007055135A1 (en) * 2005-11-14 2007-05-18 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device
US7231313B2 (en) 2004-12-16 2007-06-12 Alps Electric Co., Ltd. Method of calculating compensation value for angle detecting sensor and angle detecting sensor using the method
EP1923299A1 (en) * 2006-11-20 2008-05-21 NSK Ltd. Absolute steering angle detecting device
CN100414255C (en) * 2004-12-16 2008-08-27 阿尔卑斯电气株式会社 Method of calculating compensation value for angle detecting sensor and angle detecting sensor using the method
KR100872091B1 (en) 2007-04-26 2008-12-05 에스앤티대우(주) Sensor module for detecting relative displacement and method of detecting moving direction using the same
WO2009096093A1 (en) 2008-01-30 2009-08-06 Hitachi Metals, Ltd. Angle sensor, angle sensor manufacturing method, and angle detection device using the angle sensor
JP2009266646A (en) * 2008-04-25 2009-11-12 Tokai Rika Co Ltd Position sensor
EP2284556A1 (en) 2009-07-29 2011-02-16 TDK Corporation Magnetic sensor
WO2011033980A1 (en) * 2009-09-17 2011-03-24 アルプス電気株式会社 Magnetic sensor and production method therefor
WO2011033981A1 (en) * 2009-09-17 2011-03-24 アルプス電気株式会社 Magnetic sensor production method
EP2363722A1 (en) 2010-02-10 2011-09-07 TDK Corporation Electronic circuit board, magnetic sensor, and method for protecting power supply of electronic circuit
US8115479B2 (en) 2006-11-21 2012-02-14 Hitachi Metals, Ltd. Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method
JP2012127736A (en) * 2010-12-14 2012-07-05 Tdk Corp Magnetic sensor
JP2013068511A (en) * 2011-09-22 2013-04-18 Denso Corp Angle detection sensor and manufacturing method of the same
JP2014106090A (en) * 2012-11-27 2014-06-09 Alps Electric Co Ltd Magnetic detection switch and shift lever device using the same
JP2015049046A (en) * 2013-08-29 2015-03-16 アルプス電気株式会社 Angle detector
JP2017524142A (en) * 2014-08-18 2017-08-24 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Dual Z-axis magnetoresistive angle sensor
WO2019131393A1 (en) * 2017-12-26 2019-07-04 アルプスアルパイン株式会社 Position sensing element and position sensor using same
CN111512455A (en) * 2017-12-26 2020-08-07 阿尔卑斯阿尔派株式会社 Tunnel magnetoresistance effect film and magnetic device using the same
CN111615636A (en) * 2018-01-17 2020-09-01 阿尔卑斯阿尔派株式会社 Magnetic detection device and method for manufacturing the same
US11340319B2 (en) 2018-11-26 2022-05-24 Tdk Corporation Magnetic sensor device
WO2022244734A1 (en) * 2021-05-17 2022-11-24 パナソニックIpマネジメント株式会社 Magnetic sensor and magnetic detection system
WO2024024821A1 (en) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 Magnet module, sensor module, and method for manufacturing magnet module

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493988A3 (en) * 2003-06-30 2006-08-23 Alps Electric Co., Ltd. Magnetoresistive angle sensor
US7193411B2 (en) 2003-06-30 2007-03-20 Alps Electric Co., Ltd. Angle sensor having low waveform distortion
EP1493988A2 (en) * 2003-06-30 2005-01-05 Alps Electric Co., Ltd. Magnetoresistive angle sensor
US7265540B2 (en) 2003-06-30 2007-09-04 Alps Electric Co., Ltd. Angle sensor having low waveform distortion
WO2005028993A1 (en) * 2003-09-17 2005-03-31 Nsk Ltd. Steering angle sensor
JP2005091137A (en) * 2003-09-17 2005-04-07 Nsk Ltd Rudder angle sensor
US7472004B2 (en) 2003-09-17 2008-12-30 Nsk Ltd. Steering angle sensor
JP2006145323A (en) * 2004-11-18 2006-06-08 Tdk Corp Rotation angle detector
CN100414255C (en) * 2004-12-16 2008-08-27 阿尔卑斯电气株式会社 Method of calculating compensation value for angle detecting sensor and angle detecting sensor using the method
US7231313B2 (en) 2004-12-16 2007-06-12 Alps Electric Co., Ltd. Method of calculating compensation value for angle detecting sensor and angle detecting sensor using the method
WO2007055135A1 (en) * 2005-11-14 2007-05-18 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device
EP1923299A1 (en) * 2006-11-20 2008-05-21 NSK Ltd. Absolute steering angle detecting device
US8115479B2 (en) 2006-11-21 2012-02-14 Hitachi Metals, Ltd. Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method
KR100872091B1 (en) 2007-04-26 2008-12-05 에스앤티대우(주) Sensor module for detecting relative displacement and method of detecting moving direction using the same
WO2009096093A1 (en) 2008-01-30 2009-08-06 Hitachi Metals, Ltd. Angle sensor, angle sensor manufacturing method, and angle detection device using the angle sensor
US8564282B2 (en) 2008-01-30 2013-10-22 Hitachi Metals, Ltd. Angle sensor, angle sensor manufacturing method, and angle detection device using the angle sensor
JP2009266646A (en) * 2008-04-25 2009-11-12 Tokai Rika Co Ltd Position sensor
EP2284556A1 (en) 2009-07-29 2011-02-16 TDK Corporation Magnetic sensor
US8451003B2 (en) 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
WO2011033981A1 (en) * 2009-09-17 2011-03-24 アルプス電気株式会社 Magnetic sensor production method
JPWO2011033981A1 (en) * 2009-09-17 2013-02-14 アルプス電気株式会社 Manufacturing method of magnetic sensor
WO2011033980A1 (en) * 2009-09-17 2011-03-24 アルプス電気株式会社 Magnetic sensor and production method therefor
US8482895B2 (en) 2010-02-10 2013-07-09 Tdk Corporation Electronic circuit board, magnetic sensor, and method for protecting power supply of electronic circuit
EP2363722A1 (en) 2010-02-10 2011-09-07 TDK Corporation Electronic circuit board, magnetic sensor, and method for protecting power supply of electronic circuit
JP2012127736A (en) * 2010-12-14 2012-07-05 Tdk Corp Magnetic sensor
JP2013068511A (en) * 2011-09-22 2013-04-18 Denso Corp Angle detection sensor and manufacturing method of the same
JP2014106090A (en) * 2012-11-27 2014-06-09 Alps Electric Co Ltd Magnetic detection switch and shift lever device using the same
JP2015049046A (en) * 2013-08-29 2015-03-16 アルプス電気株式会社 Angle detector
JP2017524142A (en) * 2014-08-18 2017-08-24 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Dual Z-axis magnetoresistive angle sensor
JPWO2019131393A1 (en) * 2017-12-26 2020-11-19 アルプスアルパイン株式会社 Position detection element and position detection device using this
US11578996B2 (en) 2017-12-26 2023-02-14 Alps Alpine Co., Ltd. Position detection element and position detection apparatus using same
CN111542937A (en) * 2017-12-26 2020-08-14 阿尔卑斯阿尔派株式会社 Position detection element and position detection device using same
CN111542937B (en) * 2017-12-26 2024-04-02 阿尔卑斯阿尔派株式会社 Position detecting element and position detecting device using the same
WO2019131393A1 (en) * 2017-12-26 2019-07-04 アルプスアルパイン株式会社 Position sensing element and position sensor using same
CN111512455B (en) * 2017-12-26 2024-04-02 阿尔卑斯阿尔派株式会社 Tunnel magnetoresistance effect film and magnetic device using same
JP7104068B2 (en) 2017-12-26 2022-07-20 アルプスアルパイン株式会社 Position detection element and position detection device using this
CN111512455A (en) * 2017-12-26 2020-08-07 阿尔卑斯阿尔派株式会社 Tunnel magnetoresistance effect film and magnetic device using the same
US11476413B2 (en) 2017-12-26 2022-10-18 Alps Alpine Co., Ltd. Tunnel magnetoresistance effect device and magnetic device using same
US11415644B2 (en) 2018-01-17 2022-08-16 Alps Alpine Co., Ltd. Magnetic detector and method for producing the same
CN111615636A (en) * 2018-01-17 2020-09-01 阿尔卑斯阿尔派株式会社 Magnetic detection device and method for manufacturing the same
US11340319B2 (en) 2018-11-26 2022-05-24 Tdk Corporation Magnetic sensor device
WO2022244734A1 (en) * 2021-05-17 2022-11-24 パナソニックIpマネジメント株式会社 Magnetic sensor and magnetic detection system
WO2024024821A1 (en) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 Magnet module, sensor module, and method for manufacturing magnet module

Also Published As

Publication number Publication date
JP3895556B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3895556B2 (en) Rotation angle detection sensor
JP4877095B2 (en) Current sensor and manufacturing method thereof
JP3498737B2 (en) Manufacturing method of magnetic sensor
JP4259937B2 (en) Angle detection sensor
US20050280411A1 (en) GMR sensor with flux concentrators
WO2011111494A1 (en) Magnetic sensor and magnetic encoder
EP1406068B1 (en) Rotation angle detecting device using pairs of GMR sensors connected in a wheatstone bridge
JPH10256620A (en) Giant magnetoresistive effect element sensor
KR20120022910A (en) Flux gate senior and electronic azimuth indicator making use thereof
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
EP3098616B1 (en) Magnetic sensor
JP2006269955A (en) Magnetic field detecting device
JP2007024598A (en) Magnetic sensor
JP3260921B2 (en) Movable body displacement detection device
JP2000284030A (en) Magnetic sensor element
JP4984962B2 (en) Magnetic angle sensor
JP2003161770A (en) Magnetism detecting element
JP4110468B2 (en) Magneto-impedance element
JP3835445B2 (en) Magnetic sensor
JP4896800B2 (en) Magnetic sensor and manufacturing method thereof
JPH11287669A (en) Magnetic field sensor
JPH0266479A (en) Magnetoresistance effect element
JP3873752B2 (en) Rotation angle detector
WO2022244734A1 (en) Magnetic sensor and magnetic detection system
JP2004045119A (en) Magnetic sensor, azimuth detection system using the same, and mobile communication terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061214

R150 Certificate of patent or registration of utility model

Ref document number: 3895556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees