WO2011033695A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2011033695A1
WO2011033695A1 PCT/JP2010/002650 JP2010002650W WO2011033695A1 WO 2011033695 A1 WO2011033695 A1 WO 2011033695A1 JP 2010002650 W JP2010002650 W JP 2010002650W WO 2011033695 A1 WO2011033695 A1 WO 2011033695A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial layer
semiconductor device
gate electrode
region
manufacturing
Prior art date
Application number
PCT/JP2010/002650
Other languages
French (fr)
Japanese (ja)
Inventor
香川和宏
米田健司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011033695A1 publication Critical patent/WO2011033695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Definitions

  • the present disclosure relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a P-channel transistor having a SiGe epitaxial film in a source / drain region and a manufacturing method thereof.
  • the width of the gate electrode is about to be 40 nm or less.
  • a distortion technique for increasing driving force by applying stress to a channel formation region of a transistor (a region where a channel is formed in a substrate) of a transistor has already been put into practical use in response to the increase in speed.
  • the band structure of the channel formation region changes.
  • the effective mass of carriers in the channel formation region changes, causing a change in band occupancy, and the channel portion mobility changes.
  • NMOS n-channel MOS
  • PMOS p-channel MOS
  • Non-Patent Document 1 A method of forming a silicon germanium film having a constant by epitaxial growth has been proposed.
  • a compressive stress caused by a lattice constant difference can be applied from the side to the channel formation region below the gate electrode.
  • the compressive stress applied to the channel formation region increases as the concentration of germanium contained in silicon germanium increases.
  • the inventors of the present application examined the reason why the channel portion mobility is not improved as compared with the expectation and the reason why the leakage current increases. This will be described below.
  • FIG. 6 shows a structure in which a gate electrode 12 with a sidewall 13 is formed on a semiconductor substrate 10 and a silicon germanium (SiGe) film 11 is buried in an S / D region on the side of the gate electrode 12 by epitaxial growth. Show.
  • Non-patent Document 2 When a SiGe crystal is epitaxially grown on a Si substrate (semiconductor substrate 10), a crystal defect 14 accompanying an increase in strain energy occurs (Non-patent Document 2).
  • the SiGe epitaxial film thickness that can be grown without the occurrence of such crystal defects is called the critical film thickness.
  • the critical film thickness decreases as the Ge concentration increases.
  • FIG. 7 shows the relationship between film thickness and lattice relaxation for a SiGe layer having a Ge concentration of about 30 atom%. Since the lattice relaxation becomes large when crystal defects occur, the lattice relaxation suddenly increases when the film thickness exceeds about 80 nm, and it can be understood that the critical film thickness is about 80 nm.
  • the portion that becomes the S / D region of the P channel has a depth that includes at least the side of the channel formation region by etching.
  • a recess is formed, and a SiGe epitaxial layer is formed in the recess.
  • the SiGe epitaxial layer is formed on the substrate so as to have a certain height. As a result, when the recess portion and the portion on the substrate are combined, the thickness of the SiGe epitaxial layer to be grown may be 80 nm or more.
  • interface impurities such as O (oxygen) that cannot be removed by cleaning before epitaxial growth, H 2 bake during epitaxial growth, or the like.
  • interface impurities cause a stacking fault 14 in the SiGe epitaxial layer (see FIG. 6). Since the stacking fault 14 here penetrates the SiGe crystal layer, it also penetrates the S / D junction interface formed in the SiGe crystal, causing junction leakage.
  • the inventors of the present application have conceived that a SiGe epitaxial layer having no stacking fault or the like is formed in a portion sandwiching the channel formation region from both sides to ensure the application of stress. Furthermore, the inventors conceived of suppressing the leakage current by positioning the S / D junction interface in a portion free from crystal defects.
  • a semiconductor device includes a source region and a drain region formed on a surface portion of a semiconductor substrate, and a gate electrode formed on a channel formation region sandwiched between these via a gate insulating film.
  • the source region and the drain region are formed in the third epitaxial layer, and each junction depth is Is shallower than the depth of the third epitaxial layer.
  • the channel formation region is compressed by the epitaxial layer formed in the recesses on both sides of the gate electrode, particularly the third epitaxial layer made of silicon germanium (SiGe) and sandwiching the channel formation region. Stress can be applied.
  • the third epitaxial layer generation of stacking faults and lattice relaxation is suppressed for the reason described later. Therefore, a compressive stress can be reliably applied to the channel formation region, and the channel portion mobility can be improved. Further, since the junction depth of the source region and the drain region is shallower than the depth of the third epitaxial layer, the S / D junction interface can be made free of crystal defects that cause a leakage current. As a result, leakage current can be reduced.
  • crystal defects such as stacking faults are likely to occur due to interface impurities such as O on the bottom surface of the recess (interface between the semiconductor substrate and the first epitaxial layer).
  • interface impurities such as O on the bottom surface of the recess (interface between the semiconductor substrate and the first epitaxial layer).
  • the crystal defects are absorbed in the second epitaxial layer so that no crystal defects exist on the upper surface of the second epitaxial layer. can do. Therefore, generation of crystal defects can be suppressed for the third epitaxial layer formed on the second epitaxial layer.
  • the thickness of the third epitaxial layer which is the main part sandwiching the channel formation region, can be suppressed, and the critical film thickness can be reduced. Therefore, the occurrence of lattice relaxation in the third epitaxial layer is suppressed.
  • the source region and the drain region are preferably formed by introducing a P-type impurity, and the P-type impurity is preferably not introduced into the first epitaxial layer and the second epitaxial layer.
  • the third epitaxial layer preferably includes a layer having a P-type impurity concentration of 1 ⁇ 10 18 / cm 3 or more.
  • the junction depth of the source region and the drain region can be surely made smaller than the depth of the third epitaxial layer.
  • the third epitaxial layer from the interface between the second epitaxial layer and the third epitaxial layer, in a range up to the junction depth of the source region or the drain region, a P-type impurity concentration 0 / cm 3 from 1 ⁇ 10 18 / It is preferable to have a P-type impurity profile that varies to cm 3 .
  • the S / D junction interface of the source region or the drain region is a surface having an impurity concentration of about 1 ⁇ 10 18 / cm 3 for forming these regions. Therefore, the source region and the drain region can be reliably arranged in the third epitaxial layer by setting the position where the concentration is to be shallower than the lower surface of the third epitaxial layer.
  • the first epitaxial layer contains 25 atom% or more of germanium.
  • the third epitaxial layer preferably contains 30 atom% or more of germanium.
  • An epitaxial layer made of silicon germanium should have such a germanium concentration.
  • the third epitaxial layer should have such a concentration in order to apply compressive stress to the channel formation region.
  • the third epitaxial layer is preferably thicker than the first epitaxial layer, and the first epitaxial layer is preferably thicker than the second epitaxial layer.
  • the second epitaxial layer made of silicon only needs to have a film thickness that can absorb stacking faults and the like in the first epitaxial layer.
  • the film thicknesses of the first, second, and third epitaxial layers are preferably in the relationship as described above.
  • the first epitaxial layer preferably has a thickness of 10 nm or more. Thereby, it can be set as the silicon germanium layer which covers the bottom face of a recess.
  • the second epitaxial layer preferably has a film thickness of 5 nm or more and 20 nm or less.
  • a stacking fault or the like of the first epitaxial layer can be absorbed, and the second epitaxial layer having no crystal defect on the upper surface can be obtained. Thereby, it can function as a base for forming a defect-free third epitaxial layer.
  • the third epitaxial layer preferably has a film thickness equal to or less than the critical film thickness.
  • the third epitaxial layer can be realized as a silicon germanium layer without stacking faults, and compressive stress can be effectively applied to the channel forming region.
  • the third epitaxial layer is preferably formed so as to rise above the upper surface of the semiconductor substrate.
  • the substrate digging after the third epitaxial layer is formed can be prevented.
  • an N-channel transistor is further provided in addition to the P-channel transistor, and the N-channel transistor does not include a region made of silicon germanium.
  • CMOS complementary MOS
  • PMOS P-channel transistor
  • a manufacturing method of a semiconductor device includes a step (a) of forming a gate electrode on a semiconductor substrate via a gate insulating film in a manufacturing method of a semiconductor device including a P-channel transistor, and a gate A step (b) of forming a recess in the semiconductor substrate on each side of the electrode, a step (c) of forming a first epitaxial layer made of silicon germanium in the recess, and a first step made of silicon on the first epitaxial layer.
  • the semiconductor substrate of the present disclosure described above can be manufactured. That is, a compressive stress can be applied to the channel formation region by the third epitaxial layer made of SiGe in which stacking faults are suppressed, so that the channel portion mobility can be improved, and defects at the S / D junction interface are suppressed. Therefore, a semiconductor substrate in which leakage current is suppressed can be manufactured.
  • the interface between the second epitaxial layer and the third epitaxial layer is formed. It is preferable to obtain a P-type impurity profile in which the P-type impurity concentration varies from 0 / cm 3 to 1 ⁇ 10 18 / cm 3 in the range up to the junction depth of the source region or the drain region.
  • the first and second epitaxial layers do not contain P-type impurities, and a semiconductor device having a source region and a drain region in which P-type impurities are introduced into the third epitaxial layer can be obtained.
  • the third epitaxial layer preferably contains 30% or more germanium and has a film thickness equal to or less than the critical film thickness.
  • an extension region is formed by a step of forming an offset sidewall covering the side wall of the gate electrode and ion implantation using the gate electrode and the offset sidewall as a mask.
  • the method further includes a step and a step of covering the side wall of the offset sidewall and forming a sidewall having the same height as the gate electrode.
  • P-channel transistor further comprising offset sidewalls, sidewalls, extension regions, and the like.
  • an N-channel transistor is formed in addition to the P-channel transistor, and the N-channel transistor does not have a silicon germanium region.
  • MOS metal-insulator-semiconductor
  • stacking faults and the like in the first epitaxial layer made of silicon germanium are absorbed by the second epitaxial layer made of silicon and do not reach the third epitaxial layer.
  • the source region and the drain region are formed to be shallower than the depth of the third epitaxial layer so that there is no defect at the S / D junction interface.
  • compressive stress is effectively applied to the channel formation region to improve channel portion mobility, and leakage current due to defects at the S / D junction interface can be reduced.
  • FIG. 1 is a diagram illustrating a cross-section of the main part of an exemplary semiconductor device according to the first embodiment of the present disclosure.
  • 2 (a) to 2 (f) are diagrams for explaining a manufacturing process of the semiconductor device of FIG.
  • FIG. 3 is a diagram illustrating a cross-section of the main part of an exemplary semiconductor device according to the second embodiment of the present disclosure.
  • 4 (a) to 4 (e) are diagrams for explaining a manufacturing process of the semiconductor device of FIG. 5 (a) to 5 (d) are diagrams for explaining the manufacturing process of the semiconductor device of FIG. 3 following FIG. 4 (e).
  • FIG. 6 is a diagram illustrating an example of stacking faults in the silicon germanium layer embedded in the semiconductor substrate on the side of the gate electrode.
  • FIG. 7 is a diagram showing the film thickness dependence of lattice relaxation for a silicon germanium layer containing 30 atom% germanium.
  • FIG. 1 is a diagram schematically illustrating a cross-sectional structure of a PMOS transistor included in the exemplary semiconductor device 120 according to the first embodiment.
  • the semiconductor device 120 is formed using an N-type semiconductor substrate 100.
  • a gate electrode 102 made of polysilicon is formed on the semiconductor substrate 100 with a gate insulating film 101 made of SiO 2 interposed therebetween.
  • a metal silicide layer 121 is formed on the gate electrode 102.
  • An offset sidewall 104 made of SiO 2 or the like is formed so as to cover the side wall of the gate electrode 102.
  • extension regions 105 are formed in the semiconductor substrate 100 on both sides of the gate electrode 102.
  • a first sidewall 106 having an L-shaped cross section and made of SiO 2 is formed so as to cover the sidewall of the offset sidewall 104 and the extension region 105, and the first sidewall 106 is A second sidewall 107 made of SiN is formed.
  • the semiconductor substrate 100 is provided with a recess by etching or the like, and three epitaxial layers are laminated on the recess.
  • a first epitaxial layer 111 having a thickness of at least 10 nm is formed so as to cover the bottom surface of the recess.
  • This is made of silicon germanium (SiGe) having a germanium concentration of 25 atom% or more, and is not doped with a P-type impurity such as B.
  • a second epitaxial layer 112 having a thickness of 5 nm or more and 20 nm or less is formed. This is made of silicon not containing germanium, and is not doped with P-type impurities such as B.
  • a third epitaxial layer 113 having a thickness of about 50 nm is formed. This is made of silicon germanium having a germanium concentration of 30 atom% or more.
  • a P-type impurity such as B is doped to form S / D (source / drain) regions 122 sandwiching a channel formation region below the gate electrode 102 (on both sides of the gate electrode 102).
  • a source region is formed in one of the third epitaxial layers 113, and a drain region is formed in the other).
  • the interface between the second epitaxial layer 112 and the third epitaxial layer 113 contains no P-type impurities.
  • the concentration of the P-type impurity gradually increases from the interface toward the shallow side of the third epitaxial layer 113, and at the uppermost portion, for example, the concentration is about 1 ⁇ 10 23 / cm 3 .
  • a position where the impurity concentration is about 1 ⁇ 10 18 / cm 3 is defined as an S / D junction interface.
  • the S / D junction interface is above the interface between the second epitaxial layer 112 and the third epitaxial layer 113 and is located in the third epitaxial layer 113.
  • a metal silicide layer 121 is formed on the S / D region 122 and the gate electrode 102.
  • the compressive stress can be applied to the channel formation region by the epitaxial layer made of SiGe embedded in the recesses on both sides of the gate electrode 102, particularly the third epitaxial layer 113.
  • the generation of stacking faults and lattice relaxation is suppressed for the third epitaxial layer 113 for reasons described later. From this, it is possible to reliably apply a compressive stress to the channel formation region and improve the channel portion mobility.
  • the junction depth of the S / D region 122 (the depth of the S / D junction interface) is shallower than the depth of the third epitaxial layer 113, the S / D junction interface has a stacking fault that causes a leakage current. It is located in the area where there is no etc. Therefore, the leakage current is reduced.
  • FIG. 1 illustrates a profile of a P-type impurity introduced to configure the S / D region 122 in accordance with the structure of the semiconductor device 120.
  • the P-type impurity concentration is 0 at the interface depth D1 between the second epitaxial layer 112 and the third epitaxial layer 113.
  • the depth D2 of the S / D junction interface at which the P-type impurity concentration is about 1 ⁇ 10 18 / cm 3 is at a position shallower than D1.
  • the P-type impurity concentration further increases from the depth D2 toward the top of the third epitaxial layer 113.
  • the first epitaxial layer 111 is likely to have crystal defects such as stacking faults due to interface impurities (for example, oxygen) on the bottom surface of the recess (interface between the semiconductor substrate 100 and the first epitaxial layer 111).
  • the crystal defects can be absorbed by forming the second epitaxial layer 112 made of silicon on the first epitaxial layer 111. That is, even if there is a crystal defect in the first epitaxial layer 111, the upper surface of the second epitaxial layer 112 having a certain thickness is a surface having no defect. Therefore, the third epitaxial layer 113 formed on the second epitaxial layer 112 can avoid the influence of crystal defects in the first epitaxial layer 111.
  • the thickness of the third epitaxial layer 113 which is the main part sandwiching the channel formation region, can be suppressed, and the critical film thickness can be reduced. As a result, the occurrence of lattice relaxation in the third epitaxial layer is suppressed.
  • the critical film thickness is about 80 nm, and the third epitaxial layer 113 is thinner than this.
  • FIGS. 2A to 2F are cross-sectional views schematically showing the process.
  • a gate insulating film 101 made of, for example, SiO 2 is formed on the semiconductor substrate 100.
  • a polysilicon film and an SiO 2 film are sequentially stacked thereon, a mask (not shown) is formed, and the gate electrode 102 and the SiO 2 film 103 thereon are formed by etching.
  • an SiO 2 film is further formed to cover the semiconductor substrate 100, the side surface of the gate electrode 102 and the SiO 2 film 103, and etched back to form an offset sidewall 104 on the side wall of the gate electrode 102.
  • ion implantation is performed using the gate electrode 102, the offset sidewall 104, etc. as a mask, and extension regions 105 are formed near the surface of the semiconductor substrate 100 on both sides of the gate electrode 102.
  • the gate insulating film 101 may be formed of a high dielectric material such as HfSiO instead of SiO 2 . Further, the gate electrode 102 may have a laminated structure of a metal such as TiN and polysilicon instead of the single layer structure made of polysilicon.
  • a SiO 2 film is formed so as to cover the gate electrode 102 via the offset sidewall 104 and the SiO 2 film 103, and further a silicon nitride film is formed so as to cover the SiO 2 film.
  • dry etching is performed to form a first sidewall 106 having an L-shaped cross section covering the sidewall of the gate electrode 102 and the extension region 105, and a second sidewall 107 covering the top.
  • the epitaxial cover film 108 is formed so as to cover the semiconductor substrate 100, the second sidewall 107, the SiO 2 film 103, and the like.
  • Epitaxial cover film 108, the film density than the SiO 2 film 103 on the gate electrode 102 is low, to form a SiO 2 film can be formed, for example, by a low temperature of 400 ° C. or less.
  • FIG. 2D the process of FIG. 2D is performed.
  • a resist 109 having a gate electrode 102 and regions on both sides thereof is formed on the epitaxial cover film 108.
  • the epitaxial cover film 108 in the opening is removed using the resist 109 as a mask. As a result, the portion of the semiconductor substrate 100 in which the epitaxial layer made of SiGe is embedded is exposed.
  • the process of FIG. 2E is performed.
  • the epitaxial cover film 108 is used as a mask, and either or both of dry etching and wet etching are used to provide the semiconductor substrate 100 with a recess 110 having a depth of 60 nm or more, for example.
  • FIG. 2 (f) the process of FIG. 2 (f) is performed.
  • three epitaxial layers are sequentially formed in the recess 110.
  • a first epitaxial layer 111 made of SiGe containing germanium of 25 atom% or more is formed so as to cover the bottom of the recess. This is formed at a film thickness of 10 nm or more by epitaxial growth in a hydrogen atmosphere at 650 ° C. or lower. At this time, doping of P-type impurities such as B is not performed.
  • the first epitaxial layer 111 made of silicon germanium having a germanium concentration of 25 atom% can be formed.
  • a second epitaxial layer 112 made of silicon and not containing germanium is formed on the first epitaxial layer 111 continuously.
  • This film is formed to a thickness necessary for absorbing crystal defects generated in the first epitaxial layer 111 and preventing the crystal defects from appearing on the upper surface.
  • the film thickness is 5 nm or more and 20 nm or less.
  • Epitaxial growth is used for film formation, and P-type impurities such as B are not doped.
  • the temperature is 650 ° C.
  • a third epitaxial layer 113 made of SiGe containing germanium of 30 atm% or more is formed on the second epitaxial layer 112 further continuously. This is formed at least on both sides of the channel formation region below the gate electrode 102.
  • the occurrence of lattice relaxation is avoided by setting the critical film thickness or less.
  • the temperature is 650 ° C.
  • the hydrogen atmosphere (10 Torr (1.33 ⁇ 10 3 Pa)
  • the third epitaxial layer 113 is doped with a P-type impurity such as B.
  • the concentration profile of P-type impurities such as B is 0 immediately above the second epitaxial layer 112 and 1 ⁇ 10 18 / cm at the S / D junction interface depth set in the third epitaxial layer 113. 3 so that the concentration profile is about 1 ⁇ 10 23 / cm 3 at the top of the third epitaxial layer 113.
  • the S / D junction interface depth is set in a region having a depth of 30 nm to 50 nm from the upper surface of the semiconductor substrate 100.
  • Such a concentration profile can be realized by adjusting the flow rate of B 2 H 6 when the third epitaxial layer 113 is epitaxially grown.
  • B 2 H 6 is further used as a material gas.
  • the B 2 H 6 flow rate is set to 0, and the B 2 H 6 flow rate is increased as the film formation proceeds.
  • the flow rate of B 2 H 6 is adjusted to 100 sccm, and thereafter 160 sccm.
  • the third epitaxial layer 113 may be formed on the semiconductor substrate 100 so as to rise to a height of, for example, about 20 nm to 30 nm. In a later process, the buried epitaxial layer may be scraped, and the substrate may be dug next to the sidewall. Therefore, it is conceivable that the third epitaxial layer 113 is formed so as to rise above the semiconductor substrate 100 in advance so that the substrate is not dug even if the epitaxial layer is shaved.
  • the epitaxial cover film 108 and the SiO 2 film 103 on the gate electrode 102 are removed. Further, after forming a metal film (for example, NiPt having a thickness of 10 nm), a metal silicide layer 121 is formed on the gate electrode 102 and the S / D region 122 as shown in FIG.
  • a metal film for example, NiPt having a thickness of 10 nm
  • the exemplary semiconductor device 120 of this embodiment is manufactured. Its features and the like are as already described.
  • the germanium concentration of the first epitaxial layer 111 is 25 atom%
  • the germanium concentration of the third epitaxial layer 113 is 30 atom%.
  • the germanium concentration, the film thickness, and the like may be set in accordance with the size of the PMOS transistor to be formed, required performance, and the like. At this time, it is necessary that the thickness of the third epitaxial layer does not exceed the critical thickness.
  • FIG. 3 is a diagram illustrating an exemplary semiconductor device 130 according to the second embodiment.
  • the semiconductor device 130 is formed using the semiconductor substrate 100.
  • the surface of the semiconductor substrate 100 is partitioned by a shallow trench 114, and a PMOS transistor and a CMOS transistor are formed to constitute a CMOS transistor.
  • the PMOS transistor has the same structure as that described in the first embodiment. That is, three epitaxial layers are embedded in the semiconductor substrate 100 on both sides of the gate electrode 102 that is formed through the gate insulating film 101 and includes the offset sidewall 104, the first sidewall 106, and the second sidewall 107. In this structure, the S / D region 122 is provided in the third epitaxial layer 113.
  • the NMOS transistor does not include an epitaxial layer and has a structure having an S / D region 115 formed by doping the semiconductor substrate 100 with impurities.
  • the gate electrode 102, the sidewall, and the like have the same configuration as that of the PMOS transistor.
  • the S / D region 115 is formed by doping the semiconductor substrate 100 with an impurity without using an NMOS transistor having an epitaxial layer made of SiGe.
  • the gate electrode 102 is made of, for example, polysilicon, and is formed on the semiconductor substrate 100 via the gate insulating film 101 made of, for example, an SiO 2 film.
  • the gate insulating film 101 may be formed of a high dielectric such as HfSiO.
  • the gate electrode 102 may have a stacked structure of a metal such as TiN and polysilicon.
  • FIGS. 4A to 4E and FIGS. 5A to 5D are cross-sectional views schematically showing the process.
  • a shallow trench 114 is formed on the semiconductor substrate 100 by a conventional technique as an element isolation region that partitions a surface portion.
  • a gate electrode 102 is formed through a gate insulating film 101 in a region (hereinafter referred to as a PMOS region and an NMOS region) where a PMOS transistor and an NMOS transistor are formed in the semiconductor substrate 100, and an SiO 2 film is formed thereon.
  • 103 is formed.
  • an offset sidewall 104 that covers the side surface of the gate electrode 102 is formed.
  • extension regions 105 are formed in the semiconductor substrate 100 on both sides of the gate electrode 102 by ion implantation using the gate electrode 102, the offset sidewall 104, and the like as a mask. These are the same steps as described with reference to FIG. 2A in the first embodiment.
  • the process of FIG. 4B is performed.
  • the first sidewall 106 made of, for example, a SiO 2 film and having an L-shaped cross section is formed so as to cover the sidewall of the gate electrode 102 via the offset sidewall 104.
  • a second sidewall 107 made of a silicon nitride film is formed thereon. This is the same process as described in the first embodiment with reference to FIG.
  • an epitaxial cover film 108 is formed so as to cover the semiconductor substrate 100, the second sidewall 107, the SiO 2 film 103, and the like in both the PMOS region and the NMOS region.
  • This film density than the SiO 2 film 103 on the gate electrode 102 is low, to form a SiO 2 film can be formed, for example, by a low temperature of 400 ° C. or less.
  • a resist 131 is formed in which the sidewalls in the PMOS region, the gate electrode 102, and the regions where the S / D regions 122 on both sides are formed are opened. Further, using the resist 131 as a mask, the epitaxial cover film 108 at the opening is removed, and the PMOS region is exposed.
  • a recess 110 is formed in the semiconductor substrate 100 on both sides of the gate electrode 102 in the PMOS region using the epitaxial cover film 108 as a mask.
  • the epitaxial cover film 108 is used, and the depth is 60 nm.
  • Layer 113 is formed sequentially.
  • the first epitaxial layer 111 and the second epitaxial layer 112 are not doped with a P-type impurity such as B.
  • the third epitaxial layer 113 is doped with a P-type impurity such as B to form an S / D region 122.
  • the impurity concentration is 0 immediately above the second epitaxial layer 112, 1 ⁇ 10 18 / cm 3 at the S / D junction interface depth set in the third epitaxial layer 113, and 1 at the top of the third epitaxial layer 113.
  • the concentration profile is set to about ⁇ 10 23 / cm 3 .
  • the compressive stress is applied to the channel formation region below the gate electrode 102, and the third epitaxial layer 113 including the S / D region 122 having the S / D junction interface depth in the portion having no crystal defect, can do.
  • a resist 131 is formed so as to cover the PMOS region and open in the regions where the sidewalls in the NMOS region, the gate electrode 102, and the S / D regions 115 on both sides thereof are formed.
  • the portion of the epitaxial cover film 108 exposed in the opening of the resist 131 is removed, and ion implantation and annealing are performed using each sidewall, the gate electrode 102, and the like as a mask.
  • the S / D region 115 is formed outside the extension region 125 in the semiconductor substrate 100 in the NMOS region.
  • the annealing condition is, for example, spike annealing at 1025 ° C.
  • the process of FIG. 5B is performed.
  • the resist 132 is removed, and the SiO 2 film 103 on the epitaxial cover film 108 and the gate electrode 102 is further removed.
  • the metal film 116 is formed so as to cover the third epitaxial layer 113 in which the S / D region 122 is formed, the gate electrode 102 and the semiconductor substrate 100 in which the S / D region 115 is formed.
  • This is, for example, a 10 nm thick NiPt film.
  • FIG. 5D the process of FIG. 5D is performed.
  • heat treatment is performed to form the metal silicide layer 121 on the gate electrode 102, the S / D region 122, and the S / D region 115.
  • the semiconductor device 130 having the CMOS transistor is manufactured. Its features and the like are as already described.
  • MOS transistors have been described as examples. However, the present invention is not limited to MOS transistors, and can be applied to MIS transistors.
  • the technology of the present disclosure is a PMOS transistor that uses a silicon germanium layer as a source / drain region, can improve channel portion mobility and reduce leakage current, and can achieve a fine MIS transistor with a gate width of, for example, 40 nm or less. It is also useful as a semiconductor device having the same and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

Disclosed is a semiconductor device (120) provided with a P-channel transistor that includes source and drain regions (122), which are formed on surface portions of a semiconductor substrate (100), and a gate electrode (102), which is formed on a channel-forming region sandwiched between the source and drain regions by having a gate insulating film (101) between the channel-forming region and the gate electrode. On both the sides of the gate electrode (102), recesses are formed in the semiconductor substrate (100), and the recesses are respectively provided with: first epitaxial layers (111) composed of SiGe; second epitaxial layers (112), which are formed on the first epitaxial layers and are composed of Si; and third epitaxial layers (113), which are formed on the second epitaxial layers, are composed of SiGe, and sandwich the channel forming region. The source and the drain regions (122) are formed in the third epitaxial layers (113), respectively, and the junction depth in each region is less than the depth of the third epitaxial layer (133).

Description

半導体装置とその製造方法Semiconductor device and manufacturing method thereof
 本開示は、半導体装置及びその製造方法に関し、特に、SiGeエピタキシャル膜をソース・ドレイン領域に備えたPチャネル型トランジスタを有する半導体装置及びその製造方法に関するものである。 The present disclosure relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a P-channel transistor having a SiGe epitaxial film in a source / drain region and a manufacturing method thereof.
 近年の半導体装置における大容量化は著しい。MOS(Metal Oxide Semiconductor )トランジスタの微細化も進展し、ゲート電極の幅が40nm以下になろうとしている。また、高速化に対応して、トランジスタのチャネル形成領域(基板におけるチャネルが形成される領域)にストレスを印加することにより駆動力を上げる歪技術も既に実用化されている。 The recent increase in capacity of semiconductor devices is remarkable. With the progress of miniaturization of MOS (Metal-Oxide-Semiconductor) transistors, the width of the gate electrode is about to be 40 nm or less. In addition, a distortion technique for increasing driving force by applying stress to a channel formation region of a transistor (a region where a channel is formed in a substrate) of a transistor has already been put into practical use in response to the increase in speed.
 歪技術によると、トランジスタのチャネル形成領域に歪を導入することにより、チャネル形成領域のバンド構造が変化する。その結果、チャネル形成領域におけるキャリアの有効質量が変化してバンド占有率の変化等が起こり、チャネル部移動度が変化する。 According to the strain technology, by introducing strain into the channel formation region of the transistor, the band structure of the channel formation region changes. As a result, the effective mass of carriers in the channel formation region changes, causing a change in band occupancy, and the channel portion mobility changes.
 チャネル形成領域に歪を入れるには、チャネル形成領域に応力(ストレス)を印加する必要がある。印加するべき応力の方向は、NMOS(n-channel MOS)とPMOS(p-channel MOS)とでは異なる。具体的に、チャネル方向に一軸で応力を印加する場合、NMOSでは引張り応力、PMOSでは圧縮応力を印加する必要があることが知られている。 To apply strain to the channel formation region, it is necessary to apply stress to the channel formation region. The direction of the stress to be applied differs between NMOS (n-channel MOS) and PMOS (p-channel MOS). Specifically, it is known that when uniaxial stress is applied in the channel direction, it is necessary to apply tensile stress in NMOS and compressive stress in PMOS.
 このうち、PMOSトランジスタにおけるキャリアの移動度を劇的に上げる歪技術として、基板におけるチャネル形成領域(ゲート電極下方)の両側のソースドレイン(S/D)領域に埋め込むように、シリコンよりも大きい格子定数を持つシリコンゲルマニウム膜をエピタキシャル成長により成膜する方法が提案されている(非特許文献1)。 Among these, as a distortion technique for dramatically increasing the carrier mobility in the PMOS transistor, a lattice larger than silicon so as to be embedded in the source / drain (S / D) regions on both sides of the channel formation region (below the gate electrode) in the substrate. A method of forming a silicon germanium film having a constant by epitaxial growth has been proposed (Non-Patent Document 1).
 この方法によると、ゲート電極下方のチャネル形成領域に対し、側方から、格子定数差に起因する圧縮応力を印加することができる。チャネル形成領域に印加される圧縮応力は、シリコンゲルマニウムに含まれるゲルマニウム濃度が高いほど大きくなる。 According to this method, a compressive stress caused by a lattice constant difference can be applied from the side to the channel formation region below the gate electrode. The compressive stress applied to the channel formation region increases as the concentration of germanium contained in silicon germanium increases.
 しかしながら、以上に説明した構造のMOSトランジスタにおいて、予想されたほどにはチャネル部移動度が上がらず、トランジスタの駆動力も上がらない例が見られる。更に、リーク電流が増加する傾向もある。そこで、これらの点の解決が課題となる。 However, in the MOS transistor having the structure described above, there is an example in which the channel mobility does not increase as expected and the driving power of the transistor does not increase. Furthermore, there is a tendency that the leakage current increases. Therefore, the solution of these points becomes a problem.
 以上に鑑み、SiGeエピタキシャル層を用いてチャネル形成領域に圧縮応力を印加する構成のトランジスタにおいて、チャネル部移動度の向上をより確実にすること、リーク電流を抑制することができる半導体装置及びその製造方法を提供することについて以下に説明する。 In view of the above, in a transistor having a structure in which compressive stress is applied to a channel formation region using a SiGe epitaxial layer, a semiconductor device capable of further improving channel portion mobility and suppressing leakage current and its manufacture Providing a method is described below.
 本願発明者らは、前記のように予想に比べてチャネル部移動度が向上しない理由及びリーク電流が増加する理由について検討した。これを以下に説明する。 The inventors of the present application examined the reason why the channel portion mobility is not improved as compared with the expectation and the reason why the leakage current increases. This will be described below.
 図6に、半導体基板10上にサイドウォール13を伴うゲート電極12が形成され、ゲート電極12側方のS/D領域の部分にはエピタキシャル成長によるシリコンゲルマニウム(SiGe)膜11が埋め込まれた構造を示す。 FIG. 6 shows a structure in which a gate electrode 12 with a sidewall 13 is formed on a semiconductor substrate 10 and a silicon germanium (SiGe) film 11 is buried in an S / D region on the side of the gate electrode 12 by epitaxial growth. Show.
 Si基板(半導体基板10)上にSiGe結晶をエピタキシャル成長させるとき、歪エネルギーの増大に伴う結晶欠陥14が発生する(非特許文献2)。このような結晶欠陥の発生無しに成長できるSiGeエピタキシャル膜厚は臨界膜厚と呼ばれる。臨界膜厚は、Ge濃度が高いほど薄くなる。具体例として、Ge濃度が30atom%程度のSiGe層について、図7に膜厚と格子緩和(relaxation)の関係を示す。格子緩和は結晶欠陥が生じると大きくなるので、膜厚が80nm程度を越えると急に格子緩和が大きくなることから、臨界膜厚が80nm程度であると分かる。 When a SiGe crystal is epitaxially grown on a Si substrate (semiconductor substrate 10), a crystal defect 14 accompanying an increase in strain energy occurs (Non-patent Document 2). The SiGe epitaxial film thickness that can be grown without the occurrence of such crystal defects is called the critical film thickness. The critical film thickness decreases as the Ge concentration increases. As a specific example, FIG. 7 shows the relationship between film thickness and lattice relaxation for a SiGe layer having a Ge concentration of about 30 atom%. Since the lattice relaxation becomes large when crystal defects occur, the lattice relaxation suddenly increases when the film thickness exceeds about 80 nm, and it can be understood that the critical film thickness is about 80 nm.
 また、Si上に形成したSiGe結晶による圧縮応力を有効にチャネル形成領域へ印加するためには、PチャネルのS/D領域となる部分に、エッチングにより少なくともチャネル形成領域側方を含む深さのリセスを形成し、該リセスにSiGeエピタキシャル層を形成する。また、後工程によるサイドウォール横の基板掘れ等を防ぐために、SiGeエピタキシャル層を基板上にある程度の高さを有するように形成する。この結果、リセス部と基板上の部分とを合わせると、成長させるSiGeエピタキシャル層の膜厚は、80nm以上になる可能性がある。 Further, in order to effectively apply the compressive stress due to the SiGe crystal formed on Si to the channel formation region, the portion that becomes the S / D region of the P channel has a depth that includes at least the side of the channel formation region by etching. A recess is formed, and a SiGe epitaxial layer is formed in the recess. Further, in order to prevent a substrate digging beside the side wall in the subsequent process, the SiGe epitaxial layer is formed on the substrate so as to have a certain height. As a result, when the recess portion and the portion on the substrate are combined, the thickness of the SiGe epitaxial layer to be grown may be 80 nm or more.
 前記の通り、Ge濃度が30atom%以上で且つ膜厚が80nmになると、SiGe層に結晶欠陥が発生して応力が緩和する。この結果、チャネル形成領域に有効に圧縮応力を印加できなくなるという問題が発生する。 As described above, when the Ge concentration is 30 atom% or more and the film thickness is 80 nm, crystal defects are generated in the SiGe layer and the stress is relaxed. As a result, there arises a problem that compressive stress cannot be effectively applied to the channel formation region.
 また、リセス底面のSiGeとSiとの界面には、エピタキシャル成長前の洗浄、エピタキシャル成長中のH2 ベーク等では除去しきれないO(酸素)等の界面不純物がある。このような界面不純物は、SiGeエピタキシャル層に積層欠陥14を発生させる原因となる(図6を参照)。ここでの積層欠陥14はSiGe結晶層中を貫くので、SiGe結晶中に形成されるS/D接合界面についても貫き、接合リークの原因になる。 Further, at the interface between SiGe and Si on the bottom surface of the recess, there are interface impurities such as O (oxygen) that cannot be removed by cleaning before epitaxial growth, H 2 bake during epitaxial growth, or the like. Such interface impurities cause a stacking fault 14 in the SiGe epitaxial layer (see FIG. 6). Since the stacking fault 14 here penetrates the SiGe crystal layer, it also penetrates the S / D junction interface formed in the SiGe crystal, causing junction leakage.
 以上の検討結果から、本願発明者らは、チャネル形成領域を両側から挟む部分に積層欠陥等の無いSiGeエピタキシャル層を形成して応力の印加を確実にすることを着想した。更に、S/D接合界面を結晶欠陥の無い部分に位置させることにより、リーク電流を抑制することを着想した。 From the above examination results, the inventors of the present application have conceived that a SiGe epitaxial layer having no stacking fault or the like is formed in a portion sandwiching the channel formation region from both sides to ensure the application of stress. Furthermore, the inventors conceived of suppressing the leakage current by positioning the S / D junction interface in a portion free from crystal defects.
 具体的に、本開示に係る半導体装置は、半導体基板の表面部に形成されたソース領域及びドレイン領域と、これらに挟まれたチャネル形成領域上にゲート絶縁膜を介して形成されたゲート電極とを含むPチャネル型トランジスタを備え、ゲート電極の両側それぞれにおいて半導体基板にリセスが形成され、リセスに、シリコンゲルマニウムからなる第1エピタキシャル層と、その上に形成され且つシリコンからなる第2エピタキシャル層と、その上に形成され且つシリコンゲルマニウムからなり、チャネル形成領域を挟む第3エピタキシャル層とを備え、ソース領域及びドレイン領域は、第3エピタキシャル層中に形成され、且つ、それぞれの接合深さがいずれも第3エピタキシャル層の深さよりも浅い。 Specifically, a semiconductor device according to the present disclosure includes a source region and a drain region formed on a surface portion of a semiconductor substrate, and a gate electrode formed on a channel formation region sandwiched between these via a gate insulating film. A recess formed in the semiconductor substrate on each side of the gate electrode, and a recess formed in the first epitaxial layer made of silicon germanium, and a second epitaxial layer made of silicon and formed thereon And a third epitaxial layer made of silicon germanium and sandwiching the channel formation region. The source region and the drain region are formed in the third epitaxial layer, and each junction depth is Is shallower than the depth of the third epitaxial layer.
 このような半導体装置によると、ゲート電極両側のリセスに形成されたエピタキシャル層、特に、シリコンゲルマニウム(SiGe)からなり且つチャネル形成領域を挟んでいる第3エピタキシャル層により、チャネル形成領域に対して圧縮応力を印加することができる。 According to such a semiconductor device, the channel formation region is compressed by the epitaxial layer formed in the recesses on both sides of the gate electrode, particularly the third epitaxial layer made of silicon germanium (SiGe) and sandwiching the channel formation region. Stress can be applied.
 この際、第3エピタキシャル層については、後述の理由により、積層欠陥及び格子緩和の発生が抑制されている。よって、チャネル形成領域に対して確実に圧縮応力を印加することができ、チャネル部移動度を向上することができる。また、ソース領域及びドレイン領域の接合深さが第3エピタキシャル層の深さよりも浅いことから、S/D接合界面には、リーク電流の原因となる結晶欠陥が無いようにすることができる。この結果、リーク電流を低減することができる。 At this time, with respect to the third epitaxial layer, generation of stacking faults and lattice relaxation is suppressed for the reason described later. Therefore, a compressive stress can be reliably applied to the channel formation region, and the channel portion mobility can be improved. Further, since the junction depth of the source region and the drain region is shallower than the depth of the third epitaxial layer, the S / D junction interface can be made free of crystal defects that cause a leakage current. As a result, leakage current can be reduced.
 第3エピタキシャル層において積層欠陥及び格子緩和の発生が抑制されている理由は、次の通りである。 The reason why the generation of stacking faults and lattice relaxation is suppressed in the third epitaxial layer is as follows.
 まず、第1エピタキシャル層には、例えばリセスの底面(半導体基板と第1エピタキシャル層との界面)におけるO等の界面不純物に起因して、積層欠陥等の結晶欠陥が生じやすい。しかしながら、第1エピタキシャル層上にシリコンからなる第2エピタキシャル層を形成することにより、第2エピタキシャル層中において前記の結晶欠陥を吸収し、第2エピタキシャル層の上面には結晶欠陥が存在しないようにすることができる。よって、第2エピタキシャル層上に形成される第3エピタキシャル層については、結晶欠陥の発生を抑制することができる。 First, in the first epitaxial layer, crystal defects such as stacking faults are likely to occur due to interface impurities such as O on the bottom surface of the recess (interface between the semiconductor substrate and the first epitaxial layer). However, by forming the second epitaxial layer made of silicon on the first epitaxial layer, the crystal defects are absorbed in the second epitaxial layer so that no crystal defects exist on the upper surface of the second epitaxial layer. can do. Therefore, generation of crystal defects can be suppressed for the third epitaxial layer formed on the second epitaxial layer.
 また、リセス内に3層のエピタキシャル層を設けることにより、チャネル形成領域を挟む主要な部分である第3エピタキシャル層の厚さを抑制し、臨界膜厚以下にすることができる。よって、第3エピタキシャル層における格子緩和の発生は抑制されている。 Also, by providing three epitaxial layers in the recess, the thickness of the third epitaxial layer, which is the main part sandwiching the channel formation region, can be suppressed, and the critical film thickness can be reduced. Therefore, the occurrence of lattice relaxation in the third epitaxial layer is suppressed.
 尚、ソース領域及びドレイン領域は、P型不純物が導入されることにより形成され、第1エピタキシャル層及び第2エピタキシャル層には、前記P型不純物が導入されていないことが好ましい。また、第3エピタキシャル層には、少なくともP型不純物濃度1×1018/cm3 以上である層が含まれていることが好ましい。 The source region and the drain region are preferably formed by introducing a P-type impurity, and the P-type impurity is preferably not introduced into the first epitaxial layer and the second epitaxial layer. The third epitaxial layer preferably includes a layer having a P-type impurity concentration of 1 × 10 18 / cm 3 or more.
 このようにすると、ソース領域及びドレイン領域の接合深さを確実に第3エピタキシャル層の深さよりも浅くすることができる。 In this way, the junction depth of the source region and the drain region can be surely made smaller than the depth of the third epitaxial layer.
 また、第3エピタキシャル層は、第2エピタキシャル層と第3エピタキシャル層との界面から、ソース領域又はドレイン領域の接合深さまでの範囲において、P型不純物濃度が0/cm3 から1×1018/cm3 にまで変化するP型不純物プロファイルを有することが好ましい。 The third epitaxial layer from the interface between the second epitaxial layer and the third epitaxial layer, in a range up to the junction depth of the source region or the drain region, a P-type impurity concentration 0 / cm 3 from 1 × 10 18 / It is preferable to have a P-type impurity profile that varies to cm 3 .
 ソース領域又はドレイン領域のS/D接合界面は、これらの領域を形成するための不純物濃度が1×1018/cm3 程度である面となる。そこで、該濃度となる位置を、第3エピタキシャル層の下面よりも浅い位置とすることにより、ソース領域及びドレイン領域を確実に第3エピタキシャル層内に配置することができる。 The S / D junction interface of the source region or the drain region is a surface having an impurity concentration of about 1 × 10 18 / cm 3 for forming these regions. Therefore, the source region and the drain region can be reliably arranged in the third epitaxial layer by setting the position where the concentration is to be shallower than the lower surface of the third epitaxial layer.
 また、第1エピタキシャル層は、25atom%以上のゲルマニウムを含むことが好ましい。また、第3エピタキシャル層は、30atom%以上のゲルマニウムを含むことが好ましい。 Moreover, it is preferable that the first epitaxial layer contains 25 atom% or more of germanium. The third epitaxial layer preferably contains 30 atom% or more of germanium.
 シリコンゲルマニウムからなるエピタキシャル層については、このようなゲルマニウム濃度とするのがよい。特に第3エピタキシャル層についてはチャネル形成領域に対する圧縮応力印加のために、このような濃度にするのがよい。 An epitaxial layer made of silicon germanium should have such a germanium concentration. In particular, the third epitaxial layer should have such a concentration in order to apply compressive stress to the channel formation region.
 また、第3エピタキシャル層は、第1エピタキシャル層よりも厚く、第1エピタキシャル層は、第2エピタキシャル層よりも厚いことが好ましい。 The third epitaxial layer is preferably thicker than the first epitaxial layer, and the first epitaxial layer is preferably thicker than the second epitaxial layer.
 チャネル形成領域に応力を印加するのは主に第3エピタキシャル層であるから、この層を厚くする必要がある。また、シリコンからなる第2エピタキシャル層については、第1エピタキシャル層における積層欠陥等を吸収することができるだけの膜厚が有れば良い。これらのことから、第1、第2及び第3のエピタキシャル層の膜厚について、前記のような関係になっているのがよい。 Since it is mainly the third epitaxial layer that applies stress to the channel formation region, it is necessary to increase the thickness of this layer. Further, the second epitaxial layer made of silicon only needs to have a film thickness that can absorb stacking faults and the like in the first epitaxial layer. For these reasons, the film thicknesses of the first, second, and third epitaxial layers are preferably in the relationship as described above.
 また、第1エピタキシャル層は、10nm以上の膜厚を有することが好ましい。これにより、リセスの底面を覆うシリコンゲルマニウム層とすることができる。 The first epitaxial layer preferably has a thickness of 10 nm or more. Thereby, it can be set as the silicon germanium layer which covers the bottom face of a recess.
 また、第2エピタキシャル層は、5nm以上で且つ20nm以下の膜厚を有することが好ましい。 The second epitaxial layer preferably has a film thickness of 5 nm or more and 20 nm or less.
 このような膜厚であれば、第1エピタキシャル層の積層欠陥等を吸収し、上面には結晶欠陥のない第2エピタキシャル層とすることができる。これにより、欠陥のない第3エピタキシャル層を形成するための下地として機能することができる。 With such a film thickness, a stacking fault or the like of the first epitaxial layer can be absorbed, and the second epitaxial layer having no crystal defect on the upper surface can be obtained. Thereby, it can function as a base for forming a defect-free third epitaxial layer.
 また、第3エピタキシャル層は、臨界膜厚以下の膜厚を有することが好ましい。 Further, the third epitaxial layer preferably has a film thickness equal to or less than the critical film thickness.
 これにより、第3エピタキシャル層を積層欠陥等のないシリコンゲルマニウム層として実現し、チャネル形成領域に効果的に圧縮応力を印加することができる。 Thereby, the third epitaxial layer can be realized as a silicon germanium layer without stacking faults, and compressive stress can be effectively applied to the channel forming region.
 第3エピタキシャル層は、半導体基板上面よりも上にも盛上がって形成されていることが好ましい。 The third epitaxial layer is preferably formed so as to rise above the upper surface of the semiconductor substrate.
 これにより、第3エピタキシャル層を形成した後の基板掘れを防ぐことができる。 Thereby, the substrate digging after the third epitaxial layer is formed can be prevented.
 また、Pチャネル型トランジスタに加えてNチャネル型トランジスタを更に備え、Nチャネル型トランジスタは、シリコンゲルマニウムからなる領域を備えないことが好ましい。 Further, it is preferable that an N-channel transistor is further provided in addition to the P-channel transistor, and the N-channel transistor does not include a region made of silicon germanium.
 つまり、以上に説明した構成のPチャネル型トランジスタ(PMOS)と共にNチャネル型トランジスタ(NMOS)を備えるCMOS(complementary MOS)であることが好ましい。また、NMOSについては、チャネル形成領域に圧縮応力を印加してもチャネル部移動度は向上せず、むしろ低下する。そこで、NMOSについては、シリコンゲルマニウムからなる領域を設けない方が良い。 That is, a CMOS (complementary MOS) including an N-channel transistor (NMOS) together with a P-channel transistor (PMOS) having the configuration described above is preferable. In addition, for NMOS, even if compressive stress is applied to the channel formation region, the channel portion mobility does not improve, but rather decreases. Therefore, for NMOS, it is better not to provide a region made of silicon germanium.
 次に、本開示に係る半導体装置の製造方法は、Pチャネル型トランジスタを備える半導体装置の製造方法において、半導体基板上に、ゲート絶縁膜を介してゲート電極を形成する工程(a)と、ゲート電極の両側それぞれにおいて、半導体基板にリセスを形成する工程(b)と、リセス内にシリコンゲルマニウムからなる第1エピタキシャル層を形成する工程(c)と、第1エピタキシャル層上に、シリコンからなる第2エピタキシャル層を形成する工程(d)と、第2エピタキシャル層上に、ゲート電極下方のチャネル形成領域を挟むように、シリコンゲルマニウムからなる第3エピタキシャル層を形成する工程(e)とを備え、P型不純物の導入量を調整しながら工程(e)を行なうことにより、第3エピタキシャル層中に、接合深さが第3エピタキシャル層の深さよりも浅いソース領域及びドレイン領域を形成する。 Next, a manufacturing method of a semiconductor device according to the present disclosure includes a step (a) of forming a gate electrode on a semiconductor substrate via a gate insulating film in a manufacturing method of a semiconductor device including a P-channel transistor, and a gate A step (b) of forming a recess in the semiconductor substrate on each side of the electrode, a step (c) of forming a first epitaxial layer made of silicon germanium in the recess, and a first step made of silicon on the first epitaxial layer. A step (d) of forming two epitaxial layers, and a step (e) of forming a third epitaxial layer made of silicon germanium on the second epitaxial layer so as to sandwich a channel formation region below the gate electrode, By performing step (e) while adjusting the amount of P-type impurity introduced, the junction depth is increased in the third epitaxial layer. Forming a shallow source region and a drain region than the depth of the third epitaxial layer.
 このようにすると、既に説明した本開示の半導体基板を製造することができる。つまり、積層欠陥等の抑制されたSiGeからなる第3エピタキシャル層によりチャネル形成領域に圧縮応力を印加し、チャネル部移動度を向上することができ、且つ、S/D接合界面の欠陥が抑制されていることからリーク電流の抑制された半導体基板を製造することができる。 In this way, the semiconductor substrate of the present disclosure described above can be manufactured. That is, a compressive stress can be applied to the channel formation region by the third epitaxial layer made of SiGe in which stacking faults are suppressed, so that the channel portion mobility can be improved, and defects at the S / D junction interface are suppressed. Therefore, a semiconductor substrate in which leakage current is suppressed can be manufactured.
 尚、工程(c)及び工程(d)は、P型不純物を含ませることなくエピタキシャル成長により行なうことが好ましい。 In addition, it is preferable to perform a process (c) and a process (d) by epitaxial growth, without including a P-type impurity.
 また、工程(e)において、第3エピタキシャル層の成長に合わせてP型不純物の導入量を増加しながら第3エピタキシャル層を形成することにより、第2エピタキシャル層と第3エピタキシャル層との界面から、ソース領域又はドレイン領域の接合深さまでの範囲において、P型不純物濃度が0/cm3 から1×1018/cm3 にまで変化するP型不純物プロファイルを得ることが好ましい。 Further, in the step (e), by forming the third epitaxial layer while increasing the introduction amount of the P-type impurity in accordance with the growth of the third epitaxial layer, the interface between the second epitaxial layer and the third epitaxial layer is formed. It is preferable to obtain a P-type impurity profile in which the P-type impurity concentration varies from 0 / cm 3 to 1 × 10 18 / cm 3 in the range up to the junction depth of the source region or the drain region.
 このようにすると、第1及び第2エピタキシャル層についてはP型不純物を含まず、また、第3エピタキシャル層内にP型不純物が導入されたソース領域及びドレイン領域を有する半導体装置とすることができる。 In this case, the first and second epitaxial layers do not contain P-type impurities, and a semiconductor device having a source region and a drain region in which P-type impurities are introduced into the third epitaxial layer can be obtained. .
 また、第3エピタキシャル層は、30%以上のゲルマニウムを含み且つ臨界膜厚以下の膜厚を有することが好ましい。 The third epitaxial layer preferably contains 30% or more germanium and has a film thickness equal to or less than the critical film thickness.
 これにより、Ge濃度が比較的高く且つ格子緩和がないことから、チャネル形成領域に確実に圧縮応力を印加できる第3のエピタキシャル層とすることができる。 Thereby, since the Ge concentration is relatively high and there is no lattice relaxation, a third epitaxial layer that can reliably apply compressive stress to the channel formation region can be obtained.
 また、工程(e)の後に、第3エピタキシャル層上に金属膜を形成すると共に熱処理を行なって金属シリサイドを形成する工程を更に備えることが好ましい。 Moreover, it is preferable to further include a step of forming a metal silicide on the third epitaxial layer and performing a heat treatment after the step (e) to form a metal silicide.
 このようにすると、金属シリサイド層を有する半導体装置を製造することができる。 In this way, a semiconductor device having a metal silicide layer can be manufactured.
 また、工程(a)の後、工程(b)の前に、ゲート電極の側壁を覆うオフセットサイドウォールを形成する工程と、ゲート電極及びオフセットサイドウォールをマスクとするイオン注入によりエクステンション領域を形成する工程と、オフセットサイドウォールの側壁を覆い且つゲート電極と同じ高さのサイドウォールを形成する工程とを更に備えることが好ましい。 Further, after step (a) and before step (b), an extension region is formed by a step of forming an offset sidewall covering the side wall of the gate electrode and ion implantation using the gate electrode and the offset sidewall as a mask. Preferably, the method further includes a step and a step of covering the side wall of the offset sidewall and forming a sidewall having the same height as the gate electrode.
 オフセットサイドウォール、サイドウォール、エクステンション領域等を更に備えるPチャネル型トランジスタを形成するために、このようにしてもよい。 This may be done in order to form a P-channel transistor further comprising offset sidewalls, sidewalls, extension regions, and the like.
 また、Pチャネル型トランジスタに加えてNチャネル型トランジスタを形成し、Nチャネル型トランジスタは、シリコンゲルマニウム領域を備えない構成であることが好ましい。 Further, it is preferable that an N-channel transistor is formed in addition to the P-channel transistor, and the N-channel transistor does not have a silicon germanium region.
 これにより、チャネル形成領域に圧縮応力を印加しないNチャネル型トランジスタを更に備えるPMOSを実現することができる。 Thereby, it is possible to realize a PMOS that further includes an N-channel transistor that does not apply compressive stress to the channel formation region.
 尚、以上ではMOSトランジスタとして説明しているが、MIS(metal-insulator-semiconductor )トランジスタに適用することも可能である。 In addition, although it demonstrated as a MOS transistor above, it is also possible to apply to a MIS (metal-insulator-semiconductor) transistor.
 本開示の半導体装置によると、シリコンゲルマニウムからなる第1エピタキシャル層における積層欠陥等をシリコンからなる第2エピタキシャル層により吸収し、第3エピタキシャル層には及ばないようにしている。更に、ソース領域及びドレイン領域について、第3エピタキシャル層の深さよりも浅く形成し、S/D接合界面には欠陥がないようになっている。これにより、チャネル形成領域に効果的に圧縮応力を印加してチャネル部移動度を向上すると共に、S/D接合界面における欠陥に起因するリーク電流を低減することができる。 According to the semiconductor device of the present disclosure, stacking faults and the like in the first epitaxial layer made of silicon germanium are absorbed by the second epitaxial layer made of silicon and do not reach the third epitaxial layer. Furthermore, the source region and the drain region are formed to be shallower than the depth of the third epitaxial layer so that there is no defect at the S / D junction interface. As a result, compressive stress is effectively applied to the channel formation region to improve channel portion mobility, and leakage current due to defects at the S / D junction interface can be reduced.
図1は、本開示の第1の実施形態における例示的半導体装置の要部断面を説明する図である。FIG. 1 is a diagram illustrating a cross-section of the main part of an exemplary semiconductor device according to the first embodiment of the present disclosure. 図2(a)~(f)は、図1の半導体装置の製造工程を説明する図である。2 (a) to 2 (f) are diagrams for explaining a manufacturing process of the semiconductor device of FIG. 図3は、本開示の第2の実施形態における例示的半導体装置の要部断面を説明する図である。FIG. 3 is a diagram illustrating a cross-section of the main part of an exemplary semiconductor device according to the second embodiment of the present disclosure. 図4(a)~(e)は、図3の半導体装置の製造工程を説明する図である。4 (a) to 4 (e) are diagrams for explaining a manufacturing process of the semiconductor device of FIG. 図5(a)~(d)は、図4(e)に続いて、図3の半導体装置の製造工程を説明する図である。5 (a) to 5 (d) are diagrams for explaining the manufacturing process of the semiconductor device of FIG. 3 following FIG. 4 (e). 図6は、ゲート電極の側方において半導体基板に埋め込まれたシリコンゲルマニウム層について、積層欠陥の例を示す図である。FIG. 6 is a diagram illustrating an example of stacking faults in the silicon germanium layer embedded in the semiconductor substrate on the side of the gate electrode. 図7は、30atom%のゲルマニウムを含むシリコンゲルマニウム層について、格子緩和の膜厚依存性を示す図である。FIG. 7 is a diagram showing the film thickness dependence of lattice relaxation for a silicon germanium layer containing 30 atom% germanium.
 以下、本開示の実施形態について、図面を参照しながら説明する。尚、各構成要素の材料及び寸法、各種処理の条件等はいずれも例示するものであり、記載内容には限定されない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that the materials and dimensions of each component, the conditions for various treatments, etc. are only examples, and are not limited to the description.
  (第1の実施形態)
 図1は、第1の実施形態における例示的半導体装置120が備えるPMOSトランジスタの断面構造を模式的に示す図である。
(First embodiment)
FIG. 1 is a diagram schematically illustrating a cross-sectional structure of a PMOS transistor included in the exemplary semiconductor device 120 according to the first embodiment.
 図1に示す通り、半導体装置120は、N型の半導体基板100を用いて形成されている。半導体基板100上に、SiO2 からなるゲート絶縁膜101を介し、ポリシリコンからなるゲート電極102が形成されている。ゲート電極102上には、金属シリサイド層121が形成されている。 As shown in FIG. 1, the semiconductor device 120 is formed using an N-type semiconductor substrate 100. A gate electrode 102 made of polysilicon is formed on the semiconductor substrate 100 with a gate insulating film 101 made of SiO 2 interposed therebetween. A metal silicide layer 121 is formed on the gate electrode 102.
 ゲート電極102の側壁を覆うように、SiO2 等からなるオフセットサイドウォール104が形成されている。また、ゲート電極102の両側において、半導体基板100にエクステンション領域105が形成されている。更に、オフセットサイドウォール104の側壁及びエクステンション領域105上を覆うように、L字型の断面を有し且つSiO2 からなる第1のサイドウォール106が形成されると共に、第1のサイドウォール106を覆い且つSiNからなる第2のサイドウォール107が形成されている。 An offset sidewall 104 made of SiO 2 or the like is formed so as to cover the side wall of the gate electrode 102. In addition, extension regions 105 are formed in the semiconductor substrate 100 on both sides of the gate electrode 102. Further, a first sidewall 106 having an L-shaped cross section and made of SiO 2 is formed so as to cover the sidewall of the offset sidewall 104 and the extension region 105, and the first sidewall 106 is A second sidewall 107 made of SiN is formed.
 また、ゲート電極102の両側において、半導体基板100にはエッチング等によりリセスが設けられ、該リセスに3層のエピタキシャル層が積層されている。 Further, on both sides of the gate electrode 102, the semiconductor substrate 100 is provided with a recess by etching or the like, and three epitaxial layers are laminated on the recess.
 より詳しくは、まず、リセスの底面を覆うように、膜厚が少なくとも10nmの第1エピタキシャル層111が形成されている。これは、ゲルマニウム濃度が25atom%以上のシリコンゲルマニウム(SiGe)からなり、B等のP型不純物はドープされていない。 More specifically, first, a first epitaxial layer 111 having a thickness of at least 10 nm is formed so as to cover the bottom surface of the recess. This is made of silicon germanium (SiGe) having a germanium concentration of 25 atom% or more, and is not doped with a P-type impurity such as B.
 第1エピタキシャル層111上には、膜厚が5nm以上で且つ20nm以下の第2エピタキシャル層112が形成されている。これは、ゲルマニウムを含まないシリコンからなり、B等のP型不純物はドープされていない。 On the first epitaxial layer 111, a second epitaxial layer 112 having a thickness of 5 nm or more and 20 nm or less is formed. This is made of silicon not containing germanium, and is not doped with P-type impurities such as B.
 第2エピタキシャル層112上には、膜厚が50nm程度の第3エピタキシャル層113が形成されている。これは、ゲルマニウム濃度が30atom%以上のシリコンゲルマニウムからなる。 On the second epitaxial layer 112, a third epitaxial layer 113 having a thickness of about 50 nm is formed. This is made of silicon germanium having a germanium concentration of 30 atom% or more.
 第3エピタキシャル層113中には、B等のP型不純物がドープされ、ゲート電極102下方のチャネル形成領域を挟むS/D(ソース/ドレイン)領域122が形成されている(ゲート電極102両側の第3エピタキシャル層113のうち一方にソース領域、他方にドレイン領域が形成されている)。ここで、第2エピタキシャル層112と第3エピタキシャル層113との界面には、P型不純物は含まれていない。該界面から第3エピタキシャル層113の浅い側に向かってP型不純物の濃度が次第に増加し、最上部では、例えば、1×1023/cm3 程度の濃度となっている。 In the third epitaxial layer 113, a P-type impurity such as B is doped to form S / D (source / drain) regions 122 sandwiching a channel formation region below the gate electrode 102 (on both sides of the gate electrode 102). A source region is formed in one of the third epitaxial layers 113, and a drain region is formed in the other). Here, the interface between the second epitaxial layer 112 and the third epitaxial layer 113 contains no P-type impurities. The concentration of the P-type impurity gradually increases from the interface toward the shallow side of the third epitaxial layer 113, and at the uppermost portion, for example, the concentration is about 1 × 10 23 / cm 3 .
 また、一般に不純物濃度が1×1018/cm3 程度の位置をS/D接合界面とする。この結果、本実施形態の構成において、S/D接合界面は、第2エピタキシャル層112と第3エピタキシャル層113との界面よりも上であり、第3エピタキシャル層113内に位置している。但し、他の濃度の位置を界面と考えることも可能である。 In general, a position where the impurity concentration is about 1 × 10 18 / cm 3 is defined as an S / D junction interface. As a result, in the configuration of the present embodiment, the S / D junction interface is above the interface between the second epitaxial layer 112 and the third epitaxial layer 113 and is located in the third epitaxial layer 113. However, it is also possible to consider other density positions as the interface.
 尚、S/D領域122上及びゲート電極102上には、金属シリサイド層121が形成されている。 A metal silicide layer 121 is formed on the S / D region 122 and the gate electrode 102.
 以上の構成によると、ゲート電極102の両側のリセスに埋め込んだSiGeからなるエピタキシャル層、特に、第3エピタキシャル層113により、チャネル形成領域に対して圧縮応力を印加することができる。ここで、後述の理由により、第3エピタキシャル層113については積層欠陥及び格子緩和の発生が抑制されている。このことから、チャネル形成領域に対して確実に圧縮応力を印加し、チャネル部移動度を向上することができる。また、S/D領域122の接合深さ(S/D接合界面の深さ)が第3エピタキシャル層113の深さよりも浅いことから、S/D接合界面は、リーク電流の原因になる積層欠陥等の無い領域に位置している。よって、リーク電流が低減されている。 According to the above configuration, the compressive stress can be applied to the channel formation region by the epitaxial layer made of SiGe embedded in the recesses on both sides of the gate electrode 102, particularly the third epitaxial layer 113. Here, the generation of stacking faults and lattice relaxation is suppressed for the third epitaxial layer 113 for reasons described later. From this, it is possible to reliably apply a compressive stress to the channel formation region and improve the channel portion mobility. Further, since the junction depth of the S / D region 122 (the depth of the S / D junction interface) is shallower than the depth of the third epitaxial layer 113, the S / D junction interface has a stacking fault that causes a leakage current. It is located in the area where there is no etc. Therefore, the leakage current is reduced.
 図1には、半導体装置120の構造に合わせて、S/D領域122を構成するために導入されたP型不純物のプロファイルを例示している。図中に示す通り、第2エピタキシャル層112と第3エピタキシャル層113との界面の深さD1においてP型不純物濃度は0である。また、P型不純物濃度が1×1018/cm3 程度となるS/D接合界面の深さD2は、D1よりも浅い位置にある。深さD2から、第3エピタキシャル層113の最上部に向けて、P型不純物濃度は更に上昇する。 FIG. 1 illustrates a profile of a P-type impurity introduced to configure the S / D region 122 in accordance with the structure of the semiconductor device 120. As shown in the drawing, the P-type impurity concentration is 0 at the interface depth D1 between the second epitaxial layer 112 and the third epitaxial layer 113. Further, the depth D2 of the S / D junction interface at which the P-type impurity concentration is about 1 × 10 18 / cm 3 is at a position shallower than D1. The P-type impurity concentration further increases from the depth D2 toward the top of the third epitaxial layer 113.
 次に、第3エピタキシャル層113において積層欠陥及び格子緩和の発生が抑制されている理由を説明する。 Next, the reason why the generation of stacking faults and lattice relaxation in the third epitaxial layer 113 is suppressed will be described.
 まず、第1エピタキシャル層111には、リセスの底面(半導体基板100と第1エピタキシャル層111との界面)の界面不純物(例えば酸素)等に起因して、積層欠陥等の結晶欠陥が生じやすい。しかしながら、第1エピタキシャル層111上に、シリコンからなる第2エピタキシャル層112を形成することにより、前記の結晶欠陥を吸収することができる。つまり、第1エピタキシャル層111に結晶欠陥があったとしても、一定の厚さを有する第2エピタキシャル層112の上面においては、欠陥のない面となっている。よって、第2エピタキシャル層112上に形成される第3エピタキシャル層113については、第1エピタキシャル層111における結晶欠陥の影響を避けることができる。 First, the first epitaxial layer 111 is likely to have crystal defects such as stacking faults due to interface impurities (for example, oxygen) on the bottom surface of the recess (interface between the semiconductor substrate 100 and the first epitaxial layer 111). However, the crystal defects can be absorbed by forming the second epitaxial layer 112 made of silicon on the first epitaxial layer 111. That is, even if there is a crystal defect in the first epitaxial layer 111, the upper surface of the second epitaxial layer 112 having a certain thickness is a surface having no defect. Therefore, the third epitaxial layer 113 formed on the second epitaxial layer 112 can avoid the influence of crystal defects in the first epitaxial layer 111.
 また、リセス内に3層のエピタキシャル層を設けることにより、チャネル形成領域を挟む主要な部分である第3エピタキシャル層113の厚さを抑制し、臨界膜厚以下にすることができる。この結果、第3エピタキシャル層における格子緩和の発生は抑制されている。尚、この例では、ゲルマニウム濃度が30atom%であるから臨界膜厚は80nm程度であり、これよりも薄い第3エピタキシャル層113としている。 Also, by providing three epitaxial layers in the recess, the thickness of the third epitaxial layer 113, which is the main part sandwiching the channel formation region, can be suppressed, and the critical film thickness can be reduced. As a result, the occurrence of lattice relaxation in the third epitaxial layer is suppressed. In this example, since the germanium concentration is 30 atom%, the critical film thickness is about 80 nm, and the third epitaxial layer 113 is thinner than this.
 次に、半導体装置120の製造方法について、その工程を模式的に示す断面図である図2(a)~(f)を参照して説明する。 Next, a method for manufacturing the semiconductor device 120 will be described with reference to FIGS. 2A to 2F which are cross-sectional views schematically showing the process.
 まず、図2(a)の工程を行なう。ここでは、半導体基板100上に、例えばSiO2 からなるゲート絶縁膜101を形成する。その上にポリシリコン膜及びSiO2 膜を順に積層した後、マスク(図示せず)形成してエッチングによりゲート電極102とその上のSiO2 膜103とする。 First, the process of FIG. Here, a gate insulating film 101 made of, for example, SiO 2 is formed on the semiconductor substrate 100. A polysilicon film and an SiO 2 film are sequentially stacked thereon, a mask (not shown) is formed, and the gate electrode 102 and the SiO 2 film 103 thereon are formed by etching.
 次に、SiO2 膜を更に形成して半導体基板100上、ゲート電極102側面及びSiO2 膜103上を覆い、エッチバックして、ゲート電極102の側壁にオフセットサイドウォール104を形成する。 Next, an SiO 2 film is further formed to cover the semiconductor substrate 100, the side surface of the gate electrode 102 and the SiO 2 film 103, and etched back to form an offset sidewall 104 on the side wall of the gate electrode 102.
 次に、ゲート電極102、オフセットサイドウォール104等をマスクとするイオン注入を行ない、ゲート電極102両側において半導体基板100表面付近にエクステンション領域105を形成する。 Next, ion implantation is performed using the gate electrode 102, the offset sidewall 104, etc. as a mask, and extension regions 105 are formed near the surface of the semiconductor substrate 100 on both sides of the gate electrode 102.
 尚、ゲート絶縁膜101は、SiO2 に代えて、HfSiO等の高誘電体によって形成しても良い。また、ゲート電極102は、ポリシリコンからなる単層構造に代えて、TiN等のメタルとポリシリコンの積層構造としても良い。 The gate insulating film 101 may be formed of a high dielectric material such as HfSiO instead of SiO 2 . Further, the gate electrode 102 may have a laminated structure of a metal such as TiN and polysilicon instead of the single layer structure made of polysilicon.
 続いて、図2(b)の工程を行なう。まず、オフセットサイドウォール104、SiO2 膜103を介してゲート電極102を覆うようにSiO2 膜を形成し、更に該SiO2 膜を覆うようにシリコン窒化膜を形成する。次に、ドライエッチングを行ない、ゲート電極102の側壁及びエクステンション領域105上を覆うL字型の断面を有する第1のサイドウォール106と、その上を覆う第2のサイドウォール107とを形成する。 Subsequently, the process of FIG. 2B is performed. First, a SiO 2 film is formed so as to cover the gate electrode 102 via the offset sidewall 104 and the SiO 2 film 103, and further a silicon nitride film is formed so as to cover the SiO 2 film. Next, dry etching is performed to form a first sidewall 106 having an L-shaped cross section covering the sidewall of the gate electrode 102 and the extension region 105, and a second sidewall 107 covering the top.
 続いて、図2(c)の工程を行なう。ここでは、半導体基板100、第2のサイドウォール107、SiO2 膜103等を覆うように、エピタキシャルカバー膜108を形成する。エピタキシャルカバー膜108は、ゲート電極102上のSiO2 膜103よりも膜密度が低く、例えば400℃以下の低温にて成膜できるSiO2 膜として形成する。 Subsequently, the process of FIG. Here, the epitaxial cover film 108 is formed so as to cover the semiconductor substrate 100, the second sidewall 107, the SiO 2 film 103, and the like. Epitaxial cover film 108, the film density than the SiO 2 film 103 on the gate electrode 102 is low, to form a SiO 2 film can be formed, for example, by a low temperature of 400 ° C. or less.
 続いて、図2(d)の工程を行なう。ここでは、エピタキシャルカバー膜108上に、ゲート電極102及びその両側の領域が開口されたレジスト109を形成する。次に、レジスト109をマスクとして、前記開口部分のエピタキシャルカバー膜108を除去する。これにより、SiGeからなるエピタキシャル層を埋め込む部分の半導体基板100が露出される。 Subsequently, the process of FIG. 2D is performed. Here, a resist 109 having a gate electrode 102 and regions on both sides thereof is formed on the epitaxial cover film 108. Next, the epitaxial cover film 108 in the opening is removed using the resist 109 as a mask. As a result, the portion of the semiconductor substrate 100 in which the epitaxial layer made of SiGe is embedded is exposed.
 続いて、図2(e)の工程を行なう。ここでは、レジスト109を除去した後、エピタキシャルカバー膜108をマスクとして、ドライエッチング及びウェットエッチングのいずれか一方又は両方を用い、半導体基板100に例えば深さ60nm以上のリセス110を設ける。 Subsequently, the process of FIG. 2E is performed. Here, after removing the resist 109, the epitaxial cover film 108 is used as a mask, and either or both of dry etching and wet etching are used to provide the semiconductor substrate 100 with a recess 110 having a depth of 60 nm or more, for example.
 続いて、図2(f)の工程を行なう。ここでは、リセス110内に、3層のエピタキシャル層を順次形成する。 Subsequently, the process of FIG. 2 (f) is performed. Here, three epitaxial layers are sequentially formed in the recess 110.
 まず、リセスの底部を覆うように、25atom%以上のゲルマニウムを含むSiGeからなる第1エピタキシャル層111を形成する。これは、650℃以下で且つ水素雰囲気において、エピタキシャル成長によって10nm以上の膜厚に成膜する。この際、B等のP型不純物のドープは行なわない。 First, a first epitaxial layer 111 made of SiGe containing germanium of 25 atom% or more is formed so as to cover the bottom of the recess. This is formed at a film thickness of 10 nm or more by epitaxial growth in a hydrogen atmosphere at 650 ° C. or lower. At this time, doping of P-type impurities such as B is not performed.
 より具体的な成膜の条件として、例えば、温度650℃、水素雰囲気(10Torr(1.33×103 Pa))、ガス流量DCS/GeH4 /HCl/H2 =20/16/35/10000sccm(sccmは、0℃で且つ一気圧におけるml/分を表す)とする。尚、水素はキャリアガスである。これにより、ゲルマニウム濃度が25atom%のシリコンゲルマニウムからなる第1エピタキシャル層111を成膜することができる。 More specific film forming conditions include, for example, a temperature of 650 ° C., a hydrogen atmosphere (10 Torr (1.33 × 10 3 Pa)), a gas flow rate DCS / GeH 4 / HCl / H 2 = 20/16/35/10000 sccm. (Sccm represents ml / min at 0 ° C. and 1 atm). Hydrogen is a carrier gas. Thereby, the first epitaxial layer 111 made of silicon germanium having a germanium concentration of 25 atom% can be formed.
 次に、第1エピタキシャル層111上に、連続して、シリコンからなりゲルマニウムを含まない第2エピタキシャル層112を形成する。これは、第1エピタキシャル層111に生じた結晶欠陥を吸収し、上面には結晶欠陥が現れないようにするために必要な程度の膜厚に形成する。本実施形態の例としては、膜厚5nm以上で且つ20nm以下とする。成膜にはエピタキシャル成長を用い、B等のP型不純物のドープは行なわない。成膜条件の一例を挙げると、温度650℃、水素雰囲気(10Torr(1.33×103 Pa))、ガス流量SiH4 /HCl/H2 =30/35/10000sccmである。 Next, a second epitaxial layer 112 made of silicon and not containing germanium is formed on the first epitaxial layer 111 continuously. This film is formed to a thickness necessary for absorbing crystal defects generated in the first epitaxial layer 111 and preventing the crystal defects from appearing on the upper surface. As an example of this embodiment, the film thickness is 5 nm or more and 20 nm or less. Epitaxial growth is used for film formation, and P-type impurities such as B are not doped. As an example of film formation conditions, the temperature is 650 ° C., the hydrogen atmosphere (10 Torr (1.33 × 10 3 Pa)), and the gas flow rate is SiH 4 / HCl / H 2 = 30/35/10000 sccm.
 この後、更に連続して、第2エピタキシャル層112上に、30atm%以上のゲルマニウムを含むSiGeからなる第3エピタキシャル層113を形成する。これは、少なくともゲート電極102下方のチャネル形成領域の両側に形成する。また、臨界膜厚以下とすることにより、格子緩和の発生を避ける。成膜条件の一例を挙げると、温度650℃、水素雰囲気(10Torr(1.33×103 Pa))、ガス流量DCS/GeH4 /HCl/H2 =30/24/60/10000sccmである。 Thereafter, a third epitaxial layer 113 made of SiGe containing germanium of 30 atm% or more is formed on the second epitaxial layer 112 further continuously. This is formed at least on both sides of the channel formation region below the gate electrode 102. In addition, the occurrence of lattice relaxation is avoided by setting the critical film thickness or less. As an example of the film forming conditions, the temperature is 650 ° C., the hydrogen atmosphere (10 Torr (1.33 × 10 3 Pa)), and the gas flow rate is DCS / GeH 4 / HCl / H 2 = 30/24/60/10000 sccm.
 第3エピタキシャル層113については、B等のP型不純物をドープする。B等のP型不純物の濃度プロファイルについては、第2エピタキシャル層112の直上においては濃度0であり、第3エピタキシャル層113内に設定されるS/D接合界面深さにおいて1×1018/cm3 となり、第3エピタキシャル層113の最上部において1×1023/cm3 程度となるような濃度プロファイルとする。ここで、S/D接合界面深さは、半導体基板100の上面から深さ30nm~50nmの領域に設定する。 The third epitaxial layer 113 is doped with a P-type impurity such as B. The concentration profile of P-type impurities such as B is 0 immediately above the second epitaxial layer 112 and 1 × 10 18 / cm at the S / D junction interface depth set in the third epitaxial layer 113. 3 so that the concentration profile is about 1 × 10 23 / cm 3 at the top of the third epitaxial layer 113. Here, the S / D junction interface depth is set in a region having a depth of 30 nm to 50 nm from the upper surface of the semiconductor substrate 100.
 このような濃度プロファイルは、第3エピタキシャル層113をエピタキシャル成長する際に、Bの流量を調整することにより実現できる。具体例として、前記の成膜の条件により第3エピタキシャル層113を形成する際、材料ガスとしてBを更に用いる。成膜開始時にはB流量を0として、成膜の進行と共にB流量を増やして行く。設定したS/D接合界面深さにまで成膜が進行した時点でB流量が100sccmとなるように調整し、その後は160sccmとする。 Such a concentration profile can be realized by adjusting the flow rate of B 2 H 6 when the third epitaxial layer 113 is epitaxially grown. As a specific example, when forming the third epitaxial layer 113 under the above-described film formation conditions, B 2 H 6 is further used as a material gas. At the start of film formation, the B 2 H 6 flow rate is set to 0, and the B 2 H 6 flow rate is increased as the film formation proceeds. When the film formation proceeds to the set S / D junction interface depth, the flow rate of B 2 H 6 is adjusted to 100 sccm, and thereafter 160 sccm.
 このようにして、ゲート電極102の両側において半導体基板100に設けたリセス110に対し、3層のエピタキシャル層が形成される。 In this way, three epitaxial layers are formed on the recesses 110 provided on the semiconductor substrate 100 on both sides of the gate electrode 102.
 尚、第3エピタキシャル層113は、半導体基板100上に例えば20nm~30nm程度の高さに盛上がるように形成しても良い。後の工程において、埋め込まれているエピタキシャル層が削られ、サイドウォール横の基板掘れが生じる可能性がある。そこで、第3のエピタキシャル層113を予め半導体基板100よりも上にも盛上がって形成しておくことにより、エピタキシャル層が削られたとしても基板掘れが生じないようにすることが考えられる。 Note that the third epitaxial layer 113 may be formed on the semiconductor substrate 100 so as to rise to a height of, for example, about 20 nm to 30 nm. In a later process, the buried epitaxial layer may be scraped, and the substrate may be dug next to the sidewall. Therefore, it is conceivable that the third epitaxial layer 113 is formed so as to rise above the semiconductor substrate 100 in advance so that the substrate is not dug even if the epitaxial layer is shaved.
 この後、エピタキシャルカバー膜108と、ゲート電極102上のSiO2 膜103を除去する。更に、金属膜(例えば、膜厚10nmのNiPt)を形成した後に熱処理を行なうことにより、図1に示すように、ゲート電極102上及びS/D領域122上に金属シリサイド層121を形成する。 Thereafter, the epitaxial cover film 108 and the SiO 2 film 103 on the gate electrode 102 are removed. Further, after forming a metal film (for example, NiPt having a thickness of 10 nm), a metal silicide layer 121 is formed on the gate electrode 102 and the S / D region 122 as shown in FIG.
 以上のようにして、本実施形態の例示的半導体装置120が製造される。その特徴等については、既に説明した通りである。 As described above, the exemplary semiconductor device 120 of this embodiment is manufactured. Its features and the like are as already described.
 尚、以上では、第1エピタキシャル層111のゲルマニウム濃度が25atom%、第3エピタキシャル層113のゲルマニウム濃度が30atom%としている。しかしながら、これには限らない。ゲルマニウム濃度を高くするほど大きな圧縮応力を発生させることが可能になるが、臨界膜厚は小さくなり、格子緩和を避けるためには薄くする必要がある。よって、形成するPMOSトランジスタの寸法、必要な性能等に合わせてゲルマニウム濃度、膜厚等を設定すればよい。この際、第3エピタキシャル層の膜厚が臨界膜厚を越えないようにすることが必要である。 In the above, the germanium concentration of the first epitaxial layer 111 is 25 atom%, and the germanium concentration of the third epitaxial layer 113 is 30 atom%. However, this is not restrictive. A higher compressive stress can be generated as the germanium concentration is increased, but the critical film thickness is reduced, and it is necessary to reduce the thickness in order to avoid lattice relaxation. Therefore, the germanium concentration, the film thickness, and the like may be set in accordance with the size of the PMOS transistor to be formed, required performance, and the like. At this time, it is necessary that the thickness of the third epitaxial layer does not exceed the critical thickness.
  (第2の実施形態)
 図3は、第2の実施形態における例示的半導体装置130を説明する図である。
(Second Embodiment)
FIG. 3 is a diagram illustrating an exemplary semiconductor device 130 according to the second embodiment.
 半導体装置130は、半導体基板100を用いて形成されている。半導体基板100の表面はシャロートレンチ114によって区画され、PMOSトランジスタ及びCMOSトランジスタが形成されてCMOSトランジスタを構成している。 The semiconductor device 130 is formed using the semiconductor substrate 100. The surface of the semiconductor substrate 100 is partitioned by a shallow trench 114, and a PMOS transistor and a CMOS transistor are formed to constitute a CMOS transistor.
 ここで、PMOSトランジスタについては、第1の実施形態において説明したのと同様の構造を有する。つまり、ゲート絶縁膜101を介して形成され、オフセットサイドウォール104、第1のサイドウォール106及び第2のサイドウォール107を備えるゲート電極102の両側において、半導体基板100に3層のエピタキシャル層が埋め込まれ、そのうちの第3エピタキシャル層113内にS/D領域122が設けられた構造である。 Here, the PMOS transistor has the same structure as that described in the first embodiment. That is, three epitaxial layers are embedded in the semiconductor substrate 100 on both sides of the gate electrode 102 that is formed through the gate insulating film 101 and includes the offset sidewall 104, the first sidewall 106, and the second sidewall 107. In this structure, the S / D region 122 is provided in the third epitaxial layer 113.
 これにより、PMOSトランジスタにおいて、第1の実施形態にて説明したのと同様の特徴が実現する。つまり、チャネル形成領域には第3エピタキシャル層113によって圧縮応力が印加され、チャネル部移動度が向上している。このとき、シリコンからなる第2エピタキシャル層112によって、第1エピタキシャル層111における結晶欠陥等が吸収され、第3エピタキシャル層113については積層欠陥及び格子緩和の発生が抑制されている。このことから、圧縮応力の印加を確実に行なうことができる。更に、S/D接合界面は結晶欠陥のない部分に位置していることから、結晶欠陥に起因するリーク電流を避けることができ、リーク電流が低減されている。 This realizes the same characteristics as those described in the first embodiment in the PMOS transistor. That is, compressive stress is applied to the channel formation region by the third epitaxial layer 113, and the channel portion mobility is improved. At this time, crystal defects and the like in the first epitaxial layer 111 are absorbed by the second epitaxial layer 112 made of silicon, and the generation of stacking faults and lattice relaxation is suppressed in the third epitaxial layer 113. From this, it is possible to reliably apply the compressive stress. Furthermore, since the S / D junction interface is located in a portion having no crystal defect, a leak current due to the crystal defect can be avoided, and the leak current is reduced.
 これに対し、NMOSトランジスタはエピタキシャル層を備えず、半導体基板100に不純物をドープすることにより形成されたS/D領域115を有する構造である。ゲート電極102、サイドウォール等については、PMOSトランジスタと同様の構成となっている。 On the other hand, the NMOS transistor does not include an epitaxial layer and has a structure having an S / D region 115 formed by doping the semiconductor substrate 100 with impurities. The gate electrode 102, the sidewall, and the like have the same configuration as that of the PMOS transistor.
 NMOSトランジスタの場合、チャネル形成領域に圧縮応力を印加することはチャネル部移動度の向上に貢献せず、むしろ低下させる。そこで、NMOSトランジスタについてはSiGeからなるエピタキシャル層を埋め込む構造とはせず、半導体基板100に不純物をドープすることによってS/D領域115を形成するのが良い。 In the case of an NMOS transistor, applying compressive stress to the channel formation region does not contribute to the improvement of channel portion mobility, but rather decreases it. Therefore, it is preferable that the S / D region 115 is formed by doping the semiconductor substrate 100 with an impurity without using an NMOS transistor having an epitaxial layer made of SiGe.
 尚、PMOSトランジスタ、NMOSトランジスタのいずれにおいても、ゲート電極102は例えばポリシリコンからなり、半導体基板100上に例えばSiO2 膜からなるゲート絶縁膜101を介して形成されている。但し、本実施形態においても、ゲート絶縁膜101は、HfSiO等の高誘電体によって形成しても良い。また、ゲート電極102は、TiN等のメタルとポリシリコンの積層構造としても良い。 In both the PMOS transistor and the NMOS transistor, the gate electrode 102 is made of, for example, polysilicon, and is formed on the semiconductor substrate 100 via the gate insulating film 101 made of, for example, an SiO 2 film. However, also in this embodiment, the gate insulating film 101 may be formed of a high dielectric such as HfSiO. The gate electrode 102 may have a stacked structure of a metal such as TiN and polysilicon.
 次に、半導体装置130の製造方法について、その工程を模式的に示す断面図である図4(a)~(e)と図5(a)~(d)とを参照して説明する。 Next, a method for manufacturing the semiconductor device 130 will be described with reference to FIGS. 4A to 4E and FIGS. 5A to 5D, which are cross-sectional views schematically showing the process.
 図4(a)に示す工程から説明する。まず、半導体基板100に対し、表面部を区画する素子分離領域として、従来技術によりシャロートレンチ114を形成する。その後、半導体基板100におけるPMOSトランジスタ及びNMOSトランジスタを形成する領域(以下、PMOS領域、NMOS領域と呼ぶ)に、それぞれ、ゲート絶縁膜101を介してゲート電極102を形成し、その上にSiO2 膜103を形成する。また、ゲート電極102の側面を覆うオフセットサイドウォール104を形成する。この後、ゲート電極102、オフセットサイドウォール104等をマスクとするイオン注入により、ゲート電極102両側における半導体基板100にエクステンション領域105を形成する。これらは、第1の実施形態において図2(a)を参照して説明したのと同様の工程である。 The process shown in FIG. 4A will be described. First, a shallow trench 114 is formed on the semiconductor substrate 100 by a conventional technique as an element isolation region that partitions a surface portion. Thereafter, a gate electrode 102 is formed through a gate insulating film 101 in a region (hereinafter referred to as a PMOS region and an NMOS region) where a PMOS transistor and an NMOS transistor are formed in the semiconductor substrate 100, and an SiO 2 film is formed thereon. 103 is formed. In addition, an offset sidewall 104 that covers the side surface of the gate electrode 102 is formed. Thereafter, extension regions 105 are formed in the semiconductor substrate 100 on both sides of the gate electrode 102 by ion implantation using the gate electrode 102, the offset sidewall 104, and the like as a mask. These are the same steps as described with reference to FIG. 2A in the first embodiment.
 続いて、図4(b)の工程を行なう。ここでは、PMOS領域及びNMOS領域に両方において、オフセットサイドウォール104を介してゲート電極102の側壁を覆うように、例えばSiO2 膜からなりL字型の断面を有する第1のサイドウォール106を形成すると共に、更にその上に、シリコン窒化膜からなる第2のサイドウォール107とを形成する。これは、第1の実施形態において図2(b)を参照して説明したのど同様の工程である。 Subsequently, the process of FIG. 4B is performed. Here, in both the PMOS region and the NMOS region, the first sidewall 106 made of, for example, a SiO 2 film and having an L-shaped cross section is formed so as to cover the sidewall of the gate electrode 102 via the offset sidewall 104. At the same time, a second sidewall 107 made of a silicon nitride film is formed thereon. This is the same process as described in the first embodiment with reference to FIG.
 続いて、図4(c)の工程を行なう。まず、PMOS領域及びNMOS領域の両方において、半導体基板100、第2のサイドウォール107、SiO2 膜103等を覆うように、エピタキシャルカバー膜108を形成する。これは、ゲート電極102上のSiO2 膜103よりも膜密度が低く、例えば400℃以下の低温にて成膜できるSiO2 膜として形成する。 Then, the process of FIG.4 (c) is performed. First, an epitaxial cover film 108 is formed so as to cover the semiconductor substrate 100, the second sidewall 107, the SiO 2 film 103, and the like in both the PMOS region and the NMOS region. This film density than the SiO 2 film 103 on the gate electrode 102 is low, to form a SiO 2 film can be formed, for example, by a low temperature of 400 ° C. or less.
 次に、エピタキシャルカバー膜108上に、PMOS領域における各サイドウォール、ゲート電極102及びその両側のS/D領域122が形成される領域上が開口されたレジスト131を形成する。更に、レジスト131をマスクとして、開口部分のエピタキシャルカバー膜108を除去し、PMOS領域を露出させる。 Next, on the epitaxial cover film 108, a resist 131 is formed in which the sidewalls in the PMOS region, the gate electrode 102, and the regions where the S / D regions 122 on both sides are formed are opened. Further, using the resist 131 as a mask, the epitaxial cover film 108 at the opening is removed, and the PMOS region is exposed.
 続いて、図4(d)の工程を行なう。レジスト131を除去した後、エピタキシャルカバー膜108をマスクとして、PMOS領域におけるゲート電極102の両側の半導体基板100にリセス110を形成する。これは、例えば、ドライエッチング及びウェットエッチングのいずれか一方又は両方を用い、深さ60nmに形成する。 Subsequently, the process of FIG. 4D is performed. After removing the resist 131, a recess 110 is formed in the semiconductor substrate 100 on both sides of the gate electrode 102 in the PMOS region using the epitaxial cover film 108 as a mask. For example, one or both of dry etching and wet etching is used, and the depth is 60 nm.
 続いて、図4(e)の工程を行なう。ここでは、PMOS領域に形成したリセス110に、25atom%以上のゲルマニウムを含むSiGeからなる第1エピタキシャル層111、シリコンからなる第2エピタキシャル層112、30atom%以上のゲルマニウムを含むSiGeからなる第3エピタキシャル層113を順次形成する。ここで、第1エピタキシャル層111及び第2エピタキシャル層112にはB等のP型不純物のドープを行なわない。また、第3エピタキシャル層113にはB等のP型不純物をドープし、S/D領域122を形成する。この際、第2エピタキシャル層112直上では不純物濃度0、第3エピタキシャル層113内に設定されるS/D接合界面深さにおいて1×1018/cm3 、第3エピタキシャル層113の最上部において1×1023/cm3 程度となるような濃度プロファイルとする。 Then, the process of FIG.4 (e) is performed. Here, in the recess 110 formed in the PMOS region, a first epitaxial layer 111 made of SiGe containing 25 atomic percent or more of germanium, a second epitaxial layer 112 made of silicon, and a third epitaxial layer made of SiGe containing 30 atomic percent or more of germanium. Layer 113 is formed sequentially. Here, the first epitaxial layer 111 and the second epitaxial layer 112 are not doped with a P-type impurity such as B. The third epitaxial layer 113 is doped with a P-type impurity such as B to form an S / D region 122. At this time, the impurity concentration is 0 immediately above the second epitaxial layer 112, 1 × 10 18 / cm 3 at the S / D junction interface depth set in the third epitaxial layer 113, and 1 at the top of the third epitaxial layer 113. The concentration profile is set to about × 10 23 / cm 3 .
 このようにして、ゲート電極102下方のチャネル形成領域に圧縮応力を印加すると共に、結晶欠陥の無い部分にS/D接合界面深さを有するS/D領域122を備えた第3エピタキシャル層113とすることができる。 In this way, the compressive stress is applied to the channel formation region below the gate electrode 102, and the third epitaxial layer 113 including the S / D region 122 having the S / D junction interface depth in the portion having no crystal defect, can do.
 より詳しくは、第1の実施形態において図2(f)を参照して説明したのと同様である。 More specifically, this is the same as that described with reference to FIG. 2F in the first embodiment.
 続いて、図5(a)の工程を行なう。まず、PMOS領域上を覆い、NMOS領域における各サイドウォール、ゲート電極102及びその両側のS/D領域115が形成される領域上が開口されたレジスト131を形成する。次に、レジスト131の開口部に露出した部分のエピタキシャルカバー膜108を除去し、各サイドウォール、ゲート電極102等をマスクとするイオン注入及びアニールを行なう。これにより、NMOS領域において、半導体基板100におけるエクステンション領域125の外側に、S/D領域115が形成される。尚、前記アニールの条件は、例えば、1025℃のスパイクアニールである。 Subsequently, the process of FIG. 5A is performed. First, a resist 131 is formed so as to cover the PMOS region and open in the regions where the sidewalls in the NMOS region, the gate electrode 102, and the S / D regions 115 on both sides thereof are formed. Next, the portion of the epitaxial cover film 108 exposed in the opening of the resist 131 is removed, and ion implantation and annealing are performed using each sidewall, the gate electrode 102, and the like as a mask. As a result, the S / D region 115 is formed outside the extension region 125 in the semiconductor substrate 100 in the NMOS region. The annealing condition is, for example, spike annealing at 1025 ° C.
 続いて、図5(b)の工程を行なう。ここでは、レジスト132を除去し、更に、エピタキシャルカバー膜108及びゲート電極102上のSiO2 膜103を除去する。 Subsequently, the process of FIG. 5B is performed. Here, the resist 132 is removed, and the SiO 2 film 103 on the epitaxial cover film 108 and the gate electrode 102 is further removed.
 続いて、図5(c)の工程を行なう。ここでは、S/D領域122の形成された第3エピタキシャル層113上、ゲート電極102上及びS/D領域115の形成された半導体基板100上を覆うように、金属膜116を形成する。これは、例えば、膜厚10nmのNiPt膜である。 Subsequently, the process of FIG. 5C is performed. Here, the metal film 116 is formed so as to cover the third epitaxial layer 113 in which the S / D region 122 is formed, the gate electrode 102 and the semiconductor substrate 100 in which the S / D region 115 is formed. This is, for example, a 10 nm thick NiPt film.
 続いて、図5(d)の工程を行なう。ここでは、熱処理を行ない、ゲート電極102上、S/D領域122上及びS/D領域115上に金属シリサイド層121を形成する。 Subsequently, the process of FIG. 5D is performed. Here, heat treatment is performed to form the metal silicide layer 121 on the gate electrode 102, the S / D region 122, and the S / D region 115.
 以上のようにして、CMOSトランジスタを有する半導体装置130が製造される。その特徴等については、既に説明した通りである。 As described above, the semiconductor device 130 having the CMOS transistor is manufactured. Its features and the like are as already described.
 尚、以上ではいずれもMOSトランジスタを例として説明した。しかしながら、MOSトランジスタには限らず、MISトランジスタに適用することも可能である。 In the above description, MOS transistors have been described as examples. However, the present invention is not limited to MOS transistors, and can be applied to MIS transistors.
 本開示の技術は、シリコンゲルマニウム層をソース/ドレイン領域として利用するPMOSトランジスタにおいて、チャネル部移動度を向上し且つリーク電流を低減することができ、ゲート幅が例えば40nm以下の微細なMISトランジスタを有する半導体装置及びその製造方法としても有用である。 The technology of the present disclosure is a PMOS transistor that uses a silicon germanium layer as a source / drain region, can improve channel portion mobility and reduce leakage current, and can achieve a fine MIS transistor with a gate width of, for example, 40 nm or less. It is also useful as a semiconductor device having the same and a manufacturing method thereof.
100   半導体基板
101   ゲート絶縁膜
102   ゲート電極
103   SiO2 
104   オフセットサイドウォール
105   エクステンション領域
106   第1のサイドウォール
107   第2のサイドウォール
108   エピタキシャルカバー膜
109   レジスト
110   リセス
111   第1エピタキシャル層
112   第2エピタキシャル層
113   第3エピタキシャル層
114   シャロートレンチ
115   S/D領域
116   金属膜
120   半導体装置
121   金属シリサイド層
122   S/D領域
125   エクステンション領域
130   半導体装置
131   レジスト
132   レジスト
100 Semiconductor substrate 101 Gate insulating film 102 Gate electrode 103 SiO 2 film 104 Offset sidewall 105 Extension region 106 First sidewall 107 Second sidewall 108 Epitaxial cover film 109 Resist 110 Recess 111 First epitaxial layer 112 Second epitaxial Layer 113 Third epitaxial layer 114 Shallow trench 115 S / D region 116 Metal film 120 Semiconductor device 121 Metal silicide layer 122 S / D region 125 Extension region 130 Semiconductor device 131 Resist 132 Resist

Claims (18)

  1.  半導体基板の表面部に形成されたソース領域及びドレイン領域と、これらに挟まれたチャネル形成領域上にゲート絶縁膜を介して形成されたゲート電極とを含むPチャネル型トランジスタを備え、
     前記ゲート電極の両側それぞれにおいて前記半導体基板にリセスが形成され、
     前記リセスに、シリコンゲルマニウムからなる第1エピタキシャル層と、その上に形成され且つシリコンからなる第2エピタキシャル層と、その上に形成され且つシリコンゲルマニウムからなり、前記チャネル形成領域を挟む第3エピタキシャル層とを備え、
     前記ソース領域及び前記ドレイン領域は、前記第3エピタキシャル層中に形成され、且つ、それぞれの接合深さがいずれも前記第3エピタキシャル層の深さよりも浅いことを特徴とする半導体装置。
    A p-channel transistor including a source region and a drain region formed on the surface portion of the semiconductor substrate, and a gate electrode formed on the channel formation region sandwiched between the gate electrode and the gate electrode;
    A recess is formed in the semiconductor substrate on each side of the gate electrode,
    The recess includes a first epitaxial layer made of silicon germanium, a second epitaxial layer formed thereon and made of silicon, and a third epitaxial layer formed thereon and made of silicon germanium and sandwiching the channel formation region And
    The semiconductor device is characterized in that the source region and the drain region are formed in the third epitaxial layer, and each junction depth is shallower than the depth of the third epitaxial layer.
  2.  請求項1の半導体装置において、
     前記ソース領域及びドレイン領域は、P型不純物が導入されることにより形成され、
     前記第1エピタキシャル層及び前記第2エピタキシャル層には、前記P型不純物が導入されていないことを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The source region and the drain region are formed by introducing a P-type impurity,
    The semiconductor device, wherein the P-type impurity is not introduced into the first epitaxial layer and the second epitaxial layer.
  3.  請求項1の半導体装置において、
     前記第3エピタキシャル層は、前記第2エピタキシャル層と前記第3エピタキシャル層との界面から、前記ソース領域又は前記ドレイン領域の接合深さまでの範囲において、P型不純物濃度が0/cm3 から1×1018/cm3 にまで変化するP型不純物プロファイルを有することを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The third epitaxial layer has a P-type impurity concentration of 0 / cm 3 to 1 × in the range from the interface between the second epitaxial layer and the third epitaxial layer to the junction depth of the source region or the drain region. A semiconductor device having a P-type impurity profile that changes to 10 18 / cm 3 .
  4.  請求項1の半導体装置において、
     前記第1エピタキシャル層は、25atom%以上のゲルマニウムを含むことを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The semiconductor device according to claim 1, wherein the first epitaxial layer contains germanium of 25 atom% or more.
  5.  請求項1の半導体装置において、
     前記第3エピタキシャル層は、30atom%以上のゲルマニウムを含むことを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The semiconductor device, wherein the third epitaxial layer contains germanium of 30 atom% or more.
  6.  請求項1の半導体装置において、
     前記第3エピタキシャル層は、前記第1エピタキシャル層よりも厚く、
     前記第1エピタキシャル層は、前記第2エピタキシャル層よりも厚いことを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The third epitaxial layer is thicker than the first epitaxial layer,
    The semiconductor device according to claim 1, wherein the first epitaxial layer is thicker than the second epitaxial layer.
  7.  請求項1の半導体装置において、
     前記第1エピタキシャル層は、10nm以上の膜厚を有することを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The semiconductor device according to claim 1, wherein the first epitaxial layer has a thickness of 10 nm or more.
  8.  請求項1の半導体装置において、
     前記第2エピタキシャル層は、5nm以上で且つ20nm以下の膜厚を有することを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The second epitaxial layer has a film thickness of 5 nm or more and 20 nm or less.
  9.  請求項1の半導体装置において、
     前記第3エピタキシャル層は、臨界膜厚以下の膜厚を有することを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The semiconductor device, wherein the third epitaxial layer has a film thickness equal to or less than a critical film thickness.
  10.  請求項1の半導体装置において、
     前記第3エピタキシャル層は、前記半導体基板上面よりも上にも盛上がって形成されていることを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    The third epitaxial layer is formed so as to rise above the upper surface of the semiconductor substrate.
  11.  請求項1の半導体装置において、
     前記Pチャネル型トランジスタに加えてNチャネル型トランジスタを更に備え、
     前記Nチャネル型トランジスタは、シリコンゲルマニウムからなる領域を備えない構成であることを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    In addition to the P-channel transistor, an N-channel transistor is further provided.
    The semiconductor device according to claim 1, wherein the N-channel transistor does not include a region made of silicon germanium.
  12.  Pチャネル型トランジスタを備える半導体装置の製造方法において、
     半導体基板上に、ゲート絶縁膜を介してゲート電極を形成する工程(a)と、
     前記ゲート電極の両側それぞれにおいて、前記半導体基板にリセスを形成する工程(b)と、
     前記リセス内にシリコンゲルマニウムからなる第1エピタキシャル層を形成する工程(c)と、
     前記第1エピタキシャル層上に、シリコンからなる第2エピタキシャル層を形成する工程(d)と、
     前記第2エピタキシャル層上に、前記ゲート電極下方のチャネル形成領域を挟むように、シリコンゲルマニウムからなる第3エピタキシャル層を形成する工程(e)とを備え、
     P型不純物の導入量を調整しながら前記工程(e)を行なうことにより、前記第3エピタキシャル層中に、接合深さが前記第3エピタキシャル層の深さよりも浅いソース領域及びドレイン領域を形成することを特徴とする半導体装置の製造方法。
    In a method for manufacturing a semiconductor device including a P-channel transistor,
    Forming a gate electrode on the semiconductor substrate via a gate insulating film;
    Forming a recess in the semiconductor substrate on each side of the gate electrode (b);
    Forming a first epitaxial layer made of silicon germanium in the recess (c);
    Forming a second epitaxial layer made of silicon on the first epitaxial layer (d);
    A step (e) of forming a third epitaxial layer made of silicon germanium on the second epitaxial layer so as to sandwich a channel formation region below the gate electrode;
    By performing the step (e) while adjusting the introduction amount of the P-type impurity, a source region and a drain region having a junction depth shallower than the depth of the third epitaxial layer are formed in the third epitaxial layer. A method for manufacturing a semiconductor device.
  13.  請求項12の半導体装置の製造方法において、
     前記工程(c)及び前記工程(d)は、P型不純物を含ませることなくエピタキシャル成長により行なうことを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device of Claim 12,
    The method of manufacturing a semiconductor device, wherein the step (c) and the step (d) are performed by epitaxial growth without including a P-type impurity.
  14.  請求項12の半導体装置の製造方法おいて、
     前記工程(e)において、第3エピタキシャル層の成長に合わせてP型不純物の導入量を増加しながら前記第3エピタキシャル層を形成することにより、前記第2エピタキシャル層と前記第3エピタキシャル層との界面から、前記ソース領域又は前記ドレイン領域の接合深さまでの範囲において、P型不純物濃度が0/cm3 から1×1018/cm3 にまで変化するP型不純物プロファイルを得ることを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device of Claim 12,
    In the step (e), by forming the third epitaxial layer while increasing the amount of introduction of P-type impurities in accordance with the growth of the third epitaxial layer, the second epitaxial layer and the third epitaxial layer are formed. A P-type impurity profile having a P-type impurity concentration varying from 0 / cm 3 to 1 × 10 18 / cm 3 in a range from the interface to the junction depth of the source region or the drain region is obtained. A method for manufacturing a semiconductor device.
  15.  請求項12の半導体装置の製造方法において、
     前記第3エピタキシャル層は、30%以上のゲルマニウムを含み且つ臨界膜厚以下の膜厚を有することを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device of Claim 12,
    The third epitaxial layer contains 30% or more of germanium and has a film thickness equal to or less than a critical film thickness.
  16.  請求項12の半導体装置の製造方法において、
     前記工程(e)の後に、前記第3エピタキシャル層上に金属膜を形成すると共に熱処理を行なって金属シリサイドを形成する工程を更に備えることを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device of Claim 12,
    A method of manufacturing a semiconductor device, further comprising a step of forming a metal silicide on the third epitaxial layer and performing a heat treatment after the step (e) to form a metal silicide.
  17.  請求項12の半導体装置の製造方法において、
     前記工程(a)の後、前記工程(b)の前に、
     前記ゲート電極の側壁を覆うオフセットサイドウォールを形成する工程と、
     前記ゲート電極及び前記オフセットサイドウォールをマスクとするイオン注入によりエクステンション領域を形成する工程と、
     前記オフセットサイドウォールの側壁を覆い且つ前記ゲート電極と同じ高さのサイドウォールを形成する工程とを更に備えることを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device of Claim 12,
    After the step (a) and before the step (b),
    Forming an offset sidewall covering the sidewall of the gate electrode;
    Forming an extension region by ion implantation using the gate electrode and the offset sidewall as a mask;
    And a step of covering the side wall of the offset side wall and forming a side wall having the same height as the gate electrode.
  18.  請求項12の半導体装置の製造方法において、
     前記Pチャネル型トランジスタに加えてNチャネル型トランジスタを形成し、
     前記Nチャネル型トランジスタは、シリコンゲルマニウム領域を備えない構成であることを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device of Claim 12,
    Forming an N-channel transistor in addition to the P-channel transistor;
    The method of manufacturing a semiconductor device, wherein the N-channel transistor has a structure not including a silicon germanium region.
PCT/JP2010/002650 2009-09-15 2010-04-12 Semiconductor device and method for manufacturing same WO2011033695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-212846 2009-09-15
JP2009212846A JP2011066042A (en) 2009-09-15 2009-09-15 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2011033695A1 true WO2011033695A1 (en) 2011-03-24

Family

ID=43758314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002650 WO2011033695A1 (en) 2009-09-15 2010-04-12 Semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2011066042A (en)
WO (1) WO2011033695A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577097B2 (en) 2014-12-08 2017-02-21 Samsung Electronics Co., Ltd. Semiconductor device having stressor and method of forming the same
EP3120388A4 (en) * 2014-03-21 2017-11-29 Intel Corporation Techniques for integration of ge-rich p-mos source/drain contacts

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299535B2 (en) * 2010-06-25 2012-10-30 International Business Machines Corporation Delta monolayer dopants epitaxy for embedded source/drain silicide
CN103187299B (en) * 2011-12-31 2015-08-05 中芯国际集成电路制造(上海)有限公司 The formation method of transistor
KR102065973B1 (en) * 2013-07-12 2020-01-15 삼성전자 주식회사 Semiconductor device and fabricating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299462A (en) * 1999-04-15 2000-10-24 Toshiba Corp Semiconductor device and its manufacture
JP2007214362A (en) * 2006-02-09 2007-08-23 Sony Corp Method of manufacturing semiconductor device
JP2008177319A (en) * 2007-01-18 2008-07-31 Sony Corp Semiconductor device manufacturing method and semiconductor device
JP2008192989A (en) * 2007-02-07 2008-08-21 Fujitsu Ltd Semiconductor device and manufacturing method therefor
JP2009043916A (en) * 2007-08-08 2009-02-26 Toshiba Corp Semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299462A (en) * 1999-04-15 2000-10-24 Toshiba Corp Semiconductor device and its manufacture
JP2007214362A (en) * 2006-02-09 2007-08-23 Sony Corp Method of manufacturing semiconductor device
JP2008177319A (en) * 2007-01-18 2008-07-31 Sony Corp Semiconductor device manufacturing method and semiconductor device
JP2008192989A (en) * 2007-02-07 2008-08-21 Fujitsu Ltd Semiconductor device and manufacturing method therefor
JP2009043916A (en) * 2007-08-08 2009-02-26 Toshiba Corp Semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3120388A4 (en) * 2014-03-21 2017-11-29 Intel Corporation Techniques for integration of ge-rich p-mos source/drain contacts
US9859424B2 (en) 2014-03-21 2018-01-02 Intel Corporation Techniques for integration of Ge-rich p-MOS source/drain contacts
US10147817B2 (en) 2014-03-21 2018-12-04 Intel Corporation Techniques for integration of Ge-rich p-MOS source/drain
US10541334B2 (en) 2014-03-21 2020-01-21 Intel Corporation Techniques for integration of Ge-rich p-MOS source/drain
US9577097B2 (en) 2014-12-08 2017-02-21 Samsung Electronics Co., Ltd. Semiconductor device having stressor and method of forming the same

Also Published As

Publication number Publication date
JP2011066042A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US6882025B2 (en) Strained-channel transistor and methods of manufacture
US7642607B2 (en) MOS devices with reduced recess on substrate surface
US7928474B2 (en) Forming embedded dielectric layers adjacent to sidewalls of shallow trench isolation regions
US7981750B2 (en) Methods of fabrication of channel-stressed semiconductor devices
US9711413B2 (en) High performance CMOS device design
US7138310B2 (en) Semiconductor devices having strained dual channel layers
US8404546B2 (en) Source/drain carbon implant and RTA anneal, pre-SiGe deposition
US8518813B2 (en) Semiconductor device and method of manufacturing semiconductor device
US20080179636A1 (en) N-fets with tensilely strained semiconductor channels, and method for fabricating same using buried pseudomorphic layers
US20070267703A1 (en) Strained channel transistor and method of fabrication thereof
US20070200170A1 (en) Semiconductor device and method of manufacturing the same
US20080054347A1 (en) Composite stressors in MOS devices
JP2006253317A (en) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND p-CHANNEL MOS TRANSISTOR
US20090085123A1 (en) Semiconductor device and method for fabricating the same
US20120256265A1 (en) Semiconductor device and manufacturing method thereof
JP4992710B2 (en) MOS transistor and manufacturing method thereof
US20120256266A1 (en) Semiconductor device
JP2009182297A (en) Semiconductor device and method of manufacturing the same
WO2013139064A1 (en) Semiconductor structure and manufacturing method therefor
US20160027702A1 (en) MOS Devices with Modulated Performance and Methods for Forming the Same
WO2011033695A1 (en) Semiconductor device and method for manufacturing same
US8441045B2 (en) Semiconductor device and method for manufacturing the same
WO2013139063A1 (en) Semiconductor structure and manufacturing method therefor
US20240071818A1 (en) Semiconductor device and method of fabricating the same
JP2010010382A (en) Semiconductor device and its method for manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816812

Country of ref document: EP

Kind code of ref document: A1