WO2011031022A2 - Welding wire - Google Patents

Welding wire Download PDF

Info

Publication number
WO2011031022A2
WO2011031022A2 PCT/KR2010/005716 KR2010005716W WO2011031022A2 WO 2011031022 A2 WO2011031022 A2 WO 2011031022A2 KR 2010005716 W KR2010005716 W KR 2010005716W WO 2011031022 A2 WO2011031022 A2 WO 2011031022A2
Authority
WO
WIPO (PCT)
Prior art keywords
welding
arc
gas
wire
layer
Prior art date
Application number
PCT/KR2010/005716
Other languages
French (fr)
Korean (ko)
Other versions
WO2011031022A3 (en
Inventor
김재성
이보영
최동순
Original Assignee
한국항공대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공대학교 산학협력단 filed Critical 한국항공대학교 산학협력단
Priority to JP2012528739A priority Critical patent/JP2013504434A/en
Publication of WO2011031022A2 publication Critical patent/WO2011031022A2/en
Publication of WO2011031022A3 publication Critical patent/WO2011031022A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material

Definitions

  • the present invention relates to a welding wire, and more particularly, to a low ionization energy element on the surface of a wire when used for gas metal arc welding using a protective gas, fluxcored arc welding, and submerged arc welding using a flux. Due to this, it is possible to have a stable arc and metal transition mode even at a lower current range than the conventional one, and to a welding wire having a higher arc efficiency than a conventional one at a high current.
  • Welding is a method in which the joints of two or more materials to be joined are melted by heat to rearrange and bond atomic bonds of two different materials.
  • welding methods such as arc welding and gas welding.
  • Arc welding in this welding method is to join the two metals by the electric arc heat generated between the electrode and the surface of the base material, usually to protect the weld from the atmosphere O 2 , N 2, etc. using a protective gas and flux,
  • the wire is welded with filler metal.
  • the wires used for arc welding as described above are mostly used at home and abroad are copper-plated wires or unplated wires by chemical reaction or electrolytic reaction on the surface.
  • arc welding generally used in the manufacturing industry includes gas metal arc welding, flux cored arc welding, or submerged arc welding.
  • arc welding such as gas metal arc welding and fluxcored arc welding can be continuously supplied by using one or more gases such as carbon dioxide (CO 2 ), argon (Ar), and helium (He) as the protective gas. It is a welding method in which a wire is melted and joined by supplying a solid wire or fluxcore wire and causing an arc to occur at the tip of the wire.
  • the submerged arc welding uses a molten flux and a sintered flux to supply a solid wire that can be continuously fed, and a slag made by the flux is formed during welding to cause an arc to occur at the tip thereof to melt the wire. It is a welding method to be joined.
  • FIG. 1 is a conceptual diagram
  • an arc b is generated at an upper portion of the volume a, and a fine spray type spray transfer is performed in which the volume a is smaller than the diameter of the wire c.
  • This spray type volume transfer is the best transfer type among the volume (a) transition forms, and it is a volume transition that is known to have less spatter, excellent weld bead shape, and is suitable for high speed welding. It is used in the field.
  • argon gas is about five times more expensive than carbon dioxide gas, and thus, in actual field welding, carbon dioxide gas is more often used as a protective gas than argon gas.
  • carbon dioxide gas is a low cost and high efficiency welding method, it is widely used as a protective gas for gas metal arc welding and fluxcore arc welding, such as welding of steel materials.
  • gas metal arc welding and fluxcore arc welding such as welding of steel materials.
  • it is used in various fields such as shipbuilding, construction, bridges, automobiles, construction machinery, etc.
  • shipbuilding, construction, bridges it is used for high current multilayer welding of thick plates
  • in the field of construction machinery it is often used for fillet welding of thin plates.
  • FIG. 2 is a conceptual diagram illustrating a metal transition mode of a volume during arc welding using a carbon dioxide gas as a protective gas, a granular volume transfer in which an arc b is generated under a volume a ( Due to globular transfer, a large amount of spatter is generated during short circuit and re-arc (b) with the base material (ie steel sheet), and the arc (b) is not stabilized, so that the bead shape is not stable. In this case, there is a problem that the bead shape tends to be chopped (so-called humping bead).
  • argon gas when argon gas is used as the protective gas or Ar-CO 2 mixed gas is used as the protective gas when welding under the transition current region, argon gas welding above the transition current region is performed as in the case of using the carbon dioxide gas as the protective gas.
  • Ar-CO 2 mixed gas welding 1 ⁇ 4 times larger volume is attached to the tip of the welding wire, so the volumetric metal transition mode is formed by the granular displacement as shown in FIG. The speed is low and the arc control is not easy.
  • US Patent 10 / 107,623 has developed a steel wire for MAG welding and a MAG welding method using the same, but this targets low current (less than 25A) welding of a thin steel sheet with a gap in the welding portion, and as a protective gas, Sufficient arc stability could not be obtained in welding in the transition current region or more in gas metal arc welding using 2 % of gas.
  • Patent No. 10-0553380 filed in Japan and registered in Korea, proposes a carbon steel shield arc welding steel wire and a welding method using the same, but in a welding method using a mixed gas of CO 2 and Ar gas. In the case of welding using low-cost CO 2 gas at 100%, the economical effect of reducing the welding material cost cannot be obtained.
  • Patent No. 10-2008-0006471 filed in Japan and published in Korea, proposes a solid wire, but is limited to a copper plated wire used for thin arc welding, and improves arc stability according to a change in metal transition mode. It could not bring enough effect to reduce spatter, reduce welding cost and improve welding quality.
  • the present invention is to solve the above problems
  • Another object of the present invention is to further increase the welding efficiency.
  • a welding wire comprising a; ionization potential layer formed on the surface of the core layer, made of an element having a low ionization energy.
  • a conductive layer is further provided between the core layer and the ionization potential layer or on the surface of the ionization potential layer to transfer electricity flowing through the wire to the core layer.
  • the ionization potential layer is characterized in that it further comprises a metal having conductivity.
  • the element of the ionization potential layer is Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, Gd, whose primary ionization energy is 7eV or less.
  • the core layer is one metal or two or more alloy metals selected from iron, aluminum, copper, nickel, titanium, magnesium, cobalt, general steel, high tensile steel, boron steel, nickel steel, magnesium steel, titanium steel, cobalt steel Characterized in that made.
  • the ionization potential layer is characterized in that the weight ratio of the wire to 0.01% ⁇ 5%.
  • FIG. 1 is a conceptual diagram illustrating the metal transition mode of the volume during arc welding using argon gas as a protective gas.
  • Figure 2 is a conceptual diagram illustrating the metal transition mode of the volume during arc welding using carbon dioxide gas as a protective gas.
  • FIG 3 is a perspective view showing a welding wire according to a first embodiment of the present invention.
  • Figure 4 is a perspective view showing a welding wire according to a second embodiment of the present invention.
  • FIG. 5 is a perspective view showing a welding wire according to a third embodiment of the present invention.
  • Figure 6 is a graph showing the average number of short-circuits of the volume during arc welding of the wires of Preparation Examples 1 to 6 manufactured in the Preparation Example and the wire of the Comparative Example.
  • FIG 3 is a perspective view showing a welding wire according to a first embodiment of the present invention.
  • the welding wire of the present invention includes a core layer 10 which melts due to arc heat during welding and becomes a volume; And an ionization potential layer 30 formed on the surface of the core layer 10 and made of an element having low ionization energy.
  • the core layer 10 is melted by a strong arc heat received during welding to become metal vapor or droplets, and the material forming the core layer 10 is the same as or similar to the base material to be bonded. It consists of a metal alloy to determine the mechanical, chemical and physical properties of the weld metal.
  • the core layer 10 is one metal or two or more alloys selected from iron, aluminum, copper, nickel, titanium, magnesium, cobalt, general steel, high tensile steel, boron steel, nickel steel, magnesium steel, titanium steel, cobalt steel It may be made of a metal, the material forming the core layer 10 may be selectively used according to the material of the base material to be bonded.
  • the ionization potential layer 30 is a low current region (transition current) using arc welding using 100% carbon dioxide gas as a protective gas, or argon gas or argon (Ar) -carbon dioxide (CO 2 ) mixed gas as a protective gas.
  • transition current 100% carbon dioxide gas as a protective gas
  • argon gas or argon (Ar) -carbon dioxide (CO 2 ) mixed gas as a protective gas.
  • the stable metal transition mode close to the spray-type volume transition mode appears, such as when welding with argon gas as the protective gas in the transition current region or more, and the arc efficiency is increased in the transition current region or more. It is intended to allow welding at higher speeds than before.
  • an ionization potential layer 30 is formed on the surface of the core layer 10 by attaching an element having a low ionization energy to the surface of the core layer 10.
  • the ionization potential layer 30 may be formed by attaching an element having the low ionization energy through electrical, chemical, or physical plating that is commonly used.
  • all known methods for attaching elements having low ionization energy to the wire surface such as a coating method commonly used in the art, are applicable.
  • the element of the ionization potential layer 30 is Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, whose primary ionization energy is 7 eV or less.
  • the ionization potential layer 30 When the ionization potential layer 30 is applied to the wire for welding, the ionization potential layer 30 is easily ionized due to the low ionization energy of the elements of the ionization potential layer 30, so that the initial arc can be easily generated, and the arc is stably Because it can be formed, arc welding using 100% carbon dioxide gas as the protective gas in all current areas, or MIG using argon gas or Ar-CO 2 mixed gas as the protective gas in low current areas (below the transition current area) Spray type volume transfer mode can be displayed even in metal inert gas) and metal active gas (MAG) welding.
  • 100% carbon dioxide gas as the protective gas in all current areas
  • MIG using argon gas or Ar-CO 2 mixed gas as the protective gas in low current areas (below the transition current area)
  • Spray type volume transfer mode can be displayed even in metal inert gas) and metal active gas (MAG) welding.
  • the ionization potential layer 30 preferably has a weight ratio of 0.01% to 5% of the total wire.
  • the weight ratio of the ionization potential layer 30 is less than 0.01%, in the case of general CO 2 welding using carbon dioxide as a protective gas, a lot of rebound transition modes occur, so that arc stabilization and welding quality are not improved.
  • MIG and MAG welding using Ar-CO 2 gas the welding speed is low and the arc control is not easy because the welding is performed by the granular volume transfer with short circuit even in the low current region (below the transition current region). When welding over the area, the arc efficiency cannot be improved.
  • the weight ratio of the ionization potential layer 30 is higher than 5%, a large problem may occur in the wire feeding ability, and it is not economical because only the plating time and the amount of elements used for plating are increased without improving the welding quality.
  • the weight ratio of the ionization potential layer 30 is more preferably 1% to 5% of the total wire.
  • the welding wire according to the present invention generates a stable arc through the low ionization energy of the ionization potential layer, so that 100% carbon dioxide gas is used as the protective gas during the arc welding, the stable arc and metal volume transition in the entire current range.
  • Mode can be formed, and even when welding using argon gas or Ar-CO 2 mixed gas as a protective gas in the low current region (below the transition current region), as when welding using Ar gas above the transition current region
  • the stable metal transition mode can be shown, and the arc efficiency is higher than the existing one in the transition current region, enabling high-speed welding, and economical welding can be performed, and welding can be performed with little occurrence of short circuit and spatter. Welding workability and welding quality can be improved, and the working environment can be improved.
  • the welding wire according to the present invention is applicable to all conventional welding wires that are generally used, including solid wires, and to the flux cored wires by attaching an element having low ionization energy to the surface or the inner surface of the strip, thereby providing an arc mode.
  • an element having low ionization energy to the surface or the inner surface of the strip, thereby providing an arc mode.
  • FIG. 4 is a perspective view showing a welding wire according to a second embodiment of the present invention
  • Figure 5 is a perspective view showing a welding wire according to a third embodiment of the present invention.
  • a conductive layer 20 for transferring electricity flowing through the wire to the core layer 10 is provided. It is preferable to form more.
  • the conductive layer 20 is a portion to facilitate the transfer of electricity flowing to the wire surface to the core layer 10, the conductive layer 20 is ionization potential layer 30 is made of a metal having excellent electrical conductivity, such as copper May be formed between the core layer 10 and the ionization dislocation layer 30, as shown in FIG. 4, as shown in FIG. It may be formed by attaching a metal having excellent electrical conductivity to the surface of the ionization potential layer 30.
  • the conductive layer 20 may be formed by an electrical, chemical or physical plating method that is commonly used, and may also be formed through a conventional coating method.
  • the wire for welding in which the conductive layer is formed can be easily transferred to the core layer so that welding can be made faster, and thus the welding efficiency can be increased, and as the stable arc occurs, in the above-described first embodiment
  • the carbon dioxide gas, the argon gas, or the argon-carbon dioxide gas is used as the protective gas in the welding, the same transition mode as the case of welding using the Ar gas in the transition current region or more is shown. It is possible to reduce the occurrence of short circuit and spatter, thereby improving the welding quality.
  • a metal having conductivity in the ionization potential layer 30 of the welding wire including the core layer 10 and the ionization potential layer 30 is further formed. It can also be included.
  • the ionization potential layer 30 when the ionization potential layer 30 is formed, the ionization potential layer 30 is formed on the core layer 10 through plating or coating in a state in which an element having low ionization energy and a metal such as copper having excellent conductivity are mixed. ),
  • the welding wire according to the fourth embodiment mixes a conductive metal in the ionization potential layer 30 itself so that electricity can flow to the core layer 10 well.
  • various known metals may be applied in addition to copper.
  • Such a welding wire is improved in conductivity to help transfer electricity to the core layer during welding, thereby improving welding efficiency.
  • Indium (In) is plated on the surface of the solid wire (ER-70s G 1.2 ⁇ ) which is most used for carbon steel welding in the plating time shown in Table 1 below to form an ionization potential layer, and the ionization potential formed by the plating
  • Table 1 The weight ratio of the layers is shown in Table 1 below.
  • the welding current is a current region in which the metal transition mode is shown in the granular displacement mode during arc welding.
  • 235A was tested as the welding current.
  • FIG. 8 shows the results of high-speed photographing of the welding phenomenon during welding. As shown in FIG. 8, when the plating is performed for more than 20 s, the weight ratio of the ionization dislocation layer becomes 1% or more, and the volume as shown in FIG. It was confirmed that the spray transition mode of appeared.
  • FIG. 6, and FIG. 7 show the number of short circuits of the volume measured during the arc welding experiment, respectively. As shown therein, the average number of short circuits per second and instantaneous / normal short circuit times based on the plating time of 20 s were compared. And it can be seen that significantly reduced in Preparation Examples 4 to 6 compared to Preparation Examples 1 to 3.
  • the welding wire manufactured according to the present invention through the experimental results as described above, when the arc welding using 100% carbon dioxide gas as a protective gas, the transition mode of the metal transition mode through the stable arc generation in all current region
  • Ar can be changed to a stable metal transition mode as in the case of using a protective gas, and the welding quality can be improved by reducing the number of short circuits and the generation of spatters.
  • a stable metal transition mode may appear even when welding with argon gas or argon-carbon dioxide mixed gas as a protective gas in the transition current region or less.
  • the welding wire according to the present invention generates a stable arc through the low ionization energy of the ionization potential layer, so in the case of arc welding using 100% carbon dioxide gas as a protective gas, argon gas is in the transition current region or more.
  • argon gas is in the transition current region or more.
  • the use of inexpensive carbon dioxide can be economical welding, the stable metal transition mode, the occurrence of short circuit and spatter is almost It is possible to perform welding without welding, and it is possible to improve welding workability and quality of welding.
  • transition current Stable metal transition mode is achieved, such as when welding with argon gas above the zone, It is possible to improve workability and welding speed, and to weld thinner plate than before, and to increase arc efficiency when welding using argon gas or Ar-CO 2 mixed gas as a protective gas above the transition region current. Due to this, it is possible to perform high speed welding with a higher speed than in the prior art, which greatly helps productivity improvement.
  • the conductive layer is formed, so that the electricity can be easily transferred to the core layer can be made faster welding has the effect of increasing the welding efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

The present invention relates to a welding wire used in arc welding such as gas metal arc welding and flux cored arc welding using a protective gas and submerged arc welding using a flux, and provides a welding wire comprising: a core layer which is melted and turns into droplets due to the heat of the arc during welding; and an ionization potential layer which is formed on the surface of the core layer and consists of an element having low ionization energy, the welding wire being devised so as to exhibit a stable arc and metal transfer mode thereby making it possible to reduce the occurrence of short circuiting and spattering and so improve the quality of welding.

Description

용접용 와이어Welding wire
본 발명은 용접용 와이어에 관한 것으로, 보다 자세하게는 보호가스를 사용하는 가스메탈아크용접, 플럭스코어드아크용접, 및 플럭스를 사용하는 서브머지드아크용접에 사용 시 와이어 표면의 낮은 이온화에너지 원소로 인하여 기존보다 낮은 전류영역에서도 안정적인 아크와 금속 이행모드를 가질 수 있고 높은 전류에서는 기존보다 아크 효율이 좋은 용접용 와이어에 관한 것이다.The present invention relates to a welding wire, and more particularly, to a low ionization energy element on the surface of a wire when used for gas metal arc welding using a protective gas, fluxcored arc welding, and submerged arc welding using a flux. Due to this, it is possible to have a stable arc and metal transition mode even at a lower current range than the conventional one, and to a welding wire having a higher arc efficiency than a conventional one at a high current.
용접은 접합하고자 하는 두 개 이상의 물질의 접합부분을 열로 용융시켜 서로 다른 두 물질의 원자 결합을 재배열하여 결합시키는 방법으로, 아크용접, 가스 용접 등 다양한 용접방법이 존재한다. Welding is a method in which the joints of two or more materials to be joined are melted by heat to rearrange and bond atomic bonds of two different materials. There are various welding methods such as arc welding and gas welding.
이와 같은 용접방법 중 아크용접은 전극과 모재의 표면사이에 발생하는 전기적 아크열에 의해 두 금속을 접합시키는 것으로, 통상 보호가스와 플럭스를 이용하여 대기의 O2, N2 등으로부터 용접부를 보호하고, 와이어를 용가재로 하여 용접된다. 이때 상기와 같은 아크 용접에 사용되는 와이어는 대부분 표면에 화학반응 또는 전해반응으로 구리가 도금된 와이어나 도금이 되지 않은 무도금 와이어가 국내외에서 주로 사용되고 있다. Arc welding in this welding method is to join the two metals by the electric arc heat generated between the electrode and the surface of the base material, usually to protect the weld from the atmosphere O 2 , N 2, etc. using a protective gas and flux, The wire is welded with filler metal. At this time, the wires used for arc welding as described above are mostly used at home and abroad are copper-plated wires or unplated wires by chemical reaction or electrolytic reaction on the surface.
또한, 일반적으로 제조업에 사용하고 있는 아크용접으로는 가스메탈아크 용접(Gas Metal Arc Welding), 플럭스코어드아크 용접(Flux Cored Arc welding) 또는 서브머지드아크 용접(Submerged Arc Welding) 등을 들 수 있는데, 그 중 가스메탈아크 용접과 플럭스코어드아크 용접과 같은 아크용접은 이산화탄소(CO2), 아르곤(Ar), 헬륨(He) 등 1종 이상의 가스를 보호가스로 사용하여 연속적으로 송급이 가능한 솔리드 와이어나 플럭스코어드 와이어를 공급하고, 와이어의 선단에서 아크가 발생하도록 하여 와이어가 녹아 접합되어지는 용접법이다. In addition, arc welding generally used in the manufacturing industry includes gas metal arc welding, flux cored arc welding, or submerged arc welding. Among them, arc welding such as gas metal arc welding and fluxcored arc welding can be continuously supplied by using one or more gases such as carbon dioxide (CO 2 ), argon (Ar), and helium (He) as the protective gas. It is a welding method in which a wire is melted and joined by supplying a solid wire or fluxcore wire and causing an arc to occur at the tip of the wire.
상기 서브머지드 아크 용접은 용융형 플럭스, 소결형 플럭스를 사용하여 연속적으로 송급이 가능한 솔리드 와이어를 공급하고, 용접 시 플럭스에 의해 만들어지는 슬래그가 형성되어 그 선단에서 아크가 발생하도록 함으로써 와이어가 녹아 접합되어지는 용접법이다. The submerged arc welding uses a molten flux and a sintered flux to supply a solid wire that can be continuously fed, and a slag made by the flux is formed during welding to cause an arc to occur at the tip thereof to melt the wire. It is a welding method to be joined.
이때 가스메탈아크 용접과 플럭스코어드아크 용접의 천이 전류영역 이상(250A)에서 보호가스로 아르곤(Ar) 가스를 사용하면, 아르곤 가스를 보호가스로 사용하는 아크 용접시 용적의 금속이행모드를 설명하는 개념도인 도 1에 도시된 바와 같이 용적(a)의 윗부분에서 아크(b)가 발생하고, 용적(a)이 와이어(c)의 직경보다도 작은 미세한 분무형 용적 이행(spray transfer)을 한다. 이와 같은 분무형 용적 이행은 용적(a) 이행 형태 가운데에서 가장 우수한 이행형태로, 스패터의 발생이 적고, 용접비드 형상이 우수하며, 고속 용접에도 적합한 것으로 알려진 용적 이행으로, 고품질의 용접을 필요로 하는 분야에서 이용된다. In this case, when argon (Ar) gas is used as the protective gas in the transition current range of 250 A or more for gas metal arc welding and flux cored arc welding, the metal transition mode of the volume during arc welding using argon gas as the protective gas will be described. As shown in FIG. 1, which is a conceptual diagram, an arc b is generated at an upper portion of the volume a, and a fine spray type spray transfer is performed in which the volume a is smaller than the diameter of the wire c. This spray type volume transfer is the best transfer type among the volume (a) transition forms, and it is a volume transition that is known to have less spatter, excellent weld bead shape, and is suitable for high speed welding. It is used in the field.
그러나 아르곤 가스는 그 비용이 이산화탄소 가스의 약 5 배로 매우 고가이기 때문에 실제 현장에서의 용접시공에 있어서는 아르곤 가스보다 이산화탄소 가스를 보호 가스로 이용하는 경우가 더 많다. However, argon gas is about five times more expensive than carbon dioxide gas, and thus, in actual field welding, carbon dioxide gas is more often used as a protective gas than argon gas.
이러한 이산화탄소 가스는 저가인 동시에 능률이 높은 용접 방법이기 때문에 철강재료의 용접 등의 가스메탈아크 용접이나 플럭스코어드아크 용접시 보호가스로서 폭넓게 이용되고 있다. 특히, 자동용접의 급속한 보급에 의해 조선, 건축, 교량, 자동차, 건설기계 등의 각종 분야에 사용되고 있으며, 그 중에서도 조선, 건축, 교량의 분야에서는 후판(厚板)의 고전류 다층용접에 사용되고, 자동차, 건설기계의 분야에서는 박판(薄板)의 필렛용접에 사용되는 경우가 많다.Since carbon dioxide gas is a low cost and high efficiency welding method, it is widely used as a protective gas for gas metal arc welding and fluxcore arc welding, such as welding of steel materials. In particular, due to the rapid spread of automatic welding, it is used in various fields such as shipbuilding, construction, bridges, automobiles, construction machinery, etc. Among others, in the field of shipbuilding, construction, bridges, it is used for high current multilayer welding of thick plates, In the field of construction machinery, it is often used for fillet welding of thin plates.
그러나 상기와 같이 이산화탄소 가스를 보호가스로 사용하는 경우에는 천이 전류영역이상의 아르곤 가스 용접이나, Ar-CO2 혼합가스를 보호가스로 사용하는 용접시와 비교하여 2 ~ 4배의 큰 용적이 용접 와이어 선단에 매달리고, 이산화탄소 가스를 보호가스로 사용하는 아크 용접시 용적의 금속이행모드를 설명하는 개념도인 도 2에 도시된 바와 같이 용적(a)의 아래에 아크(b)가 발생하는 입상용적이행(globular transfer)을 하기 때문에 모재(즉 강판)와의 단락이나 재 아크(b)시 스패터가 다량으로 발생하게 되고, 아크(b)가 안정화되지 않아 비드형상이 안정되지 않는 문제점이 있으며, 특히 고속용접에 있어서, 비드형상이 凹凸(이른바, 험핑비드(humping bead))가 되기 쉽다고 하는 문제가 있었다.However, when carbon dioxide gas is used as the protective gas as described above, the welding wire has a volume of 2 to 4 times larger than that of argon gas welding over the transition current region or welding using Ar-CO 2 mixed gas as the protective gas. As shown in FIG. 2, which is a conceptual diagram illustrating a metal transition mode of a volume during arc welding using a carbon dioxide gas as a protective gas, a granular volume transfer in which an arc b is generated under a volume a ( Due to globular transfer, a large amount of spatter is generated during short circuit and re-arc (b) with the base material (ie steel sheet), and the arc (b) is not stabilized, so that the bead shape is not stable. In this case, there is a problem that the bead shape tends to be chopped (so-called humping bead).
또한, 천이 전류 영역이하에서 용접시 아르곤 가스를 보호가스로 사용하거나, Ar-CO2 혼합가스를 보호가스로 사용하는 경우에도 상기 이산화탄소 가스를 보호가스로 사용할 때와 마찬가지로 천이 전류영역이상의 아르곤 가스 용접이나 Ar-CO2 혼합가스 용접시와 비교하여 1 ~ 4배의 큰 용적이 용접 와이어 선단에 매달리는 등 용적의 금속이행모드가 도 2와 같은 입상용적이행으로 형성되기 때문에 주로 박판 용접에 사용되고 있으며 용접속도가 낮고 아크 조절이 쉽지 않은 문제점을 가지고 있다. In addition, when argon gas is used as the protective gas or Ar-CO 2 mixed gas is used as the protective gas when welding under the transition current region, argon gas welding above the transition current region is performed as in the case of using the carbon dioxide gas as the protective gas. Compared with Ar-CO 2 mixed gas welding, 1 ~ 4 times larger volume is attached to the tip of the welding wire, so the volumetric metal transition mode is formed by the granular displacement as shown in FIG. The speed is low and the arc control is not easy.
이에 상기와 같은 문제점을 해결하기 위하여, 칼륨(K)의 첨가에 의해 스패터 발생량을 절감하는 방법이 특개평 6-218574호 공보에 개시된 바 있으나, 이는 보호가스로서 CO2가스를 100% 사용하는 용접에서 아크의 안정화를 통한 스패터 저감 및 비드 형상 안정화 효과를 얻을 수 없었다. In order to solve the above problems, a method of reducing the spatter generated by the addition of potassium (K) has been disclosed in Japanese Patent Application Laid-Open No. 6-218574, which uses 100% of CO 2 gas as a protective gas. In welding, spatter reduction and bead shape stabilization through arc stabilization could not be obtained.
또한 US특허 10/107,623에서는 MAG 용접용 강 와이어 및 이를 이용한 MAG 용접 방법을 개발하고 있으나, 이는 용접부에 갭이 있는 박강판의 저전류(25A 이하) 용접을 대상으로 하고 있는 것으로, 보호가스로서 CO2가스를 100% 사용하는 가스메탈아크 용접에 있어서의 천이 전류영역 이상에서의 용접에 있어서는 충분한 아크안정의 효과를 얻을 수 없었다.In addition, US Patent 10 / 107,623 has developed a steel wire for MAG welding and a MAG welding method using the same, but this targets low current (less than 25A) welding of a thin steel sheet with a gap in the welding portion, and as a protective gas, Sufficient arc stability could not be obtained in welding in the transition current region or more in gas metal arc welding using 2 % of gas.
또한 일본에서 출원하여 국내에 등록된 특허 10-0553380에는 탄산가스 실드 아크용접용 강(鋼) 와이어 및 이를 이용한 용접 방법을 제안하고 있으나, CO2와 Ar 가스의 혼합가스를 사용하여 하는 용접방법에 국한시켰으며, 저가인 CO2 가스를 100%로 사용하여 용접하는 경우에 비해 용접재료 비용 감소에 따른 경제적인 효과를 가지고 올 수 없다.In addition, Patent No. 10-0553380, filed in Japan and registered in Korea, proposes a carbon steel shield arc welding steel wire and a welding method using the same, but in a welding method using a mixed gas of CO 2 and Ar gas. In the case of welding using low-cost CO 2 gas at 100%, the economical effect of reducing the welding material cost cannot be obtained.
아울러 일본에서 출원하여 국내에 공개된 특허 10-2008-0006471에는 솔리드 와이어를 제안하고 있으나, 박판 아크 용접에 사용되는 구리 도금와이어에 대상을 한정하고 있는 것으로, 금속이행 모드 변화에 따른 아크 안정성 향상, 스패터 저감, 용접 비용 감소, 용접 품질 향상에 충분한 효과를 가지고 올 수 없었다. In addition, Patent No. 10-2008-0006471, filed in Japan and published in Korea, proposes a solid wire, but is limited to a copper plated wire used for thin arc welding, and improves arc stability according to a change in metal transition mode. It could not bring enough effect to reduce spatter, reduce welding cost and improve welding quality.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로,The present invention is to solve the above problems,
용접시 전 전류 영역에서 이산화탄소(CO2)가스 100%를 보호가스로 사용하는 경우나, 천이전류영역 이하에서 아르곤(Ar)이나 아르곤-이산화탄소(Ar-CO2)를 보호가스로 사용하는 경우 모두 안정된 아크 및 금속 용적 이행을 나타낼 수 있는 용접용 와이어를 제공하는 것을 목적으로 한다. In case of welding, 100% of carbon dioxide (CO 2 ) gas is used as the protection gas in all current areas, or when argon (Ar) or argon-carbon dioxide (Ar-CO 2 ) is used as protection gas in the transition current area or less. It is an object to provide a welding wire that can exhibit stable arc and metal volume transitions.
또한, 본 발명의 다른 목적은 용접효율을 보다 상승시키는데 있다.In addition, another object of the present invention is to further increase the welding efficiency.
상기와 같은 목적을 달성하기 위하여 본 발명은, The present invention to achieve the above object,
용접시 아크열에 의해 녹아 용접 금속을 만드는 코어층과;A core layer melted by arc heat during welding to make a weld metal;
상기 코어층의 표면에 형성되고, 낮은 이온화에너지를 갖는 원소로 이루어진 이온화 전위층;을 포함하는 것을 특징으로 하는 용접용 와이어를 제공한다.It provides a welding wire comprising a; ionization potential layer formed on the surface of the core layer, made of an element having a low ionization energy.
또한, 상기 코어층과 이온화 전위층의 사이 또는, 이온화 전위층의 표면에 와이어에 흐르는 전기를 코어층으로 전달하는 전도층이 더 형성된 것을 특징으로 한다.In addition, a conductive layer is further provided between the core layer and the ionization potential layer or on the surface of the ionization potential layer to transfer electricity flowing through the wire to the core layer.
또한, 상기 이온화 전위층에는 전도성을 갖는 금속이 더 포함된 것을 특징으로 한다.In addition, the ionization potential layer is characterized in that it further comprises a metal having conductivity.
또한, 상기 이온화 전위층의 원소는 1차 이온화에너지가 7eV 이하인 Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, Gd, Yb, S, Y, V, Cr, Nb, Ti, Zr 또는, 1차 이온화에너지와 2차 이온화에너지의 합이 25eV 이하인 Pt, Pd, Sc, Sn, Mg, Mn, Ge, Si, Bi 중에서 선택되는 하나 이상의 원소로 구성되는 것을 특징으로 한다.In addition, the element of the ionization potential layer is Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, Gd, whose primary ionization energy is 7eV or less. Select from Yb, S, Y, V, Cr, Nb, Ti, Zr or Pt, Pd, Sc, Sn, Mg, Mn, Ge, Si, Bi, where the sum of primary ionization energy and secondary ionization energy is 25 eV or less It is characterized by consisting of one or more elements.
또한, 상기 코어층은 철, 알루미늄, 동, 니켈, 티타늄, 마그네슘, 코발트, 일반강, 고장력강, 보론강, 니켈강, 마그네슘강, 티타늄강, 코발트강에서 선택되는 하나의 금속 또는 둘 이상의 합금 금속으로 이루어진 것을 특징으로 한다.In addition, the core layer is one metal or two or more alloy metals selected from iron, aluminum, copper, nickel, titanium, magnesium, cobalt, general steel, high tensile steel, boron steel, nickel steel, magnesium steel, titanium steel, cobalt steel Characterized in that made.
또한, 상기 이온화 전위층은 전체 와이어 대비 중량비가 0.01% ~ 5%인 것을 특징으로 한다.In addition, the ionization potential layer is characterized in that the weight ratio of the wire to 0.01% ~ 5%.
도 1은 아르곤 가스를 보호가스로 사용하는 아크 용접시 용적의 금속이행모드를 설명하는 개념도.1 is a conceptual diagram illustrating the metal transition mode of the volume during arc welding using argon gas as a protective gas.
도 2는 이산화탄소 가스를 보호가스로 사용하는 아크 용접시 용적의 금속이행모드를 설명하는 개념도.Figure 2 is a conceptual diagram illustrating the metal transition mode of the volume during arc welding using carbon dioxide gas as a protective gas.
도 3은 본 발명의 제1실시예에 따른 용접용 와이어를 나타낸 사시도.3 is a perspective view showing a welding wire according to a first embodiment of the present invention.
도 4는 본 발명의 제2실시예에 따른 용접용 와이어를 나타낸 사시도.Figure 4 is a perspective view showing a welding wire according to a second embodiment of the present invention.
도 5는 본 발명의 제3실시예에 따른 용접용 와이어를 나타낸 사시도.5 is a perspective view showing a welding wire according to a third embodiment of the present invention.
도 6은 제조예에서 제조된 제조예 1 내지 6의 와이어와 비교예의 와이어의 아크 용접시 용적의 평균 단락횟수를 나타낸 그래프.Figure 6 is a graph showing the average number of short-circuits of the volume during arc welding of the wires of Preparation Examples 1 to 6 manufactured in the Preparation Example and the wire of the Comparative Example.
도 7은 제조예에서 제조된 제조예 1 내지 6의 와이어와 비교예의 와이어의 아크 용접시 용적의 순간 단락횟수 및 정상 단락횟수를 나타낸 그래프. 7 is a graph showing the instantaneous short circuit frequency and the normal short circuit frequency of the volume during arc welding of the wires of Preparation Examples 1 to 6 manufactured in the Preparation Example and the wire of the Comparative Example.
[규칙 제91조에 의한 정정 02.11.2010] 
도8은 제조예 1 내지 6의 와이어 및 비교예의 와이어의 용접시 용접 현상을 고속 촬영한 결과를 나타낸 도면.
[Revision under Rule 91 02.11.2010]
8 is a diagram showing the results of high-speed imaging of the welding phenomenon during welding of the wires of Preparation Examples 1 to 6 and the wires of Comparative Examples.
이하에서는 본 발명에 대하여 첨부된 도면에 도시된 실시예에 따라 구체적으로 설명하기는 하나, 본 발명이 도면에 도시된 실시예만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the accompanying drawings, but the present invention is not limited to the embodiments shown in the drawings.
도 3은 본 발명의 제1실시예에 따른 용접용 와이어를 나타낸 사시도이다.3 is a perspective view showing a welding wire according to a first embodiment of the present invention.
이에 도시된 바와 같이 본 발명의 용접용 와이어는 용접시 아크열에 의해 녹아 용적이 되는 코어층(10)과; 상기 코어층(10)의 표면에 형성되고, 낮은 이온화에너지를 갖는 원소로 이루어진 이온화 전위층(30);을 포함한다.As shown therein, the welding wire of the present invention includes a core layer 10 which melts due to arc heat during welding and becomes a volume; And an ionization potential layer 30 formed on the surface of the core layer 10 and made of an element having low ionization energy.
상기 코어층(10)은 용접시 받는 강한 아크열에 의해 녹아 금속증기 또는 용적(熔滴, droplet)이 되는 부분으로, 상기 코어층(10)을 이루고 있는 물질은 접합시키고자 하는 모재와 같거나 비슷한 금속합금으로 이루어져 용접 금속의 기계적, 화학적 및 물리적 물성을 결정한다.The core layer 10 is melted by a strong arc heat received during welding to become metal vapor or droplets, and the material forming the core layer 10 is the same as or similar to the base material to be bonded. It consists of a metal alloy to determine the mechanical, chemical and physical properties of the weld metal.
이러한 상기 코어층(10)은 철, 알루미늄, 동, 니켈, 티타늄, 마그네슘, 코발트, 일반강, 고장력강, 보론강, 니켈강, 마그네슘강, 티타늄강, 코발트강에서 선택되는 하나의 금속 또는 둘 이상의 합금 금속으로 이루어질 수 있으며, 이와 같은 코어층(10)을 이루는 물질은 접합시키고자 하는 모재의 재질에 따라 선택적으로 사용할 수 있다.The core layer 10 is one metal or two or more alloys selected from iron, aluminum, copper, nickel, titanium, magnesium, cobalt, general steel, high tensile steel, boron steel, nickel steel, magnesium steel, titanium steel, cobalt steel It may be made of a metal, the material forming the core layer 10 may be selectively used according to the material of the base material to be bonded.
여기서 상기 이온화 전위층(30)은 100% 이산화탄소 가스를 보호가스로 사용하는 아크 용접이나, 아르곤 가스 또는 아르곤(Ar)-이산화탄소(CO2) 혼합가스를 보호가스로 사용하여 저전류영역(천이 전류영역이하)에서 용접하는 경우에 천이전류 영역이상에서 아르곤 가스를 보호가스로 사용하여 용접할 때처럼 분무형 용적 이행모드에 가까운 안정된 금속이행 모드인 나타나도록 하고, 천이전류 영역이상에서는 아크 효율이 더욱 상승하여 기존보다 높은 속도에서 용접이 가능하도록 하기 위한 것이다.Here, the ionization potential layer 30 is a low current region (transition current) using arc welding using 100% carbon dioxide gas as a protective gas, or argon gas or argon (Ar) -carbon dioxide (CO 2 ) mixed gas as a protective gas. In the case of welding under the region, the stable metal transition mode close to the spray-type volume transition mode appears, such as when welding with argon gas as the protective gas in the transition current region or more, and the arc efficiency is increased in the transition current region or more. It is intended to allow welding at higher speeds than before.
이와 같은 이온화 전위층(30)은 낮은 이온화 에너지를 갖는 원소를 코어층(10)의 표면에 부착시킴으로써 도 3에 도시된 바와 같이 코어층(10)의 표면에 이온화 전위층(30)이 형성될 수 있다. 이때 상기 이온화 전위층(30)의 형성은 통상적으로 사용되고 있는 전기적, 화학적, 또는 물리적 도금을 통해 상기 낮은 이온화 에너지를 갖는 원소를 부착시킴으로 형성될 수 있다. 아울러, 도금 외에도 당해분야에서 통상적으로 사용되는 코팅방법 등과 같은 와이어 표면에 저이온화에너지를 가지는 원소들을 부착시키는 공지의 모든 방법이 적용가능하다.In this ionization potential layer 30, an ionization potential layer 30 is formed on the surface of the core layer 10 by attaching an element having a low ionization energy to the surface of the core layer 10. Can be. In this case, the ionization potential layer 30 may be formed by attaching an element having the low ionization energy through electrical, chemical, or physical plating that is commonly used. In addition, in addition to plating, all known methods for attaching elements having low ionization energy to the wire surface, such as a coating method commonly used in the art, are applicable.
이러한 상기 이온화 전위층(30)의 원소는 1차 이온화에너지가 7eV 이하인 Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, Gd, Yb, S, Y, V, Cr, Nb, Ti, Zr 또는, 1차 이온화에너지와 2차 이온화에너지의 합이 25eV 이하인 Pt, Pd, Sc, Sn, Mg, Mn, Ge, Si, Bi 중에서 선택되는 하나 이상의 원소로 구성될 수 있다.The element of the ionization potential layer 30 is Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, whose primary ionization energy is 7 eV or less. Gd, Yb, S, Y, V, Cr, Nb, Ti, Zr or Pt, Pd, Sc, Sn, Mg, Mn, Ge, Si, Bi whose sum of primary ionization energy and secondary ionization energy is 25 eV or less It may be composed of one or more elements selected from.
이와 같은 이온화 전위층(30)은 용접을 위해 와이어에 전류를 가하면 이온화 전위층(30)의 원소가 낮은 이온화 에너지를 갖음으로 인해 이온화가 잘되므로 쉽게 초기 아크를 발생시킬 수 있고, 아크가 안정적으로 형성될 수 있기 때문에 전 전류영역에서 100% 이산화탄소 가스를 보호가스로 사용하는 아크 용접이나, 저전류영역(천이 전류영역이하)에서 아르곤 가스 또는 Ar-CO2 혼합가스를 보호가스로 사용하는 MIG(Metal Inert Gas), MAG(Metal Active Gas)용접에서도 분무형 용적이행모드가 나타날 수 있도록 한다. When the ionization potential layer 30 is applied to the wire for welding, the ionization potential layer 30 is easily ionized due to the low ionization energy of the elements of the ionization potential layer 30, so that the initial arc can be easily generated, and the arc is stably Because it can be formed, arc welding using 100% carbon dioxide gas as the protective gas in all current areas, or MIG using argon gas or Ar-CO 2 mixed gas as the protective gas in low current areas (below the transition current area) Spray type volume transfer mode can be displayed even in metal inert gas) and metal active gas (MAG) welding.
또한, 천이영역 전류 이상에서 용접을 수행하는 경우 아크 효율 상승으로 인해 기존보다 높은 속도를 가지는 고속용접이 가능하여 생산성 향상에 큰 도움을 줄 수 있다. In addition, when welding is performed above the transition region current, high-speed welding with a higher speed than the conventional one is possible due to the increase in the arc efficiency, thereby greatly improving productivity.
이때 상기 이온화 전위층(30)은 전체 와이어 대비 중량비가 0.01% ~ 5%인 것이 바람직하다.In this case, the ionization potential layer 30 preferably has a weight ratio of 0.01% to 5% of the total wire.
만약 상기 이온화 전위층(30)의 중량비가 0.01% 보다 적으면, 이산화탄소를 보호가스로 하는 일반 CO2 용접의 경우 반발이행 모드가 많이 발생하여 아크 안정화와 용접 품질 개선이 이루어지지 않으며, 아르곤 가스나 Ar-CO2 가스를 사용하여 저전류 영역(천이 전류영역 이하)에서 용접하는 MIG, MAG 용접에 있어서도 단락이 있는 입상 용적이행으로 용접이 이루어지기 때문에 용접속도가 낮고 아크 조절이 쉽지 않으며, 천이전류 영역 이상의 용접시 아크 효율 향상을 가져 올 수가 없다. 반대로 이온화 전위층(30)의 중량비가 5% 보다 높으면, 와이어 송급성에 큰 문제가 생길 수 있으며, 용접 품질의 향상없이 도금시간 및 도금에 사용되는 원소의 양만 증가하게 되어 경제적이지 않다.If the weight ratio of the ionization potential layer 30 is less than 0.01%, in the case of general CO 2 welding using carbon dioxide as a protective gas, a lot of rebound transition modes occur, so that arc stabilization and welding quality are not improved. In MIG and MAG welding using Ar-CO 2 gas, the welding speed is low and the arc control is not easy because the welding is performed by the granular volume transfer with short circuit even in the low current region (below the transition current region). When welding over the area, the arc efficiency cannot be improved. On the contrary, when the weight ratio of the ionization potential layer 30 is higher than 5%, a large problem may occur in the wire feeding ability, and it is not economical because only the plating time and the amount of elements used for plating are increased without improving the welding quality.
또한, 상기 이온화 전위층(30)의 중량비가 전체 와이어 대비 1%~5%인 것이 더욱 바람직하다.In addition, the weight ratio of the ionization potential layer 30 is more preferably 1% to 5% of the total wire.
즉, 본 발명에 따른 용접용 와이어는 이온화 전위층이 갖는 낮은 이온화에너지를 통해 안정적인 아크를 발생시킴에 따라 100% 이산화탄소 가스를 보호가스로 사용하는 아크용접시 전 전류영역에서 안정된 아크와 금속용적 이행모드가 형성될 수 있고, 저전류영역(천이 전류영역이하)에서 아르곤 가스나 Ar-CO2 혼합가스를 보호가스로 사용하여 용접을 할 때에도 천이 전류영역이상에서 Ar 가스를 사용하여 용접할 때처럼 안정된 금속이행 모드를 나타날 수 있게 하며, 천이전류 영역 이상에서는 기존보다 아크 효율이 높아져 고속용접을 가능하게 하여 경제적인 용접이 수행될 수 있고, 단락 및 스패터의 발생이 거의 없는 용접 수행이 가능하여 용접 작업성 및 용접의 품질이 향상될 수 있고, 작업 환경이 개선될 수 있다.In other words, the welding wire according to the present invention generates a stable arc through the low ionization energy of the ionization potential layer, so that 100% carbon dioxide gas is used as the protective gas during the arc welding, the stable arc and metal volume transition in the entire current range. Mode can be formed, and even when welding using argon gas or Ar-CO 2 mixed gas as a protective gas in the low current region (below the transition current region), as when welding using Ar gas above the transition current region The stable metal transition mode can be shown, and the arc efficiency is higher than the existing one in the transition current region, enabling high-speed welding, and economical welding can be performed, and welding can be performed with little occurrence of short circuit and spatter. Welding workability and welding quality can be improved, and the working environment can be improved.
이와 같은 본 발명에 따른 용접용 와이어는 솔리드 와이어를 비롯하여 일반적으로 사용되는 종래의 모든 용접용 와이어에 적용가능하고, 플럭스 코어드 와이어에도 그 표면이나 스트립 내면에 이온화 에너지가 낮은 원소를 부착시켜 아크 모드를 변화시킴으로써 아크 안정성을 향상시킬 수 있고, 이를 통해 작업성 및 용접 품질을 향상시킬 수 있게 된다.The welding wire according to the present invention is applicable to all conventional welding wires that are generally used, including solid wires, and to the flux cored wires by attaching an element having low ionization energy to the surface or the inner surface of the strip, thereby providing an arc mode. By changing the arc stability can be improved, thereby improving the workability and welding quality.
도 4는 본 발명의 제2실시예에 따른 용접용 와이어를 나타낸 사시도이고, 도 5는 본 발명의 제3실시예에 따른 용접용 와이어를 나타낸 사시도이다.4 is a perspective view showing a welding wire according to a second embodiment of the present invention, Figure 5 is a perspective view showing a welding wire according to a third embodiment of the present invention.
이에 도시된 바와 같이 상기 코어층(10)과 이온화 전위층(30)의 사이 또는, 이온화 전위층(30)의 표면에는 와이어에 흐르는 전기를 코어층(10)으로 전달하는 전도층(20)이 더 형성된 것이 바람직하다.As shown therein, between the core layer 10 and the ionization potential layer 30, or on the surface of the ionization potential layer 30, a conductive layer 20 for transferring electricity flowing through the wire to the core layer 10 is provided. It is preferable to form more.
상기 전도층(20)은 와이어 표면으로 흐르는 전기가 코어층(10)으로 용이하게 전달될 수 있도록 하는 부분으로, 상기 전도층(20)은 구리 등과 같이 전기 전도성이 우수한 금속을 이온화 전위층(30)을 형성하기 전에 코어층(10)의 표면에 부착시킴으로써 도 4에 도시된 바와 같이 코어층(10)과 이온화 전위층(30)의 사이에 형성되도록 할 수도 있고, 도 5에 도시된 바와 같이 이온화 전위층(30)의 표면에 전기 전도성이 우수한 금속을 부착시켜 형성할 수도 있다. The conductive layer 20 is a portion to facilitate the transfer of electricity flowing to the wire surface to the core layer 10, the conductive layer 20 is ionization potential layer 30 is made of a metal having excellent electrical conductivity, such as copper May be formed between the core layer 10 and the ionization dislocation layer 30, as shown in FIG. 4, as shown in FIG. It may be formed by attaching a metal having excellent electrical conductivity to the surface of the ionization potential layer 30.
이러한 전도층(20)은 통상적으로 사용되고 있는 전기적, 화학적 또는 물리적 도금방법에 의해 형성될 수 있으며, 이 외에도 통상의 코팅 방법 등을 통해서도 형성될 수 있다.The conductive layer 20 may be formed by an electrical, chemical or physical plating method that is commonly used, and may also be formed through a conventional coating method.
이와 같이 전도층이 형성된 용접용 와이어는 코어층으로 전기가 용이하게 전달될 수 있도록 함으로써 용접이 보다 빠르게 이루어질 수 있어 용접효율이 상승될 수 있으며, 안정된 아크가 발생함에 따라 전술한 제1실시예에서와 같이 용접시 전 전류영역에서 이산화탄소 가스, 아르곤 가스 또는, 아르곤-이산화탄소 가스를 보호가스로 사용할 때에 천이 전류영역이상에서 Ar 가스를 사용하여 용접할 때와 같은 분무형 이행모드를 나타내게 되고, 이에 따라 단락 및 스패터의 발생이 감소되어 용접품질이 향상되는 등의 효과를 갖을 수 있다.As such, the wire for welding in which the conductive layer is formed can be easily transferred to the core layer so that welding can be made faster, and thus the welding efficiency can be increased, and as the stable arc occurs, in the above-described first embodiment As shown in FIG. 1, when the carbon dioxide gas, the argon gas, or the argon-carbon dioxide gas is used as the protective gas in the welding, the same transition mode as the case of welding using the Ar gas in the transition current region or more is shown. It is possible to reduce the occurrence of short circuit and spatter, thereby improving the welding quality.
한편, 본 발명은 제4실시예로서 전술한 제1실시예에서와 같이 코어층(10)과 이온화 전위층(30)으로 이루어지는 용접용 와이어의 이온화 전위층(30)에 전도성을 갖는 금속이 더 포함되도록 할 수도 있다. On the other hand, in the present invention, as the fourth embodiment, a metal having conductivity in the ionization potential layer 30 of the welding wire including the core layer 10 and the ionization potential layer 30 is further formed. It can also be included.
즉, 상기 이온화 전위층(30)의 형성시 낮은 이온화에너지를 갖는 원소와 전도성이 우수한 구리와 같은 금속을 혼합시킨 상태에서 도금이나 코팅 등의 방식을 통해 코어층(10)에 이온화 전위층(30)을 형성시키는 것으로, 제4실시예에 따른 용접용 와이어는 이온화 전위층(30) 자체에 전도성을 갖는 금속을 혼합시켜 코어층(10)으로 전기가 잘 흐를 수 있도록 한 것이다. 이때 상기 전도성을 갖는 금속으로는 구리 외에도 공지의 다양한 금속이 적용가능하다.That is, when the ionization potential layer 30 is formed, the ionization potential layer 30 is formed on the core layer 10 through plating or coating in a state in which an element having low ionization energy and a metal such as copper having excellent conductivity are mixed. ), The welding wire according to the fourth embodiment mixes a conductive metal in the ionization potential layer 30 itself so that electricity can flow to the core layer 10 well. In this case, as the metal having the conductivity, various known metals may be applied in addition to copper.
이와 같은 용접용 와이어는 전도성이 향상되어 용접시 코어층으로의 전기 전달을 도와주어 용접효율을 향상시켜준다.Such a welding wire is improved in conductivity to help transfer electricity to the core layer during welding, thereby improving welding efficiency.
하기에서는 본 발명에 따른 용접용 와이어의 효과를 입증하기 위하여 다음과 같은 실험을 실시하였다.In the following, the following experiment was conducted to prove the effect of the welding wire according to the present invention.
<제조예><Production example>
탄소강 용접에 가장 많이 사용하고 있는 솔리드 와이어(ER-70s G 1.2Φ)의 표면에 인듐(In)으로 하기 표 1에 기재된 도금시간으로 도금을 하여 이온화 전위층을 형성하고, 그 도금으로 형성된 이온화 전위층의 중량비를 하기 표 1에 나타내었다.Indium (In) is plated on the surface of the solid wire (ER-70s G 1.2Φ) which is most used for carbon steel welding in the plating time shown in Table 1 below to form an ionization potential layer, and the ionization potential formed by the plating The weight ratio of the layers is shown in Table 1 below.
표 1
분류 전위층 도금 시간(s) 이온화 전위층 중량 비(%)
제조예 1 5 0.47
제조예 2 10 0.59
제조예 3 20 0.62
제조예 4 40 1.17
제조예 5 60 1.40
제조예 6 90 1.96
비 교 예 0 0
Table 1
Classification Dislocation layer plating time (s) Ionization Dislocation Layer Weight Ratio (%)
Preparation Example 1 5 0.47
Preparation Example 2 10 0.59
Preparation Example 3 20 0.62
Preparation Example 4 40 1.17
Preparation Example 5 60 1.40
Preparation Example 6 90 1.96
Comparative Example 0 0
<실험예>Experimental Example
[규칙 제91조에 의한 정정 02.11.2010] 
상기 제조예에서 제조된 제조예 1 내지 제조예 6의 인듐으로 이온화 전위층이 형성된 와이어와, 비교예의 와이어(ER-70s G 1.2Φ)를 사용하여 표 2와 같은 용접조건으로 가스메탈 아크용접을 실시하고, 용접 중 용접현상을 평가하기 위해 고속 카메라를 이용하여 고속촬영을 실시하여 그 결과를 도8에 나타내었으며, 아크 모니터링 시스템을 이용하여 정상단락과 순간단락의 횟수를 측정하여 그 결과를 각각 하기 표 3 및 도 6, 도 7에 나타내었다.
[Revision under Rule 91 02.11.2010]
Gas metal arc welding was carried out under the welding conditions as shown in Table 2 using a wire having an ionization potential layer formed of indium of Preparation Examples 1 to 6 manufactured in the above Preparation Example and a comparative example wire (ER-70s G 1.2Φ). In order to evaluate the welding phenomenon during welding, high-speed photography was performed using a high-speed camera, and the results are shown in FIG. 8. The results of the measurement of the number of normal short-circuit and instantaneous short-circuit were measured using an arc monitoring system. Table 3 and Figures 6 and 7 are shown.
표 2
분 류 조 건
용접용 시험편 일반구조용 강재(KS D 3503(t:10㎜))
보호가스 이산화탄소(CO2) 100%
용접전류 235A
용접전압 24~27V
용접속도 30㎝/min
CTWD(Contact Tip to Workpiece Distance) 12㎜
TABLE 2
Classification Condition
Test piece for welding General Structural Steels (KS D 3503 (t: 10㎜))
Protective gas Carbon dioxide (CO 2) 100%
Welding current 235A
Welding voltage 24 ~ 27V
Welding speed
30 cm / min
Contact Tip to Workpiece Distance (CTWD) 12 mm
여기서 상기 용접전류는 일반적인 아크 용접시 금속이행 모드가 입상용적이행 모드로 나타나는 전류 영역대로, 본 발명에 따른 용접용 와이어의 용적이행모드를 확인하기 위하여 235A를 용접전류로 실험을 하였다.Here, the welding current is a current region in which the metal transition mode is shown in the granular displacement mode during arc welding. In order to confirm the displacement mode of the welding wire according to the present invention, 235A was tested as the welding current.
[규칙 제91조에 의한 정정 02.11.2010] 
도8은 용접 중 용접현상을 고속촬영한 결과를 나타낸 것으로서, 이에 보여지는 바와 같이 20s를 초과하여 도금을 실시하는 경우 이온화 전위층의 중량비가 1% 이상이 되고, 도 1에 도시된 것과 같이 용적의 분무형 이행모드가 나타남을 확인할 수 있었다.
[Revision under Rule 91 02.11.2010]
FIG. 8 shows the results of high-speed photographing of the welding phenomenon during welding. As shown in FIG. 8, when the plating is performed for more than 20 s, the weight ratio of the ionization dislocation layer becomes 1% or more, and the volume as shown in FIG. It was confirmed that the spray transition mode of appeared.
[규칙 제91조에 의한 정정 02.11.2010] [deleted]
[Correction under Rule 91 02.11.2010] [deleted]
[규칙 제91조에 의한 정정 02.11.2010] 
하기 표 3과 도 6, 도 7은 각각 아크용접 실험중 측정된 용적의 단락횟수를 나타낸 결과로서, 이에 보여지는 바와 같이 도금 시간 20s를 기준으로 초당 평균 단락 횟수와 순간/정상 단락 회수가 비교예 및 제조예 1 내지 3에 비하여 제조예 4 내지 6에서 현저하게 감소하는 것을 확인할 수 있다.
[Revision under Rule 91 02.11.2010]
Table 3, FIG. 6, and FIG. 7 show the number of short circuits of the volume measured during the arc welding experiment, respectively. As shown therein, the average number of short circuits per second and instantaneous / normal short circuit times based on the plating time of 20 s were compared. And it can be seen that significantly reduced in Preparation Examples 4 to 6 compared to Preparation Examples 1 to 3.
용적의 단락은 많이 발생하면 발생할수록 스패터가 많이 발생하게 되고, 특히 순간단락의 경우 순간적인 아크의 압력에 따라 대립의 스패터가 많이 발생하게 되는 것으로, 하기 실험결과를 통해 본 발명에 따른 용접용 와이어는 이온화 전위층의 형성으로 용접시 용적의 단락횟수가 현저하게 감소하고 있으므로 스패터의 발생 또한 현저하게 감소될 것임을 예측할 수 있다.The more the volume short circuit occurs, the more spatter is generated, and in particular, in the case of the instantaneous short circuit, a large number of opposing spatters are generated according to the instantaneous arc pressure. It can be expected that the generation of spatters will be significantly reduced because the number of short circuits of the volume during welding is significantly reduced by the formation of the ionization dislocation layer.
표 3
분 류 평균단락횟수 순간단락횟수 정상단락횟수
제조예 1 51.8 221 297
제조예 2 50.3 202 301
제조예 3 49.0 205 285
제조예 4 40.4 165 239
제조예 5 39.7 169 228
제조예 6 42.3 169 254
비 교 예 50.7 211 296
TABLE 3
Classification Average number of paragraphs Number of short circuits Normal short count
Preparation Example 1 51.8 221 297
Preparation Example 2 50.3 202 301
Preparation Example 3 49.0 205 285
Preparation Example 4 40.4 165 239
Preparation Example 5 39.7 169 228
Preparation Example 6 42.3 169 254
Comparative Example 50.7 211 296
상기와 같은 실험결과를 통해 본 발명에 따라 제조된 용접용 와이어는 보호가스로 100%의 이산화탄소 가스를 사용하여 아크용접을 할 때에 전 전류영역에서 안정적인 아크 발생을 통해 금속의 이행모드가 천이전류 영역 이상에서 Ar을 보호가스로 사용할 경우와 마찬가지로 안정적인 금속 이행모드로 변화시킬 수 있고, 단락 횟수와 스패터의 생성을 감소시켜 용접품질을 향상시킬 수 있음을 알 수 있다. 아울러 상기와 같은 안정적인 아크발생을 통해 천이전류 영역 이하에서 아르곤 가스나 아르곤-이산화탄소 혼합가스를 보호가스로 하는 용접시에도 안정적인 금속이행모드가 나타날 수 있음을 예측할 수 있다.The welding wire manufactured according to the present invention through the experimental results as described above, when the arc welding using 100% carbon dioxide gas as a protective gas, the transition mode of the metal transition mode through the stable arc generation in all current region As described above, Ar can be changed to a stable metal transition mode as in the case of using a protective gas, and the welding quality can be improved by reducing the number of short circuits and the generation of spatters. In addition, through the stable arc generation as described above it can be predicted that a stable metal transition mode may appear even when welding with argon gas or argon-carbon dioxide mixed gas as a protective gas in the transition current region or less.
상술한 바와 같이 본 발명에 따른 용접용 와이어는 이온화 전위층이 갖는 낮은 이온화에너지를 통해 안정적인 아크를 발생시킴에 따라 100% 이산화탄소 가스를 보호가스로 사용하는 아크 용접의 경우 천이 전류영역이상에서 아르곤 가스를 사용하여 용접할 때와 같이 안정된 아크와 금속용적 이행모드가 형성되고, 값싼 이산화탄소의 사용이 가능함에 따라 경제적인 용접이 수행될 수 있으며, 안정된 금속이행 모드로 인해 단락 및 스패터의 발생이 거의 없는 용접 수행이 가능하여 용접 작업성 및 용접의 품질이 향상될 수 있으며, 아르곤 가스나 Ar-CO2 혼합가스를 보호가스로 사용하여 저전류영역(천이 전류영역이하)에서 용접을 할 때에도 천이 전류영역이상에서 아르곤 가스를 사용하여 용접할 때처럼 안정된 금속이행 모드가 이루어지고, 박판에서의 작업성과 용접 속도를 향상시킬 수 있으며, 기존보다 더 얇은 판재의 용접도 가능하며, 천이영역 전류 이상에서 아르곤 가스나 Ar-CO2 혼합가스를 보호가스로 사용하여 용접을 수행할 경우 아크 효율 상승으로 인해 종래보다 높은 속도를 가지는 고속용접이 가능하여 생산성 향상에 큰 도움을 주는 효과를 갖는다. As described above, the welding wire according to the present invention generates a stable arc through the low ionization energy of the ionization potential layer, so in the case of arc welding using 100% carbon dioxide gas as a protective gas, argon gas is in the transition current region or more. As in the case of welding using a stable arc and metal volume transition mode is formed, the use of inexpensive carbon dioxide can be economical welding, the stable metal transition mode, the occurrence of short circuit and spatter is almost It is possible to perform welding without welding, and it is possible to improve welding workability and quality of welding. Even when welding in low current area (below transition current area) using argon gas or Ar-CO 2 mixed gas as protection gas, transition current Stable metal transition mode is achieved, such as when welding with argon gas above the zone, It is possible to improve workability and welding speed, and to weld thinner plate than before, and to increase arc efficiency when welding using argon gas or Ar-CO 2 mixed gas as a protective gas above the transition region current. Due to this, it is possible to perform high speed welding with a higher speed than in the prior art, which greatly helps productivity improvement.
또한 전도층이 형성되어 코어층으로 전기가 용이하게 전달될 수 있게 되어 용접이 보다 빠르게 이루어질 수 있으므로 용접효율이 상승되는 효과를 갖는다.In addition, the conductive layer is formed, so that the electricity can be easily transferred to the core layer can be made faster welding has the effect of increasing the welding efficiency.

Claims (6)

  1. 용접시 아크열에 의해 녹아 용적이 되는 코어층과;A core layer melted by arc heat during welding to become a volume;
    상기 코어층의 표면에 형성되고, 낮은 이온화에너지를 갖는 원소로 이루어진 이온화 전위층;을 포함하는 것을 특징으로 하는 용접용 와이어.And an ionization potential layer formed on the surface of the core layer and formed of an element having low ionization energy.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 코어층과 이온화 전위층의 사이 또는 이온화 전위층의 표면에 와이어에 흐르는 전기를 코어층으로 전달하는 전도층이 더 형성된 것을 특징으로 하는 용접용 와이어. Welding wire, characterized in that the conductive layer for transferring the electricity flowing in the wire to the core layer between the core layer and the ionization potential layer or on the surface of the ionization potential layer.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 이온화 전위층에는 전도성을 갖는 금속이 더 포함된 것을 특징으로 하는 용접용 와이어.Welding wire, characterized in that the ionization potential layer further comprises a conductive metal.
  4. 청구항 1 내지 3중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 이온화 전위층의 원소는 1차 이온화에너지가 7eV 이하인 Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, Gd, Yb, S, Y, V, Cr, Nb, Ti, Zr 또는, 1차 이온화에너지와 2차 이온화에너지의 합이 25eV 이하인 Pt, Pd, Sc, Sn, Mg, Mn, Ge, Si, Bi 중에서 선택되는 하나 이상의 원소로 구성되는 것을 특징으로 하는 용접용 와이어.The element of the ionization potential layer is Cs, Rb, K, Lu, Na, Ra, Li, Sm, La, Eu, Sr, In, Al, Ga, Tl, Ca, Gd, Yb, whose primary ionization energy is 7eV or less. S, Y, V, Cr, Nb, Ti, Zr or any one selected from Pt, Pd, Sc, Sn, Mg, Mn, Ge, Si, and Bi whose sum of primary and secondary ionization energies is 25 eV or less A welding wire comprising the above elements.
  5. 청구항 1 내지 3중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 코어층은 철, 알루미늄, 동, 니켈, 티타늄, 마그네슘, 코발트, 일반강, 고장력강, 보론강, 니켈강, 마그네슘강, 티타늄강, 코발트강에서 선택되는 하나의 금속 또는 둘 이상의 합금 금속으로 이루어진 것을 특징으로 하는 용접용 와이어.The core layer is made of one metal or two or more alloy metals selected from iron, aluminum, copper, nickel, titanium, magnesium, cobalt, general steel, high tensile steel, boron steel, nickel steel, magnesium steel, titanium steel, cobalt steel The welding wire characterized by the above-mentioned.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 이온화 전위층은 전체 와이어 대비 중량비가 0.01% ~ 5 %인 것을 특징으로 하는 용접용 와이어.The ionization potential layer is a welding wire, characterized in that the weight ratio of 0.01% to 5% of the total wire.
PCT/KR2010/005716 2009-09-11 2010-08-25 Welding wire WO2011031022A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012528739A JP2013504434A (en) 2009-09-11 2010-08-25 Welding wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0085707 2009-09-11
KR1020090085707A KR101205332B1 (en) 2009-09-11 2009-09-11 A welding wire

Publications (2)

Publication Number Publication Date
WO2011031022A2 true WO2011031022A2 (en) 2011-03-17
WO2011031022A3 WO2011031022A3 (en) 2011-07-07

Family

ID=43732909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005716 WO2011031022A2 (en) 2009-09-11 2010-08-25 Welding wire

Country Status (3)

Country Link
JP (1) JP2013504434A (en)
KR (1) KR101205332B1 (en)
WO (1) WO2011031022A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624416A (en) * 2013-11-07 2014-03-12 航天科工防御技术研究试验中心 Vacuum high-temperature aluminum solder and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613006C2 (en) * 2012-10-24 2017-03-14 Либурди Инжиниринг Лимитед Composition welding wire
CN105081611B (en) * 2015-09-22 2017-03-08 山东大学 A kind of thin diameter flux wire being exclusively used in hot-work die reparation built-up welding

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588391U (en) * 1978-12-11 1980-06-18
JPS56126094A (en) * 1980-03-07 1981-10-02 Sumitomo Metal Ind Ltd Welding wire
JPS5731495A (en) * 1980-08-05 1982-02-19 Nippon Steel Weld Prod & Eng Co Ltd Mn plated steel wire for welding
JPS58128290A (en) * 1982-01-26 1983-07-30 Hitachi Cable Ltd Multicored coated electrode
JPH01249291A (en) * 1988-03-31 1989-10-04 Nippon Steel Weld Prod & Eng Co Ltd Plated wire for arc welding
JPH0569181A (en) * 1991-07-05 1993-03-23 Kawasaki Steel Corp Steel wire for gas shield arc welding and manufacture thereof
JP2001269820A (en) * 2000-03-24 2001-10-02 Hitachi Cable Ltd Method of manufacturing electrode wire for wire electric discharge machining
DE60118313T2 (en) * 2000-10-10 2006-08-31 Illinois Tool Works Inc., Cook County Aluminum welding core wire
JP4791218B2 (en) * 2006-03-15 2011-10-12 株式会社神戸製鋼所 Steel wire for gas shielded arc welding
JP5001595B2 (en) * 2006-07-11 2012-08-15 株式会社神戸製鋼所 Solid wire
JP4839193B2 (en) * 2006-12-01 2011-12-21 株式会社神戸製鋼所 Solid wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624416A (en) * 2013-11-07 2014-03-12 航天科工防御技术研究试验中心 Vacuum high-temperature aluminum solder and preparation method thereof

Also Published As

Publication number Publication date
KR20110027905A (en) 2011-03-17
KR101205332B1 (en) 2012-11-28
WO2011031022A3 (en) 2011-07-07
JP2013504434A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
CN101678513B (en) Aluminum deoxidizing welding wire
US3778588A (en) Self-shielding cored wire to weld cast iron
EP3513901B1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
CA1312123C (en) Consumable welding electrode and method of using same
KR102206707B1 (en) Flux cored wire
CN106964918B (en) A kind of all positon underwater wet welding self-protection flux-cored wire of deepwater environment
US11577346B2 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
EP3461581A1 (en) Aluminum-containing welding electrode and its production method
WO2015099218A1 (en) Welding material for heat resistant steel
WO2011031022A2 (en) Welding wire
US20230256532A1 (en) Joining of lead and lead alloys
CN113784815B (en) Flux-cored wire and welding method
JP2005246479A (en) Multilayer carbon dioxide gas shielded arc welding method for steel plate
US20230111990A1 (en) Flux for electroslag welding and electroslag welding method
JP2022135634A (en) One-side welding method and flux-cored wire
WO2018124591A1 (en) Solid wire having reduced slag
EP4151357A1 (en) Welding electrode with functional coatings
JP5051966B2 (en) Sideways carbon dioxide shielded arc welding method
GB2614714A (en) Joining of lead and lead alloys
JP4606751B2 (en) Plasma arc hybrid welding method
JPH05104280A (en) Metal cored wire excellent in welding workability
JPH0239359B2 (en) SERUFUSHIIRUDOAAKUYOSETSUYOFURATSUKUSUIRIWAIYA
JPH0751882A (en) Solid wire for gas shielded arc welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528739

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815567

Country of ref document: EP

Kind code of ref document: A2