WO2011030796A1 - Electromagnetic field sensor, and receiver - Google Patents

Electromagnetic field sensor, and receiver Download PDF

Info

Publication number
WO2011030796A1
WO2011030796A1 PCT/JP2010/065429 JP2010065429W WO2011030796A1 WO 2011030796 A1 WO2011030796 A1 WO 2011030796A1 JP 2010065429 W JP2010065429 W JP 2010065429W WO 2011030796 A1 WO2011030796 A1 WO 2011030796A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
electromagnetic field
field sensor
electrode
magnetic core
Prior art date
Application number
PCT/JP2010/065429
Other languages
French (fr)
Japanese (ja)
Inventor
浩範 宮川
克吉 田中
慎吾 井手
弘昭 蒲原
Original Assignee
大電株式会社
九州電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社, 九州電力株式会社 filed Critical 大電株式会社
Priority to CN201080040732.3A priority Critical patent/CN102498407B/en
Priority to KR1020127005779A priority patent/KR101744206B1/en
Publication of WO2011030796A1 publication Critical patent/WO2011030796A1/en
Priority to HK12108575.2A priority patent/HK1167896A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/142Arrangements for simultaneous measurements of several parameters employing techniques covered by groups G01R15/14 - G01R15/26
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • G01R15/165Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices measuring electrostatic potential, e.g. with electrostatic voltmeters or electrometers, when the design of the sensor is essential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/186Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using current transformers with a core consisting of two or more parts, e.g. clamp-on type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/22Tong testers acting as secondary windings of current transformers

Definitions

  • the present invention relates to an electromagnetic field sensor and a receiver used in a cable search apparatus that can identify a desired cable from a plurality of cables and check a cable laying route.
  • the conventional cable detection device has a single oscillator that can oscillate both the current signal and the voltage signal to a transmitter for transmitting a current signal or a voltage signal to the cable to be specified.
  • a circuit Accordingly, a receiver that receives and processes a signal representing a magnetic field or electric field generated around the cable to be specified is configured by a single signal processing circuit (see, for example, Patent Document 1).
  • the electromagnetic induction type detector and the electrostatic induction type detector are separated from each other, and the operator uses the electromagnetic induction type and electrostatic type based on the notification result from the transmitter. Knowing which type of cable detection should be performed, inductive type, one of the electromagnetic induction type detector and electrostatic induction type detector must be connected to the receiver There is a problem that the discrimination work is complicated.
  • the present invention has been made in order to solve the above-described problems, and provides an electromagnetic field sensor and a receiver that can simplify the discrimination work.
  • a substantially non-circular electrode made of a nonmagnetic material having conductivity and surrounding a part of the cable in a circumferential direction while the cable is axially passed, and a magnetic material having conductivity
  • a magnetic core disposed outside the ring of the electrode via an insulator, a winding around which the magnetic core is wound, and an output portion that is drawn from the electrode and drawn from both ends of the winding
  • An induction current generated in the winding by electromagnetic induction based on a current flowing in a cable is output from the output unit, and a voltage generated in the electrode by electrostatic induction based on a voltage applied to the cable is output from the output unit. It is characterized by outputting.
  • the discrimination work can be simplified, and the cable can be discriminated quickly and accurately.
  • FIG. 2A is an outline view showing a schematic configuration of the clamp-type electromagnetic field sensor shown in FIG. 1
  • FIG. 2B is a partial cross-sectional view showing a cross section inside the core cover of the clamp-type electromagnetic field sensor shown in FIG. It is.
  • (A) is a fragmentary sectional view which shows the open state of the clamp type electromagnetic field sensor shown in FIG.2 (b)
  • (b) is another Example of the clamp type electromagnetic field sensor shown in FIG.2 (b). It is a fragmentary sectional view shown.
  • (A) is a fragmentary sectional view showing another example of the clamp type electromagnetic field sensor shown in FIG. 2 (b), and (b) is still another example of the clamp type electromagnetic field sensor shown in FIG. 2 (b). It is a fragmentary sectional view showing an example.
  • (A) is a circuit diagram for the evaluation test of a clamp type electromagnetic field sensor, and (b) is a table showing the results of characteristic evaluation of the clamp type electromagnetic field sensor. It is a layout for a simulated field test by a cable search device. It is a table
  • the optical fiber cable is discriminated by transmitting an electrical signal from a transmitter 10 to a steel wire used as a support wire or tension member of the optical fiber cable via a current transformer (CT) 20. Identification is performed by detecting the signal at the receiver 40 via the clamped electromagnetic field sensor 30 (receiving sensor) according to the present invention.
  • the transmitter 10 and the receiver 40 include, for example, a product name “PTR600 power tracer” manufactured by TASCO.
  • the transmitter 10 can be connected to various cables (0 to 600 V, alternating current (AC) / direct current (DC)), and is a discrimination target cable (hereinafter referred to as a discrimination target cable).
  • a discrimination target cable The method of applying a discrimination signal that generates a very weak induced current or voltage according to the situation is adopted.
  • the transmitter 10 combines on / off with a frequency of 33.3 kHz as a basic signal and on / off with a period of 1 msec (frequency 1 kHz) and on / off with a period of 400 msec (frequency 2.5 Hz).
  • the signals of frequency 33.3 kHz and 1 kHz are signals that function as discrimination signals
  • the signal of frequency 2.5 Hz is a signal that functions as a buzzer sounding and a lamp blinking.
  • a discrimination signal a signal having a frequency of 1 kHz is superimposed on a basic signal having a frequency of 33.3 kHz, applied to the discrimination target cable from the transmitter 10, and detected by the receiver 40, thereby being laid around the discrimination target cable. This reduces the influence of external noise generated by other cables that are installed and devices installed in the vicinity, thereby improving the reliability in determining the determination target cable.
  • the transmission CT 20 has 20 turns (10 turns on each side) wound around a split type philite core having an inner diameter of 27 mm. Note that the number of turns of the winding wound around the philite core is not limited to 20 turns, but as shown in Table 1 below, 20 turns excellent in both voltage application and current conduction characteristics are shown in Table 1. It is preferable to make it.
  • the CT 20 for transmission according to the present embodiment has a winding core wound around a philite core having an inner diameter of 27 mm, and therefore targets a cable with an outer diameter of 25 mm. In this case, the outer diameter is not limited to the identification target cable.
  • the clamp type electromagnetic field sensor 30 is configured to be clampable with respect to the discrimination target cable, and detects a magnetic field generated based on a current flowing through the discrimination target cable and / or an electric field generated based on a voltage applied to the discrimination target cable. It is a detector.
  • the clamp type electromagnetic field sensor 30 is insulated from a substantially annular electrode 31 that surrounds a part of the discrimination target cable in the circumferential direction in a state where the discrimination target cable is clamped and axially passed.
  • a magnetic core 33 disposed outside the ring 31 a of the electrode 31 through the body 32, a winding 34 around which the magnetic core 33 is wound, and a lead wire 35 a from the electrode 31, and from both ends of the winding 34.
  • An output unit 35 drawn out by the lead wire 35 b and a housing 36 that houses the magnetic core 33 are provided.
  • the electrode 31 is made of a nonmagnetic material having conductivity, and in the present embodiment, is formed symmetrically by bending a substantially rectangular copper plate, and is arranged in a semicircular shape so as to be opposed to each other. It has a butting end surface 31b that protrudes outside the ring 31a and contacts and separates when opening and closing, and has a facing surface 31c that bends in a direction opposite to the butting end surface 31b.
  • the electrode 31 generates a voltage by electrostatic induction based on the voltage applied to the discrimination target cable, and outputs the voltage to the output unit 35 via the lead wire 35a.
  • the reason why the electrode 31 is made of a nonmagnetic material is to induce a magnetic field in the magnetic core 33 without shielding the magnetic field generated based on the current flowing in the discrimination target cable by the electrode 31.
  • the electrode 31 has the facing surface 31c, so that the facing surface 31c is brought into contact with a wall surface or the like, and an electric field generated based on a voltage applied to a discrimination target cable laid in the wall or the like can be detected. It is possible to confirm the laying route of the discrimination target cable.
  • the electrode 31 does not need to have the facing surface 31c, and the electrode 31 is, for example, as shown in FIG. As shown, the shape having the ring 31a and the butt end surface 31b, or the shape having only the ring 31a as shown in FIG.
  • the magnetic core 33 is made of a magnetic material having conductivity.
  • a magnetic shield sheet (magnetic film) obtained by laminating a PET (polyethylene terephthalate) film, which is an insulating layer 32a, on a thin film-like metal layer 33a.
  • PET polyethylene terephthalate
  • each magnetic film is arranged along the outer side of the ring 31a of the electrode 31 and the butt end face 31b.
  • the detection sensitivity of the magnetic core 33 is affected by the air gap in the magnetic circuit, it is important to keep the butt state of the magnetic core 33 in a good state. For this reason, by arranging the magnetic core 33 outside the butted end surface 31b of the electrode 31, it is possible to ensure the opposing area of the left and right magnetic films on the butted end surface 31b of the electrode 31. The characteristics can be stabilized.
  • the magnetic core 33 uses a magnetic film, but a split-type philite core may be used.
  • a conductive core is used, an insulator is provided between the magnetic core 33 and the electrode 31 in order to insulate the magnetic core 33 and the electrode 31 as shown in FIG. 32 must be interposed.
  • the winding 34 forms a coil wound around the left and right magnetic cores 33 in the same direction (inner winding in FIG. 2), and the left and right coils are connected in series. Further, in the winding 34, a voltage is induced in the magnetic core 33 by electromagnetic induction based on the current flowing in the determination target cable, and an induced current is generated according to a change in the magnetic field induced in the magnetic core 33, and the winding 34 is connected via the lead wire 35b. The induced current is output to the output unit 35.
  • the output unit 35 is connected to the receiver 40, outputs an induced current generated in the winding 34 by electromagnetic induction to the receiver 40, and outputs a voltage generated in the electrode 31 by electrostatic induction to the receiver 40.
  • the housing 36 is formed of resin, has a substantially arc shape that accommodates the pair of magnetic cores 3 and is opposed to the core cover 36a as a pair, and the electrode 31 fixed to the inner surface of the core cover 36a. And a pair of levers 36b for contacting and separating the butt end surfaces 31b from each other.
  • the receiver 40 only the signal transmitted from the transmitter 10 is automatically identified by the internal microprocessor, so that the workability and certainty for determining the cable are greatly improved.
  • the determination of the cable by the receiver 40 is performed when a closed circuit through the conductive portion of the determination target cable is configured, since a voltage is hardly applied to the determination target cable and a current flows.
  • the target cable can be discriminated from the magnitude of the magnetic field generated on the basis thereof.
  • a closed circuit through the conductive portion of the discrimination target cable is not configured, since a current hardly flows through the discrimination target cable and a voltage is applied, the magnitude of the electric field generated based on this voltage is determined.
  • the target cable can be identified.
  • the receiver 40 includes an electromagnetic field detection unit 41, an adder 42, a signal amplification / sensitivity adjustment unit 43, a filter 44, a signal level detection unit 45, and a notification unit 46. ing.
  • the electromagnetic field detector 41 detects an electric field (voltage) and / or magnetic field (induced current) from the voltage and / or induced current input from the clamp type electromagnetic field sensor 30, and converts the detected induced current into a voltage. And output to the adder 42.
  • the electromagnetic field detection unit 41 incorporates a resonance circuit in the detection of the magnetic field (induced current).
  • the adder 42 adds the voltage based on electrostatic induction and the voltage obtained by converting the induced current, which are input from the electromagnetic field detection unit 41, and outputs the result to the signal amplification / sensitivity adjustment unit 43.
  • the signal amplification / sensitivity adjustment unit 43 sets the amplification factor to 50 times when the reception intensity is strong (hereinafter referred to as strong reception) with respect to the voltage input from the adder 42, and the reception intensity is low (hereinafter, referred to as “high reception”). In the case of weak reception), the amplification factor is set to 2.5 times and output to the filter 44. Note that the signal amplification / sensitivity adjustment unit 43 according to the present embodiment has been able to optimize the compatibility with the clamp type electromagnetic field sensor 30 connected to the receiver 40 in the examination of the specifications of the clamp type electromagnetic field sensor 30 described later. Although the amplification factor is set, the amplification factor is not limited to this.
  • the filter 44 is a band-pass filter (BPF) that passes only a predetermined frequency among the signals input from the signal amplification / sensitivity adjustment unit 43, and the signal having a predetermined frequency that has been passed through is a signal. Output to the level detector 45.
  • BPF band-pass filter
  • the signal level detection unit 45 detects the level of the signal input from the filter 44 based on a predetermined threshold value, and outputs the detected signal level to the notification unit 46.
  • the notification unit 46 notifies the worker by sounding a buzzer and / or lighting of a lamp according to the level of the signal input from the signal level detection unit 45.
  • the specification of the clamp type electromagnetic field sensor 30 is examined.
  • the evaluation test circuit shown in FIG. 5A is used to detect an electric field when the resistance value of the closed circuit is large (10 k ⁇ or more).
  • FIG. 5B shows the result of adjustment in combination with the receiver 40 for detecting the magnetic field when the resistance value of the closed circuit is small (10 k ⁇ or less).
  • the width in the length direction (direction perpendicular to the circumferential direction) of the electrode 31 and the magnetic film (the metal layer 33a and the insulating layer 32a) in the clamp type electromagnetic field sensor 30 is set to 16 mm.
  • the clamp-type electromagnetic field sensor according to this embodiment is obtained.
  • 40 turns were selected as the number of turns of the winding 34.
  • the winding 34 according to the present embodiment is wound around the magnetic film including the metal layer 33a (magnetic core 33) with 40 turns (20 turns to the left and right), but the number of turns is limited. Instead, it is preferable to adjust the number of turns according to the sensitivity of magnetic field detection required for the clamp type electromagnetic field sensor 30.
  • the width in the length direction of the electrode 31 and the magnetic film in the clamp type electromagnetic field sensor 30 is set to 16 mm.
  • the distance between one table and another table is about 20 m, and the number of optical fiber cores is suspended by an arm at a height of about 1.5 m from the ground.
  • a substantially U-shaped route for returning a combination of 12-fiber and 12-fiber optical fiber cables from one table to another table via another table was created.
  • a verification test was conducted on two routes of three lines of 200 cores, 100 cores and 12 cores and three lines of 12 cores, 12 cores and 12 cores.
  • the length of the used optical fiber cable is 68 m for a 200-core optical fiber cable, 145 m for a 100-fiber optical fiber cable, and 46 m for a 12-core optical fiber cable.
  • the test is carried out by grasping at the terminal part.
  • the resistance value of the grounding point and the resistance value of the support wire in each of the 200-fiber, 100-fiber and 12-core optical fiber cables are as shown in the following Table 2.
  • the discrimination target cable and one other cable are connected at one end as a simulated pillar pattern in which the discrimination signal wraps around and does not constitute a closed circuit, and one end of the discrimination target cable is grounded If the identification target cable and one other cable are connected at one end and both ends of the determination target cable are grounded (simulated pillar pattern 5) Were verified for each route.
  • the verification test there is a wraparound of the discrimination signal, and the discrimination target cable and one other cable are connected at both ends as a simulated pillar pattern that constitutes a closed circuit, and one end of the discrimination target cable is When grounded (simulated pillar pattern 6), when the discrimination target cable and one other cable are connected at both ends, and both ends of the discrimination target cable are grounded (simulated pillar pattern 7) ) And the case where the discrimination target cable and two other cables are connected at both ends and both ends of the discrimination target cable are grounded (simulated pillar pattern 8) were verified for each route.
  • double circles ( ⁇ ) indicate a case where five LED (light-emitting diode) lamps that are the notification unit 46 of the receiver 40 are lit, and the reaction is very good.
  • the evaluation result that is possible is shown.
  • a circle ( ⁇ ) indicates an evaluation result that 3 to 5 LED lamps that are the notification unit 46 of the receiver 40 can be turned on or the level can be determined, and the response is good, and the determination is possible.
  • a triangle ( ⁇ ) indicates an evaluation result in which the LED lamp as the notification unit 46 of the receiver 40 is lit and the response is low, and the determination is possible based on the number of lit LED lamps.
  • a cross (x) mark indicates an evaluation result that 0 to 3 LED lamps that are the notification unit 46 of the receiver 40 are lit and cannot be distinguished.
  • the cable search device uses the clamp-type electromagnetic field sensor 30 in which the width in the length direction of the electrode 1 is 32 mm and the width in the length direction of the magnetic film is 16 mm.
  • FIG. 8 shows the result of verifying the cable discrimination performance using the simulation field shown in FIG.
  • the width in the length direction of the electrode 1 is preferably 32 mm or more.
  • the electrode 1 having a width in the length direction of 32 mm, 35 mm, 40 mm, 45 mm and 50 mm in the range of 32 mm to 50 mm.
  • Table 3 shows the result of verifying the characteristics of the electromagnetic field detection by the evaluation test circuit shown in FIG. Note that the receiver 40 used is a resonator circuit that can improve the performance of magnetic field detection.
  • the characteristics of the clamp-type electromagnetic field sensor 30 are not significantly different when the width in the length direction of the electrode 1 (hereinafter referred to as the electrode width) is 32 mm to 50 mm.
  • the electrode width of 32 mm is better than the electrode width of 35 mm, and the magnetic field detection performance in weak reception can be determined with a smaller current as the loop resistance is larger. Therefore, the performance is better when the electrode width is 40 mm or more.
  • 40 mm is appropriate as the electrode width of the clamp-type electromagnetic field sensor 30 in consideration of practical use. Therefore, the electrode widths of 35 mm and 50 mm including the electrode width of 40 mm are verified in the simulation field.
  • a facility simulating a field different from the field shown in FIG. 6 is constructed, and the verification result when the electrode width is set to 35 mm is shown in FIG.
  • the verification result in this case is shown in FIG. 10, and the verification result when the electrode width is 50 mm is shown in FIG.
  • the electrode widths of 35 mm, 40 mm and 50 mm are considered to have no problem in discrimination performance. However, considering the practical aspect and reliability of discrimination performance, the electrode width should be 40 mm. Is considered reasonable.
  • the clamp-type electromagnetic field sensor 30 As described above, in the clamp-type electromagnetic field sensor 30 according to the present embodiment, a magnetic field generated based on a current flowing in the discrimination target cable and a voltage applied to the discrimination target cable in one clamping operation. Thus, there is an effect that the cable discrimination workability can be greatly simplified.
  • the electrode 31 has the facing surface 31c, thereby detecting the electric field generated based on the voltage applied to the discrimination target cable laid in the wall or the like.
  • the electrode 31 has the facing surface 31c, thereby detecting the electric field generated based on the voltage applied to the discrimination target cable laid in the wall or the like.
  • the magnetic core 33 is disposed outside the butt end surface 31b of the electrode 31 so that the left and right magnetic films on the butt end surface 31b of the electrode 31 face each other.
  • the electromagnetic field sensor has been described using a clamp-type electromagnetic field sensor configured to be clampable with respect to the determination target cable in order to facilitate the shafting of the determination target cable.
  • a toroidal electromagnetic field sensor may be configured by using a toroidal magnetic core 33.
  • the electromagnetic field detector 41 of the receiver detects an electric field (voltage) and / or a magnetic field (induced current) from the voltage and / or induced current input from the clamp type electromagnetic field sensor 30, and the detected induced current is converted into a voltage.
  • the addition signal may cancel out due to the difference in phase between the electric field detection signal and the magnetic field detection signal, and an erroneous determination may be made.
  • the signal level is determined by detecting the electric field (voltage) and / or the signal level is determined by detecting the magnetic field (induced current), and then comprehensively determined. With this circuit configuration, the discrimination performance can be improved.
  • the detected electric field (voltage) signal is rectified and then amplified, and / or the detected magnetic field (induced current) signal is rectified and then amplified, and then added.
  • the discrimination performance can also be improved by adopting a circuit configuration for determining the signal level.
  • the optical fiber cable has been described as an example of the determination target cable, it is not limited to the optical fiber cable, and the clamp type electromagnetic field sensor 30 according to the present embodiment is a metal communication cable, a power cable, or the like. It can be applied to various electric wire / cable discrimination and wiring route exploration.

Abstract

Disclosed is an electromagnetic field sensor, by which discriminating operation can be simplified, and a cable can be discriminated rapidly and correctly. The clamp-type sensor (30) is provided with: a substantially annular electrode (31), which is composed of a nonmagnetic material having conductivity, and which surrounds a part of a cable in the circumferential direction in a state where the cable is clamped; a magnetic core (33), which is composed of a magnetic material, and is disposed on the outer side of a ring (31a) of the electrode (31) with an insulator (32) therebetween; a winding wire (34), which is wound around the magnetic core (33); and an output section (35), which is led out by means of a lead wire (35a) from the electrode (31), and led out from both the ends of the winding wire (34) by means of a lead wire (35b). An inductive current generated in the winding wire (34) due to electromagnetic induction is outputted from the output section (35), and a voltage generated in the electrode (31) due to electrostatic induction is outputted from the output section (35).

Description

電磁界センサ及び受信器Electromagnetic field sensor and receiver
 この発明は、複数のケーブルの中から所望のケーブルを識別することやケーブルの敷設経路を確認することができるケーブル検索装置に用いる電磁界センサ及び受信器に関する。 The present invention relates to an electromagnetic field sensor and a receiver used in a cable search apparatus that can identify a desired cable from a plurality of cables and check a cable laying route.
 加入者系の光ファイバネットワークの架線工事における一束化工法においては、一条のスパイラルハンガー内に多条の光ファイバケーブルが敷設されている。このため、クロージャを新設する割込作業等では、光ファイバケーブルが多条化された区間において作業対象である光ファイバケーブルの判別に時間を要し、光ファイバケーブルの判別作業が非効率になっている。また、クロージャの取付けの誤りや光ファイバケーブルの誤切断による通信障害の発生の可能性があるため、光ファイバケーブルの判別を迅速かつ正確に行うことが重要となってきている。 In the bundled construction method for the construction work of the subscriber optical fiber network, multiple fiber optic cables are laid in one spiral hanger. For this reason, in the interrupting work for newly installing a closure, it takes time to discriminate the optical fiber cable to be worked in the section where the optical fiber cable is multi-striped, and the discriminating work of the optical fiber cable becomes inefficient. ing. Further, since there is a possibility of communication failure due to an error in the attachment of the closure or an erroneous disconnection of the optical fiber cable, it is important to quickly and accurately discriminate the optical fiber cable.
 これに対し、従来のケーブルの検知装置は、特定すべきケーブルに電流信号若しくは電圧信号を送信する為の送信器に、これら電流信号と電圧信号との双方の信号を発振自在な1個の発振回路を設ける。これに伴い、上記特定すべきケーブルの周囲に発生する磁界若しくは電界を表す信号を受信して処理する受信器を、1個の信号処理回路により構成する(例えば、特許文献1参照)。 On the other hand, the conventional cable detection device has a single oscillator that can oscillate both the current signal and the voltage signal to a transmitter for transmitting a current signal or a voltage signal to the cable to be specified. Provide a circuit. Accordingly, a receiver that receives and processes a signal representing a magnetic field or electric field generated around the cable to be specified is configured by a single signal processing circuit (see, for example, Patent Document 1).
特開2005-114561号公報JP 2005-114561 A
 しかしながら、従来のケーブルの検知装置は、電磁誘導式の検知器と静電誘導式の検知器とが別々になっており、作業者が、送信器による報知結果に基づき、電磁誘導式と静電誘導式との何れの方式のケーブル検知を行うべきかを知ったうえで、電磁誘導式の検知器と静電誘導式の検知器との何れか1個の検知器を受信器に接続する必要があり、判別作業が煩雑であるという課題がある。
 この発明は、前述のような課題を解決するためになされたもので、判別作業を簡略化することができる電磁界センサ及び受信器を提供するものである。
However, in the conventional cable detection device, the electromagnetic induction type detector and the electrostatic induction type detector are separated from each other, and the operator uses the electromagnetic induction type and electrostatic type based on the notification result from the transmitter. Knowing which type of cable detection should be performed, inductive type, one of the electromagnetic induction type detector and electrostatic induction type detector must be connected to the receiver There is a problem that the discrimination work is complicated.
The present invention has been made in order to solve the above-described problems, and provides an electromagnetic field sensor and a receiver that can simplify the discrimination work.
 この発明に係る電磁界センサにおいては、導電性を有する非磁性体からなり、ケーブルを軸通した状態で当該ケーブルの一部を周方向に包囲する略環状の電極と、導電性を有する磁性体からなり、絶縁体を介して前記電極の環の外側に配設される磁気コアと、前記磁気コアを巻回する巻線と、前記電極から引き出され、前記巻線の両端から引き出される出力部とを備え、ケーブルに流れる電流に基づく電磁誘導により前記巻線に生じる誘導電流を前記出力部から出力し、ケーブルに印加される電圧に基づく静電誘導により前記電極に生じる電圧を前記出力部から出力することを特徴とするものである。 In the electromagnetic field sensor according to the present invention, a substantially non-circular electrode made of a nonmagnetic material having conductivity and surrounding a part of the cable in a circumferential direction while the cable is axially passed, and a magnetic material having conductivity A magnetic core disposed outside the ring of the electrode via an insulator, a winding around which the magnetic core is wound, and an output portion that is drawn from the electrode and drawn from both ends of the winding An induction current generated in the winding by electromagnetic induction based on a current flowing in a cable is output from the output unit, and a voltage generated in the electrode by electrostatic induction based on a voltage applied to the cable is output from the output unit. It is characterized by outputting.
 開示の電磁界センサにおいては、判別作業を簡略化することができ、ケーブルの判別を迅速かつ正確に行うことができる。 In the disclosed electromagnetic field sensor, the discrimination work can be simplified, and the cable can be discriminated quickly and accurately.
(a)はケーブル検索装置の送信側の概略構成を示すブロック図であり、(b)はケーブル検索装置の受信側の概略構成を示すブロック図である。(A) is a block diagram showing a schematic configuration on the transmission side of the cable search device, (b) is a block diagram showing a schematic configuration on the reception side of the cable search device. (a)は図1に示すクランプ式電磁界センサの概略構成を示す外形図であり、(b)は図2(a)に示すクランプ式電磁界センサのコアカバー内部の断面を示す部分断面図である。FIG. 2A is an outline view showing a schematic configuration of the clamp-type electromagnetic field sensor shown in FIG. 1, and FIG. 2B is a partial cross-sectional view showing a cross section inside the core cover of the clamp-type electromagnetic field sensor shown in FIG. It is. (a)は図2(b)に示すクランプ式電磁界センサの開いた状態を示す部分断面図であり、(b)は図2(b)に示すクランプ式電磁界センサの他の実施例を示す部分断面図である。(A) is a fragmentary sectional view which shows the open state of the clamp type electromagnetic field sensor shown in FIG.2 (b), (b) is another Example of the clamp type electromagnetic field sensor shown in FIG.2 (b). It is a fragmentary sectional view shown. (a)は図2(b)に示すクランプ式電磁界センサの他の実施例を示す部分断面図であり、(b)は図2(b)に示すクランプ式電磁界センサのさらに他の実施例を示す部分断面図である。(A) is a fragmentary sectional view showing another example of the clamp type electromagnetic field sensor shown in FIG. 2 (b), and (b) is still another example of the clamp type electromagnetic field sensor shown in FIG. 2 (b). It is a fragmentary sectional view showing an example. (a)はクランプ式電磁界センサの評価試験のための回路図であり、(b)はクランプ式電磁界センサの特性評価の結果を示す表である。(A) is a circuit diagram for the evaluation test of a clamp type electromagnetic field sensor, and (b) is a table showing the results of characteristic evaluation of the clamp type electromagnetic field sensor. ケーブル検索装置による模擬フィールド試験のための配置図である。It is a layout for a simulated field test by a cable search device. 電極幅16mmのクランプ式電磁界センサの判別性能の検証結果を示す表である。It is a table | surface which shows the verification result of the discrimination | determination performance of a clamp type electromagnetic field sensor with an electrode width of 16 mm. 電極幅32mmのクランプ式電磁界センサの判別性能の検証結果を示す表である。It is a table | surface which shows the verification result of the discrimination | determination performance of a clamp type electromagnetic field sensor with an electrode width of 32 mm. 電極幅35mmのクランプ式電磁界センサの判別性能の検証結果を示す表である。It is a table | surface which shows the verification result of the discrimination | determination performance of the clamp type electromagnetic field sensor of electrode width 35mm. 電極幅40mmのクランプ式電磁界センサの判別性能の検証結果を示す表である。It is a table | surface which shows the verification result of the discrimination | determination performance of a clamp type electromagnetic field sensor with an electrode width of 40 mm. 電極幅50mmのクランプ式電磁界センサの判別性能の検証結果を示す表である。It is a table | surface which shows the verification result of the discrimination | determination performance of the clamp type electromagnetic field sensor of electrode width 50mm.
(本発明の第1の実施形態)
 光ファイバケーブルの判別方式は、光ファイバケーブルの支持線又はテンションメンバとして使用されている鋼線に、送信器10から電気的な信号を送信用変流器(CT:current transformer)20を介して印加し、本発明に係るクランプ式電磁界センサ30(受信用センサ)を介して受信器40でその信号を検出することによって識別する。なお、送信器10及び受信器40は、例えば、TASCO社製の製品名「PTR600パワートレーサー」が挙げられる。
(First embodiment of the present invention)
The optical fiber cable is discriminated by transmitting an electrical signal from a transmitter 10 to a steel wire used as a support wire or tension member of the optical fiber cable via a current transformer (CT) 20. Identification is performed by detecting the signal at the receiver 40 via the clamped electromagnetic field sensor 30 (receiving sensor) according to the present invention. The transmitter 10 and the receiver 40 include, for example, a product name “PTR600 power tracer” manufactured by TASCO.
 送信器10は、様々なケーブル(0~600V、交流(Alternating Current:AC)/直流(Direct Current:DC))に接続可能であり、判別の対象であるケーブル(以下、判別対象ケーブルと称す)の状況に応じて非常に微弱な誘導電流又は電圧を発生させる判別信号の印加方法を採用している。 The transmitter 10 can be connected to various cables (0 to 600 V, alternating current (AC) / direct current (DC)), and is a discrimination target cable (hereinafter referred to as a discrimination target cable). The method of applying a discrimination signal that generates a very weak induced current or voltage according to the situation is adopted.
 図1(a)において、送信器10は、周波数33.3kHzを基本信号として、1msecを周期(周波数1kHz)とするon/off及び400msecを周期(周波数2.5Hz)とするon/offを組合せた信号を発信する発信器11と、発信器11から入力される信号を増幅するアンプ12と、アンプ12から入力される信号のうち交流信号を通過させ直流信号を遮断するカップリングコンデンサ13を備えている。 In FIG. 1A, the transmitter 10 combines on / off with a frequency of 33.3 kHz as a basic signal and on / off with a period of 1 msec (frequency 1 kHz) and on / off with a period of 400 msec (frequency 2.5 Hz). A transmitter 11 for transmitting the received signal, an amplifier 12 for amplifying the signal input from the transmitter 11, and a coupling capacitor 13 for passing an AC signal among the signals input from the amplifier 12 and blocking the DC signal. ing.
 なお、発信器11から発信される信号において、周波数33.3kHz及び1kHzの信号は判別信号として機能する信号であり、周波数2.5Hzの信号はブザーの鳴動及びランプの点滅として機能する信号である。 In addition, in the signal transmitted from the transmitter 11, the signals of frequency 33.3 kHz and 1 kHz are signals that function as discrimination signals, and the signal of frequency 2.5 Hz is a signal that functions as a buzzer sounding and a lamp blinking. .
 また、判別信号として、周波数33.3kHzの基本信号に周波数1kHzの信号を重畳させ、送信器10から判別対象ケーブルに印加して、受信器40により検出することで、判別対象ケーブルの周囲に敷設されている他のケーブルや周囲に設置されている機器が発生する外来ノイズ等の影響を低減させ、判別対象ケーブルの判別における信頼性の向上を図っている。 Further, as a discrimination signal, a signal having a frequency of 1 kHz is superimposed on a basic signal having a frequency of 33.3 kHz, applied to the discrimination target cable from the transmitter 10, and detected by the receiver 40, thereby being laid around the discrimination target cable. This reduces the influence of external noise generated by other cables that are installed and devices installed in the vicinity, thereby improving the reliability in determining the determination target cable.
 送信用CT20は、内径27mmである分割型のフィライトコアに、20ターン(左右に各10ターン)の巻線を巻回している。なお、フィライトコアに巻回する巻線のターン数は、20ターンに限られるものではないが、次表1に示すように、実験結果により電圧印加及び電流通電の両特性が優れた20ターンにすることが好ましい。また、本実施形態に係る送信用CT20は、内径27mmのフィライトコアに巻線を巻回しているために、外径25mmまでのケーブルを判別対象にしているが、フィライトコアの内径を大きくすれば、この外径の判別対象ケーブルに限られるものではない。 The transmission CT 20 has 20 turns (10 turns on each side) wound around a split type philite core having an inner diameter of 27 mm. Note that the number of turns of the winding wound around the philite core is not limited to 20 turns, but as shown in Table 1 below, 20 turns excellent in both voltage application and current conduction characteristics are shown in Table 1. It is preferable to make it. In addition, the CT 20 for transmission according to the present embodiment has a winding core wound around a philite core having an inner diameter of 27 mm, and therefore targets a cable with an outer diameter of 25 mm. In this case, the outer diameter is not limited to the identification target cable.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 クランプ式電磁界センサ30は、判別対象ケーブルに対してクランプ可能に構成され、判別対象ケーブルに流れる電流に基づいて生じる磁界及び/又は判別対象ケーブルに印加される電圧に基づいて生じる電界を検出する検知器である。 The clamp type electromagnetic field sensor 30 is configured to be clampable with respect to the discrimination target cable, and detects a magnetic field generated based on a current flowing through the discrimination target cable and / or an electric field generated based on a voltage applied to the discrimination target cable. It is a detector.
 図2及び図3(a)において、クランプ式電磁界センサ30は、判別対象ケーブルをクランプして軸通した状態で判別対象ケーブルの一部を周方向に包囲する略環状の電極31と、絶縁体32を介して電極31の環31aの外側に配設される磁気コア33と、磁気コア33を巻回する巻線34と、電極31からリード線35aにより引き出され、巻線34の両端からリード線35bにより引き出される出力部35と、磁気コア33を収容する筐体36とを備えている。 2 and 3A, the clamp type electromagnetic field sensor 30 is insulated from a substantially annular electrode 31 that surrounds a part of the discrimination target cable in the circumferential direction in a state where the discrimination target cable is clamped and axially passed. A magnetic core 33 disposed outside the ring 31 a of the electrode 31 through the body 32, a winding 34 around which the magnetic core 33 is wound, and a lead wire 35 a from the electrode 31, and from both ends of the winding 34. An output unit 35 drawn out by the lead wire 35 b and a housing 36 that houses the magnetic core 33 are provided.
 電極31は、導電性を有する非磁性体からなり、本実施形態においては、略矩形状の1枚の銅板を屈曲して左右対称に形成され、略半環状を呈して対となって対向配置され、環31aの外側に突出して開閉時に相互が接離する突合せ端面31bを有し、当該突合せ端面31bに対して相反する方向に屈曲する対向面31cを有する。また、電極31は、判別対象ケーブルに印加される電圧に基づく静電誘導により電圧が生じ、リード線35aを介して出力部35に電圧を出力する。 The electrode 31 is made of a nonmagnetic material having conductivity, and in the present embodiment, is formed symmetrically by bending a substantially rectangular copper plate, and is arranged in a semicircular shape so as to be opposed to each other. It has a butting end surface 31b that protrudes outside the ring 31a and contacts and separates when opening and closing, and has a facing surface 31c that bends in a direction opposite to the butting end surface 31b. The electrode 31 generates a voltage by electrostatic induction based on the voltage applied to the discrimination target cable, and outputs the voltage to the output unit 35 via the lead wire 35a.
 なお、電極31を非磁性体にすることは、判別対象ケーブルに流れる電流に基づいて生じる磁界を電極31により遮蔽することなく、磁気コア33に磁界を誘起するためである。 The reason why the electrode 31 is made of a nonmagnetic material is to induce a magnetic field in the magnetic core 33 without shielding the magnetic field generated based on the current flowing in the discrimination target cable by the electrode 31.
 また、電極31は、対向面31cを有することにより、対向面31cを壁面等に当接させ、壁内等に敷設された判別対象ケーブルに印加される電圧に基づいて生じる電界を検出することができ、判別対象ケーブルの敷設経路を確認することができる。 Further, the electrode 31 has the facing surface 31c, so that the facing surface 31c is brought into contact with a wall surface or the like, and an electric field generated based on a voltage applied to a discrimination target cable laid in the wall or the like can be detected. It is possible to confirm the laying route of the discrimination target cable.
 なお、クランプ式電磁界センサ30に判別対象ケーブルの敷設経路の検索機能を持たせないのであれば、電極31に対向面31cを有する必要もなく、電極31は、例えば、図4(a)に示すように、環31a及び突合せ端面31bを有する形状や、図4(b)に示すように、環31aのみを有する形状であってもよい。 If the clamp-type electromagnetic field sensor 30 does not have a search function for the laying route of the discrimination target cable, the electrode 31 does not need to have the facing surface 31c, and the electrode 31 is, for example, as shown in FIG. As shown, the shape having the ring 31a and the butt end surface 31b, or the shape having only the ring 31a as shown in FIG.
 磁気コア33は、導電性を有する磁性体からなり、本実施形態においては、薄いフィルム状の金属層33aに絶縁層32aであるPET(polyethylene terephthalate)フィルムをラミネートした磁気シールドシート(磁性体フィルム)を2枚使用し、電極31の環31a及び突合せ端面31bの外側に沿って各磁性体フィルムを配設している。 The magnetic core 33 is made of a magnetic material having conductivity. In the present embodiment, a magnetic shield sheet (magnetic film) obtained by laminating a PET (polyethylene terephthalate) film, which is an insulating layer 32a, on a thin film-like metal layer 33a. Are used, and each magnetic film is arranged along the outer side of the ring 31a of the electrode 31 and the butt end face 31b.
 また、磁気コア33は、検出感度が磁気回路中の空隙によって影響を受けるため、磁気コア33の突合せ状態を良い状態で保持することが重要である。このため、電極31の突合せ端面31bの外側に磁気コア33を配設することにより、電極31の突合せ端面31bにおける左右の磁性体フィルム同士の対向する面積を確保することができ、磁気コア33の特性の安定を図ることができる。 Also, since the detection sensitivity of the magnetic core 33 is affected by the air gap in the magnetic circuit, it is important to keep the butt state of the magnetic core 33 in a good state. For this reason, by arranging the magnetic core 33 outside the butted end surface 31b of the electrode 31, it is possible to ensure the opposing area of the left and right magnetic films on the butted end surface 31b of the electrode 31. The characteristics can be stabilized.
 なお、本実施形態に係る磁気コア33は、磁性体フィルムを用いているが、分割型のフィライトコアを用いてもよい。なお、導電性のあるコアを使用する場合は、図3(b)に示すように、磁気コア33と電極31との間を絶縁するために、磁気コア33と電極31との間に絶縁体32を介在させる必要がある。 Note that the magnetic core 33 according to the present embodiment uses a magnetic film, but a split-type philite core may be used. When a conductive core is used, an insulator is provided between the magnetic core 33 and the electrode 31 in order to insulate the magnetic core 33 and the electrode 31 as shown in FIG. 32 must be interposed.
 巻線34は、左右の磁気コア33に対して同一方向(図2では内巻き)に巻回したコイルを形成しており、左右のコイルは直列に接続されている。また、巻線34は、判別対象ケーブルに流れる電流に基づく電磁誘導により磁気コア33に電圧が誘起され、磁気コア33に誘起される磁界の変化に応じて誘導電流が生じ、リード線35bを介して出力部35に誘導電流を出力する。 The winding 34 forms a coil wound around the left and right magnetic cores 33 in the same direction (inner winding in FIG. 2), and the left and right coils are connected in series. Further, in the winding 34, a voltage is induced in the magnetic core 33 by electromagnetic induction based on the current flowing in the determination target cable, and an induced current is generated according to a change in the magnetic field induced in the magnetic core 33, and the winding 34 is connected via the lead wire 35b. The induced current is output to the output unit 35.
 出力部35は、受信器40に接続して、電磁誘導により巻線34に生じる誘導電流を受信器40に出力し、静電誘導により電極31に生じる電圧を受信器40に出力する。 The output unit 35 is connected to the receiver 40, outputs an induced current generated in the winding 34 by electromagnetic induction to the receiver 40, and outputs a voltage generated in the electrode 31 by electrostatic induction to the receiver 40.
 筐体36は、樹脂により成形され、一対の磁気コア3をそれぞれ収納する略円弧状を呈して対となって対向配置されるコアカバー36aと、コアカバー36aの内側面に固着された電極31の突合せ端面31bを相互に接離するための一対のレバー36bとを備えている。 The housing 36 is formed of resin, has a substantially arc shape that accommodates the pair of magnetic cores 3 and is opposed to the core cover 36a as a pair, and the electrode 31 fixed to the inner surface of the core cover 36a. And a pair of levers 36b for contacting and separating the butt end surfaces 31b from each other.
 受信器40は、送信器10から発信される信号のみを内部のマイクロプロセッサが自動的に識別することで、ケーブルを判別するための作業性及び確実性を飛躍的に向上している。なお、受信器40によるケーブルの判別は、判別対象ケーブルの導電部を通した閉回路が構成される場合には、判別対象ケーブルに、電圧がほとんど掛からず、電流が流れるために、この電流に基づいて生じる磁界の大きさから対象ケーブルの判別が可能となる。一方、判別対象ケーブルの導電部を通した閉回路が構成されない場合には、判別対象ケーブルに、電流がほとんど流れず、電圧が印加されるために、この電圧に基づいて生じる電界の大きさから対象ケーブルの判別が可能となる。 In the receiver 40, only the signal transmitted from the transmitter 10 is automatically identified by the internal microprocessor, so that the workability and certainty for determining the cable are greatly improved. Note that the determination of the cable by the receiver 40 is performed when a closed circuit through the conductive portion of the determination target cable is configured, since a voltage is hardly applied to the determination target cable and a current flows. The target cable can be discriminated from the magnitude of the magnetic field generated on the basis thereof. On the other hand, when a closed circuit through the conductive portion of the discrimination target cable is not configured, since a current hardly flows through the discrimination target cable and a voltage is applied, the magnitude of the electric field generated based on this voltage is determined. The target cable can be identified.
 図1(b)において、受信器40は、電磁界検出部41と、加算器42と、信号増幅・感度調整部43と、フィルタ44と、信号レベル検出部45と、報知部46とを備えている。 1B, the receiver 40 includes an electromagnetic field detection unit 41, an adder 42, a signal amplification / sensitivity adjustment unit 43, a filter 44, a signal level detection unit 45, and a notification unit 46. ing.
 電磁界検出部41は、クランプ式電磁界センサ30から入力される電圧及び/又は誘導電流から、電界(電圧)及び/又は磁界(誘導電流)を検出し、検出した誘導電流を電圧に変換して、加算器42に出力する。なお、磁界(誘導電流)の検出においては、共振回路を構成した場合と共振回路を構成しない場合とで、後述する評価試験を行なったところ、共振回路を構成した場合の方が、判別対象ケーブルの判別性能に優れていたために、電磁界検出部41は、磁界(誘導電流)の検出において共振回路を内蔵することが好ましい。 The electromagnetic field detector 41 detects an electric field (voltage) and / or magnetic field (induced current) from the voltage and / or induced current input from the clamp type electromagnetic field sensor 30, and converts the detected induced current into a voltage. And output to the adder 42. In the detection of the magnetic field (inductive current), the evaluation test described below was performed when the resonance circuit was configured and when the resonance circuit was not configured. Therefore, it is preferable that the electromagnetic field detection unit 41 incorporates a resonance circuit in the detection of the magnetic field (induced current).
 加算器42は、電磁界検出部41から入力される、静電誘導に基づく電圧及び誘導電流を変換した電圧を加算して、信号増幅・感度調整部43に出力する。 The adder 42 adds the voltage based on electrostatic induction and the voltage obtained by converting the induced current, which are input from the electromagnetic field detection unit 41, and outputs the result to the signal amplification / sensitivity adjustment unit 43.
 信号増幅・感度調整部43は、加算器42から入力される電圧に対して、受信強度が強い(以下、強受信と称す)場合には増幅率を50倍とし、受信強度が弱い(以下、弱受信と称す)場合には増幅率を2.5倍として、フィルタ44に出力する。なお、本実施形態に係る信号増幅・感度調整部43は、後述するクランプ式電磁界センサ30の仕様の検討において、受信器40に接続したクランプ式電磁界センサ30との相性が最適化できたために、この増幅率に設定しているが、この増幅率に限られるものではない。 The signal amplification / sensitivity adjustment unit 43 sets the amplification factor to 50 times when the reception intensity is strong (hereinafter referred to as strong reception) with respect to the voltage input from the adder 42, and the reception intensity is low (hereinafter, referred to as “high reception”). In the case of weak reception), the amplification factor is set to 2.5 times and output to the filter 44. Note that the signal amplification / sensitivity adjustment unit 43 according to the present embodiment has been able to optimize the compatibility with the clamp type electromagnetic field sensor 30 connected to the receiver 40 in the examination of the specifications of the clamp type electromagnetic field sensor 30 described later. Although the amplification factor is set, the amplification factor is not limited to this.
 フィルタ44は、信号増幅・感度調整部43から入力される信号のうち、所定の周波数のみを通過させるバンドパスフィルタ(Band-pass filter:BPF)であり、通過させた所定の周波数の信号を信号レベル検出部45に出力する。 The filter 44 is a band-pass filter (BPF) that passes only a predetermined frequency among the signals input from the signal amplification / sensitivity adjustment unit 43, and the signal having a predetermined frequency that has been passed through is a signal. Output to the level detector 45.
 信号レベル検出部45は、予め定めた閾値に基づき、フィルタ44から入力される信号のレベルを検出し、検出した信号レベルを報知部46に出力する。 The signal level detection unit 45 detects the level of the signal input from the filter 44 based on a predetermined threshold value, and outputs the detected signal level to the notification unit 46.
 報知部46は、信号レベル検出部45から入力される信号のレベルに応じて、ブザーの鳴動及び/又はランプの点灯等により、作業者に対して報知する。
 ここで、クランプ式電磁界センサ30の仕様を検討する。
The notification unit 46 notifies the worker by sounding a buzzer and / or lighting of a lamp according to the level of the signal input from the signal level detection unit 45.
Here, the specification of the clamp type electromagnetic field sensor 30 is examined.
 まず、クランプ式電磁界センサ30における巻線34の最適なターン数について、図5(a)に示す評価試験回路を用い、閉回路の抵抗値が大きい場合(10kΩ以上)に電界の検出とし、閉回路の抵抗値が小さい場合(10kΩ以下)に磁界の検出として、受信器40と組み合わせて調整した結果を図5(b)に示す。なお、ここでは、クランプ式電磁界センサ30における電極31及び磁性体フィルム(金属層33a、絶縁層32a)の長さ方向(周方向に直交する方向)の幅を16mmとしている。 First, for the optimum number of turns of the winding 34 in the clamp type electromagnetic field sensor 30, the evaluation test circuit shown in FIG. 5A is used to detect an electric field when the resistance value of the closed circuit is large (10 kΩ or more). FIG. 5B shows the result of adjustment in combination with the receiver 40 for detecting the magnetic field when the resistance value of the closed circuit is small (10 kΩ or less). Here, the width in the length direction (direction perpendicular to the circumferential direction) of the electrode 31 and the magnetic film (the metal layer 33a and the insulating layer 32a) in the clamp type electromagnetic field sensor 30 is set to 16 mm.
 図5(b)に示すように、巻線34のターン数が30ターン及び40ターンの場合に、磁界検出において判別性能に良い結果が得られたために、本実施形態に係るクランプ式電磁界センサ30においては、巻線34のターン数として40ターンを選択した。なお、本実施形態に係る巻線34は、金属層33a(磁気コア33)を含む磁性体フィルムに対して40ターン(左右に各20ターン)で巻回しているが、この巻数に限られるものではなく、クランプ式電磁界センサ30に求められる磁界検出の感度に応じて巻数を調整することが好ましい。 As shown in FIG. 5B, when the number of turns of the winding 34 is 30 turns and 40 turns, a good result is obtained in the discrimination performance in the magnetic field detection. Therefore, the clamp-type electromagnetic field sensor according to this embodiment is obtained. At 30, 40 turns were selected as the number of turns of the winding 34. The winding 34 according to the present embodiment is wound around the magnetic film including the metal layer 33a (magnetic core 33) with 40 turns (20 turns to the left and right), but the number of turns is limited. Instead, it is preferable to adjust the number of turns according to the sensitivity of magnetic field detection required for the clamp type electromagnetic field sensor 30.
 つぎに、図6に示すフィールドを模擬した設備を構築し、送信器10、送信用CT20、クランプ式電磁界センサ30及び受信器40を備えたケーブル検索装置によるケーブルの判別性能について、検証した結果を図7に示す。なお、ここでは、クランプ式電磁界センサ30における電極31及び磁性体フィルムの長さ方向の幅を16mmとしている。 Next, a facility simulating the field shown in FIG. 6 was constructed, and the results of verifying the cable discrimination performance by the cable search device including the transmitter 10, the transmission CT 20, the clamp type electromagnetic field sensor 30, and the receiver 40 were verified. Is shown in FIG. Here, the width in the length direction of the electrode 31 and the magnetic film in the clamp type electromagnetic field sensor 30 is set to 16 mm.
 また、模擬フィールドは、一のテーブルと他のテーブル間の距離を20m程度とし、地上から1.5m程度の高さにアームにより吊り下げた、光ファイバ心線数200心、100心、12心、12心及び12心の光ファイバケーブルの組み合わせを、一のテーブルから他のテーブルを経由して一のテーブルに戻る略U字状のルートを作成した。この略U字状のルートのうち、模擬的に、200心、100心及び12心の3条と、12心、12心及び12心の3条との2ルートにおいて、検証試験を実施した。 In the simulated field, the distance between one table and another table is about 20 m, and the number of optical fiber cores is suspended by an arm at a height of about 1.5 m from the ground. , A substantially U-shaped route for returning a combination of 12-fiber and 12-fiber optical fiber cables from one table to another table via another table was created. Of these substantially U-shaped routes, a verification test was conducted on two routes of three lines of 200 cores, 100 cores and 12 cores and three lines of 12 cores, 12 cores and 12 cores.
 また、使用した光ファイバケーブルの長さは、200心の光ファイバケーブルが68mであり、100心の光ファイバケーブルが145mであり、12心の光ファイバケーブルが46mである。なお、光ファイバケーブルの余長については、端末部分で把を取って試験を実施している。 Also, the length of the used optical fiber cable is 68 m for a 200-core optical fiber cable, 145 m for a 100-fiber optical fiber cable, and 46 m for a 12-core optical fiber cable. In addition, about the extra length of an optical fiber cable, the test is carried out by grasping at the terminal part.
 また、接地点の抵抗値、並びに200心、100心及び12心の各光ファイバケーブルにおける支持線の抵抗値は、次表2に示すとおりである。 Further, the resistance value of the grounding point and the resistance value of the support wire in each of the 200-fiber, 100-fiber and 12-core optical fiber cables are as shown in the following Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  さらに、検証試験では、判別信号の回り込みがない模擬装柱パターンとして、判別対象ケーブルと2本の他のケーブルとが接続されておらず、判別対象ケーブルの両端が接地されていない場合(模擬装柱パターン1)と、判別対象ケーブルと2本の他のケーブルとが接続されておらず、判別対象ケーブルの片端が接地されている場合(模擬装柱パターン2)と、判別対象ケーブルと2本の他のケーブルとが接続されておらず、判別対象ケーブルの両端が接地されている場合(模擬装柱パターン3)とを、各ルートについて検証した。 Furthermore, in the verification test, as the simulated pillar pattern without the wraparound of the discrimination signal, when the discrimination target cable and the two other cables are not connected and both ends of the discrimination target cable are not grounded (simulation equipment) When the pillar pattern 1) is not connected to the discrimination target cable and two other cables and one end of the discrimination target cable is grounded (simulated pillar pattern 2), the discrimination target cable and two The case where the other cable is not connected and both ends of the discrimination target cable are grounded (simulated column pattern 3) was verified for each route.
 また、検証試験では、判別信号の回り込みがあり、閉回路が構成されない模擬装柱パターンとして、判別対象ケーブルと1本の他のケーブルとが片端で接続されており、判別対象ケーブルの片端が接地されている場合(模擬装柱パターン4)と、判別対象ケーブルと1本の他のケーブルとが片端で接続されており、判別対象ケーブルの両端が接地されている場合(模擬装柱パターン5)とを、各ルートについて検証した。 Also, in the verification test, the discrimination target cable and one other cable are connected at one end as a simulated pillar pattern in which the discrimination signal wraps around and does not constitute a closed circuit, and one end of the discrimination target cable is grounded If the identification target cable and one other cable are connected at one end and both ends of the determination target cable are grounded (simulated pillar pattern 5) Were verified for each route.
 また、検証試験では、判別信号の回り込みがあり、閉回路が構成される模擬装柱パターンとして、判別対象ケーブルと1本の他のケーブルとが両端で接続されており、判別対象ケーブルの片端が接地されている場合(模擬装柱パターン6)と、判別対象ケーブルと1本の他のケーブルとが両端で接続されており、判別対象ケーブルの両端が接地されている場合(模擬装柱パターン7)と、判別対象ケーブルと2本の他のケーブルとが両端で接続されており、判別対象ケーブルの両端が接地されている場合(模擬装柱パターン8)とを、各ルートについて検証した。 Also, in the verification test, there is a wraparound of the discrimination signal, and the discrimination target cable and one other cable are connected at both ends as a simulated pillar pattern that constitutes a closed circuit, and one end of the discrimination target cable is When grounded (simulated pillar pattern 6), when the discrimination target cable and one other cable are connected at both ends, and both ends of the discrimination target cable are grounded (simulated pillar pattern 7) ) And the case where the discrimination target cable and two other cables are connected at both ends and both ends of the discrimination target cable are grounded (simulated pillar pattern 8) were verified for each route.
 この検証試験では、図7に示すように、電界を検出する性能(閉回路が構成されない場合のケーブルの判別性能)が劣っているという結果が得られた。そこで、電界検出の性能を向上させるため、電極1の長さ方向の幅を30mm~40mm範囲で変化させたところ、電極1の長さ方向の幅が32mm以上において、ケーブル検索装置による電界検出の動作が良好であることを確認できた。 In this verification test, as shown in FIG. 7, the result that the performance of detecting the electric field (cable discrimination performance when the closed circuit is not configured) is inferior. Therefore, in order to improve the electric field detection performance, the width in the length direction of the electrode 1 is changed in the range of 30 mm to 40 mm. It was confirmed that the operation was good.
 なお、図7において、二重丸(◎)印は、受信器40の報知部46であるLED(light-emitting diode)ランプが5個点灯し、非常に反応が良い場合であり、確実に判別が可能であるという評価結果を示す。また、丸(○)印は、受信器40の報知部46であるLEDランプが3~5個点灯又はレベル判定が可能であり、反応が良い場合であり、判別が可能であるという評価結果を示す。また、三角(△)印は、受信器40の報知部46であるLEDランプが点灯し、反応が低い場合であり、LEDランプの点灯個数により判別が可能であるという評価結果を示す。また、ばつ(×)印は、受信器40の報知部46であるLEDランプが0~3個点灯し、判別が不可能であるという評価結果を示す。 In FIG. 7, double circles (◎) indicate a case where five LED (light-emitting diode) lamps that are the notification unit 46 of the receiver 40 are lit, and the reaction is very good. The evaluation result that is possible is shown. In addition, a circle (◯) indicates an evaluation result that 3 to 5 LED lamps that are the notification unit 46 of the receiver 40 can be turned on or the level can be determined, and the response is good, and the determination is possible. Show. A triangle (Δ) indicates an evaluation result in which the LED lamp as the notification unit 46 of the receiver 40 is lit and the response is low, and the determination is possible based on the number of lit LED lamps. In addition, a cross (x) mark indicates an evaluation result that 0 to 3 LED lamps that are the notification unit 46 of the receiver 40 are lit and cannot be distinguished.
 図7に示す評価結果に基づき、電極1の長さ方向の幅を32mmとし、磁性体フィルムの長さ方向の幅を16mmとしたクランプ式電磁界センサ30を用いた場合における、ケーブル検索装置によるケーブルの判別性能について、図6に示す模擬フィールドを用いて検証した結果を図8に示す。 Based on the evaluation results shown in FIG. 7, the cable search device uses the clamp-type electromagnetic field sensor 30 in which the width in the length direction of the electrode 1 is 32 mm and the width in the length direction of the magnetic film is 16 mm. FIG. 8 shows the result of verifying the cable discrimination performance using the simulation field shown in FIG.
 この検証試験では、図8に示すように、全ての条件において、ケーブルの判別が可能であり、ケーブル検索装置は、ケーブルの判別器として良好な性能を有することを確認できた。 In this verification test, as shown in FIG. 8, it was possible to discriminate the cable under all conditions, and it was confirmed that the cable search device has good performance as a cable discriminator.
 前述したとおり、クランプ式電磁界センサ30における電極1及び磁性体フィルムは、長さ方向の幅を16mmとして、模擬フィールドでの検証を実施したところ、電界検出の性能の更なる向上が必要であり、電極1の長さ方向の幅を32mm以上にすることが好ましいことが分かった。 As described above, when the electrode 1 and the magnetic film in the clamp type electromagnetic field sensor 30 are verified in the simulated field with the width in the length direction being 16 mm, further improvement of the electric field detection performance is required. It was found that the width in the length direction of the electrode 1 is preferably 32 mm or more.
 一方、電極1の長さ方向の幅を大きくすることは、クランプ式電磁界センサ30の開閉に要する力が増加すると共に、筐体36に対して電極1の突出量が大きくなり、判別対象ケーブルへのクランプ作業の作業性の低下や、判別対象ケーブルを十分にクランプできずに判別できない場合が想定される。 On the other hand, increasing the width in the length direction of the electrode 1 increases the force required to open and close the clamp-type electromagnetic field sensor 30, and increases the amount of protrusion of the electrode 1 with respect to the housing 36. It is assumed that the workability of the clamp work is reduced, or the discrimination target cable cannot be sufficiently clamped and cannot be discriminated.
 これに対し、ケーブル検索装置によるケーブルの判別の信頼性と実用面とを考慮して、32mm~50mmの範囲にある、32mm、35mm、40mm、45mm及び50mmの長さ方向の幅を有する電極1を備えたクランプ式電磁界センサ30を用いて、図5(a)に示す評価試験回路により電磁界検出の特性を検証した結果を次表3に示す。なお、受信器40は、磁界検出の性能が向上することが考えられる共振回路を構成したものを使用した。 On the other hand, in consideration of the reliability and practical use of the cable discrimination by the cable search device, the electrode 1 having a width in the length direction of 32 mm, 35 mm, 40 mm, 45 mm and 50 mm in the range of 32 mm to 50 mm. Table 3 shows the result of verifying the characteristics of the electromagnetic field detection by the evaluation test circuit shown in FIG. Note that the receiver 40 used is a resonator circuit that can improve the performance of magnetic field detection.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、クランプ式電磁界センサ30の特性は、電極1の長さ方向の幅(以下、電極幅と称す)が32mm~50mmにおいて大きな違いはないが、強受信における電界検出性能は、電極幅32mmに対して電極幅35mm以上の方が性能が良く、弱受信における磁界検出性能は、ループ抵抗が大きいほど小さな電流での判別が可能であるため、電極幅32mm及び35mmに対して電極幅40mm以上の方が性能が良いことになる。 As shown in Table 3, the characteristics of the clamp-type electromagnetic field sensor 30 are not significantly different when the width in the length direction of the electrode 1 (hereinafter referred to as the electrode width) is 32 mm to 50 mm. The electrode width of 32 mm is better than the electrode width of 35 mm, and the magnetic field detection performance in weak reception can be determined with a smaller current as the loop resistance is larger. Therefore, the performance is better when the electrode width is 40 mm or more.
 したがって、実用面を考慮して、クランプ式電磁界センサ30の電極幅として40mmが妥当であると考えられるため、電極幅40mmを含め、電極幅35mm及び50mmについて模擬フィールドで検証する。 Therefore, it is considered that 40 mm is appropriate as the electrode width of the clamp-type electromagnetic field sensor 30 in consideration of practical use. Therefore, the electrode widths of 35 mm and 50 mm including the electrode width of 40 mm are verified in the simulation field.
 図6に示すフィールドとは別のフィールドを模擬した設備を構築し、ケーブル検索装置によるケーブルの判別性能について、電極幅を35mmにした場合の検証結果を図9に示し、電極幅を40mmにした場合の検証結果を図10に示し、電極幅を50mmにした場合の検証結果を図11に示す。 A facility simulating a field different from the field shown in FIG. 6 is constructed, and the verification result when the electrode width is set to 35 mm is shown in FIG. The verification result in this case is shown in FIG. 10, and the verification result when the electrode width is 50 mm is shown in FIG.
 なお、模擬フィールドは、12心、12心及び12心の3条の1ルートにおいて、前述した模擬装柱パターン1~8について、検証試験を実施した。また、使用した12心の光ファイバケーブルの長さは、90m、60m及び60mである。
 さらに、接地点の抵抗値及び12心の各光ファイバケーブルにおける支持線の抵抗値は、次表4に示すとおりである。
In the simulated field, a verification test was conducted on the above-described simulated pillar patterns 1 to 8 in one of the three routes of 12 cores, 12 cores, and 12 cores. The lengths of the 12-core optical fiber cables used are 90 m, 60 m, and 60 m.
Furthermore, the resistance value of the grounding point and the resistance value of the support wire in each of the 12-core optical fiber cables are as shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この検証試験では、図9、図10及び図11に示すように、判別対象ケーブルの片端を接地した場合に、電界検出の性能に多少の差が現れ、電極幅が35mm、40mm、50mmの順に性能が向上していることがわかる。 In this verification test, as shown in FIGS. 9, 10, and 11, when one end of the discrimination target cable is grounded, a slight difference appears in the electric field detection performance, and the electrode widths are 35 mm, 40 mm, and 50 mm in this order. It can be seen that the performance is improved.
 なお、全ての条件から判断すると、電極幅35mm、40mm及び50mmは、判別性能に問題はないものと考えられるが、実用面と判別性能の信頼性とを考慮すると、電極幅を40mmにすることが妥当であると考えられる。 Judging from all the conditions, the electrode widths of 35 mm, 40 mm and 50 mm are considered to have no problem in discrimination performance. However, considering the practical aspect and reliability of discrimination performance, the electrode width should be 40 mm. Is considered reasonable.
 以上のように、本実施形態に係るクランプ式電磁界センサ30においては、1回のクランプ操作で判別対象ケーブルに流れる電流に基づいて生じる磁界及び判別対象ケーブルに印加される電圧に基づいて生じる磁界を検出することができ、ケーブルの判別作業性を大幅に簡略化することができるという作用効果を奏する。 As described above, in the clamp-type electromagnetic field sensor 30 according to the present embodiment, a magnetic field generated based on a current flowing in the discrimination target cable and a voltage applied to the discrimination target cable in one clamping operation. Thus, there is an effect that the cable discrimination workability can be greatly simplified.
 また、本実施形態に係るクランプ式電磁界センサ30においては、電極31が対向面31cを有することにより、壁内等に敷設された判別対象ケーブルに印加される電圧に基づいて生じる電界を検出することができ、判別対象ケーブルの敷設経路を確認することができるという作用効果を奏する。 Moreover, in the clamp type electromagnetic field sensor 30 according to the present embodiment, the electrode 31 has the facing surface 31c, thereby detecting the electric field generated based on the voltage applied to the discrimination target cable laid in the wall or the like. Thus, there is an effect that the laying route of the discrimination target cable can be confirmed.
 また、本実施形態に係るクランプ式電磁界センサ30においては、電極31の突合せ端面31bの外側に磁気コア33を配設することにより、電極31の突合せ端面31bにおける左右の磁性体フィルム同士の対向する面積を確保することができ、磁気コア33の特性の安定を図ることができるという作用効果を奏する。 Further, in the clamp type electromagnetic field sensor 30 according to the present embodiment, the magnetic core 33 is disposed outside the butt end surface 31b of the electrode 31 so that the left and right magnetic films on the butt end surface 31b of the electrode 31 face each other. Thus, there is an effect that the area to be secured can be secured and the characteristics of the magnetic core 33 can be stabilized.
 なお、以上の説明においては、電磁界センサとして、判別対象ケーブルの軸通を容易にするため、判別対象ケーブルに対してクランプ可能に構成されるクランプ式の電磁界センサを用いて説明したが、クランプ式に限られるものではなく、例えば、トロイダル型の磁気コア33を使用してトロイダル型の電磁界センサを構成してもよい。 In the above description, the electromagnetic field sensor has been described using a clamp-type electromagnetic field sensor configured to be clampable with respect to the determination target cable in order to facilitate the shafting of the determination target cable. For example, a toroidal electromagnetic field sensor may be configured by using a toroidal magnetic core 33.
 受信器の電磁界検出部41は、クランプ式電磁界センサ30から入力される電圧及び/又は誘導電流から、電界(電圧)及び/又は磁界(誘導電流)を検出し、検出した誘導電流を電圧に変換して、加算器42に出力することとしているが、電界検出信号と磁界検出信号との位相の相違による加算信号の打消し合いが生じ、誤判定を行うことがある。この誤判定を防止するためには、電界(電圧)を検出して信号レベルの判定を行い、及び/又は磁界(誘導電流)を検出して信号レベルの判定を行い、その後、総合的に判定する回路構成とすることで、判別性能を向上させることができる。また、誤判定を防止するための他の手段としては、検出した電界(電圧)信号を整流した後に増幅し、及び/又は検出した磁界(誘導電流)信号を整流した後に増幅し、その後、加算して信号レベルの判定を行う回路構成とすることでも、判別性能を向上させることができる。 The electromagnetic field detector 41 of the receiver detects an electric field (voltage) and / or a magnetic field (induced current) from the voltage and / or induced current input from the clamp type electromagnetic field sensor 30, and the detected induced current is converted into a voltage. However, the addition signal may cancel out due to the difference in phase between the electric field detection signal and the magnetic field detection signal, and an erroneous determination may be made. In order to prevent this erroneous determination, the signal level is determined by detecting the electric field (voltage) and / or the signal level is determined by detecting the magnetic field (induced current), and then comprehensively determined. With this circuit configuration, the discrimination performance can be improved. As another means for preventing erroneous determination, the detected electric field (voltage) signal is rectified and then amplified, and / or the detected magnetic field (induced current) signal is rectified and then amplified, and then added. Thus, the discrimination performance can also be improved by adopting a circuit configuration for determining the signal level.
 また、判別対象ケーブルとして、光ファイバケーブルを例に挙げて説明したが、光ファイバケーブルに限られるものではなく、本実施形態に係るクランプ式電磁界センサ30は、メタル通信ケーブルや電力ケーブル等の様々な電線・ケーブルの判別及び配線ルート探査などに適用することができる。 In addition, although the optical fiber cable has been described as an example of the determination target cable, it is not limited to the optical fiber cable, and the clamp type electromagnetic field sensor 30 according to the present embodiment is a metal communication cable, a power cable, or the like. It can be applied to various electric wire / cable discrimination and wiring route exploration.
 1   電極
 3   磁気コア
 10  送信器
 11  発信器
 12  アンプ
 13  カップリングコンデンサ
 20  送信用CT
 30  クランプ式電磁界センサ
 31  電極
 31a 環
 31b 端面
 31c 対向面
 32  絶縁体
 32a 絶縁層
 33  磁気コア
 33a 金属層
 34  巻線
 35  出力部
 35a リード線
 35b リード線
 36  筐体
 36a コアカバー
 36b レバー
 40  受信器
 41  電磁界検出部
 42  加算器
 43  信号増幅・感度調整部
 44  フィルタ
 45  信号レベル検出部
 46  報知部
1 Electrode 3 Magnetic Core 10 Transmitter 11 Transmitter 12 Amplifier 13 Coupling Capacitor 20 Transmitting CT
30 Clamp-type Electromagnetic Field Sensor 31 Electrode 31a Ring 31b End Face 31c Opposing Face 32 Insulator 32a Insulating Layer 33 Magnetic Core 33a Metal Layer 34 Winding 35 Output 35a Lead Wire 35b Lead Wire 36 Housing 36a Core Cover 36b Lever 40 Receiver 41 Electromagnetic Field Detection Unit 42 Adder 43 Signal Amplification / Sensitivity Adjustment Unit 44 Filter 45 Signal Level Detection Unit 46 Notification Unit

Claims (5)

  1.  導電性を有する非磁性体からなり、ケーブルを軸通した状態で当該ケーブルの一部を周方向に包囲する略環状の電極と、
     磁性体からなり、絶縁体を介して前記電極の環の外側に配設される磁気コアと、
     前記磁気コアを巻回する巻線と、
     前記電極から引き出され、前記巻線の両端から引き出される出力部と
     を備え、
     ケーブルに流れる電流に基づく電磁誘導により前記巻線に生じる誘導電流を前記出力部から出力し、ケーブルに印加される電圧に基づく静電誘導により前記電極に生じる電圧を前記出力部から出力することを特徴とする電磁界センサ。
    A substantially annular electrode that is made of a nonmagnetic material having electrical conductivity and surrounds a part of the cable in the circumferential direction in a state where the cable is passed through,
    A magnetic core made of a magnetic material and disposed outside the ring of electrodes through an insulator;
    A winding for winding the magnetic core;
    An output portion drawn from the electrode and drawn from both ends of the winding;
    Inducting current generated in the winding by electromagnetic induction based on current flowing in the cable is output from the output unit, and voltage generated in the electrode by electrostatic induction based on voltage applied to the cable is output from the output unit. A characteristic electromagnetic field sensor.
  2.  前記請求項1に記載の電磁界センサにおいて、
     前記電極が、略半環状を呈して対となって対向配置され、環の外側に突出して開閉時に相互が接離する突合せ端面を有し、当該突合せ端面に対して相反する方向に屈曲する対向面を有することを特徴とする電磁界センサ。
    The electromagnetic field sensor according to claim 1,
    The electrodes have a semi-annular shape and are opposed to each other as a pair. The electrodes have an abutting end surface that protrudes outside the ring and contacts and separates at the time of opening and closing, and are opposed in a direction opposite to the abutting end surface. An electromagnetic field sensor having a surface.
  3.  前記請求項2に記載の電磁界センサにおいて、
     前記磁気コアが、前記電極の突合せ端面の外側に沿って配設されていることを特徴とする電磁界センサ。
    The electromagnetic field sensor according to claim 2,
    The electromagnetic field sensor according to claim 1, wherein the magnetic core is disposed along an outer side of a butt end surface of the electrode.
  4.  前記請求項1乃至3のいずれかに記載の電磁界センサにおいて、
     前記出力部に接続される受信器からの要求を満足する出力レベルになるように、前記電極及び/又は磁気コアの長さ方向の幅が調整されることを特徴とする電磁界センサ。
    The electromagnetic field sensor according to any one of claims 1 to 3,
    The electromagnetic field sensor, wherein the width in the longitudinal direction of the electrode and / or the magnetic core is adjusted so as to satisfy an output level satisfying a request from a receiver connected to the output unit.
  5.  前記請求項1乃至4のいずれかに記載の電磁界センサに接続する受信器において、
     前記出力部から入力される静電誘導に基づく電圧及び誘導電流に基づく電圧を加算する加算器を備えていることを特徴とする受信器。
    In the receiver connected to the electromagnetic field sensor according to any one of claims 1 to 4,
    A receiver comprising: an adder that adds a voltage based on electrostatic induction and a voltage based on an induced current input from the output unit.
PCT/JP2010/065429 2009-09-14 2010-09-08 Electromagnetic field sensor, and receiver WO2011030796A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080040732.3A CN102498407B (en) 2009-09-14 2010-09-08 Electromagnetic field sensor
KR1020127005779A KR101744206B1 (en) 2009-09-14 2010-09-08 Electromagnetic field sensor, and receiver
HK12108575.2A HK1167896A1 (en) 2009-09-14 2012-09-03 Electromagnetic field sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009212074A JP5723089B2 (en) 2009-09-14 2009-09-14 Electromagnetic field sensor and receiver
JP2009-212074 2009-09-14

Publications (1)

Publication Number Publication Date
WO2011030796A1 true WO2011030796A1 (en) 2011-03-17

Family

ID=43732465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065429 WO2011030796A1 (en) 2009-09-14 2010-09-08 Electromagnetic field sensor, and receiver

Country Status (5)

Country Link
JP (1) JP5723089B2 (en)
KR (1) KR101744206B1 (en)
CN (1) CN102498407B (en)
HK (1) HK1167896A1 (en)
WO (1) WO2011030796A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189393A (en) * 2021-04-28 2021-07-30 合肥工业大学 Telescopic current clamp meter with controllable jaw
EP4224174A1 (en) * 2022-02-07 2023-08-09 OMRON Corporation Clamp sensor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456233B (en) * 2012-11-02 2014-10-11 Electronics Testing Ct Taiwan Near field electromagnetic probe
KR102049902B1 (en) * 2013-10-11 2019-11-28 한국전력공사 Power eqipment for current transformer test
JP6331847B2 (en) * 2014-08-04 2018-05-30 日立金属株式会社 Communication visualization device
CN104569761A (en) * 2014-12-31 2015-04-29 国家电网公司 Live detection sensor for partial discharge of overhead cable
DE102015216474A1 (en) * 2015-08-28 2017-03-02 Leoni Kabel Holding Gmbh Monitoring system, safety cable and hose for such and method for operating a monitoring system
CN106841861A (en) * 2017-01-11 2017-06-13 北京交通大学 Cable recognition methods and system
JP2019027819A (en) * 2017-07-26 2019-02-21 日置電機株式会社 Clamp sensor and measuring device
CN108318939B (en) * 2018-01-09 2024-01-19 国网山东省电力公司滨州供电公司 Special test clamp for cable path tester
CN108387268B (en) * 2018-03-05 2021-01-22 上海歌尔泰克机器人有限公司 High-voltage line detection mechanism and high-voltage line detector
CN109324235A (en) * 2018-09-29 2019-02-12 国网山西省电力公司太原供电公司 A kind of sensor device of cable connector electric field detection
KR102141043B1 (en) * 2019-03-22 2020-08-06 한국전력공사 Probe unit
CN110829266B (en) * 2019-11-26 2021-09-24 长沙理工大学 Power transmission line online electricity taking rolling obstacle crossing robot and application method thereof
CN111413579B (en) * 2019-11-29 2022-07-26 国网河南省电力公司汝阳县供电公司 Cable identification device
CN111766485A (en) * 2020-07-20 2020-10-13 国网新疆电力有限公司乌鲁木齐供电公司 Capacitive sensor for cable insulation detection and method of use thereof
CN112271634B (en) * 2020-10-12 2022-03-15 亿嘉和科技股份有限公司 Automatic wire clamp instrument that breaks away from fastener
KR102292232B1 (en) * 2021-02-01 2021-08-23 주식회사 비파워 Rogowski-type current sensing device in an integrated PCB shape

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181173A (en) * 1990-11-14 1992-06-29 Sumitomo Electric Ind Ltd Current signal detector
JP2006084176A (en) * 2004-09-14 2006-03-30 Hioki Ee Corp Clamp type current measuring device
JP2006343109A (en) * 2005-06-07 2006-12-21 Hioki Ee Corp Electric power measuring apparatus
JP2009041925A (en) * 2007-08-06 2009-02-26 Hioki Ee Corp Clamp type sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132178A (en) * 1985-12-03 1987-06-15 Sumitomo Electric Ind Ltd Voltage/current detector
ES2260847T3 (en) * 1997-08-28 2006-11-01 General Electric Company SELF-POWERED CURRENT DETECTOR.
CN1243248C (en) * 2003-12-12 2006-02-22 华中科技大学 Current sensor
JP2009092538A (en) * 2007-10-10 2009-04-30 Kaise Corp Clamp tester
JP4791431B2 (en) * 2007-10-24 2011-10-12 日本電信電話株式会社 Non-contact voltage current probe device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181173A (en) * 1990-11-14 1992-06-29 Sumitomo Electric Ind Ltd Current signal detector
JP2006084176A (en) * 2004-09-14 2006-03-30 Hioki Ee Corp Clamp type current measuring device
JP2006343109A (en) * 2005-06-07 2006-12-21 Hioki Ee Corp Electric power measuring apparatus
JP2009041925A (en) * 2007-08-06 2009-02-26 Hioki Ee Corp Clamp type sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189393A (en) * 2021-04-28 2021-07-30 合肥工业大学 Telescopic current clamp meter with controllable jaw
CN113189393B (en) * 2021-04-28 2022-09-20 合肥工业大学 Telescopic current clamp meter with controllable jaw
EP4224174A1 (en) * 2022-02-07 2023-08-09 OMRON Corporation Clamp sensor

Also Published As

Publication number Publication date
CN102498407B (en) 2015-07-15
KR20120080167A (en) 2012-07-16
KR101744206B1 (en) 2017-06-07
JP2011059070A (en) 2011-03-24
CN102498407A (en) 2012-06-13
JP5723089B2 (en) 2015-05-27
HK1167896A1 (en) 2012-12-14

Similar Documents

Publication Publication Date Title
JP5723089B2 (en) Electromagnetic field sensor and receiver
US7714567B2 (en) Power cable magnetic field sensor
JP2016524130A (en) Electrical conductor temperature monitoring system
US7145345B2 (en) Current transformers for partial discharge detection on aircraft cables and wires
KR20140133402A (en) Through-coil arrangement, test apparatus with through-coil arrangement and testing method
EP2690433B1 (en) Broadband eddy current probe
KR100306084B1 (en) Separation of high frequency error signal from high frequency electromagnetic field in large electrical equipment
JP2018105678A (en) Current sensor and current detector
JP2008164460A (en) Cable electroscope
JP6544738B2 (en) Electromagnetic field sensor
JP2010008310A (en) Cable search method and cable search device
GB2062250A (en) Detecting fault in insulated electric cable
JP2011095211A (en) Cable survey device
JP2005114561A (en) Cable search device and cable search method
CN108352249B (en) Current sensor
JP3076310B2 (en) Eddy current probe
JP2011080896A (en) Cable detection method
JPH099439A (en) Cable recognition device and current sensor that can be used of the device
JP2000199770A (en) Low-noise multicore parallel-cord current detector
JP2010223907A (en) Method and device for detecting abnormality of shielding member
JPH11108968A (en) Hot-line tester for communication cable
JPH11337606A (en) Cable detector
EP2399140A1 (en) A sensor and process for detecting an electric pulse caused by a partial discharge
JP5242085B2 (en) measuring device
JP2010223906A (en) Method and device for detecting abnormality of shielding member

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040732.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127005779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815391

Country of ref document: EP

Kind code of ref document: A1