WO2011030730A1 - Lubricant for oven floor of coke oven carbonization chamber - Google Patents

Lubricant for oven floor of coke oven carbonization chamber Download PDF

Info

Publication number
WO2011030730A1
WO2011030730A1 PCT/JP2010/065226 JP2010065226W WO2011030730A1 WO 2011030730 A1 WO2011030730 A1 WO 2011030730A1 JP 2010065226 W JP2010065226 W JP 2010065226W WO 2011030730 A1 WO2011030730 A1 WO 2011030730A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonization chamber
slip agent
coke oven
coke
hearth
Prior art date
Application number
PCT/JP2010/065226
Other languages
French (fr)
Japanese (ja)
Inventor
隆士 牛嶋
諭考 原村
孝則 辻
政章 丸岡
学 滝川
隆太郎 三井
Original Assignee
株式会社タイホーコーザイ
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タイホーコーザイ, Jfeスチール株式会社 filed Critical 株式会社タイホーコーザイ
Publication of WO2011030730A1 publication Critical patent/WO2011030730A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives

Definitions

  • the present invention relates to a hearth slip agent that is laid on the hearth of a carbonization chamber prior to charging coking coal in order to reduce the load when extruding coke after completion of carbonization from the carbonization chamber in a coke oven. It is.
  • the coke oven has a structure in which a carbonization chamber for carbonizing coal into coke and a combustion chamber for burning fuel gas to heat the carbonization chamber are arranged alternately, and a partition wall between the carbonization chamber and the combustion chamber Refractory brick is used.
  • the carbonization chamber is an elongated rectangular closed space, and the coal that has been carbonized therein is extruded from the carbonization chamber to the discharge side by an extruder, and is extinguished and cooled to become product coke.
  • the width of the carbonization chamber is set to be slightly wider on the discharge side in order to facilitate the extrusion of coke after the dry distillation.
  • the refractory bricks that become the partition walls gradually become rough due to friction with the input coal and coke after dry distillation, and further due to thermal fatigue due to repeated heating and cooling, and the frictional resistance increases. Therefore, even though the width on the discharge side is wide, the load by the extruder may be increased or clogging may occur, which has been an operational problem.
  • the work of laying the wooden board must be done manually by humans, which is dangerous and requires a long working time. Further, in the coke oven with a rough hearth, clogging occurred similarly, and a satisfactory sliding effect could not be obtained.
  • the particulate refractory material is granulated to 0.3 to 10 mm. It is easily disintegrated by receiving a force from the side, and exhibits slipperiness by becoming an original fine particle state (10 ⁇ m or less).
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is that it can be easily laid on the hearth of a coke oven carbonization chamber and coke after completion of dry distillation. It is an object of the present invention to provide a slipping agent that can significantly reduce the load on the extruder during extrusion.
  • the coke oven coking chamber hearth slip agent of the present invention is a slip agent spread on the hearth of the coke oven carbonization chamber prior to the introduction of coal, and has a fire resistance of SK12 or more and a particle size of 1 to 15 mm. It consists of a ceramic spherical body mainly composed of a diameter.
  • the spheroid is made of a ceramic material having a fire resistance of SK12 or more, and is made of an infinite number of spheres mainly having a particle size of 1 to 15 mm.
  • (A) It is a schematic explanatory drawing which shows the measuring point of the coke pushing force in the Example of this invention.
  • (B) It is a top view which shows the state of the chamotte brick spread
  • the coke oven carbonization chamber hearth slip agent of the present invention is made of a ceramic spherical body having a particle size mainly in the range of 1 to 15 mm and a fire resistance of SK12 or more. It can be introduced from the upper coal charging entrance. Since the slip agent has a relatively large spherical shape, when it is thrown in, it bounces on the hearth and spreads over the entire hearth, and it is only necessary to throw it in from the inlet of the carbonization chamber to spread the slip agent evenly. Even if it is not performed, it can be spread evenly, reducing the time and improving the safety of work.
  • the particle diameter of the coke oven carbonization chamber hearth slip agent of the present invention is mainly 1 to 15 mm. That is, if the particle size of the slip agent is smaller than 1 mm, the friction between the slip agents increases, and the load on the extruder during coke extrusion discharge increases. On the other hand, if the particle size is larger than 15 mm, there is a possibility of causing damage to the hearth when thrown into the carbonization chamber. Therefore, the particle size of the slip agent needs to be 1 to 15 mm. A more preferable range of the particle size of the slip agent is 3 to 10 mm.
  • the “particle diameter” as used herein means an average value of the major axis and the minor axis of the ceramic spherical body constituting the slip agent.
  • the particle size of the hearth slip agent of the present invention is in the range of 1 to 15 mm for the reasons described above. However, since it is an industrial product, the particle size is less than 1 mm and more than 15 mm even if classified by a predetermined sieve. It does not necessarily mean that the spherical body is not mixed slightly. In this case, it has been confirmed that if the mixture of spherical bodies outside the predetermined particle size range does not exceed 2% by mass ratio, the performance as a slipping agent is hardly affected.
  • “mainly having a particle diameter of 1 to 15 mm” means that spherical bodies having a particle diameter of 1 to 15 mm occupy 98% or more.
  • the repose angle of the slipping agent is 40 degrees or less, and further, the slipping agent is placed on a horizontal base. When the base is tilted, it is desirable that the tilt angle when the slip agent starts to move is as small as 10 degrees or less.
  • the angle of repose of the above-mentioned slipping agent was set to 40 degrees or less. If it was larger than 40 degrees, when it was introduced from the inlet of the carbonization chamber, it piled up directly under the inlet to create a mountain and increase the load during extrusion. Because there is a tendency to end.
  • the angle of repose can be measured according to the method defined in JIS R 9301-2-2. However, the above method stipulates that a funnel having an inner diameter of 6 mm is used, but in the case of a slip agent having a particle size larger than this, it is necessary to use a nozzle having an inner diameter corresponding thereto. Become.
  • the slip agent introduced from the carbonization chamber inlet is directly below the inlet. It rolls before making a mountain, and is distributed over the whole hearth without being piled up in a mountain shape so that it can be spread evenly.
  • the glass plate is tilted to an arbitrary angle, and a spherical body is slowly placed on the glass plate. The body was tested with an arbitrary number, and the angle of the glass plate when the number moved was more than half was taken as the inclination angle.
  • the sphericity of the individual spherical bodies constituting the slip agent of the present invention when the sphericity is expressed by the ratio of the major axis (D L ) to the minor axis (D S ) (D S / D L ), this ratio Is preferably 0.9 or more. If the sphericity is less than 0.9, the slipping agent has a rugby ball shape, the rolling direction is limited, and good slipperiness tends not to be exhibited. In addition, it is more preferable that it is 0.95 or more.
  • the fire resistance of the slipping agent of the present invention is desirably SK12 (1350 ° C.) or higher.
  • SK12 (1350 ° C.)
  • the fire resistance is more preferably SK18 (1500 ° C.) or higher.
  • the strength of the slipping agent that is, the crushing strength of the individual ceramic spherical bodies is preferably 90 N or more, and more preferably 500 N or more. If the crushing strength is less than 90 N, the crushing strength tends to be lost due to crushing at the time of coke charging or extrusion.
  • materials containing general refractory components such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , for example, silica sand, silica, alumina Powder, zircon sand, rutile sand, kaolinite, chamotte (baking viscosity), talc and the like can be used.
  • kaolinite which is a hydrated silicate mineral of aluminum, is well known as a porcelain material, and by increasing its content, a fired product that can withstand high temperatures can be made.
  • the raw materials for the slip agent include binders such as alkali metal compounds, alkaline earth metal compounds and iron compounds, specifically sodium silicate, sodium metasilicate, sodium aluminate, potassium silicate, Potassium metasilicate, magnesium oxide, magnesium carbonate, calcium oxide, calcium carbonate, iron (III), iron oxide (II, III), boric acid, sodium borate, sodium phosphate and sodium silicate glass powder, borosilicate glass A frit component such as powder is blended.
  • binders such as alkali metal compounds, alkaline earth metal compounds and iron compounds, specifically sodium silicate, sodium metasilicate, sodium aluminate, potassium silicate, Potassium metasilicate, magnesium oxide, magnesium carbonate, calcium oxide, calcium carbonate, iron (III), iron oxide (II, III), boric acid, sodium borate, sodium phosphate and sodium silicate glass powder, borosilicate glass A frit component such as powder is blended.
  • the composition of the coke oven hearth slip agent of the present invention is SiO 2 : 45 to 88 mass%, Al 2 O 3 : 10 to 48 mass%, and other components: 2 to 7 mass%. It is preferable from the point.
  • SiO 2 is less than 45% by mass and Al 2 O 3 exceeds 40% by mass, the melting point of the slip agent becomes high, and the firing temperature has to be increased, which makes production difficult.
  • SiO 2 exceeds 88% by mass and Al 2 O 3 is less than 10% by mass, the strength of the spherical body constituting the hearth slip agent becomes small, and it breaks at the time of coke charging and exhibits excellent slipperiness. It may not be possible.
  • the other components are components other than SiO 2 and Al 2 O 3 , components derived from the bonding agent such as Na 2 O and K 2 O, and SiO 2 and Al in the raw material including the bonding agent.
  • the slip agent melts or stickiness occurs on the surface of the slip agent, and the slip agents stick to each other, and not only the slip property cannot be exerted but also cause clogging.
  • the slip agent of the present invention is not particularly limited as long as it has a predetermined fire resistance and is made of a ceramic spherical body having a predetermined particle diameter, and includes TiO 2 and ZrO 2 .
  • an inexpensive and practical composition is SiO 2 : 45 to 88% by mass, Al 2 O 3 : 10 to 48% by mass, and other components: 2 to 7% by mass, preferably SiO 2: 2 : 67 to 75% by mass, Al 2 O 3 : 19 to 30% by mass, and other components: 3 to 6% by mass.
  • the above-described compounds are used as the bonding agent, and these compounds are detected as Si, Al, Na, K, B, etc. in the analysis of the sintered ceramic spheres.
  • Si and Al are transferred to the main component as SiO 2 and Al 2 O 3 .
  • Na, K, B, Mg, Ca, and Fe are converted into Na 2 O, K 2 O, B 2 O 3 , MgO, CaO, and Fe 2 O 3 for convenience.
  • “other components” means components other than SiO 2 and Al 2 O 3 as described above, and components derived from the binder as described above and components derived from impurities of the raw material. The total amount.
  • Sliding agent 1 (Invention example) Raw materials mainly composed of zirconium silicate are put in a mixer, rotated while spraying water, granulated, dried, baked at 1300 ° C, and classified using 6 mesh and 7 mesh sieves. As a result, ceramic spherical bodies mainly composed of ZrO 2 as shown in Table 1 were produced, and the slip agent 1 corresponding to the present invention was obtained. At this time, sodium silicate was used as a binder.
  • Lubricant 2 (Invention example) Using raw materials mainly composed of rutile sand and kaolinite, granulation and firing in the same manner as the above-mentioned slipping agent 1, and classification using 3 1/2 mesh and 4 mesh sieve, Table 1 A ceramic spherical body containing TiO 2 as a main component as shown in the above is prepared and used as the slip agent 2 corresponding to the present invention. At this time, sodium silicate was used as a binder.
  • Sliding agent 3 (Invention example) As shown in Table 1 by granulating in the same manner using raw materials mainly composed of kaolinite and alumina powder, firing at 1850 ° C., and classifying using 6 mesh and 9 mesh sieves. Ceramic spheroids mainly composed of Al 2 O 3 and SiO 2 were prepared and used as the slip agent 3 corresponding to the present invention. At this time, potassium silicate was used as a binder.
  • Lubricant 4 (Invention example) Using raw materials mainly composed of kaolinite and silica sand, granulation, baking, and classification using 9 mesh and 16 mesh sieves as in the case of the slip agent 1, Ceramic spheroids mainly composed of SiO 2 and Al 2 O 3 were prepared and used as the slip agent 4 corresponding to the present invention. As a binder, sodium silicate was used.
  • Sliding agent 5 (Invention example) Except for the use of 3 mesh and 4 mesh sieves, the same operation as in the case of the slip agent 4 is repeated, thereby producing ceramic spherical bodies mainly composed of SiO 2 and Al 2 O 3.
  • Sliding agent 6 (comparative example) As shown in Table 1 by granulating in the same manner using raw materials mainly composed of kaolinite and alumina powder, firing at 1850 ° C., and classifying using 35 mesh and 42 mesh sieves. A spherical body made of ceramics mainly composed of Al 2 O 3 and SiO 2 was prepared as a slip agent 6 not corresponding to the present invention, and used as a comparison agent with the present invention. At this time, sodium silicate and magnesium carbonate were used as binders.
  • the particle size was measured for each slip agent prepared as described above.
  • the spherical bodies constituting each slip agent are taken with a digital camera together with a metal ruler, enlarged and printed out, and the major and minor diameters of the spherical bodies of the image and the scale of the ruler are measured with a caliper.
  • Each major axis and minor axis were determined from the ratio between the scale and the vernier caliper value, and the average value was taken as the particle size of the spherical body.
  • FIG. 1A is a schematic diagram of the apparatus used in the test, in which reference numeral 1 is a forklift, 2 is a load cell for load measurement, 3 is an extrusion plate, 4 is coke, and 5 is model carbonization.
  • Each shows a chamotte brick SK-32 spread on the bottom of the chamber.
  • a tin plate is attached to the bottom and side surfaces of a metal frame having a width of 0.25 m, a length of 1.8 m, and a height of 0.6 m, and the tin plate on the bottom surface is as shown in FIG. Further, the chamotte brick 5 was laid diagonally.
  • the load cell 2 of the digital force gauge is fixed to the tip of the claw of the forklift 1, and each slipping agent is spread on the chamotte brick 5 and then the coke 4 is reduced to about
  • the coke 4 was moved by pushing the extrusion plate 3 by advancing the forklift 1 by moving 50 kg, and the pressure applied to the extrusion plate 3 at that time was measured by the load cell 2.
  • Examples 1 to 3 On the chamotte brick 5 of the model carbonization chamber, the slip agent 1 (ZrO 2 system, particle size: 2.79 to 3.33 mm) prepared as described above was 2 kg / m 2 , 5 kg / m 2 and 10 kg / m 2, respectively. After laying down, about 50 kg of coke 4 was placed thereon, and the force required when the coke 4 was pushed out by the forklift 1 was measured by the load cell 2.
  • Example 6 On the chamotte brick 5 in the model carbonization chamber, the slip agent 2 prepared as described above (TiO 2 system, particle size: 4.70 to 5.61 mm) is similarly laid, and the force required to extrude the coke 4 is similarly applied. It was measured.
  • the slip agent 5 (SiO 2 —Al 2 O 3 , SiO 2 Al 2 O 3 system, particle size: 4.70 to 6.68 mm) prepared as described above is similarly spread on the chamotte brick 5 in the model carbonization chamber. The force required to extrude the coke 4 was measured in the same manner.
  • slip agent 5 As a result, it was found that the result of the extrusion force of the slip agent was the order of slip agent 5 ⁇ slip agent 3> slip agent 2> slip agent 1> slip agent 4 >> slip agent 6 ⁇ charcoal >> comparative example 1. .
  • the slip agents 1 to 5 (Examples 1 to 15) of the present invention exhibit very excellent slip performance as compared with Comparative Examples 1 to 7. Among these, it was confirmed that the slip agents 5, 3 and 2 are particularly excellent.
  • FIG. 3 is a schematic view of an actual coke oven carbonization chamber used in the actual machine test, in which reference numeral 11 denotes a coal charging inlet, 12 denotes a hearth, and 13 denotes an extruder.
  • the carbonization chamber has a furnace width M / S: 0.388 m, C / S: 0.452 m, a furnace height of 6.85 m, and a furnace length of 15.9 m.
  • Example 16 Before putting coal into the actual coke oven carbonization chamber, 15 kg of the slip agent 5 from each of the four coal inlets in the upper portion of the carbonization chamber, 60 kg in total, was charged. The introduced slip agent 5 bounced greatly due to the impact dropped on the hearth of the carbonization chamber, spread over the whole surface of the hearth, and was uniformly sprayed. After the slip agent 5 was charged, 32t of coal was charged from the four coal inlets at the top of the carbonization chamber, carbonized at 1200 ° C for 19.5 hours, and the coal that had been carbonized was extruded from the carbonization chamber with an extruder. The load (peak ampere) applied to the extruder was measured. A test similar to the above was performed a total of nine times by changing the coke oven carbonization chamber, and the average value was obtained.
  • Example 8 The same test as in Example 16 was performed using the same coke oven as in Example 16 without introducing a slipping agent, and the load (peak ampere) applied to the extruder was measured. The above measurement results are shown in Table 4 and FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

Disclosed is a lubricant for the oven floor of a coke oven carbonization chamber, which can be easily spread on the oven floor of a coke oven carbonization chamber and can largely reduce the load on an extruder when coke is extruded from the carbonization chamber after the completion of the carbonization. A lubricant to be spread on the oven floor of a coke oven carbonization chamber before supplying coal thereto, which has a pyrometric cone equivalent of SK12 or higher and is composed of ceramic spheres, the major part of the spheres having a particle diameter of 1-15 mm. It is desirable that the inclination angle of the aforesaid lubricant, at which the lubricant having been in the stationary state starts to move, is 10o or below.

Description

コークス炉炭化室炉床滑り剤Coke oven coking chamber hearth slip agent
 本発明は、コークス炉において、乾留終了後のコークスを炭化室から押し出す際の負荷を軽減するために、原料炭の装入に先立って、炭化室の炉床に敷き詰められる炉床滑り剤に関するものである。 TECHNICAL FIELD The present invention relates to a hearth slip agent that is laid on the hearth of a carbonization chamber prior to charging coking coal in order to reduce the load when extruding coke after completion of carbonization from the carbonization chamber in a coke oven. It is.
 コークス炉は、石炭をコークスに乾留する炭化室と、燃料ガスを燃焼して炭化室を加熱するための燃焼室とが交互に配列した構造を備えており、炭化室と燃焼室の間の隔壁には、耐火煉瓦が用いられている。
 炭化室は細長い矩形状の密閉空間となっており、この中で乾留された石炭は、押し出し機によって炭化室から排出側に押し出され、消火、冷却されて製品コークスとなる。このため、炭化室の幅は、乾留終了後のコークスを押し出し易くするために、排出側が僅かに広くなるようにしてある。
The coke oven has a structure in which a carbonization chamber for carbonizing coal into coke and a combustion chamber for burning fuel gas to heat the carbonization chamber are arranged alternately, and a partition wall between the carbonization chamber and the combustion chamber Refractory brick is used.
The carbonization chamber is an elongated rectangular closed space, and the coal that has been carbonized therein is extruded from the carbonization chamber to the discharge side by an extruder, and is extinguished and cooled to become product coke. For this reason, the width of the carbonization chamber is set to be slightly wider on the discharge side in order to facilitate the extrusion of coke after the dry distillation.
 しかし、隔壁となる耐火煉瓦は、投入される石炭や、乾留後のコークスとの摩擦により、さらには加熱と冷却との繰り返しによる熱疲労により、次第に表面の状態が荒れて摩擦抵抗が大きくなる。そのため、排出側の幅が広くなっているにも拘わらず、押し出し機による負荷が大きくなったり、押し詰まりが生じたりすることがあり、操業上の問題となっていた。 However, the refractory bricks that become the partition walls gradually become rough due to friction with the input coal and coke after dry distillation, and further due to thermal fatigue due to repeated heating and cooling, and the frictional resistance increases. Therefore, even though the width on the discharge side is wide, the load by the extruder may be increased or clogging may occur, which has been an operational problem.
 そこで、現場においては、炭化室の炉床とコークスの摩擦抵抗を低減するため、石炭を投入する前に、木の板を炉床に敷いて石炭と共に炭化させ、炉床とコークスの間に、木材の炭化層を形成することによってコークスの滑り性を向上させ、押し出し機の負荷を軽減することが行われていた。
 また、炉壁補修時に落下する耐火性補修剤を炉床に敷き詰めた粒状耐火物で受け止め、補修剤が炉床に付着して炉床面が粗くなることによる押し出し機の負荷増大を防止すると共に、粒状耐火物の崩壊時の滑り効果によって、コークス押し出し時の負荷を軽減する提案もなされている(特許文献1参照)。
Therefore, in order to reduce the frictional resistance between the hearth of the carbonization chamber and coke at the site, before putting the coal, a wooden board is laid on the hearth and carbonized with the coal, between the hearth and coke, By forming a carbonized layer of wood, it has been attempted to improve the slipperiness of coke and reduce the load on the extruder.
In addition, the refractory repair agent that falls during the repair of the furnace wall is received by the granular refractory material spread over the hearth, preventing the increase in the load on the extruder due to the repair agent adhering to the hearth and roughening the hearth surface. There has also been a proposal to reduce the load at the time of coke extrusion due to the sliding effect when the granular refractory collapses (see Patent Document 1).
特開2003-238965号公報JP 2003-238965 A
 しかしながら、木の板を炉床に敷いて、石炭と共に炭化させる方法では、木の板を敷く作業は人が手作業で行わねばならないため、危険を伴い、長い作業時間が必要となる。また、炉床が荒れたコークス炉においては、同様に押し詰まりが生じ、満足する滑り効果が得られなかった。
 一方、粒状耐火物を敷き詰める方法においては、投入時の発塵対策として、微粒子状の耐火性材料を0.3~10mmに造粒するようにしており、造粒された粒状耐火物が上方及び側方からの力を受けることによって容易に崩壊し、本来の微粒子状態(10μm以下)になることによって滑り性を発揮するものである。したがって、モルタル等の補修剤の付着による炉床面の荒れはある程度防止できるにしても、炉床一面に均一に敷き詰めることが難しく、局所的に堆積することがないとは言えず、このような場合には、かえって押し出し機の負荷が大きくなってしまうという問題があった。
However, in a method in which a wooden board is laid on the hearth and carbonized together with coal, the work of laying the wooden board must be done manually by humans, which is dangerous and requires a long working time. Further, in the coke oven with a rough hearth, clogging occurred similarly, and a satisfactory sliding effect could not be obtained.
On the other hand, in the method of spreading the granular refractory, as a measure against dust generation at the time of charging, the particulate refractory material is granulated to 0.3 to 10 mm. It is easily disintegrated by receiving a force from the side, and exhibits slipperiness by becoming an original fine particle state (10 μm or less). Therefore, even if it can prevent the roughness of the hearth surface due to adhesion of a repair agent such as mortar to some extent, it cannot be said that it is difficult to spread evenly on the entire surface of the hearth and does not accumulate locally. In some cases, there is a problem that the load on the extruder increases.
 本発明は、このような従来技術の有する課題に鑑みてなされたものであって、その目的とするところは、コークス炉炭化室の炉床に簡単に敷き詰めることができ、しかも乾留終了後のコークスの押し出しに際して、押し出し機の負荷を著しく低減することができる滑り剤を提供することにある。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is that it can be easily laid on the hearth of a coke oven carbonization chamber and coke after completion of dry distillation. It is an object of the present invention to provide a slipping agent that can significantly reduce the load on the extruder during extrusion.
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、比較的粗粒のセラミックス製球状粒子の集合体がコークス炉の炉床用滑り剤として、優れた機能を発揮することを見出し、本発明を完成するに到った。 As a result of intensive studies to achieve the above object, the present inventors have demonstrated that an aggregate of relatively coarse-grained ceramic spherical particles exhibits an excellent function as a coke oven hearth slip agent. The headline and the present invention have been completed.
 すなわち、本発明のコークス炉炭化室炉床滑り剤は、コークス炉炭化室の炉床に、石炭の投入に先立って敷き詰める滑り剤であって、耐火度がSK12以上であり、1~15mmの粒径を主体とするセラミックス製球状体から成ることを特徴とする。 That is, the coke oven coking chamber hearth slip agent of the present invention is a slip agent spread on the hearth of the coke oven carbonization chamber prior to the introduction of coal, and has a fire resistance of SK12 or more and a particle size of 1 to 15 mm. It consists of a ceramic spherical body mainly composed of a diameter.
 本発明によれば、SK12以上の耐火度を備えたセラミックス材料から成り、1~15mmの粒径を主体とする無数の球状体から成るものとしたから、このような球状体をコークス炉炭化室の炉床に敷き詰めた状態で石炭を乾留することによって、得られたコークスの押し出しに際して、押し出し機に掛かる負荷を軽減することができる。 According to the present invention, the spheroid is made of a ceramic material having a fire resistance of SK12 or more, and is made of an infinite number of spheres mainly having a particle size of 1 to 15 mm. By subjecting the coal to carbonization in a state where it is spread on the hearth, the load on the extruder can be reduced when the obtained coke is extruded.
(a)本発明の実施例におけるコークス押し出し力の測定要領を示す概略説明図である。(b)図1(a)に示した模型炭化室の底面に敷き詰めたシャモット煉瓦の状態を示す平面図である。(A) It is a schematic explanatory drawing which shows the measuring point of the coke pushing force in the Example of this invention. (B) It is a top view which shows the state of the chamotte brick spread | laid on the bottom face of the model carbonization chamber shown to Fig.1 (a). 実施例及び比較例による各滑り剤の散布量とコークスの押し出し力との関係を示すグラフである。It is a graph which shows the relationship between the application quantity of each sliding agent by the Example and a comparative example, and the extrusion force of coke. 本発明の実施例に用いた実機コークス炉炭化室の形状を示す概略図である。It is the schematic which shows the shape of the actual coke oven carbonization chamber used for the Example of this invention. 実機コークス炉炭化室を用いた実施例16及び比較例8による押し出し負荷の測定結果を示すグラフである。It is a graph which shows the measurement result of the extrusion load by Example 16 and Comparative Example 8 using an actual coke oven carbonization chamber.
 以下、本発明のコークス炉炭化室炉床滑り剤について、その製造方法などと共に、さらに詳細に説明する。なお、本明細書において「%」は、特記しない限り、質量百分率を意味するものとする。 Hereinafter, the coke oven carbonization chamber hearth slip agent of the present invention will be described in more detail along with its production method and the like. In the present specification, “%” means mass percentage unless otherwise specified.
 本発明のコークス炉炭化室炉床滑り剤は、上記したように、粒径が主に1~15mmの範囲であり、耐火度がSK12以上のセラミックス製球状体から成るものであって、炭化室上部の石炭装入口より投入することができる。
 当該滑り剤は、比較的大きな球状をなしているため、投入されると炉床でバウンドして炉床一面に広がり、炭化室装入口より投入するだけで、滑り剤を均して拡げる作業を行わなくても、均一に敷き詰めることができ、時間の短縮と作業の安全性向上を図ることができる。
As described above, the coke oven carbonization chamber hearth slip agent of the present invention is made of a ceramic spherical body having a particle size mainly in the range of 1 to 15 mm and a fire resistance of SK12 or more. It can be introduced from the upper coal charging entrance.
Since the slip agent has a relatively large spherical shape, when it is thrown in, it bounces on the hearth and spreads over the entire hearth, and it is only necessary to throw it in from the inlet of the carbonization chamber to spread the slip agent evenly. Even if it is not performed, it can be spread evenly, reducing the time and improving the safety of work.
 本発明のコークス炉炭化室炉床滑り剤の粒径は1~15mmを主体とする。すなわち、滑り剤の粒径が1mmより小さいと、滑り剤同士の摩擦が大きくなり、コークス押し出し排出時における押し出し機の負荷が却って大きくなってしまう。一方、粒径が15mmより大きくなると、炭化室に投入した際に、炉床の損傷を引き起こす可能性がある。よって、滑り剤の粒径は1~15mmとする必要がある。なお、滑り剤粒径のより好ましい範囲は、3~10mmである。
 なお、ここで言う「粒径」とは、当該滑り剤を構成するセラミックス製球状体の長径と短径との平均値を意味する。
The particle diameter of the coke oven carbonization chamber hearth slip agent of the present invention is mainly 1 to 15 mm. That is, if the particle size of the slip agent is smaller than 1 mm, the friction between the slip agents increases, and the load on the extruder during coke extrusion discharge increases. On the other hand, if the particle size is larger than 15 mm, there is a possibility of causing damage to the hearth when thrown into the carbonization chamber. Therefore, the particle size of the slip agent needs to be 1 to 15 mm. A more preferable range of the particle size of the slip agent is 3 to 10 mm.
The “particle diameter” as used herein means an average value of the major axis and the minor axis of the ceramic spherical body constituting the slip agent.
 本発明の炉床滑り剤の粒径は、上記した理由により1~15mmの範囲内とするが、工業製品である以上、所定の篩いによって分級したとしても、1mm未満、15mm超過の粒径の球状体が若干混入しないとも限らない。この場合、これら所定粒径範囲外の球状体の混入が質量比で2%を超えなければ、滑り剤としての性能にほとんど影響しないことを確認している。本発明において「1~15mmの粒径を主体とする」とは、このように1~15mmの粒径の球状体が98%以上を占めていることを意味する。 The particle size of the hearth slip agent of the present invention is in the range of 1 to 15 mm for the reasons described above. However, since it is an industrial product, the particle size is less than 1 mm and more than 15 mm even if classified by a predetermined sieve. It does not necessarily mean that the spherical body is not mixed slightly. In this case, it has been confirmed that if the mixture of spherical bodies outside the predetermined particle size range does not exceed 2% by mass ratio, the performance as a slipping agent is hardly affected. In the present invention, “mainly having a particle diameter of 1 to 15 mm” means that spherical bodies having a particle diameter of 1 to 15 mm occupy 98% or more.
 また、本発明の滑り剤が炭化室の炉床一面により均一に広がるためには、当該滑り剤の安息角が40度以下であること、さらには、水平な基盤上に滑り剤を載置して、基盤を傾斜させた場合に、当該滑り剤が移動を開始する時の傾斜角度が10度以下と小さいことが望ましい。 In order for the slipping agent of the present invention to spread uniformly over the entire hearth of the carbonization chamber, the repose angle of the slipping agent is 40 degrees or less, and further, the slipping agent is placed on a horizontal base. When the base is tilted, it is desirable that the tilt angle when the slip agent starts to move is as small as 10 degrees or less.
 上記滑り剤の安息角を40度以下としたのは、これが40度より大きいと炭化室装入口より投入した際に、装入口の真下に溜まって山を作り、押し出し時の負荷を大きくしてしまう傾向があることによる。
 安息角については、JIS R 9301-2-2に規定された方法に準じて測定することができる。但し、上記方法においては、ノズルの内径6mmのロートを使用するよう規定されているが、これよりも大きい粒径の滑り剤の場合には、それに応じた内径のものを使用することが必要となる。
The angle of repose of the above-mentioned slipping agent was set to 40 degrees or less. If it was larger than 40 degrees, when it was introduced from the inlet of the carbonization chamber, it piled up directly under the inlet to create a mountain and increase the load during extrusion. Because there is a tendency to end.
The angle of repose can be measured according to the method defined in JIS R 9301-2-2. However, the above method stipulates that a funnel having an inner diameter of 6 mm is used, but in the case of a slip agent having a particle size larger than this, it is necessary to use a nozzle having an inner diameter corresponding thereto. Become.
 水平な基盤上に載置した状態から基盤を傾けた際に、滑り剤が移動し始める角度で表わされる傾斜角度が10度より小さいと、炭化室装入口より投入した滑り剤が装入口の真下に山を作る前に転がり、山状に堆積することなく炉床一面に分散して、均一に敷き詰められるようになる。
 上記傾斜角度の測定については、ガラス板を任意の角度に傾け、その上に球状体をゆっくりと置き、球状体が転がり出すか、静置して動かないかを調べ、滑り剤を構成する球状体を任意の数で試験を行い、動いた数が半分以上のときのガラス板の角度を傾斜角とした。
If the tilt angle expressed by the angle at which the slip agent begins to move when tilted from a state where it is placed on a horizontal base is less than 10 degrees, the slip agent introduced from the carbonization chamber inlet is directly below the inlet. It rolls before making a mountain, and is distributed over the whole hearth without being piled up in a mountain shape so that it can be spread evenly.
For the measurement of the tilt angle, the glass plate is tilted to an arbitrary angle, and a spherical body is slowly placed on the glass plate. The body was tested with an arbitrary number, and the angle of the glass plate when the number moved was more than half was taken as the inclination angle.
 本発明の滑り剤を構成する個々の球状体の真球度については、真球度を長径(D)と短径(D)の比(D/D)で表すとき、この比が0.9以上であることが好ましい。 この真球度が0.9に満たないと、滑り剤がラグビーボール状になって、転がる方向が制限され、良好な滑り性が発揮できなくなる傾向がある。なお、0.95以上であることがより好ましい。 Regarding the sphericity of the individual spherical bodies constituting the slip agent of the present invention, when the sphericity is expressed by the ratio of the major axis (D L ) to the minor axis (D S ) (D S / D L ), this ratio Is preferably 0.9 or more. If the sphericity is less than 0.9, the slipping agent has a rugby ball shape, the rolling direction is limited, and good slipperiness tends not to be exhibited. In addition, it is more preferable that it is 0.95 or more.
 また、本発明の滑り剤の耐火度については、SK12(1350℃)以上であることが望ましい。
 耐火度がSK12より低くなると、コークスを乾留する際に滑り剤の表面が軟化することがないとは言えず、こうした場合には、表面に粘着性が生じて、滑り性が発揮できないばかりか、押し詰まりの原因となる場合がある。なお、耐火度はSK18(1500℃)以上であることがより望ましい。
The fire resistance of the slipping agent of the present invention is desirably SK12 (1350 ° C.) or higher.
When the fire resistance is lower than SK12, it cannot be said that the surface of the slipping agent does not soften when carbonizing coke, and in such a case, the surface is not sticky and cannot exhibit slipperiness. It may cause clogging. The fire resistance is more preferably SK18 (1500 ° C.) or higher.
 さらに、滑り剤の強度、すなわち、個々のセラミックス製球状体の圧潰強度については、90N以上であることが望ましく、500N以上であることがさらに望ましい。圧潰強度が90Nに満たないと、コークスの投入時に、あるいは押し出し時に押し潰されて、滑り性を発揮できなくなる傾向がある。 Furthermore, the strength of the slipping agent, that is, the crushing strength of the individual ceramic spherical bodies is preferably 90 N or more, and more preferably 500 N or more. If the crushing strength is less than 90 N, the crushing strength tends to be lost due to crushing at the time of coke charging or extrusion.
 本発明のコークス炉用炉床滑り剤の製造に用いる原材料としては、SiO、Al、ZrO、TiOなどの一般的な耐火性成分を含む材料、例えば珪砂、ケイ石、アルミナ粉、ジルコンサンド、ルチルサンド、カオリナイト、シャモット(焼成粘度)、タルクなどを使用することができる。
 特にアルミニウムの含水珪酸塩鉱物であるカオリナイトは、磁器の材料として有名であり、その含有量を高めることによって、高温に耐える焼成物を作ることができる。
As a raw material used for manufacturing the hearth slip agent for the coke oven of the present invention, materials containing general refractory components such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , for example, silica sand, silica, alumina Powder, zircon sand, rutile sand, kaolinite, chamotte (baking viscosity), talc and the like can be used.
In particular, kaolinite, which is a hydrated silicate mineral of aluminum, is well known as a porcelain material, and by increasing its content, a fired product that can withstand high temperatures can be made.
 上記滑り剤の原材料には、上記に加えてアルカリ金属化合物、アルカリ土類金属化合物や鉄化合物などの結合剤、具体的には、ケイ酸ナトリウム、メタケイ酸ナトリウム、アルミン酸ナトリウム、ケイ酸カリウム、メタケイ酸カリウム、酸化マグネシウム、炭酸マグネシウム、酸化カルシウム、炭酸カルシウム、酸化鉄(III)、酸化鉄(II, III)、ホウ酸、ホウ酸ナトリウム、リン酸ナトリウム及びケイ酸ソーダガラス粉、ホウケイ酸ガラス粉等のフリット成分等が配合される。 In addition to the above, the raw materials for the slip agent include binders such as alkali metal compounds, alkaline earth metal compounds and iron compounds, specifically sodium silicate, sodium metasilicate, sodium aluminate, potassium silicate, Potassium metasilicate, magnesium oxide, magnesium carbonate, calcium oxide, calcium carbonate, iron (III), iron oxide (II, III), boric acid, sodium borate, sodium phosphate and sodium silicate glass powder, borosilicate glass A frit component such as powder is blended.
 本発明のコークス炉用炉床滑り剤の組成は、SiO:45~88質量%、Al:10~48質量%、その他の成分:2~7質量%であることが製造コストの点から好ましい。
 ここで、SiOが45質量%未満で、Alが40質量%を超えると、滑り剤の融点が高くなり、焼成温度を高くしなければならないため、製造が困難になる。一方、SiOが88質量%を超え、Alが10質量%未満となると、炉床滑り剤を構成する球状体の強度が小さくなり、コークス投入時に破損して優れた滑り性を発揮できなくなることがある。
The composition of the coke oven hearth slip agent of the present invention is SiO 2 : 45 to 88 mass%, Al 2 O 3 : 10 to 48 mass%, and other components: 2 to 7 mass%. It is preferable from the point.
Here, if SiO 2 is less than 45% by mass and Al 2 O 3 exceeds 40% by mass, the melting point of the slip agent becomes high, and the firing temperature has to be increased, which makes production difficult. On the other hand, when SiO 2 exceeds 88% by mass and Al 2 O 3 is less than 10% by mass, the strength of the spherical body constituting the hearth slip agent becomes small, and it breaks at the time of coke charging and exhibits excellent slipperiness. It may not be possible.
 その他の成分としては、SiO及びAl以外の成分ということになり、NaO、KOなど接合剤に由来する成分と、当該接合剤を含めた原料中のSiO、Al以外の不純物成分の合計量を意味するが、接合剤の添加量が過剰となって、その他成分が7質量%を超えると、耐火度が低くなり、コークスを乾留する際に熱により滑り剤が溶融したり、滑り剤表面に粘着性が生じたりして、滑り剤同士がくっつき、滑り性が発揮できないばかりか、押し詰まりの原因となることがある。
 一方、接合剤の添加量が少なくて、その他成分が2質量%に満たない場合には、耐火度は高くなるものの、接合成分不足により圧潰強度が低くなり、容易に粉砕され、滑り効果を発揮できなくなる傾向がある。
The other components are components other than SiO 2 and Al 2 O 3 , components derived from the bonding agent such as Na 2 O and K 2 O, and SiO 2 and Al in the raw material including the bonding agent. This means the total amount of impurity components other than 2 O 3 , but if the additive amount of the bonding agent becomes excessive and the other components exceed 7% by mass, the fire resistance decreases, and heat is generated when coke is distilled off. The slip agent melts or stickiness occurs on the surface of the slip agent, and the slip agents stick to each other, and not only the slip property cannot be exerted but also cause clogging.
On the other hand, when the added amount of the bonding agent is small and the other components are less than 2% by mass, the fire resistance is increased, but the crushing strength is decreased due to insufficient bonding components, and it is easily pulverized and exhibits a sliding effect. There is a tendency to become impossible.
 本発明の滑り剤は、所定の耐火度を示し、所定粒径のセラミックス製の球状体から成るものである限り、その成分については、特に限定されることはなく、TiOやZrOを含むものであっても差し支えないが、これらを多量に含むものは、原料コストの増大を避けることが難しい。
 したがって、安価で実用的な組成としては、上記したように、SiO:45~88質量%、Al:10~48質量%、その他成分:2~7質量%であり、好ましくはSiO:67~75質量%、Al:19~30質量%、その他成分:3~6質量%である。
The slip agent of the present invention is not particularly limited as long as it has a predetermined fire resistance and is made of a ceramic spherical body having a predetermined particle diameter, and includes TiO 2 and ZrO 2 . However, it is difficult to avoid an increase in raw material cost for those containing a large amount.
Therefore, as described above, an inexpensive and practical composition is SiO 2 : 45 to 88% by mass, Al 2 O 3 : 10 to 48% by mass, and other components: 2 to 7% by mass, preferably SiO 2: 2 : 67 to 75% by mass, Al 2 O 3 : 19 to 30% by mass, and other components: 3 to 6% by mass.
 なお、本発明において、接合剤としては、上記したような化合物が用いられ、これら化合物は、焼結後のセラミックス球状体としての分析においては、Si,Al,Na,K,Bなどとして検出されることになるが、Si及びAlについては、SiO及びAlとして、主成分に繰り入れられることになる。一方、Na,K,B,Mg,Ca,Feについては、便宜上NaO,KO,B,MgO,CaO,Feに換算されて表記されることになる。
 本発明において、「その他の成分」とは、上記したように、SiO及びAl以外の成分を意味し、上記のような結合剤に由来する成分と、原料の不純物に由来する成分の合計量となる。
In the present invention, the above-described compounds are used as the bonding agent, and these compounds are detected as Si, Al, Na, K, B, etc. in the analysis of the sintered ceramic spheres. However, Si and Al are transferred to the main component as SiO 2 and Al 2 O 3 . On the other hand, Na, K, B, Mg, Ca, and Fe are converted into Na 2 O, K 2 O, B 2 O 3 , MgO, CaO, and Fe 2 O 3 for convenience.
In the present invention, “other components” means components other than SiO 2 and Al 2 O 3 as described above, and components derived from the binder as described above and components derived from impurities of the raw material. The total amount.
 以下に、本発明を実施例及び比較例に基づいて、さらに具体的に説明するが、本発明はこれらの実施例のみに限定されないことは言うまでもない。 Hereinafter, the present invention will be described in more detail based on examples and comparative examples, but it goes without saying that the present invention is not limited to these examples.
〔炉床滑り剤の製造〕
滑り剤1(発明例)
 ケイ酸ジルコニウムを主体とする原材料をミキサーに入れ、水を噴霧しながらミキサーを回転させて、造粒し、乾燥させた後、1300℃で焼成し、6メッシュ及び7メッシュの篩を用いて分級することによって、表1に示すようなZrOを主成分とするセラミックスの球状体を作製し、本発明に相当する滑り剤1とした。
 なお、このとき、結合剤としてケイ酸ナトリウムを使用した。
[Manufacture of hearth slip agent]
Sliding agent 1 (Invention example)
Raw materials mainly composed of zirconium silicate are put in a mixer, rotated while spraying water, granulated, dried, baked at 1300 ° C, and classified using 6 mesh and 7 mesh sieves. As a result, ceramic spherical bodies mainly composed of ZrO 2 as shown in Table 1 were produced, and the slip agent 1 corresponding to the present invention was obtained.
At this time, sodium silicate was used as a binder.
滑り剤2(発明例)
 ルチルサンド及びカオリナイトを主体とする原材料を用いて、上記滑り剤1と同様に造粒、焼成し、3・1/2メッシュ及び4メッシュの篩を用いて分級することによって、表1中に併せて示すようなTiOを主成分とするセラミックスの球状体を作製し、本発明に相当する滑り剤2とした。このとき、結合剤としては、ケイ酸ナトリウムを使用した。
Lubricant 2 (Invention example)
Using raw materials mainly composed of rutile sand and kaolinite, granulation and firing in the same manner as the above-mentioned slipping agent 1, and classification using 3 1/2 mesh and 4 mesh sieve, Table 1 A ceramic spherical body containing TiO 2 as a main component as shown in the above is prepared and used as the slip agent 2 corresponding to the present invention. At this time, sodium silicate was used as a binder.
滑り剤3(発明例)
 カオリナイト及びアルミナ粉を主体とする原材料を用いて、同様に造粒したのち、1850℃で焼成し、6メッシュ及び9メッシュの篩を用いて分級することによって、表1に併せて示すように、Al、SiOを主成分とするセラミックスの球状体を作製し、本発明に相当する滑り剤3とした。このとき、結合剤としては、ケイ酸カリウムを使用した。
Sliding agent 3 (Invention example)
As shown in Table 1 by granulating in the same manner using raw materials mainly composed of kaolinite and alumina powder, firing at 1850 ° C., and classifying using 6 mesh and 9 mesh sieves. Ceramic spheroids mainly composed of Al 2 O 3 and SiO 2 were prepared and used as the slip agent 3 corresponding to the present invention. At this time, potassium silicate was used as a binder.
滑り剤4(発明例)
 カオリナイト及び珪砂を主体とする原材料を用いて、上記滑り剤1と同様に造粒、焼成、9メッシュ及び16メッシュの篩を用いて分級することによって、表1中に併せて示すように、SiO、Alを主成分とするセラミックスの球状体を作製し、本発明に相当する滑り剤4とした。結合剤としては、ケイ酸ナトリウムを使用した。
Lubricant 4 (Invention example)
Using raw materials mainly composed of kaolinite and silica sand, granulation, baking, and classification using 9 mesh and 16 mesh sieves as in the case of the slip agent 1, Ceramic spheroids mainly composed of SiO 2 and Al 2 O 3 were prepared and used as the slip agent 4 corresponding to the present invention. As a binder, sodium silicate was used.
滑り剤5(発明例)
 3メッシュ及び4メッシュの篩を用いたこと以外は、上記滑り剤4の場合と同じ操作を繰り返すことによって、SiO、Alを主成分とするセラミックスの球状体を作製し、本発明に相当する滑り剤5とした。このとき、結合剤としては、ケイ酸ナトリウムを使用した。
Sliding agent 5 (Invention example)
Except for the use of 3 mesh and 4 mesh sieves, the same operation as in the case of the slip agent 4 is repeated, thereby producing ceramic spherical bodies mainly composed of SiO 2 and Al 2 O 3. The slip agent 5 corresponding to At this time, sodium silicate was used as a binder.
滑り剤6(比較例)
 カオリナイト及びアルミナ粉を主体とする原材料を用いて、同様に造粒したのち、1850℃で焼成し、35メッシュ及び42メッシュの篩を用いて分級することによって、表1に併せて示すように、Al、SiOを主成分とするセラミックスの球状体を作製し、本発明に該当しない滑り剤6とし、本発明との比較剤とした。このとき、結合剤としては、ケイ酸ナトリウム及び炭酸マグネシウムを用いた。
Sliding agent 6 (comparative example)
As shown in Table 1 by granulating in the same manner using raw materials mainly composed of kaolinite and alumina powder, firing at 1850 ° C., and classifying using 35 mesh and 42 mesh sieves. A spherical body made of ceramics mainly composed of Al 2 O 3 and SiO 2 was prepared as a slip agent 6 not corresponding to the present invention, and used as a comparison agent with the present invention. At this time, sodium silicate and magnesium carbonate were used as binders.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔粒径の測定〕
 上記によって調製したそれぞれの滑り剤について、粒径を測定した。 なお、測定に当たっては、各滑り剤を構成する球状体を金属製物差しと共にデジタルカメラで撮影し、拡大してプリントアウトし、その画像の球状体の長径と短径、及び物差しの目盛をノギスで測定し、目盛とノギスの数値の比から、それぞれの長径と短径を求め、その平均値をその球状体の粒径とした。
(Measurement of particle size)
The particle size was measured for each slip agent prepared as described above. In measuring, the spherical bodies constituting each slip agent are taken with a digital camera together with a metal ruler, enlarged and printed out, and the major and minor diameters of the spherical bodies of the image and the scale of the ruler are measured with a caliper. Each major axis and minor axis were determined from the ratio between the scale and the vernier caliper value, and the average value was taken as the particle size of the spherical body.
〔安息角の測定〕 
 上記によって調整したそれぞれの滑り剤について、JIS R 9301-2-2の規定に準じ、内径14mmのノズルを有する粉末ロートを使用して安息角を測定した。
 なお、ロートの足の先端から基盤までの距離については、上記規格と同じく40mmに設定した。ただし、山の高さが40mmを超えるような場合には、ロートの高さを徐々に上げていき、山の頂上がロートに当たらないように調節した。その結果を表2に併せて示す。
[Measurement of repose angle]
The angle of repose of each slipping agent prepared as described above was measured using a powder funnel having a nozzle with an inner diameter of 14 mm in accordance with JIS R 9301-2-2.
The distance from the tip of the funnel foot to the base was set to 40 mm as in the above standard. However, when the height of the mountain exceeded 40 mm, the height of the funnel was gradually increased and adjusted so that the top of the mountain did not hit the funnel. The results are also shown in Table 2.
〔傾斜角度の測定〕
 任意の角度に傾けたガラス板の上に、上記によって得られた各滑り剤を構成する球状体を静かに載置し、球状体が転がり出すか否かを観察した。そして、それぞれの滑り剤を構成する球状体20個について上記の観察を行い、動いた数がその半分になったときのガラス板の角度をもって傾斜角度とした。
 その結果を表2に併せて示す。
[Measurement of tilt angle]
On the glass plate inclined at an arbitrary angle, the spherical bodies constituting the respective slip agents obtained as described above were gently placed, and it was observed whether or not the spherical bodies rolled out. And 20 said spherical bodies which comprise each slip agent were observed, and the angle of the glass plate when the number which moved became the half was made into the inclination angle.
The results are also shown in Table 2.
〔耐火度の測定〕
 上記によって調製した各滑り剤を構成する球状体を粉砕し、水を混ぜて練り込み、JIS R 8101(1999)に準じて、ゼーゲルコーン2種の寸法で成形し、乾燥させたのち、耐火度を測定した。その結果を表2に併せて示す。
(Measurement of fire resistance)
Spherical bodies constituting each slip agent prepared as described above are pulverized, mixed with water and kneaded, molded according to JIS R 8101 (1999), with two sizes of Zeger corn, dried, and then fire resistance is increased. It was measured. The results are also shown in Table 2.
〔真球度の測定〕
 上記によって調整したそれぞれの滑り剤を構成する球状体について、任意に10個を抜き取り、上記した粒径の測定と同様の方法によって、それぞれの最大径(D)と最小径(D)を求め、その比(D/D)の平均値を算出して真球度した。その結果を表2に併せて示す。
[Measurement of sphericity]
About 10 spherical bodies constituting each slip agent adjusted as described above, 10 are arbitrarily extracted, and the maximum diameter (D L ) and the minimum diameter (D S ) are determined by the same method as the measurement of the particle diameter described above. The average value of the ratio (D S / D L ) was calculated to obtain the sphericity. The results are also shown in Table 2.
〔圧潰強度の測定〕
 上記によって調整した各滑り剤から、任意に10個の球状体を抜き取り、それぞれ圧縮試験によって圧潰強度を測定し、その平均値をもって、当該滑り剤の圧潰強度とした。
 その結果を表2に併せて示す。
(Measurement of crushing strength)
Ten spherical bodies were arbitrarily extracted from each of the slipping agents adjusted as described above, and the crushing strength was measured by a compression test, and the average value was taken as the crushing strength of the slipping agent.
The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔模擬試験による押し出し力の測定〕
 上記によって得られた各滑り剤を用いた場合のコークス押し出し力を測定するため、炭化室の模型を作製し、以下の要領でそれぞれ試験を行った。
[Measurement of extrusion force by simulation test]
In order to measure the coke extrusion force when each slip agent obtained as described above was used, a carbonization chamber model was prepared and tested in the following manner.
 すなわち、図1(a)は、試験に使用した装置の模式図であって、図中の符号1はフォークリフト、2は荷重測定用のロードセル、3は押し出し板、4はコークス、5は模型炭化室の底面に敷き詰めたシャモット煉瓦SK-32をそれぞれ示す。
 上記炭化室としては、幅0.25m、長さ1.8m、高さ0.6mの金属枠の底面と側面にブリキ板を貼り、底面のブリキ板上に、図1(b)に示すように、上記シャモット煉瓦5を斜めに敷き詰めた。
That is, FIG. 1A is a schematic diagram of the apparatus used in the test, in which reference numeral 1 is a forklift, 2 is a load cell for load measurement, 3 is an extrusion plate, 4 is coke, and 5 is model carbonization. Each shows a chamotte brick SK-32 spread on the bottom of the chamber.
As the carbonization chamber, a tin plate is attached to the bottom and side surfaces of a metal frame having a width of 0.25 m, a length of 1.8 m, and a height of 0.6 m, and the tin plate on the bottom surface is as shown in FIG. Further, the chamotte brick 5 was laid diagonally.
 図1(a)に示すように、フォークリフト1のツメ先端にデジタルフォースゲージのロードセル2を固定し、シャモット煉瓦5の上に、後述するように各滑り剤を敷き詰めた上で、コークス4を約50kg載せ、フォークリフト1を前進させることにより押し出し板3を押してコークス4を動かし、その際に押し出し板3に掛かる圧力をロードセル2で測定した。 As shown in FIG. 1 (a), the load cell 2 of the digital force gauge is fixed to the tip of the claw of the forklift 1, and each slipping agent is spread on the chamotte brick 5 and then the coke 4 is reduced to about The coke 4 was moved by pushing the extrusion plate 3 by advancing the forklift 1 by moving 50 kg, and the pressure applied to the extrusion plate 3 at that time was measured by the load cell 2.
(実施例1~3)
 模型炭化室のシャモット煉瓦5の上に、上記により調製した滑り剤1(ZrO系、粒径:2.79~3.33mm)をそれぞれ2kg/m、5kg/m及び10kg/m敷き詰め、その上から約50kgのコークス4を載せ、フォークリフト1によってコークス4を押し出した時に要した力をロードセル2によってそれぞれ測定した。
(Examples 1 to 3)
On the chamotte brick 5 of the model carbonization chamber, the slip agent 1 (ZrO 2 system, particle size: 2.79 to 3.33 mm) prepared as described above was 2 kg / m 2 , 5 kg / m 2 and 10 kg / m 2, respectively. After laying down, about 50 kg of coke 4 was placed thereon, and the force required when the coke 4 was pushed out by the forklift 1 was measured by the load cell 2.
(実施例4~6)
 模型炭化室のシャモット煉瓦5の上に、上記により調製した滑り剤2(TiO系、粒径:4.70~5.61mm)を同様に敷き詰め、コークス4の押し出しに要した力を同様に測定した。
(Examples 4 to 6)
On the chamotte brick 5 in the model carbonization chamber, the slip agent 2 prepared as described above (TiO 2 system, particle size: 4.70 to 5.61 mm) is similarly laid, and the force required to extrude the coke 4 is similarly applied. It was measured.
(実施例7~9)
 模型炭化室のシャモット煉瓦5の上に、上記により調製した滑り剤3(Al-SiO系、粒径:1.98~3.33mm)を同様に敷き詰め、コークス4の押し出しに要した力を同様に測定した。
(Examples 7 to 9)
On the chamotte brick 5 of the model carbonization chamber, the slip agent 3 prepared as described above (Al 2 O 3 —SiO 2 system, particle size: 1.98 to 3.33 mm) is spread in the same manner, and it is necessary to extrude the coke 4. The measured force was measured similarly.
(実施例10~12)
 模型炭化室のシャモット煉瓦5の上に、上記により調製した滑り剤4(SiO-Al系、粒径:1.00~1.98mm)を同様に敷き詰め、コークス4の押し出しに要した力を同様に測定した。
(Examples 10 to 12)
On the chamotte brick 5 of the model carbonization chamber, the slip agent 4 prepared as described above (SiO 2 —Al 2 O 3 system, particle size: 1.00 to 1.98 mm) is spread in the same manner, and it is necessary to extrude the coke 4. The measured force was measured similarly.
(実施例13~15)
 模型炭化室のシャモット煉瓦5の上に、上記により調製した滑り剤5(SiO-Al、SiOAl系、粒径:4.70~6.68mm)を同様に敷き詰め、コークス4の押し出しに要した力を同様に測定した。
(Examples 13 to 15)
The slip agent 5 (SiO 2 —Al 2 O 3 , SiO 2 Al 2 O 3 system, particle size: 4.70 to 6.68 mm) prepared as described above is similarly spread on the chamotte brick 5 in the model carbonization chamber. The force required to extrude the coke 4 was measured in the same manner.
(比較例1)
 模型炭化室のシャモット煉瓦5の上に、滑り剤を散布することなく、直接50kgのコークス4を載せ、その押し出しに要した力を同様に測定した。
(Comparative Example 1)
50 kg of coke 4 was placed directly on the chamotte brick 5 in the model carbonization chamber without spraying the slip agent, and the force required for the extrusion was measured in the same manner.
(比較例2~4)
 模型炭化室のシャモット煉瓦5の上に、上記により調製した滑り剤6(Al-SiO系、粒径:0.35~0.42mm)をそれぞれ2kg/m、5kg/m及び10kg/m敷き詰め、その上から約50kgのコークス4を載せ、その押し出しに要した力を同様に測定した。
(Comparative Examples 2 to 4)
On the chamotte bricks 5 of the model carbonization chamber, slipping agent prepared by the above 6 (Al 2 O 3 -SiO 2 system, particle size: 0.35 ~ 0.42 mm), respectively 2kg / m 2, 5kg / m 2 Then, 10 kg / m 2 was spread and about 50 kg of coke 4 was placed thereon, and the force required for the extrusion was measured in the same manner.
(比較例5~7)
 木の板を使用している現状を把握するため、模型炭化室のシャモット煉瓦5の上に、粒径1.68~4.70mmの木炭をそれぞれ2kg/m、5kg/m、10kg/m敷き詰め、その上から約50kgのコークス4を載せ、コークス4の押し出しに要した力を同様の方法により測定した。
 以上の測定結果を表3及び図2に併せて示す。
(Comparative Examples 5 to 7)
In order to grasp the current situation of using wooden boards, charcoal particles of 1.68 to 4.70 mm are placed on the chamotte brick 5 in the model carbonization chamber at 2 kg / m 2 , 5 kg / m 2 , 10 kg / m 2 was spread, about 50 kg of coke 4 was placed thereon, and the force required to push the coke 4 was measured by the same method.
The above measurement results are also shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果、滑り剤の押し出し力の結果は、滑り剤5≧滑り剤3>滑り剤2>滑り剤1>滑り剤4≫滑り剤6≧木炭≫比較例1の序列であることが判明した。
 本発明の滑り剤1~5(実施例1~15)は、比較例1~7に比べて非常に優れた滑り性能を発揮している。中でも滑り剤5,3,2は特に優れていることが確認された。  
As a result, it was found that the result of the extrusion force of the slip agent was the order of slip agent 5 ≧ slip agent 3> slip agent 2> slip agent 1> slip agent 4 >> slip agent 6 ≧ charcoal >> comparative example 1. .
The slip agents 1 to 5 (Examples 1 to 15) of the present invention exhibit very excellent slip performance as compared with Comparative Examples 1 to 7. Among these, it was confirmed that the slip agents 5, 3 and 2 are particularly excellent.
〔実機試験における押し出し力の測定〕
 さらに、実際の操業に即したコークス押し出し負荷を測定するため、実機コークス炉の炭化室を用いて、以下の要領でそれぞれ試験を行った。
[Measurement of extrusion force in actual machine test]
Furthermore, in order to measure the coke extrusion load in accordance with the actual operation, tests were conducted in the following manner using the carbonization chamber of the actual coke oven.
 すなわち、図3は実機試験に使用した実機コークス炉炭化室の概略図であって、図中の符号11は石炭装入口、12は炉床、13は押し出し機をそれぞれ示す。
 上記炭化室としては、炉幅M/S:0.388m、C/S:0.452m、炉高6.85m、炉長15.9mである。
That is, FIG. 3 is a schematic view of an actual coke oven carbonization chamber used in the actual machine test, in which reference numeral 11 denotes a coal charging inlet, 12 denotes a hearth, and 13 denotes an extruder.
The carbonization chamber has a furnace width M / S: 0.388 m, C / S: 0.452 m, a furnace height of 6.85 m, and a furnace length of 15.9 m.
(実施例16)
 実機コークス炉炭化室に石炭を投入する前に、炭化室上部の石炭装入口4か所より滑り剤5をそれぞれ15kgずつ、合計60kg投入した。投入された滑り剤5は炭化室炉床に落下した衝撃で大きくバウンドして炉床一面に広がり、均一に散布した状態になった。
 滑り剤5を投入した後、石炭32tを炭化室上部の石炭装入口4か所から投入し、1200℃で19.5時間乾留し、乾留された石炭を押し出し機にて炭化室から押し出し、その際に押し出し機にかかる負荷(ピークアンペア)を測定した。
 コークス炉炭化室の窯を変えて上記と同様の試験を合計9回行い、その平均値を求めた。
(Example 16)
Before putting coal into the actual coke oven carbonization chamber, 15 kg of the slip agent 5 from each of the four coal inlets in the upper portion of the carbonization chamber, 60 kg in total, was charged. The introduced slip agent 5 bounced greatly due to the impact dropped on the hearth of the carbonization chamber, spread over the whole surface of the hearth, and was uniformly sprayed.
After the slip agent 5 was charged, 32t of coal was charged from the four coal inlets at the top of the carbonization chamber, carbonized at 1200 ° C for 19.5 hours, and the coal that had been carbonized was extruded from the carbonization chamber with an extruder. The load (peak ampere) applied to the extruder was measured.
A test similar to the above was performed a total of nine times by changing the coke oven carbonization chamber, and the average value was obtained.
(比較例8)
 実施例16と同じコークス炉炭化室の窯を用いて、滑り剤を投入することなく、実施例16と同様の試験を行い、押し出し機にかかる負荷(ピークアンペア)を測定した。
 以上の測定結果を表4及び図4に併せて示す。
(Comparative Example 8)
The same test as in Example 16 was performed using the same coke oven as in Example 16 without introducing a slipping agent, and the load (peak ampere) applied to the extruder was measured.
The above measurement results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の押し出し測定結果より、表4に示すように、滑り剤5は、炭化室に投入することによって、炉床面に均一な散布状態となり、乾留後の押し出し負荷を軽減していることが確認され、非常に優れた滑り性能を発揮していることが判明した。 From the above extrusion measurement results, as shown in Table 4, it was confirmed that the slip agent 5 was put into the carbonization chamber to be in a uniform spray state on the hearth surface, reducing the extrusion load after dry distillation. As a result, it has been found that it exhibits very good sliding performance.

Claims (6)

  1.  コークス炉炭化室の炉床に敷き詰める滑り剤であって、耐火度がSK12以上であり、1~15mmの粒径を主体とするセラミックス製球状体から成ることを特徴とするコークス炉炭化室炉床滑り剤。 Coke oven coking chamber hearth characterized in that it is a slip agent spread on the hearth of a coke oven carbonization chamber, and has a fire resistance of SK12 or more and is made of a ceramic spherical body mainly having a particle size of 1 to 15 mm. Slip agent.
  2.  安息角が40度以下であることを特徴とする請求項1に記載のコークス炉炭化室炉床滑り剤。 The coke oven carbonization chamber hearth slip agent according to claim 1, wherein the repose angle is 40 degrees or less.
  3.  静止状態から移動を開始するまでの傾斜角度が10度以下であることを特徴とする請求項1又は2に記載のコークス炉炭化室炉床滑り剤。 The coke oven coking chamber hearth slip agent according to claim 1 or 2, wherein an inclination angle from the stationary state to the start of movement is 10 degrees or less.
  4.  上記球状体の長径Dと短径Dの比(D/D)で表される真球度が0.9以上であることを特徴とする請求項1~3のいずれか1つの項に記載のコークス炉炭化室炉床滑り剤。 4. The sphericity expressed by the ratio (D S / D L ) between the major axis D L and the minor axis D S of the spherical body is 0.9 or more, Coke oven carbonization chamber hearth slip agent according to item.
  5.  上記球状体の圧潰強度が90N以上であることを特徴とする請求項1~4のいずれか1つの項に記載のコークス炉炭化室炉床滑り剤。 The coke oven carbonization chamber hearth slip agent according to any one of claims 1 to 4, wherein the crushing strength of the spherical body is 90 N or more.
  6.  Si成分をSiOに換算して45~88質量%、Al成分をAlに換算して10~48質量%、その他の成分を2~7質量%含有することを特徴とする請求項1~5のいずれか1つの項に記載のコークス炉炭化室炉床滑り剤。 The Si component contains 45 to 88% by mass in terms of SiO 2 , the Al component in terms of Al 2 O 3 contains 10 to 48% by mass, and the other components contain 2 to 7% by mass. 6. The coke oven carbonization chamber hearth slip agent according to any one of 1 to 5.
PCT/JP2010/065226 2009-09-09 2010-09-06 Lubricant for oven floor of coke oven carbonization chamber WO2011030730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009208635A JP2011057841A (en) 2009-09-09 2009-09-09 Lubricant for oven floor of coke oven carbonization chamber
JP2009-208635 2009-09-09

Publications (1)

Publication Number Publication Date
WO2011030730A1 true WO2011030730A1 (en) 2011-03-17

Family

ID=43732402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065226 WO2011030730A1 (en) 2009-09-09 2010-09-06 Lubricant for oven floor of coke oven carbonization chamber

Country Status (2)

Country Link
JP (1) JP2011057841A (en)
WO (1) WO2011030730A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120278A (en) * 1994-10-26 1996-05-14 Kawasaki Steel Corp Method for operating coke oven, and coke oven
JP2001207175A (en) * 2000-01-24 2001-07-31 Nippon Steel Corp Method for operating coke oven
JP2002069457A (en) * 2000-08-29 2002-03-08 Kawasaki Steel Corp Method and apparatus for preventing rebounded surface protective material from adhering onto bottom brick surface of carbonization chamber of coke oven
JP2003238965A (en) * 2002-02-22 2003-08-27 Jfe Steel Kk Furnace floor-covering agent for carbonization chamber of coke oven and method for operating coke oven

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120278A (en) * 1994-10-26 1996-05-14 Kawasaki Steel Corp Method for operating coke oven, and coke oven
JP2001207175A (en) * 2000-01-24 2001-07-31 Nippon Steel Corp Method for operating coke oven
JP2002069457A (en) * 2000-08-29 2002-03-08 Kawasaki Steel Corp Method and apparatus for preventing rebounded surface protective material from adhering onto bottom brick surface of carbonization chamber of coke oven
JP2003238965A (en) * 2002-02-22 2003-08-27 Jfe Steel Kk Furnace floor-covering agent for carbonization chamber of coke oven and method for operating coke oven

Also Published As

Publication number Publication date
JP2011057841A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP7299157B2 (en) A method for producing porous sintered magnesia, a batch for producing a coarse ceramic refractory product with granules of sintered magnesia, such a product and the product Manufacturing method, industrial furnace lining (Zustellung) and industrial furnace
JP4838619B2 (en) Alumina-silica brick for CDQ
KR100890626B1 (en) Refractory repairing material for equipment of iron/steel making, method for preparing thereof and composition comprising the same
CN102887715A (en) Ladle permanent lining pouring material capable of rapid roasting
CN107117976A (en) A kind of transition band of cement kiln Mg-Al spinel brick and preparation method thereof
CN106966708A (en) A kind of non-burning aluminum magnesia carbon brick and preparation method thereof
JP4394144B2 (en) Carbon-containing refractory, method for producing the same, and pitch-containing refractory material
Jock et al. Evaluation of the refractory properties of Nigerian Ozanagogo clay deposit
WO2011030730A1 (en) Lubricant for oven floor of coke oven carbonization chamber
JP6188214B2 (en) Wet construction repair agent and repair method
CN107098710A (en) One kind does not burn magnesia carbon brick and preparation method thereof
CN106187235A (en) A kind of half heavy coke dry quenching furnace annular passage refractory brick and preparation method
US3442670A (en) Carbon composition and process
CN101823895B (en) Fire, wear and acid resistant clinkery brick and preparation method thereof
JP7188126B2 (en) Method for manufacturing carbon-containing non-fired pellets for blast furnace
JP3103523B2 (en) Thermal spray material
JP2022077378A (en) Dry spray material for firing furnace
JP6386317B2 (en) Silica brick for hot repair
Olasupo et al. Development of insulating refractory ramming mass from some Nigerian refractory raw materials
JP3620058B2 (en) Thermal storage refractory brick for coke oven thermal storage room
KR20130015707A (en) Ceramic welding composition
JPS5812226B2 (en) Refractories for hot spray repair
KR20150101652A (en) Clay Bricks Comprising Wasted CRT Glass and Method for Preparing the Same
JP6692877B2 (en) Molded fuel, manufacturing method thereof, and calcination method of limestone
CN117125959B (en) Preparation method of thermal shock resistant composite magnesium powder ramming mass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815327

Country of ref document: EP

Kind code of ref document: A1