WO2011030597A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2011030597A1
WO2011030597A1 PCT/JP2010/060104 JP2010060104W WO2011030597A1 WO 2011030597 A1 WO2011030597 A1 WO 2011030597A1 JP 2010060104 W JP2010060104 W JP 2010060104W WO 2011030597 A1 WO2011030597 A1 WO 2011030597A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench isolation
semiconductor
region
electrode
main electrode
Prior art date
Application number
PCT/JP2010/060104
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 滝
博臣 江口
峰司 大川
清春 早川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2011030597A1 publication Critical patent/WO2011030597A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes

Definitions

  • the present invention relates to a semiconductor device in which different types of semiconductor elements are mounted on one semiconductor layer.
  • Japanese Patent Application Laid-Open No. 2005-64472 and Japanese Patent Application Laid-Open No. 10-200102 disclose an example of a semiconductor device used for an inverter circuit.
  • a lateral IGBT Lateral Insulated Gate Bipolar Transistor
  • LIGBT Lateral Insulated Gate Bipolar Transistor
  • FWD Free Wheeling Diode
  • connection wiring that connects the collector electrode of the LIGBT and the cathode electrode of the FWD is laterally above the n ⁇ type breakdown voltage holding region (also referred to as a drift region) of the LIGBT and FWD. It is extended and arranged.
  • a high voltage is applied to the connection wiring connecting the collector electrode and the cathode electrode.
  • this connection wiring is disposed above the breakdown voltage holding region, the electron concentration on the surface of the breakdown voltage holding region increases due to the potential of the connection wiring, and the charge balance of the breakdown voltage holding region is lost. End up.
  • the breakdown voltage holding region the potential distribution becomes non-uniform, and the expansion of the depletion layer at the time of reverse bias is suppressed, and the breakdown voltage decreases.
  • the interlayer insulating film provided between the semiconductor layer and the connection wiring is formed thicker, it is possible to secure a large distance between the semiconductor layer and the connection wiring, thereby suppressing the influence of the connection wiring. it can.
  • the interlayer insulating film is formed thicker, there is a problem in terms of a decrease in heat dissipation and an increase in manufacturing cost.
  • connection wiring is formed using a bonding wire, a large distance can be ensured between the semiconductor layer and the connection wiring, so that the influence of the connection wiring can be suppressed.
  • the bonding wire becomes a problem in terms of a decrease in reliability due to breakage or the like and an increase in manufacturing cost.
  • the technology disclosed in this specification is intended to provide a semiconductor device in which a decrease in breakdown voltage is suppressed by adopting a new and novel layout.
  • the semiconductor device disclosed in this specification includes a semiconductor layer having a first element region and a second element region, a first type of first semiconductor element, and a second type of second semiconductor element.
  • the first semiconductor element and the second semiconductor element are different types of semiconductor elements.
  • the first semiconductor element is disposed in the first element region of the semiconductor layer and includes a first main electrode and a second main electrode.
  • the first semiconductor element is configured such that a current flows between the first main electrode and the second main electrode.
  • the second semiconductor element is disposed in the second element region of the semiconductor layer and includes a third main electrode and a fourth main electrode.
  • the second semiconductor element is configured such that a current flows between the third main electrode and the fourth main electrode.
  • connection wiring for connecting the first main electrode of the first semiconductor element and the third main electrode of the second semiconductor element becomes unnecessary.
  • the connection wiring for connecting the second main electrode of the first semiconductor element and the fourth main electrode of the second semiconductor element is also unnecessary.
  • a situation in which the potential distribution in the semiconductor layer becomes non-uniform due to the connection wiring as in the conventional semiconductor device is suppressed.
  • a reduction in breakdown voltage is suppressed by adopting a novel layout.
  • one main electrode of the first semiconductor element can be formed without using connection wiring.
  • One main electrode of the second semiconductor element can be brought into contact.
  • FIG. 1 shows an outline of a circuit configuration of an inverter circuit 100.
  • 2 shows a planar layout of the semiconductor device of the first embodiment. The plane layout of each electrode of LIGBT and FWD is shown.
  • FIG. 4 shows a cross-sectional view corresponding to line IV-IV in FIG.
  • FIG. 3 shows a cross-sectional view corresponding to the line VV in FIG. 2.
  • the enlarged plan view of an adjacent part is shown.
  • separation part is shown.
  • separation part was provided is shown.
  • the plane layout of the semiconductor device of 2nd Example is shown. 2 shows a planar layout of a conventional semiconductor device.
  • FIG. 11 is a cross-sectional view corresponding to the line XI-XI in FIG. 10.
  • the semiconductor device disclosed in this specification includes different types of semiconductor elements.
  • Each semiconductor element may include a pair of main electrodes, one main electrode may be disposed on the first trench isolation side, and the other main electrode may be disposed on the second trench isolation side.
  • the direction of the current flowing between the pair of main electrodes may be either. Note that, in adjacent portions where different semiconductor elements are adjacent, the direction of the current flowing between the pair of electrodes of one semiconductor element is substantially parallel to the direction of the current flowing between the pair of electrodes of the other semiconductor element. It is desirable that
  • the different types of semiconductor elements may be a combination of switching elements and switching elements, or a combination of switching elements and free-wheeling diodes.
  • the switching element is preferably a transistor, for example, an IGBT, a MISFET, a MOSFET, or a HEMT.
  • the first trench isolation portion may make a round when the semiconductor layer is viewed in plan.
  • the second trench insulation isolation part may make a round around the first trench insulation isolation part when the semiconductor layer is viewed in plan.
  • the element region sandwiched between the first trench isolation portion and the second trench isolation portion also makes a round when the semiconductor layer is viewed in plan.
  • different types of first semiconductor elements and second semiconductor elements can be mounted with a small mounting area.
  • the element region sandwiched between the first trench isolation portion and the second trench isolation portion reciprocates twice along at least one direction when the semiconductor layer is viewed in plan view. It may be. According to the semiconductor device of this embodiment, the area of the element region occupying the semiconductor layer can be increased, and the mounting area can be reduced.
  • the semiconductor device disclosed in this specification may further include a third trench isolation portion.
  • the third trench isolation portion has a first end and a second end, and may penetrate the semiconductor layer.
  • the first end of the third trench isolation may be in contact with the first trench isolation and the second end of the third trench isolation may be in contact with the second trench isolation.
  • the third trench isolation portion may separate the first element region and the second element region.
  • the first semiconductor element and the second semiconductor element can be electrically separated by the third trench isolation part.
  • a parasitic element structure may be formed between the first semiconductor element and the second semiconductor element. Even in such a case, the provision of the third trench isolation portion prevents the parasitic current from flowing through the parasitic element structure.
  • One main electrode of the semiconductor element may be disposed at least above the first trench isolation portion, and the other main electrode of the semiconductor element may be disposed at least above the second trench isolation portion.
  • the first semiconductor region that is in direct contact with one main electrode of the semiconductor element may be in contact with the side surface of the first trench isolation portion.
  • the second semiconductor region that is in direct contact with the other main electrode of the semiconductor element may be in contact with the side surface of the second trench isolation portion.
  • the first semiconductor region that is in direct contact with one main electrode of the semiconductor element may be provided along the first trench isolation portion when viewed in plan. Furthermore, the second semiconductor region that is in direct contact with the other main electrode of the semiconductor element may also be provided along the second trench isolation portion when viewed in plan.
  • the semiconductor device disclosed in this specification may be mounted on an SOI substrate. Different semiconductor elements may be formed in the semiconductor layer of the SOI substrate.
  • FIG. 1 shows an outline of the circuit configuration of the inverter circuit 100 incorporated in the inverter module.
  • Inverter circuit 100 is provided between high-voltage DC power supply 300 and motor 400, converts DC power supplied from high-voltage DC power supply 300 into AC power, and supplies the AC power to motor 400.
  • the DC power supplied from the high-voltage DC power supply 300 is generally boosted by a converter, and the converter is often incorporated in an inverter module.
  • a capacitor 200 is provided between the high-voltage DC power supply 300 and the inverter circuit 100 to smooth DC power.
  • the inverter circuit 100 includes six semiconductor devices 111-116. As will be described later, the six semiconductor devices 111 to 116 are mounted on one SOI substrate and are configured by one chip. Note that each of the six semiconductor devices 111 to 116 may be mounted on a separate SOI substrate. Each of the semiconductor devices 111 to 116 includes transistors Tr1 to Tr6 and freewheeling diodes D1 to D6 connected in parallel to the transistors Tr1 to Tr6. For the transistors Tr1 to Tr6, a lateral IGBT (Lateral Insulated Gate Bipolar Transistor: hereinafter referred to as LIGBT) is employed.
  • LIGBT Lateral Insulated Gate Bipolar Transistor
  • free-wheeling diodes D1 to D6 free-wheeling diodes (hereinafter referred to as “FWD”) are employed.
  • a gate control signal is applied to the gates of the transistors Tr1 to Tr6 from an inverter drive circuit (not shown).
  • the inverter circuit 100 includes a U-phase arm, a V-phase arm, and a W-phase arm connected in parallel between the high-voltage wiring 100H and the low-voltage wiring 100L of the high-voltage DC power supply 300.
  • the U-phase arm includes semiconductor devices 111 and 112 connected in series via an intermediate node Nm1.
  • the V-phase arm includes semiconductor devices 113 and 114 connected in series via an intermediate node Nm2.
  • the W-phase arm includes semiconductor devices 115 and 116 connected in series via an intermediate node Nm3.
  • the intermediate nodes Nm1 to Nm3 are connected to the phase output lines Uout, Vout, Wout.
  • Each phase output line Uout, Vout, Wout is connected to one end of each phase coil of the three-phase motor 400.
  • the other end of each phase coil is commonly connected to the neutral point.
  • the motor 400 in this example has three phases, but the technology disclosed in this specification can be applied to various AC motors without limiting the number of phases.
  • FIG. 2 is a plan view showing the layout of the semiconductor device.
  • FIG. 3 is a plan view in which the layout of each electrode disposed in the semiconductor device is superimposed on FIG.
  • FIG. 4 is a cross-sectional view corresponding to the line IV-IV in FIG. 2, and shows a cross-sectional view of the LIGBT in the adjacent portion.
  • FIG. 5 is a cross-sectional view corresponding to the line VV in FIG. 2, and shows a cross-sectional view of the FWD in the adjacent portion.
  • the semiconductor layer 26 of the SOI substrate 20 is formed with a first trench isolation portion 12 and a second trench isolation portion 14 that penetrate the semiconductor layer 26.
  • the first trench isolation / separation portion 12 makes a round when the SOI substrate 20 is viewed in plan.
  • the second trench isolation part 14 is provided away from the first trench isolation part 12 and makes a round around the first trench isolation part 12 when the SOI substrate 20 is viewed in plan.
  • the first trench isolation part 12 and the second trench isolation part 14 extend in parallel except for the corners, and the distance between them is constant.
  • the element regions 16 and 18 sandwiched between the first trench isolation portion 12 and the second trench isolation portion 14 are isolated from the peripheral semiconductor layer 26.
  • the first element region 16 and the second element region 18 are adjacent to each other in the adjacent portion 11 when the SOI substrate 20 is viewed in plan.
  • the first element region 16 and the second element region 18 in the adjacent portion 11 are orthogonal to the direction (x-axis direction) connecting the first trench insulation isolation portion 12 and the second trench insulation isolation portion 14. They are arranged so as to oppose each other along (y-axis direction).
  • a LIGBT is provided in the first element region 16, and an FWD is provided in the second element region 18. This example is merely an example, and the layout of the first element region 16 and the second element region 18 can take various forms as necessary.
  • first element region 16 and the second element region 18 may be arranged so as to face each other along the x-axis direction, or may be arranged so as to face each other along other directions.
  • a plurality of first element regions 16 and a plurality of second element regions 18 may be provided.
  • FIG. 4 shows a cross-sectional view of the LIGBT in the vicinity of the adjacent portion 11.
  • the SOI substrate 20 includes a semiconductor support layer 22, a buried insulating layer 24, and a semiconductor layer 26.
  • the semiconductor support layer 22 is formed of single crystal silicon into which an n-type or p-type impurity is introduced at a high concentration.
  • the buried insulating layer 24 is made of silicon oxide.
  • the semiconductor layer 26 is formed of single crystal silicon into which n-type impurities are introduced at a low concentration.
  • the LIGBT is formed in the first element region 16 sandwiched between the first trench isolation part 12 and the second trench isolation part 14.
  • the first trench isolation portion 12 extends through the semiconductor layer 26 to the buried insulating layer 24, and includes a silicon oxide film 12a and a polysilicon core 12b covered with the oxide film 12a.
  • the second trench isolation portion 14 penetrates the semiconductor layer 26 and reaches the buried insulating layer 24, and includes a silicon oxide film 14a and a polysilicon core portion 14b covered with the oxide film 14a. I have.
  • the LIGBT includes a p + type body contact region 31, an n + type emitter region 32, a p type body region 33, an n ⁇ type drift region 34, and an n + type. Embedded region 35, n-type buffer region 36, and p + -type collector region 37.
  • the body contact region 31, the emitter region 32, and the body region 33 are provided on the second trench isolation portion 14 side in the surface layer portion of the semiconductor layer 26.
  • the body contact region 31 and the body region 33 are in contact with the side surface of the second trench isolation portion 14.
  • Emitter region 32 is separated from drift region 34 by body region 33.
  • the drift region 34 is provided between the body region 33 and the buffer region 36 and is a region that holds a potential difference when the LIGBT is turned off.
  • the buried region 35 is provided in the back layer portion of the semiconductor layer 26, and is provided between the first trench insulation isolation portion 12 and the second trench insulation isolation portion 14.
  • the buffer region 36 and the collector region 37 are provided on the first trench isolation portion 12 side in the surface layer portion of the semiconductor layer 26.
  • the buffer region 36 and the collector region 37 are in contact with the side surface of the first trench isolation portion 12.
  • the collector region 37 is separated from the drift region 34 by the buffer region 36.
  • these cross-sectional structures are common throughout the first element region 16. Accordingly, the body contact region 31, the emitter region 32, and the body region 33 are provided over the entire first element region 16 along the side surface of the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan. ing. Similarly, the buffer region 36 and the collector region 37 are provided over the entire first element region 16 along the side surface of the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
  • the LIGBT further includes an interlayer insulating film 41, a collector electrode 42, a LOCOS (Local Oxidation of Silicon) oxide film 43, a gate electrode 44, a planar gate portion 47, and an emitter electrode 48.
  • an interlayer insulating film 41 As shown in FIG. 4, the LIGBT further includes an interlayer insulating film 41, a collector electrode 42, a LOCOS (Local Oxidation of Silicon) oxide film 43, a gate electrode 44, a planar gate portion 47, and an emitter electrode 48. I have.
  • LOCOS Local Oxidation of Silicon
  • the interlayer insulating film 41 covers the surface of the SOI substrate 20 and is made of silicon oxide.
  • the collector electrode 42 is disposed on the surface of the interlayer insulating film 41 on the first trench isolation portion 12 side. In particular, the collector electrode 42 is also disposed above the first trench isolation portion 12.
  • the collector electrode 42 is disposed above the first trench isolation portion 12 along at least the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan. Further, the collector electrode 42 partially extends through the interlayer insulating film 41 and is in contact with the collector region 37 via the contact portion 42a.
  • the contact portion 42 a is provided over the entire first element region 16 along the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
  • the collector electrode 42 extends beyond the buffer region 36 in the direction from the first trench isolation part 12 to the second trench isolation part 14 (leftward in the case of FIG. 4) when the SOI substrate 20 is viewed in plan. It is desirable that it is not arranged.
  • the LOCOS oxide film 43 is provided on the surface of the drift region 34 and is made of silicon oxide.
  • the gate electrode 44 is disposed on the surface of the interlayer insulating film 41 between the collector electrode 42 and the emitter electrode 48. A portion of the gate electrode 44 extends through the interlayer insulating film 41 and is in contact with the planar gate portion 47.
  • the planar gate portion 47 has a planar electrode 45 and a gate insulating film 46, and faces the surface of the body region 33 that separates the emitter region 32 and the drift region 34.
  • the planar electrode 45 covers the surface of the gate insulating film 46 and a part of the surface of the LOCOS oxide film 43, and is formed of polysilicon into which impurities are introduced at a high concentration.
  • the gate insulating film 46 is made of silicon oxide.
  • the emitter electrode 48 is disposed on the surface of the interlayer insulating film 41 on the second trench isolation portion 14 side. In particular, the emitter electrode 48 is also disposed above the second trench isolation portion 14. The emitter electrode 48 is disposed above the second trench isolation part 14 along at least the second trench isolation part 14 when the SOI substrate 20 is viewed in plan. Further, the emitter electrode 48 partially extends through the interlayer insulating film 41 and is in contact with the body contact region 31 and the emitter region 32 via the contact portion 48a. The contact portion 48 a is provided over the entire first element region 16 along the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan. As described above, in the adjacent portion 11, the collector electrode 42 and the emitter electrode 48 are arranged with an interval in the x-axis direction, and the gate electrode 44 is arranged within the interval.
  • the FWD includes a p + type anode contact region 131, a p type anode region 133, an n type cathode region 136, an n + type cathode contact region 137, a cathode electrode 142, and an anode electrode 148. It is different from LIGBT in that it is.
  • the anode contact region 131 and the anode region 133 are provided on the second trench isolation portion 14 side in the surface layer portion of the semiconductor layer 26. In particular, the anode contact region 131 and the anode region 133 are in contact with the side surface of the second trench isolation portion 14.
  • the anode region 133 is manufactured by the same manufacturing process as the body region 33 of the LIGBT, and has the same dopant, concentration, and diffusion depth as the body region 33.
  • the cathode region 136 and the cathode contact region 137 are provided on the first trench isolation portion 12 side in the surface layer portion of the semiconductor layer 26. In particular, the cathode region 136 and the cathode contact region 137 are in contact with the side surfaces of the first trench isolation portion 12.
  • the cathode region 136 is manufactured in the same manufacturing process as the buffer region 36 of the LIGBT, and has the same dopant, concentration, and diffusion depth as the buffer region 36. These cross-sectional structures are common throughout the second element region 18. Therefore, the anode contact region 131 and the anode region 133 are provided over the entire second element region 18 along the side surface of the second trench isolation part 14 when the SOI substrate 20 is viewed in plan. Similarly, the cathode region 136 and the cathode contact region 137 are provided over the entire second element region 18 along the side surface of the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
  • the body region 33 of the LIGBT and the anode region 133 of the FWD are in contact with each other at the adjacent portion 11 shown in FIG. For this reason, these p-type regions 33 and 133 circulate in the element regions 16 and 18 along the side surfaces of the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan.
  • the buffer region 36 of the LIGBT and the cathode region 136 of the FWD are also in contact with each other at the adjacent portion 11 shown in FIG. For this reason, these n-type regions 36 and 136 also circulate in the element regions 16 and 18 along the side surface of the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
  • the cathode electrode 142 is disposed on the surface of the interlayer insulating film 41 on the first trench isolation portion 12 side. In particular, the cathode electrode 142 is also disposed above the first trench isolation portion 12. The cathode electrode 142 is disposed above the first trench isolation portion 12 along at least the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan. Further, a part of the cathode electrode 142 extends through the interlayer insulating film 41 and is in contact with the cathode contact region 137 through the contact portion 137a. The contact portion 137 a is provided over the entire second element region 18 along the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan. Further, the cathode electrode 142 is disposed beyond the cathode region 136 in the direction from the first trench insulation isolation portion 12 to the second trench insulation isolation portion 14 (leftward in the case of FIG. 5) when viewed in plan. Desirably not.
  • the anode electrode 148 is disposed on the surface of the interlayer insulating film 41 on the second trench isolation portion 14 side. In particular, the anode electrode 148 is also disposed above the second trench isolation portion 14. The anode electrode 148 is disposed above the second trench isolation part 14 along at least the second trench isolation part 14 when the SOI substrate 20 is viewed in plan. Further, a part of the anode electrode 148 extends through the interlayer insulating film 41 and is in contact with the anode contact region 131 through the contact portion 148a. The contact portion 148a is provided over the entire second element region 18 along the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan.
  • the anode electrode 148 preferably extends partially through the interlayer insulating film 41 and is in contact with the planar electrode 45. Further, the anode electrode 148 is disposed beyond the planar electrode 45 in the direction from the second trench insulation isolation portion 14 to the first trench insulation isolation portion 12 (rightward in the case of FIG. 5) when viewed in plan. Desirably not. As described above, in the adjacent portion 11, the cathode electrode 142 and the anode electrode 148 are arranged at an interval in the x-axis direction.
  • the contact portion 48a of the emitter electrode 48 of the LIGBT and the contact portion 148a of the anode electrode 148 of the FWD are adjacent to each other in the adjacent portion 11 shown in FIG. For this reason, these contact portions 48 a and 148 a make a round along the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan.
  • the contact portion 42a of the collector electrode 42 of the LIGBT and the contact portion 142a of the cathode electrode 142 of the FWD are also adjacent in the adjacent portion 11 shown in FIG. For this reason, these contact portions 42 a and 142 a make a round along the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
  • the collector electrode 42, the gate electrode 44, and the emitter electrode 48 of the LIGBT, and the cathode electrode 142 and the anode electrode 148 of the FWD are manufactured in the same manufacturing process using vapor deposition technology. Aluminum is used as the material for these electrodes.
  • the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are provided in a range inside the first trench isolation portion 12 when viewed in plan. That is, the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are one common electrode.
  • a collector / cathode bonding pad 19 is provided on the one common electrode.
  • the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are provided in a range outside the second trench isolation portion 14. That is, the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are also one common electrode. An emitter / anode bonding pad 15 is provided on the one common electrode.
  • the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are configured as one common electrode. For this reason, the connection wiring which connects the collector electrode 42 and the cathode electrode 142 is unnecessary. Further, the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are also configured as one common electrode. For this reason, the connection wiring which connects the emitter electrode 48 and the anode electrode 148 is also unnecessary. Thereby, these connection wirings do not extend above the drift region 34 of the LIGBT and FWD. Therefore, in the semiconductor device of the present embodiment, unlike the conventional structure shown in FIGS. 10 and 11, a situation where the potential distribution in the drift region becomes non-uniform does not occur.
  • the common electrode of the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD is disposed inside, the emitter electrode 48 of the LIGBT, and the anode electrode of the FWD.
  • 148 common electrodes are arranged around it so as to surround them.
  • the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are connected to the high voltage side of the high voltage DC power supply 300, and the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are connected to the high voltage DC power supply 300. Connected to the low pressure side.
  • the low-voltage common electrode is provided so as to surround the high-voltage common electrode.
  • the semiconductor devices 111 to 116 shown in FIG. 1 are mounted on one SOI substrate 20. Therefore, the voltage difference between the plurality of semiconductor devices can be reduced by arranging the common electrode on the low voltage side around.
  • FIG. 6 shows an enlarged plan view of the adjacent portion 11 where the first element region 16 and the second element region 18 are adjacent to each other.
  • the LIGBT and the FWD are provided adjacent to each other, there is a parasitic MOS composed of the emitter region 32 of the LIGBT, the body region 33, the drift region 34, and the cathode region 136 of the FWD.
  • the area of the adjacent portion 11 where the LIGBT and the FWD are in contact is smaller than the entire area of the LIGBT and the FWD. Therefore, when the LIGBT is turned on, the phenomenon that the parasitic MOS as shown by the broken line arrow in FIG. As a result, in the semiconductor device of this embodiment, when the LIGBT is turned on, the IGBT operation becomes dominant and a low on-voltage can be obtained.
  • the semiconductor device of this embodiment further includes a third trench isolation 13.
  • the first end 13 ⁇ / b> A is in contact with the first trench isolation 12 and the second end 13 ⁇ / b> B is in contact with the second trench isolation 14.
  • the first element region 16 and the second element region 18 are separated by the third trench isolation portion 13.
  • the third trench isolation part 13 also includes a silicon oxide film 13a and a polysilicon core part 13b covered with the oxide film 13a.
  • FIG. 9 is a plan view showing the layout of the semiconductor device of the second embodiment. Constituent elements common to the semiconductor device of the first embodiment are denoted by common reference numerals and description thereof is omitted.
  • the y axis It is characterized by reciprocating along the direction. In this example, part of the element regions 16 and 18 reciprocate four times along the y-axis direction.
  • a part 52 of the semiconductor layer 26 surrounded by the first trench isolation portion 12 has a comb-like shape when the SOI substrate 20 is viewed in plan view.
  • the FWD is arranged on the inner side and the LIGBT is arranged so as to surround it.
  • LIGBT has a large switching loss
  • the amount of heat generated during operation is larger than that of FWD. Therefore, when the FWD having a small heat generation amount is arranged in the central portion and the LIGBT having a large heat generation amount is arranged around, the entire temperature distribution of the semiconductor device is made uniform, and the situation where the central portion becomes locally high is suppressed. be able to. Thereby, malfunction and damage of the semiconductor device due to high temperature are suppressed.
  • silicon is used as the semiconductor material of the SOI substrate.
  • other semiconductor materials may be used.
  • a compound semiconductor such as gallium nitride, silicon carbide, or gallium arsenide may be used.

Abstract

Disclosed is a semiconductor device which comprises an LIGBT that is arranged in a first element region and an FWD that is arranged in a second element region. The first element region and the second element regions are arranged side by side along the y-axis direction in an adjacence portion when the SOI substrate is viewed in plan. The collector electrode and the emitter electrode of the LIGBT are arranged at a distance along the x-axis direction in the adjacence portion when the SOI substrate is viewed in plan. The cathode electrode and the anode electrode of the FWD are arranged at a distance along the x-axis direction in the adjacence portion when the SOI substrate is viewed in plan. The collector electrode of the LIGBT and the cathode electrode of the FWD are in contact with each other, while the emitter electrode of the LIGBT and the anode electrode of the FWD are in contact with each other.

Description

半導体装置Semiconductor device
 本出願は、2009年9月11日に出願された日本国特許出願第2009-209987号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。
 本発明は、1つの半導体層に異なる種類の半導体素子が搭載された半導体装置に関する。
This application claims priority based on Japanese Patent Application No. 2009-209987 filed on Sep. 11, 2009. The entire contents of that application are incorporated herein by reference.
The present invention relates to a semiconductor device in which different types of semiconductor elements are mounted on one semiconductor layer.
 近年、1つの半導体層に異なる種類の半導体素子が搭載された半導体装置の開発が進められている。例えば、スイッチング用の半導体素子と還流用の半導体素子が1つの半導体層に搭載された半導体装置が開発されている。この種の半導体装置は、用途に応じて様々な電気制御回路に組み込まれて用いられる。例えば、直流電力を交流電力に変換するインバータ回路は、この種の半導体装置の複数個が接続されることによって構成されている。 In recent years, development of semiconductor devices in which different types of semiconductor elements are mounted on one semiconductor layer has been underway. For example, a semiconductor device in which a switching semiconductor element and a refluxing semiconductor element are mounted on one semiconductor layer has been developed. This type of semiconductor device is used by being incorporated into various electric control circuits depending on the application. For example, an inverter circuit that converts DC power to AC power is configured by connecting a plurality of semiconductor devices of this type.
 特開2005-64472号公報及び特開平10-200102号公報には、インバータ回路に用いられる半導体装置の一例が開示されている。これらの半導体装置では、横型のIGBT(Lateral Insulated Gate Bipolar Transistor:以下、LIGBTという)と還流用ダイオード(Free Wheeling Diode:以下、FWDという)が1つのSOI(Semiconductor on Insulator)基板に搭載されている。 Japanese Patent Application Laid-Open No. 2005-64472 and Japanese Patent Application Laid-Open No. 10-200102 disclose an example of a semiconductor device used for an inverter circuit. In these semiconductor devices, a lateral IGBT (Lateral Insulated Gate Bipolar Transistor) (hereinafter referred to as LIGBT) and a freewheeling diode (Free Wheeling Diode) (hereinafter referred to as FWD) are mounted on a single SOI (Semiconductor On On Insulator) substrate. .
 図10及び図11に、特開2005-64472号公報で開示される半導体装置の構成を概略して示す。図10に、半導体装置の平面レイアウトを示す。図11に、図10のXI-XI線に対応した断面図を示す。図10及び図11に示されるように、SOI基板の半導体層を貫通してトレンチ絶縁分離部が形成されており、そのトレンチ絶縁分離部によって半導体層の一部が2つの素子領域に区画されている。一方の素子領域にはLIGBTが配置されており、他方の素子領域にはFWDが配置されている。 10 and 11 schematically show the configuration of the semiconductor device disclosed in Japanese Patent Application Laid-Open No. 2005-64472. FIG. 10 shows a planar layout of the semiconductor device. FIG. 11 is a cross-sectional view corresponding to the line XI-XI in FIG. As shown in FIGS. 10 and 11, a trench insulation isolation portion is formed through the semiconductor layer of the SOI substrate, and a part of the semiconductor layer is partitioned into two element regions by the trench insulation isolation portion. Yes. The LIGBT is disposed in one element region, and the FWD is disposed in the other element region.
 図10に示されるように、LIGBTは、実装面積を小さくするために、コレクタ電極の周囲をエミッタ電極が一巡する構成を備えている。FWDも同様に、実装面積を小さくするために、カソード電極の周囲をアノード電極が一巡する構成を備えている。コレクタ電極とカソード電極は、SOI基板の上方を横方向に伸びて配設されている接続配線を介して電気的に接続されている。エミッタ電極とアノード電極も、SOI基板の上方を横方向に伸びて配設されている接続配線を介して電気的に接続されている。 As shown in FIG. 10, the LIGBT has a configuration in which the emitter electrode makes a round around the collector electrode in order to reduce the mounting area. Similarly, the FWD has a configuration in which the anode electrode makes a round around the cathode electrode in order to reduce the mounting area. The collector electrode and the cathode electrode are electrically connected to each other via a connection wiring that extends in the lateral direction above the SOI substrate. The emitter electrode and the anode electrode are also electrically connected through a connection wiring arranged extending in the lateral direction above the SOI substrate.
 図11に示されるように、LIGBTのコレクタ電極とFWDのカソード電極を接続する接続配線の一部は、LIGBT及びFWDのn型の耐圧保持領域(ドリフト領域ともいう)の上方を横方向に伸びて配設されている。通常、コレクタ電極とカソード電極を接続する接続配線には高電圧が印加されている。このため、この接続配線が耐圧保持領域の上方に配設されていると、この接続配線の電位に誘起されて耐圧保持領域の表面の電子濃度が増加し、耐圧保持領域のチャージバランスが崩れてしまう。この結果、耐圧保持領域は、電位分布が不均一となり、逆バイアス時の空乏層の伸びが抑制され、耐圧が低下してしまう。 As shown in FIG. 11, a part of the connection wiring that connects the collector electrode of the LIGBT and the cathode electrode of the FWD is laterally above the n type breakdown voltage holding region (also referred to as a drift region) of the LIGBT and FWD. It is extended and arranged. Usually, a high voltage is applied to the connection wiring connecting the collector electrode and the cathode electrode. For this reason, if this connection wiring is disposed above the breakdown voltage holding region, the electron concentration on the surface of the breakdown voltage holding region increases due to the potential of the connection wiring, and the charge balance of the breakdown voltage holding region is lost. End up. As a result, in the breakdown voltage holding region, the potential distribution becomes non-uniform, and the expansion of the depletion layer at the time of reverse bias is suppressed, and the breakdown voltage decreases.
 例えば、半導体層と接続配線の間に設けられている層間絶縁膜をより厚く形成すれば、半導体層と接続配線の間の距離を大きく確保することができるので、接続配線の影響を抑えることができる。しかしながら、層間絶縁膜をより厚く形成すると、放熱性の低下及び製造コストの増加の点で問題となる。 For example, if the interlayer insulating film provided between the semiconductor layer and the connection wiring is formed thicker, it is possible to secure a large distance between the semiconductor layer and the connection wiring, thereby suppressing the influence of the connection wiring. it can. However, if the interlayer insulating film is formed thicker, there is a problem in terms of a decrease in heat dissipation and an increase in manufacturing cost.
 また、ボンディングワイヤを用いて接続配線を形成すれば、半導体層と接続配線の間の距離を大きく確保することができるので、接続配線の影響を抑えることができる。しかしながら、ボンディングワイヤは、破損等による信頼性の低下及び製造コストの増加の点で問題となる。 Further, if the connection wiring is formed using a bonding wire, a large distance can be ensured between the semiconductor layer and the connection wiring, so that the influence of the connection wiring can be suppressed. However, the bonding wire becomes a problem in terms of a decrease in reliability due to breakage or the like and an increase in manufacturing cost.
 上記の説明では、特開2005-64472号公報で開示される半導体装置を例にして、接続配線に起因した耐圧低下の課題を説明したが、同様の課題は特開平10-200102号公報で開示される半導体装置にも存在する。また、同様の課題は、LIGBTとFWDを1つの半導体層に搭載した半導体装置に限らず、異なる種類の半導体素子を1つの半導体層に搭載する半導体装置において広く存在する。 In the above description, the problem of the breakdown voltage reduction caused by the connection wiring has been described by taking the semiconductor device disclosed in Japanese Patent Application Laid-Open No. 2005-64472 as an example, but the same problem is disclosed in Japanese Patent Application Laid-Open No. 10-200102. Also present in semiconductor devices. A similar problem is not limited to semiconductor devices in which LIGBT and FWD are mounted on one semiconductor layer, but also widely exist in semiconductor devices in which different types of semiconductor elements are mounted on one semiconductor layer.
 本明細書で開示される技術は、新規で斬新なレイアウトを採用することにより、耐圧の低下が抑制される半導体装置を提供することを目的としている。 The technology disclosed in this specification is intended to provide a semiconductor device in which a decrease in breakdown voltage is suppressed by adopting a new and novel layout.
 本明細書で開示される半導体装置は、第1素子領域と第2素子領域を有する半導体層と、第1種類の第1半導体素子と、第2種類の第2半導体素子を備えている。第1半導体素子と第2半導体素子は、異なる種類の半導体素子である。第1半導体素子は、半導体層の第1素子領域に配置されており、第1主電極と第2主電極を備えている。第1半導体素子は、第1主電極と第2主電極の間を電流が流れるように構成されている。第2半導体素子は、半導体層の第2素子領域に配置されており、第3主電極と第4主電極を備えている。第2半導体素子は、第3主電極と第4主電極の間を電流が流れるように構成されている。第1素子領域と第2素子領域は、半導体層を平面視したときに、隣接部において第1方向に沿って並んでいる。第1半導体素子の第1主電極と第2主電極は、半導体層を平面視したときに、隣接部において、第2方向に間隔を置いて配置されている。第2半導体素子の第3主電極と第4主電極も、半導体層を平面視したときに、隣接部において、第2方向に間隔を置いて配置されている。第2方向は、第1方向に対して直交する方向である。ここで、隣接部において、第1半導体素子の第1主電極と第2半導体素子の第3主電極が接している。さらに、隣接部において、第1半導体素子の第2主電極と第2半導体素子の第4主電極も接している。この構成によると、第1半導体素子の第1主電極と第2半導体素子の第3主電極を接続する接続配線が不要となる。同様に、第1半導体素子の第2主電極と第2半導体素子の第4主電極を接続する接続配線も不要となる。このため、本明細書で開示される半導体装置では、従来の半導体装置のように、接続配線に起因して半導体層内の電位分布が不均一となる事態が抑制される。本明細書で開示される半導体装置では、斬新なレイアウトを採用することにより、耐圧の低下が抑制される。 The semiconductor device disclosed in this specification includes a semiconductor layer having a first element region and a second element region, a first type of first semiconductor element, and a second type of second semiconductor element. The first semiconductor element and the second semiconductor element are different types of semiconductor elements. The first semiconductor element is disposed in the first element region of the semiconductor layer and includes a first main electrode and a second main electrode. The first semiconductor element is configured such that a current flows between the first main electrode and the second main electrode. The second semiconductor element is disposed in the second element region of the semiconductor layer and includes a third main electrode and a fourth main electrode. The second semiconductor element is configured such that a current flows between the third main electrode and the fourth main electrode. The first element region and the second element region are arranged along the first direction in the adjacent portion when the semiconductor layer is viewed in plan. The first main electrode and the second main electrode of the first semiconductor element are arranged at an interval in the second direction at an adjacent portion when the semiconductor layer is viewed in plan. The third main electrode and the fourth main electrode of the second semiconductor element are also arranged at an interval in the second direction in the adjacent portion when the semiconductor layer is viewed in plan. The second direction is a direction orthogonal to the first direction. Here, in the adjacent portion, the first main electrode of the first semiconductor element and the third main electrode of the second semiconductor element are in contact with each other. Further, in the adjacent portion, the second main electrode of the first semiconductor element and the fourth main electrode of the second semiconductor element are also in contact. According to this configuration, the connection wiring for connecting the first main electrode of the first semiconductor element and the third main electrode of the second semiconductor element becomes unnecessary. Similarly, the connection wiring for connecting the second main electrode of the first semiconductor element and the fourth main electrode of the second semiconductor element is also unnecessary. For this reason, in the semiconductor device disclosed in this specification, a situation in which the potential distribution in the semiconductor layer becomes non-uniform due to the connection wiring as in the conventional semiconductor device is suppressed. In the semiconductor device disclosed in this specification, a reduction in breakdown voltage is suppressed by adopting a novel layout.
 本明細書で開示される技術によると、第1半導体素子と第2半導体素子が1つの半導体層に搭載される半導体装置において、接続配線を用いることなく、第1半導体素子の1つの主電極と第2半導体素子の1つの主電極を接触させることができる。これにより、接続配線を利用した場合に生じる半導体層内の電位分布の不均一化を回避することができる。 According to the technique disclosed in this specification, in a semiconductor device in which a first semiconductor element and a second semiconductor element are mounted on one semiconductor layer, one main electrode of the first semiconductor element can be formed without using connection wiring. One main electrode of the second semiconductor element can be brought into contact. As a result, it is possible to avoid non-uniform potential distribution in the semiconductor layer that occurs when the connection wiring is used.
インバータ回路100の回路構成の概略を示す。1 shows an outline of a circuit configuration of an inverter circuit 100. 第1実施例の半導体装置の平面レイアウトを示す。2 shows a planar layout of the semiconductor device of the first embodiment. LIGBT及びFWDの各電極の平面レイアウトを示す。The plane layout of each electrode of LIGBT and FWD is shown. 図2のIV-IV線に対応した断面図を示す。FIG. 4 shows a cross-sectional view corresponding to line IV-IV in FIG. 図2のV-V線に対応した断面図を示す。FIG. 3 shows a cross-sectional view corresponding to the line VV in FIG. 2. 隣接部の拡大平面図を示す。The enlarged plan view of an adjacent part is shown. 第3トレンチ絶縁分離部が設けられた半導体装置の平面レイアウトを示す。The planar layout of the semiconductor device provided with the 3rd trench insulation isolation | separation part is shown. 第3トレンチ絶縁分離部が設けられた隣接部の拡大平面図を示す。The enlarged plan view of the adjacent part in which the 3rd trench insulation isolation | separation part was provided is shown. 第2実施例の半導体装置の平面レイアウトを示す。The plane layout of the semiconductor device of 2nd Example is shown. 従来の半導体装置の平面レイアウトを示す。2 shows a planar layout of a conventional semiconductor device. 図10のXI-XI線に対応した断面図を示す。FIG. 11 is a cross-sectional view corresponding to the line XI-XI in FIG. 10.
 本明細書で開示される半導体装置は、異なる種類の半導体素子を備えている。各半導体素子は、一対の主電極を備えており、一方の主電極が第1トレンチ絶縁分離側に配置されており、他方の主電極が第2トレンチ絶縁分離側に配置されていてもよい。一対の主電極間を流れる電流の向きはどちらでもよい。なお、異なる半導体素子が隣接する隣接部において、一方の半導体素子の一対の電極間を流れる電流の向きと他方の半導体素子の一対の電極間を流れる電流の向きは略平行であり、且つ同じ向きであるのが望ましい。異なる種類の半導体素子は、スイッチング素子とスイッチング素子の組合せでもよく、スイッチング素子と還流ダイオードの組合せでもよい。スイッチング素子は、トランジスタであるのが望ましく、例えば、IGBT、MISFET、MOSFET、HEMTであるのが望ましい。 The semiconductor device disclosed in this specification includes different types of semiconductor elements. Each semiconductor element may include a pair of main electrodes, one main electrode may be disposed on the first trench isolation side, and the other main electrode may be disposed on the second trench isolation side. The direction of the current flowing between the pair of main electrodes may be either. Note that, in adjacent portions where different semiconductor elements are adjacent, the direction of the current flowing between the pair of electrodes of one semiconductor element is substantially parallel to the direction of the current flowing between the pair of electrodes of the other semiconductor element. It is desirable that The different types of semiconductor elements may be a combination of switching elements and switching elements, or a combination of switching elements and free-wheeling diodes. The switching element is preferably a transistor, for example, an IGBT, a MISFET, a MOSFET, or a HEMT.
 本明細書で開示される半導体装置では、第1トレンチ絶縁分離部が、半導体層を平面視したときに一巡していてもよい。また、第2トレンチ絶縁分離部が、半導体層を平面視したときに第1トレンチ絶縁分離部の周囲を一巡していてもよい。これにより、第1トレンチ絶縁分離部と第2トレンチ絶縁分離部で挟まれた素子領域も、半導体層を平面視したときに一巡している。この形態の半導体装置によると、異なる種類の第1半導体素子と第2半導体素子を小さい実装面積で搭載することができる。 In the semiconductor device disclosed in this specification, the first trench isolation portion may make a round when the semiconductor layer is viewed in plan. Further, the second trench insulation isolation part may make a round around the first trench insulation isolation part when the semiconductor layer is viewed in plan. As a result, the element region sandwiched between the first trench isolation portion and the second trench isolation portion also makes a round when the semiconductor layer is viewed in plan. According to the semiconductor device of this embodiment, different types of first semiconductor elements and second semiconductor elements can be mounted with a small mounting area.
 本明細書で開示される半導体装置では、第1トレンチ絶縁分離部と第2トレンチ絶縁分離部で挟まれた素子領域が、半導体層を平面視したときに、少なくとも一方向に沿って2往復していてもよい。この形態の半導体装置によると、半導体層に占める素子領域の面積を大きくすることができ、実装面積を小さく抑えることができる。 In the semiconductor device disclosed in this specification, the element region sandwiched between the first trench isolation portion and the second trench isolation portion reciprocates twice along at least one direction when the semiconductor layer is viewed in plan view. It may be. According to the semiconductor device of this embodiment, the area of the element region occupying the semiconductor layer can be increased, and the mounting area can be reduced.
 本明細書で開示される半導体装置は、第3トレンチ絶縁分離部をさらに備えていてもよい。第3トレンチ絶縁分離部は、第1端部と第2端部を有しており、半導体層を貫通していてもよい。第3トレンチ絶縁分離部の第1端部が第1トレンチ絶縁分離部に接しており、第3トレンチ絶縁分離部の第2端部が第2トレンチ絶縁分離部に接していてもよい。さらに、第3トレンチ絶縁分離部は、第1素子領域と第2素子領域を隔てていてもよい。この形態の半導体装置によると、第3トレンチ絶縁分離部によって第1半導体素子と第2半導体素子を電気的に分離することができる。例えば、第1半導体素子と第2半導体素子に採用される構成によっては、第1半導体素子と第2半導体素子の間に寄生の素子構造が形成されることがある。そのような場合でも、第3トレンチ絶縁分離部が設けられていると、その寄生の素子構造を介して寄生電流が流れることが防止される。 The semiconductor device disclosed in this specification may further include a third trench isolation portion. The third trench isolation portion has a first end and a second end, and may penetrate the semiconductor layer. The first end of the third trench isolation may be in contact with the first trench isolation and the second end of the third trench isolation may be in contact with the second trench isolation. Furthermore, the third trench isolation portion may separate the first element region and the second element region. According to the semiconductor device of this aspect, the first semiconductor element and the second semiconductor element can be electrically separated by the third trench isolation part. For example, depending on the configuration employed for the first semiconductor element and the second semiconductor element, a parasitic element structure may be formed between the first semiconductor element and the second semiconductor element. Even in such a case, the provision of the third trench isolation portion prevents the parasitic current from flowing through the parasitic element structure.
 半導体素子の一方の主電極が少なくとも第1トレンチ絶縁分離部の上方に配設されており、半導体素子の他方の主電極が少なくとも第2トレンチ絶縁分離部の上方に配設されていてもよい。 One main electrode of the semiconductor element may be disposed at least above the first trench isolation portion, and the other main electrode of the semiconductor element may be disposed at least above the second trench isolation portion.
 半導体素子の一方の主電極が直接的に接する第1半導体領域は、第1トレンチ絶縁分離部の側面に接していてもよい。また、半導体素子の他方の主電極が直接的に接する第2半導体領域は、第2トレンチ絶縁分離部の側面に接していてもよい。 The first semiconductor region that is in direct contact with one main electrode of the semiconductor element may be in contact with the side surface of the first trench isolation portion. In addition, the second semiconductor region that is in direct contact with the other main electrode of the semiconductor element may be in contact with the side surface of the second trench isolation portion.
 半導体素子の一方の主電極が直接的に接する第1半導体領域は、平面視したときに、第1トレンチ絶縁分離部に沿って設けられていてもよい。さらに、半導体素子の他方の主電極が直接的に接する第2半導体領域も、平面視したときに、第2トレンチ絶縁分離部に沿って設けられていてもよい。 The first semiconductor region that is in direct contact with one main electrode of the semiconductor element may be provided along the first trench isolation portion when viewed in plan. Furthermore, the second semiconductor region that is in direct contact with the other main electrode of the semiconductor element may also be provided along the second trench isolation portion when viewed in plan.
 本明細書で開示される半導体装置は、SOI基板に搭載されていてもよい。異なる半導体素子は、SOI基板の半導体層に形成されていてもよい。 The semiconductor device disclosed in this specification may be mounted on an SOI substrate. Different semiconductor elements may be formed in the semiconductor layer of the SOI substrate.
 図1に、インバータモジュールに組み込まれているインバータ回路100の回路構成の概略を示す。インバータ回路100は、高圧直流電源300とモータ400の間に設けられており、高圧直流電源300から供給される直流電力を交流電力に変換し、その交流電力をモータ400に供給する。なお、高圧直流電源300から供給される直流電力は、一般的にコンバータによって昇圧されることが多く、そのコンバータもインバータモジュール内に組み込まれていることが多い。高圧直流電源300とインバータ回路100の間には、コンデンサ200が設けられており、直流電力を平滑化している。 FIG. 1 shows an outline of the circuit configuration of the inverter circuit 100 incorporated in the inverter module. Inverter circuit 100 is provided between high-voltage DC power supply 300 and motor 400, converts DC power supplied from high-voltage DC power supply 300 into AC power, and supplies the AC power to motor 400. Note that the DC power supplied from the high-voltage DC power supply 300 is generally boosted by a converter, and the converter is often incorporated in an inverter module. A capacitor 200 is provided between the high-voltage DC power supply 300 and the inverter circuit 100 to smooth DC power.
 図1に示されるように、インバータ回路100は、6つの半導体装置111~116を備えている。後述するように、6つの半導体装置111~116は、1つのSOI基板に搭載されており、1チップで構成されている。なお、6つの半導体装置111~116は、それぞれが別個のSOI基板に搭載されてもよい。各半導体装置111~116は、トランジスタTr1~Tr6と、そのトランジスタTr1~Tr6に並列に接続されている還流用のダイオードD1~D6を備えている。トランジスタTr1~Tr6には、横型のIGBT(Lateral Insulated Gate Bipolar Transistor:以下、LIGBTという)が採用されている。還流用のダイオードD1~D6には、還流用のダイオード(Free Wheeling Diode:以下、FWDという)が採用されている。各トランジスタTr1~Tr6のゲートには、図示しないインバータ駆動回路からゲート制御信号が印加されている。 As shown in FIG. 1, the inverter circuit 100 includes six semiconductor devices 111-116. As will be described later, the six semiconductor devices 111 to 116 are mounted on one SOI substrate and are configured by one chip. Note that each of the six semiconductor devices 111 to 116 may be mounted on a separate SOI substrate. Each of the semiconductor devices 111 to 116 includes transistors Tr1 to Tr6 and freewheeling diodes D1 to D6 connected in parallel to the transistors Tr1 to Tr6. For the transistors Tr1 to Tr6, a lateral IGBT (Lateral Insulated Gate Bipolar Transistor: hereinafter referred to as LIGBT) is employed. As the free-wheeling diodes D1 to D6, free-wheeling diodes (hereinafter referred to as “FWD”) are employed. A gate control signal is applied to the gates of the transistors Tr1 to Tr6 from an inverter drive circuit (not shown).
 図1に示されるように、インバータ回路100は、高圧直流電源300の高圧配線100Hと低圧配線100Lの間に並列に接続されているU相アーム、V相アーム及びW相アームを備えている。U相アームは、中間ノードNm1を介して直列に接続された半導体装置111,112で構成されている。V相アームは、中間ノードNm2を介して直列に接続された半導体装置113,114で構成されている。W相アームは、中間ノードNm3を介して直列に接続された半導体装置115,116で構成されている。 As shown in FIG. 1, the inverter circuit 100 includes a U-phase arm, a V-phase arm, and a W-phase arm connected in parallel between the high-voltage wiring 100H and the low-voltage wiring 100L of the high-voltage DC power supply 300. The U-phase arm includes semiconductor devices 111 and 112 connected in series via an intermediate node Nm1. The V-phase arm includes semiconductor devices 113 and 114 connected in series via an intermediate node Nm2. The W-phase arm includes semiconductor devices 115 and 116 connected in series via an intermediate node Nm3.
 各中間ノードNm1~Nm3は、各相出力線Uout、Vout、Woutに接続されている。各相出力線Uout、Vout、Woutは、3相のモータ400の各相コイルの一端に接続されている。各相コイルの他端は、中性点に共通接続される。なお、この例のモータ400は3相であるが、本明細書で開示される技術は、相数を限定することなく様々な交流電動機に適用可能である。 The intermediate nodes Nm1 to Nm3 are connected to the phase output lines Uout, Vout, Wout. Each phase output line Uout, Vout, Wout is connected to one end of each phase coil of the three-phase motor 400. The other end of each phase coil is commonly connected to the neutral point. Note that the motor 400 in this example has three phases, but the technology disclosed in this specification can be applied to various AC motors without limiting the number of phases.
 上記したように、6つの半導体装置111~116はいずれも、LIGBTとFWDで構成されており、共通した形態を備えている。以下、図2~5を参照して、インバータ回路100を構成する6つの半導体装置111~116のうちの1つを具体的に説明する。図2は、半導体装置のレイアウトを示す平面図である。図3は、半導体装置に配設される各電極のレイアウトを図2に重ねた平面図である。図4は、図2のIV-IV線に対応した断面図であり、隣接部におけるLIGBTの断面図を示す。図5は、図2のV-V線に対応した断面図であり、隣接部におけるFWDの断面図を示す。 As described above, all of the six semiconductor devices 111 to 116 are composed of LIGBT and FWD and have a common form. Hereinafter, one of the six semiconductor devices 111 to 116 constituting the inverter circuit 100 will be specifically described with reference to FIGS. FIG. 2 is a plan view showing the layout of the semiconductor device. FIG. 3 is a plan view in which the layout of each electrode disposed in the semiconductor device is superimposed on FIG. FIG. 4 is a cross-sectional view corresponding to the line IV-IV in FIG. 2, and shows a cross-sectional view of the LIGBT in the adjacent portion. FIG. 5 is a cross-sectional view corresponding to the line VV in FIG. 2, and shows a cross-sectional view of the FWD in the adjacent portion.
 図2に示されるように、SOI基板20の半導体層26には、半導体層26を貫通する第1トレンチ絶縁分離部12と第2トレンチ絶縁分離部14が形成されている。第1トレンチ絶縁分離部12は、SOI基板20を平面視したときに一巡している。第2トレンチ絶縁分離部14は、第1トレンチ絶縁分離部12から離れて設けられており、SOI基板20を平面視したときに第1トレンチ絶縁分離部12の周囲を一巡している。第1トレンチ絶縁分離部12と第2トレンチ絶縁分離部14は、角部を除いて平行に伸びており、その間隔は一定である。 As shown in FIG. 2, the semiconductor layer 26 of the SOI substrate 20 is formed with a first trench isolation portion 12 and a second trench isolation portion 14 that penetrate the semiconductor layer 26. The first trench isolation / separation portion 12 makes a round when the SOI substrate 20 is viewed in plan. The second trench isolation part 14 is provided away from the first trench isolation part 12 and makes a round around the first trench isolation part 12 when the SOI substrate 20 is viewed in plan. The first trench isolation part 12 and the second trench isolation part 14 extend in parallel except for the corners, and the distance between them is constant.
 第1トレンチ絶縁分離部12と第2トレンチ絶縁分離部14で挟まれた素子領域16,18は、周辺の半導体層26から分離されている。第1素子領域16と第2素子領域18は、SOI基板20を平面視したときに、隣接部11において隣接している。具体的には、第1素子領域16と第2素子領域18は、隣接部11において、第1トレンチ絶縁分離部12と第2トレンチ絶縁分離部14を結ぶ方向(x軸方向)に直交する方向(y軸方向)に沿って対向するように並んでいる。第1素子領域16にLIGBTが設けられており、第2素子領域18にFWDが設けられている。なお、この例は一例であり、第1素子領域16と第2素子領域18のレイアウトは、必要に応じて様々で形態をとることができる。例えば、第1素子領域16と第2素子領域18は、x軸方向に沿って対向するように並んでいてもよく、その他の方向に沿って対向するように並んでいてもよい。また、複数の第1素子領域16と複数の第2素子領域18が設けられていてもよい。 The element regions 16 and 18 sandwiched between the first trench isolation portion 12 and the second trench isolation portion 14 are isolated from the peripheral semiconductor layer 26. The first element region 16 and the second element region 18 are adjacent to each other in the adjacent portion 11 when the SOI substrate 20 is viewed in plan. Specifically, the first element region 16 and the second element region 18 in the adjacent portion 11 are orthogonal to the direction (x-axis direction) connecting the first trench insulation isolation portion 12 and the second trench insulation isolation portion 14. They are arranged so as to oppose each other along (y-axis direction). A LIGBT is provided in the first element region 16, and an FWD is provided in the second element region 18. This example is merely an example, and the layout of the first element region 16 and the second element region 18 can take various forms as necessary. For example, the first element region 16 and the second element region 18 may be arranged so as to face each other along the x-axis direction, or may be arranged so as to face each other along other directions. A plurality of first element regions 16 and a plurality of second element regions 18 may be provided.
 図4に、隣接部11近傍におけるLIGBTの断面図を示す。図4に示されるように、SOI基板20は、半導体支持層22と埋込み絶縁層24と半導体層26を備えている。半導体支持層22は、n型又はp型の不純物が高濃度に導入された単結晶のシリコンで形成されている。埋込み絶縁層24は、酸化シリコンで形成されている。半導体層26は、n型の不純物が低濃度に導入された単結晶のシリコンで形成されている。 FIG. 4 shows a cross-sectional view of the LIGBT in the vicinity of the adjacent portion 11. As shown in FIG. 4, the SOI substrate 20 includes a semiconductor support layer 22, a buried insulating layer 24, and a semiconductor layer 26. The semiconductor support layer 22 is formed of single crystal silicon into which an n-type or p-type impurity is introduced at a high concentration. The buried insulating layer 24 is made of silicon oxide. The semiconductor layer 26 is formed of single crystal silicon into which n-type impurities are introduced at a low concentration.
 図4に示されるように、LIGBTは、第1トレンチ絶縁分離部12と第2トレンチ絶縁分離部14で挟まれた第1素子領域16に形成されている。第1トレンチ絶縁分離部12は、半導体層26を貫通して埋込み絶縁層24まで達しており、酸化シリコンの酸化膜12aとその酸化膜12aで被覆されたポリシリコンの芯部12bとを備えている。第2トレンチ絶縁分離部14も同様に、半導体層26を貫通して埋込み絶縁層24まで達しており、酸化シリコンの酸化膜14aとその酸化膜14aで被覆されたポリシリコンの芯部14bとを備えている。 As shown in FIG. 4, the LIGBT is formed in the first element region 16 sandwiched between the first trench isolation part 12 and the second trench isolation part 14. The first trench isolation portion 12 extends through the semiconductor layer 26 to the buried insulating layer 24, and includes a silicon oxide film 12a and a polysilicon core 12b covered with the oxide film 12a. Yes. Similarly, the second trench isolation portion 14 penetrates the semiconductor layer 26 and reaches the buried insulating layer 24, and includes a silicon oxide film 14a and a polysilicon core portion 14b covered with the oxide film 14a. I have.
 図4に示されるように、LIGBTは、p型のボディコンタクト領域31と、n型のエミッタ領域32と、p型のボディ領域33と、n型のドリフト領域34と、n型の埋込み領域35と、n型のバッファ領域36と、p型のコレクタ領域37を備えている。 As shown in FIG. 4, the LIGBT includes a p + type body contact region 31, an n + type emitter region 32, a p type body region 33, an n type drift region 34, and an n + type. Embedded region 35, n-type buffer region 36, and p + -type collector region 37.
 ボディコンタクト領域31、エミッタ領域32及びボディ領域33は、半導体層26の表層部のうちの第2トレンチ絶縁分離部14側に設けられている。特に、ボディコンタクト領域31及びボディ領域33は、第2トレンチ絶縁分離部14の側面に接している。エミッタ領域32は、ボディ領域33によってドリフト領域34から隔てられている。ドリフト領域34は、ボディ領域33とバッファ領域36の間に設けられており、LIGBTがオフしたときに電位差を保持する領域である。埋込み領域35は、半導体層26の裏層部に設けられており、第1トレンチ絶縁分離部12と第2トレンチ絶縁分離部14の間に亘って設けられている。バッファ領域36及びコレクタ領域37は、半導体層26の表層部のうちの第1トレンチ絶縁分離部12側に設けられている。特に、バッファ領域36及びコレクタ領域37は、第1トレンチ絶縁分離部12の側面に接している。コレクタ領域37は、バッファ領域36によってドリフト領域34から隔てられている。なお、これらの断面構造は、第1素子領域16の全体に亘って共通している。したがって、ボディコンタクト領域31、エミッタ領域32及びボディ領域33は、SOI基板20を平面視したときに、第2トレンチ絶縁分離部14の側面に沿って第1素子領域16の全体に亘って設けられている。同様に、バッファ領域36とコレクタ領域37は、SOI基板20を平面視したときに、第1トレンチ絶縁分離部12の側面に沿って第1素子領域16の全体に亘って設けられている。 The body contact region 31, the emitter region 32, and the body region 33 are provided on the second trench isolation portion 14 side in the surface layer portion of the semiconductor layer 26. In particular, the body contact region 31 and the body region 33 are in contact with the side surface of the second trench isolation portion 14. Emitter region 32 is separated from drift region 34 by body region 33. The drift region 34 is provided between the body region 33 and the buffer region 36 and is a region that holds a potential difference when the LIGBT is turned off. The buried region 35 is provided in the back layer portion of the semiconductor layer 26, and is provided between the first trench insulation isolation portion 12 and the second trench insulation isolation portion 14. The buffer region 36 and the collector region 37 are provided on the first trench isolation portion 12 side in the surface layer portion of the semiconductor layer 26. In particular, the buffer region 36 and the collector region 37 are in contact with the side surface of the first trench isolation portion 12. The collector region 37 is separated from the drift region 34 by the buffer region 36. Note that these cross-sectional structures are common throughout the first element region 16. Accordingly, the body contact region 31, the emitter region 32, and the body region 33 are provided over the entire first element region 16 along the side surface of the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan. ing. Similarly, the buffer region 36 and the collector region 37 are provided over the entire first element region 16 along the side surface of the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
 図4に示されるように、LIGBTはさらに、層間絶縁膜41と、コレクタ電極42と、LOCOS(Local Oxidation of Silicon)酸化膜43と、ゲート電極44と、プレーナゲート部47と、エミッタ電極48を備えている。 As shown in FIG. 4, the LIGBT further includes an interlayer insulating film 41, a collector electrode 42, a LOCOS (Local Oxidation of Silicon) oxide film 43, a gate electrode 44, a planar gate portion 47, and an emitter electrode 48. I have.
 層間絶縁膜41は、SOI基板20の表面を被覆しており、酸化シリコンで形成されている。コレクタ電極42は、第1トレンチ絶縁分離部12側の層間絶縁膜41の表面に配設されている。特に、コレクタ電極42は、第1トレンチ絶縁分離部12の上方にも配設されている。コレクタ電極42は、SOI基板20を平面視したときに、少なくとも第1トレンチ絶縁分離部12に沿って第1トレンチ絶縁分離部12の上方に配設されている。さらに、コレクタ電極42は、一部が層間絶縁膜41を貫通して伸びているとともにコレクタ領域37に接触部42aを介して接している。接触部42aは、SOI基板20を平面視したときに、第1トレンチ絶縁分離部12に沿って第1素子領域16の全体に亘って設けられている。また、コレクタ電極42は、SOI基板20を平面視したときに、第1トレンチ絶縁分離部12から第2トレンチ絶縁分離部14の向き(図4の場合、左向き)において、バッファ領域36を超えて配設されていないのが望ましい。 The interlayer insulating film 41 covers the surface of the SOI substrate 20 and is made of silicon oxide. The collector electrode 42 is disposed on the surface of the interlayer insulating film 41 on the first trench isolation portion 12 side. In particular, the collector electrode 42 is also disposed above the first trench isolation portion 12. The collector electrode 42 is disposed above the first trench isolation portion 12 along at least the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan. Further, the collector electrode 42 partially extends through the interlayer insulating film 41 and is in contact with the collector region 37 via the contact portion 42a. The contact portion 42 a is provided over the entire first element region 16 along the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan. The collector electrode 42 extends beyond the buffer region 36 in the direction from the first trench isolation part 12 to the second trench isolation part 14 (leftward in the case of FIG. 4) when the SOI substrate 20 is viewed in plan. It is desirable that it is not arranged.
 LOCOS酸化膜43は、ドリフト領域34の表面に設けられており、酸化シリコンで形成されている。ゲート電極44は、コレクタ電極42とエミッタ電極48の間の層間絶縁膜41の表面に配設されている。ゲート電極44は、一部が層間絶縁膜41を貫通して伸びているとともにプレーナゲート部47に接している。プレーナゲート部47は、プレーナ電極45とゲート絶縁膜46を有しており、エミッタ領域32とドリフト領域34を隔てているボディ領域33の表面に対向している。プレーナ電極45は、ゲート絶縁膜46の表面とLOCOS酸化膜43の表面の一部を被覆しており、不純物が高濃度に導入されたポリシリコンで形成されている。ゲート絶縁膜46は、酸化シリコンで形成されている。 The LOCOS oxide film 43 is provided on the surface of the drift region 34 and is made of silicon oxide. The gate electrode 44 is disposed on the surface of the interlayer insulating film 41 between the collector electrode 42 and the emitter electrode 48. A portion of the gate electrode 44 extends through the interlayer insulating film 41 and is in contact with the planar gate portion 47. The planar gate portion 47 has a planar electrode 45 and a gate insulating film 46, and faces the surface of the body region 33 that separates the emitter region 32 and the drift region 34. The planar electrode 45 covers the surface of the gate insulating film 46 and a part of the surface of the LOCOS oxide film 43, and is formed of polysilicon into which impurities are introduced at a high concentration. The gate insulating film 46 is made of silicon oxide.
 エミッタ電極48は、第2トレンチ絶縁分離部14側の層間絶縁膜41の表面に配設されている。特に、エミッタ電極48は、第2トレンチ絶縁分離部14の上方にも配設されている。エミッタ電極48は、SOI基板20を平面視したときに、少なくとも第2トレンチ絶縁分離部14に沿って第2トレンチ絶縁分離部14の上方に配設されている。さらに、エミッタ電極48は、一部が層間絶縁膜41を貫通して伸びているとともにボディコンタクト領域31及びエミッタ領域32に接触部48aを介して接している。接触部48aは、SOI基板20を平面視したときに、第2トレンチ絶縁分離部14に沿って第1素子領域16の全体に亘って設けられている。上述したように、隣接部11において、コレクタ電極42とエミッタ電極48はx軸方向に間隔を置いて配置されており、ゲート電極44はその間隔内に配置されている。 The emitter electrode 48 is disposed on the surface of the interlayer insulating film 41 on the second trench isolation portion 14 side. In particular, the emitter electrode 48 is also disposed above the second trench isolation portion 14. The emitter electrode 48 is disposed above the second trench isolation part 14 along at least the second trench isolation part 14 when the SOI substrate 20 is viewed in plan. Further, the emitter electrode 48 partially extends through the interlayer insulating film 41 and is in contact with the body contact region 31 and the emitter region 32 via the contact portion 48a. The contact portion 48 a is provided over the entire first element region 16 along the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan. As described above, in the adjacent portion 11, the collector electrode 42 and the emitter electrode 48 are arranged with an interval in the x-axis direction, and the gate electrode 44 is arranged within the interval.
 図5に示されるように、FWDでは、いくつかの構成がLIGBTの構成と共通している。以下では、LIGBTと相違する構成のみを説明し、共通する構成には共通の符号を付し、その説明を省略する。FWDは、p型のアノードコンタクト領域131と、p型のアノード領域133と、n型のカソード領域136と、n型のカソードコンタクト領域137と、カソード電極142と、アノード電極148を備えている点でLIGBTから相違する。 As shown in FIG. 5, in the FWD, some configurations are common to the LIGBT configurations. In the following, only the configuration different from the LIGBT will be described, common configurations will be denoted by common reference numerals, and description thereof will be omitted. The FWD includes a p + type anode contact region 131, a p type anode region 133, an n type cathode region 136, an n + type cathode contact region 137, a cathode electrode 142, and an anode electrode 148. It is different from LIGBT in that it is.
 アノードコンタクト領域131及びアノード領域133は、半導体層26の表層部のうちの第2トレンチ絶縁分離部14側に設けられている。特に、アノードコンタクト領域131及びアノード領域133は、第2トレンチ絶縁分離部14の側面に接している。また、アノード領域133は、LIGBTのボディ領域33と同一の製造工程で作製されており、ボディ領域33と同一のドーパント、濃度及び拡散深さを有している。カソード領域136及びカソードコンタクト領域137は、半導体層26の表層部のうちの第1トレンチ絶縁分離部12側に設けられている。特に、カソード領域136及びカソードコンタクト領域137は、第1トレンチ絶縁分離部12の側面に接している。また、カソード領域136は、LIGBTのバッファ領域36と同一の製造工程で作製されており、バッファ領域36と同一のドーパント、濃度及び拡散深さを有している。なお、これらの断面構造は、第2素子領域18の全体に亘って共通している。したがって、アノードコンタクト領域131及びアノード領域133は、SOI基板20を平面視したときに、第2トレンチ絶縁分離部14の側面に沿って第2素子領域18の全体に亘って設けられている。同様に、カソード領域136及びカソードコンタクト領域137は、SOI基板20を平面視したときに、第1トレンチ絶縁分離部12の側面に沿って第2素子領域18の全体に亘って設けられている。 The anode contact region 131 and the anode region 133 are provided on the second trench isolation portion 14 side in the surface layer portion of the semiconductor layer 26. In particular, the anode contact region 131 and the anode region 133 are in contact with the side surface of the second trench isolation portion 14. The anode region 133 is manufactured by the same manufacturing process as the body region 33 of the LIGBT, and has the same dopant, concentration, and diffusion depth as the body region 33. The cathode region 136 and the cathode contact region 137 are provided on the first trench isolation portion 12 side in the surface layer portion of the semiconductor layer 26. In particular, the cathode region 136 and the cathode contact region 137 are in contact with the side surfaces of the first trench isolation portion 12. The cathode region 136 is manufactured in the same manufacturing process as the buffer region 36 of the LIGBT, and has the same dopant, concentration, and diffusion depth as the buffer region 36. These cross-sectional structures are common throughout the second element region 18. Therefore, the anode contact region 131 and the anode region 133 are provided over the entire second element region 18 along the side surface of the second trench isolation part 14 when the SOI substrate 20 is viewed in plan. Similarly, the cathode region 136 and the cathode contact region 137 are provided over the entire second element region 18 along the side surface of the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
 また、LIGBTのボディ領域33とFWDのアノード領域133は、図2に示される隣接部11において接触している。このため、これらのp型領域33,133は、SOI基板20を平面視したときに、第2トレンチ絶縁分離部14の側面に沿って素子領域16,18内を一巡している。さらに、LIGBTのバッファ領域36とFWDのカソード領域136も、図2に示される隣接部11において接触している。このため、これらのn型領域36,136も、SOI基板20を平面視したときに、第1トレンチ絶縁分離部12の側面に沿って素子領域16,18内を一巡している。 Further, the body region 33 of the LIGBT and the anode region 133 of the FWD are in contact with each other at the adjacent portion 11 shown in FIG. For this reason, these p- type regions 33 and 133 circulate in the element regions 16 and 18 along the side surfaces of the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan. Further, the buffer region 36 of the LIGBT and the cathode region 136 of the FWD are also in contact with each other at the adjacent portion 11 shown in FIG. For this reason, these n- type regions 36 and 136 also circulate in the element regions 16 and 18 along the side surface of the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
 カソード電極142は、第1トレンチ絶縁分離部12側の層間絶縁膜41の表面に配設されている。特に、カソード電極142は、第1トレンチ絶縁分離部12の上方にも配設されている。カソード電極142は、SOI基板20を平面視したときに、少なくとも第1トレンチ絶縁分離部12に沿って第1トレンチ絶縁分離部12の上方に配設されている。さらに、カソード電極142は、一部が層間絶縁膜41を貫通して伸びているとともにカソードコンタクト領域137に接触部137aを介して接している。接触部137aは、SOI基板20を平面視したときに、第1トレンチ絶縁分離部12に沿って第2素子領域18の全体に亘って設けられている。また、カソード電極142は、平面視したときに、第1トレンチ絶縁分離部12から第2トレンチ絶縁分離部14の向き(図5の場合、左向き)において、カソード領域136を超えて配設されていないのが望ましい。 The cathode electrode 142 is disposed on the surface of the interlayer insulating film 41 on the first trench isolation portion 12 side. In particular, the cathode electrode 142 is also disposed above the first trench isolation portion 12. The cathode electrode 142 is disposed above the first trench isolation portion 12 along at least the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan. Further, a part of the cathode electrode 142 extends through the interlayer insulating film 41 and is in contact with the cathode contact region 137 through the contact portion 137a. The contact portion 137 a is provided over the entire second element region 18 along the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan. Further, the cathode electrode 142 is disposed beyond the cathode region 136 in the direction from the first trench insulation isolation portion 12 to the second trench insulation isolation portion 14 (leftward in the case of FIG. 5) when viewed in plan. Desirably not.
 アノード電極148は、第2トレンチ絶縁分離部14側の層間絶縁膜41の表面に配設されている。特に、アノード電極148は、第2トレンチ絶縁分離部14の上方にも配設されている。アノード電極148は、SOI基板20を平面視したときに、少なくとも第2トレンチ絶縁分離部14に沿って第2トレンチ絶縁分離部14の上方に配設されている。さらに、アノード電極148は、一部が層間絶縁膜41を貫通して伸びているとともにアノードコンタクト領域131に接触部148aを介して接している。接触部148aは、SOI基板20を平面視したときに、第2トレンチ絶縁分離部14に沿って第2素子領域18の全体に亘って設けられている。また、アノード電極148は、一部が層間絶縁膜41を貫通して伸びているとともにプレーナ電極45にも接しているのが望ましい。さらに、アノード電極148は、平面視したときに、第2トレンチ絶縁分離部14から第1トレンチ絶縁分離部12の向き(図5の場合、右向き)において、プレーナ電極45を越えて配設されていないのが望ましい。上述したように、隣接部11において、カソード電極142とアノード電極148はx軸方向に間隔を置いて配置されている。 The anode electrode 148 is disposed on the surface of the interlayer insulating film 41 on the second trench isolation portion 14 side. In particular, the anode electrode 148 is also disposed above the second trench isolation portion 14. The anode electrode 148 is disposed above the second trench isolation part 14 along at least the second trench isolation part 14 when the SOI substrate 20 is viewed in plan. Further, a part of the anode electrode 148 extends through the interlayer insulating film 41 and is in contact with the anode contact region 131 through the contact portion 148a. The contact portion 148a is provided over the entire second element region 18 along the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan. The anode electrode 148 preferably extends partially through the interlayer insulating film 41 and is in contact with the planar electrode 45. Further, the anode electrode 148 is disposed beyond the planar electrode 45 in the direction from the second trench insulation isolation portion 14 to the first trench insulation isolation portion 12 (rightward in the case of FIG. 5) when viewed in plan. Desirably not. As described above, in the adjacent portion 11, the cathode electrode 142 and the anode electrode 148 are arranged at an interval in the x-axis direction.
 また、LIGBTのエミッタ電極48の接触部48aとFWDのアノード電極148の接触部148aは、図2に示される隣接部11において隣接している。このため、これらの接触部48a,148aは、SOI基板20を平面視したときに、第2トレンチ絶縁分離部14に沿って一巡している。さらに、LIGBTのコレクタ電極42の接触部42aとFWDのカソード電極142の接触部142aも、図2に示される隣接部11において隣接している。このため、これらの接触部42a,142aは、SOI基板20を平面視したときに、第1トレンチ絶縁分離部12に沿って一巡している。 Further, the contact portion 48a of the emitter electrode 48 of the LIGBT and the contact portion 148a of the anode electrode 148 of the FWD are adjacent to each other in the adjacent portion 11 shown in FIG. For this reason, these contact portions 48 a and 148 a make a round along the second trench isolation portion 14 when the SOI substrate 20 is viewed in plan. Further, the contact portion 42a of the collector electrode 42 of the LIGBT and the contact portion 142a of the cathode electrode 142 of the FWD are also adjacent in the adjacent portion 11 shown in FIG. For this reason, these contact portions 42 a and 142 a make a round along the first trench isolation portion 12 when the SOI substrate 20 is viewed in plan.
 LIGBTのコレクタ電極42、ゲート電極44、エミッタ電極48、及びFWDのカソード電極142、アノード電極148は、蒸着技術を利用して、同一の製造工程で作製されている。これら電極の材料には、アルミニウムが用いられている。図3に示されるように、LIGBTのコレクタ電極42とFWDのカソード電極142は、平面視したときに、第1トレンチ絶縁分離部12の内側の範囲に設けられている。すなわち、LIGBTのコレクタ電極42とFWDのカソード電極142は、1つの共通電極である。この1つの共通電極上にコレクタ・カソード用ボンディングパッド19が設けられている。また、LIGBTのエミッタ電極48とFWDのアノード電極148は、第2トレンチ絶縁分離部14の外側の範囲に設けられている。すなわち、LIGBTのエミッタ電極48とFWDのアノード電極148も、1つの共通電極である。この1つの共通電極上にエミッタ・アノード用ボンディングパッド15が設けられている。 The collector electrode 42, the gate electrode 44, and the emitter electrode 48 of the LIGBT, and the cathode electrode 142 and the anode electrode 148 of the FWD are manufactured in the same manufacturing process using vapor deposition technology. Aluminum is used as the material for these electrodes. As shown in FIG. 3, the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are provided in a range inside the first trench isolation portion 12 when viewed in plan. That is, the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are one common electrode. A collector / cathode bonding pad 19 is provided on the one common electrode. Further, the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are provided in a range outside the second trench isolation portion 14. That is, the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are also one common electrode. An emitter / anode bonding pad 15 is provided on the one common electrode.
 本実施例の半導体装置では、LIGBTのコレクタ電極42とFWDのカソード電極142は1つの共通電極として構成されている。このため、コレクタ電極42とカソード電極142を接続する接続配線が不要である。さらに、LIGBTのエミッタ電極48とFWDのアノード電極148も1つの共通電極として構成されている。このため、エミッタ電極48とアノード電極148を接続する接続配線も不要である。これにより、これら接続配線がLIGBT及びFWDのドリフト領域34の上方を伸びることがない。したがって、本実施例の半導体装置では、図10及び図11で示される従来構造のように、ドリフト領域の電位分布が不均一化するという事態が発生しない。 In the semiconductor device of this embodiment, the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are configured as one common electrode. For this reason, the connection wiring which connects the collector electrode 42 and the cathode electrode 142 is unnecessary. Further, the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are also configured as one common electrode. For this reason, the connection wiring which connects the emitter electrode 48 and the anode electrode 148 is also unnecessary. Thereby, these connection wirings do not extend above the drift region 34 of the LIGBT and FWD. Therefore, in the semiconductor device of the present embodiment, unlike the conventional structure shown in FIGS. 10 and 11, a situation where the potential distribution in the drift region becomes non-uniform does not occur.
 また、図3に示されるように、本実施例の半導体装置では、LIGBTのコレクタ電極42及びFWDのカソード電極142の共通電極が内側に配置されており、LIGBTのエミッタ電極48及びFWDのアノード電極148の共通電極がそれを取囲むように周囲に配置されている。図1に示されるように、LIGBTのコレクタ電極42及びFWDのカソード電極142は高圧直流電源300の高圧側に接続されており、LIGBTのエミッタ電極48及びFWDのアノード電極148が高圧直流電源300の低圧側に接続されている。すなわち、本実施例の半導体装置では、高圧側の共通電極を取囲むように低圧側の共通電極が設けられている。上述したように、本実施例のインバータ回路は、1つのSOI基板20に図1に示す半導体装置111~116が搭載されている。したがって、低圧側の共通電極を周囲に配置することで、複数の半導体装置間の電圧差を小さく抑えることができる。 Further, as shown in FIG. 3, in the semiconductor device of this embodiment, the common electrode of the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD is disposed inside, the emitter electrode 48 of the LIGBT, and the anode electrode of the FWD. 148 common electrodes are arranged around it so as to surround them. As shown in FIG. 1, the collector electrode 42 of the LIGBT and the cathode electrode 142 of the FWD are connected to the high voltage side of the high voltage DC power supply 300, and the emitter electrode 48 of the LIGBT and the anode electrode 148 of the FWD are connected to the high voltage DC power supply 300. Connected to the low pressure side. That is, in the semiconductor device of this embodiment, the low-voltage common electrode is provided so as to surround the high-voltage common electrode. As described above, in the inverter circuit of this embodiment, the semiconductor devices 111 to 116 shown in FIG. 1 are mounted on one SOI substrate 20. Therefore, the voltage difference between the plurality of semiconductor devices can be reduced by arranging the common electrode on the low voltage side around.
 さらに、図6に、第1素子領域16と第2素子領域18が隣接する隣接部11の拡大平面図を示す。図6に示されるように、LIGBTとFWDが隣接して設けられていると、LIGBTのエミッタ領域32、ボディ領域33、ドリフト領域34、及びFWDのカソード領域136で構成される寄生MOSが存在する。しかしながら、本実施例の半導体装置では、LIGBTとFWDの全体の面積に比べて、LIGBTとFWDの接する隣接部11の面積が小さい。このため、LIGBTがオンしたときに、図6の破線矢印で示されるような寄生MOSが動作する現象が特に問題となることがない。この結果、本実施例の半導体装置では、LIGBTがオンしたときに、IGBT動作が支配的となり、低いオン電圧が得られる。 Further, FIG. 6 shows an enlarged plan view of the adjacent portion 11 where the first element region 16 and the second element region 18 are adjacent to each other. As shown in FIG. 6, when the LIGBT and the FWD are provided adjacent to each other, there is a parasitic MOS composed of the emitter region 32 of the LIGBT, the body region 33, the drift region 34, and the cathode region 136 of the FWD. . However, in the semiconductor device of this example, the area of the adjacent portion 11 where the LIGBT and the FWD are in contact is smaller than the entire area of the LIGBT and the FWD. Therefore, when the LIGBT is turned on, the phenomenon that the parasitic MOS as shown by the broken line arrow in FIG. As a result, in the semiconductor device of this embodiment, when the LIGBT is turned on, the IGBT operation becomes dominant and a low on-voltage can be obtained.
 なお、図7及び図8に示されるように、本実施例の半導体装置はさらに、第3トレンチ絶縁分離部13を備えているのが望ましい。第3トレンチ絶縁分離部13は、第1端部13Aが第1トレンチ絶縁分離部12に接しており、第2端部13Bが第2トレンチ絶縁分離部14に接している。第1素子領域16と第2素子領域18は、第3トレンチ絶縁分離部13によって分離されている。第3トレンチ絶縁分離部13も、酸化シリコンの酸化膜13aとその酸化膜13aで被覆されたポリシリコンの芯部13bとを備えている。第3トレンチ絶縁分離部13が設けられていると、LIGBTからFWDに電子が流入することが防止される。この結果、LIGBTがオンしたときに、寄生MOSが動作する現象を完全に防止することができる。 As shown in FIGS. 7 and 8, it is desirable that the semiconductor device of this embodiment further includes a third trench isolation 13. In the third trench isolation 13, the first end 13 </ b> A is in contact with the first trench isolation 12 and the second end 13 </ b> B is in contact with the second trench isolation 14. The first element region 16 and the second element region 18 are separated by the third trench isolation portion 13. The third trench isolation part 13 also includes a silicon oxide film 13a and a polysilicon core part 13b covered with the oxide film 13a. When the third trench isolation 13 is provided, electrons are prevented from flowing from the LIGBT to the FWD. As a result, it is possible to completely prevent the phenomenon in which the parasitic MOS operates when the LIGBT is turned on.
 図9は、第2実施例の半導体装置のレイアウトを示す平面図である。第1実施例の半導体装置と共通する構成要素には共通の符号を付し、その説明を省略する。第2実施例の半導体装置では、第1トレンチ絶縁分離部12と第2トレンチ絶縁分離部14で挟まれた素子領域16,18の一部が、SOI基板20を平面視したときに、y軸方向に沿って往復していることを特徴としている。この例では、素子領域16,18の一部が、y軸方向に沿って4往復している。換言すると、第1トレンチ絶縁分離部12で囲まれた半導体層26の一部52が、SOI基板20を平面視したときに、櫛歯状の形態を有している、ということもできる。このような形態を採用することにより、半導体層26に占める素子領域16,18の面積を大きくすることができ、実装面積を小さく抑えることができる。 FIG. 9 is a plan view showing the layout of the semiconductor device of the second embodiment. Constituent elements common to the semiconductor device of the first embodiment are denoted by common reference numerals and description thereof is omitted. In the semiconductor device of the second embodiment, when part of the element regions 16 and 18 sandwiched between the first trench isolation portion 12 and the second trench isolation portion 14 is viewed in plan view of the SOI substrate 20, the y axis It is characterized by reciprocating along the direction. In this example, part of the element regions 16 and 18 reciprocate four times along the y-axis direction. In other words, it can also be said that a part 52 of the semiconductor layer 26 surrounded by the first trench isolation portion 12 has a comb-like shape when the SOI substrate 20 is viewed in plan view. By adopting such a form, the area of the element regions 16 and 18 occupying the semiconductor layer 26 can be increased, and the mounting area can be reduced.
 また、図9に示されるように、本実施例の半導体装置では、FWDが内側に配置されており、LIGBTがそれを取囲むように配置されている。一般的に、LIGBTは、スイッチング損失が大きいことから、動作中の発熱量がFWDよりも大きい。したがって、発熱量の小さいFWDを中央部に配置し、発熱量の多いLIGBTを周囲に配置すると、半導体装置の全体の温度分布が均一化され、中央部が局所的に高温になる事態を抑制することができる。これにより、高温による半導体装置の誤作動及び破損が抑制される。 Further, as shown in FIG. 9, in the semiconductor device of this embodiment, the FWD is arranged on the inner side and the LIGBT is arranged so as to surround it. Generally, since LIGBT has a large switching loss, the amount of heat generated during operation is larger than that of FWD. Therefore, when the FWD having a small heat generation amount is arranged in the central portion and the LIGBT having a large heat generation amount is arranged around, the entire temperature distribution of the semiconductor device is made uniform, and the situation where the central portion becomes locally high is suppressed. be able to. Thereby, malfunction and damage of the semiconductor device due to high temperature are suppressed.
 上記の実施例では、SOI基板の半導体材料にシリコンが用いられている。この例に代えて、他の半導体材料を用いてもよい。例えば、窒化ガリウム、炭化珪素、ガリウム砒素等の化合物半導体を用いてもよい。 In the above embodiment, silicon is used as the semiconductor material of the SOI substrate. Instead of this example, other semiconductor materials may be used. For example, a compound semiconductor such as gallium nitride, silicon carbide, or gallium arsenide may be used.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (6)

  1.  第1素子領域と第2素子領域を有する半導体層と、
     前記第1素子領域に配置されており、その間を電流が流れるように構成されている第1主電極と第2主電極を有する第1種類の第1半導体素子と、
     前記第2素子領域に配置されており、その間を電流が流れるように構成されている第3主電極と第4主電極を有する第2種類の第2半導体素子と、を備えており、
     前記第1素子領域と前記第2素子領域は、前記半導体層を平面視したときに、隣接部において第1方向に沿って並んでおり、
     前記第1半導体素子の前記第1主電極と前記第2主電極は、前記半導体層を平面視したときに、前記隣接部において、前記第1方向に対して直交する第2方向に間隔を置いて配置されており、
     前記第2半導体素子の前記第3主電極と前記第4主電極は、前記半導体層を平面視したときに、前記隣接部において前記第2方向に間隔を置いて配置されており、
     前記第1半導体素子の前記第1主電極と前記第2半導体素子の前記第3主電極が接しており、
     前記第1半導体素子の前記第2主電極と前記第2半導体素子の前記第4主電極が接している半導体装置。
    A semiconductor layer having a first element region and a second element region;
    A first type of first semiconductor element having a first main electrode and a second main electrode arranged in the first element region and configured to allow current to flow there between;
    A second main semiconductor element having a third main electrode and a fourth main electrode arranged in the second element region and configured to allow current to flow there between,
    The first element region and the second element region are arranged along the first direction in adjacent portions when the semiconductor layer is viewed in plan view,
    The first main electrode and the second main electrode of the first semiconductor element are spaced from each other in a second direction orthogonal to the first direction at the adjacent portion when the semiconductor layer is viewed in plan. Arranged,
    The third main electrode and the fourth main electrode of the second semiconductor element are arranged at an interval in the second direction at the adjacent portion when the semiconductor layer is viewed in plan view,
    The first main electrode of the first semiconductor element is in contact with the third main electrode of the second semiconductor element;
    A semiconductor device in which the second main electrode of the first semiconductor element is in contact with the fourth main electrode of the second semiconductor element.
  2.  前記半導体層を貫通する第1トレンチ絶縁分離部と、
     その第1トレンチ絶縁分離部から離れているとともに、前記半導体層を貫通する第2トレンチ絶縁分離部と、をさらに備えており、
     前記第1素子領域及び前記第2素子領域は、前記第1トレンチ絶縁分離部と前記第2トレンチ絶縁分離部で挟まれた素子領域に配置されており、
     前記第1半導体素子の前記第1主電極が前記第1トレンチ絶縁分離部側に配置されており、前記第1半導体素子の前記第2主電極が前記第2トレンチ絶縁分離部側に配置されており、
     前記第2半導体素子の前記第3主電極が前記第1トレンチ絶縁分離部側に配置されており、前記第2半導体素子の前記第4主電極が前記第2トレンチ絶縁分離部側に配置されている請求項1に記載の半導体装置。
    A first trench isolation portion penetrating the semiconductor layer;
    A second trench isolation portion that is separated from the first trench isolation portion and penetrates the semiconductor layer, and
    The first element region and the second element region are disposed in an element region sandwiched between the first trench isolation portion and the second trench isolation portion,
    The first main electrode of the first semiconductor element is disposed on the first trench isolation portion, and the second main electrode of the first semiconductor element is disposed on the second trench isolation portion side. And
    The third main electrode of the second semiconductor element is disposed on the first trench insulation isolation part side, and the fourth main electrode of the second semiconductor element is disposed on the second trench insulation isolation part side. The semiconductor device according to claim 1.
  3.  前記第1トレンチ絶縁分離部は、前記半導体層を平面視したときに一巡しており、
     前記第2トレンチ絶縁分離部は、前記半導体層を平面視したときに前記第1トレンチ絶縁分離部の周囲を一巡している請求項2に記載の半導体装置。
    The first trench insulation isolation part is circled when the semiconductor layer is viewed in plan,
    3. The semiconductor device according to claim 2, wherein the second trench isolation part makes a round around the first trench isolation part when the semiconductor layer is viewed in plan.
  4.  前記第1トレンチ絶縁分離部と前記第2トレンチ絶縁分離部で挟まれた前記素子領域が、前記半導体層を平面視したときに、少なくとも一方向に沿って2往復する請求項2又は3に記載の半導体装置。 The element region sandwiched between the first trench isolation portion and the second trench isolation portion reciprocates twice along at least one direction when the semiconductor layer is viewed in plan. Semiconductor device.
  5.  第1端部と第2端部を有するとともに、前記半導体層を貫通する第3トレンチ絶縁分離部をさらに備えており、
     前記第3トレンチ絶縁分離部の前記第1端部が、前記第1トレンチ絶縁分離部に接しており、前記第3トレンチ絶縁分離部の前記第2端部が、前記第2トレンチ絶縁分離部に接しており、
     前記第3トレンチ絶縁分離部は、前記第1素子領域と前記第2素子領域を隔てている請求項2~4のいずれか一項に記載の半導体装置。
    A third trench insulation isolation portion having a first end portion and a second end portion and penetrating the semiconductor layer;
    The first end of the third trench isolation is in contact with the first trench isolation and the second end of the third trench isolation is at the second trench isolation. Touching,
    5. The semiconductor device according to claim 2, wherein the third trench isolation portion separates the first element region and the second element region.
  6.  前記第1半導体素子が横型のIGBTであり、
     前記第2半導体素子が横型の還流用ダイオードである請求項1~5のいずれか一項に記載の半導体装置。
    The first semiconductor element is a lateral IGBT;
    The semiconductor device according to any one of claims 1 to 5, wherein the second semiconductor element is a horizontal reflux diode.
PCT/JP2010/060104 2009-09-11 2010-06-15 Semiconductor device WO2011030597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009209987A JP2011061051A (en) 2009-09-11 2009-09-11 Semiconductor device
JP2009-209987 2009-09-11

Publications (1)

Publication Number Publication Date
WO2011030597A1 true WO2011030597A1 (en) 2011-03-17

Family

ID=43732274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060104 WO2011030597A1 (en) 2009-09-11 2010-06-15 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2011061051A (en)
WO (1) WO2011030597A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256885A (en) * 2017-06-30 2017-10-17 北京工业大学 A kind of high stability insulation grid bipolar transistor and preparation method thereof
US10211337B2 (en) 2013-11-12 2019-02-19 Hitachi Automotive Systems, Ltd. Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167323B2 (en) * 2010-09-30 2013-03-21 トヨタ自動車株式会社 Semiconductor device
JP5626534B2 (en) * 2011-09-30 2014-11-19 トヨタ自動車株式会社 Semiconductor device
JP5672500B2 (en) * 2011-10-18 2015-02-18 トヨタ自動車株式会社 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528044U (en) * 1991-09-18 1993-04-09 日本電気株式会社 Semiconductor integrated circuit device
WO2003003464A2 (en) * 2001-06-28 2003-01-09 Koninklijke Philips Electronics N.V. Hv-soi ldmos device with integrated diode to improve reliability and avalanche ruggedness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528044U (en) * 1991-09-18 1993-04-09 日本電気株式会社 Semiconductor integrated circuit device
WO2003003464A2 (en) * 2001-06-28 2003-01-09 Koninklijke Philips Electronics N.V. Hv-soi ldmos device with integrated diode to improve reliability and avalanche ruggedness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211337B2 (en) 2013-11-12 2019-02-19 Hitachi Automotive Systems, Ltd. Semiconductor device
CN107256885A (en) * 2017-06-30 2017-10-17 北京工业大学 A kind of high stability insulation grid bipolar transistor and preparation method thereof

Also Published As

Publication number Publication date
JP2011061051A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP6584893B2 (en) Manufacturing method of semiconductor device
JP4206543B2 (en) Semiconductor device
JP4858290B2 (en) Load drive device
JP4815885B2 (en) Method for controlling semiconductor device
JP5655339B2 (en) Semiconductor device
JP2009033036A (en) Semiconductor device, and electric circuit device using same
CN108110001B (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
WO2011030597A1 (en) Semiconductor device
JP5167323B2 (en) Semiconductor device
US10930771B2 (en) Semiconductor device having an insulated gate bipolar transistor and method of manufacturing the same
US20050056906A1 (en) Semiconductor device
WO2016042621A1 (en) Semiconductor device, inverter module, inverter, railway vehicle, and semiconductor device manufacturing method
US9893065B2 (en) Semiconductor integrated circuit
JP2005064472A (en) Semiconductor device
JP6606364B2 (en) Semiconductor device and manufacturing method thereof
US10217765B2 (en) Semiconductor integrated circuit
JP7026314B2 (en) Silicon carbide semiconductor device
JP5672500B2 (en) Semiconductor device
JP5132481B2 (en) Semiconductor integrated circuit device
JP2019091754A (en) Silicon carbide semiconductor device, power conversion system and silicon carbide semiconductor device manufacturing method
WO2016042971A1 (en) Semiconductor device
WO2016143126A1 (en) Semiconductor device and power conversion device
JP5120418B2 (en) Semiconductor device
JP7334678B2 (en) semiconductor equipment
JP2020004864A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815195

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815195

Country of ref document: EP

Kind code of ref document: A1