WO2011030402A1 - Control device for elevator - Google Patents

Control device for elevator Download PDF

Info

Publication number
WO2011030402A1
WO2011030402A1 PCT/JP2009/065710 JP2009065710W WO2011030402A1 WO 2011030402 A1 WO2011030402 A1 WO 2011030402A1 JP 2009065710 W JP2009065710 W JP 2009065710W WO 2011030402 A1 WO2011030402 A1 WO 2011030402A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
value
speed pattern
car
speed
Prior art date
Application number
PCT/JP2009/065710
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 雄太
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09849182.2A priority Critical patent/EP2476640B1/en
Priority to CN200980161315.1A priority patent/CN102482049B/en
Priority to KR1020127002115A priority patent/KR101268819B1/en
Priority to JP2011530659A priority patent/JP5554336B2/en
Priority to PCT/JP2009/065710 priority patent/WO2011030402A1/en
Publication of WO2011030402A1 publication Critical patent/WO2011030402A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/44Means for stopping the cars, cages, or skips at predetermined levels and for taking account of disturbance factors, e.g. variation of load weight

Definitions

  • the present invention relates to an elevator control device that controls the speed of a car.
  • an elevator apparatus that changes the acceleration / deceleration speed and the maximum speed of a car according to the load in the car is known in order to make maximum use of the driving ability of the motor that drives the car.
  • the load in the car is detected by a scale device provided in the car.
  • the acceleration / deceleration and maximum speed of the car are changed within the range of the driving capability of the motor and the electrical equipment that drives the motor (Patent Document 1).
  • the acceleration / deceleration and maximum speed of the car may be set higher than the motor drive capacity. In this case, there is a possibility that the operation of the elevator stops because the power supply system is interrupted by overcurrent or the motor is damaged by heat generation.
  • Patent Document 2 An elevator control device that lowers the acceleration / deceleration or maximum speed of a car has been proposed.
  • the car deceleration can be made lower than the set value during the car decelerating to reduce the load on the motor due to the car decelerating.
  • the car deceleration changed during the deceleration of the car is maintained at a low value, so that the car goes over the destination floor, and the stop position of the car is the target. You will be off the floor.
  • the present invention has been made to solve the above-described problems, and provides an elevator control device capable of stopping a car at a destination floor even if the car deceleration is changed during deceleration traveling. With the goal.
  • the elevator control device includes a speed pattern generation unit that generates a speed pattern for performing control to increase and decrease the speed of a car and stop the car at a target floor, and torque that detects torque of a driving device that drives the car. Based on the information from the detector, it has a deceleration command unit that determines whether or not the value of the deceleration of the speed pattern can be increased when the car is decelerated, and the speed pattern generation unit is configured to increase the deceleration of the speed pattern.
  • the deceleration value of the speed pattern is once lowered from the first deceleration value, and then is set to a second deceleration value that is larger than the first deceleration value. Can be migrated.
  • the deceleration command unit determines whether or not the value of the deceleration of the speed pattern can be increased based on the information from the torque detector when the car is decelerating, and increases the deceleration of the speed pattern.
  • the speed pattern generation unit temporarily lowers the deceleration value of the speed pattern from the first deceleration value, and then shifts to a second deceleration value that is larger than the first deceleration value. Therefore, even if the car deceleration is changed during deceleration, the car can be stopped at the destination floor without the car stopping position deviating from the destination floor. Therefore, the traveling time of the car can be shortened, and the decrease in the elevator service can be suppressed.
  • FIG. 1 It is a block diagram which shows the elevator by Embodiment 1 of this invention.
  • zeta 2nd deceleration value
  • FIG. 1 is a block diagram showing an elevator according to Embodiment 1 of the present invention.
  • a car 2 and a counterweight 3 capable of traveling in the vertical direction are provided in the hoistway 1.
  • a hoisting machine 4 that is a driving device for running the car 2 and the counterweight 3 is provided.
  • the hoisting machine 4 has a motor 5 and a drive sheave 6 rotated by the motor 5.
  • a main rope 7 is wound around the drive sheave 6.
  • the car 2 and the counterweight 3 are suspended by the main rope 7.
  • the car 2 and the counterweight 3 are run in the hoistway 1 by the rotation of the drive sheave 6.
  • the electric power from the AC power supply 8 is supplied to the motor 5.
  • the electric power from the AC power supply 8 is supplied to the motor 5 through the power supply cutoff unit 9, the converter 10 and the inverter 11.
  • the rated current value is preset in the power shut-off unit 9 based on the capacities of the motor 5, the converter 10 and the inverter 11.
  • the power supply cutoff unit 9 disconnects the circuit including the converter 10 and the inverter 11 from the AC power supply 8. Thereby, the motor 5, the converter 10, and the inverter 11 are protected.
  • a fuse or a circuit breaker is used as the power shutoff unit 9.
  • Converter 10 converts an alternating current from alternating current power supply 8 into a direct current.
  • the current converted into direct current by the converter 10 is sent to the inverter 11.
  • Inverter 11 adjusts the frequency of the current from converter 10.
  • the current whose frequency is adjusted by the inverter 11 is sent to the motor 5.
  • the motor 5 receives the electric power from the inverter 11 and rotates the drive sheave 6 at a rotation speed corresponding to the frequency of the current from the inverter 11.
  • the value of the current sent from the power shut-off unit 9 to the converter 10 is detected by the current detector 12.
  • the value of the current detected by the current detector 12 varies according to the torque generated by the motor 5. Therefore, the current detector 12 is a torque detector that detects the torque of the motor 5.
  • the hoisting machine 4 is provided with a speed detector 13 that generates a signal corresponding to the rotation of the drive sheave 6. Since the car 2 travels according to the rotation of the drive sheave 6, the speed detector 13 generates a signal corresponding to the position and speed of the car 2. As the speed detector 13, for example, an encoder or the like is used.
  • the car 2 is provided with a weighing device (car load detecting device) 14 for detecting the weight of the load (for example, passengers, luggage, etc.) in the car 2 (that is, the load in the car 2).
  • Information from each of the current detector 12, the speed detector 13, and the scale device 14 is sent to a control device 15 that controls the operation of the elevator.
  • the control device 15 controls the inverter 11 based on information from each of the current detector 12, the speed detector 13, and the scale device 14, and controls the traveling of the car 2.
  • the control device 15 includes a speed pattern generation unit 16, a deceleration command unit 17, and a speed control unit 18.
  • the speed pattern generation unit 16 generates a speed pattern for performing control for accelerating and decelerating the car 2 to stop it at the destination floor.
  • the speed pattern generation unit 16 generates a speed pattern of the car 2 based on information from the scale device 14 before the car 2 starts to travel. That is, the speed pattern generation unit 16 obtains acceleration, maximum speed, and deceleration corresponding to information from the weighing device 14 before starting the traveling of the car 2, and based on the obtained maximum speed and deceleration, A distance (deceleration travel distance) from the start of deceleration 2 to the stop of the car 2 is obtained, and a speed pattern of the car 2 is generated based on each of the obtained acceleration, maximum speed, deceleration, and deceleration travel distance.
  • the acceleration, maximum speed, deceleration, and deceleration travel distance required before the car 2 starts traveling are the initial acceleration value ⁇ , initial maximum value V 0 , initial deceleration value ⁇ , and initial deceleration distance value. S ⁇ .
  • the speed pattern generation unit 16 obtains an actual acceleration value ⁇ of the car 2 based on information from the speed detector 13 when the car 2 is accelerated, and the actual acceleration value ⁇ , the initial acceleration value ⁇ , and the like. Are compared, it is determined whether or not it is necessary to change the deceleration value of the speed pattern (that is, the initial deceleration value ⁇ ). When the speed pattern generation unit 16 determines that the speed pattern deceleration value needs to be changed, the speed pattern generation unit 16 changes the speed pattern deceleration value from the initial deceleration value ⁇ to a first deceleration smaller than the initial deceleration value ⁇ .
  • the speed pattern deceleration value is maintained as the initial deceleration value ⁇ .
  • the first deceleration value ⁇ may be a preset value or a value obtained based on the actual acceleration value ⁇ .
  • the speed pattern generation unit 16 determines that the motor 2 is decelerating when the car 2 is not accelerated to the initial acceleration value ⁇ due to, for example, an overload of the motor 5. In order to prevent overload, the deceleration value of the speed pattern is lowered.
  • the speed pattern generation unit 16 When the speed pattern deceleration value is decreased from the initial deceleration value ⁇ to the first deceleration value ⁇ and the difference between the actual acceleration value ⁇ and the initial acceleration value ⁇ is smaller than the threshold value ⁇ a, Maintain the deceleration value and keep the initial deceleration value ⁇ .
  • the speed pattern generation unit 16 decelerates the travel distance according to the changed first deceleration value ⁇ .
  • (First deceleration distance value) S ⁇ is obtained, and a speed pattern is regenerated based on the first deceleration value ⁇ and the deceleration traveling distance value S ⁇ .
  • the speed pattern is regenerated by the speed pattern generator 16 when the car 2 is accelerated.
  • the deceleration command unit 17 determines whether or not the deceleration value of the speed pattern can be increased based on the information from the current detector 12. Is determined when the car 2 is decelerated.
  • the deceleration command unit 17 compares the current value detected when the car 2 is decelerated with the current detector 12 and the allowable current value of the motor 5 to determine whether or not there is a margin in the load on the motor 5. Is determined when the car 2 is decelerated. When the deceleration command unit 17 determines that there is a margin in the load of the motor 5, the current value detected by the current detector 12 and the allowable current value of the motor 5 are determined based on the information from the current detector 12. A second deceleration value ⁇ corresponding to the difference is obtained.
  • the deceleration command unit 17 determines whether or not the deceleration value of the speed pattern can be shifted from the first deceleration value ⁇ to the second deceleration value ⁇ in order to stop the car 2 at the destination floor.
  • the second deceleration value ⁇ is a deceleration value larger than the first deceleration value ⁇ .
  • the deceleration command unit 17 determines that the transition to the second deceleration value ⁇ is possible, the deceleration command unit 17 determines that the deceleration value of the speed pattern can be increased, and the load on the motor 5 has a margin. When it is determined that there is no shift to the second deceleration value ⁇ , it is determined that it is impossible to increase the deceleration value of the speed pattern.
  • the deceleration command unit 17 determines that the deceleration value of the speed pattern can be increased, it generates a speed pattern deceleration command and information on the second deceleration value ⁇ . Send to part 16.
  • the speed pattern generation unit 16 receives the command from the deceleration command unit 17 and corrects the speed pattern based on the information of the second deceleration value ⁇ . In order to maintain the stop position of the car 2 at the target floor, the speed pattern is corrected by temporarily lowering the deceleration value in the speed pattern from the first deceleration value ⁇ and then shifting to the second deceleration value ⁇ . Is done.
  • the speed controller 18 controls the inverter 11 according to the speed pattern while comparing the speed change of the car 2 with the speed pattern based on the information from each of the speed detector 13 and the speed pattern generator 16. Do.
  • FIG. 2 shows two speed patterns generated by the speed pattern generation unit 16 shown in FIG. 1.
  • the speed pattern when the deceleration value is the first deceleration value ⁇ and the deceleration value are the first.
  • FIG. 2 shows a speed pattern from the time t 0 when the car 2 starts to decelerate to the time when the car 2 stops.
  • the speeds of the two speed patterns A and B are both the maximum speed V 0 .
  • the second deceleration value ⁇ is changed from the first deceleration value ⁇ to the point a (speed V 1 ) at time t 1 .
  • transition to the deceleration value ⁇ is started, via point b at time t 2 the point c (velocity V 2) and time t 3 (velocity V 3), reaches a point d at time t 4 (velocity V 4) This completes the transition to the second deceleration value ⁇ .
  • the deceleration value decreases continuously as it approaches point b. Further, in the section between the points b and c in the speed pattern A, the deceleration value is 0 and the speed is constant. Further, in the section between the point c and the point d in the speed pattern A, the deceleration value continuously increases as the point d is approached.
  • the speed pattern A after the transition to the second deceleration value ⁇ is completed in point d through e point of time t 5 (speed V 5) and point f at time t 6 (velocity V 6), By reaching the point g at time t 7 , the speed of the car 2 becomes 0 and the car 2 stops.
  • the deceleration value is maintained at the second deceleration value ⁇ .
  • the deceleration value decreases continuously as the point g is approached.
  • the speed pattern A and the speed pattern B that is not shifted to the second deceleration value ⁇ intersect at point e at time t 5 . Therefore, at the point e, the speeds of the two speed patterns A and B coincide with each other at V 5 .
  • the deceleration value becomes the first deceleration until the point h (speed V 8 ) at time t 8.
  • the value of ⁇ is maintained, the deceleration value continuously decreases from the point h and reaches the point i at time t 9 , the speed of the car 2 becomes 0, and the car 2 stops.
  • the speed pattern B is corrected to the speed pattern A in the speed pattern generation unit 16
  • the area Sp of the region P and the area Sq of the region Q are calculated to coincide with each other.
  • the length of the section between the points b and c in the speed pattern A that is, between the time t 2 and the time t 3 ). The length of time) is adjusted.
  • FIG. 3 is a flowchart showing the process before the start of traveling of the car 2 in the control device 15 of FIG.
  • a speed pattern is generated by the speed pattern generator 16 based on information from the scale device 14. That is, the speed pattern generation unit 16 first determines the initial acceleration value ⁇ , the initial maximum value V 0, and the initial deceleration value ⁇ based on information from the scale device 14 before the car 2 starts to travel (S11). Thereafter, an initial deceleration distance value S ⁇ is obtained in the speed pattern generation unit 16 (S12). Thereafter, the speed pattern generation unit 16 generates a speed pattern based on the initial acceleration value ⁇ , the initial maximum value V 0 , the initial deceleration value ⁇ , and the initial deceleration distance value S ⁇ .
  • FIG. 4 is a flowchart showing processing during acceleration traveling of the car 2 in the control device 15 of FIG.
  • the speed pattern generator 16 determines whether or not the difference between the actual acceleration value ⁇ and the initial acceleration value ⁇ is greater than or equal to a threshold value ⁇ a (S21).
  • the deceleration value of the speed pattern is reduced from the initial deceleration value ⁇ to the first deceleration value ⁇ (S22). ) Based on the first deceleration value ⁇ , a deceleration travel distance value S ⁇ is obtained (S23). In this case, the speed pattern generator 16 regenerates the speed pattern based on the first deceleration value ⁇ and the deceleration travel distance value S ⁇ .
  • the deceleration value of the speed pattern is not changed and is maintained at the initial deceleration value ⁇ .
  • FIG. 5 is a flowchart showing a process when the car 2 decelerates in the control device 15 of FIG. After the car 2 has traveled at a maximum speed, when the car 2 starts to decelerate, whether or not to increase the deceleration value of the speed pattern is determined based on the information from the current detector 12. Determined by the unit 17.
  • the deceleration command unit 17 first sets the time t 2 and the time t 3 in FIG. 2 to the same value in order to obtain the shortest time that can be shifted to the second deceleration value ⁇ (S31). Thereafter, the deceleration command unit 17 obtains the area Sp of the region P and the area Sq of the region Q (S32), and determines whether or not the area Sp of the region P is less than or equal to the area Sq of the region Q. (S33).
  • the deceleration command unit 17 determines that it is impossible to increase the deceleration value of the speed pattern, and the value of the deceleration of the speed pattern is the first value.
  • the deceleration value ⁇ is maintained. In this case, until the area Sp of the region P becomes equal to or smaller than the area Sq of the region Q, the above process is repeated for each calculation cycle ⁇ t of the control device 15.
  • the deceleration command unit 17 determines that the deceleration value of the speed pattern can be increased, and a command to increase the deceleration of the speed pattern; Information about the second deceleration value ⁇ is sent from the deceleration command unit 17 to the speed pattern generation unit 16.
  • the value of the time t 3 is determined as the area Sq of the area Sp and the region Q of the region P coincides (S34).
  • the value at time t 3 is represented by time t 2 + (area Sq ⁇ area Sp) / speed V 3 .
  • the speed pattern generation unit 16 corrects the speed pattern for shifting the deceleration value from the first deceleration value ⁇ to the second deceleration value ⁇ (S35).
  • FIG. 6 is a flowchart showing a process when the speed pattern is corrected by the speed pattern generation unit 16 of FIG.
  • the speed pattern is corrected so that the speed change from speed V 1 to speed V 2 is smooth (S41).
  • the speed pattern is corrected so that the speed V 2 and the speed V 3 in the section from the time t 2 to the time t 3 obtained in S 34 are constant (S 42).
  • the speed pattern is corrected so that the speed change from speed V 3 to speed V 4 is smooth (S43).
  • the deceleration command unit 17 determines whether or not the value of the deceleration of the speed pattern can be increased based on information from the current detector 12 when the car 2 is decelerated, and reduces the speed pattern.
  • the speed pattern generation unit 16 temporarily decreases the speed pattern deceleration value from the first deceleration value ⁇ , and then the second deceleration value that is larger than the first deceleration value ⁇ . Since the shift to ⁇ is made, the car 2 can be stopped at the destination floor without the stop position of the car 2 being deviated from the destination floor even if the deceleration of the car 2 is changed during deceleration. Therefore, the traveling time of the car 2 can be shortened, and a decrease in elevator service can be suppressed.
  • the speed pattern includes an interval in which the deceleration value becomes 0 (from time t 2 to time t 3) until the deceleration value shifts from the first deceleration value ⁇ to the second deceleration value ⁇ . Therefore, the speed pattern can be easily corrected.
  • the deceleration value of the speed pattern is set according to the margin of the motor 5 with respect to the load when the car 2 is decelerated. Can be effectively enlarged.
  • the speed in the section between the time t 2 and the time t 3 of the speed pattern A is constant (that is, the deceleration value is always 0), but the region P If the area Sp and the area Sq of the region Q are the same, the speed in the section between the time t 2 and the time t 3 may not be constant. For example, the speed in the section between time t 2 and time t 3 may be increased or decreased with a certain slope.

Abstract

A control device for an elevator is provided with a speed pattern generation unit and a deceleration instruction unit. The speed pattern generation unit generates a speed pattern for performing control for stopping a car at a destination floor by accelerating and decelerating the car. During the deceleration travel of the car, the deceleration instruction unit determines, on the basis of information from a torque detector for detecting the torque of a drive device for causing the car to travel, whether the increase of the value of the deceleration of the speed pattern is possible or not. When the deceleration instruction unit determines that the increase of the deceleration of the speed pattern is possible, the speed pattern generation unit is able to shift the value of the deceleration of the speed pattern to a second deceleration value larger than a first deceleration value after temporarily decreasing the value of the deceleration from the first deceleration value.

Description

エレベータの制御装置Elevator control device
 この発明は、かごの速度を制御するエレベータの制御装置に関するものである。 The present invention relates to an elevator control device that controls the speed of a car.
 従来、かごを走行させるモータの駆動能力を最大限活用するために、かごの加減速度及び最高速度をかご内の負荷に応じて変更するエレベータ装置が知られている。かご内の負荷は、かごに設けられた秤装置により検出される。かごの加減速度及び最高速度の変更は、モータ及びモータを駆動する電機機器の駆動能力の範囲内で行われる(特許文献1)。 Conventionally, an elevator apparatus that changes the acceleration / deceleration speed and the maximum speed of a car according to the load in the car is known in order to make maximum use of the driving ability of the motor that drives the car. The load in the car is detected by a scale device provided in the car. The acceleration / deceleration and maximum speed of the car are changed within the range of the driving capability of the motor and the electrical equipment that drives the motor (Patent Document 1).
 しかし、秤装置の検出値に誤差が生じる場合には、かごの加減速度及び最高速度がモータの駆動能力を超えて高く設定されるおそれがある。この場合、過電流によって電源系統が遮断されたり、発熱によってモータが損傷したりして、エレベータの運行が停止してしまうおそれがある。 However, if there is an error in the detection value of the scale device, the acceleration / deceleration and maximum speed of the car may be set higher than the motor drive capacity. In this case, there is a possibility that the operation of the elevator stops because the power supply system is interrupted by overcurrent or the motor is damaged by heat generation.
 このような秤装置の検出誤差による不具合の発生を防止するために、従来、モータへの電流を電流検出器により検出し、電流検出器による電流の検出値が所定の値を超えたときに、かごの加減速度又は最高速度を低下させるエレベータの制御装置が提案されている(特許文献2)。 In order to prevent the occurrence of problems due to detection errors of such a scale device, conventionally, the current to the motor is detected by a current detector, and when the current detection value by the current detector exceeds a predetermined value, An elevator control device that lowers the acceleration / deceleration or maximum speed of a car has been proposed (Patent Document 2).
特開2003-238037号公報JP 2003-238037 A 特開2005-280935号公報JP 2005-280935 A
 特許文献2に示されている従来のエレベータの制御装置では、かごの減速走行によるモータの負担を小さくするために、かごの減速走行中にかごの減速度を設定値よりも低くすることもできる。しかし、特許文献2のエレベータの制御装置では、かごの減速走行中に変更されたかごの減速度が低い値のまま維持されるので、かごが目的階を行き過ぎてしまい、かごの停止位置が目的階から外れることになってしまう。 In the conventional elevator control device disclosed in Patent Document 2, the car deceleration can be made lower than the set value during the car decelerating to reduce the load on the motor due to the car decelerating. . However, in the elevator control apparatus disclosed in Patent Document 2, the car deceleration changed during the deceleration of the car is maintained at a low value, so that the car goes over the destination floor, and the stop position of the car is the target. You will be off the floor.
 この発明は、上記のような課題を解決するためになされたものであり、減速走行時にかごの減速度を変更しても、目的階にかごを停止させることができるエレベータの制御装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and provides an elevator control device capable of stopping a car at a destination floor even if the car deceleration is changed during deceleration traveling. With the goal.
 この発明によるエレベータの制御装置は、かごを増速及び減速させて目的階に停止させる制御を行うための速度パターンを生成する速度パターン生成部、及びかごを走行させる駆動装置のトルクを検出するトルク検出器からの情報に基づいて、速度パターンの減速度の値の増加の可否を上記かごの減速走行時に判定する減速度指令部を備え、速度パターン生成部は、速度パターンの減速度の増加が可能であるとの判定を減速度指令部が行ったときに、速度パターンの減速度の値を第1の減速値から一旦下げた後に、第1の減速値よりも大きい第2の減速値に移行可能になっている。 The elevator control device according to the present invention includes a speed pattern generation unit that generates a speed pattern for performing control to increase and decrease the speed of a car and stop the car at a target floor, and torque that detects torque of a driving device that drives the car. Based on the information from the detector, it has a deceleration command unit that determines whether or not the value of the deceleration of the speed pattern can be increased when the car is decelerated, and the speed pattern generation unit is configured to increase the deceleration of the speed pattern. When the deceleration command unit determines that it is possible, the deceleration value of the speed pattern is once lowered from the first deceleration value, and then is set to a second deceleration value that is larger than the first deceleration value. Can be migrated.
 この発明によるエレベータの制御装置では、減速度指令部がトルク検出器からの情報に基づいて速度パターンの減速度の値の増加の可否をかごの減速走行時に判定し、速度パターンの減速度の増加が可能であるときに、速度パターン生成部が速度パターンの減速度の値を第1の減速値から一旦下げた後に、第1の減速値よりも大きい第2の減速値に移行させるようになっているので、減速走行時にかごの減速度を変更しても、かごの停止位置が目的階から外れることなく、目的階にかごを停止させることができる。従って、かごの走行時間を短縮することができ、エレベータの運行サービスの低下を抑制することができる。 In the elevator control device according to the present invention, the deceleration command unit determines whether or not the value of the deceleration of the speed pattern can be increased based on the information from the torque detector when the car is decelerating, and increases the deceleration of the speed pattern. When it is possible, the speed pattern generation unit temporarily lowers the deceleration value of the speed pattern from the first deceleration value, and then shifts to a second deceleration value that is larger than the first deceleration value. Therefore, even if the car deceleration is changed during deceleration, the car can be stopped at the destination floor without the car stopping position deviating from the destination floor. Therefore, the traveling time of the car can be shortened, and the decrease in the elevator service can be suppressed.
この発明の実施の形態1によるエレベータを示す構成図である。It is a block diagram which shows the elevator by Embodiment 1 of this invention. 図1の速度パターン生成部によって生成された2つの速度パターンであって、減速度の値が第1の減速値ηであるときの速度パターンと、減速度の値が第1の減速値ηから第2の減速値ζへ移行されたときの速度パターンとを示すグラフである。The two speed patterns generated by the speed pattern generation unit in FIG. 1, where the deceleration value is the first deceleration value η, and the deceleration value is derived from the first deceleration value η. It is a graph which shows the speed pattern when it transfers to the 2nd deceleration value (zeta). 図1の制御装置におけるかごの走行開始前の処理を示すフローチャートである。It is a flowchart which shows the process before the driving | running | working start of the cage | basket | car in the control apparatus of FIG. 図1の制御装置におけるかごの加速走行時の処理を示すフローチャートである。It is a flowchart which shows the process at the time of the acceleration driving | running | working of the car in the control apparatus of FIG. 図1の制御装置におけるかごの減速走行時の処理を示すフローチャートである。It is a flowchart which shows the process at the time of deceleration driving | running | working of the cage | basket | car in the control apparatus of FIG. 図1の速度パターン生成部によって速度パターンの修正が行われるときの処理を示すフローチャートである。It is a flowchart which shows a process when correction of a speed pattern is performed by the speed pattern generation part of FIG.
 以下、この発明の好適な実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1によるエレベータを示す構成図である。図において、昇降路1内には、上下方向へ走行可能なかご2及び釣合おもり3が設けられている。昇降路1の上部には、かご2及び釣合おもり3を走行させる駆動装置である巻上機4が設けられている。
Preferred embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing an elevator according to Embodiment 1 of the present invention. In the figure, a car 2 and a counterweight 3 capable of traveling in the vertical direction are provided in the hoistway 1. On the upper part of the hoistway 1, a hoisting machine 4 that is a driving device for running the car 2 and the counterweight 3 is provided.
 巻上機4は、モータ5と、モータ5により回転される駆動シーブ6とを有している。駆動シーブ6には、主索7が巻き掛けられている。かご2及び釣合おもり3は、主索7により吊り下げられている。かご2及び釣合おもり3は、駆動シーブ6の回転により昇降路1内を走行される。 The hoisting machine 4 has a motor 5 and a drive sheave 6 rotated by the motor 5. A main rope 7 is wound around the drive sheave 6. The car 2 and the counterweight 3 are suspended by the main rope 7. The car 2 and the counterweight 3 are run in the hoistway 1 by the rotation of the drive sheave 6.
 モータ5には、交流電源8からの電力が供給される。交流電源8からの電力は、電源遮断部9、コンバータ10及びインバータ11を介してモータ5に供給される。 The electric power from the AC power supply 8 is supplied to the motor 5. The electric power from the AC power supply 8 is supplied to the motor 5 through the power supply cutoff unit 9, the converter 10 and the inverter 11.
 電源遮断部9には、モータ5、コンバータ10及びインバータ11の容量に基づいて定格電流値があらかじめ設定されている。電源遮断部9は、交流電源8からの電流値が定格電流値を超えると、コンバータ10やインバータ11を含む回路を交流電源8から切り離す。これにより、モータ5、コンバータ10及びインバータ11が保護される。電源遮断部9としては、例えばヒューズや遮断器等が用いられる。 The rated current value is preset in the power shut-off unit 9 based on the capacities of the motor 5, the converter 10 and the inverter 11. When the current value from the AC power supply 8 exceeds the rated current value, the power supply cutoff unit 9 disconnects the circuit including the converter 10 and the inverter 11 from the AC power supply 8. Thereby, the motor 5, the converter 10, and the inverter 11 are protected. For example, a fuse or a circuit breaker is used as the power shutoff unit 9.
 コンバータ10は、交流電源8からの交流電流を直流電流に変換する。コンバータ10で直流に変換された電流は、インバータ11へ送られる。インバータ11は、コンバータ10からの電流の周波数を調整する。インバータ11で周波数が調整された電流は、モータ5へ送られる。モータ5は、インバータ11からの電力を受けることにより、インバータ11からの電流の周波数に応じた回転数で駆動シーブ6を回転させる。 Converter 10 converts an alternating current from alternating current power supply 8 into a direct current. The current converted into direct current by the converter 10 is sent to the inverter 11. Inverter 11 adjusts the frequency of the current from converter 10. The current whose frequency is adjusted by the inverter 11 is sent to the motor 5. The motor 5 receives the electric power from the inverter 11 and rotates the drive sheave 6 at a rotation speed corresponding to the frequency of the current from the inverter 11.
 電源遮断部9からコンバータ10へ送られる電流の値は、電流検出器12によって検出される。電流検出器12によって検出される電流の値は、モータ5が発生するトルクに応じて変動する。従って、電流検出器12は、モータ5のトルクを検出するトルク検出器とされている。 The value of the current sent from the power shut-off unit 9 to the converter 10 is detected by the current detector 12. The value of the current detected by the current detector 12 varies according to the torque generated by the motor 5. Therefore, the current detector 12 is a torque detector that detects the torque of the motor 5.
 巻上機4には、駆動シーブ6の回転に応じた信号を発生する速度検出器13が設けられている。かご2が駆動シーブ6の回転に応じて走行されることから、速度検出器13はかご2の位置及び速度に応じた信号を発生する。速度検出器13としては、例えばエンコーダ等が用いられる。かご2には、かご2内の積載物(例えば乗客や荷物等)の重量(即ち、かご2内の負荷)を検出する秤装置(かご負荷検出装置)14が設けられている。 The hoisting machine 4 is provided with a speed detector 13 that generates a signal corresponding to the rotation of the drive sheave 6. Since the car 2 travels according to the rotation of the drive sheave 6, the speed detector 13 generates a signal corresponding to the position and speed of the car 2. As the speed detector 13, for example, an encoder or the like is used. The car 2 is provided with a weighing device (car load detecting device) 14 for detecting the weight of the load (for example, passengers, luggage, etc.) in the car 2 (that is, the load in the car 2).
 電流検出器12、速度検出器13及び秤装置14のそれぞれからの情報は、エレベータの運転を制御する制御装置15へ送られる。制御装置15は、電流検出器12、速度検出器13及び秤装置14のそれぞれからの情報に基づいて、インバータ11を制御し、かご2の走行を制御する。 Information from each of the current detector 12, the speed detector 13, and the scale device 14 is sent to a control device 15 that controls the operation of the elevator. The control device 15 controls the inverter 11 based on information from each of the current detector 12, the speed detector 13, and the scale device 14, and controls the traveling of the car 2.
 制御装置15は、速度パターン生成部16、減速度指令部17及び速度制御部18を有している。 The control device 15 includes a speed pattern generation unit 16, a deceleration command unit 17, and a speed control unit 18.
 速度パターン生成部16は、かご2を加速及び減速させて目的階に停止させる制御を行うための速度パターンを生成する。 The speed pattern generation unit 16 generates a speed pattern for performing control for accelerating and decelerating the car 2 to stop it at the destination floor.
 速度パターン生成部16は、かご2の走行開始前に、秤装置14からの情報に基づいて、かご2の速度パターンを生成する。即ち、速度パターン生成部16は、かご2の走行開始前に、秤装置14からの情報にそれぞれ応じた加速度、最高速度及び減速度を求めるとともに、求めた最高速度及び減速度に基づいて、かご2の減速開始時からかご2の停止までの距離(減速走行距離)を求め、求めた加速度、最高速度、減速度及び減速走行距離のそれぞれに基づいて、かご2の速度パターンを生成する。 The speed pattern generation unit 16 generates a speed pattern of the car 2 based on information from the scale device 14 before the car 2 starts to travel. That is, the speed pattern generation unit 16 obtains acceleration, maximum speed, and deceleration corresponding to information from the weighing device 14 before starting the traveling of the car 2, and based on the obtained maximum speed and deceleration, A distance (deceleration travel distance) from the start of deceleration 2 to the stop of the car 2 is obtained, and a speed pattern of the car 2 is generated based on each of the obtained acceleration, maximum speed, deceleration, and deceleration travel distance.
 この例では、かご2の走行開始前に求められる加速度、最高速度、減速度及び減速走行距離のそれぞれの値は、初期加速値α、初期最高値V0、初期減速値β、初期減速距離値Sβとされている。 In this example, the acceleration, maximum speed, deceleration, and deceleration travel distance required before the car 2 starts traveling are the initial acceleration value α, initial maximum value V 0 , initial deceleration value β, and initial deceleration distance value. S β .
 また、速度パターン生成部16は、かご2の加速走行時に、速度検出器13からの情報に基づいてかご2の実際の加速度の値γを求め、実際の加速度の値γと初期加速値αとを比較することにより、速度パターンの減速度の値(即ち、初期減速値β)の変更の要否を判定する。速度パターン生成部16は、速度パターンの減速度の値の変更が必要であると判定したときに速度パターンの減速度の値を初期減速値βから、初期減速値βよりも小さい第1の減速値ηに変更し、速度パターンの減速度の値の変更が不要であると判定したときに速度パターンの減速度の値を初期減速値βのまま維持する。また、第1の減速値ηは、あらかじめ設定された値であってもよいし、実際の加速度の値γに基づいて求めた値であってもよい。 Further, the speed pattern generation unit 16 obtains an actual acceleration value γ of the car 2 based on information from the speed detector 13 when the car 2 is accelerated, and the actual acceleration value γ, the initial acceleration value α, and the like. Are compared, it is determined whether or not it is necessary to change the deceleration value of the speed pattern (that is, the initial deceleration value β). When the speed pattern generation unit 16 determines that the speed pattern deceleration value needs to be changed, the speed pattern generation unit 16 changes the speed pattern deceleration value from the initial deceleration value β to a first deceleration smaller than the initial deceleration value β. When the value is changed to η and it is determined that the change in the speed pattern deceleration value is unnecessary, the speed pattern deceleration value is maintained as the initial deceleration value β. Further, the first deceleration value η may be a preset value or a value obtained based on the actual acceleration value γ.
 即ち、速度パターン生成部16は、かご2の加速走行時に、かご2の加速度の値が例えばモータ5の過負荷等により初期加速値αに達しなかった場合、かご2の減速走行時においてモータ5の過負荷を防止するために、速度パターンの減速度の値を下げるようになっている。 In other words, the speed pattern generation unit 16 determines that the motor 2 is decelerating when the car 2 is not accelerated to the initial acceleration value α due to, for example, an overload of the motor 5. In order to prevent overload, the deceleration value of the speed pattern is lowered.
 具体的には、速度パターン生成部16は、速度検出器13からの情報に基づいて求めた実際の加速度の値γと初期加速値αとの差があらかじめ設定された閾値Δa以上であるときに、速度パターンの減速度の値を初期減速値βから第1の減速値ηに低下させ、実際の加速度の値γと初期加速値αとの差が閾値Δaよりも小さいときに、速度パターンの減速度の値を維持して初期減速値βのままとする。 Specifically, when the difference between the actual acceleration value γ obtained based on the information from the speed detector 13 and the initial acceleration value α is greater than or equal to a preset threshold value Δa, the speed pattern generation unit 16 When the speed pattern deceleration value is decreased from the initial deceleration value β to the first deceleration value η and the difference between the actual acceleration value γ and the initial acceleration value α is smaller than the threshold value Δa, Maintain the deceleration value and keep the initial deceleration value β.
 さらに、速度パターン生成部16は、速度パターンの減速度の値を初期減速値βから第1の減速値ηに変更したときには、変更後の第1の減速値ηに応じた減速走行距離の値(第1の減速距離値)Sηを求め、第1の減速値η及び減速走行距離の値Sηに基づいて、速度パターンを再生成する。速度パターン生成部16による速度パターンの再生成は、かご2の加速走行時に行われる。 Furthermore, when the deceleration value of the speed pattern is changed from the initial deceleration value β to the first deceleration value η, the speed pattern generation unit 16 decelerates the travel distance according to the changed first deceleration value η. (First deceleration distance value) S η is obtained, and a speed pattern is regenerated based on the first deceleration value η and the deceleration traveling distance value S η . The speed pattern is regenerated by the speed pattern generator 16 when the car 2 is accelerated.
 減速度指令部17は、速度パターンの減速度の値が第1の減速値ηに低下されている場合、電流検出器12からの情報に基づいて、速度パターンの減速度の値の増加の可否をかご2の減速走行時に判定する。 When the deceleration value of the speed pattern has been reduced to the first deceleration value η, the deceleration command unit 17 determines whether or not the deceleration value of the speed pattern can be increased based on the information from the current detector 12. Is determined when the car 2 is decelerated.
 即ち、減速度指令部17は、電流検出器12でかご2の減速走行時に検出された電流値とモータ5の許容電流値とを比較することにより、モータ5の負荷に余裕があるか否かをかご2の減速走行時に判定する。減速度指令部17は、モータ5の負荷に余裕があると判定したときに、電流検出器12からの情報に基づいて、電流検出器12で検出された電流値とモータ5の許容電流値との差に応じた第2の減速値ζを求める。また、減速度指令部17は、かご2を目的階に停止させるために、速度パターンの減速度の値を第1の減速値ηから第2の減速値ζへ移行可能か否かを判定する。なお、第2の減速値ζは、第1の減速値ηよりも大きな減速度の値である。 That is, the deceleration command unit 17 compares the current value detected when the car 2 is decelerated with the current detector 12 and the allowable current value of the motor 5 to determine whether or not there is a margin in the load on the motor 5. Is determined when the car 2 is decelerated. When the deceleration command unit 17 determines that there is a margin in the load of the motor 5, the current value detected by the current detector 12 and the allowable current value of the motor 5 are determined based on the information from the current detector 12. A second deceleration value ζ corresponding to the difference is obtained. Further, the deceleration command unit 17 determines whether or not the deceleration value of the speed pattern can be shifted from the first deceleration value η to the second deceleration value ζ in order to stop the car 2 at the destination floor. . Note that the second deceleration value ζ is a deceleration value larger than the first deceleration value η.
 減速度指令部17は、第2の減速値ζへの移行が可能であると判定したときに、速度パターンの減速度の値の増加が可能であると判定し、モータ5の負荷に余裕がないと判定したとき、又は第2の減速値ζへの移行が不可能であると判定したときに、速度パターンの減速度の値の増加が不可能であると判定する。 When the deceleration command unit 17 determines that the transition to the second deceleration value ζ is possible, the deceleration command unit 17 determines that the deceleration value of the speed pattern can be increased, and the load on the motor 5 has a margin. When it is determined that there is no shift to the second deceleration value ζ, it is determined that it is impossible to increase the deceleration value of the speed pattern.
 減速度指令部17は、速度パターンの減速度の値の増加が可能であると判定したときに、速度パターンの減速度の増加の指令と、第2の減速値ζの情報とを速度パターン生成部16へ送る。 When the deceleration command unit 17 determines that the deceleration value of the speed pattern can be increased, it generates a speed pattern deceleration command and information on the second deceleration value ζ. Send to part 16.
 速度パターン生成部16は、減速度指令部17からの指令を受けることにより、第2の減速値ζの情報に基づいて、速度パターンの修正を行う。速度パターンの修正は、かご2の停止位置を目的階に維持するために、速度パターンにおける減速度の値を第1の減速値ηから一旦下げた後に、第2の減速値ζへ移行させることにより行われる。 The speed pattern generation unit 16 receives the command from the deceleration command unit 17 and corrects the speed pattern based on the information of the second deceleration value ζ. In order to maintain the stop position of the car 2 at the target floor, the speed pattern is corrected by temporarily lowering the deceleration value in the speed pattern from the first deceleration value η and then shifting to the second deceleration value ζ. Is done.
 速度制御部18は、速度検出器13及び速度パターン生成部16のそれぞれからの情報に基づいて、かご2の速度変化と速度パターンとを比較しながら速度パターンに従った制御をインバータ11に対して行う。 The speed controller 18 controls the inverter 11 according to the speed pattern while comparing the speed change of the car 2 with the speed pattern based on the information from each of the speed detector 13 and the speed pattern generator 16. Do.
 図2は、図1の速度パターン生成部16によって生成された2つの速度パターンであって、減速度の値が第1の減速値ηであるときの速度パターンと、減速度の値が第1の減速値ηから第2の減速値ζへ移行されたときの速度パターンとを示すグラフである。なお、図2では、かご2の減速開始の時刻t0からかご2の停止までの速度パターンを示している。図において、かご2の減速開示の時刻t0では、2つの速度パターンA及びBの速度はともに最高速度V0となっている。 FIG. 2 shows two speed patterns generated by the speed pattern generation unit 16 shown in FIG. 1. The speed pattern when the deceleration value is the first deceleration value η and the deceleration value are the first. It is a graph which shows the speed pattern when it transfers to the 2nd deceleration value (zeta) from the deceleration value (eta) of this. FIG. 2 shows a speed pattern from the time t 0 when the car 2 starts to decelerate to the time when the car 2 stops. In the figure, at the time t 0 when the car 2 is decelerated, the speeds of the two speed patterns A and B are both the maximum speed V 0 .
 減速度の値が第1の減速値ηから第2の減速値ζへ移行されるときの速度パターンAでは、時刻t1のa点(速度V1)において第1の減速値ηから第2の減速値ζへの移行が開始され、時刻t2のb点(速度V2)及び時刻t3のc点(速度V3)を経て、時刻t4のd点(速度V4)に達することにより、第2の減速値ζへの移行が完了する。 In the speed pattern A when the deceleration value is shifted from the first deceleration value η to the second deceleration value ζ, the second deceleration value η is changed from the first deceleration value η to the point a (speed V 1 ) at time t 1 . transition to the deceleration value ζ is started, via point b at time t 2 the point c (velocity V 2) and time t 3 (velocity V 3), reaches a point d at time t 4 (velocity V 4) This completes the transition to the second deceleration value ζ.
 速度パターンAにおけるa点とb点との間の区間では、減速度の値がb点に近づくにつれて連続的に低下している。また、速度パターンAにおけるb点とc点との間の区間では、減速度の値が0で速度が一定となっている。さらに、速度パターンAにおけるc点とd点との間の区間では、d点に近づくにつれて減速度の値が連続的に増加している。 In the section between point a and point b in speed pattern A, the deceleration value decreases continuously as it approaches point b. Further, in the section between the points b and c in the speed pattern A, the deceleration value is 0 and the speed is constant. Further, in the section between the point c and the point d in the speed pattern A, the deceleration value continuously increases as the point d is approached.
 また、速度パターンAでは、第2の減速値ζへの移行がd点で完了した後、時刻t5のe点(速度V5)及び時刻t6のf点(速度V6)を経て、時刻t7のg点に達することにより、かご2の速度が0となってかご2が停止する。 Furthermore, the speed pattern A, after the transition to the second deceleration value ζ is completed in point d through e point of time t 5 (speed V 5) and point f at time t 6 (velocity V 6), By reaching the point g at time t 7 , the speed of the car 2 becomes 0 and the car 2 stops.
 速度パターンAにおけるd点とf点との間の区間では、減速度の値が第2の減速値ζで維持されている。また、速度パターンAにおけるf点とg点との間の区間では、g点に近づくにつれて減速度の値が連続的に低下している。 In the section between the point d and the point f in the speed pattern A, the deceleration value is maintained at the second deceleration value ζ. In the section between the point f and the point g in the speed pattern A, the deceleration value decreases continuously as the point g is approached.
 速度パターンAと、第2の減速値ζへの移行が行われない速度パターンBとは、時刻t5のe点で交差している。従って、e点においては、2つの速度パターンA及びBの速度がV5で一致している。 The speed pattern A and the speed pattern B that is not shifted to the second deceleration value ζ intersect at point e at time t 5 . Therefore, at the point e, the speeds of the two speed patterns A and B coincide with each other at V 5 .
 速度パターンBでは、かご2の減速が開始されて減速度の値が第1の減速値ηとなった後、時刻t8のh点(速度V8)まで減速度の値が第1の減速値ηで維持され、h点から減速度の値が連続的に低下して時刻t9の点iに達することにより、かご2の速度が0となってかご2が停止する。 In the speed pattern B, after the car 2 starts decelerating and the deceleration value becomes the first deceleration value η, the deceleration value becomes the first deceleration until the point h (speed V 8 ) at time t 8. The value of η is maintained, the deceleration value continuously decreases from the point h and reaches the point i at time t 9 , the speed of the car 2 becomes 0, and the car 2 stops.
 速度パターンAによるかご2の減速走行距離の値と、速度パターンBによるかご2の減速走行距離の値とが一致する場合には、2つの速度パターンA及びBのいずれによってかご2が走行されても、かご2は共通の目的階に停止される。速度パターンAによるかご2の減速走行距離の値と、速度パターンBによるかご2の減速走行距離の値とを一致させるためには、図2でのa-b-c-d-e-aで囲まれる領域Pの面積Spと、図2でのe-h-i-g-f-eで囲まれる領域Qの面積Sqとが一致することが必要である。従って、速度パターン生成部16において速度パターンBが速度パターンAに修正されるときには、領域Pの面積Spと領域Qの面積Sqとが一致するように演算される。領域Pの面積Spと領域Qの面積Sqとを一致させるためには、速度パターンAにおけるb点とc点との間の区間の長さ(即ち、時刻t2と時刻t3との間の時間の長さ)が調整される。 When the value of the deceleration travel distance of the car 2 according to the speed pattern A matches the value of the deceleration travel distance of the car 2 according to the speed pattern B, the car 2 is traveled by either of the two speed patterns A and B. However, the car 2 is stopped on a common destination floor. In order to make the value of the deceleration travel distance of the car 2 according to the speed pattern A coincide with the value of the deceleration travel distance of the car 2 according to the speed pattern B, abc-d-ea in FIG. It is necessary that the area Sp of the surrounded region P and the area Sq of the region Q surrounded by ehigfa in FIG. Therefore, when the speed pattern B is corrected to the speed pattern A in the speed pattern generation unit 16, the area Sp of the region P and the area Sq of the region Q are calculated to coincide with each other. In order to make the area Sp of the region P and the area Sq of the region Q coincide with each other, the length of the section between the points b and c in the speed pattern A (that is, between the time t 2 and the time t 3 ). The length of time) is adjusted.
 次に、動作について説明する。図3は、図1の制御装置15におけるかご2の走行開始前の処理を示すフローチャートである。かご2の走行開始前には、秤装置14からの情報に基づいて、速度パターンが速度パターン生成部16により生成される。即ち、速度パターン生成部16では、かご2の走行開始前に、まず秤装置14からの情報に基づいて、初期加速値α、初期最高値V0及び初期減速値βが求められる(S11)。この後、速度パターン生成部16において、初期減速距離値Sβが求められる(S12)。この後、速度パターン生成部16では、初期加速値α、初期最高値V0、初期減速値β及び初期減速距離値Sβに基づいて、速度パターンが生成される。 Next, the operation will be described. FIG. 3 is a flowchart showing the process before the start of traveling of the car 2 in the control device 15 of FIG. Before the traveling of the car 2 starts, a speed pattern is generated by the speed pattern generator 16 based on information from the scale device 14. That is, the speed pattern generation unit 16 first determines the initial acceleration value α, the initial maximum value V 0, and the initial deceleration value β based on information from the scale device 14 before the car 2 starts to travel (S11). Thereafter, an initial deceleration distance value is obtained in the speed pattern generation unit 16 (S12). Thereafter, the speed pattern generation unit 16 generates a speed pattern based on the initial acceleration value α, the initial maximum value V 0 , the initial deceleration value β, and the initial deceleration distance value S β .
 図4は、図1の制御装置15におけるかご2の加速走行時の処理を示すフローチャートである。かご2の加速走行時には、速度パターン生成部16において、実際の加速度の値γと初期加速値αとの差が閾値Δa以上であるか否かが判定される(S21)。 FIG. 4 is a flowchart showing processing during acceleration traveling of the car 2 in the control device 15 of FIG. When the car 2 is accelerating, the speed pattern generator 16 determines whether or not the difference between the actual acceleration value γ and the initial acceleration value α is greater than or equal to a threshold value Δa (S21).
 実際の加速度の値γと初期加速値αとの差が閾値Δa以上である場合には、速度パターンの減速度の値が初期減速値βから第1の減速値ηに低下された後(S22)、第1の減速値ηに基づいて減速走行距離の値Sηが求められる(S23)。この場合、速度パターン生成部16では、第1の減速値η及び減速走行距離の値Sηに基づいて、速度パターンが再生成される。 When the difference between the actual acceleration value γ and the initial acceleration value α is equal to or greater than the threshold value Δa, the deceleration value of the speed pattern is reduced from the initial deceleration value β to the first deceleration value η (S22). ) Based on the first deceleration value η, a deceleration travel distance value S η is obtained (S23). In this case, the speed pattern generator 16 regenerates the speed pattern based on the first deceleration value η and the deceleration travel distance value S η .
 一方、実際の加速度の値γと初期加速値αとの差が閾値Δaよりも小さい場合には、速度パターンの減速度の値は変更されず、初期減速値βに維持される。 On the other hand, when the difference between the actual acceleration value γ and the initial acceleration value α is smaller than the threshold value Δa, the deceleration value of the speed pattern is not changed and is maintained at the initial deceleration value β.
 図5は、図1の制御装置15におけるかご2の減速走行時の処理を示すフローチャートである。かご2が最高速度で一定走行を行った後、かご2の減速走行が開始されると、電流検出器12からの情報に基づいて、速度パターンの減速度の値の増加の可否が減速度指令部17によって判定される。 FIG. 5 is a flowchart showing a process when the car 2 decelerates in the control device 15 of FIG. After the car 2 has traveled at a maximum speed, when the car 2 starts to decelerate, whether or not to increase the deceleration value of the speed pattern is determined based on the information from the current detector 12. Determined by the unit 17.
 即ち、減速度指令部17では、第2の減速値ζへ移行可能な最短時間を求めるために、まず図2における時刻t2と時刻t3とが同じ値に設定される(S31)。この後、減速度指令部17において、領域Pの面積Spと領域Qの面積Sqとが求められ(S32)、領域Pの面積Spが領域Qの面積Sq以下であるか否かが判定される(S33)。 In other words, the deceleration command unit 17 first sets the time t 2 and the time t 3 in FIG. 2 to the same value in order to obtain the shortest time that can be shifted to the second deceleration value ζ (S31). Thereafter, the deceleration command unit 17 obtains the area Sp of the region P and the area Sq of the region Q (S32), and determines whether or not the area Sp of the region P is less than or equal to the area Sq of the region Q. (S33).
 領域Pの面積Spが領域Qの面積Sqよりも大きい場合、速度パターンの減速度の値の増加が不可能であると減速度指令部17により判定され、速度パターンの減速度の値が第1の減速値ηで維持される。この場合、領域Pの面積Spが領域Qの面積Sq以下となるまで、制御装置15の演算周期Δtごとに上記の処理が繰り返し行われる。 When the area Sp of the region P is larger than the area Sq of the region Q, the deceleration command unit 17 determines that it is impossible to increase the deceleration value of the speed pattern, and the value of the deceleration of the speed pattern is the first value. The deceleration value η is maintained. In this case, until the area Sp of the region P becomes equal to or smaller than the area Sq of the region Q, the above process is repeated for each calculation cycle Δt of the control device 15.
 領域Pの面積Spが領域Qの面積Sq以下である場合、速度パターンの減速度の値の増加が可能であると減速度指令部17により判定され、速度パターンの減速度の増加の指令と、第2の減速値ζの情報とが減速度指令部17から速度パターン生成部16へ送られる。 When the area Sp of the region P is equal to or smaller than the area Sq of the region Q, the deceleration command unit 17 determines that the deceleration value of the speed pattern can be increased, and a command to increase the deceleration of the speed pattern; Information about the second deceleration value ζ is sent from the deceleration command unit 17 to the speed pattern generation unit 16.
 この後、速度パターン生成部16では、領域Pの面積Spと領域Qの面積Sqとが一致するように時刻t3の値が求められる(S34)。時刻t3の値は、時刻t2+(面積Sq-面積Sp)/速度V3で表される。 Thereafter, the speed pattern generating section 16, the value of the time t 3 is determined as the area Sq of the area Sp and the region Q of the region P coincides (S34). The value at time t 3 is represented by time t 2 + (area Sq−area Sp) / speed V 3 .
 この後、速度パターン生成部16において、減速度の値を第1の減速値ηから第2の減速値ζへ移行するための速度パターンの修正が行われる(S35)。 Thereafter, the speed pattern generation unit 16 corrects the speed pattern for shifting the deceleration value from the first deceleration value η to the second deceleration value ζ (S35).
 図6は、図1の速度パターン生成部16によって速度パターンの修正が行われるときの処理を示すフローチャートである。まず時刻t1から時刻t2までの区間において、速度V1から速度V2への速度変化がなめらかになるように速度パターンが修正される(S41)。この後、時刻t2から、上記のS34で求めた時刻t3までの区間における速度V2及び速度V3が一定になるように速度パターンが修正される(S42)。この後、時刻t3から時刻t4までの区間において、速度V3から速度V4への速度変化がなめらかになるように速度パターンが修正される(S43)。 FIG. 6 is a flowchart showing a process when the speed pattern is corrected by the speed pattern generation unit 16 of FIG. First, in a section from time t 1 to time t 2 , the speed pattern is corrected so that the speed change from speed V 1 to speed V 2 is smooth (S41). Thereafter, the speed pattern is corrected so that the speed V 2 and the speed V 3 in the section from the time t 2 to the time t 3 obtained in S 34 are constant (S 42). Thereafter, in the section from time t 3 to time t 4 , the speed pattern is corrected so that the speed change from speed V 3 to speed V 4 is smooth (S43).
 このようなエレベータの制御装置では、減速度指令部17が電流検出器12からの情報に基づいて速度パターンの減速度の値の増加の可否をかご2の減速走行時に判定し、速度パターンの減速度の増加が可能であるときに、速度パターン生成部16が速度パターンの減速度の値を第1の減速値ηから一旦下げた後に、第1の減速値ηよりも大きい第2の減速値ζに移行させるようになっているので、減速走行時にかご2の減速度を変更しても、かご2の停止位置が目的階から外れることなく、目的階にかご2を停止させることができる。従って、かご2の走行時間を短縮することができ、エレベータの運行サービスの低下を抑制することができる。 In such an elevator control apparatus, the deceleration command unit 17 determines whether or not the value of the deceleration of the speed pattern can be increased based on information from the current detector 12 when the car 2 is decelerated, and reduces the speed pattern. When the speed can be increased, the speed pattern generation unit 16 temporarily decreases the speed pattern deceleration value from the first deceleration value η, and then the second deceleration value that is larger than the first deceleration value η. Since the shift to ζ is made, the car 2 can be stopped at the destination floor without the stop position of the car 2 being deviated from the destination floor even if the deceleration of the car 2 is changed during deceleration. Therefore, the traveling time of the car 2 can be shortened, and a decrease in elevator service can be suppressed.
 また、速度パターンには、減速度の値が第1の減速値ηから第2の減速値ζに移行するまでの間に減速度の値が0となる区間(時刻t2から時刻t3までの間の区間)が存在しているので、速度パターンの修正を容易に行うことができる。 Further, the speed pattern includes an interval in which the deceleration value becomes 0 (from time t 2 to time t 3) until the deceleration value shifts from the first deceleration value η to the second deceleration value ζ. Therefore, the speed pattern can be easily corrected.
 また、第2の減速値ζは、電流検出器12からの情報に基づいて求められるので、かご2の減速走行時の負荷に対するモータ5の余裕度に応じて、速度パターンの減速度の値を効果的に大きくすることができる。 Further, since the second deceleration value ζ is obtained based on the information from the current detector 12, the deceleration value of the speed pattern is set according to the margin of the motor 5 with respect to the load when the car 2 is decelerated. Can be effectively enlarged.
 なお、上記の例では、速度パターンAの時刻t2と時刻t3との間の区間における速度が一定とされている(即ち、減速度の値が常に0とされている)が、領域Pの面積Spと領域Qの面積Sqとが同じであれば、時刻t2と時刻t3との間の区間における速度は一定でなくてもよい。例えば、時刻t2と時刻t3との間の区間における速度が一定の傾きを持って増加あるいは低下するようにしてもよい。 In the above example, the speed in the section between the time t 2 and the time t 3 of the speed pattern A is constant (that is, the deceleration value is always 0), but the region P If the area Sp and the area Sq of the region Q are the same, the speed in the section between the time t 2 and the time t 3 may not be constant. For example, the speed in the section between time t 2 and time t 3 may be increased or decreased with a certain slope.
 1 昇降路、2 かご、13 エンコーダ(信号発生装置)、15 かご位置検出用プレート(磁気遮蔽体)、16 プレート検出装置(遮蔽体検出装置)、18 第1の磁気式検出器、19 第2の磁気式検出器、20 制御装置。 1 hoistway, 2 cage, 13 encoder (signal generator), 15 cage position detection plate (magnetic shield), 16 plate detector (shield detector), 18 first magnetic detector, 19 second Magnetic detector, 20 control device.

Claims (3)

  1.  かごを増速及び減速させて目的階に停止させる制御を行うための速度パターンを生成する速度パターン生成部、及び
     上記かごを走行させる駆動装置のトルクを検出するトルク検出器からの情報に基づいて、上記速度パターンの減速度の値の増加の可否を上記かごの減速走行時に判定する減速度指令部
     を備え、
     上記速度パターン生成部は、上記速度パターンの減速度の増加が可能であるとの判定を上記減速度指令部が行ったときに、上記速度パターンの減速度の値を第1の減速値から一旦下げた後に、上記第1の減速値よりも大きい第2の減速値に移行可能になっていることを特徴とするエレベータの制御装置。
    Based on information from a speed pattern generation unit that generates a speed pattern for performing control for increasing and decreasing the speed of the car and stopping the car on the target floor, and a torque detector that detects torque of the driving device that drives the car A deceleration command unit for determining whether or not the deceleration value of the speed pattern can be increased when the car is decelerated,
    When the deceleration command unit determines that the deceleration of the speed pattern can be increased, the speed pattern generation unit temporarily sets the value of the deceleration of the speed pattern from the first deceleration value. An elevator control device characterized by being capable of shifting to a second deceleration value larger than the first deceleration value after being lowered.
  2.  上記速度パターンには、上記減速度の値が上記第1の減速値から上記第2の減速値に移行するまでの間に上記減速度の値が0となる区間が存在していることを特徴とする請求項1に記載のエレベータの制御装置。 The speed pattern includes a section in which the deceleration value becomes 0 before the deceleration value shifts from the first deceleration value to the second deceleration value. The elevator control device according to claim 1.
  3.  上記第2の減速値は、上記トルク検出器からの情報に基づいて求められることを特徴とする請求項1に記載のエレベータの制御装置。 The elevator control device according to claim 1, wherein the second deceleration value is obtained based on information from the torque detector.
PCT/JP2009/065710 2009-09-09 2009-09-09 Control device for elevator WO2011030402A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09849182.2A EP2476640B1 (en) 2009-09-09 2009-09-09 Control device for elevator
CN200980161315.1A CN102482049B (en) 2009-09-09 2009-09-09 Control device for elevator
KR1020127002115A KR101268819B1 (en) 2009-09-09 2009-09-09 Control device for elevator
JP2011530659A JP5554336B2 (en) 2009-09-09 2009-09-09 Elevator control device
PCT/JP2009/065710 WO2011030402A1 (en) 2009-09-09 2009-09-09 Control device for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065710 WO2011030402A1 (en) 2009-09-09 2009-09-09 Control device for elevator

Publications (1)

Publication Number Publication Date
WO2011030402A1 true WO2011030402A1 (en) 2011-03-17

Family

ID=43732090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065710 WO2011030402A1 (en) 2009-09-09 2009-09-09 Control device for elevator

Country Status (5)

Country Link
EP (1) EP2476640B1 (en)
JP (1) JP5554336B2 (en)
KR (1) KR101268819B1 (en)
CN (1) CN102482049B (en)
WO (1) WO2011030402A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832906A (en) * 2012-11-21 2014-06-04 株式会社日立制作所 Control device of elevator
CN104129691A (en) * 2014-05-09 2014-11-05 徐州中矿大传动与自动化有限公司 Levitation controlling device and levitation controlling method for mine hoist
WO2022219682A1 (en) * 2021-04-12 2022-10-20 三菱電機株式会社 Elevator control system and elevator control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253565B (en) * 2013-04-08 2015-05-27 深圳市海浦蒙特科技有限公司 Elevator, and method and device for setting operating speed of elevator
WO2019215844A1 (en) * 2018-05-09 2019-11-14 三菱電機株式会社 Elevator device and emergency stop inspection device testing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243781A (en) * 1985-03-25 1986-10-30 ソシエテ ア レスポンサビリテ リミテロジリフ Adjusting controlling method for decelerating movable body and device thereof
JPS63182699U (en) * 1987-05-18 1988-11-24
JPH0382390A (en) * 1989-08-24 1991-04-08 S G:Kk Synchronization control system for servo motor
JP2003238037A (en) * 2001-12-10 2003-08-27 Mitsubishi Electric Corp Control device for elevator
JP2005280935A (en) * 2004-03-30 2005-10-13 Mitsubishi Electric Corp Elevator control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417219B2 (en) * 1973-01-24 1979-06-28
JPS6290475A (en) * 1985-06-26 1987-04-24 フジテツク株式会社 Speed control system of machine type three-dimensional parking apparatus
EP1930277A4 (en) * 2005-09-30 2012-09-26 Mitsubishi Electric Corp Control device for elevator
KR100735352B1 (en) 2005-11-30 2007-07-04 미쓰비시덴키 가부시키가이샤 Control device of elevator
CN101360675B (en) * 2006-05-16 2011-04-27 三菱电机株式会社 Control apparatus for elevator
JP5214239B2 (en) * 2006-08-03 2013-06-19 三菱電機株式会社 Elevator equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243781A (en) * 1985-03-25 1986-10-30 ソシエテ ア レスポンサビリテ リミテロジリフ Adjusting controlling method for decelerating movable body and device thereof
JPS63182699U (en) * 1987-05-18 1988-11-24
JPH0382390A (en) * 1989-08-24 1991-04-08 S G:Kk Synchronization control system for servo motor
JP2003238037A (en) * 2001-12-10 2003-08-27 Mitsubishi Electric Corp Control device for elevator
JP2005280935A (en) * 2004-03-30 2005-10-13 Mitsubishi Electric Corp Elevator control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832906A (en) * 2012-11-21 2014-06-04 株式会社日立制作所 Control device of elevator
CN103832906B (en) * 2012-11-21 2016-02-17 株式会社日立制作所 The control setup of elevator
CN104129691A (en) * 2014-05-09 2014-11-05 徐州中矿大传动与自动化有限公司 Levitation controlling device and levitation controlling method for mine hoist
WO2022219682A1 (en) * 2021-04-12 2022-10-20 三菱電機株式会社 Elevator control system and elevator control method
JP7452760B2 (en) 2021-04-12 2024-03-19 三菱電機株式会社 Elevator control system and elevator control method

Also Published As

Publication number Publication date
EP2476640B1 (en) 2017-12-20
EP2476640A1 (en) 2012-07-18
CN102482049A (en) 2012-05-30
KR20120032016A (en) 2012-04-04
JPWO2011030402A1 (en) 2013-02-04
CN102482049B (en) 2014-01-29
EP2476640A4 (en) 2017-01-18
KR101268819B1 (en) 2013-05-28
JP5554336B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5307394B2 (en) Elevator control device
JP4964903B2 (en) Elevator equipment
JP5554336B2 (en) Elevator control device
KR101189883B1 (en) Elevator control system
EP1731466B1 (en) Elevator control device
JP4397721B2 (en) Elevator control device
JP2009215012A (en) Emergency deceleration control system of elevator
JP4781853B2 (en) Elevator equipment
JP5428900B2 (en) Elevator speed control device
WO2018016061A1 (en) Elevator
JP2010168139A (en) Elevator control device
JP7204700B2 (en) Controller for winding drum type elevator
JP2005132541A (en) Method of controlling motor for driving lift
KR100829319B1 (en) Elevator control device
CN110402229B (en) Elevator control device and method for estimating expansion/contraction amount of hoisting rope
KR100735352B1 (en) Control device of elevator
JP2005089094A (en) Elevator control device
JP2021059443A (en) Control device for winding drum type elevator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161315.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530659

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127002115

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009849182

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE