WO2011030064A1 - Ligne d'échappement de véhicule automobile avec un injecteur de réactif - Google Patents

Ligne d'échappement de véhicule automobile avec un injecteur de réactif Download PDF

Info

Publication number
WO2011030064A1
WO2011030064A1 PCT/FR2010/051880 FR2010051880W WO2011030064A1 WO 2011030064 A1 WO2011030064 A1 WO 2011030064A1 FR 2010051880 W FR2010051880 W FR 2010051880W WO 2011030064 A1 WO2011030064 A1 WO 2011030064A1
Authority
WO
WIPO (PCT)
Prior art keywords
downstream
injector
duct
exhaust
exhaust line
Prior art date
Application number
PCT/FR2010/051880
Other languages
English (en)
Inventor
Frédéric Greber
Yohann Perrot
Original Assignee
Faurecia Systemes D'echappement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faurecia Systemes D'echappement filed Critical Faurecia Systemes D'echappement
Publication of WO2011030064A1 publication Critical patent/WO2011030064A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention generally relates to motor vehicle exhaust lines equipped with reagent injectors.
  • the invention relates to the exhaust lines of motor vehicles, of the type comprising:
  • an exhaust gas flow duct having an internal volume delimited by a side wall, with a bend having a central bent line and a straight downstream duct connected downstream of the bend, the downstream duct having a downstream central line,
  • a reagent injector provided for injecting a reagent into the exhaust duct
  • an injector support internally defining an injection volume, the injector being connected to the injector support, the injector support being connected to the circulation duct so that the injection volume communicates with the internal volume of the injector; circulation duct through a passage opening in the side wall.
  • Such an exhaust line is known for example from FR2891305.
  • This document describes that the injector is mounted such that the injection direction corresponds to the central axis of the downstream duct. Furthermore, the bend is shaped so as to rotate all the exhaust gas around the injection direction.
  • the invention aims to provide an exhaust line of improved design.
  • the invention relates to an exhaust line of the aforementioned type, characterized in that the bent central line, in the vicinity of the downstream duct, defines with the downstream central line a specific plane, the injector support being inclined relative to said determined plane with an inclination angle of between 20 ° and 80 °.
  • the exhaust line may also have one or more of the following characteristics, considered individually or in any technically feasible combination:
  • the angle of inclination is between 30 ° and 60 °
  • the injector is mounted on the injector support so as to inject the reagent in an injection direction forming with said determined plane an angle substantially equal to the angle of inclination
  • the elbow has an intrados and an extrados, the passage opening extending mainly in an area of the side wall facing the extrados,
  • the passage opening has an inlet zone of the exhaust gases in the injection volume, said inlet zone being turned towards the extrados,
  • the passage opening has an exit zone of the exhaust gases out of the injection volume, said outlet zone being turned towards the underside,
  • the passage opening is formed partially in the bend and partially in the downstream conduit
  • the circulation duct comprises an upstream straight duct connected upstream of the elbow, the central bent line being entirely curved, the passage opening having an inlet zone of the exhaust gases in the injection volume located in one half of the elbow closest to the straight downstream duct.
  • Figure 1 is a top view of an exhaust line portion according to the invention.
  • FIG. 2 is a side view of the exhaust line of Figure 1, considered according to the incidence of the arrow II;
  • FIG. 3 is a view similar to that of FIG. 2 showing the shape of certain exhaust gas flow lines passing inside the injection volume;
  • FIG. 4 is a view similar to that of FIG. 1, showing the shape of certain lines of exhaust gas flow passing inside the injection volume;
  • FIG. 5 is a view similar to that of FIG. 1, showing an exhaust line which does not conform to the invention and whose injector support is placed in the plane defined by the central lines of the elbow and downstream section.
  • the exhaust line 1 partially shown in Figure 1 is intended to be associated with a diesel type engine.
  • the exhaust line is equipped with a system known as SCR (Selective Catalyst Reduction) to reduce the NOx contained in the exhaust gas from the diesel engine.
  • SCR Selective Catalyst Reduction
  • the SCR system comprises a catalytic reduction member, an injector placed upstream of the catalytic reduction member, and a mixer interposed between the injector and the catalytic reduction member.
  • the injector is intended to inject into the exhaust gas a reagent, for example a liquid known as AdBlue, composed of a mixture of urea and water, the urea being dissolved in water.
  • a reagent for example a liquid known as AdBlue
  • AdBlue a liquid known as AdBlue
  • the reagent evaporates in the exhaust gas.
  • the urea is then transformed, under the action of the temperature, NH 3 ammonia which is a strong reducer.
  • the mixer makes it possible to homogenize the exhaust gas containing urea and to obtain a uniform concentration of urea in the exhaust gas.
  • the exhaust line comprises:
  • an exhaust gas circulation duct 3 having an internal volume delimited by a side wall 5, this duct having an upstream rectilinear duct 7, a straight downstream duct 9 and a bend 11 connecting in series the upstream and downstream ducts 7 and 9 to each other;
  • a reagent injector 13 designed to inject a reagent, for example AdBlue, into the exhaust duct 3; an injector support 15, internally defining an injection volume 17, the injector 13 being connected to the injector support 15 and the injector support 15 being connected to the circulation duct 3.
  • the upstream and downstream are heard relative to the direction of normal flow of the exhaust gases in the duct 3.
  • the upstream duct 7, the downstream duct 9 and the elbow 1 1 have respective central lines referenced 17, 19 and 21 and placed in the extension of each other.
  • the upstream duct 7 is rectilinear, and for example of circular section.
  • the downstream duct 9 is rectilinear, and for example of circular section.
  • the upstream and downstream ducts have different orientations.
  • the downstream duct is oriented at 90 ° with respect to the upstream duct.
  • the elbow 1 1 is also circular section. It fluidly connects the upstream duct 7 to the downstream duct 9.
  • the upstream duct 7 is connected directly to one end 23 of the elbow.
  • the downstream duct 9 is connected directly to a downstream end 25 of the bend.
  • the elbow 1 1 is fully curved. For example, it does not have a rectilinear portion. In the embodiment of Figure 1, it extends over an angular sector of 90 ° around a center of curvature 26. The bend 1 1, in the embodiment of Figure 1, therefore constitutes a portion of torus centered on the center of curvature 26.
  • the central lines 17, 19 and 21 are located in the same plane containing the center of curvature 26.
  • the central line 21 is entirely curved.
  • the upstream pipe is connected to an exhaust manifold, intended to collect the exhaust gas at the outlet of the combustion chambers of the diesel engine.
  • the exhaust manifold is not shown.
  • the downstream duct is connected downstream to the catalytic purification unit. This one is not represented on the figurel.
  • the catalytic purification member is connected downstream to the cannula through which the exhaust gas is released into the atmosphere after purification.
  • Other equipment by For example, a silencer can be interposed between the catalytic purification element and the cannula.
  • the injector 13 is designed to inject the reagent in an injection direction
  • the injector support 15 is a hollow body, attached to the exhaust duct 3. It is fixed by any means to the side wall of the duct, for example by welding.
  • the circulation duct 3 has a through-orifice 27 formed in the side wall 5.
  • the injection volume 17 communicates with the internal volume of the circulation duct via the orifice 27.
  • the orifice 27 has a shape corresponding to that of the peripheral free edge 29 of the injector support 15.
  • the peripheral edge 29 is rigidly fixed to the edge of the orifice 27.
  • the injector support 15 comprises a section 31 for fixing the injector
  • the section 31 is a blind section with symmetry of revolution around the direction of injection. It can be for example cylindrical or frustoconical.
  • the injector 13 is rigidly fixed to the bottom 35 of the section 31.
  • the section 31 comprises, for example, from the bottom 35, a first conical section, a cylindrical section and a second frustoconical section.
  • the section 33 extends the fastening section 31 opposite the injector 13.
  • the support of injector 15 is inclined relative to the plane P determined by the central lines 19 and 21, with an inclination angle of between 20 and 80 °.
  • This inclination is particularly visible in Figure 2.
  • the inclination angle is between 30 and 60 °. It is for example 45 °.
  • the injection direction forms with the plane P an angle substantially equal to the angle of inclination.
  • the injector support can be inclined indifferently on one side or the other side of the plane P.
  • the angle of inclination can be defined in several different ways.
  • the angle of inclination may be the angle that forms, with the plane P, the straight line from the geometric center of the bottom 35 to the geometric center of the orifice 27.
  • This angle may also be the angle formed with the plane P by the central axis of the section 33 of the injector support.
  • This central axis can be defined for example as that passing through the geometric center of the opening delimited by the peripheral edge 37 and the geometric center of the orifice 27.
  • the angle of inclination can still be defined as being the angle formed by the injection direction I with the plane P.
  • the passage opening 27 extends mainly in an area of the side wall 5 facing the extrados.
  • the intrados is the small radius side of the elbow 3, the extrados being the large radius side.
  • the underside is the side of the elbow turned towards the center of curvature 26, the extrados being turned away from the center of curvature 26.
  • the side wall facing the intrados is the area to the right of the central lines 17 and 21 and under the central lines 19 and 21.
  • the extrados is the area to the left of the central lines 17 and 21 and above the central lines 19 and 21.
  • the passage orifice has an inlet gas zone 39 in the injection volume and an exhaust gas outlet zone 41 outside the exhaust volume. injection.
  • the inlet zone 39 corresponds to the zone of the most upstream orifice. This zone is turned towards the extrados, and thus constitutes a zone of high pressure. On the contrary, the exit zone 41 is turned towards the intrados.
  • the passage opening 27 is formed, partially or totally, on the half of the elbow 1 1 closest to the downstream duct 9. In any case at least the inlet area 39 of the passage opening is located on the half of the elbow 1 1 closest to the downstream conduit.
  • the passage opening 27 extends partly into the bend 11 and partly into the downstream conduit 9. For example, it is located halfway in the bend 11 and half in the bend. downstream duct 9.
  • the injection direction I is oriented towards the downstream duct 9 and intercepts the passage orifice 27.
  • the injection direction I is chosen so that the jet injected reagent strikes the mixture, this mixer not being shown in FIG.
  • the exhaust gases flow from the upstream duct 7 to the downstream duct 9, passing through the elbow 11. Most of the exhaust gas passes through the elbow 1 1 without entering the injection volume.
  • the elbow 1 1 the exhaust gas flows mainly along the extrados, so that the pressure on the extrados side is greater than the pressure on the pressure side.
  • the majority of this derived stream follows a helical trajectory around the injection direction from the inlet zone 39.
  • Said major part of the derived stream leaves the exhaust volume through the exit zone 41 to return to the circulation duct, at the level of the downstream duct 9.
  • Several veins of fluids referenced L4 to L6 have been materialized in FIG. 1. They show the helical trajectory of most of the derivative flow around the direction of injection I.
  • the derivative flow circulates essentially inside the flared section 33 of the injector support. However, a small part of the derived stream is directed towards the inside of the attachment section 31 of the injector 13 from the inlet zone 39. This small part of the derived flow creates inside the section 31 a vortex around the injection pin I, and back to the bottom 35 (L7 flow line of Figures 3 and 4). The exhaust gases lose energy up to the bottom 35. Once the bottom 35 has been reached, the exhaust has lost enough energy to escape through the center of the section 31. They escape in the direction of injection I.
  • the exhaust gases entering the injection volume 1 7 will create a helical flow around the injection direction at the flared section 33 and a swirling flow around the injection direction at the section 31 .
  • the gases constituting these streams are devoid of reagent, and constitute a gaseous mantle protecting the wall of the injection support.
  • This gaseous mantle prevents the droplets of reagent projected in the injection direction I by the injector January 3 hit the walls of the injector support and constitute deposits on these walls.
  • the injector support is inclined relative to the plane P by an angle of between 20 and 80 ° makes it possible to create the helical movement of the exhaust gases inside the injection volume 1 7. if the injector support was not inclined with respect to the plane P or was insufficiently inclined, as shown in FIG. 5, a recirculation zone would be created inside the injector support.
  • the exhaust gases would be rotated within the injection volume about an axis substantially perpendicular to the direction of injection, and substantially perpendicular to the plane P.
  • the reagent droplets would pass through these recirculations.
  • the rotating gas would charge in droplets, and some of them would be deposited on the wall.
  • deposits would form on the walls of the injector support. These deposits could eventually lead to a partial or total obstruction of the injector or corrosion of the injector support.
  • the angle of inclination to obtain the best efficiency is about 45 °.
  • the exhaust gas inlet zone is on the extrados of the elbow. It is indeed in this zone that most of the exhaust gases circulate, the pressure being thus higher on the extrados side than on the intrados side. In a symmetrical manner, the exit zone of the exhaust gas is provided on the lower side, since the pressure is reduced on this side. Thus, the movement of the exhaust gas within the injection volume is fed by a pressure difference as large as possible between the inlet zone and the exit zone.
  • the injector support is provided to have a shape as soft as possible, so as to prevent the exhaust gas veins flowing inside the injection volume from peeling off the wall and create turbulence . Such turbulents could help to spray droplets of reagent onto the wall of the injector support.
  • the section 33 of the injector support is devoid of sharp angles.
  • the inlet zone 39 of the passage opening is located in the center of the extrados (see FIG. 2), that is to say diametrically opposite the center of curvature 26.
  • the output zone 41 is strongly offset relative to the plane P so as to be located on the underside. For example, it forms an angle of about 105 ° (angle ⁇ of Figure 2) relative to the plane P.
  • the injection volume 17 must be as high as possible while ensuring the passage of the exhaust without detachment.
  • the exhaust gases must flow from the entry zone to the exit zone around the injector support without encountering sharp stops, especially on the section 33 of the injector support.
  • an even smaller fraction of the exhaust gas enters the support section 31 of the injector.
  • the thermal energy transported by this small fraction of gas is particularly low, so that the temperature of the injector nozzle is reduced.
  • the injector nozzle temperature is 50 to 100 ° lower than the temperature of an injector nose located in full flow of exhaust gas.
  • the exhaust line described above can have multiple variants.
  • the duct located upstream of the elbow may not be straight.
  • the elbow 1 1 can cover any angular sector, less than or greater than 90 °.
  • the elbow 1 1 may not form an arc, but rather an elliptical arc, or any other curved shape.
  • the curvature of the central line of the elbow is always on the same side, the central line having no point of inflection. It is conceivable, however, that the elbow forms an S, and has one or more points of inflection.
  • the central line of the bend and the central line of the downstream section are entirely in the same plane.
  • these two central lines form a left curve.
  • the plane considered for determining the angle of inclination of the injector support is the plane formed by the central line of the rectilinear downstream duct and the part of the central line of the elbow located in the vicinity of the downstream duct.
  • the exhaust line has been described as being mounted on a diesel engine vehicle. It could, however, be associated with an engine other than a diesel engine.
  • the injector can inject all kinds of reagents, and not necessarily a urea-based reagent such as AdBlue.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Ligne d'échappement de véhicule automobile, la ligne d'échappement (1) comprenant un conduit (3) de circulation des gaz d'échappement ayant un volume interne délimité par une paroi latérale (5), avec un coude (11) présentant une ligne centrale (21) coudée et un conduit rectiligne aval (9) raccordé en aval du coude (11), le conduit aval (9) présentant une ligne centrale aval (19); un injecteur de réactif prévu pour injecter un réactif à l'intérieur du conduit de circulation (3); un support d'injecteur (15) délimitant intérieurement un volume d'injection (17), l'injecteur étant lié au support d'injecteur (15), le support d'injecteur (15) étant lié au conduit de circulation (3) de telle sorte que le volume d'injection (17) communique avec le volume interne du conduit de circulation (3) à travers un orifice de passage (27) ménagé dans la paroi latérale (5); caractérisée en ce que la ligne centrale coudée (21), au voisinage du conduit aval (9), définit avec la ligne centrale aval (19) un plan déterminé (P), le support d'injecteur (15) étant incliné par rapport audit plan déterminé (P) d'un angle d'inclinaison (α) compris entre 20° et 80°.

Description

Ligne d'échappement de véhicule automobile
avec un injecteur de réactif
La présente invention concerne en général les lignes d'échappement de véhicules automobiles équipées d'injecteurs de réactif.
Plus précisément, l'invention concerne les lignes d'échappement de véhicules automobiles, du type comprenant :
un conduit de circulation des gaz d'échappement ayant un volume interne délimité par une paroi latérale, avec un coude présentant une ligne centrale coudée et un conduit rectiligne aval raccordé en aval du coude, le conduit aval présentant une ligne centrale aval,
un injecteur de réactif prévu pour injecter un réactif à l'intérieur du conduit d'échappement ;
un support d'injecteur délimitant intérieurement un volume d'injection, l'injecteur étant lié au support d'injecteur, le support d'injecteur étant lié au conduit de circulation de telle sorte que le volume d'injection communique avec le volume interne du conduit de circulation à travers un orifice de passage ménagé dans la paroi latérale.
Une telle ligne d'échappement est connue par exemple de FR2891305. Ce document décrit que l'injecteur est monté de telle sorte que la direction d'injection correspond à l'axe central du conduit aval. Par ailleurs, le coude est conformé de manière à mettre en rotation l'ensemble des gaz d'échappement autour de la direction d'injection.
La mise en rotation de tout le flux de gaz demande une énergie importante, et crée une forte contre-pression dans la ligne d'échappement. Par ailleurs, ce mouvement tournant de grande intensité a tendance à projeter des gouttelettes de réactif sur la paroi latérale du conduit d'échappement. Il est également important de souligner que la forme du coude est très complexe, ce coude étant difficile et coûteux à réaliser.
Dans ce contexte, l'invention vise à proposer une ligne d'échappement de conception améliorée.
A cette fin, l'invention porte sur une ligne d'échappement du type précité, caractérisée en ce que la ligne centrale coudée, au voisinage du conduit aval, définit avec la ligne centrale aval un plan déterminé, le support d'injecteur étant incliné par rapport audit plan déterminé d'un angle d'inclinaison compris entre 20° et 80°.
La ligne d'échappement peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
l'angle d'inclinaison est compris entre 30° et 60°,
l'injecteur est monté sur le support d'injecteur de manière à injecter le réactif suivant une direction d'injection formant avec ledit plan déterminé un angle sensiblement égal à l'angle d'inclinaison,
le coude présente un intrados et un extrados, l'orifice de passage s'étendant majoritairement dans une zone de la paroi latérale tournée vers l'extrados,
l'orifice de passage présente une zone d'entrée des gaz d'échappement dans le volume d'injection, ladite zone d'entrée étant tournée vers l'extrados,
l'orifice de passage présente une zone de sortie des gaz d'échappement hors du volume d'injection, ladite zone de sortie étant tournée vers l'intrados,
l'orifice de passage est ménagé partiellement dans le coude et partiellement dans le conduit aval, et
le conduit de circulation comprend un conduit rectiligne amont raccordé en amont du coude, la ligne centrale coudée étant entièrement courbe, l'orifice de passage présentant une zone d'entrée des gaz d'échappement dans le volume d'injection située dans une moitié du coude la plus proche du conduit rectiligne aval.
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :
la figure 1 est une vue de dessus d'une partie de ligne d'échappement conforme à l'invention ;
la figure 2 est une vue de côté de la ligne d'échappement de la figure 1 , considérée suivant l'incidence de la flèche II ; la figure 3 est une vue similaire à celle de la figure 2 montrant la forme de certaines lignes de flux de gaz d'échappement passant à l'intérieur du volume d'injection ;
la figure 4 est une vue similaire à celle de la figure 1 , montrant la forme de certaines lignes de flux de gaz d'échappement passant à l'intérieur du volume d'injection ; et
la figure 5 est une vue similaire à celle de la figure 1 , montrant une ligne d'échappement qui n'est pas conforme à l'invention et dont le support d'injecteur est placé dans le plan défini par les lignes centrales du coude et du tronçon aval.
La ligne d'échappement 1 représentée partiellement sur la figure 1 est destinée à être associée à un moteur de type diesel. La ligne d'échappement est équipée d'un système connu sous le sigle SCR (Sélective Catalyst Réduction) destiné à réduire les NOx contenus dans les gaz d'échappement issus du moteur diesel. Le système SCR comporte un organe de réduction catalytique, un injecteur placé en amont de l'organe de réduction catalytique, et un mélangeur interposé entre l'injecteur et l'organe de réduction catalytique.
L'injecteur est prévu pour injecter dans les gaz d'échappement un réactif, par exemple un liquide connu sous le nom AdBlue, composé d'un mélange d'urée et d'eau, l'urée étant dissoute dans l'eau. Lors de l'injection du réactif, celui-ci s'évapore dans les gaz d'échappement. L'urée se transforme alors, sous l'action de la température, en ammoniac NH3 qui est un réducteur fort. Le mélangeur permet d'homogénéiser les gaz d'échappement contenant de l'urée et d'obtenir une concentration d'urée uniforme dans les gaz d'échappement.
Comme le montre la figure 1 , la ligne d'échappement comporte :
un conduit 3 de circulation des gaz d'échappement, ayant un volume interne délimité par une paroi latérale 5, ce conduit présentant un conduit rectiligne amont 7, un conduit rectiligne aval 9 et un coude 1 1 raccordant en série les conduits amont et aval 7 et 9 l'un à l'autre ;
- un injecteur 13 de réactif, prévu pour injecter un réactif, par exemple de l'AdBlue, à l'intérieur du conduit d'échappement 3 ; un support d'injecteur 15, délimitant intérieurement un volume d'injection 17, l'injecteur 13 étant lié au support d'injecteur 15 et le support d'injecteur 15 étant lié au conduit de circulation 3.
Dans la présente description, l'amont et l'aval sont entendus relativement au sens de circulation normal des gaz d'échappement dans le conduit 3.
Le conduit amont 7, le conduit aval 9 et le coude 1 1 présentent des lignes centrales respectives référencées 17, 19 et 21 et placées dans le prolongement les unes des autres.
Le conduit amont 7 est rectiligne, et par exemple de section circulaire. De même, le conduit aval 9 est rectiligne, et par exemple de section circulaire.
Les conduits amont et aval présentent des orientations différentes. Dans l'exemple de réalisation de la figure 1 , le conduit aval est orienté à 90° par rapport au conduit amont.
Le coude 1 1 est lui aussi à section circulaire. Il raccorde fluidiquement le conduit amont 7 au conduit aval 9. Le conduit amont 7 est raccordé directement à une extrémité 23 du coude. De la même manière, le conduit aval 9 est raccordé directement à une extrémité aval 25 du coude.
Le coude 1 1 est entièrement courbe. Par exemple, il ne comporte pas de portion rectiligne. Dans l'exemple de réalisation de la figure 1 , il s'étend sur un secteur angulaire de 90°, autour d'un centre de courbure 26. Le coude 1 1 , dans l'exemple de réalisation de la figure 1 , constitue donc une portion de tore centrée sur le centre de courbure 26.
Les lignes centrales 17, 19 et 21 sont situées dans un même plan contenant le centre de courbure 26. La ligne centrale 21 est entièrement courbe.
Vers l'amont, le conduit amont est raccordé à un collecteur d'échappement, prévu pour collecter les gaz d'échappement à la sortie des chambres de combustion du moteur diesel. Le collecteur d'échappement n'est pas représenté.
D'autres équipements peuvent être interposés entre le conduit amont 7 et le collecteur d'échappement.
Le conduit aval est raccordé vers l'aval à l'organe de purification catalytique. Celui-ci n'est pas représenté sur la figurel . L'organe de purification catalytique est raccordé vers l'aval à la canule par laquelle les gaz d'échappement sont relâchés dans l'atmosphère après purification. D'autres équipements, par exemple un silencieux, peuvent être interposés entre l'organe de purification catalytique et la canule.
L'injecteur 13 est prévu pour injecter le réactif selon une direction d'injection
I matérialisée par un trait mixte sur la figure 1 .
Le support d'injecteur 15 est un corps creux, rapporté sur le conduit d'échappement 3. Il est fixé par tout moyen à la paroi latérale du conduit, par exemple par soudage.
Le conduit de circulation 3 présente un orifice de passage 27 ménagé dans la paroi latérale 5. Le volume d'injection 17 communique avec le volume interne du conduit de circulation par l'intermédiaire de l'orifice 27. L'orifice 27 présente une forme correspondante à celle du bord libre périphérique 29 du support d'injecteur 15. Le bord périphérique 29 est rigidement fixé au bord de l'orifice 27.
Le support d'injecteur 15 comporte un tronçon 31 de fixation de l'injecteur
13 et un tronçon évasé 33 prolongeant le tronçon de fixation 31 .
Le tronçon 31 est un tronçon borgne à symétrie de révolution autour de la direction d'injection. Il peut être par exemple cylindrique ou tronconique.
L'injecteur 13 est rigidement fixé sur le fond 35 du tronçon 31 . Le tronçon 31 comporte par exemple, à partir du fond 35, un premier tronçon conique, un tronçon cylindrique et un second tronçon tronconique.
Le tronçon 33 prolonge le tronçon de fixation 31 à l'opposé de l'injecteur 13.
II s'évase largement à partir du bord périphérique circulaire 37 du tronçon de fixation 31 . Il définit, à l'opposé du tronçon de fixation 31 , le bord périphérique 29 rapporté sur la paroi latérale 5.
De manière à permettre le prélèvement d'une partie des gaz d'échappement circulant dans le conduit 3, et à créer un mouvement cyclonique tournant autour de l'axe d'injection, à l'intérieur du volume d'injection, le support d'injecteur 15 est incliné par rapport au plan P déterminé par les lignes centrales 19 et 21 , d'un angle d'inclinaison a compris entre 20 et 80°. Cette inclinaison est particulièrement visible sur la figure 2. De préférence, l'angle d'inclinaison est compris entre 30 et 60°. Il vaut par exemple 45°.
La direction d'injection forme avec le plan P un angle sensiblement égal à l'angle d'inclinaison. Le support d'injecteur peut être incliné indifféremment d'un côté ou de l'autre côté du plan P.
L'angle d'inclinaison peut être défini de plusieurs manières différentes. L'angle d'inclinaison peut être l'angle que forme, avec le plan P, la droite allant du centre géométrique du fond 35 au centre géométrique de l'orifice 27. Cet angle peut également être l'angle formé avec le plan P par l'axe central du tronçon 33 du support d'injecteur. Cet axe central peut être défini par exemple comme celui passant par le centre géométrique de l'ouverture délimitée par le bord périphérique 37 et par le centre géométrique de l'orifice 27. L'angle d'inclinaison peut encore être défini comme étant l'angle formé par la direction d'injection I avec le plan P.
D'autres définitions pourraient encore être données.
De manière à profiter de la différence de pression entre l'extrados et l'intrados du coude, l'orifice de passage 27 s'étend majoritairement dans une zone de la paroi latérale 5 tournée vers l'extrados. L'intrados est le côté de petit rayon du coude 3, l'extrados étant le côté de grand rayon. En d'autres termes, l'intrados est le côté du coude tourné vers le centre de courbure 26, l'extrados étant tourné à l'opposé du centre de courbure 26. Sur la vue de dessus de la figure 1 , la zone de la paroi latérale tournée vers l'intrados est la zone située à droite des lignes centrales 17 et 21 et sous les lignes centrales 19 et 21 . L'extrados est la zone située à gauche des lignes centrales 17 et 21 et au-dessus des lignes centrales 19 et 21 .
On voit clairement sur la figure 1 que seule une petite fraction de l'orifice de passage est située côté intrados.
Par ailleurs, il ressort clairement de la figure 1 que l'orifice de passage présente une zone 39 d'entrée des gaz d'échappement dans le volume d'injection et une zone 41 de sortie des gaz d'échappement hors du volume d'injection.
La zone d'entrée 39 correspond à la zone de l'orifice de passage située la plus en amont. Cette zone est tournée vers l'extrados, et constitue donc une zone de haute pression. Au contraire, la zone de sortie 41 est tournée vers l'intrados.
Elle est donc située dans une zone de basse pression. Elle est située en aval de la zone d'entrée. De façon à bénéficier d'une pression de gaz d'échappement plus élevée, l'orifice de passage 27 est ménagé, partiellement ou en totalité, sur la moitié du coude 1 1 la plus proche du conduit aval 9. En tout état de cause, au moins la zone d'entrée 39 de l'orifice de passage est située sur la moitié du coude 1 1 la plus proche du conduit aval.
Comme visible sur la figure 1 , l'orifice de passage 27 s'étend en partie dans le coude 1 1 et en partie dans le conduit aval 9. Par exemple, il est situé pour moitié dans le coude 1 1 et pour moitié dans le conduit aval 9.
On notera que, comme visible sur la figure 1 , la direction d'injection I est orientée vers le conduit aval 9 et intercepte l'orifice de passage 27. Par exemple, la direction d'injection I est choisie de telle sorte que le jet de réactif injecté frappe le mélange, ce mélangeur n'étant pas représenté sur la figure 1 .
La circulation des gaz d'échappement dans la ligne d'échappement va maintenant être détaillée, en référence aux figures 1 et 3 à 5.
Les gaz d'échappement circulent du conduit amont 7 au conduit aval 9 en passant par le coude 1 1 . La plus grande partie des gaz d'échappement traverse le coude 1 1 sans pénétrer dans le volume d'injection. Plusieurs veines de gaz, référencées L1 à L3, ont été représentées sur la figure 1 , ces veines de gaz allant directement du conduit amont au conduit aval. Dans le coude 1 1 , les gaz d'échappement s'écoulent principalement le long de l'extrados, de telle sorte que la pression côté extrados est supérieure à la pression côté intrados.
Une faible partie des gaz d'échappement, environ 10 à 15% en fonction du point de fonctionnement du moteur, est prélevée du flux de gaz d'échappement et pénètre dans le volume d'injection à travers la zone d'entrée 39 de l'orifice de passage. Comme le montre la figure 1 , la majeure partie de ce flux dérivé suit une trajectoire en hélice autour de la direction d'injection à partir de la zone d'entrée 39. Ladite majeure partie du flux dérivé quitte le volume d'échappement par la zone de sortie 41 pour revenir dans le conduit de circulation, au niveau du conduit aval 9. Plusieurs veines de fluides référencées L4 à L6 ont été matérialisées sur la figure 1 . Elles montrent la trajectoire hélicoïdale de la majeur partie du flux dérivé autour de la direction d'injection I.
Le flux dérivé circule essentiellement à l'intérieur du tronçon évasé 33 du support d'injecteur. Toutefois, une petite partie du flux dérivé est dirigée vers l'intérieur du tronçon 31 de fixation de l'injecteur 1 3 à partir de la zone d'entrée 39. Cette petite partie du flux dérivé crée à l'intérieur du tronçon 31 un tourbillon autour de l'axe d'injection I, et remonte vers le fond 35 (ligne de flux L7 des figures 3 et 4). Les gaz d'échappement perdent de l'énergie en remontant vers le fond 35. Une fois le fond 35 atteint, les gaz d'échappement ont perdu suffisamment d'énergie pour s'échapper par le centre du tronçon 31 . Ils s'échappent suivant la direction d'injection I.
Ainsi, les gaz d'échappement pénétrant dans le volume d'injection 1 7 vont créer un flux hélicoïdal autour de la direction d'injection au niveau du tronçon évasé 33 et un flux tourbillonnaire autour de la direction d'injection au niveau du tronçon 31 .
Les gaz constituant ces flux sont dépourvus de réactif, et constituent un manteau gazeux protégeant la paroi du support d'injection. Ce manteau gazeux empêche que les gouttelettes de réactif projetés selon la direction d'injection I par l'injecteur 1 3 frappent les parois du support d'injecteur et constituent des dépôts sur ces parois.
Le fait que le support d'injecteur soit incliné par rapport au plan P d'un angle compris entre 20 et 80 ° permet de créer le mouvement hélicoïdal des gaz d'échappement à l'intérieur du volume d'injection 1 7. En effet, si le support d'injecteur n'était pas incliné par rapport au plan P ou était insuffisamment incliné, comme représenté sur la figure 5, il se créerait une zone de recirculation à l'intérieur du support d'injecteur.
Les gaz d'échappement seraient entraînés en rotation à l'intérieur du volume d'injection autour d'un axe sensiblement perpendiculaire à la direction d'injection, et sensiblement perpendiculaire au plan P. Lors de l'injection, les gouttelettes de réactif traverseraient ces recirculations. Le gaz en rotation se chargerait en gouttelettes, et certaines d'entre elles seraient déposées sur la paroi. Ainsi, des dépôts se formeraient sur les parois du support d'injecteur. Ces dépôts pourraient conduire à terme à une obstruction partielle ou totale de l'injecteur ou à une corrosion du support d'injecteur.
Plus l'angle d'inclinaison du support d'injecteur est faible, plus la quantité de gaz d'échappement pénétrant dans le volume d'injection est importante. En revanche, la rotation des gaz d'échappement dans le volume d'injection est peu prononcée dans ce cas, les gaz d'échappement suivant une trajectoire en hélice avec un pas très élevé.
Au contraire, si l'angle d'inclinaison est important, peu de gaz d'échappement va entrer dans le volume d'injection. Ces gaz d'échappement auront une rotation prononcée et suivront une trajectoire hélicoïdale avec un pas réduit. En revanche, le manteau gazeux de protection de la paroi du support d'injecteur sera peu épais.
L'angle d'inclinaison permettant d'obtenir la meilleure efficacité est d'environ 45°.
Il est particulièrement avantageux que la zone d'entrée des gaz d'échappement se trouve sur l'extrados du coude. C'est en effet dans cette zone que circule la plus grande partie des gaz d'échappement, la pression étant ainsi plus élevée côté extrados que côté intrados. De manière symétrique, la zone de sortie des gaz d'échappement est prévue côté intrados, du fait que la pression est réduite de ce côté. Ainsi, le mouvement des gaz d'échappement au sein du volume d'injection est alimenté par une différence de pression aussi grande que possible entre la zone d'entrée et la zone de sortie.
Par ailleurs, le support d'injecteur est prévu pour avoir une forme aussi douce que possible, de manière à éviter que les veines de gaz d'échappement circulant à l'intérieur du volume d'injection se décollent de la paroi et créent des turbulences. De telles turbulentes pourraient contribuer à projeter des gouttelettes de réactif sur la paroi du support d'injecteur. Dans ce but, le tronçon 33 du support d'injecteur est dépourvu d'angles vifs.
De préférence, la zone d'entrée 39 de l'orifice de passage est située au centre de l'extrados (voir figure 2), c'est-à-dire diamétralement à l'opposé du centre de courbure 26. Au contraire la zone de sortie 41 est fortement décalée par rapport au plan P de manière à être située sur l'intrados. Par exemple, elle forme un angle d'environ 105 ° (angle β de la figure 2) par rapport au plan P.
Le volume d'injection 17 doit être aussi élevé que possible tout en assurant le passage des gaz d'échappement sans décollement. Ainsi, les gaz d'échappement doivent circuler de la zone d'entrée jusqu'à la zone de sortie autour du support d'injecteur sans rencontrer d'arrêtés vives, notamment sur le tronçon 33 du support d'injecteur.
Le fait que seule une petite partie des gaz d'échappement soit prélevée et pénètre dans le volume d'injection, fait que la contre-pression créée par le support d'injecteur dans la ligne d'échappement est réduite au minimum. Cette contre- pression est non mesurable et est inférieure à 10 millibars.
Par ailleurs, une fraction encore plus petite des gaz d'échappement pénètre dans le tronçon 31 de support de l'injecteur. L'énergie thermique transportée par cette petite fraction de gaz est particulièrement faible, de telle sorte que la température du nez d'injecteur est réduite. La température du nez d'injecteur est de 50 à 100° inférieure à la température d'un nez d'injecteur situé en plein flux de gaz d'échappement.
La ligne d'échappement décrite ci-dessus peut présenter de multiples variantes.
Le conduit situé en amont du coude peut ne pas être rectiligne. Le coude
1 1 peut couvrir un secteur angulaire quelconque, inférieur ou supérieur à 90°. Le coude 1 1 peut ne pas former un arc de cercle, mais plutôt en arc d'ellipse, ou tout autre forme courbe.
De préférence, la courbure de la ligne centrale du coude est toujours du même côté, la ligne centrale n'ayant pas de point d'inflexion. Il est toutefois envisageable que le coude forme un S, et présente un ou plusieurs points d'inflexion.
De préférence, la ligne centrale du coude et la ligne centrale du tronçon aval sont entièrement dans un même plan. Toutefois, il est possible que ces deux lignes centrales forment une courbe gauche. Dans ce cas, le plan considéré pour déterminer l'angle d'inclinaison du support d'injecteur est le plan formé par la ligne centrale du conduit aval rectiligne et la partie de la ligne centrale du coude située au voisinage du conduit aval.
La ligne d'échappement a été décrite comme étant montée sur un véhicule à moteur diesel. Elle pourrait toutefois être associée à un moteur autre qu'un moteur diesel.
L'injecteur peut injecter toutes sortes de réactifs, et pas nécessairement un réactif à base d'urée tel que AdBlue.

Claims

REVENDICATIONS
1 . Ligne d'échappement de véhicule automobile, la ligne d'échappement (1 ) comprenant :
- un conduit (3) de circulation des gaz d'échappement ayant un volume interne délimité par une paroi latérale (5), avec un coude (1 1 ) présentant une ligne centrale (21 ) coudée et un conduit rectiligne aval (9) raccordé en aval du coude (1 1 ), le conduit aval (9) présentant une ligne centrale aval (1 9) ;
- un injecteur (1 3) de réactif prévu pour injecter un réactif à l'intérieur du conduit de circulation (3) ;
- un support d'injecteur (1 5) délimitant intérieurement un volume d'injection (1 7), l'injecteur (1 3) étant lié au support d'injecteur (1 5), le support d'injecteur (1 5) étant lié au conduit de circulation (3) de telle sorte que le volume d'injection (1 7) communique avec le volume interne du conduit de circulation (3) à travers un orifice de passage (27) ménagé dans la paroi latérale (5) ;
caractérisée en ce que la ligne centrale coudée (21 ), au voisinage du conduit aval (9), définit avec la ligne centrale aval (1 9) un plan déterminé (P), le support d'injecteur (1 5) étant incliné par rapport audit plan déterminé (P) d'un angle d'inclinaison ( ) compris entre 20 ° et 80 °.
2. Ligne d'échappement selon la revendication 1 , caractérisée en ce que l'angle d'inclinaison ( ) est compris entre 30 ° et 60 °.
3. Ligne d'échappement selon la revendication 1 ou 2, caractérisée en ce que l'injecteur (1 3) est monté sur le support d'injecteur (1 5) de manière à injecter le réactif suivant une direction d'injection (I) formant avec ledit plan déterminé (P) un angle sensiblement égal à l'angle d'inclinaison ( a ).
4. Ligne d'échappement selon l'une quelconque des revendications précédentes, caractérisée en ce que le coude (1 1 ) présente un intrados et un extrados, l'orifice de passage (27) s'étendant majoritairement dans une zone de la paroi latérale (5) tournée vers l'extrados.
5. Ligne d'échappement selon la revendication 4, caractérisée en ce que l'orifice de passage (27) présente une zone (39) d'entrée des gaz d'échappement dans le volume d'injection (17), ladite zone d'entrée (39) étant tournée vers l'extrados.
6. Ligne d'échappement selon la revendication 4 ou 5, caractérisée en ce que l'orifice de passage (27) présente une zone (41 ) de sortie des gaz d'échappement hors du volume d'injection (17), ladite zone de sortie (41 ) étant tournée vers l'intrados.
7. Ligne d'échappement selon l'une quelconque des revendications précédentes, caractérisée en ce que l'orifice de passage (27) est ménagé partiellement dans le coude (1 1 ) et partiellement dans le conduit aval (9).
8. Ligne d'échappement selon l'une quelconque des revendications précédentes, caractérisée en ce que le conduit de circulation (3) comprend un conduit rectiligne amont (7) raccordé en amont du coude (1 1 ), la ligne centrale coudée (21 ) étant entièrement courbe, l'orifice de passage (27) présentant une zone (39) d'entrée des gaz d'échappement dans le volume d'injection (17) située dans une moitié du coude la plus proche du conduit rectiligne aval (9).
9. Ligne d'échappement selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un organe de purification catalytique en aval du conduit aval (9), le réactif comprenant de l'urée.
PCT/FR2010/051880 2009-09-10 2010-09-09 Ligne d'échappement de véhicule automobile avec un injecteur de réactif WO2011030064A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956193 2009-09-10
FR0956193A FR2949813B1 (fr) 2009-09-10 2009-09-10 Ligne d'echappement de vehicule automobile avec un injecteur de reactif

Publications (1)

Publication Number Publication Date
WO2011030064A1 true WO2011030064A1 (fr) 2011-03-17

Family

ID=41786477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051880 WO2011030064A1 (fr) 2009-09-10 2010-09-09 Ligne d'échappement de véhicule automobile avec un injecteur de réactif

Country Status (2)

Country Link
FR (1) FR2949813B1 (fr)
WO (1) WO2011030064A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130386A1 (fr) * 2012-02-27 2013-09-06 Caterpillar Inc. Ensemble de montage destiné à un injecteur de réducteur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2891305A1 (fr) 2005-09-27 2007-03-30 Renault Sas Ligne d'echappement de moteur de vehicule comprenant un injecteur de carburant
DE202008001547U1 (de) * 2007-07-24 2008-04-10 Emcon Technologies Germany (Augsburg) Gmbh Baugruppe zur Einbringung eines Reduktionsmittels in die Abgasleitung einer Abgasanlage einer Verbrennungskraftmaschine
US20090158717A1 (en) * 2007-12-25 2009-06-25 Hiroyuki Kimura Exhaust gas purification device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2891305A1 (fr) 2005-09-27 2007-03-30 Renault Sas Ligne d'echappement de moteur de vehicule comprenant un injecteur de carburant
DE202008001547U1 (de) * 2007-07-24 2008-04-10 Emcon Technologies Germany (Augsburg) Gmbh Baugruppe zur Einbringung eines Reduktionsmittels in die Abgasleitung einer Abgasanlage einer Verbrennungskraftmaschine
US20090158717A1 (en) * 2007-12-25 2009-06-25 Hiroyuki Kimura Exhaust gas purification device of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130386A1 (fr) * 2012-02-27 2013-09-06 Caterpillar Inc. Ensemble de montage destiné à un injecteur de réducteur
US8800275B2 (en) 2012-02-27 2014-08-12 Caterpillar Inc. Mounting assembly for a reductant injector

Also Published As

Publication number Publication date
FR2949813A1 (fr) 2011-03-11
FR2949813B1 (fr) 2011-10-07

Similar Documents

Publication Publication Date Title
EP2652279B1 (fr) Ligne d'échappement avec dispositif d'injection de réactif gazeux
EP2729678B1 (fr) Ensemble de purification de gaz d'échappement
FR3041691A1 (fr) Ligne d'echappement avec injecteur de reactif
WO2012052672A1 (fr) Ligne d'échappement pour véhicule automobile.
FR2947003A1 (fr) Ligne d'echappement avec systeme d'injection
FR3020835A1 (fr) Ensemble de purification de gaz d'echappement et ligne d'echappement comprenant un tel ensemble
FR2977632A1 (fr) Ensemble de purification de gaz d'echappement, avec impacteurs montes sur un deflecteur
FR3010137A1 (fr) Dispositif de purification de gaz d'echappement de moteur a combustion interne
FR2921415A1 (fr) Melangeur destine a etre dispose a l'interieur d'un element d'une ligne d'echappement d'un vehicule automobile
EP1036259B1 (fr) Dispositif d'echappement pour moteur a combustion interne
EP2551482B1 (fr) Ensemble coude de post-traitement des gaz d'echappement d'un moteur à combustion comportant un convergent interne
WO2008122724A1 (fr) Ligne d'echappement de moteur a combustion interne pourvue de moyens de reduction d'oxydes d'azote
WO2011030064A1 (fr) Ligne d'échappement de véhicule automobile avec un injecteur de réactif
FR2922939A1 (fr) Turbomachine comprenant un diffuseur
FR2906838A1 (fr) Ligne d'echappement munie d'un injecteur de carburant et de moyens d'homogeneisation des gaz brules.
WO2008046987A2 (fr) Dispositif de recirculation des gaz d'échappement d'un moteur à combustion interne
FR3097775A1 (fr) Ensemble de purification d’un gaz d’échappement, ligne d’échappement et véhicule
FR3040193B1 (fr) Systeme de reduction catalytique selective
FR3110634A1 (fr) Dispositif de mélange, ligne d’échappement et véhicule associés
FR3111826A1 (fr) Dispositif de mélange d’un agent réducteur avec un gaz d’échappement, notamment pour une ligne d’échappement de moteur thermique
FR2984447A1 (fr) Vanne de regulation de debit
FR3128736A1 (fr) Dispositif de purification de gaz d’échappement comprenant une buse d’arrivée d’air perfectionnée
FR3110635A1 (fr) Pièce d’admission de gaz d’échappement et ligne d’échappement correspondante
FR2879672A1 (fr) Dispositif d'injection de carburant pour moteur a injection indirecte
FR2948297A3 (fr) Dispositif de melange de carburant a pales dissymetriques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769001

Country of ref document: EP

Kind code of ref document: A1