EP2729678B1 - Ensemble de purification de gaz d'échappement - Google Patents

Ensemble de purification de gaz d'échappement Download PDF

Info

Publication number
EP2729678B1
EP2729678B1 EP12733681.6A EP12733681A EP2729678B1 EP 2729678 B1 EP2729678 B1 EP 2729678B1 EP 12733681 A EP12733681 A EP 12733681A EP 2729678 B1 EP2729678 B1 EP 2729678B1
Authority
EP
European Patent Office
Prior art keywords
inlet
baffle
exhaust gases
outlet
assembly according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12733681.6A
Other languages
German (de)
English (en)
Other versions
EP2729678A1 (fr
Inventor
Yohann Perrot
Jean-Paul Brunel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Systemes dEchappement SAS
Original Assignee
Faurecia Systemes dEchappement SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faurecia Systemes dEchappement SAS filed Critical Faurecia Systemes dEchappement SAS
Publication of EP2729678A1 publication Critical patent/EP2729678A1/fr
Application granted granted Critical
Publication of EP2729678B1 publication Critical patent/EP2729678B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4337Mixers with a diverging-converging cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/083Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using transversal baffles defining a tortuous path for the gases or successively throttling gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/02Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate silencers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap

Definitions

  • the present invention relates generally to the exhaust lines of motor vehicles.
  • Such a purification set is known to DE 10 2009 056183 A1 and of DE 10 2010 014 037 .
  • the first and second exhaust gas purification members are arranged side by side, with their respective axes substantially parallel to one another. Such an arrangement is particularly compact.
  • an injector of a reducing product of nitrogen oxides is provided in DE 10 2010 014 037 . This injector injects said product into the volume.
  • the circulation of the exhaust gases must be planned in such a way as to ensure a good dispersion of the product within the exhaust gases.
  • the invention aims to provide a purification assembly in which the counterpressure is lower.
  • the invention relates to an exhaust gas purification assembly of the aforementioned type, characterized in that the assembly comprises a deflector placed in the volume opposite the inlet, the deflector orthogonal projection on the an inlet covering at least 75% of the first zone and covering less than 25% of the second zone, the deflector and the volume being arranged so that a part of the exhaust gas entering through the first part of the inlet flows into the next volume flow lines forming a cusp around the deflector.
  • the exhaust gases entering through the first part of the inlet flow along a U-shaped path. They flow first along the face of the deflector facing the inlet, to a free edge of the deflector constituting a cusp, and then flow in the opposite direction along the face of the deflector located opposite the inlet. This flow induces internal rotational movements in the exhaust gas, which increases the level of turbulence in the flow of exhaust gas flowing along the face of the deflector located opposite the inlet.
  • This turbulence is due in particular to the fact that the exhaust gases entering through the second zone of the inlet are practically not deflected by the deflector.
  • the gases entering through the first zone undergo two successive changes of direction. A first change of direction after penetration into the volume to flow along the deflector, then a second change of direction when the gases arrive at the right of the second zone of the inlet and mix with the penetrating flow by said second zone.
  • the flow of gas from the first zone enters the flow of gas from the second zone with a high angle of incidence, for example close to 90 °, which contributes to increasing the level of turbulence.
  • the first exhaust gas purification unit is typically an oxidation catalyst specially adapted for diesel engines, known under the acronym DOC.
  • the upstream duct comprises several exhaust gas purification devices, in particular with a particulate filter and one or more oxidation or reduction catalysts.
  • the second purification member is a catalyst known as SCR (Selective Catalytic Reduction).
  • SCR Selective Catalytic Reduction
  • the SCR catalyst is designed to reduce the NOx contained in the exhaust gas to nitrogen gas N2, in the presence of ammonia NH3.
  • the downstream duct may also comprise not only an SCR catalyst, but also a particulate filter and / or one or more other catalysts or reducing agents placed in the downstream duct upstream or downstream of the SCR catalyst.
  • the upstream duct and the downstream duct are arranged parallel to each other.
  • the upstream duct and the downstream duct are arranged side by side. More specifically, the respective portions of the upstream duct and the downstream duct located near the volume are arranged side by side.
  • These parts typically comprise the first and second purification members.
  • side by side is used herein to mean that the respective central axes of the upstream duct and the downstream duct are substantially parallel to each other, or are slightly inclined with respect to each other.
  • the upstream and downstream ducts are located vis-à-vis one another. In other words, the upstream and downstream ducts have respective lateral surfaces substantially vis-à-vis one another.
  • the orthogonal projection baffle at the entrance covers at least 75% of the first zone and covers less than 25% of the second zone, means that it is important for the invention that the deflector deviates a large part of the gas entering the volume through the first zone.
  • the deflector In order for the purification unit not to generate excessive back pressure, the deflector must instead not deflect the exhaust gases entering the second zone, and must thus cover only a small fraction of this second zone.
  • there is provided in the baffle vis-à-vis the first zone of the inlet, a solid part, or having only one or more orifices of small sizes.
  • the deflector does not extend for example not at all vis-à-vis the second zone.
  • the deflector is slightly extended vis-à-vis the second zone, and covers only a small portion of this second zone, so as not to hinder the flow of exhaust gas entering the second zone .
  • the portion of the deflector located opposite the second zone delimits a large opening between a free edge of the deflector and the wall of the volume.
  • This large opening makes it possible to let the exhaust gas arriving from the inlet, with a minimum counter-pressure.
  • the portion of the deflector located opposite the second zone delimits several large openings between a free edge of the deflector and the wall of the volume. These openings are separated one from the other. These large openings can be two, three, or more than three.
  • the large opening or openings are formed entirely in the baffle, and are not delimited on the one hand by a free edge of the baffles and on the other by the wall of the volume.
  • Orthogonal projection on the input means the projection in a direction perpendicular to the plane in which the entry is inscribed.
  • the median line mentioned above is a dummy line and does not correspond to a line physically dividing the entry into two separate zones. Reference is made to this median line only to characterize the invention. This simply reflects the fact that the deflector is intended to cover essentially one half of the entrance, and to extend only slightly on the other half of the entrance.
  • the deflector covers at least 75% of the first zone, still more preferably at least 85% of the first zone, and still more preferably at least 90% of the first zone.
  • the deflector covers less than 25% of the second zone, preferably less than 15% of the second zone, and still preferably less than 10% of the second zone.
  • the deflector has opposite the first zone a plurality of orifices. These orifices are small openings, much smaller than the opening located opposite the second zone. In total, the cumulative area of all the orifices is less than 25% of the area of the first zone, preferably less than 15% of the area of the first zone, and even more preferably less than 10% of the area of the first zone.
  • This pathway successively comprises several sections.
  • the first section corresponds to the area between the deflector and the entrance.
  • the passageway typically comprises a converging section, with an upstream portion having a relatively larger passage section to the exhaust gas and a downstream portion having a passage section relatively smaller to the exhaust gas.
  • the converging section has a section of decreasing passage from upstream to downstream. This converging section corresponds for example to a section delimited between the face of the deflector turned away from the entrance, and a wall of the volume.
  • the injector device is arranged to inject the reducing agent into a delimited section in respective zones facing the deflector and a wall of the volume.
  • an injection is performed immediately downstream of said section. This makes it possible to lengthen the length of the path of the gas between the injection point, also called the seeding point, and the exhaust gas outlet. This promotes the homogenization of the reducing product in the exhaust gas, and allows a better distribution of the reducing product on the inlet face of the second purification member.
  • the deflector forms a protective screen preventing a return of the reducing product to the input. It thus prevents the reducing agent from diffusing to the first purification unit.
  • the first purification member is a DOC type oxidation catalyst and the injected reducing product is ammonia or a precursor of ammonia.
  • the ammonia can oxidize in contact with the DOC. Part of the ammonia is lost for NOx reduction.
  • oxidized ammonia on the DOC itself generates NOx.
  • the zone of the deflector delimiting the section in which the injection of the reducing product is carried out, or delimiting the section downstream from which the injection of the reducing product is carried out is concave, of concavity turned towards said section.
  • the section of the section thus has a less elongated shape, closer to an oval, well adapted to allow rapid and effective diffusion of the reducing product to all gas streams.
  • the passageway comprises a substantially tangential orientation section relative to the inlet, and / or a substantially tangential orientation section relative to the outlet.
  • the path of passage of the exhaust gas passes on the contrary in peripheral areas of the inlet and outlet which allows to arrange in a determined volume of shape a longer passageway.
  • the passageway has a substantially helical section opening into the outlet.
  • the substantially helical section extends the substantially tangential orientation section to the exit. This helical shape makes it possible to further extend the path of the exhaust gases between the seeding point and the outlet.
  • the helical section also makes it possible to impart to the exhaust gas a rotation about an axis substantially perpendicular to the outlet. This rotation contributes to increasing the level of turbulence in the exhaust gas and thus to improving the mixture of the reducing product in the gas stream. This also contributes to homogenize the distribution of the reducing product on the inlet face of the second purification member.
  • the deflector is integral with an edge of the entrance.
  • the deflector may be attached to the edge of the entrance, or integral with the edge of the entrance.
  • the deflector is preferably formed in a metal drop obtained by cutting the entry into the volume.
  • the deflector is obtained by deformation of a wall of the volume, preferably at the moment when the inlet is cut in the volume.
  • the volume typically comprises a telescope in which are provided the inlet and outlet, and a cover attached to the telescope.
  • the bezel comprises for example one or more planar portions, in which are provided the inlet and outlet.
  • the hood on the other hand, is a stamped, concave piece that caps the bezel.
  • the different sections of the exhaust gas path are obtained by forming the cover. They are for example obtained by stamping the cover.
  • the baffle is preferably integral with the bezel.
  • the deflector and the volume define at the level of the cusp around the cup a passage section for the exhaust gas less than 75% of a passage section of the inlet, preferably less than 50% of the passage section of the inlet.
  • the passage section offered to the exhaust gases at the cusp that is to say in the zone where the exhaust gas has a path substantially at 180 °, is reduced so as to increase the speed of the gases. This contributes to increasing the turbulence level of the exhaust gases downstream of the cusp.
  • the passageway present between the cusp and the injection point at least first and second sections having respective orientations forming with respect to each other an angle between 30 and 90 °.
  • the exhaust gases thus undergo an additional change of direction, causing additional rotation of the exhaust gas upstream of the injection point. This further improves the quality of the mixture between the reducing agent and the exhaust gas.
  • the angle is between 40 and 80 °, and more preferably between 50 and 60 °.
  • the two sections are typically connected to each other by an arcuate section. These sections may be placed upstream or downstream of the converging section, or be part of the converging section.
  • the first and second sections are typically rectilinear. In a variant, the first and second sections are slightly arched.
  • the inlet and the outlet preferably have respective centers aligned in a main direction, the median line defined above forming with the main direction an angle of less than 30 °.
  • the volume is typically elongated along the main direction, so that the gas flow path is also of general orientation along the main direction.
  • the fact that the median line of the entrance forms an angle of less than 30 ° with the main direction means that the solid part of the deflector is situated substantially on one side of the main direction and that the large opening or openings delimited by the deflector are located substantially on the other side of the main direction. This allows to place the first section in an orientation substantially perpendicular to the main direction, and the second section substantially parallel to the main direction.
  • the section converging in this case is very short and is placed upstream of the first section.
  • the path could have upstream of the injection point other sections with other orientations.
  • the injection device is designed to inject into the volume a gaseous product reducing nitrogen oxides, typically ammonia.
  • the device is provided for injecting a liquid product, for example an ammonia solution or urea.
  • the set 1 represented on the Figures 1 to 4 is intended for the purification of exhaust gases from a motor vehicle engine. It is more particularly intended for the purification of exhaust gases from a diesel engine.
  • the upstream duct 3 is connected upstream to an exhaust manifold (not shown) which collects the exhaust gases leaving the combustion chambers of the engine.
  • Other equipment may be interposed between the upstream duct and the exhaust manifold, for example a turbo compressor.
  • the first purification member 5 is a diesel engine oxidation catalyst (DOC). It is arranged inside the upstream duct 3 so that the exhaust gases are forced through the catalyst 5 when these exhaust gases flow from the exhaust manifold to the inlet 13.
  • the catalyst 5 has an outlet face 19 through which the exhaust gases leave the catalyst.
  • the face 19 coincides substantially with the inlet 13.
  • the upstream duct 3 opens directly into the inlet 13. In a variant, the outlet face 19 is offset upstream, slightly away from the inlet 13.
  • the downstream duct 7 is connected downstream to an exhaust cannula (not shown) through which the exhaust gases are released into the atmosphere after purification.
  • Other equipment, such as silencers, are interposed between the downstream duct and the exhaust cannula.
  • the second purification organ 9 is a catalyst known as SCR: Selective Catalytic Reduction.
  • the catalyst 9 is arranged in the downstream duct so that the exhaust gas leaving the outlet 15 and flowing to the cannula is forced through the SCR catalyst 9.
  • the catalyst 9 has an inlet face 21, which exhaust gas enters inside the catalyst 9. This inlet face 21 is located substantially in coincidence with the outlet 15. In a variant, the inlet face is offset along the downstream duct, at a distance of As an alternative, a particulate filter or other catalyst is interposed between the outlet 15 and the catalyst SCR 9.
  • the upstream duct 3 and the downstream duct 7 are substantially parallel to each other. They are juxtaposed next to each other. Their respective central axes, referenced X and Y on the Figure 3 , are substantially parallel to each other.
  • the exhaust gases flow in opposite directions to each other through the first catalyst 5 and through the second catalyst 9.
  • the volume 11 is intended to guide the exhaust gases from the inlet 13 to the outlet 15. It comprises a telescope 23 in which are provided the inlet 13 and the outlet 15, and a cover 25 attached to the telescope .
  • the bezel 23 is a stamped metal part.
  • the inlet 13 and the outlet 15 are for example circular. They are located in the same plane, or in two planes parallel to each other and slightly offset with respect to each other as illustrated on the Figure 3 .
  • the telescope 23 has an elongated shape along a main direction P passing through the respective centers C and C 'of the inlet 13 and the outlet 15 ( Figure 2 ). The entrance and exit occupy two ends of the telescope.
  • the inlet 13 occupies substantially an entire end of the telescope, and the outlet 15 also occupies a whole second end of the telescope.
  • the bezel on the other hand, has a solid central portion 27 between the inlet and the outlet. The width of the central portion 27, taken parallel to the main direction, is dictated by the spacing between the upstream and downstream ducts.
  • the cover 25 is a stamped metal part, of concave shape. It thus has an internal volume of complex shape, and an opening defined by a peripheral edge 29.
  • the bezel 23 closes the opening, the peripheral edge 31 of the bezel being sealingly assembled to the peripheral edge 29 of the opening. For example, the edges 29 and 31 are sealed to each other.
  • the assembly 1 further comprises a deflector 33 placed in the volume 11, facing the inlet 13.
  • the deflector 33 is secured to the peripheral edge 35 of the inlet. It is obtained during the stamping of the telescope.
  • the deflector 33 deviates from the plane of the inlet 3, from the edge 35, towards the interior of the volume 11.
  • the deflector 33 extends vis-à-vis substantially half of the inlet 13.
  • the center line corresponding to the section plane IV divides the inlet 13 into first and second zones 37 and 39 with substantially the same passage section to the exhaust gas.
  • the deflector 33 covers almost all of the first zone 37, and covers only a very small part of the second zone 39.
  • the deflector 33 thus defines with the hood 25 a large opening for the exhaust entering the second zone 39, while it deviates substantially all the exhaust gas entering the first zone 37.
  • the deflector has a free edge 41, and an edge 43 bonded to the peripheral edge 35 of the inlet 13.
  • the free edge 41 considered in projection on the entry 13 as on the Figure 2 , has a central portion 45 extending into the first zone 37, close to the center C of the inlet, and two end portions 47 extending into the second zone 39.
  • the surface 48 of the first zone extending between the central portion 45 and the section plane IV is not covered by the deflector. This surface has an extremely small area.
  • the surfaces of the second zone 39 extending between the end portions 47 and the section plane IV are on the other hand covered by the deflector 33. These parts are of reduced area.
  • the deflector 33 has, as visible on the Figure 2 , a plurality of orifices 49.
  • the orifices 49 are small in relation to the size of the inlet 13.
  • the total area of the surface 48, between the portion 45 of the free edge and the IV plane, and the different orifices 49 is less than 25% of the area of the first zone.
  • the deflector considered in orthogonal projection on the entry covers at least 75% of the first zone.
  • the volume 11 and the deflector 33 together define a passage path for the exhaust gas from the inlet 13 to the outlet 15.
  • This passageway is shaped to ensure excellent mixing quality of the ammonia gas injected by the injection device 17 in the exhaust gas.
  • the passageway first comprises an inlet section 51, between the deflector 33 and the inlet 13.
  • the exhaust gases entering through the first zone 37 of the inlet are deflected by the deflector 33 to the second zone 39 of the entrance. They flow along a face 53 of the deflector turned towards the inlet 13.
  • said exhaust gases flow along flow lines forming a cusp around the deflector, and more precisely around the free edge 41 of the deflector.
  • the flux lines will have a 180 ° twist.
  • the exhaust gas, after having crossed the free edge 41 flows along the face 55 of the deflector opposite to the inlet 13. The exhaust gases therefore flow in the opposite direction along the face 53 and along the face 55.
  • the exhaust gases entering through the second zone 39 are practically not deflected by the deflector 33. After having crossed the free edge 41, they flow along the face 55 of the deflector opposite the inlet 13.
  • the path of passage of the exhaust gas has after the inlet section 51, a converging section 57 delimited on one side by the deflector 33 and on the other side by the hood 25. More precisely, the converging section 57 is defined by areas of the hood and the deflector placed vis-à-vis one another.
  • the zone 59 of the deflector delimiting the converging section has a visible concavity on the Figure 4 . In other words, taken in section in a plane perpendicular to the entrance and containing the median line mentioned above, the zone 59 has a concavity turned towards the section 57.
  • This section 57 has a converging shape. More specifically, the passage section offered to the exhaust gas along the second section 57 decreases along this section 57, upstream to downstream. The upstream and downstream are here appreciated relative to the direction of normal flow of the exhaust gas. This is particularly visible on the Figure 1 .
  • the path also includes a section 61, extending the convergent section 57, oriented tangentially with respect to the inlet 13 and with respect to the outlet 15. This section is visible on the Figure 1 .
  • the upstream portion of the section 61, which connects to the converging section 57 is substantially tangential to the inlet 13.
  • the downstream portion 65 is substantially tangential to the outlet 15.
  • the section 61 is substantially straight. It is substantially parallel to the main direction P and extends along an edge of the telescope.
  • the passageway further comprises a helical section 67, extending the tangential section 61.
  • the helical section 67 winds around the central axis Y of the downstream outlet duct 7. It opens into the outlet 15.
  • the tangential section 61 and the helical section 67 are obtained by the appropriate shaping of the cover 25.
  • the ammonia injector device 17 comprises a gaseous ammonia generator element, not shown, and a duct 69 mounted on the cover 25.
  • the cover has for this purpose an orifice 71 on the edge of which is fixed the duct 69.
  • the conduit 69 penetrates slightly inside the volume 11.
  • the ammonia gas generating member is for example a gaseous ammonia storage cartridge, or an ammonia storage cartridge by absorption on a suitable solid material , or a reactor provided for generating ammonia from a liquid material such as urea.
  • the orifice 71 is arranged to perform the injection of gaseous ammonia at a point in the path in which the passage section offered to the exhaust gas is reduced. This point corresponds for example to the downstream end of the converging section 57, or to the end 63 of the tangential section 61.
  • the Figure 5 shows that the level of turbulence in the exhaust gas flow at the injection point is considerably increased due to the presence of the deflector 33.
  • the level of turbulence of the exhaust gas has been illustrated for an exhaust gas purification assembly having the same geometry as that of the invention, without a deflector.
  • the level of turbulence is low in volume 11 and is substantially constant.
  • the level of turbulence in the set of the invention comprising a deflector.
  • the turbulence level is indicated by a scale from a to k where k is the maximum turbulence level. This figure shows a significant level of turbulence at the downstream end of the converging section.
  • this level of turbulence is explained by the fact that the exhaust gases entering the volume 11 through the first zone of the inlet undergo several changes of direction, including a bending around the deflector, which creates internal rotations in the exhaust gas at the point of injection.
  • the Figure 6 shows that, due to the level of turbulence in the exhaust gas, the gaseous NH3 injected into the volume 11 is homogenized very rapidly in the flow of exhaust gas.
  • the lower part shows the concentration of NH3 inside the volume 11, for a set without deflector corresponding to that of the Figure 5 .
  • the upper part of the Figure 6 shows the concentration of NH3 in volume 11 for a deflector assembly according to the invention.
  • the concentration of NH3 is expressed by a graduated index of a to i, i corresponding to the maximum concentration of NH3.
  • the schemas of the Figure 6 correspond to front views of the exhaust gas purification assembly, similar to the view of the Figure 2 .
  • the exhaust gas inlet is located on the right, and the exhaust outlet on the left.
  • the lower part of the Figure 6 shows that, without the deflector, there is an exhaust gas vein with a high concentration of NH3 that extends far along the exhaust path, substantially up to half the helical section.
  • the upper part of the Figure 6 shows that with the deflector, the decrease of the concentration of NH3 in the exhaust gas is very fast.
  • the exhaust gas vein with high concentration of NH3 disappears far before the helical section 67.
  • the Figure 7 shows that the helical section 67 makes it possible to increase the level of turbulence of the exhaust gases.
  • the turbulence level is indicated by a scale from a to j where j is the maximum turbulence level.
  • the Figure 7 shows that the level of turbulence decreases when the exhaust gases leave the tangential section 61 and enter the helical section 67. It then tends to increase along the helical section 67, due to the rotation of the gas streams. 'exhaust.
  • the Figure 8 shows the distribution of ammonia NH3 in the plane of the outlet 15 of the volume.
  • the diagram corresponds to a set of purification without deflector, as illustrated on the right part of the Figure 5 .
  • the diagram corresponds to the invention, that is to say to an assembly equipped with a deflector.
  • the molar concentration of NH3 is indicated by a number graduated from a to v, v being the maximum concentration.
  • the scales are different from each other in the diagram on the left and in the diagram on the right.
  • the right part of the Figure 8 shows that, in the absence of a deflector, ammonia NH3 is much more concentrated at the bottom and right of the outlet than in the central zone of this outlet.
  • the molar fraction of NH3 is more than four times higher at the bottom and right of the outlet than in the central part of it.
  • the left part of the Figure 8 shows that, with a deflector, the distribution of NH3 is relatively homogeneous in the plane of the outlet.
  • the ratio of the mole fraction of NH3 in the zone with the highest concentration on the mole fraction of NH3 in the zone with the lowest concentration is less than 1.2.
  • the deflector 33 comprises two arches 72 extending essentially opposite the second zone 39 of the inlet. These arches 72 are integral with the central portion 45 of the free edge 41, and extend substantially radially to points 73 of the edge 35 located along the second zone of the inlet.
  • the cup 33 thus defines three passages 75 for the exhaust gases arriving from the inlet 13.
  • the passage section for the exhaust gases at the cusp that is to say between the free edge 41 of the baffle and the cover 25, is reduced by the presence of the arches 72. This contributes to accelerating the speed of exhaust flow in this zone, and to increase the level of turbulence of the exhaust gas at the injection point.
  • the convergent section 57 is replaced by a section of more complex shape, arranged to further increase the efficiency with which the ammonia gas is dispersed in the exhaust gas.
  • the converging section is replaced by a first portion 77 oriented substantially perpendicular to the main direction, extended by an arcuate section 79, itself extended by a second section 81 having an orientation substantially parallel to the main direction.
  • the upstream end of the section 77 is convergent, that is to say offers the exhaust gas a decreasing passage section from upstream to downstream.
  • the first section 77 is located substantially in line with the second zone of the entrance.
  • the arcuate section 79 and the second section 81 are located substantially in line with the first zone.
  • the deflector is slightly offset in rotation about the center C of the inlet relative to the situation of the Figure 2 .
  • the median line for dividing the inlet into two zones of the same size, one substantially completely covered by the deflector and the other substantially not covered by the deflector, is aligned with the main direction or slightly inclined with respect to this direction. main. This facilitates the arrangement of sections 77, 79 and 81.
  • the injection point of the gaseous ammonia is shifted upstream along the path of passage of the exhaust gas with respect to the first embodiment.

Description

  • La présente invention concerne en général les lignes d'échappement de véhicules automobiles.
  • Plus précisément, l'invention concerne un ensemble de purification de gaz d'échappement, l'ensemble étant du type comprenant :
    • un conduit amont dans lequel est logé un premier organe de purification des gaz d'échappement ;
    • un conduit aval dans lequel est logé un second organe de purification des gaz d'échappement, le conduit amont et le conduit aval étant disposés parallèlement l'un à l'autre ;
    • un volume ayant une entrée de gaz d'échappement communiquant avec le conduit amont et une sortie de gaz d'échappement communiquant avec le conduit aval, une droite médiane divisant ladite entrée en des première et seconde zones offrant une même section de passage au gaz d'échappement.
  • Un tel ensemble de purification est connu de DE 10 2009 056183 A1 et de DE 10 2010 014 037 . Dans ces documents, les premier et second organes de purification des gaz d'échappement sont disposés côte à côte, avec leurs axes respectifs sensiblement parallèles l'un à l'autre. Une telle disposition est particulièrement compacte. En revanche, il est nécessaire de conformer le volume raccordant le conduit amont au conduit aval de manière à obtenir une distribution des gaz d'échappement relativement uniforme au niveau de la sortie du volume. Par ailleurs, un injecteur d'un produit réducteur des oxydes d'azote est prévu dans DE 10 2010 014 037 . Cet injecteur injecte ledit produit dans le volume. La circulation des gaz d'échappement doit être prévue de manière à assurer une bonne dispersion du produit au sein des gaz d'échappement.
  • Pour assurer les fonctions décrites ci-dessus, à savoir permettre un écoulement des gaz d'échappement tel que ces gaz d'échappement soient distribués de manière relativement uniforme au niveau de la sortie du volume et assurer une bonne dispersion du produit injecté dans les gaz d'échappement, il est prévu dans le volume de DE 10 2010 014 037 deux coupelles, recouvrant l'une l'entrée de gaz d'échappement et l'autre la sortie de gaz d'échappement. La coupelle recouvrant l'entrée de gaz d'échappement présente des orifices radiaux agencés de manière à orienter les gaz d'échappement pénétrant par l'entrée.
  • De telles coupelles créent une contrepression élevée dans la ligne d'échappement.
  • Dans ce contexte, l'invention vise à proposer un ensemble de purification dans lequel la contrepression est moins élevée.
  • A cette fin, l'invention porte sur un ensemble de purification de gaz d'échappement du type précité, caractérisé en ce que l'ensemble comprend un déflecteur placé dans le volume en regard de l'entrée, le déflecteur en projection orthogonale sur l'entrée couvrant au moins 75% de la première zone et couvrant moins de 25% de la seconde zone, le déflecteur et le volume étant agencés pour qu'une partie des gaz d'échappement pénétrant par la première partie de l'entrée s'écoule dans le volume suivant des lignes de flux formant un rebroussement autour du déflecteur.
  • En d'autres termes, les gaz d'échappement pénétrant par la première partie de l'entrée s'écoulent selon un parcours en U. Ils s'écoulent d'abord le long de la face du déflecteur tourné vers l'entrée, jusqu'à un bord libre du déflecteur constituant en un point de rebroussement, puis s'écoulent en sens inverse le long de la face du déflecteur située à l'opposé de l'entrée. Cet écoulement induit des mouvements de rotation interne dans les gaz d'échappement, qui augmentent le niveau de turbulence dans le flux de gaz d'échappement s'écoulant le long de la face du déflecteur située à l'opposé de l'entrée.
  • Ces turbulences, quand l'ensemble de purification de gaz d'échappement est équipé d'un dispositif injecteur d'un produit réducteur des oxydes d'azote, permettent de disperser plus rapidement le produit réducteur au sein des gaz d'échappement. Les turbulences favorisent la diffusion du produit réducteur dans le flux gazeux.
  • Ces turbulences sont dues notamment au fait que les gaz d'échappement pénétrant par la seconde zone de l'entrée ne sont pratiquement pas déviés par le déflecteur. Au contraire, les gaz pénétrant par la première zone subissent deux changements de direction successifs. Un premier changement de direction après pénétration dans le volume pour s'écouler le long du déflecteur, puis un second changement de direction quand les gaz arrivent au droit de la seconde zone de l'entrée et se mélangent au flux pénétrant par ladite seconde zone. Ainsi, le flux de gaz provenant de la première zone pénètre dans le flux de gaz provenant de la seconde zone avec un angle d'incidence élevé, par exemple proche de 90°, ce qui contribue à augmenter le niveau de turbulence.
  • Ce niveau de turbulence est obtenu sans créer de contrepression élevée dans la ligne d'échappement, puisque les gaz d'échappement pénétrant par la seconde zone ne sont pratiquement pas déviés par le déflecteur.
  • Le premier organe de purification des gaz d'échappement est typiquement un catalyseur d'oxydation spécialement adapté pour les moteurs diesel, connu sous le sigle DOC. En variante, le conduit amont comporte plusieurs organes de purification des gaz d'échappement, avec notamment un filtre à particules et un ou plusieurs catalyseurs d'oxydation ou de réduction.
  • Le second organe de purification est un catalyseur connu sous le nom de SCR (Selective Catalytic Réduction). Le catalyseur SCR est prévu pour réduire les NOx contenus dans les gaz d'échappement en azote gazeux N2, en présence d'ammoniac NH3. Le conduit aval peut également comporter non seulement un catalyseur SCR, mais aussi un filtre à particules et/ou un ou plusieurs autres catalyseurs ou réducteurs, placés dans le conduit aval en amont ou en aval du catalyseur SCR.
  • Comme indiqué plus haut, le conduit amont et le conduit aval sont disposés parallèlement l'un à l'autre. On entend par là que, pour des raisons de compacité, le conduit amont et le conduit aval sont agencés côte à côte. Plus précisément, les parties respectives du conduit amont et du conduit aval situées à proximité du volume sont disposées côte à côte. Ces parties comprennent typiquement les premier et second organes de purification. Le terme côte à côte est employé ici comme signifiant que les axes centraux respectifs du conduit amont et du conduit aval sont sensiblement parallèles l'un à l'autre, ou sont faiblement inclinés l'un par rapport à l'autre. Les conduits amont et aval sont situés en vis-à-vis l'un de l'autre. En d'autres termes, les conduits amont et aval présentent des surfaces latérales respectives sensiblement en vis-à-vis l'une de l'autre.
  • Le fait que le déflecteur en projection orthogonale sur l'entrée couvre au moins 75% de la première zone et couvre moins de 25% de la seconde zone, signifie qu'il est important pour l'invention que le déflecteur dévie une grande partie des gaz pénétrant dans le volume par la première zone. Pour que l'ensemble de purification ne génère pas une contrepression trop importante, le déflecteur doit au contraire ne pas dévier les gaz d'échappement pénétrant par la seconde zone, et doit ainsi ne couvrir qu'une faible fraction de cette seconde zone. Pour atteindre ce résultat, on prévoit dans le déflecteur, en vis-à-vis de la première zone de l'entrée, une partie pleine, ou ne comportant qu'un ou plusieurs orifices de petites tailles,.
  • Le déflecteur ne se prolonge par exemple pas du tout en vis-à-vis de la seconde zone. En variante, le déflecteur se prolonge légèrement en vis-à-vis de la seconde zone, et ne couvre qu'une faible partie de cette seconde zone, de manière à ne pas gêner la circulation des gaz d'échappement pénétrant par la seconde zone.
  • Dans ce cas, la partie du déflecteur située en vis-à-vis de la seconde zone délimite une ouverture de grande taille, entre un bord libre du déflecteur et la paroi du volume. Cette ouverture de grande taille permet de laisser passer les gaz d'échappement arrivant de l'entrée, avec une contrepression minimum. En variante, la partie du déflecteur située en vis-à-vis de la seconde zone délimite plusieurs ouvertures de grande taille, entre un bord libre du déflecteur et la paroi du volume. Ces ouvertures sont séparées l'une de l'autre. Ces ouvertures de grande taille peuvent être au nombre de deux, trois, ou plus de trois.
  • En variante, la ou les ouvertures de grande taille sont ménagées entièrement dans le déflecteur, et ne sont pas délimitées d'une part par un bord libre des déflecteurs et d'autre part par la paroi du volume.
  • On entend par projection orthogonale sur l'entrée la projection suivant une direction perpendiculaire au plan dans lequel s'inscrit l'entrée.
  • Le ligne médiane mentionnée plus haut est une ligne fictive et ne correspond pas à une ligne divisant physiquement l'entrée en deux zones séparées. Il est fait référence à cette ligne médiane seulement en vue de caractériser l'invention. Ceci reflète simplement le fait que le déflecteur est prévu pour couvrir essentiellement une moitié de l'entrée, et pour ne s'étendre que faiblement sur l'autre moitié de l'entrée.
  • De préférence, le déflecteur recouvre au moins 75% de la première zone, encore de préférence au moins 85% de la première zone, et encore de préférence au moins 90% de la première zone. Le déflecteur couvre moins de 25% de la seconde zone, de préférence moins de 15% de la seconde zone, et encore de préférence moins de 10% de la seconde zone.
  • Typiquement, le déflecteur présente en regard de la première zone une pluralité d'orifices. Ces orifices sont des orifices de petite taille, nettement plus petits que l'ouverture située en regard de la seconde zone. Au total, la superficie cumulée de tous les orifices est inférieure à 25% de la superficie de la première zone, de préférence inférieure à 15% de la superficie de la première zone, et encore de préférence inférieure à 10% de la superficie de la première zone.
  • Ces orifices permettent à une fraction des gaz d'échappement entrant dans la première zone de suivre un trajet direct, c'est-à-dire de ne pas être déviée par le déflecteur. Ces gaz traversent le déflecteur et viennent se mélanger au flux de gaz d'échappement redescendant le long de la face du déflecteur opposée à l'entrée. Ceci contribue à augmenter le niveau de turbulence dans les gaz d'échappement.
  • Le volume et le déflecteur délimitent ensemble un chemin de passage guidant les gaz d'échappement depuis l'entrée vers la sortie. Ce chemin de passage comporte successivement plusieurs tronçons. Le premier tronçon correspond à la zone située entre le déflecteur et l'entrée.
  • Le chemin de passage comprend typiquement un tronçon convergeant, avec une portion amont offrant une section de passage relativement plus grande aux gaz d'échappement et une portion aval offrant une section de passage relativement plus petite aux gaz d'échappement. Typiquement, le tronçon convergeant présente une section de passage décroissante d'amont en aval. Ce tronçon convergeant correspond par exemple à un tronçon délimité entre la face du déflecteur tournée à l'opposé de l'entrée, et une paroi du volume. Quand l'ensemble comprend un dispositif injecteur d'un produit réducteur des oxydes d'azote, celui-ci est monté de manière à injecter le produit dans la portion aval.
  • Le fait d'injecter le produit réducteur dans une portion de faible section de passage permet de faciliter la dispersion du produit réducteur dans les gaz d'échappement. En effet, la distance pour que le produit diffuse depuis le point d'injection dans toute la section du chemin de passage est réduite.
  • De préférence, le dispositif injecteur est agencé pour injecter le produit réducteur dans un tronçon délimité dans des zones respectives en vis-à-vis du déflecteur et d'une paroi du volume. En variante, une injection est réalisée immédiatement en aval dudit tronçon. Ceci permet d'allonger la longueur de parcours du gaz entre le point d'injection, appelé également point d'ensemencement, et la sortie de gaz d'échappement. Ceci favorise l'homogénéisation du produit réducteur au sein du gaz d'échappement, et permet une meilleure distribution du produit réducteur sur la face d'entrée du second organe de purification.
  • Une telle disposition du point d'injection est rendue possible uniquement du fait de la présence du déflecteur. En effet, le déflecteur forme un écran de protection empêchant un retour du produit réducteur vers l'entrée. Il empêche ainsi que le produit réducteur diffuse jusqu'au premier organe de purification. Ceci est particulièrement important quand le premier organe de purification est un catalyseur d'oxydation du type DOC et que le produit réducteur injecté est de l'ammoniac ou un précurseur de l'ammoniac. En effet, l'ammoniac peut s'oxyder au contact du DOC. Une partie de l'ammoniac est alors perdue pour la réduction des NOx. Par ailleurs, l'ammoniac oxydé sur le DOC génère lui-même des NOx.
  • Dans une variante avantageuse, la zone du déflecteur délimitant le tronçon dans lequel est réalisée l'injection du produit réducteur, ou délimitant le tronçon en aval duquel est réalisé l'injection du produit réducteur, est concave, de concavité tournée vers ledit tronçon. Pour une superficie donnée, la section du tronçon présente ainsi une forme moins allongée, plus proche d'un ovale, bien adaptée pour permettre une diffusion rapide et efficace du produit réducteur à toutes les veines de gaz.
  • De préférence, le chemin de passage comporte un tronçon d'orientation sensiblement tangentielle par rapport à l'entrée, et/ou un tronçon d'orientation sensiblement tangentielle par rapport à la sortie. Ceci permet d'allonger la longueur du parcours des gaz d'échappement entre le point d'injection et la sortie. En effet, les gaz d'échappement ne s'écoulent pas directement d'une zone centrale de l'entrée à une zone centrale de la sortie, en ligne droite. Le chemin de passage des gaz d'échappement passe au contraire dans des zones périphériques de l'entrée et de la sortie ce qui permet d'agencer dans un volume de forme déterminée un chemin de passage plus long.
  • Typiquement, le chemin de passage a un tronçon sensiblement hélicoïdal débouchant dans la sortie. Typiquement, le tronçon sensiblement hélicoïdal prolonge le tronçon d'orientation sensiblement tangentielle jusqu'à la sortie. Cette forme hélicoïdale permet de rallonger encore le parcours des gaz d'échappement entre le point d'ensemencement et la sortie. Le tronçon hélicoïdal permet également de conférer au gaz d'échappement une rotation autour d'un axe sensiblement perpendiculaire à la sortie. Cette rotation contribue à renforcer le niveau de turbulence dans les gaz d'échappement et donc à améliorer le mélange du produit réducteur dans le flux gazeux. Ceci contribue également à homogénéiser la distribution du produit réducteur sur la face d'entrée du second organe de purification.
  • Typiquement, le déflecteur est solidaire d'un bord de l'entrée. Le déflecteur peut être rapporté sur le bord de l'entrée, ou venu de matière avec le bord de l'entrée. Dans le premier cas, le déflecteur est de préférence formé dans une chute de métal obtenue en découpant l'entrée dans le volume. Dans le second cas, le déflecteur est obtenu par déformation d'une paroi du volume, de préférence au moment où l'entrée est découpée dans le volume.
  • Le volume comprend typiquement une lunette dans laquelle sont ménagées l'entrée et la sortie, et un capot rapporté sur la lunette. La lunette comporte par exemple une ou plusieurs portions planes, dans laquelle sont ménagées l'entrée et la sortie. Le capot au contraire est une pièce emboutie, concave, venant coiffer la lunette. Les différents tronçons du chemin de passage des gaz d'échappement sont obtenus par mise en forme du capot. Ils sont par exemple obtenus par emboutissage du capot.
  • Le déflecteur est de préférence venu de matière avec la lunette.
  • Dans un mode de réalisation particulier de l'invention, le déflecteur et le volume délimitent au niveau du rebroussement autour de la coupelle une section de passage pour les gaz d'échappement inférieure à 75% d'une section de passage de l'entrée, de préférence inférieure à 50% de la section de passage de l'entrée. En d'autres termes, la section de passage offerte aux gaz d'échappement au niveau du rebroussement, c'est-à-dire dans la zone où les gaz d'échappement ont un parcours pratiquement à 180°, est réduite de manière à augmenter la vitesse des gaz. Ceci contribue à augmenter le niveau de turbulence des gaz d'échappement en aval du rebroussement.
  • Dans un exemple de réalisation, le chemin de passage présente entre le point de rebroussement et le point d'injection au moins des premier et second tronçons ayant des orientations respectives formant l'une par rapport à l'autre un angle compris entre 30 et 90°. Les gaz d'échappement subissent ainsi un changement de direction supplémentaire, provoquant une rotation supplémentaire des gaz d'échappement, en amont du point d'injection. Ceci améliore encore la qualité du mélange entre le produit réducteur et les gaz d'échappement. De préférence, l'angle est compris entre 40 et 80°, et encore de préférence entre 50 et 60°. Les deux tronçons sont typiquement raccordés l'un à l'autre par un tronçon arqué. Ces tronçons peuvent être placés en amont ou en aval du tronçon convergeant, ou faire partie du tronçon convergeant. Les premier et second tronçons sont typiquement rectilignes. En variante, les premier et second tronçons sont légèrement arqués.
  • Dans ce cas, l'entrée et la sortie présentent de préférence des centres respectifs alignés suivant une direction principale, la droite médiane définie plus haut formant avec la direction principale un angle inférieur à 30°. En effet, le volume est typiquement allongé suivant la direction principale, de telle sorte que le chemin de passage des gaz est lui aussi d'orientation générale suivant la direction principale. Le fait que la droite médiane de l'entrée forme avec la direction principale un angle inférieur à 30° signifie que la partie pleine du déflecteur est située sensiblement d'un côté de la direction principale et que la ou les ouvertures de grandes tailles délimitées par le déflecteur sont situées sensiblement de l'autre côté de la direction principale. Ceci permet de placer le premier tronçon dans une orientation sensiblement perpendiculaire à la direction principale, et le second tronçon sensiblement parallèlement à la direction principale. Le tronçon convergeant dans ce cas est très court et est placé en amont du premier tronçon.
  • Une telle disposition permet de placer le point d'injection très en amont, de manière à augmenter encore la distance disponible pour homogénéiser le produit réducteur et les gaz d'échappement.
  • Le chemin de passage pourrait présenter en amont du point d'injection d'autres tronçons ayant d'autres orientations.
  • De préférence, le dispositif d'injection est prévu pour injecter dans le volume un produit gazeux réducteur des oxydes d'azote, typiquement l'ammoniac. En variante, le dispositif est prévu pour injecter un produit liquide, par exemple une solution d'ammoniac ou de l'urée.
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :
    • la Figure 1 est une vue en perspective d'un ensemble de purification selon un premier mode de réalisation de l'invention ;
    • la Figure 2 est une vue de face de l'ensemble de la Figure 1, le capot n'étant pas représenté pour laisser apparaître l'entrée, la sortie et le déflecteur ;
    • la Figure 3 est une vue en coupe, prise selon la ligne brisée III de la Figure 2 ;
    • la Figure 4 est une vue en coupe, pris selon la ligne IV matérialisée sur la Figure 2 ;
    • la Figure 5 est une représentation graphique du niveau de turbulence dans les gaz d'échappement, pour un ensemble avec un déflecteur sur la partie gauche de la Figure 5, pour un ensemble sans déflecteur sur la partie droite de la Figure 5 ;
    • la Figure 6 est une représentation graphique donnant la concentration en NH3 gazeux dans les gaz d'échappement le long du chemin de passage, en haut avec un déflecteur, et en bas sans déflecteur ;
    • la Figure 7 est une représentation du tronçon hélicoïdal du chemin de passage des gaz d'échappement, montrant graphiquement le niveau de turbulence des gaz d'échappement ;
    • la Figure 8 est une représentation graphique de la distribution d'ammoniac à la sortie du volume, sur la partie gauche pour un ensemble équipé d'un déflecteur et sur la partie droite pour un ensemble ne comportant pas de déflecteur ;
    • la Figure 9 est une vue similaire à celle de la Figure 2, montrant une variante de réalisation du déflecteur ; et
    • les Figures 10 et 11 sont des vues similaires aux Figures 1 et 2, pour un second mode de réalisation de l'invention.
  • L'ensemble 1 représenté sur les Figures 1 à 4 est destiné à la purification de gaz d'échappement provenant d'un moteur thermique de véhicule automobile. Il est plus particulièrement destiné à la purification de gaz d'échappement provenant d'un moteur Diesel.
  • Comme visible sur la Figure 3, l'ensemble 1 comprend :
    • un conduit amont 3 dans lequel est logé un premier organe 5 de purification des gaz d'échappement ;
    • un conduit aval 7 dans lequel est logé un second organe 9 de purification des gaz d'échappement ;
    • un volume 11 ayant une entrée de gaz d'échappement 13 communiquant avec le conduit amont 3, et une sortie 15 de gaz d'échappement communiquant avec le conduit aval 7 ;
    • un injecteur 17 adapté pour injecter de l'ammoniac dans le volume 11.
  • Le conduit amont 3 est raccordé vers l'amont à un collecteur d'échappement (non représenté) qui collecte les gaz d'échappement sortant des chambres de combustion du moteur thermique. D'autres équipements sont éventuellement interposés entre le conduit amont et le collecteur d'échappement, par exemple un turbo compresseur.
  • Le premier organe de purification 5 est un catalyseur d'oxydation pour moteur Diesel (DOC). Il est agencé à l'intérieur du conduit amont 3 de telle sorte que les gaz d'échappement soient forcés à traverser le catalyseur 5 quand ces gaz d'échappement circulent depuis le collecteur d'échappement jusqu'à l'entrée 13. Le catalyseur 5 présente une face de sortie 19 par laquelle les gaz d'échappement quittent le catalyseur. La face 19 coïncide sensiblement avec l'entrée 13. Le conduit amont 3 débouche directement dans l'entrée 13. En variante, la face de sortie 19 est décalée vers l'amont, légèrement à distance de l'entrée 13.
  • Le conduit aval 7 est raccordé vers l'aval à une canule d'échappement (non représentée) par laquelle les gaz d'échappement sont relargués dans l'atmosphère après purification. D'autres équipements, tels que des silencieux, sont intercalés entre le conduit aval et la canule d'échappement.
  • Le second organe de purification 9 est un catalyseur connu sous le nom de SCR : Selective Catalytic Reduction. Le catalyseur 9 est agencé dans le conduit aval de manière à ce que les gaz d'échappement sortant par la sortie 15 et circulant vers la canule soient forcés de traverser le catalyseur SCR 9. Le catalyseur 9 présente une face d'entrée 21, par laquelle les gaz d'échappement pénètrent à l'intérieur du catalyseur 9. Cette face d'entrée 21 est située sensiblement en coïncidence avec la sortie 15. En variante, la face d'entrée est décalée le long du conduit aval, à distance de la sortie 15. En variante, un filtre à particules ou un autre catalyseur est interposé entre la sortie 15 et le catalyseur SCR 9.
  • Le conduit amont 3 et le conduit aval 7 sont sensiblement parallèles l'un à l'autre. Ils sont juxtaposés l'un à côté de l'autre. Leurs axes centraux respectifs, référencés X et Y sur la Figure 3, sont sensiblement parallèles l'un à l'autre. Les gaz d'échappement circulent dans des sens opposés l'un à l'autre à travers le premier catalyseur 5 et à travers le second catalyseur 9.
  • Le volume 11 est prévu pour guider les gaz d'échappement depuis l'entrée 13 jusqu'à la sortie 15. Il comporte une lunette 23 dans laquelle sont ménagées l'entrée 13 et la sortie 15, et un capot 25 rapporté sur la lunette.
  • La lunette 23 est une pièce métallique emboutie. L'entrée 13 et la sortie 15 sont par exemple circulaires. Elles sont situées dans un même plan, ou dans deux plans parallèles l'un à l'autre et légèrement décalées l'un par rapport à l'autre comme illustré sur la Figure 3. La lunette 23 présente une forme allongée suivant une direction principale P passant par les centres respectifs C et C' de l'entrée 13 et de la sortie 15 (Figure 2). L'entrée et la sortie occupent deux extrémités de la lunette. L'entrée 13 occupe sensiblement toute une extrémité de la lunette, et la sortie 15 occupe de même toute une seconde extrémité de la lunette. La lunette comporte en revanche une partie centrale pleine 27, entre l'entrée et la sortie. La largeur de la partie centrale 27, prise parallèlement à la direction principale, est dictée par l'écartement entre les conduits amont et aval.
  • Le capot 25 est une pièce métallique emboutie, de forme concave. Elle présente ainsi un volume interne de forme complexe, et une ouverture délimitée par un bord périphérique 29. La lunette 23 ferme l'ouverture, le bord périphérique 31 de la lunette étant assemblé de manière étanche au bord périphérique 29 de l'ouverture. Par exemple, les bords 29 et 31 sont soudés l'un à l'autre de manière étanche.
  • L'ensemble 1 comporte encore un déflecteur 33 placé dans le volume 11, en regard de l'entrée 13. Le déflecteur 33 est solidaire du bord périphérique 35 de l'entrée. Il est obtenu lors de l'emboutissage de la lunette. Le déflecteur 33 s'écarte du plan de l'entrée 3, à partir du bord 35, vers l'intérieur du volume 11.
  • Dans l'exemple représenté, le déflecteur 33 s'étend en vis-à-vis de sensiblement la moitié de l'entrée 13. Ainsi, si on considère la représentation de la Figure 2, la ligne médiane correspondant au plan de coupe IV divise l'entrée 13 en des première et seconde zones 37 et 39 offrant sensiblement une même section de passage au gaz d'échappement. Considéré en projection orthogonale sur l'entrée 13, comme sur la Figure 2, le déflecteur 33 couvre la quasi-totalité de la première zone 37, et ne couvre qu'une toute petite partie de la seconde zone 39. Le déflecteur 33 définit ainsi avec le capot 25 une large ouverture de passage pour les gaz d'échappement entrant par la seconde zone 39, alors qu'il dévie la quasi-totalité des gaz d'échappement entrant par la première zone 37.
  • Plus précisément, le déflecteur présente un bord libre 41, et un bord 43 lié au bord périphérique 35 de l'entrée 13.
  • Le bord libre 41, considéré en projection sur l'entrée 13 comme sur la Figure 2, présente une partie centrale 45 s'étendant dans la première zone 37, à proximité immédiate du centre C de l'entrée, et deux parties d'extrémité 47 s'étendant dans la seconde zone 39. La surface 48 de la première zone s'étendant entre la partie centrale 45 et le plan de coupe IV n'est pas couverte par le déflecteur. Cette surface présente une superficie extrêmement réduite.
  • Les surfaces de la seconde zone 39 s'étendant entre les parties d'extrémité 47 et le plan de coupe IV sont en revanche couvertes par le déflecteur 33. Ces parties sont de superficie réduite.
  • Le déflecteur 33 comporte, comme visible sur la Figure 2, une pluralité d'orifices 49. Les orifices 49 sont de petite taille par rapport à la taille de l'entrée 13. La superficie totale de la surface 48, comprise entre la partie 45 du bord libre et le plan IV, et des différents orifices 49 est inférieure à 25% de la surface de la première zone. En d'autres termes, le déflecteur considéré en projection orthogonal sur l'entrée couvre au moins 75% de la première zone.
  • Comme visible sur les Figures 1 à 4, le volume 11 et le déflecteur 33 définissent ensemble un chemin de passage pour les gaz d'échappement depuis l'entrée 13 jusqu'à la sortie 15. Ce chemin de passage est conformé de manière à assurer une excellente qualité de mélange de l'ammoniac gazeux injecté par le dispositif d'injection 17 dans les gaz d'échappement. Le chemin de passage comporte d'abord un tronçon d'entrée 51, entre le déflecteur 33 et l'entrée 13. Dans le tronçon d'entrée 51, les gaz d'échappement pénétrant par la première zone 37 de l'entrée sont déviés par le déflecteur 33 vers la seconde zone 39 de l'entrée. Ils s'écoulent le long d'une face 53 du déflecteur tournée vers l'entrée 13. En arrivant au bord libre 41, lesdits gaz d'échappement s'écoulent suivant des lignes de flux formant un rebroussement autour du déflecteur, et plus précisément autour du bord libre 41 du déflecteur. Ainsi les lignes de flux vont présenter des rebroussements à 180°. Les gaz d'échappement, après avoir franchi le bord libre 41 s'écoulent le long de la face 55 du déflecteur opposée à l'entrée 13. Les gaz d'échappement s'écoulent donc en sens inverse le long de la face 53 et le long de la face 55.
  • Les gaz d'échappement entrant par la seconde zone 39 ne sont pratiquement pas déviés par le déflecteur 33. Après avoir franchi le bord libre 41, ils s'écoulent le long de la face 55 du déflecteur opposée à l'entrée 13.
  • Ainsi, le chemin de passage des gaz d'échappement présente après le tronçon d'entrée 51, un tronçon convergeant 57 délimité d'un côté par le déflecteur 33 et de l'autre côté par le capot 25. Plus précisément, le tronçon convergeant 57 est délimité par des zones du capot et du déflecteur placé en vis-à-vis l'une de l'autre. La zone 59 du déflecteur délimitant le tronçon convergeant présente une concavité visible sur la Figure 4. En d'autres termes, prise en coupe dans un plan perpendiculaire à l'entrée et contenant la ligne médiane mentionnée plus haut, la zone 59 présente une concavité tournée vers le tronçon 57.
  • Ce tronçon 57 présente une forme convergeante. Pus précisément, la section de passage offerte au gaz d'échappement le long du second tronçon 57 décroît le long de ce tronçon 57, d'amont en aval. L'amont et l'aval sont ici appréciés relativement au sens de circulation normale des gaz d'échappement. Ceci est particulièrement bien visible sur la Figure 1.
  • Cette réduction de la section de passage est obtenue par une mise en forme appropriée du capot 25.
  • Le chemin de passage comprend également un tronçon 61, prolongeant le tronçon convergeant 57, d'orientation tangentielle par rapport à l'entrée 13 et par rapport à la sortie 15. Ce tronçon est visible sur la Figure 1. La partie amont du tronçon 61, qui se raccorde au tronçon convergeant 57 est sensiblement tangentielle à l'entrée 13. La partie aval 65 est sensiblement tangentielle à la sortie 15. Le tronçon 61 est sensiblement rectiligne. Il est sensiblement parallèle à la direction principale P et s'étend le long d'un bord de la lunette.
  • Le chemin de passage comporte encore un tronçon hélicoïdal 67, prolongeant le tronçon tangentiel 61. Le tronçon hélicoïdal 67 s'enroule autour de l'axe central Y du conduit de sortie aval 7. Il débouche dans la sortie 15. Le tronçon tangentiel 61 et le tronçon hélicoïdal 67 sont obtenus par la mise en forme appropriée du capot 25.
  • Le dispositif injecteur d'ammoniaque 17 comprend un organe générateur d'ammoniac gazeux, non représenté, et un conduit 69 rapporté sur le capot 25. Le capot présente à cet effet un orifice 71 sur le bord duquel est fixé le conduit 69. De préférence, le conduit 69 pénètre légèrement à l'intérieur du volume 11. L'organe générateur d'ammoniac gazeux est par exemple une cartouche de stockage d'ammoniac gazeux, ou une cartouche de stockage de l'ammoniac par absorption sur un matériau solide approprié, ou un réacteur prévu pour générer de l'ammoniac à partir d'un matériau liquide tel que l'urée. L'orifice 71 est disposé de manière à réaliser l'injection d'ammoniaque gazeux en un point du chemin de passage dans laquelle la section de passage offerte au gaz d'échappement est réduite. Ce point correspond par exemple à l'extrémité aval du tronçon convergeant 57, ou à l'extrémité 63 du tronçon tangentiel 61.
  • La Figure 5 montre que le niveau de turbulence dans l'écoulement de gaz d'échappement au niveau du point d'injection est considérablement augmenté du fait de la présence du déflecteur 33. Sur la partie de droite de la Figure 5, on a illustré le niveau de turbulence des gaz d'échappement pour un ensemble de purification des gaz d'échappement ayant la même géométrie que celui de l'invention, dépourvu de déflecteur. Le niveau de turbulence est faible dans le volume 11 et est sensiblement constant. Sur la partie gauche de la Figure 5, on a représenté le niveau de turbulence dans l'ensemble de l'invention, comportant un déflecteur. Le niveau de turbulence est indiqué par un indice gradué de a à k, k étant le niveau de turbulence maximum. Cette figure met en évidence un niveau de turbulence important à l'extrémité aval du tronçon convergeant. Comme expliqué plus haut, ce niveau de turbulence s'explique par le fait que les gaz d'échappement pénétrant dans le volume 11 par la première zone de l'entrée subissent plusieurs changements de direction, notamment un rebroussement autour du déflecteur, ce qui crée des rotations internes dans les gaz d'échappement au niveau du point d'injection.
  • Sur la Figure 5, seule une moitié de l'ensemble de purification a été représentée. Cette moitié correspond sensiblement à la partie supérieure de la Figure 3.
  • La Figure 6 montre que, du fait du niveau de turbulence dans les gaz d'échappement, le NH3 gazeux injecté dans le volume 11 est homogénéisé très rapidement dans le flux de gaz d'échappement. La partie inférieure montre la concentration de NH3 à l'intérieur du volume 11, pour un ensemble sans déflecteur correspondant à celui de la Figure 5. La partie supérieure de la Figure 6 montre la concentration en NH3 dans le volume 11 pour un ensemble avec déflecteur conforme à l'invention.
  • Dans les deux cas, la concentration en NH3 est exprimée par un indice gradué de a à i, i correspondant à la concentration de NH3 maximale.
  • Les schémas de la Figure 6 correspondent à des vues de face de l'ensemble de purification des gaz d'échappement, similaires à la vue de la Figure 2. L'entrée de gaz d'échappement est située sur la droite, et la sortie de gaz d'échappement sur la gauche. La partie inférieure de la Figure 6 montre que, sans le déflecteur, il existe une veine de gaz d'échappement avec une forte concentration de NH3 qui se prolonge loin le long du chemin d'échappement, sensiblement jusqu'à la moitié du tronçon hélicoïdal.
  • La partie supérieure de la Figure 6 montre qu'avec le déflecteur, la décroissance de la concentration en NH3 dans les gaz d'échappement est très rapide. La veine de gaz d'échappement à forte concentration de NH3 disparaît loin avant le tronçon hélicoïdal 67.
  • La Figure 7 montre que le tronçon hélicoïdal 67 permet d'augmenter le niveau de turbulence des gaz d'échappement. Sur la Figure 7, le niveau de turbulence est indiqué par un indice gradué de a à j, j correspondant au niveau de turbulence maximal.
  • La Figure 7 montre que le niveau de turbulence décroît quand les gaz d'échappement quittent le tronçon tangentiel 61 et pénètrent dans le tronçon hélicoïdal 67. Il tend ensuite à s'accroître le long du tronçon hélicoïdal 67, du fait de la mise en rotation des gaz d'échappement.
  • La Figure 8 montre la distribution de l'ammoniac NH3 dans le plan de la sortie 15 du volume. Sur la partie droite, le schéma correspond à un ensemble de purification sans déflecteur, comme illustré sur la partie droite de la Figure 5. Sur la partie gauche de la Figure 8, le schéma correspond à l'invention, c'est-à-dire à un ensemble équipé d'un déflecteur. La concentration molaire de NH3 est indiquée par un indice gradué de a à v, v étant la concentration maximale. Les échelles sont différentes l'une de l'autre sur le schéma de gauche et sur le schéma de droite.
  • La partie droite de la Figure 8 montre que, en l'absence de déflecteur, l'ammoniac NH3 est beaucoup plus concentré en bas et à droite de la sortie que dans la zone centrale de cette sortie. La fraction molaire de NH3 est plus de quatre fois plus élevée en bas et à droite de la sortie que dans la partie centrale de celle-ci.
  • La partie gauche de la Figure 8 montre que, avec un déflecteur, la distribution de NH3 est relativement homogène dans le plan de la sortie. Le rapport de la fraction molaire de NH3 dans la zone ayant la plus forte concentration sur la fraction molaire de NH3 dans la zone ayant la plus faible concentration est inférieur à 1,2.
  • Une variante du premier mode de réalisation va maintenant être décrite, en référence à la Figure 9.
  • Seuls les points par lesquels cette variante diffère de l'ensemble représenté sur les Figures 1 à 4 seront détaillés ci-dessous. Les éléments identiques ou assurant la même fonction seront désignés par les mêmes références.
  • Dans la variante de réalisation de la Figure 9, le déflecteur 33 comporte deux arceaux 72 s'étendant essentiellement en regard de la seconde zone 39 de l'entrée. Ces arceaux 72 sont solidaires de la partie centrale 45 du bord libre 41, et s'étendent sensiblement radialement jusqu'à des points 73 du bord 35 situés le long de la seconde zone de l'entrée. La coupelle 33 délimite ainsi trois passages 75 pour les gaz d'échappement arrivant de l'entrée 13.
  • La section de passage pour les gaz d'échappement au niveau du rebroussement, c'est-à-dire entre le bord libre 41 du déflecteur et le capot 25, est réduite par la présence des arceaux 72. Ceci contribue à accélérer la vitesse d'écoulement des gaz d'échappement dans cette zone, et à augmenter le niveau de turbulence des gaz d'échappement au point d'injection.
  • Un second mode de réalisation de l'invention va maintenant être décrit, en référence aux Figures 10 et 11. Seuls les points par lesquels le second mode de réalisation diffère du premier seront détaillés ci-dessous.
  • Les éléments identiques ou assurant la même fonction dans les deux modes de réalisation seront désignés par les mêmes références.
  • Comme visible sur la Figure 10, le tronçon convergeant 57 est remplacé par un tronçon de forme plus complexe, agencé pour augmenter encore l'efficacité avec laquelle l'ammoniac gazeux est dispersé dans les gaz d'échappement. Le tronçon convergeant est remplacé par un premier tronçon 77 d'orientation sensiblement perpendiculaire à la direction principale, prolongé par un tronçon arqué 79, prolongé lui-même par un second tronçon 81 ayant une orientation sensiblement parallèle à la direction principale. L'extrémité amont du tronçon 77 est convergeante, c'est-à-dire offre au gaz d'échappement une section de passage décroissante d'amont en aval. Le premier tronçon 77 est situé sensiblement au droit de la seconde zone de l'entrée. Le tronçon arqué 79 et le second tronçon 81 sont situés sensiblement au droit de la première zone.
  • Par ailleurs, comme visible sur la Figure 11, le déflecteur est légèrement décalé en rotation autour du centre C de l'entrée par rapport à la situation de la Figure 2. La ligne médiane permettant de subdiviser l'entrée en deux zones de même taille, l'une sensiblement complètement recouverte par le déflecteur et l'autre pratiquement non recouverte par le déflecteur, est alignée avec la direction principale ou faiblement inclinée par rapport à cette direction principale. Ceci facilite l'agencement des tronçons 77, 79 et 81.
  • Enfin, le point d'injection de l'ammoniaque gazeux est décalé vers l'amont le long du chemin de passage des gaz d'échappement par rapport au premier mode de réalisation.

Claims (15)

  1. Ensemble de purification de gaz d'échappement, l'ensemble (1) comprenant :
    - un conduit amont (3) dans lequel est logé un premier organe (5) de purification des gaz d'échappement;
    - un conduit aval (7) dans lequel est logé un second organe (9) de purification des gaz d'échappement, le conduit amont (3) et le conduit aval (5) étant disposés parallèlement l'un à l'autre;
    - un volume (11) ayant une entrée (13) de gaz d'échappement communiquant avec le conduit amont (3) et une sortie (15) de gaz d'échappement communiquant avec le conduit aval (5), une droite médiane divisant ladite entrée (13) en des première et seconde zones (37, 39) offrant une même section de passage aux gaz d'échappement ;
    caractérisé en ce que l'ensemble (1) comprend un déflecteur (33) placé dans le volume (11) en regard de l'entrée (13), le déflecteur (33) en projection orthogonale sur l'entrée (13) couvrant au moins 75% de la première zone (37) et couvrant moins de 25% de la seconde zone (39), le déflecteur (33) et le volume (11) étant agencés pour qu'une partie des gaz d'échappement pénétrant par la première zone (37) de l'entrée (13) s'écoule dans le volume (11) suivant des lignes de flux formant un rebroussement autour du déflecteur (33), les gaz d'échappement pénétrant par la première zone (37) de l'entrée (13) s'écoulant d'abord le long d'une première face du déflecteur (33) tournée vers l'entrée (13), jusqu'à un bord libre du déflecteur (33) constituant un point de rebroussement, puis s'écoulant en sens inverse le long d'une seconde face du déflecteur (33) située à l'opposé de l'entrée (13).
  2. Ensemble selon la revendication 1, caractérisé en ce que le déflecteur (33) présente en regard de la première zone (37) une pluralité d'orifices (49).
  3. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume (11) et le déflecteur (33) délimitent un chemin de passage guidant les gaz d'échappement depuis l'entrée (13) vers la sortie (15), le chemin de passage comprenant un tronçon convergeant (57) avec une portion amont offrant une section de passage relativement plus grande aux gaz d'échappement et une portion aval offrant une section de passage relativement plus petite aux gaz d'échappement, l'ensemble (1) comprenant un dispositif (17) injecteur d'un produit réducteur des oxydes d'azote dans la portion aval.
  4. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume (11) et le déflecteur (33) délimitent un chemin de passage guidant les gaz d'échappement depuis l'entrée (13) vers la sortie (15), l'ensemble (1) comprenant un dispositif (17) injecteur d'un produit réducteur des oxydes d'azote dans ou immédiatement en aval d'un tronçon (57) dudit chemin de passage, ledit tronçon (57) étant délimité par des zones respectives en vis-à-vis du déflecteur (33) et d'une paroi du volume (11).
  5. Ensemble selon la revendication 4, caractérisé en ce que ladite zone (59) du déflecteur (33) est concave vers ledit tronçon (57).
  6. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume (11) et le déflecteur (33) délimitent un chemin de passage guidant les gaz d'échappement depuis l'entrée (13) vers la sortie (15), ledit chemin ayant un tronçon (61) d'orientation sensiblement tangentielle par rapport à l'entrée (13).
  7. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume (11) et le déflecteur (33) délimitent un chemin de passage guidant les gaz d'échappement depuis l'entrée (13) vers la sortie (15), ledit chemin ayant un tronçon (61) d'orientation sensiblement tangentielle par rapport à la sortie (15).
  8. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume (11) et le déflecteur (33) délimitent un chemin de passage guidant les gaz d'échappement depuis l'entrée (13) vers la sortie (15), ledit chemin ayant un tronçon (67) sensiblement hélicoïdal débouchant dans la sortie (15).
  9. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le déflecteur (33) est solidaire d'un bord (35) de l'entrée.
  10. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume (11) comprend une lunette (23) dans laquelle sont ménagées l'entrée (13) et la sortie (15), et un capot (25) rapporté sur la lunette (23).
  11. Ensemble selon la revendication 10, caractérisé en ce que le déflecteur (33) est venue de matière avec la lunette (23).
  12. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le déflecteur (33) et le volume (11) délimitent au niveau du rebroussement autour du déflecteur (33) une section de passage pour les gaz d'échappement inférieure à 75% d'une section de passage de l'entrée (13), de préférence inférieure à 50% d'une section de passage de l'entrée (13).
  13. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que le volume (11) et le déflecteur (33) délimitent un chemin de passage guidant les gaz d'échappement depuis l'entrée (13) vers la sortie (15), l'ensemble (1) comprenant un dispositif (17) prévu pour injecter un produit réducteur des oxydes d'azote en un point d'injection dudit chemin de passage, le chemin de passage comprenant entre le rebroussement et le point d'injection au moins des premier et second tronçons (77, 81) ayant des orientations respectives formant l'une par rapport à l'autre un angle compris entre 30° et 90°.
  14. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce que l'entrée (13) et la sortie (15) présentent des centres respectifs alignés suivant une direction principale, ladite droite médiane formant avec la direction principale un angle inférieur à 30°.
  15. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un dispositif (17) prévu pour injecter un produit gazeux réducteur des oxydes d'azote, par exemple de l'ammoniac.
EP12733681.6A 2011-07-05 2012-07-05 Ensemble de purification de gaz d'échappement Active EP2729678B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1156061A FR2977633B1 (fr) 2011-07-05 2011-07-05 Ensemble de purification de gaz d'echappement
PCT/EP2012/063084 WO2013004769A1 (fr) 2011-07-05 2012-07-05 Ensemble de purification de gaz d'échappement

Publications (2)

Publication Number Publication Date
EP2729678A1 EP2729678A1 (fr) 2014-05-14
EP2729678B1 true EP2729678B1 (fr) 2017-04-19

Family

ID=46506363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12733681.6A Active EP2729678B1 (fr) 2011-07-05 2012-07-05 Ensemble de purification de gaz d'échappement

Country Status (6)

Country Link
US (1) US9464546B2 (fr)
EP (1) EP2729678B1 (fr)
KR (1) KR20140043449A (fr)
CN (1) CN103649483B (fr)
FR (1) FR2977633B1 (fr)
WO (1) WO2013004769A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497866A (en) * 2012-12-20 2013-06-26 Daimler Ag Exhaust gas after treatment device
GB2511486A (en) 2013-01-22 2014-09-10 Daimler Ag Mixing device for an exhaust system of a vehicle
US20150308316A1 (en) * 2014-04-29 2015-10-29 GM Global Technology Operations LLC Integrated mixing system for exhaust aftertreatment system
FR3020834B1 (fr) * 2014-05-07 2016-06-24 Faurecia Systemes D'echappement Ensemble de purification de gaz d'echappement
FR3020835B1 (fr) * 2014-05-07 2016-06-24 Faurecia Systemes D'echappement Ensemble de purification de gaz d'echappement et ligne d'echappement comprenant un tel ensemble
WO2015187162A1 (fr) * 2014-06-05 2015-12-10 Faurecia Emissions Control Technologies, Usa, Llc Couvercle isolé pour ensemble mélangeur
US10215075B2 (en) * 2014-10-24 2019-02-26 Faurecia Emissions Control Technologies, Usa, Llc Modular mixer inlet and mixer assembly to provide for compact mixer
US9828897B2 (en) * 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
CN107435576B (zh) * 2016-05-27 2021-06-01 罗伯特·博世有限公司 集成的尾气后处理系统
JP6853658B2 (ja) * 2016-10-11 2021-03-31 現代自動車株式会社Hyundai Motor Company 車両の触媒コンバータの断熱構造
WO2019045701A1 (fr) * 2017-08-30 2019-03-07 Faurecia Emissions Control Technologies, Usa, Llc Cône d'injecteur de type venturi
CN111315972A (zh) * 2017-11-03 2020-06-19 佛吉亚排放控制技术美国有限公司 流动反向混合器组件
US10533478B2 (en) 2017-12-12 2020-01-14 Faurecia Emissions Control Technologies, Usa, Llc Mixer and valve assembly
JP6894385B2 (ja) * 2018-01-05 2021-06-30 フタバ産業株式会社 混合装置
DE102018103368A1 (de) 2018-02-15 2019-08-22 Man Truck & Bus Ag Vorrichtung zum Mischen von Abgas und einem Additiv
US10287948B1 (en) 2018-04-23 2019-05-14 Faurecia Emissions Control Technologies, Usa, Llc High efficiency mixer for vehicle exhaust system
US10316721B1 (en) 2018-04-23 2019-06-11 Faurecia Emissions Control Technologies, Usa, Llc High efficiency mixer for vehicle exhaust system
WO2020009713A1 (fr) 2018-07-06 2020-01-09 Cummins Emission Solutions Inc. Chambre de décomposition pour systèmes de post-traitement
US10787946B2 (en) 2018-09-19 2020-09-29 Faurecia Emissions Control Technologies, Usa, Llc Heated dosing mixer
SE542960C2 (en) 2018-12-13 2020-09-22 Scania Cv Ab Exhaust gas aftertreatment system
IT201900001933A1 (it) * 2019-02-11 2020-08-11 Cnh Ind Italia Spa Sistema migliorato di trattamento dei gas di scarico per un veicolo
US11208934B2 (en) 2019-02-25 2021-12-28 Cummins Emission Solutions Inc. Systems and methods for mixing exhaust gas and reductant
GB2609163B (en) 2020-05-08 2023-08-23 Cummins Emission Solutions Inc Configurable aftertreatment systems including a housing
FR3113697B1 (fr) * 2020-09-01 2022-09-02 Faurecia Systemes Dechappement Mélangeur de réducteur pour gaz d’échappement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533358A (ja) * 2005-03-08 2008-08-21 ボルボ ラストバグナー アーベー 液体媒体を気体媒体に混合するための装置
FR2900962A1 (fr) * 2006-05-15 2007-11-16 Renault Sas Ligne d'echappement comportant un injecteur de carburant et une plaque adaptee a la vaporisation du carburant injecte sur ladite plaque
JP4943499B2 (ja) * 2007-03-12 2012-05-30 ボッシュ株式会社 内燃機関の排気浄化装置
JP5099684B2 (ja) * 2007-08-06 2012-12-19 ボッシュ株式会社 排気浄化装置
GB2452249A (en) * 2007-08-17 2009-03-04 Emcon Technologies Germany An exhaust system
DE102010014037A1 (de) 2009-04-02 2010-11-04 Cummins Filtration IP, Inc., Minneapolis Reduktionsmittelzersetzungssystem
DE102009056183A1 (de) * 2009-11-27 2011-06-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasreinigungskomponente mit Umlenkfläche und Verfahren zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103649483A (zh) 2014-03-19
FR2977633B1 (fr) 2013-08-16
EP2729678A1 (fr) 2014-05-14
CN103649483B (zh) 2016-12-14
US20140230418A1 (en) 2014-08-21
KR20140043449A (ko) 2014-04-09
FR2977633A1 (fr) 2013-01-11
US9464546B2 (en) 2016-10-11
WO2013004769A1 (fr) 2013-01-10

Similar Documents

Publication Publication Date Title
EP2729678B1 (fr) Ensemble de purification de gaz d'échappement
EP2652279B1 (fr) Ligne d'échappement avec dispositif d'injection de réactif gazeux
FR3020834A1 (fr) Ensemble de purification de gaz d'echappement
FR3020835A1 (fr) Ensemble de purification de gaz d'echappement et ligne d'echappement comprenant un tel ensemble
FR2977632A1 (fr) Ensemble de purification de gaz d'echappement, avec impacteurs montes sur un deflecteur
FR2966197A1 (fr) Ligne d'echappement pour vehicule automobile.
FR2947003A1 (fr) Ligne d'echappement avec systeme d'injection
EP2500538B1 (fr) Ensemble compact coudé de post-traitement de gaz d'échappement doté d'un bossage formant mélangeur de réducteur scr
WO2015028647A1 (fr) Dispositif de purification de gaz d'échappement de moteur à combustion interne
FR3041691A1 (fr) Ligne d'echappement avec injecteur de reactif
WO2012110720A1 (fr) Ensemble de post-traitement des gaz d'echappement d'un moteur a combustion suralimente, et vehicule automobile comportant un tel ensemble
FR2921415A1 (fr) Melangeur destine a etre dispose a l'interieur d'un element d'une ligne d'echappement d'un vehicule automobile
EP2551481B1 (fr) Ensemble de traitement des gaz d'echappement d'un moteur à combustion comportant une boîte d'introduction et de prémélange d'un fluide
EP2546488B1 (fr) Ensemble coudé de post-traitement des gaz d'échappement d'un moteur à combustion interne comportant un répartiteur d'agent réducteur par impacteur
FR3010134A1 (fr) Dispositif perfectionne de purification de gaz d'echappement de moteur a combustion interne
FR3062416A1 (fr) Dispositif de traitement des gaz d'echappement, ligne d'echappement et procede de fabrication correspondant
EP3085913B1 (fr) Dispositif de purification des gaz d'échappement, ligne d'échappement comprenant un tel dispositif
EP3425180B1 (fr) Dispositif d'injection pour une ligne d'échappement de véhicule et ligne d'échappement correspondante
FR2977913A1 (fr) Dispositif d'introduction et de melange d'un liquide dans une portion d'un conduit
EP3085915B1 (fr) Ensemble de purification des gaz d'échappement, ligne d'échappement comprenant un tel ensemble
FR3097775A1 (fr) Ensemble de purification d’un gaz d’échappement, ligne d’échappement et véhicule
FR3113697A1 (fr) Mélangeur de réducteur pour gaz d’échappement
FR3040193B1 (fr) Systeme de reduction catalytique selective
EP3085916A1 (fr) Dispositif de purification des gaz d'échappement et ligne d'échappement comprenant un tel dispositif
FR3093346A1 (fr) Dispositif d’injection et de mélange d’un gaz et ligne d’échappement comportant un tel dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 886198

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012031328

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170419

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 886198

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012031328

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220622

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220621

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012031328

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201