WO2011029650A1 - Dc-ac-wechselrichteranordnung, insbesondere solarzelleninverter - Google Patents

Dc-ac-wechselrichteranordnung, insbesondere solarzelleninverter Download PDF

Info

Publication number
WO2011029650A1
WO2011029650A1 PCT/EP2010/060501 EP2010060501W WO2011029650A1 WO 2011029650 A1 WO2011029650 A1 WO 2011029650A1 EP 2010060501 W EP2010060501 W EP 2010060501W WO 2011029650 A1 WO2011029650 A1 WO 2011029650A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
converter
bridge circuit
voltage
solar cell
Prior art date
Application number
PCT/EP2010/060501
Other languages
English (en)
French (fr)
Inventor
Walter Thieringer
Gisbert Krauter
Bernhard Feuchter
Georg Mayer
Liliane Gasse
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN2010800401454A priority Critical patent/CN102640409A/zh
Priority to IN1551DEN2012 priority patent/IN2012DN01551A/en
Priority to AU2010294425A priority patent/AU2010294425A1/en
Priority to US13/395,438 priority patent/US20120228938A1/en
Priority to EP10740574A priority patent/EP2476194A1/de
Publication of WO2011029650A1 publication Critical patent/WO2011029650A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • DC-AC inverter arrangement in particular solar cell inverter
  • the invention relates to an inverter arrangement according to the preamble of claim 1 or of claim 10.
  • AC-DC DC-AC converter
  • Power supply network found wide application. Even when using other renewable energies, such as wind turbines, Stirling engines, heat pumps or modern energy storage systems based on Primärt. Secondary cells are used converters of this or similar type.
  • a generic DC-AC inverter arrangement is known from DE 102004 030912 B3.
  • the invention describes a possibility in which the half-waves of the AC voltage on the output side are not generated by the bridge, but by an upstream DC-DC converter.
  • the bridge only works as a turner.
  • this makes it possible to use in the bridge circuit for switch Sl in the bridge transistors with low R ds , on.
  • This can significantly contribute to reducing the power loss, since these components must be designed only at the peak value of the output voltage and thus can have very low Rd S , on, even with a large input voltage range of the inverter.
  • these transistors can also be switched on in reverse conduction via a diode, so that even in this operating state only a minimal voltage drop is generated on the component.
  • the DC-DC converter has a buck converter.
  • the DC-DC converter has a combination of a buck converter and a boost converter or a high-low converter with common inductance.
  • the DC-DC converter is designed as a four-quadrant controller and thus capable of being fed back, and the inverter arrangement is thereby designed to be capable of reactive power. Due to the regenerative capacity, this version can provide the power grid with reactive power, which may be required by E-Werke in the future.
  • the regenerator is also capable of regenerating direct current from alternating current, whereby this topology is suitable, for example, for chargers.
  • switching devices of the bridge circuit have MOSFETs or low-value IGBTs of R ds , on.
  • the semiconductor bridge circuit is implemented as an H-bridge for single-phase output.
  • 1 is a circuit diagram of a first embodiment of the invention
  • 2 is a circuit diagram of a second embodiment of the invention
  • FIG. 3 is a circuit diagram of a third embodiment of the invention.
  • FIG. 4 shows a circuit diagram of a fourth embodiment of the invention
  • FIG. 5 shows a graph of the time profile of the output voltage of the overall arrangement and the voltage generated by the DC chopper in the embodiment according to FIG. 4.
  • TSS Step-down converter, power electronic basic circuit for voltage
  • HSS boost converter, power electronic base circuit for voltage conversion, where U 2 > Ui.
  • HTSS high stepper, combination of TSS and HSS with common
  • Ui (referred to in the figures as u_l) is the input voltage of the circuit
  • U 2 (in the figures u_2) is the output voltage of the circuit.
  • UTSS (denoted U_TSS in Figs. 1 and 2) is the voltage at the output of the buck converter
  • U H TSS (denoted U_HTSS in Figs. 3 and 4) is the voltage at the output of the buck converter.
  • FIGS. 1 to 4 are essentially self-explanatory, so that subsequently no closed verbal description of the circuit structure will be given, but primarily important functional aspects of the respective arrangement will be described.
  • the bridge circuit comprises four switching devices Sl to S4, specifically as MOSFETs or IGBTs with low R ds , on can be formed.
  • the DC-DC converter component 11 in all embodiments has an input-side capacitor C_ZK and an output capacitor, which is designated C_TSS in FIG. 1 and FIG. 2, and a circuit inductance (which is denoted L_TSS in FIGS. 1 and 2).
  • the input voltage Ui is buffered in the buffer capacitor C_K. Subsequently, this voltage is reduced via the buck converter 11 down to a controllable voltage U T ss with Ui> U T ss> 0.
  • the time profile of the voltage U T ss is specified as the magnitude function of the output voltage u 2 (t):
  • the H-bridge which is connected to the output of the step-down converter, works as a polarity reverser, so that
  • the circuit of FIG. 1 can be extended by executing the step-down converter in a feedback-capable manner. Then with the described topology also power from the connected network (voltage U 2 ) can be taken and stored in the intermediate circuit.
  • a modified inverter arrangement 20 with a buck converter 21 and a B4 bridge 22 is shown in FIG. It is by the provision of a second switching device S2 T ss of Tiefsetzstellers blind power and also has a higher control reserve, which is necessary in order to discharge the filter capacitor C 2 of the buck converter for small network currents can.
  • an extension of the topology is possible in which the usable input voltage range is increased.
  • FIG. 3 shows an inverter arrangement 30 with a stepping converter 31 and a B4 bridge 32, wherein the buck converter components S1_TSS and D2_TSS, with the common use of an inductance L_HTSS, boost converter components S2_HSS and D1_HSS are connected on the output side.
  • the output capacitor is here designated C_HTSS.
  • the step-up converter makes it possible to set an output voltage whose instantaneous value can also be greater than the voltage at the DC link.
  • FIG. 4 shows, as a reactive power variant of the circuit arrangement of FIG. 3, an inverter arrangement 40 with a regenerative high-low setting divider 41 and a B4 bridge 42. Both in the step-down converter and in the step-up converter section, in comparison to the embodiment according to FIG Diode replaced by a switching device S2_TSS or S1_HSS.
  • FIG. 5 shows the graph of the voltage characteristics of the output voltage u_HTSS (t) at the step-up converter and the output voltage u_2 (t) of the inverter arrangement that the DC component of the respective circuits performs the sine wave shaping of the input-side DC voltage, while the downstream H or B4 bridge only acts as a pole turner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

DC-AC-Wechselrichteranordnung, insbesondere Solarzelleninverter einer Photovoltaikanlage, mit einer Halbleiter-Brückenschaltung, dadurch gekennzeichnet, dass ein Gleichstromsteller zur Erzeugung von Halbwellen einer ausgangsseitigen Wechselspannung vorgesehen und die Brückenschaltung dem Gleichstromsteller nachgeschaltet ist und als Polwender auf die Halbwellen wirkt.

Description

Beschreibung Titel
DC-AC-Wechselrichteranordnunq, insbesondere Solarzelleninverter
Die Erfindung betrifft eine Wechselrichteranordnung nach dem Oberbegriffs des Anspruchs 1 bzw. des Anspruchs 10.
Stand der Technik
Derartige Wechselrichteranordnungen sind unter anderem aus Steuerungen von Wechsel- und Drehspannungsmotoren sowie aus der Energietechnik seit langem bekannt. Im letzteren Bereich haben sie als Gleichstrom-Wechselstrom(AC-DC)- Wandler zur Wandlung von durch Photovoltaik-Anlagen oder Brennstoffzellen erzeugter Gleichspannung in eine Wechselspannung zur Einspeisung in ein
Stromversorgungsnetz breite Anwendung gefunden. Auch bei Nutzung anderer regenerativer Energien, so etwa bei Windkraftanlagen, Stirlingmaschinen, Wärmepumpen oder modernen Energiespeichersystemen auf Basis von Primärbzw. Sekundärzellen werden Wandler dieser oder ähnlicher Art eingesetzt.
Eine gattungsgemäße DC-AC-Wechselrichteranordnung ist aus der DE 102004 030912 B3 bekannt.
Ein wesentliches Ziel der weiteren Entwicklung derartiger Wandler besteht in der Erzielung einer höheren Effizienz, und weitere Ziele können sich aus Anforderungen der Betreiber von Versorgungsnetzen bzw. aus entsprechenden Standards ergeben.
Offenbarung der Erfindung
Vorgeschlagen wird eine DC-AC-Wechselrichteranordnung mit den Merkmalen des Anspruchs 1. Des weiteren wird eine Photovoltaikanlage mit einer solchen Wechselrichteranordnung vorgeschlagen, und schließlich eine AC-DC-Wechsel- richteranordnung mit den Merkmalen des Anspruchs 10. Zweckmäßige Fortbildungen des Erfindungsgedankens sind Gegenstand der abhängigen Ansprüche. Bei üblichen Wechselrichter-Schaltungen wird eine B4-Brückenschaltung eingesetzt, um aus Gleichspannung eine Wechselspannung zu erzeugen. Diese Brückenschaltung arbeitet mit hoher Schaltfrequenz und erzeugt so Schaltverluste und Durchlassverluste, die von der Bauteileauswahl bestimmt werden.
Die Erfindung beschreibt eine Möglichkeit, bei welcher die Halbwellen der aus- gangsseitigen Wechselspannung nicht durch die Brücke, sondern von einem vorgeschalteten Gleichstromsteller erzeugt werden. Die Brücke arbeitet nur noch als Polwender. Dadurch können Halbleiterbauelemente in der Brücke auf niedrige Leitverluste ausgelegt werden, denn die Brücke schaltet in diesem Fall nur mit der doppelten Netzfrequenz (100 mal bei 50 Hz) und nur, wenn die ausgangsseitige Spannung einen Nulldurchgang hat und somit auch U(C_TSS bzw. C_HTSS) = 0 ist. Dabei treten vernachlässigbare Schaltverluste auf.
Insbesondere ist es dadurch möglich, bei der Brückenschaltung für Schalter Sl in der Brücke Transistoren mit niedrigem Rds,on zu verwenden. Dies kann wesentlich zur Verringerung der Verlustleistung beitragen, da diese Bauteile nur auf den Scheitelwert der Ausgangsspannung ausgelegt werden müssen und somit sehr niedrige RdS,on aufweisen können, auch bei einem großen Eingangsspannungsbereich des Umrichters. Zusätzlich können diese Transistoren auch bei Rückwärtsleitung über eine Diode eingeschaltet werden, so dass auch bei diesem Betriebszustand ein nur minimaler Spannungsabfall am Bauteil erzeugt wird.
Da der Gleichstromsteller gegenüber der Brückenschaltung nur zwei statt vier Halbleiterbauelemente besitzt, treten bei sonst vergleichbaren elektrischen Eigenschaften der Schaltung nur halb so große Schaltverluste auf wie im allge- mein üblichen Fall. In einer Ausführung der Erfindung weist der Gleichstromsteller einen Tiefsetzsteller auf. In weiteren Ausführungen ist vorgesehen, dass der Gleichstromsteller eine Kombination aus einem Tiefsetzsteller und einem Hochsetzsteller oder einen Hochtiefsetzsteller mit gemeinsamer Induktivität aufweist. In einer weiteren Ausführung ist vorgesehen, dass der Gleichstromsteller als Vierquadrantensteller ausgebildet und somit rückspeisefähig und die Wechselrichteranordnung hierdurch blindleistungsfähig ausgeführt ist. Diese Ausführung kann durch die Rückspeisefähigkeit dem Stromnetz Blindleistung zur Verfügung stellen, was evtl. in Zukunft von den E-Werken gefordert wird. Darüber hinaus ist die Rückspeisefähigkeit auch für verschiedene andere Anwendungen geeignet. So ist der Wandler bei Rückspeisefähigkeit auch in der Lage, aus Wechselstrom geregelt Gleichstrom zu machen, wodurch diese Topologie beispielsweise für Ladegeräte geeignet ist. Zur möglichst weitgehenden Erreichung des weiter oben erwähnten Ziels einer Verringerung der Verlustleistung sind bei einer weiteren Ausführung die Bauelemente der Halbleiter-Brückenschaltung zur Minimierung von Leitungsverlusten, unter nachrangiger Berücksichtigung von Schaltverlusten, ausgewählt. Insbesondere ist hierbei vorgesehen, dass Schalteinrichtungen der Brückenschal- tung MOSFETs oder IGBTs mit niedrigem Wert von Rds,on aufweisen.
In für herkömmliche Versorgungsnetz-Konfigurationen geeigneter Weise ist die Halbleiter-Brückenschaltung als H-Brücke für einphasigen Ausgang ausgeführt. Zeichnungen
Vorteile und Zweckmäßigkeiten der Erfindung ergeben sich im übrigen aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Figuren: Es zeigen:
Fig. 1 ein Schaltbild einer ersten Ausführungsform der Erfindung, Fig. 2 ein Schaltbild einer zweiten Ausführungsform der Erfindung,
Fig. 3 ein Schaltbild einer dritten Ausführungsform der Erfindung,
Fig.4 ein Schaltbild einer vierten Ausführungsform der Erfindung und Fig. 5 eine grafische Darstellung des zeitlichen Verlaufes der Ausgangsspannung der Gesamtanordnung sowie der durch den Gleichstromsteller erzeugten Spannung bei der Ausführungsform nach Fig. 4.
Bei der Beschreibung der Ausführungsbeispiele gilt folgende Terminologie. TSS: Tiefsetzsteller, leistungselektronische Basis-Schaltung zur Spannungs-
Wandlung, bei der Ui > U2 ist.
HSS: Hochsetzsteller, leistungselektronische Basis-Schaltung zur Spannungswandlung, bei der U2 > Ui ist.
HTSS: Hochtiefsetzsteller, Kombination aus TSS und HSS mit gemeinsamer
Induktivität, bei der Ui und U2 unabhängig voneinander sein können (Ui
> = < U2).
Ui (in den Figuren bezeichnet als u_l) ist die Eingangsspannung der Schaltung, U2 (in den Figuren u_2) die Ausgangsspannung der Schaltung.
UTSS (in Fig. 1 und 2 bezeichnet als U_TSS) ist die Spannung am Ausgang des Tiefsetzstellers, und UHTSS (in Fig. 3 und 4 bezeichnet als U_HTSS) ist die Spannung am Ausgang des Hochtiefsetzstellers.
Die Schaltbilder der Figuren 1 bis 4 sind im wesentlichen selbsterklärend, so dass nachfolgend keine geschlossene verbale Beschreibung des Schaltungsauf- baus gegeben wird, sondern vorrangig wesentliche Funktionsaspekte der jeweiligen Anordnung beschrieben werden.
Fig. 1 zeigt eine DC-AC-Wechselrichteranordnung 10, bei der zur Wandlung einer eingangsseitigen Gleichspannung u_l in eine ausgangsseitige Wechsel- Spannung u_2 ein Tiefsetzsteller 11 und eine nachgeschaltete B4-Brücke 12 vorgesehen sind. Wie bei allen hier gezeigten Ausführungsformen umfasst die Brückenschaltung vier Schalteinrichtungen Sl bis S4, die speziell als MOSFETs oder IGBTs mit niedrigem Rds,on ausgebildet sein können. Die Gleichstromsteller-Komponente 11 hat bei allen Ausführungen einen eingangsseitigen Kondensator C_ZK und einen Ausgangskondensator, der in Fig. 1 sowie Fig. 2 mit C_TSS bezeichnet ist, sowie eine Schaltungsinduktivität (die in Fig. 1 und 2 mit L_TSS bezeichnet ist).
Zunächst wird die Eingangsspannung Ui in dem Pufferkondensator C_K gepuffert. Anschließend wird diese Spannung über den Tiefsetzsteller 11 heruntergestellt auf eine regelbare Spannung UTss mit Ui > UTss > 0.
Der zeitliche Verlauf der Spannung UTss wird als Betragsfunktion der Aus- gangsspannung u2(t) vorgegeben:
Figure imgf000006_0001
Die H-Brücke, welche am Ausgang des Tiefsetzstellers angeschlossen ist, arbei- tet als Polwender, so dass
u2(t) = uxss(t) * cH_Brücke mit cH_Brücke = = Zustand des Polwenders
Figure imgf000006_0002
Die Schaltung aus Fig. 1 kann erweitert werden, indem der Tiefsetzsteller rück- speisefähig ausgeführt wird. Dann kann mit der beschriebenen Topologie auch Leistung aus dem angeschlossenen Netz (Spannung U2) genommen und im Zwischenkreis gespeichert werden. Eine solche modifizierte Wechselrichteranordnung 20 mit einem Tiefsetzsteller 21 und einer B4-Brücke 22 ist in Fig. 2 dargestellt. Sie ist durch das Vorsehen einer zweiten Schalteinrichtung S2Tss des Tiefsetzstellers blindleistungsfähig und weist darüber hinaus eine höhere Stellreserve auf, welche notwendig ist, um bei kleinen Netzströmen den Filterkondensator C2 des Tiefsetzstellers entladen zu können. Zusätzlich ist eine Erweiterung der Topologie möglich, bei der der nutzbare Eingangsspannungsbereich vergrößert wird. Bei den Ausführungen nach Fig. 1 und 2 ist Ul >= UTSS => Ul > Ü2.
Der bei der ersten und zweiten Ausführungsform genutzte Tiefsetzsteller kann, wie in Fig. 3 gezeigt, mit einem Hochsetzsteller kombiniert werden. Demgemäß zeigt Fig. 3 eine Wechselrichteranordnung 30 mit einem Hochtiefsetzsteller 31 und einer B4-Brücke 32, wobei ausgangsseitig der Tiefsetzsteller-Komponenten S1_TSS und D2_TSS, unter gemeinsamer Nutzung einer Induktivität L_HTSS, Hochsetzsteller-Komponenten S2_HSS und D1_HSS angeschlossen sind. Der Ausgangskondensator ist hier mit C_HTSS bezeichnet.
Der Hochsetzsteller ermöglicht es, eine Ausgangsspannung einzustellen, deren Momentanwert auch größer als die Spannung am Zwischenkreis werden kann.
Figure imgf000007_0001
Damit ist also frei einstellbar. Die gemeinsame Verwendung der Induktivität L_HTSS durch beide Gleichstrom-Komponenten erhöht die Effizienz der Schaltung und spart gleichzeitig Bauteile ein.
Fig. 4 zeigt, als blindleistungsfähige Abwandlung der Schaltungsanordnung aus Fig. 3, eine Wechselrichteranordnung 40 mit einem rückspeisefähigen Hochtief- setzsteiler 41 und einer B4-Brücke 42. Sowohl im Tiefsetzsteller- als auch im Hochsetzstellerabschnitt ist gegenüber der Ausführung nach Fig. 3 die jeweilige Diode durch eine Schalteinrichtung S2_TSS bzw. S1_HSS ersetzt.
Fig. 5 zeigt mit der grafischen Darstellung der Spannungsverläufe der Aus- gangsspannung u_HTSS(t) am Hochtiefsetzsteller und der Ausgangsspannung u_2(t) der Wechselrichteranordnung, dass die Gleichstrom-Komponente der jeweiligen Schaltungen die Sinuswellen-Formung der eingangsseitigen Gleichspannung leistet, während die nachgeschaltete H- bzw. B4-Brücke lediglich noch als Polwender wirkt.

Claims

Ansprüche
1. DC-AC-Wechselrichteranordnung, insbesondere Solarzelleninverter einer Photovoltaikanlage, mit einer Halbleiter-Brückenschaltung,
dadurch gekennzeichnet, dass
ein Gleichstromsteller zur Erzeugung von Halbwellen einer ausgangsseiti- gen Wechselspannung vorgesehen und die Brückenschaltung dem Gleichstromsteller nachgeschaltet ist und als Polwender auf die Halbwellen wirkt.
2. DC-AC-Wechselrichteranordnung nach Anspruch 1, wobei
der Gleichstromsteller einen Tiefsetzsteller aufweist.
3. DC-AC-Wechselrichteranordnung nach Anspruch 2, wobei
der Gleichstromsteller eine Kombination aus einem Tiefsetzsteller und einem Hochsetzsteller oder einen Hochtiefsetzsteller mit gemeinsamer Induktivität aufweist.
4. DC-AC-Wechselrichteranordnung nach einem der vorangehenden Ansprüche, wobei
der Gleichstromsteller als Vierquadrantensteller ausgebildet und somit rückspeisefähig und die Wechselrichteranordnung hierdurch blindleistungsfähig ausgeführt ist.
5. DC-AC-Wechselrichteranordnung nach einem der vorangehenden Ansprüche, wobei
die Bauelemente der Halbleiter-Brückenschaltung zur Minimierung von Leitungsverlusten, unter nachrangiger Berücksichtigung von Schaltverlusten, ausgewählt sind.
6. DC-AC-Wechselrichteranordnung nach Anspruch 5, wobei
Schalteinrichtungen der Brückenschaltung MOSFETs oder IGBTs mit niedrigem Wert von Rds,on aufweisen.
7. DC-AC-Wechselrichteranordnung nach einem der vorangehenden Ansprüche, wobei
Mittel, insbesondere eine Halbleiterdiode, vorgesehen sind, um Schalteinrichtungen der Halbleiter-Brückenschaltung auch im Rückwärtsleitungsbe- trieb im Einschaltzustand zu betreiben.
8. DC-AC-Wechselrichteranordnung nach einem der vorangehenden Ansprüche, wobei
die Halbleiter-Brückenschaltung als H-Brücke für einphasigen Ausgang ausgeführt ist.
9. Photovoltaikanlage mit einer Mehrzahl von Solarzellenmodulen, einem Anschluss zur Einspeisung von durch die Solarzellenmodule erzeugter elektrischer Energie in ein Wechsel- bzw. Drehspannungsnetz und einer DC-AC-Wechselrichteranordnung nach einem der vorangehenden Ansprü- che.
10. Rückspeisefähige AC-DC-Wechselrichteranordnung, mit einer Halbleiter- Brückenschaltung,
dadurch gekennzeichnet, dass
die Halbleiter-Brückenschaltung aus der eingangsseitigen Wechselspannung Halbwellen gleicher Polarität erzeugt und ihr ein Gleichstromsteller zur Erzeugung einer geglätteten Gleichspannung aus den Halbwellen gleicher Polarität, insbesondere ausgebildet als Tiefsetzsteller oder Kombination aus einem Tiefsetzsteller und einem Hochsetzsteller oder als Hoch- tiefsetzsteller, nachgeschaltet ist.
PCT/EP2010/060501 2009-09-11 2010-07-20 Dc-ac-wechselrichteranordnung, insbesondere solarzelleninverter WO2011029650A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800401454A CN102640409A (zh) 2009-09-11 2010-07-20 Dc-ac逆变器装置、尤其是太阳能电池逆变器
IN1551DEN2012 IN2012DN01551A (de) 2009-09-11 2010-07-20
AU2010294425A AU2010294425A1 (en) 2009-09-11 2010-07-20 DC-AC inverter assembly, in particular solar cell inverter
US13/395,438 US20120228938A1 (en) 2009-09-11 2010-07-20 DC-AC Inverter Assembly, in Particular Solar Cell Inverter
EP10740574A EP2476194A1 (de) 2009-09-11 2010-07-20 Dc-ac-wechselrichteranordnung, insbesondere solarzelleninverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009029387A DE102009029387A1 (de) 2009-09-11 2009-09-11 DC-AC-Wechselrichteranordnung, insbesondere Solarzelleninverter
DE102009029387.6 2009-09-11

Publications (1)

Publication Number Publication Date
WO2011029650A1 true WO2011029650A1 (de) 2011-03-17

Family

ID=43242589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060501 WO2011029650A1 (de) 2009-09-11 2010-07-20 Dc-ac-wechselrichteranordnung, insbesondere solarzelleninverter

Country Status (8)

Country Link
US (1) US20120228938A1 (de)
EP (1) EP2476194A1 (de)
KR (1) KR20120041791A (de)
CN (1) CN102640409A (de)
AU (1) AU2010294425A1 (de)
DE (1) DE102009029387A1 (de)
IN (1) IN2012DN01551A (de)
WO (1) WO2011029650A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291028A (zh) * 2011-08-17 2011-12-21 福州大学 基于有源功率因数校正芯片控制的微功率并网逆变器
EP2706655A1 (de) * 2012-09-05 2014-03-12 LSIS Co., Ltd. Wechselrichter und Ansteuerungsverfahren dafür
FR3033962A1 (fr) * 2015-03-20 2016-09-23 Francecol Tech Onduleur pour source d’energie continue

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772965B2 (en) * 2010-06-29 2014-07-08 General Electric Company Solar power generation system and method
DE102011017601A1 (de) 2011-04-27 2012-10-31 Robert Bosch Gmbh Ansteuerverfahren für einen Wechselrichter und Wechselrichteranordnung, insbesondere Solarzelleninverter
US8937822B2 (en) 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel
US11460488B2 (en) 2017-08-14 2022-10-04 Koolbridge Solar, Inc. AC electrical power measurements
JP5963531B2 (ja) * 2012-05-15 2016-08-03 オムロン株式会社 インバータ装置および太陽光発電システム
DE102012215978A1 (de) 2012-09-10 2014-03-13 Robert Bosch Gmbh Verfahren zur Verlängerung der Lebensdauer des Wechselrichters einer elektrischen Anlage, elektrische Anlage und Steuer- und Regeleinheit für eine elektrische Anlage
DE102014101571B4 (de) 2013-02-08 2015-02-19 Sma Solar Technology Ag Wechselrichter sowie verfahren zum betrieb eines wechselrichters
US20140268927A1 (en) * 2013-03-14 2014-09-18 Vanner, Inc. Voltage converter systems
DE102013211121A1 (de) 2013-06-14 2014-12-18 Robert Bosch Gmbh Wechselrichter
DE102014102000B3 (de) * 2014-02-18 2014-09-11 Sma Solar Technology Ag Verfahren zum Betreiben eines blindleistungsfähigen Wechselrichters mit Polwender und blindleistungsfähiger Wechselrichter mit Polwender
DE102014219857A1 (de) * 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Erzeugen einer Ausgangsspannung
DE102015005992A1 (de) 2015-05-08 2016-11-10 Kostal Industrie Elektrik Gmbh Wechselrichter
DE102015222210A1 (de) 2015-11-11 2017-05-11 Siemens Aktiengesellschaft Verfahren, Prognoseeinrichtung und Steuereinrichtung zum Steuern eines Stromnetzes mit einer Photovoltaikanlage
DE102017106224A1 (de) 2016-03-24 2017-09-28 Sma Solar Technology Ag Wechselrichter und Steuerverfahren für einen Wechselrichter
EP3695174B1 (de) 2017-10-11 2022-09-14 Teledyne FLIR Commercial Systems, Inc. Kryokühlersteuersysteme und -verfahren
CN108566106A (zh) * 2018-06-22 2018-09-21 林福祥 一种逆变器托扑结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041826A1 (en) * 1998-02-11 1999-08-19 Powerdsine Ltd. Pwm controller for use with open loop dc to ac converter
EP1227599A2 (de) * 2000-12-20 2002-07-31 Ascom Energy Systems AG Verfahren zur Datenübertragung in Wechselstromnetzen
DE102004030912B3 (de) 2004-06-25 2006-01-19 Sma Technologie Ag Verfahren zum Umwandeln einer elektrischen Gleichspannung einer Gleichspannungsquelle, insbesondere einer Photovoltaik-Gleichspannungsquelle in eine Wechselspannung
DE102005047373A1 (de) * 2005-09-28 2007-04-05 Schekulin, Dirk, Dr. Ing. Tiefsetzstellerschaltung und Wechselrichter-Schaltungsanordnung
US20070230220A1 (en) * 2006-03-31 2007-10-04 Delta Electronics, Inc. Current source inverter with energy clamp circuit and controlling method thereof having relatively better effectiveness

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
GB2179477B (en) * 1985-08-23 1989-03-30 Ferranti Plc Power supply circuit
US4761722A (en) * 1987-04-09 1988-08-02 Rca Corporation Switching regulator with rapid transient response
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
FR2851091B1 (fr) * 2003-02-07 2005-03-11 Commissariat Energie Atomique Convertisseur electrique pour pile a combustible
TW200709544A (en) * 2005-08-29 2007-03-01 Ind Tech Res Inst Transformer-free power conversion circuit for parallel connection with commercial electricity system
CN201087938Y (zh) * 2007-09-10 2008-07-16 天津理工大学 基于dsp控制的双向升降压直直变换器装置
JP5124345B2 (ja) * 2008-05-26 2013-01-23 株式会社アルバック バイポーラパルス電源及びこのバイポーラパルス電源を複数台並列接続してなる電源装置
US8218338B2 (en) * 2008-12-26 2012-07-10 Acbel Polytech Inc. High efficiency universal input switching power supply
JP5605548B2 (ja) * 2010-04-12 2014-10-15 富士電機株式会社 系統連系装置
US8570006B2 (en) * 2011-07-21 2013-10-29 Intersil Americas Inc. Device and method for controlling a buck-boost converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041826A1 (en) * 1998-02-11 1999-08-19 Powerdsine Ltd. Pwm controller for use with open loop dc to ac converter
EP1227599A2 (de) * 2000-12-20 2002-07-31 Ascom Energy Systems AG Verfahren zur Datenübertragung in Wechselstromnetzen
DE102004030912B3 (de) 2004-06-25 2006-01-19 Sma Technologie Ag Verfahren zum Umwandeln einer elektrischen Gleichspannung einer Gleichspannungsquelle, insbesondere einer Photovoltaik-Gleichspannungsquelle in eine Wechselspannung
DE102005047373A1 (de) * 2005-09-28 2007-04-05 Schekulin, Dirk, Dr. Ing. Tiefsetzstellerschaltung und Wechselrichter-Schaltungsanordnung
US20070230220A1 (en) * 2006-03-31 2007-10-04 Delta Electronics, Inc. Current source inverter with energy clamp circuit and controlling method thereof having relatively better effectiveness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANCHIS P ET AL: "Operation and control of a high performance inverter consisting of a buck-boost and a zero switching losses H-bridge for photovoltaic systems", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2004. PESC 04. 2004 IEEE 35TH ANNUAL, AACHEN, GERMANY 20-25 JUNE 2004, PISCATAWAY, NJ, USA,IEEE, US, vol. 3, 20 June 2004 (2004-06-20), pages 2089 - 2094, XP010739593, ISBN: 978-0-7803-8399-9, DOI: DOI:10.1109/PESC.2004.1355440 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291028A (zh) * 2011-08-17 2011-12-21 福州大学 基于有源功率因数校正芯片控制的微功率并网逆变器
EP2706655A1 (de) * 2012-09-05 2014-03-12 LSIS Co., Ltd. Wechselrichter und Ansteuerungsverfahren dafür
US8971078B2 (en) 2012-09-05 2015-03-03 Lsis Co., Ltd. DC/AC inverter switch controller
FR3033962A1 (fr) * 2015-03-20 2016-09-23 Francecol Tech Onduleur pour source d’energie continue
WO2016151223A1 (fr) * 2015-03-20 2016-09-29 Francecol Technology Onduleur pour source d'energie continue

Also Published As

Publication number Publication date
AU2010294425A1 (en) 2012-05-03
US20120228938A1 (en) 2012-09-13
EP2476194A1 (de) 2012-07-18
IN2012DN01551A (de) 2015-06-05
DE102009029387A1 (de) 2011-03-24
KR20120041791A (ko) 2012-05-02
CN102640409A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
EP2476194A1 (de) Dc-ac-wechselrichteranordnung, insbesondere solarzelleninverter
EP3496259B1 (de) Elektrisches umrichtersystem
EP2515424B1 (de) Gleichspannungswandler
EP1311058B1 (de) Frequenzumrichter
EP2451064B1 (de) Hochsetzsteller
EP1956703B1 (de) Einrichtung zum Einspeisen elektrischer Energie aus einer Energiequelle
EP3014725B1 (de) Energiespeichereinrichtung mit gleichspannungsversorgungsschaltung und verfahren zum bereitstellen einer gleichspannung aus einer energiespeichereinrichtung
AT505801B1 (de) Verfahren zum betrieb eines elektronisch gesteuerten wechselrichters
EP2815497B1 (de) Netzeinspeisevorrichtung, energieeinspeisesystem sowie verfahren zum betrieb einer netzeinspeisevorrichtung
EP2702680B1 (de) ANSTEUERVERFAHREN FÜR EINEN WECHSELRICHTER UND WECHSELRICHTER, INSBESONDERE FÜr SOLARZELLEN
DE102013212682B4 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102013005070B4 (de) Hoch-Tiefsetzsteller
AT504944B1 (de) Wechselrichter
DE102008050402A1 (de) Schaltungsanordnung mit einem Hochsetzsteller und Wechselrichterschaltung mit einer solchen Schaltungsanordnung
DE102010064325A1 (de) System mit einer elektrischen Maschine
DE102011011330B4 (de) Tiefsetzsteller
EP1766767B1 (de) Verfahren zum betrieb eines wechselrichters und anordnung zur durchführung des verfahrens
DE102012202867A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102012202764A1 (de) Ladevorrichtung eines elektrisch betriebenen Fahrzeugs
EP2515425B1 (de) Gleichspannungswandler
WO2015062900A1 (de) Ladeschaltung für eine energiespeichereinrichtung und verfahren zum laden einer energiespeichereinrichtung
WO2014154495A1 (de) Energiespeichereinrichtung und system mit einer energiespeichereinrichtung
CH700030B1 (de) Schaltungsanordnung mit Wechselrichter- und Gleichstromstellerfunktion.
DE102011116593B4 (de) Wechselrichter mit asymmetrischen Drosseln und einer Steuereinheit zum asymmetrischen Betrieb der Drosseln
DE102010060687A1 (de) Leistungselektronische Wandlerstufe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040145.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10740574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010740574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1551/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127006185

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010294425

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010294425

Country of ref document: AU

Date of ref document: 20100720

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13395438

Country of ref document: US