WO2011029268A1 - 集群式太阳能发电装置 - Google Patents

集群式太阳能发电装置 Download PDF

Info

Publication number
WO2011029268A1
WO2011029268A1 PCT/CN2010/001342 CN2010001342W WO2011029268A1 WO 2011029268 A1 WO2011029268 A1 WO 2011029268A1 CN 2010001342 W CN2010001342 W CN 2010001342W WO 2011029268 A1 WO2011029268 A1 WO 2011029268A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
steam
towers
power generation
energy
Prior art date
Application number
PCT/CN2010/001342
Other languages
English (en)
French (fr)
Inventor
罗纳德⋅德比
Original Assignee
彩熙太阳能环保技术(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彩熙太阳能环保技术(天津)有限公司 filed Critical 彩熙太阳能环保技术(天津)有限公司
Publication of WO2011029268A1 publication Critical patent/WO2011029268A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a cluster type solar power generation apparatus, and more particularly to a cluster type solar power generation apparatus having an intelligent control system.
  • photovoltaic power generation is the direct conversion of solar energy into electrical energy
  • solar thermal power generation uses solar energy to heat the working medium.
  • the working medium is used to generate electricity in the generator set.
  • Photovoltaic power generation is mainly composed of solar cells and supporting systems. Its structure is simple, easy to transport and install, but its large area, energy dispersion, low power, low efficiency and very low cost.
  • Photothermal power generation mainly includes solar tower systems, solar trough focusing systems, and Stirling disc systems.
  • the Stirling disc system cannot store energy, especially in the absence of sunlight or insufficient sunlight.
  • the temperature is very limited, and the temperature of the trough system cannot be reached to a very high degree.
  • the temperature of the tower power generator is higher than the temperature of the trough power generator, it is also limited to a certain extent and used.
  • the molten salt or the oil is used as the working medium, and the specific structure of the tower system is detailed in the inventors' authorized inventions CN201209519Y, CN201210197Y, CN201263130Y and the like.
  • Both tower and trough systems use fossil fuels as a supplement to solar energy and are subject to many limitations in terms of efficiency, cost and environmental impact.
  • the prior art tower power generating device is composed of a solar energy collecting device 11, an energy storage device 12, a steam generating device 13, a steam transmitting device 14, a power generating device 15, and a control system 16, and the solar energy collecting portion includes A solar reflector, a solar collector, and an energy transfer conduit, the solar collector collects and transmits energy, the thermal energy storage portion stores the collected energy for supply to the steam generation and transmission portion, and the steam generation and transmission portion generates hot steam, the hot steam
  • the power generation section drives the power generation, and the control system controls each of the above processes. Realize Uninterrupted power generation, with respect to the structure and control of the storage in the thermal energy storage 24 is known in the art, and the contents thereof are referred to the patent number ZL200820074910.
  • the present invention uses clusters clustered to meet the demand, can supply power on demand and has high efficiency, and the entire process does not need to be supplemented.
  • the main object of the present invention is to overcome the above-mentioned shortcomings of the prior art apparatus, and to provide an improved cluster type solar power generation device, which realizes cluster-type large-scale solar power generation, and the storage function and the control function can realize the uninterrupted power generation of solar power, Intelligent and environmentally friendly.
  • the cluster type solar power generation device is composed of a generator set 42 and a plurality of solar power towers 33.
  • a solar reflector 21 On each of the solar towers 33, there are a solar reflector 21, a solar heat collector 22, an energy transmission pipe 23, a thermal energy storage 24, and a steam generator 25.
  • Each solar tower generates steam by converting and transmitting the solar energy through the above series of devices, and the steam is collected through the hot steam transmission pipe 26 to the steam transmission collecting pipe 41 outside the solar tower 33, and transmitted to the generator set, and the whole system is intelligent.
  • Control system control control.
  • the steam transfer collecting duct 41 has a plurality of strips and is radially arranged. Multiple solar towers surround a generator set.
  • the steam transfer conduits 26 of the plurality of solar towers collect the generated steam into the vapor transport collection conduit 41, which transports the steam through the steam conduit joint 43 to the steam turbine 47 in the genset 42 where the turbine 47 in the genset is driven
  • the generator 48 performs power generation.
  • Each solar tower is provided with a solar energy collection device 11, an energy storage device 12, a steam generating device 13, and a vapor transmission device 14.
  • the energy storage device 12 of the solar tower 33 has an energy storage function in which a medium having an inert thermal energy storage function is installed.
  • the power generating unit 15 is mainly composed of a generator set 42 mainly comprising a steam turbine 47 and a generator 48 portion, and the generator set 42 is located at a central position of a plurality of solar towers 33, so that the heat loss of the steam line can be minimized, and the control system reflects the solar energy.
  • the unit 21, the solar collector 22, the energy transfer line 23, the thermal energy storage 24 and the steam generator 23, and the generator set 42 are effectively controlled.
  • the vapor transmission collection conduit 41 is disposed adjacent to a plurality of solar towers 33.
  • the solar energy collection device 11 includes a solar reflector 21, a solar thermal collector 22, and an energy transmission conduit 23.
  • the solar energy collection device it may be a dish solar concentrating mirror, a point focusing condensing mirror or other solar energy collecting function.
  • the collecting device, etc., the solar collector 22 is a photothermal converting device that converts sunlight into heat.
  • the energy storage device 12 is primarily a thermal energy storage device whose primary function is to store the collected energy through an inert medium having a thermal energy storage function to provide sufficient heat to the steam generator.
  • the control device 16 is in a DCS control mode, and effectively controls the solar reflector 21, the solar collector 22, the thermal energy storage 24, the steam generator 25, and the genset 42 respectively.
  • control device 16 uses a DCS controller 56 plus a GPS clock.
  • the control mode, the DCS controller controls a plurality of unit sites, each unit site controls a plurality of stations, including an azimuth control station, a height angle control station, a solar reflector control station and a solar collector control station.
  • the invention relates to a cluster solar power generation device with heat storage function with intelligent control system, which can be used for large-scale solar power generation, especially in desert, plateau, desert and plain areas, and can realize large-scale power generation, and can help improve
  • the surrounding environment prevents the desert from expanding and contributes to the growth of green vegetation.
  • the device has low cost, low cost, long life, high temperature, low heat loss, air as heat transfer medium, and unique energy storage function to generate electricity. It is minimized by the influence of the weather and basically realizes 24-hour power generation.
  • This cluster-type solar power generation unit provides space for large-scale power generation and wide application of solar energy.
  • FIG. 1 is a schematic diagram of a prior art solar power generation system
  • FIG. 2 is a block diagram of a cluster solar power generation device of the present invention
  • FIG. 3 is a schematic structural view of a single solar tower in a cluster solar power generation device of the present invention.
  • FIG. 4 is a schematic diagram of a steam pipe connection of a cluster type solar power generation device according to the present invention.
  • FIG. 5 is a schematic diagram of power generation of the cluster solar power generation device of the present invention
  • FIG. 6 is a general control diagram of the cluster solar power generation device of the present invention
  • FIG. 7 is a schematic diagram of a power line connection of a cluster type solar power generation device according to the present invention.
  • 11 is solar energy collection device, 12 energy storage device, 13 is steam generation device, 14 is steam transmission device, 15 is power generation device, 16 is control device, 21 is solar reflector, 22 solar collector, 23 is energy transmission pipeline 24 is thermal energy storage, 25 is steam generator, 26 is steam transmission pipeline, 27 is heat transmission pipeline, 31 is truss, 32 is azimuth control device, 33 is solar tower, 34 is height angle control device, 41 is steam Transmission collection pipe, 42 is the generator set, 43 is the steam pipe joint, 44 is the output grid, 45 is the booster station, 46 is the load, 47 For the steam turbine, 48 for the generator, 51 for the operator station, 52 for the engineer station, 53 for the output device, 54 for the GPS clock, 55 for the server and switch, 56 for the DCS controller, 57 for the unit site controlling a solar tower 58 is an azimuth control station, 59 altitude angle control station, 60 is a solar reflector control station, 61 is a solar collector control station, 62 is a power line, and 63 is a power line pole.
  • the solar power generation apparatus is composed of a generator set 42 and a plurality of solar towers 33, each of which collects solar energy separately and stores energy to generate steam, and a plurality of solar towers 33.
  • the generated steam is collected by the steam transfer line 26 to the steam transfer collecting line 41 outside the solar tower 33 and transmitted to the generator set 42, and the entire system is controlled by an intelligent control system.
  • Each solar tower 33 includes a solar energy collection device 11, an energy storage device 12, and a steam generating device 13.
  • the solar energy collection device 11 includes a solar reflector 21, a solar thermal collector 22, and an energy transmission conduit 23, and the solar thermal collector 22 will solar energy.
  • the solar reflector 21 is guided, the solar reflector 21 collects solar energy, the air pump generates a gas flow to bring heat into the energy transmission pipe 23, and it is safe and inexpensive to use air as a heat transfer medium.
  • the energy storage device 12 includes a thermal energy storage 24 and some auxiliary pipes.
  • the hot gas stream enters the thermal energy store 24 through a portion of the associated conduit, the steam generating device 13 includes a steam generator 25, a vapor transfer conduit 26 and a heat transfer conduit 27, and another portion of the associated conduit enters the heat transfer conduit 27 through which the hot gas stream enters the steam generation.
  • the hot gas stream heats the water in the steam generator 25, and the water is heated to generate water vapor, and the hot water vapor passes through the steam transfer pipe 26 and is sent to the outside of the solar tower 33.
  • the solar tower 33 is a hollow columnar structure, and the thermal energy storage 24 and the steam generator 25 are respectively installed inside the solar tower 33, the thermal energy storage 24 is on the upper side, the steam generator 25 is below, and the thermal energy storage 24 and the steam can be generated as needed.
  • the device 25 is placed horizontally, and the solar reflector 21 and the solar collector 22 and the energy transmission conduit 23 are placed on the disc-shaped truss 31 at the top of the solar tower 33.
  • the azimuth control device 32 can adjust the truss 31 and all the solar energy as a whole.
  • the azimuthal range of the reflector 21 and the solar collector 22 and the partial transmission duct can be moderately rotated in the horizontal direction.
  • the height angle control system 34 can adjust the angular range of all solar reflectors 21 and solar collectors 22.
  • the azimuth control device 32 and the elevation angle control device 34 are controlled by the entire control system, and an effective combination of the two can achieve optimal performance.
  • the axis of the solar reflector 21 is aligned with the sun to maximize the energy collected by the solar energy, wherein the azimuth control device 32 and the elevation angle control device 34 are known techniques.
  • the solar reflector 21 reflects the collected sunlight to the solar collector 22 to the maximum extent, and the solar reflector 21 and the solar collector 22 have multiple sets, each set, the solar reflector 21 and the solar collector.
  • each solar reflector 21 is respectively connected to the internal energy transmission pipe 23 of the truss 31, and can be rotated in a vertical range with the solar collector 22 and the transmission pipe, and in the truss 31 Evenly distributed, the truss 31 constitutes a rotating platform, and the collected energy is transmitted through the solar collector 22 to the steam generator 25 through the energy transfer conduit 23, and the steam generator 25 is driven to generate steam.
  • the thermal energy storage 24 stores the stored thermal energy and transmits it to the steam generator 25.
  • the portion of the energy collected by the solar collector 22 is supplied to the steam generator 25 to generate steam, and the other portion of the energy is stored in the thermal energy storage through the energy transfer conduit 23.
  • the thermal energy storage 24 releases the stored thermal energy and transmits it to the steam generator 25 to generate steam, so that the heat can be supplied to the steam generator 25 without interruption for 24 hours, driving the steam.
  • the generator 25 generates steam which can be used to drive the steam turbine 47, and the steam turbine 47 drives the generator 48 to perform power generation.
  • the heat collected by the plurality of solar reflectors 21 and the solar collectors is transferred to the thermal energy storage 24 via the energy transfer conduit 23 for storage, and then transferred to the steam generator 25 through the heat transfer conduit 27, at the steam generator 25
  • the medium water is converted into water vapor, which finally flows out of the solar tower 33 through the steam transfer pipe 26 and is collected into the steam transfer collecting pipe 41.
  • the steam transfer collecting pipe 41 is connected to the genset 42 via a steam pipe joint 43, which controls the opening and closing and flow of the steam transfer collecting pipe 41 to the genset 42.
  • the generator set 42 is a main part of the power generating device 15, which is mainly composed of a steam turbine 47 and a generator 48.
  • the hot steam blown steam turbine 47 rotates to drive the generator 48 connected to the steam turbine 47 to generate electricity. Therefore, the workflow of the cluster solar power generation device of the present invention is divided into four stages - a heat collection phase, a heat storage phase, a steam generation phase, and a steam power generation phase.
  • the first three phases are completed in the solar tower 33, and the steam power generation is generated.
  • the unit 42 is completed, and is also completed in the top, upper and lower portions of the solar tower 33 in the first three stages, respectively, with clear functions and reasonable structure.
  • a plurality of steam transmission collecting ducts 41 arranged radially, and a plurality of solar towers 33 surround the circumference of one genset 42 and the steam of the plurality of solar towers 33.
  • the transfer device collects the generated steam into the steam transfer conduit 26 and transmits it to the genset 42.
  • the genset 42 is connected to a plurality of steam transfer collecting pipes 41, each of which communicates with a plurality of steam transfer pipes 26, each of which is connected to a solar tower 33.
  • the high temperature steam of the plurality of solar towers 33 is collected by the steam transmission pipe 26 to The steam transfer collecting pipe 41, the high-temperature steam of the plurality of steam transfer collecting pipes 41 is collected by the steam pipe joint 43 to a total generator set 42, so that the scattered steam is collected in the steam transfer collecting pipe 41, and fluctuates from all directions.
  • the central total generator set 42 is used to generate electricity.
  • the resistance to the transmission of high-temperature airflow is relatively small, and the heat loss is relatively small.
  • the technology for controlling it is also relatively mature.
  • the steam turbine 47 and the generator 48 are very convenient to select and the quality is also reliable.
  • Each of the solar towers 33 is provided with a solar energy collecting device 11, an energy storage device 12, a steam generating device 13, and a steam transferring device 14.
  • the energy storage device of the solar tower 33 has an energy storage function in which an inert medium having a thermal energy storage function is installed to avoid unnecessary heat loss.
  • the vapor transport collection conduit 41 is disposed adjacent a plurality of solar towers 33 such that the other side of the vapor transport collection conduit 41 facilitates the passage of people, vehicles and equipment during maintenance.
  • the steam generator 25 generates a large amount of hot steam, which is transmitted to the steam transfer collecting pipe 41 through the steam transfer pipe 26, and is welded or screwed between the steam transfer pipe 26 and the steam transfer collecting pipe 41 to prevent heat loss of the steam.
  • the outer surface of the steam transfer pipe 26 and the hot steam transfer collecting pipe 41 has a heat insulating layer, and the plurality of steam transfer collecting pipes 41 are connected to the steam pipe joint 43, and the steam collected by the steam pipe joint 43 is transferred to the steam turbine 47 in the genset 42.
  • the steam transmission collecting pipe 41 and the steam turbine 47 are connected by a common pipe to ensure no loss of heat and sealing, and the link of the above pipes is a known technique.
  • the steam turbine 47 pushes the generator 48 to generate power and transmits it through the power line 62.
  • the power line 62 is mounted on the power line pole 63, and the power line pole 63 is placed on the side of the solar tower 33, so that there is a certain relationship between the solar towers 33.
  • the space is convenient for vehicles to enter, and it is also convenient for maintenance or other activities.
  • the power line 62 is connected to the booster station 45, and the power source is integrated into the output grid 44 through the booster station 45, and can also be used by the local load 46 as needed.
  • the control system of the cluster solar power generation device of the present invention includes 51 as an operator station, 52 as an engineering station, 53 as an output device, 54 as a GPS clock, 55 as a server and a switch, and 56 as a DCS controller, 57.
  • 58 is the azimuth control station
  • 59 is the temperature control station
  • 60 is the solar reflector control station
  • 62 is the solar collector control station
  • each unit site 57 controls multiple sites.
  • the GPS clock 54 acquires standard clock signal information from the geosynchronous satellite, and transmits the information in the network to ensure that devices such as controllers in the network are synchronized with the standard clock signal, and the system calculates the real-time running track of the sun according to the time.
  • the DCS controller 56 controls conventional power plant systems such as steam turbines, feed water, and the like, and transmits signals to unit sites 57 of different solar towers, azimuth Control station 58, elevation angle control station 59, solar reflector control station 60 and solar collector control station 61. These control stations efficiently and accurately collect, store, and transfer heat according to signals while passing through unit site 57 to the DCS controller. 56 transmits the signal.
  • the operator station and the engineering station can effectively adjust the entire system according to actual needs.
  • the control network structure in the system is a multi-layer network structure, and a redundant ring network is configured. Among them, some of the control modules in the control system are prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Photovoltaic Devices (AREA)

Description

集群式太阳能发电装置 技术领域
本发明涉及一种集群式太阳能发电装置, 尤其涉及一种具有智能控制系统的集群式太 阳能发电装置。
背景技术 说 近年来, 伴随着石化燃料的使用, 所产生的二氧化碳的排放引起全球变暖, 或由核电 站事故引发的放射性废弃物所产生的放射能污染等问题变得越 来越严重。 人们对地球环 书
境和能源的关心日益高涨。 在这样的情况下, 作为取之不尽且清洁环保的能源——太阳能 正在全世界已得到广泛应用。
已有技术的太阳能发电的方式有多种, 各有其特点, 主要有两大类: 光伏发电和光热 发电, 光伏发电是将太阳能直接转化为电能, 光热发电是用太阳能加热工作介质, 工作介 质在发电机组中做功发电。 光伏发电主要以太阳能电池及配套系统组成, 其结构简单, 容 易运输和安装, 但其占地面积大, 能量分散, 功率小, 效力低而且成本非常髙。
光热发电主要有太阳能塔式系统、太阳能槽式聚焦系统和斯特林盘式系统发电,斯特 灵盘式系统无法储存能量, 尤其在无太阳光或太阳光不充足的情况下, 在应用上受到很大 的限制, 而槽式系统的温度不能达到很高的程度, 塔式发电装置的温度虽然比槽式发电装 置的温度高, 但在一定程度上也受到很大的限制, 并使用熔盐或油作为工质, 塔式系统具 体结构详见本发明人的授权发明 CN201209519Y、 CN201210197Y, CN201263130Y等。 塔式 系统和槽式系统都燃用化石燃料作为太阳能的补充, 在效率、 成本和对环境的影响上受到 很多的限制。
如图 1所示, 已有技术的塔式发电装置由太阳能收集装置 11、 能量存储装置 12、 蒸 汽发生装置 13、 蒸汽传输装置 14、 发电装置 15和控制系统 16五部分组成, 太阳能收集 部分包括太阳能反射器、 太阳能集热器和能量传输管道,太阳能收集部分收集并传输能量, 热能存储部分将收集的能量存储起来, 以便供给蒸汽发生和传输部分, 蒸汽发生和传输部 分产生热蒸汽, 热蒸汽驱动发电部分发电, 而控制系统对上述的每个过程进行控制。 实现 不间断发电, 关于对存储在热能存储器 24的结构和控制为已知技术, 其内容参见专利号 为 ZL200820074910. 4的专利。
由于大多数太阳能发电装置有其不可避免的缺点,故开发一种新型的太阳能发电装置 成为必要, 本发明使用集合为簇的集群来满足需求, 能够按需供电并且效率较高, 整个过 程无需补充燃用化石燃料的系统。 发明内容
本发明的主要目的在于克服现有装置存在的上述缺点, 而提供一种改进的集群式太 阳能发电装置, 实现集群式大规模太阳能发电, 并且存储功能和控制功能可实现太阳能发 电的不间断性、 智能性和环保性。
本发明的目的是由以下技术方案实现的。
本集群式太阳能发电装置由一个发电机组 42和若干太阳能 33塔组成, 在每个太阳能 塔 33上有太阳能反射器 21、 太阳能集热器 22、 能量传输管道 23、 热能存储器 24和蒸汽 发生器 25, 每个太阳能塔将太阳能经过上述一系列装置的转换和传输产生蒸汽, 蒸汽经过 热蒸汽传输管道 26汇集到太阳能塔 33外的蒸汽传输汇集管道 41, 而传输至发电机组中, 整个系统由智能的控制系统控制。 该蒸汽传输汇集管道 41 有多条, 并放射状设置。 多个 太阳能塔环绕在一个发电机组的周围。 多个太阳能塔的蒸汽传输管道 26将产生的蒸汽汇 集到蒸汽传输汇集管道 41,蒸汽传输汇集管道 41通过蒸汽管道接头 43将蒸汽传输至发电 机组 42中的汽轮机 47, 发电机组中的汽轮机 47驱动发电机 48做功发电。 每个太阳能塔 设有太阳能收集装置 11、 能量存储装置 12、蒸汽发生装置 13和蒸汽传输装置 14。太阳能 塔 33的能量存储装置 12具有能量存储功能, 其中装有具有惰性的具有热能存储功能的介 质。 发电装置 15主要由发电机组 42组成, 主要包括汽轮机 47和发电机 48部分, 而发电 机组 42位于很多太阳能塔 33的中心位置, 这样可把蒸汽管线的热损失降低到最小,控制 系统对太阳能反射器 21、太阳能集热器 22、 能量传输管道 23、热能存储器 24和蒸汽发生 器 23及发电机组 42进行有效地控制。 所述蒸汽传输汇集管道 41经过多个太阳能塔 33附 近设置。
其中太阳能收集装置 11包括太阳能反射器 21、 太阳能集热器 22和能量传输管道 23, 对于太阳能收集装置可以为碟式太阳能聚光镜、 点聚焦聚光镜或其他具有太阳能收集功能 的收集装置等, 太阳能集热器 22 为一种光热转换装置, 即将太阳光转换成热能的装置。 能量存储装置 12主要为热能存储器, 其主要功能为将收集的能量通过具有热能存储功能 的惰性介质存储起来, 为蒸汽发生器提供充足的热量。 控制装置 16为 DCS控制模式, 分 别对太阳能反射器 21、 太阳能集热器 22、 热能存储器 24、 蒸汽发生器 25和发电机组 42 进行有效控制, 具体讲控制装置 16采用 DCS控制器 56加 GPS时钟的控制模式, 由 DCS控 制器控制多个单元站点,每个单元站点控制多个站点,包括方位角控制站, 高度角控制站, 太阳能反射器控制站和太阳能集热器控制站。
本发明涉及一种具有智能控制系统的具有储热功能的集群式太阳能发电装置, 其可用 于大规模太阳能发电, 尤其在沙漠、 高原、 荒漠和平原地区可实现大规模发电, 而且有助 于改善周边环境, 防止沙漠扩大化,有助于绿色植被的生长, 并且本装置成本低, 成本低、 寿命长, 温度高, 热损失少, 以空气为传热介质, 其独特的能量存储功能使发电受天气的 影响降低到最小, 基本实现 24小时发电。 本集群式太阳能发电装置对大规模发电, 太阳 能的广泛应用提供了空间。 附图说明:
图 1为已有技术的太阳能发电系统的原理图
图 2为本发明集群式太阳能发电装置的方块示意图
3为本发明集群式太阳能发电装置中单个太阳能塔结构示意图
图 4为本发明集群式太阳能发电装置的蒸汽管道连接示意图
图 5为本发明集群式太阳能发电装置发电示意图
图 6为本发明集群式太阳能发电装置的控制总图
图 7为本发明集群式太阳能发电装置的输电线连接示意图
图中主要标号说明:
11为太阳能收集装置, 12能量存储装置, 13为蒸汽发生装置, 14为蒸汽传输装置, 15为发电装置, 16为控制装置, 21为太阳能反射器, 22太阳能集热器, 23为能量传输管 道, 24为热能存储器, 25为蒸汽发生器, 26为蒸汽传输管道, 27为热量传输管道, 31为 桁架, 32为方位角控制装置, 33为太阳能塔, 34为高度角控制装置, 41为蒸汽传输汇集 管道, 42为发电机组, 43为蒸汽管道接头, 44为输出电网, 45为增压站, 46为负载, 47 为汽轮机, 48为发电机, 51为操作员站, 52为工程师站, 53为输出设备, 54为 GPS时钟, 55为服务器和交换机, 56为 DCS控制器, 57为控制一个太阳能塔的单元站点, 58为方位 角控制站, 59高度角控制站, 60为太阳能反射器的控制站, 61为太阳能集热器的控制站, 62为输电线, 63为输电线杆。 具体实施方式
下面结合附图对本发明集群式太阳能发电装置作进一步的说明。
如图 2所示, 本发明集群式太阳能发电装置中太阳能发电装置由一个发电机组 42和 多个太阳能塔 33组成, 每个太阳能塔 33单独收集太阳能并存储能量, 产生蒸汽,多个太 阳能塔 33产生的蒸汽通过蒸汽传输管道 26汇集至太阳能塔 33外的蒸汽传输汇集管道 41 , 并传输给发电机组 42, 整个系统由智能的控制系统控制。 每个太阳能塔 33都包括太阳能 收集装置 11、 能量存储装置 12、 蒸汽发生装置 13, 太阳能收集装置 11包括太阳能反射器 21、 太阳能集热器 22及能量传输管道 23, 太阳能集热器 22将太阳能导向太阳能反射器 21, 太阳能反射器 21收集太阳能, 气泵产生气流将热量带入能量传输管道 23, 用空气做 为传热介质既安全又廉价, 能量存储装置 12包括热能存储器 24和一些附属管道, 热气流 通过部分附属管道进入热能存储器 24, 蒸汽发生装置 13包括蒸汽发生器 25、 蒸汽传输管 道 26和热量传输管道 27, 另一部分附属管道进入热量传输管道 27, 热气流再通过这些管 道进入蒸汽发生器 25, 热气流加热蒸汽发生器 25中的水, 水受热后产生水蒸汽, 热的水 蒸汽通过蒸汽传输管道 26, 传向太阳能塔 33外。太阳能塔 33为中空柱状结构, 该热能存 储器 24和蒸汽发生器 25分别安装在太阳能塔 33的内部, 热能存储器 24在上, 蒸汽发生 器 25在下, 也可以根据需要, 将热能存储器 24和蒸汽发生器 25水平放置, 太阳能反射 器 21和太阳能集热器 22及能量传输管道 23放置在太阳能塔 33的顶部的圆盘型的桁架 31 上, 方位角控制装置 32为可以整体调节桁架 31和所有太阳能反射器 21和太阳能集热器 22以及部分传输管道的方位角范围, 可在水平方向适度旋转。 高度角控制系统 34可以调 节所有太阳能反射器 21和太阳能集热器 22的高度角范围, 方位角控制装置 32和高度角 控制装置 34 由整个控制系统控制, 两者的有效结合可以实现最佳的太阳能收集角度, 太 阳能反射器 21 的轴心正对准太阳, 实现太阳能收集的能量最大化, 其中, 方位角控制装 置 32和高度角控制装置 34为已知技术。 太阳能反射器 21在最大限度范围内将收集到的太阳光反射至太阳能集热器 22, 太阳 能反射器 21和太阳能集热器 22有多套, 每套中, 太阳能反射器 21和太阳能集热器 22— 一对应, 构成太阳能收集装置 11, 各个太阳能反射器 21底部分别连接在桁架 31内部能量 传输管道 23上, 并且可以和太阳能集热器 22及传输管道在垂直范围内旋转, 并在桁架 31 上均匀分布, 桁架 31构成一旋转平台, 收集的能量经过太阳能集热器 22将能量通过能量 传输管道 23传输给蒸汽发生器 25,驱动蒸汽发生器 25产生蒸汽。 同时, 蒸汽发生器 25停 止工作或者不需要大量的能量时, 太阳能集热器 22收集的能量将通过能量传输管道 23存 储在热能存储器 24中, 当蒸汽发生器 25需要大量的热量时, 热能存储器 24将存储的热 能释放,并传输给蒸汽发生器 25,另一种方式为太阳能集热器 22收集的能量部分供给蒸汽 发生器 25发生蒸汽, 另一部分能量将通过能量传输管道 23存储在热能存储器 24中, 当 蒸汽发生器 25需要能量时, 热能存储器 24将存储的热能释放,并传输给蒸汽发生器 25发 生蒸汽, 这样就可以实现 24小时不间断地向蒸汽发生器 25提供热量, 驱动蒸汽发生器 25 产生蒸汽,可用于驱动汽轮机 47, 汽轮机 47驱动发电机 48做功发电。 这样, 多个太阳能 反射器 21和太阳能集热器收集的热量借助气流通过能量传输管道 23传递到热能存储器 24 进行存储,然后再通过热量传输管道 27传递到蒸汽发生器 25, 在蒸汽发生器 25中水被转 化成为水蒸汽, 水蒸汽最后经过蒸汽传输管道 26流出太阳能塔 33而汇集到蒸汽传输汇集 管道 41。 蒸汽传输汇集管道 41通过蒸汽管道接头 43连接发电机组 42, 蒸汽管道接头 43 控制蒸汽传输汇集管道 41向发电机组 42的开闭及流量。 而发电机组 42为发电装置 15的 主要部分, 其主要由汽轮机 47和发电机 48构成, 热蒸汽吹动汽轮机 47旋转, 带动与汽 轮机 47相连的发电机 48发电。 因此, 本发明集群式太阳能发电装置的工作流程分为四个 阶段——采集热量阶段、 储存热量阶段、 产生蒸汽阶段和蒸汽发电阶段, 前三个阶段在太 阳能塔 33内完成, 蒸汽发电在发电机组 42中完成,且在前三个阶段也分别在太阳能塔 33 的顶部、 上部和下部分别完成, 功能明确, 结构合理。
如图 3、 4和图 6、 7所示, 本发明中蒸汽传输汇集管道 41有多条, 并放射状设置, 多个太阳能塔 33环绕在一个发电机组 42的周围, 多个太阳能塔 33的蒸汽传输装置将产 生的蒸汽汇集到蒸汽传输管道 26, 并传输至发电机组 42。 发电机组 42连通多条蒸汽传输 汇集管道 41,每条蒸汽传输汇集管道 41连通多个蒸汽传输管道 26, 每条蒸汽传输管道 26 连着一个太阳能塔 33。 因而, 多个太阳能塔 33的高温蒸汽通过蒸汽传输管道 26汇集到一 条蒸汽传输汇集管道 41,多条蒸汽传输汇集管道 41的高温蒸汽经过蒸汽管道接头 43汇集 到一个总的发电机组 42, 这样, 零散的蒸汽在蒸汽传输汇集管道 41中汇集, 并从四面八 方涌向中央的总的发电机组 42, 用来进行发电。 高温气流的传递的阻力是相对较小的, 其 热量损耗也是相对较小的, 对其控制的技术也是比较成熟的, 汽轮机 47和发电机 48非常 便于选择且质量也很可靠。
每个太阳能塔 33设有太阳能收集装置 11、 能量存储装置 12、 蒸汽发生装置 13和蒸 汽传输装置 14。 太阳能塔 33的能量存储装置具有能量存储功能, 其中装有具有惰性的具 有热能存储功能的介质, 避免了不必要的热量的损耗。
所述蒸汽传输汇集管道 41经过多个太阳能塔 33附近设置, 这样, 蒸汽传输汇集管道 41的另一侧便于维修时人、 车辆和设备通过。
蒸汽发生器 25产生大量的热蒸汽,通过蒸汽传输管道 26传输给蒸汽传输汇集管道 41, 蒸汽传输管道 26和蒸汽传输汇集管道 41之间采用不锈钢管道焊接或旋接而成, 防止蒸汽 的热量损失, 在蒸汽传输管道 26和热蒸汽传输汇集管道 41外表面有保温层,多个蒸汽传 输汇集管道 41与蒸汽管道接头 43连接, 经蒸汽管道接头 43汇集的蒸汽传输给发电机组 42中的汽轮机 47, 蒸汽传输汇集管道 41与汽轮机 47为普通的管道连接方式, 保证热量 不损失, 密封, 以上管道的链接为已知技术。 汽轮机 47推动发电机 48做功发电, 并通过 输电线 62传输,输电线 62架设在输电线杆 63之上, 输电线杆 63架设在太阳能塔 33的附 近一侧, 便于太阳能塔 33之间有一定的空间, 方便车辆可以进入, 也方便维修或进行其 他的活动等。 输电线 62连接到增压站 45上, 电源通过增压站 45并入输出电网 44, 也可 以根据需要供当地的负载 46使用。
如图 5所示本发明集群式太阳能发电装置的控制系统包括 51为操作员站, 52为工程 师站, 53为输出设备, 54为 GPS时钟, 55为服务器和交换机, 56为 DCS控制器, 57为一 个太阳能塔的控制总站, 58为方位角控制站, 59为髙度角控制站, 60为太阳能反射器控 制站, 62为太阳能集热器控制站,其中每个单元站点 57控制多个站点,包括方位角控制站 58、 高度角控制站 59、 太阳能反射器的控制站 60和太阳能集热器的控制站 61。 GPS时钟 54从地球同步卫星上获取标准时钟信号信息, 将这些信息在网络中传输, 以保证网络中控 制器等设备与标准时钟信号同步, 系统并按此时间计算太阳实时运行轨迹。 DCS控制器 56 控制汽轮机、给水等常规电厂系统, 并传输信号到不同的太阳能塔的单元站点 57, 方位角 控制站 58, 高度角控制站 59, 太阳能反射器的控制站 60和太阳能集热器的控制站 61这 些控制站点根据信号有效准确的收集、 存储、 输送热量, 同时通过单元站点 57向 DCS控 制器 56传输信号。 同时操作员站和工程师站可根据实际需要对整个系统进行有效调节。 系统中控制网络结构为多层网络结构, 且配置了冗余环网。 其中, 控制系统中的部分控制 模块为现有技术。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的限制, 凡是 依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本 发明技术方案的范围内。

Claims

权 利 要 求 书
1、一种集群式太阳能发电装置, 其特征在于: 所述集群式太阳能发电装置由发电机 组 (42)和多个太阳能塔 (33)组成, 每个太阳能塔 (33)单独收集太阳能并存储能量, 产生蒸 汽,多个太阳能塔 (33)产生的蒸汽通过蒸汽传输管道 (26)汇集至太阳能塔 (33)外的蒸汽传 输汇集管道 (41), 并传输给发电机组 (42) , 整个系统由智能的控制系统控制。
2、 根据权利要求 1所述的集群式太阳能发电装置, 其特征在于: 所述蒸汽传输汇集 管道 (41)有多条, 并放射状设置。
3、 根据权利要求 1所述的集群式太阳能发电装置, 其特征在于: 多个太阳能塔 (33) 环绕在一个发电机组 (42)的周围。
4、 根据权利要求 1所述的集群式太阳能发电装置, 其特征在于: 多个太阳能塔 (33) 的蒸汽传输装置将产生的蒸汽汇集到蒸汽传输汇集管道 (41 ), 并传输至发电机组 (42)。
5、 根据权利要求 3所述的集群式太阳能发电装置, 其特征在于: 每个太阳能塔 (33) 设有太阳能收集装置 (11)、 能量存储装置 (12)、 蒸汽发生装置 (13)。
6、 根据权利要求 5所述的集群式太阳能发电装置, 其特征在于: 太阳能塔 (33)的能 量存储装置 (12)具有能量存储功能, 其中装有具有惰性的具有热能存储功能的介质。
7、 根据权利要求 1所述的集群式太阳能发电装置, 其特征在于: 所述蒸汽传输汇集 管道 (41)经过多个太阳能塔 (33)附近设置。
8、 根据权利要求 1所述的集群式太阳能发电装置, 其特征在于: 控制部分采用 DCS 控制器 (56)加 GPS时钟 (54)的控制模式, 由 DCS控制器 (56)控制多个单元站点 (57), 每个 单元站点 (57)控制多个站点, 包括方位角控制站 (58)、 高度角控制站 (59)、 太阳能反射器 的控制站 (60)和太阳能集热器的控制站 (61)。
9、 根据权利要求 1 所述的集群式太阳能发电装置, 其特征在于: 输电线杆(63)经 过多个太阳能塔 (33)附近设置。
PCT/CN2010/001342 2009-09-08 2010-09-03 集群式太阳能发电装置 WO2011029268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100703805A CN102011715A (zh) 2009-09-08 2009-09-08 集群式太阳能发电装置
CN200910070380.5 2009-09-08

Publications (1)

Publication Number Publication Date
WO2011029268A1 true WO2011029268A1 (zh) 2011-03-17

Family

ID=43731941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001342 WO2011029268A1 (zh) 2009-09-08 2010-09-03 集群式太阳能发电装置

Country Status (2)

Country Link
CN (1) CN102011715A (zh)
WO (1) WO2011029268A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726998B (zh) * 2012-10-12 2017-12-05 上海工电能源科技有限公司 集群式太阳能热发电系统
CN113279821B (zh) * 2021-05-29 2023-04-25 袁宏昊 一种塔式综合能源利用系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044753A (en) * 1976-04-28 1977-08-30 Nasa Solar energy collection system
CN1008769B (zh) * 1985-06-28 1990-07-11 朱哈·文 蒸发装置和设有该装置的发电站
CN2306322Y (zh) * 1997-01-06 1999-02-03 刘文雄 太阳能收集装置
CN1645009A (zh) * 2005-01-18 2005-07-27 黄家银 太阳能多锅炉式蒸汽管道聚能发电系统
WO2007099184A1 (es) * 2006-02-28 2007-09-07 Serled Consultores, S.L. Sistema de generación de vapor a partir de radiación solar
CN101236287A (zh) * 2008-02-26 2008-08-06 苏建国 定日镜装置
CN201513305U (zh) * 2009-09-08 2010-06-23 彩熙太阳能环保技术(天津)有限公司 集群式太阳能发电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044753A (en) * 1976-04-28 1977-08-30 Nasa Solar energy collection system
CN1008769B (zh) * 1985-06-28 1990-07-11 朱哈·文 蒸发装置和设有该装置的发电站
CN2306322Y (zh) * 1997-01-06 1999-02-03 刘文雄 太阳能收集装置
CN1645009A (zh) * 2005-01-18 2005-07-27 黄家银 太阳能多锅炉式蒸汽管道聚能发电系统
WO2007099184A1 (es) * 2006-02-28 2007-09-07 Serled Consultores, S.L. Sistema de generación de vapor a partir de radiación solar
CN101236287A (zh) * 2008-02-26 2008-08-06 苏建国 定日镜装置
CN201513305U (zh) * 2009-09-08 2010-06-23 彩熙太阳能环保技术(天津)有限公司 集群式太阳能发电装置

Also Published As

Publication number Publication date
CN102011715A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
CN101783630B (zh) 一种太阳能发电集热方法及其专用装置
WO2019000941A1 (zh) 一种改良的布雷顿光热发电方法和系统
CN102606430B (zh) 分体运行太阳能碟式聚光发电系统
CN102165269A (zh) 太阳能收集器
CN108915791B (zh) 基于真空吸热管的直接吸热式储能发电系统
CN108431519B (zh) 太阳能风能发电装置及系统
CN101852193A (zh) 聚光太阳能发电系统
CN102072567A (zh) 一种两镜式太阳能集热装置及系统
CN103019220B (zh) 用于塔式太阳能热电站的定日镜分区控制系统
CN102032689B (zh) 一种新型碟式太阳能集热装置及系统
CN102400868B (zh) 单塔多碟式太阳能发电系统
CN201954774U (zh) 一种两次反射的太阳能定点聚能的装置及系统
CN102155365B (zh) 一种热砂蓄热太阳能碟式斯特林机发电装置及其方法
WO2011029268A1 (zh) 集群式太阳能发电装置
Al-Sakaf Application possibilities of solar thermal power plants in Arab countries
CN201513305U (zh) 集群式太阳能发电装置
CN202082057U (zh) 一种热砂蓄热太阳能碟式斯特林机发电装置
CN201661433U (zh) 聚光太阳能发电系统
CN103378647A (zh) 一种风力发电和太阳能发电一体化复合发电系统
CN201926145U (zh) 一种新型碟式太阳能定点聚能的装置及系统
CN201750373U (zh) 一种碟式太阳能光热发电专用模块式支架
WO2019085785A1 (zh) 碟式光热发电系统
CN209800175U (zh) 太阳能光热发电系统
CN209800176U (zh) 太阳能多能互补发电系统
WO2011060609A1 (zh) 节水型太阳能热发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10814870

Country of ref document: EP

Kind code of ref document: A1