WO2011027991A2 - Method for setting a reference time in a microcontroller, and electronic detonator using the method - Google Patents

Method for setting a reference time in a microcontroller, and electronic detonator using the method Download PDF

Info

Publication number
WO2011027991A2
WO2011027991A2 PCT/KR2010/005730 KR2010005730W WO2011027991A2 WO 2011027991 A2 WO2011027991 A2 WO 2011027991A2 KR 2010005730 W KR2010005730 W KR 2010005730W WO 2011027991 A2 WO2011027991 A2 WO 2011027991A2
Authority
WO
WIPO (PCT)
Prior art keywords
microcontroller
primer
reference time
circuit
value
Prior art date
Application number
PCT/KR2010/005730
Other languages
French (fr)
Korean (ko)
Other versions
WO2011027991A3 (en
Inventor
박윤석
양재현
강용묵
Original Assignee
주식회사 한화
안병호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한화, 안병호 filed Critical 주식회사 한화
Publication of WO2011027991A2 publication Critical patent/WO2011027991A2/en
Publication of WO2011027991A3 publication Critical patent/WO2011027991A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/06Electric fuzes with time delay by electric circuitry
    • F42C11/065Programmable electronic delay initiators in projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting

Definitions

  • the present invention relates to an electronic primer for precisely controlling the detonation time in the blasting operation for sequentially blasting the explosives by mounting a plurality of explosives to the destruction target such as a rock or a building, more specifically embedded in the microcontroller
  • a reference time setting algorithm that improves the accuracy of the RC oscillator, and a method of setting the reference time in the microcontroller that can trigger the primer after the primer start delay time by measuring the primer start delay time precisely using the same and an electronic method using the method It's about the primer.
  • the blasting technique is steadily evolving, based on years of experience and development.
  • the electronic primer stores the electrical energy supplied from the main controller in the energy storage circuit, and performs a switching operation so that the energy stored in the energy storage circuit is supplied to the primer after a predetermined delay time elapses.
  • Electronic Detonator which can adjust Delay Time to an Integrated Circuit, has been developed by introducing the technology of the electronic industry, which is developing at a high speed, and is increasing its utilization.
  • electronic primers use high-density integrated circuits to increase precision at the time of detonation, and can arbitrarily set and change the detonation time using two-wire communication with the main control device (charger). You can change it.
  • the current communication method of the electronic primer uses serial asynchronous communication. Due to the limitation of the size of the primer and the cost, the crystal oscillator is not used to improve the precision.
  • the sampling rate of the communication system is not accurate, so the communication speed is relatively slow, and when a large number of primers are connected, it takes a lot of time to check and set the detonation time of each primer. In case of installation, there is a problem that communication error occurs frequently and reliability is low.
  • An object of the present invention is to provide a method for setting a reference time in a microcontroller that can accurately perform a sampling operation without change by a preamble received from a main controller.
  • the purpose is to provide.
  • the reference time setting method includes a start pulse and a stop pulse from the main controller in the reference time setting method for improving the accuracy of the RC oscillator built in the microcontroller.
  • the counter value defining 1ms, the reference time is determined by dividing the value obtained by multiplying the standard pulse of the preamble by a value corresponding to a predefined 1-bit time by 1ms to determine a fixed value corresponding to 1ms, which is the reference time for the standard pulse. After the determination, the value stored in the first registry is divided by a predetermined value.
  • the timer operation of the microcontroller includes a second registry value that stores a counter value that defines a reference time of 1 ms, which is a reference time of the microcontroller's built-in RC oscillator, and the microcontroller receives a blasting command from the main controller and simultaneously If the value of counting the internal clock of the RC oscillator is the same, characterized in that it further comprises the step of increasing by 1ms.
  • the electronic primer using the reference time setting method in the microcontroller of the present invention for realizing another object is controlled to precisely trigger the primer after the delay time in accordance with the command of the main control device, such as the detonation delay time setting and the blast command
  • An electronic primer comprising: a rectifier circuit for rectifying a signal source received from a main controller, a power storage circuit connected to an output of the rectifier circuit, divided by a voltage divider circuit, and supplying power to a microcontroller, by the voltage divider circuit
  • a blasting energy storage circuit that is divided to supply energy to the primer, a switching circuit for supplying energy stored in the blasting energy storage circuit to the primer, and is connected between the switching circuit and the primer to prevent external sudden electric shock.
  • To operate the timer as a reference time setting method in the controller croissant, after the initiation delay time is characterized in that comprises a microcontroller for blasting a detonator by controlling the switching circuit.
  • the microcontroller may further include receiving a data frame including a preamble including a start pulse and a stop pulse from a main controller; As soon as the microcontroller receiving the preamble receives the start pulse of the preamble, the microcontroller starts counting the oscillation clock by the RC oscillator built in the microcontroller and counts the count until the stop pulse of the preamble is received.
  • the microcontroller may store the delay time value in non-volatile storage means when receiving a command to set the delay time of the primer from the main controller.
  • the microcontroller is characterized in that when receiving the command to transmit the delay delay time set value of the primer from the main controller, the delay time set value set in the nonvolatile storage means to the main controller.
  • the microcontroller uses the value stored in the third registry, which is a counter value of the oscillation clock of the built-in RC oscillator of the microcontroller that defines a 1-bit width by dividing the value stored in the first registry by the total number of standard pulses of the preamble.
  • the pulse width switch the transistor Q1 of the transmission circuit, and output a high (H) or low (L) signal to control the connection state of the primer to the main controller and the setting of the delay delay time set in the nonvolatile storage means. And transmits to the device.
  • the power storage circuit has R4, a diode D2, and a capacitor EC2 connected in series to accumulate charge in the capacitor EC2, and to connect a Zener diode ZD1 in parallel with the capacitor EC2. It is characterized by supplying power to the microcontroller by maintaining a constant voltage.
  • the blast energy storage circuit is characterized in that the charge is accumulated in the capacitor EC1 by connecting R3, the diode D1 and the capacitor EC1 in series according to the voltage divided by R1 and R2.
  • the shunt circuit has transistors Q4 and Q5 short-circuited since charges accumulate in the blasting energy storage circuit, both ends of the primer are grounded to protect the primer from sudden electric shock from the outside. Is open, so that the transistor Q4 is also opened.
  • the switching circuit short-circuits the transistor Q3 when the transistor Q2 is shorted by the control of the microcontroller after the delay delay time by the blasting command of the main controller, thereby rapidly discharging the charge accumulated in the blast energy storage circuit at both ends of the primer fuse head. It is characterized by exploding the primer.
  • the reference time setting method and the electronic primer using the method in the microcontroller according to the present invention by using a general-purpose microcontroller with an oscillating circuit using the reference time setting method, the precision and error-free communication state at the beginning of the explosion can be obtained. It is also possible to significantly reduce manufacturing costs compared to electronic primers currently in use.
  • the electronic primer of the present invention significantly improves the accuracy of detonation at the time of detonation compared to the detonator using a widely used flame retardant, and ignition of the detonation at the same time while maintaining very precise parallax to a very short 1 / 1,000 second. It is an electronic primer that can be exploded. Therefore, there is an advantage that the vibration and noise due to the blasting, the crushing effect of the blasting site can be improved, and the cost due to the overdrilling control at the opening of the tunnel can be significantly reduced.
  • FIG. 1 is a simplified diagram showing a data frame and sampling including a preamble received from a main controller to set a reference time in a microcontroller according to the present invention.
  • FIG. 2 is an electronic primer block diagram using a reference time setting method in the MCU of the present invention
  • Figure 3 is a detailed circuit diagram for this.
  • 4A and 4B are block diagrams illustrating a communication method between a main controller and an electronic primer.
  • FIG. 5 is a flowchart showing the operation of the electronic primer using the reference time setting method in the microcontroller according to the present invention.
  • main controller 110 microcontroller side of the main controller
  • microcontroller 270 switching circuit
  • FIG. 1 is a simplified diagram showing a data frame and sampling including a preamble received from a main controller to set a reference time in a microcontroller according to the present invention.
  • the main controller transmits a primer blast delay time setting and a blast command to a microcontroller (hereinafter referred to as MCU) that controls the primer trigger.
  • MCU microcontroller
  • the main controller transmits a data frame having a preamble, an instruction, an address, and data information to a MCU using a clock generated as a source by generating a precise clock at a communication start time.
  • the MCU receives a time standard pulse of a certain length from the main controller in the form of a preamble including a start pulse, a pulse having an arbitrary length, and a stop pulse.
  • the MCUs of each electronic primer are all connected in parallel with the main controller and receive data frames including the preambles to operate independently.
  • the MCUs of the electronic primers start counting the oscillation clock by the RC oscillator built in the MCU immediately after receiving the start pulse of the preamble and counting them until the stop pulse of the preamble is received. Save it in the registry.
  • a counter value in which the coefficient of the oscillation clock by the MCU's built-in RC oscillator defines a reference time of 1 ms based on the current temperature and voltage is stored in the second registry.
  • a value obtained by multiplying a standard pulse of a preamble by a value corresponding to a predefined 1-bit time is divided by 1 ms to obtain a confirmation value X corresponding to 1 ms, which is a reference time for a standard pulse, and then into the first registry.
  • X By dividing the stored value by the fixed value (X), a counter value that defines a value of 1 ms, which is a reference time of the MCU's built-in RC oscillator, can be obtained.
  • the value stored in the second registry is set differently depending on the temperature of each electronic primer MCU's site of use and the voltage supplied to the logic circuit.
  • the value stored in the first registry is divided by the total number of standard pulses of the preamble to store the counter value of the oscillation clock by the built-in RC oscillator of the MCU that defines a 1-bit width in the third registry.
  • Sampling is performed based on a value stored in a third registry defined by the defined 1-bit width to communicate with the main controller.
  • the MCU when the MCU receives the start pulse of the preamble, it starts counting the oscillation clock by the RC oscillator built in the MCU, counts until the stop pulse of the preamble is received, and stores the count value in the first registry of the MCU. .
  • 5 ms / 1 ms is used to obtain a definite value of 5 (X), and dividing the value stored in the first registry by the definite value of 5 (X) determines the reference of the MCU's built-in RC oscillator. You can get the counter value that defines the time value of 1ms.
  • the value stored in the first registry is divided by 10, which is the total number of standard pulses of the preamble, to store the counter value of the oscillation clock by the MCU's built-in RC oscillator that defines a 1-bit time (500 ⁇ s in this case). do.
  • the MCU of the electronic primer As soon as the MCU of the electronic primer receives the blasting command from the main controller, it starts counting (Y) the internal clock of the MCU's built-in RC oscillator. Accordingly, the timer operation of the MCU is increased by 1 ms, which is a reference time when the count value Y is equal to the second registry value in which a counter value defining a value of 1 ms, which is a reference time of the built-in RC oscillator, is the same. .
  • the shunt is released and the primer is triggered by the blasting command.
  • the electronic primer has a practical correction algorithm that can significantly reduce the communication error while communicating at a relatively high speed without using a separate communication driver circuit as the firmware of the MCU. Doing.
  • FIG. 2 is an electronic primer block diagram using a reference time setting method in the MCU of the present invention
  • Figure 3 is a detailed circuit diagram. 2 and 3 will be described together.
  • the electronic primer control means 200 using the reference time setting method in the MCU of the present invention is a rectifier circuit 210, voltage divider circuit 220, transmission circuit 230, power storage circuit ( 240, the blast energy storage circuit 250, the MCU 260, the switch circuit 270, and the shunt circuit 280.
  • the power supply rectifies the signal source received from the main controller 100 using the rectifier circuit 210 composed of the bridge diode BD1, and divides the voltage into resistors R1 and R2 connected to the output of the rectifier circuit 210.
  • the circuit accumulates in the power storage circuit 240 and the blast energy storage circuit 250.
  • the power storage circuit 240 connects R4, the diode D2, and the capacitor EC2 in series to accumulate charge in the capacitor EC2, and to execute the zener diode ZD1 in parallel with the capacitor EC2.
  • the power is supplied to the microcontroller by connecting to maintain a constant voltage.
  • R10 is a protection resistor against overvoltage supplied to the MCU.
  • R3, the diode D1, and the capacitor EC1 are connected in series according to the voltage divided by R1 and R2 to accumulate charge in the capacitor EC1. Then, when the switching circuit is short-circuited by the MCU 260 control, the charge accumulated in the EC1 is supplied to the primer fuse head to trigger the primer.
  • the blasting energy storage circuit 250 and the power storage circuit 240 for supplying power to the MCU for the primer control are configured together for the detonator requiring a high output therein.
  • R3 and R4 are integral resistors for preventing the charging current from rising sharply.
  • the shunt circuit 280 is connected between the switching circuit 270 and the primer 300, the transistor Q4 and the transistor Q5 is short-circuited from the time when charge begins to accumulate in the blasting energy storage circuit 250, the both ends of the primer Grounded to protect the primer from sudden electrical shocks from the outside. At the time of blasting, the transistor Q5 is opened, so that the transistor Q4 is also opened to release the shunt operation.
  • the switching circuit 270 is short-circuited by the control of the MCU after an explosion delay time by the blasting command of the main control device 100, the transistor Q3 is short-circuited to the blast energy storage circuit 250 at both ends of the primer fuse head. It releases the accumulated charge rapidly and triggers the primer.
  • the transmitting circuit 230 performs communication between the MCU and the main controller according to a command to transmit a set value for the primer installation state for the connection state and the detonation time setting state of the primer of the main controller.
  • the received serial signal of the main controller divided into voltages by R1 and R2 may cause communication speed delay and communication waveform distortion due to changes in inductance component due to communication line shape, line length, and temperature.
  • the present invention analyzes a preamble, which is a method of setting a reference time in a microcontroller, and defines a counter value (1 second) in which the coefficient of the oscillation clock by the built-in RC oscillator of each MCU defines a reference time at a current temperature and voltage.
  • the oscillation clock counter value (stored in the third registry) by the MCU's built-in RC oscillator that defines the 1-bit width divided by the total number of standard pulses of the preamble). Can be.
  • 4A and 4B are block diagrams illustrating a communication method between a main controller and an electronic primer.
  • the transmitting circuit 230 forms a pulse width with a value stored in the third registry to switch the transistor Q1 according to the value stored in the nonvolatile storage means to high or low (L).
  • L high or low
  • the main controller 100 prepares the reception of data from the electronic primer control means 200 by opening the transistor QT1 state and flowing current only at RT after transmitting data to the electronic primer control means.
  • FIG. 5 is a flowchart showing the operation of the electronic primer using the reference time setting method in the microcontroller according to the present invention.
  • Each electronic primer can be given a unique address (ID of each primer) in advance.
  • each primer receives a data frame including a preamble from the main controller.
  • Each primer analyzes the preamble received from the main controller and stores a counter value defining 1 ms as a reference time in the second registry, and stores a counter value defining pulse width of 1 bit in the third registry (S100). Since the detailed description is described in the reference time setting method (see FIG. 1) in the microcontroller, the description thereof will be omitted.
  • each primer extracts the command received from the main controller and triggers the command (S200).
  • the MCU of the electronic primer receives the blasting command from the main controller and starts counting (Y) the internal clock of the MCU's built-in RC oscillator. . Accordingly, the timer operation of the MCU is increased by 1 ms, which is a reference time when the count value Y is equal to the second registry value in which a counter value defining a value of 1 ms, which is a reference time of the built-in RC oscillator, is the same. .
  • the primer is triggered by the blasting command (S220).
  • the trigger (blasting) command corresponds to all primers without distinguishing the primer address.
  • Each primer then checks whether it is its address if it is not a triggering command (S300) and automatically terminates operation if it is not its own address. If the delay delay time setting command, the next received data is stored in the nonvolatile storage means (EEPROM) and ends (S410).
  • EEPROM nonvolatile storage means
  • each primer sends a set value stored in the nonvolatile storage means EEPROM to the main controller when the command S500 transmits the set value (S510), and ends.
  • the present invention has a built-in correction algorithm to improve the accuracy of the RC oscillator embedded in the MCU, and the primer installation state in the main control unit through the transmission and reception communication between the primer and the main control unit (charger or percussion) using a two-wire line (each The connection state of the primer and the setting of the detonation time) can be checked, and the reset time can be repeated by randomly clearing the detonation time of each connected detonator from the main controller.
  • the shunt circuit is built in to protect the primer from sudden electric shocks (electric shocks such as lightning and static electricity) from the outside.
  • sudden electric shocks electric shocks such as lightning and static electricity
  • the connection between the primer and the main controller is 2 wire parallel and the polarity is irrelevant.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electronic Switches (AREA)
  • Electric Clocks (AREA)

Abstract

The present invention relates to an electronic detonator using a method for setting a reference time in a microcontroller, which detonates precisely after a delay time elapses in accordance with the command from a main control device, such as a detonator blast delay time setup command, blast command, and the like, wherein the electronic detonator comprises: a rectifier circuit for rectifying the source signal received from the main control device; a power storage circuit connected to an output of the rectifier circuit, which supplies power divided by a voltage-dividing circuit to a microcontroller; a blasting energy storage circuit which supplies energy divided by the voltage-dividing circuit to the detonator; a switching circuit for supplying energy stored in the blasting energy storage circuit to the detonator; a shunt circuit interconnected between the switching circuit and the detonator to protect the detonator from a sudden electrical impact applied by an external source; and said microcontroller, which operates a timer in accordance with the method for setting a reference time in a microcontroller as described in claim 1, so as to control the switching circuit and to enable the detonator to detonate after a detonator blast delay time elapses. The electronic detonator of the present invention can be ignited and detonated in a sequence while maintaining a remarkably precise, significantly short time difference in the delay time of 1/1,000 of a second. The electronic detonator of the present invention is advantageous in that vibration and noise caused by blasting are reduced, fragmentation in a blasting site is improved, and the costs of controlling an excessive excavation during the construction of a tunnel can be significantly reduced.

Description

마이크로컨트롤러에서 기준시간 설정방법 및 그 방법을 이용한 전자식 뇌관How to set reference time in microcontroller and electronic primer using the method
본 발명은 암반 또는 건물 등의 파괴 대상에 복수의 폭발물을 장착하여 폭발물을 순차적으로 발파하기 위한 발파 작업에 있어 기폭 시간을 정밀하게 제어하는 전자식 뇌관에 관한 것으로써, 더욱 상세하게는 마이크로컨트롤러에 내장된 RC발진기의 정밀도를 향상시킨 기준시간 설정 알고리즘 및 이를 이용하여 정밀하게 뇌관 기폭 지연시간을 측정하여 뇌관 기폭 지연시간 이후 뇌관을 격발할 수 있도록 하는 마이크로컨트롤러에서 기준시간 설정방법 및 그 방법을 이용한 전자식 뇌관에 관한 것이다.The present invention relates to an electronic primer for precisely controlling the detonation time in the blasting operation for sequentially blasting the explosives by mounting a plurality of explosives to the destruction target such as a rock or a building, more specifically embedded in the microcontroller A reference time setting algorithm that improves the accuracy of the RC oscillator, and a method of setting the reference time in the microcontroller that can trigger the primer after the primer start delay time by measuring the primer start delay time precisely using the same and an electronic method using the method It's about the primer.
발파기술(Blasting Technique)은 오랜 시간에 걸친 경험과 개발을 바탕으로 꾸준히 발전하고 있다. 전자식 뇌관은 주제어장치로부터 공급된 전기 에너지를 에너지 축적 회로에 저장하여, 소정의 지연 시간 경과 후 에너지 축적 회로에 저장된 에너지를 뇌관에 공급되도록 스위칭 동작을 수행한다. 고속으로 발전하는 전자산업의 기술을 도입하여 뇌관기폭초시(Delay Time)를 집적회로(Integrated Circuit)로 조정할 수 있는 전자식 뇌관(Electronic Detonator)이 개발되어 그 활용도를 높이고 있다.The blasting technique is steadily evolving, based on years of experience and development. The electronic primer stores the electrical energy supplied from the main controller in the energy storage circuit, and performs a switching operation so that the energy stored in the energy storage circuit is supplied to the primer after a predetermined delay time elapses. Electronic Detonator, which can adjust Delay Time to an Integrated Circuit, has been developed by introducing the technology of the electronic industry, which is developing at a high speed, and is increasing its utilization.
종래의 뇌관은 지연 엘레멘트(Delay Element)를 내장하여 엘레멘트의 연소 시간을 기폭초시로 설정하였으며 기폭초시 정밀성이 전자식 뇌관보다는 현저히 떨어지며 또한 제조시에 기폭초시를 결정하기 때문에 사용시에는 기폭초시 변경이 불가능하다. Conventional primers have a built-in delay element to set the combustion time of the element to detonation time, and detonation time changes during use because the precision at detonation time is significantly lower than that of the electronic detonator and also determines detonation time at the time of manufacture. impossible.
이에 비해 전자식 뇌관은 고밀도 집적회로를 사용하여 기폭초시의 정밀성을 높이고 주제어장치(장입기)와의 2선식 통신을 사용하여 임의로 기폭초시를 설정 및 변경할 수 있으며, 현장에서도 설치된 뇌관 상태 확인과 기폭초시를 변경할 수 있다. In contrast, electronic primers use high-density integrated circuits to increase precision at the time of detonation, and can arbitrarily set and change the detonation time using two-wire communication with the main control device (charger). You can change it.
그러나 현재 사용되는 전자식 뇌관의 통신 방식은 시리얼 비동기 통신을 사용하는데 뇌관 크기의 한정성과 가격 문제 때문에 정밀도 향상을 위하여 크리스탈 발진기를 사용하지 않고 있다. However, the current communication method of the electronic primer uses serial asynchronous communication. Due to the limitation of the size of the primer and the cost, the crystal oscillator is not used to improve the precision.
따라서 통신 체계에 대한 샘플링이 정확하지가 않아서 상대적으로 통신 속도가 늦고, 다량의 뇌관을 연결한 경우에는 각 뇌관의 기폭초시 확인과 설정에 많은 시간이 소요되며, 뇌관을 장거리(수Km) 상태로 설치할 경우에는 통신에러가 자주 발생하여 신뢰성이 떨어진다는 문제점이 있다.Therefore, the sampling rate of the communication system is not accurate, so the communication speed is relatively slow, and when a large number of primers are connected, it takes a lot of time to check and set the detonation time of each primer. In case of installation, there is a problem that communication error occurs frequently and reliability is low.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 주제어장치로부터 수신되는 프리앰블에 의하여 변화없이 고정적으로 샘플링 동작을 정확하게 할 수 있는 마이크로컨트롤러에서 기준시간 설정방법을 제공함에 그 목적이 있다. An object of the present invention is to provide a method for setting a reference time in a microcontroller that can accurately perform a sampling operation without change by a preamble received from a main controller.
본 발명의 또 다른 목적은 마이크로컨트롤러에서 기준시간 설정방법을 이용하여 정밀하게 뇌관 기폭 지연시간을 측정하여 뇌관 기폭 지연시간 이후 뇌관을 발파할 수 있도록 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관을 제공함에 그 목적이 있다.It is another object of the present invention to measure an electronic primer using a reference time setting method in the microcontroller to precisely measure the primer detonation time using the reference time setting method in the microcontroller to blast the primer after the detonation delay time. The purpose is to provide.
본 발명의 또 다른 목적은 외부의 갑작스런 전기적인 충격(낙뢰, 정전기 등의 전기적인 충격)으로부터 뇌관을 보호하기 위한 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관을 제공함에 그 목적이 있다.It is still another object of the present invention to provide an electronic primer using a reference time setting method in a microcontroller for protecting the primer from an external sudden electric shock (electric shock such as lightning or static electricity).
상술한 바와 같은 목적을 구현하기 위한 본 발명의 마이크로컨트롤러에서 기준시간 설정방법은 마이크로컨트롤러에 내장된 RC 발진기의 정밀도를 향상시키기 위한 기준시간 설정방법에 있어서, 주제어장치로부터 시작펄스와 정지펄스를 포함하는 프리앰블을 포함한 데이터 프레임을 수신하는 단계; 상기 프리앰블을 수신받는 마이크로컨트롤러에서 프리앰블의 시작펄스를 수신하는 즉시 마이크로컨트롤러에 내장되어 있는 RC발진기에 의한 발진 클럭을 카운트하기 시작하여 프리앰블의 정지펄스를 수신할 때까지 카운트하여 이 계수값을 마이크로컨트롤러의 제1레지스트리에 저장하는 단계; 마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 계수가 현재의 온도, 전압에서 기준시간인 기준시간인 1ms를 정의하는 카운터 값을 제2레지스트리에 저장하는 단계를 포함하여 이루어지는 것을 특징으로 한다.In the microcontroller of the present invention for achieving the above object, the reference time setting method includes a start pulse and a stop pulse from the main controller in the reference time setting method for improving the accuracy of the RC oscillator built in the microcontroller. Receiving a data frame including a preamble; As soon as the microcontroller receiving the preamble receives the start pulse of the preamble, the microcontroller starts counting the oscillation clock by the RC oscillator built in the microcontroller and counts the count until the stop pulse of the preamble is received. Storing in a first registry of; And storing a counter value in a second registry in which the coefficient of the oscillation clock by the built-in RC oscillator of the microcontroller defines a reference time of 1 ms, which is a reference time at the current temperature and voltage.
또한 상기 제1레지스트리에 저장되어 있는 값을 프리앰블의 전체 표준펄스 개수로 나누어 1비트 폭을 정의하는 마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 카운터 값을 제3레지스트리에 저장하는 단계를 포함하여 이루어지는 것을 특징으로 한다. And storing the counter value of the oscillation clock by the built-in RC oscillator of the microcontroller defining a 1-bit width by dividing the value stored in the first registry by the total number of standard pulses of the preamble in the third registry. Characterized in that made.
또한 상기 기준시간인 1ms를 정의하는 카운터 값은 프리앰블의 표준 펄스에 사전에 정의된 1비트 시간에 해당되는 값을 곱한 값을 1ms로 나눔으로써 표준 펄스에 대한 기준시간인 1ms에 해당하는 확정값을 구한 후, 상기 제1레지스트리에 저장되어 있는 값을 확정값으로 나누어 얻어지는 값인 것을 특징으로 한다. In addition, the counter value defining 1ms, the reference time, is determined by dividing the value obtained by multiplying the standard pulse of the preamble by a value corresponding to a predefined 1-bit time by 1ms to determine a fixed value corresponding to 1ms, which is the reference time for the standard pulse. After the determination, the value stored in the first registry is divided by a predetermined value.
또한 마이크로컨트롤러의 타이머 동작은 마이크로컨트롤러의 내장된 RC발진기의 기준시간인 1ms값을 정의하는 카운터 값이 저장되어 있는 제2레지스트리값과 마이크로컨트롤러가 주제어장치로부터 발파 명령을 수신함과 동시에 마이크로컨트롤러의 내장된 RC발진기의 내부 클럭을 계수하는 값이 동일할 경우 1ms씩 증가하는 단계를 더 포함하여 이루어지는 것을 특징으로 한다. In addition, the timer operation of the microcontroller includes a second registry value that stores a counter value that defines a reference time of 1 ms, which is a reference time of the microcontroller's built-in RC oscillator, and the microcontroller receives a blasting command from the main controller and simultaneously If the value of counting the internal clock of the RC oscillator is the same, characterized in that it further comprises the step of increasing by 1ms.
또 다른 목적을 구현하기 위한 본 발명의 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관은 뇌관 발파 지연시간 설정 및 폭파 명령 등의 주제어장치 명령에 따라 지연시간 경과 후 뇌관을 정밀하게 격발할 수 있도록 제어하는 전자식 뇌관에 있어서, 주제어장치로부터 수신한 신호원을 정류하는 정류회로, 상기 정류회로의 출력에 연결되며, 분압회로에 의하여 분압되어 마이크로컨트롤러에 전원을 공급하는 전원저장회로, 상기 분압회로에 의하여 분압되어 뇌관에 에너지를 공급하는 발파용 에너지 저장회로, 상기 발파용 에너지 저장회로에 저장되어 있는 에너지를 뇌관에 공급하기 위한 스위칭회로, 상기 스위칭회로와 뇌관 사이에 연결되어 외부의 갑작스런 전기적인 충격으로부터 뇌관을 보호하기 위한 션트회로, 제1항에서의 마이크로컨트롤러에서 기준시간 설정방법에 따라 타이머를 작동하여, 기폭지연시간 후 상기 스위칭회로를 제어하여 뇌관을 발파하는 마이크로컨트롤러를 포함하여 이루어지는 것을 특징으로 한다. The electronic primer using the reference time setting method in the microcontroller of the present invention for realizing another object is controlled to precisely trigger the primer after the delay time in accordance with the command of the main control device, such as the detonation delay time setting and the blast command An electronic primer comprising: a rectifier circuit for rectifying a signal source received from a main controller, a power storage circuit connected to an output of the rectifier circuit, divided by a voltage divider circuit, and supplying power to a microcontroller, by the voltage divider circuit A blasting energy storage circuit that is divided to supply energy to the primer, a switching circuit for supplying energy stored in the blasting energy storage circuit to the primer, and is connected between the switching circuit and the primer to prevent external sudden electric shock. Shunt circuit for protecting primer, hemp To operate the timer as a reference time setting method in the controller croissant, after the initiation delay time is characterized in that comprises a microcontroller for blasting a detonator by controlling the switching circuit.
또한 상기 마이크로컨트롤러는 주제어장치로부터 시작펄스와 정지펄스를 포함하는 프리앰블을 포함한 데이터 프레임을 수신하는 단계; 상기 프리앰블을 수신받는 마이크로컨트롤러에서 프리앰블의 시작펄스를 수신하는 즉시 마이크로컨트롤러에 내장되어 있는 RC발진기에 의한 발진 클럭을 카운트하기 시작하여 프리앰블의 정지펄스를 수신할 때까지 카운트하여 이 계수값을 마이크로컨트롤러의 제1레지스트리에 저장하는 단계; 마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 계수가 현재의 온도, 전압에서 기준시간인 1ms를 정의하는 카운터 값을 제2레지스트리에 저장하는 단계; 주제어장치로부터 발파 명령을 수신하는 경우, 상기 제2레지스트리값과 마이크로컨트롤러가 주제어장치로부터 발파 명령을 수신함과 동시에 마이크로컨트롤러의 내장된 RC발진기의 내부 클럭을 계수하는 값이 동일할 경우 기준시간인 1ms씩 증가하도록 타이머를 동작하는 단계; 상기 타이머 작동에 의하여 측정된 시간과 뇌관의 비휘발성 저장수단에 사전 설정된 뇌관 지연 시간이 일치하는 경우 션트회로를 개방하는 단계; 및 스위칭회로를 단락시켜 뇌관 휴즈헤드에 발파용 에너지 저장회로에 축적된 전하를 급격히 방출시켜 뇌관을 폭발하는 단계를 포함하여 이루어지는 것을 특징으로 한다. The microcontroller may further include receiving a data frame including a preamble including a start pulse and a stop pulse from a main controller; As soon as the microcontroller receiving the preamble receives the start pulse of the preamble, the microcontroller starts counting the oscillation clock by the RC oscillator built in the microcontroller and counts the count until the stop pulse of the preamble is received. Storing in a first registry of; Storing a counter value in a second registry in which a coefficient of an oscillation clock by a built-in RC oscillator of the microcontroller defines 1 ms, which is a reference time at a current temperature and voltage; When receiving the blasting command from the main controller, when the second registry value and the microcontroller receives the blasting command from the main controller and the value of counting the internal clock of the built-in RC oscillator of the microcontroller is equal to 1ms which is a reference time Operating a timer to increment by increments; Opening a shunt circuit when the time measured by the timer operation and the predetermined primer delay time coincide with the nonvolatile storage means of the primer; And shorting the switching circuit to expel the charge by rapidly discharging the charge accumulated in the blasting energy storage circuit in the primer fuse head.
또한 상기 마이크로컨트롤러는 주제어장치로부터 뇌관의 기폭 지연시간 설정명령을 수신하는 경우, 비휘발성 저장수단에 상기 기폭 지연시간값을 저장하는 것을 특징으로 한다. The microcontroller may store the delay time value in non-volatile storage means when receiving a command to set the delay time of the primer from the main controller.
또한 상기 마이크로컨트롤러는 주제어장치로부터 뇌관의 기폭 지연시간 설정값 송신명령을 수신하는 경우, 비휘발성 저장수단에 설정된 기폭 지연시간 설정값을 주제어장치로 송신하는 것을 특징으로 한다. In addition, the microcontroller is characterized in that when receiving the command to transmit the delay delay time set value of the primer from the main controller, the delay time set value set in the nonvolatile storage means to the main controller.
또한 상기 마이크로컨트롤러는 제1레지스트리에 저장되어 있는 값을 프리앰블의 전체 표준펄스 개수로 나누어 1비트 폭을 정의하는 마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 카운터 값인 제3레지스트리에 저장된 값을 이용하여 펄스폭을 형성하고, 송신회로의 트랜지스터Q1을 스위칭하여 하이(H) 또는 로우(L) 신호를 출력함으로써 주제어장치에 뇌관의 연결상태 및 상기 비휘발성 저장수단에 설정된 기폭 지연시간 설정값을 주제어장치로 송신하는 것을 특징으로 한다. In addition, the microcontroller uses the value stored in the third registry, which is a counter value of the oscillation clock of the built-in RC oscillator of the microcontroller that defines a 1-bit width by dividing the value stored in the first registry by the total number of standard pulses of the preamble. To form the pulse width, switch the transistor Q1 of the transmission circuit, and output a high (H) or low (L) signal to control the connection state of the primer to the main controller and the setting of the delay delay time set in the nonvolatile storage means. And transmits to the device.
또한 상기 전원저장회로는 R1과 R2에 의하여 분압된 전압에 따라, R4와 다이오드 D2와 커패시터 EC2가 직렬로 연결되어 상기 커패시터 EC2에 전하가 축적되며, 상기 커패시터 EC2와 병렬로 제너다이오드 ZD1을 연결하여 정전압을 유지하도록 함으로써 마이크로컨트롤러에 전원을 공급하는 것을 특징으로 한다. In addition, according to the voltage divided by R1 and R2, the power storage circuit has R4, a diode D2, and a capacitor EC2 connected in series to accumulate charge in the capacitor EC2, and to connect a Zener diode ZD1 in parallel with the capacitor EC2. It is characterized by supplying power to the microcontroller by maintaining a constant voltage.
또한 상기 발파용 에너지 저장회로는 R1과 R2에 의하여 분압된 전압에 따라, R3와 다이오드 D1과 커패시터 EC1이 직렬로 연결되어 상기 커패시터 EC1에 전하가 축적되는 것을 특징으로 한다. In addition, the blast energy storage circuit is characterized in that the charge is accumulated in the capacitor EC1 by connecting R3, the diode D1 and the capacitor EC1 in series according to the voltage divided by R1 and R2.
또한 상기 션트회로는 발파용 에너지 저장회로에 전하가 축적되기 시작할 때부터 트랜지스터Q4 및 트랜지스터Q5가 단락되어 뇌관의 양단이 접지되어 외부의 갑작스런 전기적인 충격으로부터 뇌관을 보호하며, 발파시에는 상기 트랜지스터Q5가 개방됨으로써 상기 트랜지스터Q4도 개방되는 것을 특징으로 한다.In addition, since the shunt circuit has transistors Q4 and Q5 short-circuited since charges accumulate in the blasting energy storage circuit, both ends of the primer are grounded to protect the primer from sudden electric shock from the outside. Is open, so that the transistor Q4 is also opened.
또한 상기 스위칭회로는 주제어장치의 발파명령에 의하여 기폭 지연시간 후 마이크로컨트롤러의 제어에 의하여 트랜지스터Q2가 단락되면 트랜지스터Q3가 단락되어 뇌관 휴즈헤드 양단에 발파용 에너지 저장회로에 축적된 전하를 급격히 방출시켜 뇌관을 폭발하는 것을 특징으로 한다.In addition, the switching circuit short-circuits the transistor Q3 when the transistor Q2 is shorted by the control of the microcontroller after the delay delay time by the blasting command of the main controller, thereby rapidly discharging the charge accumulated in the blast energy storage circuit at both ends of the primer fuse head. It is characterized by exploding the primer.
본 발명에 따른 마이크로컨트롤러에서 기준시간 설정방법 및 그 방법을 이용한 전자식 뇌관에 의하면, 기준시간 설정방법을 이용하여 발진회로를 내장한 범용의 마이크로컨트롤러를 사용함으로써 기폭초시의 정밀성 및 에러 없는 통신상태를 유지하며, 또한 현재 사용되고 있는 전자식 뇌관보다 현저하게 제조원가를 줄일 수 있다.According to the reference time setting method and the electronic primer using the method in the microcontroller according to the present invention, by using a general-purpose microcontroller with an oscillating circuit using the reference time setting method, the precision and error-free communication state at the beginning of the explosion can be obtained. It is also possible to significantly reduce manufacturing costs compared to electronic primers currently in use.
전자식 뇌관 제품이 가지고 있는 정밀성 및 파쇄 효과 향상, 진동 감소 등의 장점을 알면서도 기존의 전자식 뇌관의 매우 비싼 가격 때문에 사용하지 못했던 소비자에게 저렴한 가격의 전자식 뇌관을 공급함으로써 보다 많은 산업의 효과와 이익을 창출할 수 있다. Create more industrial effects and profits by supplying low cost electronic primers to consumers who have not been able to use them because of the high price of existing electronic primers, while knowing the advantages such as improved precision, crushing effect and vibration reduction of electronic primer products. can do.
본 발명의 전자식 뇌관은 현재 많이 사용하고 있는 연시제를 이용한 뇌관과 비교하여 기폭초시의 정밀도를 비약적으로 향상시킨 것으로써, 그 기폭초시를 매우 짧은 1/1,000초까지 매우 정밀한 시차를 유지하면서 차례로 점화하여 폭발시킬 수 있는 전자식 뇌관이다. 따라서 발파에 따른 진동과 소음, 발파 현장의 파쇄도 개선 효과 및 터널 개설시의 과굴착 제어에 따른 비용을 현저히 감소시킬 수가 있다는 장점이 있다.The electronic primer of the present invention significantly improves the accuracy of detonation at the time of detonation compared to the detonator using a widely used flame retardant, and ignition of the detonation at the same time while maintaining very precise parallax to a very short 1 / 1,000 second. It is an electronic primer that can be exploded. Therefore, there is an advantage that the vibration and noise due to the blasting, the crushing effect of the blasting site can be improved, and the cost due to the overdrilling control at the opening of the tunnel can be significantly reduced.
도 1은 본 발명에 따른 마이크로컨트롤러에서 기준시간 설정하기 위하여 주제어장치로부터 수신한 프리앰블을 포함한 데이터 프레임 및 샘플링을 나타내는 간략도이다.1 is a simplified diagram showing a data frame and sampling including a preamble received from a main controller to set a reference time in a microcontroller according to the present invention.
도 2는 본 발명의 MCU에서 기준시간 설정방법을 이용한 전자식 뇌관 블록도이며, 도 3은 이에 대한 상세회로도이다.2 is an electronic primer block diagram using a reference time setting method in the MCU of the present invention, Figure 3 is a detailed circuit diagram for this.
도 4a 및 도 4b는 주제어장치와 전자식 뇌관간의 통신방법을 나타내는 블록도이다. 4A and 4B are block diagrams illustrating a communication method between a main controller and an electronic primer.
도 5는 본 발명에 따른 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관의 동작을 나타내는 순서도이다.5 is a flowchart showing the operation of the electronic primer using the reference time setting method in the microcontroller according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100:주제어장치 110:주제어장치측 마이크로컨트롤러100: main controller 110: microcontroller side of the main controller
200:전자식 뇌관 제어수단 210:정류회로200: electronic primer control means 210: rectifier circuit
220:분압회로 230:송신회로220: voltage divider circuit 230: transmission circuit
240:전원저장회로 250:발파용 에너지 저장회로240: power storage circuit 250: blasting energy storage circuit
260:마이크로컨트롤러 270:스위칭회로260: microcontroller 270: switching circuit
280:션트회로 300:뇌관280: Shunt circuit 300: Primer
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서, 종래와 동일한 구성요소에 대해서는 동일한 도면부호를 사용하기로 한다.Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, the same reference numerals will be used for the same components as the prior art.
도 1은 본 발명에 따른 마이크로컨트롤러에서 기준시간 설정하기 위하여 주제어장치로부터 수신한 프리앰블을 포함한 데이터 프레임 및 샘플링을 나타내는 간략도이다.1 is a simplified diagram showing a data frame and sampling including a preamble received from a main controller to set a reference time in a microcontroller according to the present invention.
먼저 주제어장치는 뇌관 발파 지연시간 설정 및 폭파 명령 등을 뇌관 격발을 제어하는 마이크로컨트롤러(MicroControler Unit:이하 MCU라 한다)에 전송한다. 도 1에서 보는 바와 같이, 주제어장치는 통신 개시 시점에서 정밀한 클럭을 발생시켜 발진하는 클럭을 소스로 사용하여 MCU에 프리앰블, 명령어, 주소 및 데이터 정보를 갖는 데이터 프레임을 전송한다. First, the main controller transmits a primer blast delay time setting and a blast command to a microcontroller (hereinafter referred to as MCU) that controls the primer trigger. As shown in FIG. 1, the main controller transmits a data frame having a preamble, an instruction, an address, and data information to a MCU using a clock generated as a source by generating a precise clock at a communication start time.
도 1a에서 보는 바와 같이, MCU는 시작펄스, 임의의 길이를 갖는 펄스, 및 정지펄스를 포함하는 일정 길이의 시간 표준 펄스를 프리앰블의 형태로 주제어장치로부터 수신한다. 여기서 각 전자식 뇌관의 MCU들은 모두 주제어장치와 병렬로 연결되어 프리앰블을 포함하는 데이터 프레임을 수신받아 독립적으로 동작한다. As shown in FIG. 1A, the MCU receives a time standard pulse of a certain length from the main controller in the form of a preamble including a start pulse, a pulse having an arbitrary length, and a stop pulse. Here, the MCUs of each electronic primer are all connected in parallel with the main controller and receive data frames including the preambles to operate independently.
여기서 각 전자식 뇌관의 MCU들은 프리앰블의 시작펄스를 수신하는 즉시 MCU에 내장되어 있는 RC발진기에 의한 발진 클럭을 카운트하기 시작하여 프리앰블의 정지펄스를 수신할 때까지 카운트하여 이 계수값을 MCU의 제1레지스트리에 저장한다. Here, the MCUs of the electronic primers start counting the oscillation clock by the RC oscillator built in the MCU immediately after receiving the start pulse of the preamble and counting them until the stop pulse of the preamble is received. Save it in the registry.
다음으로 MCU의 내장된 RC발진기에 의한 발진 클럭의 계수가 현재의 온도, 전압에서 기준시간인 1ms를 정의하는 카운터 값을 제2레지스트리에 저장한다. 먼저 프리앰블의 표준 펄스에 사전에 정의된 1비트 시간에 해당되는 값을 곱한 값을 1ms로 나눔으로써 표준 펄스에 대한 기준시간인 1ms에 해당하는 확정값(X)을 구한 후, 상기 제1레지스트리에 저장되어 있는 값을 확정값(X)으로 나누어 MCU의 내장된 RC발진기의 기준시간인 1ms값을 정의하는 카운터 값은 구할 수 있다. Next, a counter value in which the coefficient of the oscillation clock by the MCU's built-in RC oscillator defines a reference time of 1 ms based on the current temperature and voltage is stored in the second registry. First, a value obtained by multiplying a standard pulse of a preamble by a value corresponding to a predefined 1-bit time is divided by 1 ms to obtain a confirmation value X corresponding to 1 ms, which is a reference time for a standard pulse, and then into the first registry. By dividing the stored value by the fixed value (X), a counter value that defines a value of 1 ms, which is a reference time of the MCU's built-in RC oscillator, can be obtained.
따라서 제2레지스트리에 저장되는 값은 각 전자식 뇌관 MCU의 사용 현장의 온도 및 로직 회로에 공급되는 전압에 따라 다르게 설정된다. Therefore, the value stored in the second registry is set differently depending on the temperature of each electronic primer MCU's site of use and the voltage supplied to the logic circuit.
다음으로 제1레지스트리에 저장되어 있는 값을 프리앰블의 전체 표준펄스 개수로 나누어 1비트 폭을 정의하는 MCU의 내장된 RC발진기에 의한 발진 클럭의 카운터 값을 제3레지스트리에 저장한다. 상기 정의된 1비트 폭으로 정의된 제3레지스트리에 저장되어 있는 값을 기준으로 샘플링하여 주제어장치와 통신한다.Next, the value stored in the first registry is divided by the total number of standard pulses of the preamble to store the counter value of the oscillation clock by the built-in RC oscillator of the MCU that defines a 1-bit width in the third registry. Sampling is performed based on a value stored in a third registry defined by the defined 1-bit width to communicate with the main controller.
본 발명의 일실시예로 시작펄스, 8개의 펄스, 정지펄스의 총 10개의 펄스를 갖는 프리앰블을 MCU가 수신하였음을 가정하여 설명한다.As an embodiment of the present invention, it will be described on the assumption that the MCU has received a preamble having a total of 10 pulses of a start pulse, 8 pulses, and a stop pulse.
먼저 MCU들은 프리앰블의 시작펄스를 수신하는 즉시 MCU에 내장되어 있는 RC발진기에 의한 발진 클럭을 카운트하기 시작하여 프리앰블의 정지펄스를 수신할 때까지 카운트하여 이 계수값을 MCU의 제1레지스트리에 저장한다.First, when the MCU receives the start pulse of the preamble, it starts counting the oscillation clock by the RC oscillator built in the MCU, counts until the stop pulse of the preamble is received, and stores the count value in the first registry of the MCU. .
다음으로 1비트 시간에 해당되는 값을 500μs라고 규약하는 경우 펄스길이는 10 * 500μs = 5ms가 된다. 기준시간인 1ms값을 정의하는 카운터 값을 구하기 위하여 5ms/1ms 하면 확정값 5(X)가 구해지며, 제1레지스트리에 저장된 값을 확정값 5(X)로 나누면 MCU의 내장된 RC발진기의 기준시간인 1ms값을 정의하는 카운터 값을 구할 수 있다.Next, when the value corresponding to 1 bit time is defined as 500 μs, the pulse length is 10 * 500 μs = 5 ms. To obtain a counter value that defines a reference time of 1 ms, 5 ms / 1 ms is used to obtain a definite value of 5 (X), and dividing the value stored in the first registry by the definite value of 5 (X) determines the reference of the MCU's built-in RC oscillator. You can get the counter value that defines the time value of 1ms.
다음으로 제1레지스트리에 저장되어 있는 값을 프리앰블의 전체 표준펄스 개수인 10으로 나누어 1비트 시간(여기서는 500μs)을 정의하는 MCU의 내장된 RC발진기에 의한 발진 클럭의 카운터 값을 제3레지스트리에 저장한다.Next, the value stored in the first registry is divided by 10, which is the total number of standard pulses of the preamble, to store the counter value of the oscillation clock by the MCU's built-in RC oscillator that defines a 1-bit time (500 μs in this case). do.
이하 상기 마이크로컨트롤러에서 기준시간을 설정하는 방법에 의하여 전자식 뇌관의 기폭지연시간 이후 뇌관을 격발하는 방법에 대하여 설명한다. Hereinafter, a method of triggering the primer after the detonation delay time of the electronic primer by the method of setting the reference time in the microcontroller will be described.
전자식 뇌관의 MCU가 주제어장치로부터 발파 명령을 수신함과 동시에 MCU의 내장된 RC발진기의 내부 클럭을 계수(Y)하기 시작한다. 따라서 MCU의 타이머 작동은 이후 상기 계수 값(Y)과 MCU의 내장된 RC발진기의 기준시간인 1ms값을 정의하는 카운터 값이 저장되어 있는 제2레지스트리값이 동일하면 기준시간인 1ms씩 증가하게 된다. As soon as the MCU of the electronic primer receives the blasting command from the main controller, it starts counting (Y) the internal clock of the MCU's built-in RC oscillator. Accordingly, the timer operation of the MCU is increased by 1 ms, which is a reference time when the count value Y is equal to the second registry value in which a counter value defining a value of 1 ms, which is a reference time of the built-in RC oscillator, is the same. .
이후 상기 타이머에 의하여 측정된 시간과 사전에 MCU의 비휘발성 저장수단에 저장되어 설정된 기폭지연시간과 일치하면 션트를 해제하고 발파명령에 의하여 뇌관을 격발하게 된다.After that, if the time measured by the timer and the pre-stored in the nonvolatile storage means of the MCU coincides with the set delay time, the shunt is released and the primer is triggered by the blasting command.
즉 본 발명의 마이크로컨트롤러에서 기준시간 설정방법에 의하여 전자식 뇌관은 별도의 통신용 드라이버 회로를 사용하지 않고도 비교적 빠른 속도로 통신하면서도 통신 에러를 현저히 낮출 수 있는 실용적인 보정 알고리즘을 MCU의 펌웨어(Firmware)로 내장하고 있다.In other words, by using the reference time setting method in the microcontroller of the present invention, the electronic primer has a practical correction algorithm that can significantly reduce the communication error while communicating at a relatively high speed without using a separate communication driver circuit as the firmware of the MCU. Doing.
본 발명의 마이크로컨트롤러에서 기준시간을 설정하는 방법을 전자식 뇌관에 대한 일실시예로 설명하였으나 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정·변형되어 실시될 수 있다.Although the method for setting the reference time in the microcontroller of the present invention has been described as an embodiment of the electronic primer, the present invention may be modified and modified in various ways without departing from the technical scope of the present invention.
이하 상기 마이크로컨트롤러에서 기준시간을 설정하는 방법에 의한 전자식 뇌관에 대하여 설명한다. Hereinafter, an electronic primer by a method of setting a reference time in the microcontroller will be described.
도 2는 본 발명의 MCU에서 기준시간 설정방법을 이용한 전자식 뇌관 블록도이며, 도 3은 상세회로도이다. 도 2와 도 3을 함께 설명한다.2 is an electronic primer block diagram using a reference time setting method in the MCU of the present invention, Figure 3 is a detailed circuit diagram. 2 and 3 will be described together.
도 2 및 도 3에서 보는 바와 같이 본 발명의 MCU에서 기준시간 설정방법을 이용한 전자식 뇌관 제어수단(200)은 정류회로(210), 분압회로(220), 송신회로(230), 전원저장회로(240), 발파용 에너지 저장회로(250), MCU(260), 스위치회로(270), 및 션트회로(280)를 포함한다.2 and 3, the electronic primer control means 200 using the reference time setting method in the MCU of the present invention is a rectifier circuit 210, voltage divider circuit 220, transmission circuit 230, power storage circuit ( 240, the blast energy storage circuit 250, the MCU 260, the switch circuit 270, and the shunt circuit 280.
전원공급은 주제어장치(100)로부터 수신한 신호원을 브릿지다이오드 BD1으로 구성된 정류회로(210)를 이용하여 정류한 후에, 상기 정류회로(210) 출력에 연결된 저항 R1 및 R2로 전압을 분압하는 분압회로에 의하여 전원저장회로(240)와 발파용 에너지 저장회로(250)에 축적된다.The power supply rectifies the signal source received from the main controller 100 using the rectifier circuit 210 composed of the bridge diode BD1, and divides the voltage into resistors R1 and R2 connected to the output of the rectifier circuit 210. The circuit accumulates in the power storage circuit 240 and the blast energy storage circuit 250.
상기 전원저장회로(240)는 R1과 R2에 의하여 분압된 전압에 따라, R4와 다이오드 D2와 커패시터 EC2가 직렬로 연결되어 상기 커패시터 EC2에 전하가 축적되며, 상기 커패시터 EC2와 병렬로 제너다이오드 ZD1을 연결하여 정전압을 유지하도록 함으로써 마이크로컨트롤러에 전원을 공급한다. 여기서 R10은 MCU에 공급되는 과전압에 대한 보호용 저항이다.According to the voltage divided by R1 and R2, the power storage circuit 240 connects R4, the diode D2, and the capacitor EC2 in series to accumulate charge in the capacitor EC2, and to execute the zener diode ZD1 in parallel with the capacitor EC2. The power is supplied to the microcontroller by connecting to maintain a constant voltage. Where R10 is a protection resistor against overvoltage supplied to the MCU.
상기 발파용 에너지 저장회로(250)는 R1과 R2에 의하여 분압된 전압에 따라, R3와 다이오드 D1과 커패시터 EC1이 직렬로 연결되어 상기 커패시터 EC1에 전하가 축적된다. 이후 MCU(260)제어에 의하여 스위칭회로가 단락되면 EC1에 축적된 전하를 뇌관 휴즈헤드에 공급하여 뇌관을 격발한다. In the blast energy storage circuit 250, R3, the diode D1, and the capacitor EC1 are connected in series according to the voltage divided by R1 and R2 to accumulate charge in the capacitor EC1. Then, when the switching circuit is short-circuited by the MCU 260 control, the charge accumulated in the EC1 is supplied to the primer fuse head to trigger the primer.
따라서 내부에 높은 출력을 요구하는 기폭장치를 위하여 상기 발파용 에너지 저장회로(250)와 뇌관 제어를 위한 MCU에 전원을 공급하기 위한 상기 전원저장회로(240)가 함께 구성되어 있다. 이때 상기 R3 및 R4는 충전 전류가 급격히 상승하는 것을 방지하기 위한 적분용 저항이다.Therefore, the blasting energy storage circuit 250 and the power storage circuit 240 for supplying power to the MCU for the primer control are configured together for the detonator requiring a high output therein. In this case, R3 and R4 are integral resistors for preventing the charging current from rising sharply.
상기 션트회로(280)는 스위칭회로(270)와 뇌관(300) 사이에 연결되어, 발파용 에너지 저장회로(250)에 전하가 축적되기 시작할 때부터 트랜지스터Q4 및 트랜지스터Q5가 단락되어 뇌관의 양단이 접지되어 외부의 갑작스런 전기적인 충격으로부터 뇌관을 보호한다. 발파시에는 상기 트랜지스터Q5가 개방됨으로써 상기 트랜지스터Q4도 개방되어 션트 작동을 해제한다. The shunt circuit 280 is connected between the switching circuit 270 and the primer 300, the transistor Q4 and the transistor Q5 is short-circuited from the time when charge begins to accumulate in the blasting energy storage circuit 250, the both ends of the primer Grounded to protect the primer from sudden electrical shocks from the outside. At the time of blasting, the transistor Q5 is opened, so that the transistor Q4 is also opened to release the shunt operation.
상기 스위칭회로(270)는 주제어장치의(100) 발파명령에 의하여 기폭 지연시간 후 MCU의 제어에 의하여 트랜지스터Q2가 단락되면 트랜지스터Q3가 단락되어 뇌관 휴즈헤드 양단에 발파용 에너지 저장회로(250)에 축적된 전하를 급격히 방출시켜 뇌관을 격발하는 기능을 한다.The switching circuit 270 is short-circuited by the control of the MCU after an explosion delay time by the blasting command of the main control device 100, the transistor Q3 is short-circuited to the blast energy storage circuit 250 at both ends of the primer fuse head. It releases the accumulated charge rapidly and triggers the primer.
송신회로(230)는 주제어장치의 뇌관의 연결상태 및 기폭 시간 설정상태에 대한 뇌관 설치상태에 대한 설정값을 송신하라는 명령에 따라 MCU와 주제어장치간 통신을 수행한다. The transmitting circuit 230 performs communication between the MCU and the main controller according to a command to transmit a set value for the primer installation state for the connection state and the detonation time setting state of the primer of the main controller.
여기서, R1 및 R2에 의하여 전압 분할된 주제어장치의 수신 시리얼 신호는 통신 선로 형태 및 선로 길이, 온도 등 환경 조건에 의한 인덕턴스 성분 변화에 따른 통신 속도 지연 및 통신 파형 왜곡 현상이 발생할 수 있다. 그러나 본 발명은 마이크로컨트롤러에서 기준시간을 설정하는 방법인 프리앰블을 분석하여 각 MCU의 내장된 RC발진기에 의한 발진 클럭의 계수가 현재의 온도, 전압에서 기준시간인 1ms를 정의하는 카운터 값(제2레지스트리에 저장) 및 프리앰블의 전체 표준펄스 개수로 나누어 1비트 폭을 정의하는 MCU의 내장된 RC발진기에 의한 발진 클럭의 카운터 값(제3레지스트리에 저장)이 설정되어 있음으로 샘플링 동작을 정확하게 수행할 수 있다. Here, the received serial signal of the main controller divided into voltages by R1 and R2 may cause communication speed delay and communication waveform distortion due to changes in inductance component due to communication line shape, line length, and temperature. However, the present invention analyzes a preamble, which is a method of setting a reference time in a microcontroller, and defines a counter value (1 second) in which the coefficient of the oscillation clock by the built-in RC oscillator of each MCU defines a reference time at a current temperature and voltage. The oscillation clock counter value (stored in the third registry) by the MCU's built-in RC oscillator that defines the 1-bit width divided by the total number of standard pulses of the preamble). Can be.
도 4a 및 도 4b는 주제어장치와 전자식 뇌관간의 통신방법을 나타내는 블록도이다. 4A and 4B are block diagrams illustrating a communication method between a main controller and an electronic primer.
도 4a에서 보는 바와 같이, 송신회로(230)는 제3레지스트리에 저장되어 있는 값으로 펄스폭을 형성하여 비휘발성 저장수단에 저장된 값에 따라 트랜지스터Q1을 스위칭하여 하이(H) 또는 로우(L) 신호를 출력함으로써 주제어장치에 뇌관의 연결상태 및 상기 비휘발성 저장수단에 설정된 기폭 지연시간 설정값을 주제어장치로 송신한다. 트랜지스터Q1이 도통되면 R5와 주제어장치의 RT(도 4b참조)와의 전압을 변화 시켜서 송신 동작을 개시하게 된다.As shown in FIG. 4A, the transmitting circuit 230 forms a pulse width with a value stored in the third registry to switch the transistor Q1 according to the value stored in the nonvolatile storage means to high or low (L). By outputting a signal, the state of connection of the primer and the setting of the delay delay time set in the nonvolatile storage means are transmitted to the main controller. When transistor Q1 is turned on, the transmission operation is started by changing the voltage between R5 and RT of the main controller (see Fig. 4B).
또한 도 4b에서 보는 바와 같이, 주제어장치(100)는 전자식 뇌관 제어수단으로 데이터를 송신한 후에 트랜지스터 QT1상태를 개방하고 RT로만 전류를 흘려서 전자식 뇌관 제어수단(200)으로부터의 데이터 수신을 대비한다.In addition, as shown in FIG. 4B, the main controller 100 prepares the reception of data from the electronic primer control means 200 by opening the transistor QT1 state and flowing current only at RT after transmitting data to the electronic primer control means.
도 5는 본 발명에 따른 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관의 동작을 나타내는 순서도이다.5 is a flowchart showing the operation of the electronic primer using the reference time setting method in the microcontroller according to the present invention.
각 전자식 뇌관은 사전에 고유의 어드레스(각 뇌관의 ID)를 부여할 수 있다.Each electronic primer can be given a unique address (ID of each primer) in advance.
먼저 각 뇌관은 주제어장치로부터 프리앰블을 포함한 데이터 프레임을 수신한다. 각 뇌관은 주제어장치로부터 수신한 프리앰블을 분석하여 기준시간인 1ms를 정의하는 카운터 값을 제2레지스트리에 저장하고, 1비트의 펄스폭을 정의하는 카운터 값을 제3레지스트리에 저장한다(S100). 여기서 자세한 설명은 상기 마이크로컨트롤러에서 기준시간 설정방법(도 1참조)에서 설명하였으므로 생략한다. First, each primer receives a data frame including a preamble from the main controller. Each primer analyzes the preamble received from the main controller and stores a counter value defining 1 ms as a reference time in the second registry, and stores a counter value defining pulse width of 1 bit in the third registry (S100). Since the detailed description is described in the reference time setting method (see FIG. 1) in the microcontroller, the description thereof will be omitted.
이후 각 뇌관은 주제어장치부터 수신된 명령어를 추출하여 격발 명령이면(S200) 전자식 뇌관의 MCU가 주제어장치로부터 발파 명령을 수신함과 동시에 MCU의 내장된 RC발진기의 내부 클럭을 계수(Y)하기 시작한다. 따라서 MCU의 타이머 작동은 이후 상기 계수 값(Y)과 MCU의 내장된 RC발진기의 기준시간인 1ms값을 정의하는 카운터 값이 저장되어 있는 제2레지스트리값이 동일하면 기준시간인 1ms씩 증가하게 된다. Then, each primer extracts the command received from the main controller and triggers the command (S200). The MCU of the electronic primer receives the blasting command from the main controller and starts counting (Y) the internal clock of the MCU's built-in RC oscillator. . Accordingly, the timer operation of the MCU is increased by 1 ms, which is a reference time when the count value Y is equal to the second registry value in which a counter value defining a value of 1 ms, which is a reference time of the built-in RC oscillator, is the same. .
이후 상기 타이머에 의하여 측정된 시간과 사전에 MCU의 비휘발성 저장수단에 저장되어 설정된 기폭지연시간과 일치하면 션트를 해제하고(S210) 발파명령에 의하여 뇌관을 격발하게 된다(S220). 격발(발파) 명령은 뇌관 어드레스 구분없이 모든 뇌관에 해당한다. After that, if the time measured by the timer and the pre-stored in the non-volatile storage means of the MCU coincides with the set delay delay time is released (S210), the primer is triggered by the blasting command (S220). The trigger (blasting) command corresponds to all primers without distinguishing the primer address.
다음 각 뇌관은 격발 명령이 아니면 자신의 어드레스인지 확인하고(S300) 자신의 어드레스가 아니면 자동으로 작동을 종료하며, 자신의 어드레스이면 기폭 지연시간 설정명령인지 확인한다(S400). 기폭 지연시간 설정 명령이면 다음 수신되는 데이터를 비휘발성 저장수단(EEPROM)에 저장하고 종료한다(S410).Each primer then checks whether it is its address if it is not a triggering command (S300) and automatically terminates operation if it is not its own address. If the delay delay time setting command, the next received data is stored in the nonvolatile storage means (EEPROM) and ends (S410).
다음 각 뇌관은 설정값을 송신하라는 명령(S500)이면 비휘발성 저장수단(EEPROM)에 저장되어 있는 설정값을 주제어장치에 송신(S510)하고 종료한다. Next, each primer sends a set value stored in the nonvolatile storage means EEPROM to the main controller when the command S500 transmits the set value (S510), and ends.
본 발명은 MCU에 내장된 RC 발진기의 정밀도를 향상시킨 보정 알고리즘을 내장하고 있으며, 2선식 선로를 이용한 뇌관과 주제어장치(장입기 또는 격발기) 간의 송수신 통신을 통하여 주제어장치에서 뇌관 설치 상태(각 뇌관의 연결 상태 및 기폭 타임 설정 상태)를 확인할 수 있으며 주제어장치에서 연결된 각 뇌관의 기폭 시간을 임의대로 지우고 재설정을 반복할 수 있다. The present invention has a built-in correction algorithm to improve the accuracy of the RC oscillator embedded in the MCU, and the primer installation state in the main control unit through the transmission and reception communication between the primer and the main control unit (charger or percussion) using a two-wire line (each The connection state of the primer and the setting of the detonation time) can be checked, and the reset time can be repeated by randomly clearing the detonation time of each connected detonator from the main controller.
또한 외부의 갑작스런 전기적인 충격(낙뢰, 정전기 등의 전기적인 충격)으로부터 뇌관을 보호하기 위하여 션트(Shunt) 회로가 내장되어 있으며 통신 데이터 알고리즘의 정밀성으로 별도 통신 데이터 드라이브 회로가 없어도 원거리에 설치된 뇌관과 주제어장치간에 통신 불량 상태를 극소화하였고, 최대 1500개의 뇌관을 한대의 주제어장치에서 제어할 수 있다. 뇌관과 주제어장치의 연결은 2선 병렬로 하며 극성은 상관이 없다. In addition, the shunt circuit is built in to protect the primer from sudden electric shocks (electric shocks such as lightning and static electricity) from the outside. Minimized communication failure between main controllers, and up to 1500 primers can be controlled from one main controller. The connection between the primer and the main controller is 2 wire parallel and the polarity is irrelevant.
상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. The above-described embodiments of the present invention can be written in a program that can be executed in a computer, and can be implemented in a general-purpose digital computer which operates the program using a computer-readable recording medium.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정·변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It is apparent to those skilled in the art that the present invention is not limited to the above embodiments and can be practiced in various ways without departing from the technical spirit of the present invention. will be.

Claims (13)

  1. 마이크로컨트롤러에 내장된 RC 발진기의 정밀도를 향상시키기 위한 기준시간 설정방법에 있어서,In the reference time setting method for improving the accuracy of the RC oscillator embedded in the microcontroller,
    주제어장치로부터 시작펄스와 정지펄스를 포함하는 프리앰블을 포함한 데이터 프레임을 수신하는 단계;Receiving a data frame including a preamble including a start pulse and a stop pulse from a main controller;
    상기 프리앰블을 수신받는 마이크로컨트롤러에서 프리앰블의 시작펄스를 수신하는 즉시 마이크로컨트롤러에 내장되어 있는 RC발진기에 의한 발진 클럭을 카운트하기 시작하여 프리앰블의 정지펄스를 수신할 때까지 카운트하여 이 계수값을 마이크로컨트롤러의 제1레지스트리에 저장하는 단계; As soon as the microcontroller receiving the preamble receives the start pulse of the preamble, the microcontroller starts counting the oscillation clock by the RC oscillator built in the microcontroller and counts the count until the stop pulse of the preamble is received. Storing in a first registry of;
    마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 계수가 현재의 온도, 전압에서 기준시간인 1ms를 정의하는 카운터 값을 제2레지스트리에 저장하는 단계를 포함하여 이루어지는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법.The reference time in the microcontroller, characterized in that the count of the oscillation clock by the built-in RC oscillator of the microcontroller comprises storing a counter value in the second registry, which defines a 1 ms reference time at the current temperature and voltage. How to set up.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1레지스트리에 저장되어 있는 값을 프리앰블의 전체 표준펄스 개수로 나누어 1비트 폭을 정의하는 마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 카운터 값을 제3레지스트리에 저장하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법.Storing the counter value of the oscillation clock by the built-in RC oscillator of the microcontroller defining a 1-bit width by dividing the value stored in the first registry by the total number of standard pulses of the preamble; Method of setting a reference time in the microcontroller, characterized in that made.
  3. 제1항에 있어서,The method of claim 1,
    상기 기준시간인 1ms를 정의하는 카운터 값은 프리앰블의 표준 펄스에 사전에 정의된 1비트 시간에 해당되는 값을 곱한 값을 1ms로 나눔으로써 표준 펄스에 대한 기준시간인 1ms에 해당하는 확정값을 구한 후, 상기 제1레지스트리에 저장되어 있는 값을 확정값으로 나누어 얻어지는 값인 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법.The counter value defining 1ms, the reference time, is obtained by dividing a value obtained by multiplying the standard pulse of the preamble by a value corresponding to a predefined 1-bit time by 1ms to obtain a definite value corresponding to 1ms, which is the reference time for the standard pulse. The reference time setting method of claim 1, wherein the value stored in the first registry is obtained by dividing the value stored by the determined value.
  4. 제 1항에 있어서, The method of claim 1,
    마이크로컨트롤러의 타이머 동작은 마이크로컨트롤러의 내장된 RC발진기의 기준시간인 1ms값을 정의하는 카운터 값이 저장되어 있는 제2레지스트리값과 마이크로컨트롤러가 주제어장치로부터 발파 명령을 수신함과 동시에 마이크로컨트롤러의 내장된 RC발진기의 내부 클럭을 계수하는 값이 동일할 경우 1ms씩 증가하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법.The timer operation of the microcontroller includes a second registry value that stores a counter value defining 1 ms, which is a reference time of the microcontroller's built-in RC oscillator, and the microcontroller's built-in control at the same time that the microcontroller receives a blasting command from the main controller. When the value of counting the internal clock of the RC oscillator is the same, the step of setting a reference time in the microcontroller, characterized in that further comprising the step of increasing by 1ms.
  5. 뇌관 발파 지연시간 설정 및 폭파 명령 등의 주제어장치 명령에 따라 지연시간 경과 후 뇌관을 정밀하게 격발할 수 있도록 제어하는 전자식 뇌관에 있어서, In the electronic primer for controlling the trigger to precisely trigger after the delay time elapsed in accordance with the command of the main control device, such as setting the blast delay time and the blast command,
    주제어장치로부터 수신한 신호원을 정류하는 정류회로,Rectification circuit for rectifying the signal source received from the main controller,
    상기 정류회로의 출력에 연결되며, 분압회로에 의하여 분압되어 마이크로컨트롤러에 전원을 공급하는 전원저장회로,A power storage circuit connected to an output of the rectifier circuit and divided by a voltage divider circuit to supply power to a microcontroller;
    상기 분압회로에 의하여 분압되어 뇌관에 에너지를 공급하는 발파용 에너지 저장회로,A blasting energy storage circuit which is divided by the voltage dividing circuit and supplies energy to the primer;
    상기 발파용 에너지 저장회로에 저장되어 있는 에너지를 뇌관에 공급하기 위한 스위칭회로, Switching circuit for supplying energy stored in the blasting energy storage circuit to the primer,
    상기 스위칭회로와 뇌관 사이에 연결되어 외부의 갑작스런 전기적인 충격으로부터 뇌관을 보호하기 위한 션트회로,A shunt circuit connected between the switching circuit and the primer to protect the primer from a sudden electrical shock from the outside;
    주제어장치의 명령에 따라 뇌관 설정정보를 주제어장치에 전송하는 송신회로 및 A transmitting circuit for transmitting primer setting information to the main controller according to the command of the main controller;
    제1항에서의 마이크로컨트롤러에서 기준시간 설정방법에 따라 타이머를 작동하여, 기폭지연시간 후 상기 스위칭회로를 제어하여 뇌관을 발파하는 마이크로컨트롤러를 포함하여 이루어지는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관.A method of setting a reference time in a microcontroller, comprising: a microcontroller operating a timer according to the method for setting a reference time in the microcontroller according to claim 1 and controlling the switching circuit after the delay time. Electronic primer using.
  6. 제 5항에 있어서, 상기 마이크로컨트롤러는 The method of claim 5, wherein the microcontroller
    주제어장치로부터 시작펄스와 정지펄스를 포함하는 프리앰블을 포함한 데이터 프레임을 수신하는 단계;Receiving a data frame including a preamble including a start pulse and a stop pulse from a main controller;
    상기 프리앰블을 수신받는 마이크로컨트롤러에서 프리앰블의 시작펄스를 수신하는 즉시 마이크로컨트롤러에 내장되어 있는 RC발진기에 의한 발진 클럭을 카운트하기 시작하여 프리앰블의 정지펄스를 수신할 때까지 카운트하여 이 계수값을 마이크로컨트롤러의 제1레지스트리에 저장하는 단계; As soon as the microcontroller receiving the preamble receives the start pulse of the preamble, the microcontroller starts counting the oscillation clock by the RC oscillator built in the microcontroller and counts the count until the stop pulse of the preamble is received. Storing in a first registry of;
    마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 계수가 현재의 온도, 전압에서 기준시간인 1ms를 정의하는 카운터 값을 제2레지스트리에 저장하는 단계;Storing a counter value in a second registry in which a coefficient of an oscillation clock by a built-in RC oscillator of the microcontroller defines 1 ms, which is a reference time at a current temperature and voltage;
    주제어장치로부터 발파 명령을 수신하는 경우, 상기 제2레지스트리값과 마이크로컨트롤러가 주제어장치로부터 발파 명령을 수신함과 동시에 마이크로컨트롤러의 내장된 RC발진기의 내부 클럭을 계수하는 값이 동일할 경우 기준시간인 1ms씩 증가하도록 타이머를 동작하는 단계;When receiving the blasting command from the main controller, when the second registry value and the microcontroller receives the blasting command from the main controller and the value of counting the internal clock of the built-in RC oscillator of the microcontroller is equal to 1ms which is a reference time Operating a timer to increment by increments;
    상기 타이머 작동에 의하여 측정된 시간과 뇌관의 비휘발성 저장수단에 사전 설정된 뇌관 지연 시간이 일치하는 경우 션트회로를 개방하는 단계; 및 Opening a shunt circuit when the time measured by the timer operation and the predetermined primer delay time coincide with the nonvolatile storage means of the primer; And
    스위칭회로를 단락시켜 뇌관 휴즈헤드에 발파용 에너지 저장회로에 축적된 전하를 급격히 방출시켜 뇌관을 폭발하는 단계를 포함하여 이루어지는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관.An electrical primer using a reference time setting method in a microcontroller, comprising: shorting a switching circuit and exploding a primer by rapidly releasing charge accumulated in an blasting energy storage circuit in a primer fuse head.
  7. 제 5항에 있어서, 상기 마이크로컨트롤러는 The method of claim 5, wherein the microcontroller
    주제어장치로부터 뇌관의 기폭 지연시간 설정명령을 수신하는 경우,When receiving the detonator delay time setting command from the main controller,
    비휘발성 저장수단에 상기 기폭 지연시간값을 저장하는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관.An electronic primer using a reference time setting method in a microcontroller, characterized in that for storing the delay time value in the non-volatile storage means.
  8. 제 5항에 있어서, 상기 마이크로컨트롤러는 The method of claim 5, wherein the microcontroller
    주제어장치로부터 뇌관의 기폭 지연시간 설정값 송신명령을 수신하는 경우, 비휘발성 저장수단에 설정된 기폭 지연시간 설정값을 주제어장치로 송신하는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관.An electronic primer using a reference time setting method in a microcontroller, when receiving the command to transmit the delay time setting value of the primer from the main control device, transmitting the setting time of the delay time setting to the main control device.
  9. 제 8항에 있어서, 상기 마이크로컨트롤러는 The method of claim 8, wherein the microcontroller
    제1레지스트리에 저장되어 있는 값을 프리앰블의 전체 표준펄스 개수로 나누어 1비트 폭을 정의하는 마이크로컨트롤러의 내장된 RC발진기에 의한 발진 클럭의 카운터 값인 제3레지스트리에 저장된 값을 이용하여 펄스폭을 형성하고, 송신회로의 트랜지스터Q1을 스위칭하여 하이(H) 또는 로우(L) 신호를 출력함으로써 주제어장치에 뇌관의 연결상태 및 상기 비휘발성 저장수단에 설정된 기폭 지연시간 설정값을 주제어장치로 송신하는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관.Pulse width is formed by using the value stored in the third registry, which is the counter value of the oscillation clock by the built-in RC oscillator of the microcontroller, which defines the 1-bit width by dividing the value stored in the first registry by the total number of standard pulses of the preamble. Switching the transistor Q1 of the transmitting circuit and outputting a high (H) or low (L) signal to transmit the connection state of the primer to the main controller and the setting of the delay delay time set in the nonvolatile storage means to the main controller. Electronic primer using the reference time setting method in the microcontroller characterized in that.
  10. 제 5항에 있어서, 상기 전원저장회로는The method of claim 5, wherein the power storage circuit is
    R1과 R2에 의하여 분압된 전압에 따라, R4와 다이오드 D2와 커패시터 EC2가 직렬로 연결되어 상기 커패시터 EC2에 전하가 축적되며, 상기 커패시터 EC2와 병렬로 제너다이오드 ZD1을 연결하여 정전압을 유지하도록 함으로써 마이크로컨트롤러에 전원을 공급하는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관. According to the voltage divided by R1 and R2, R4, the diode D2, and the capacitor EC2 are connected in series to accumulate charge in the capacitor EC2, and the zener diode ZD1 is connected in parallel with the capacitor EC2 to maintain a constant voltage. Electronic primer using the reference time setting method in the microcontroller characterized in that to supply power to the controller.
  11. 제 5항에 있어서, 상기 발파용 에너지 저장회로는The method of claim 5, wherein the blasting energy storage circuit
    R1과 R2에 의하여 분압된 전압에 따라, R3와 다이오드 D1과 커패시터 EC1이 직렬로 연결되어 상기 커패시터 EC1에 전하가 축적되는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관. According to the voltage divided by R1 and R2, R3, the diode D1 and the capacitor EC1 is connected in series so that the charge is accumulated in the capacitor EC1 electronic primer using the reference time setting method in the microcontroller.
  12. 제 5항에 있어서, 상기 션트회로는The method of claim 5, wherein the shunt circuit
    발파용 에너지 저장회로에 전하가 축적되기 시작할 때부터 트랜지스터Q4 및 트랜지스터Q5가 단락되어 뇌관의 양단이 접지되어 외부의 갑작스런 전기적인 충격으로부터 뇌관을 보호하며, 발파시에는 상기 트랜지스터Q5가 개방됨으로써 상기 트랜지스터Q4도 개방되는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관.Transistors Q4 and Q5 are short-circuited from the time when charges start to accumulate in the blasting energy storage circuit, and both ends of the primer are grounded to protect the primer from an external sudden electric shock. Electronic primer using the reference time setting method in the microcontroller, characterized in that the opening Q4.
  13. 제 5항에 있어서, 상기 스위칭회로는The method of claim 5, wherein the switching circuit
    주제어장치의 발파명령에 의하여 기폭 지연시간 후 마이크로컨트롤러의 제어에 의하여 트랜지스터Q2가 단락되면 트랜지스터Q3가 단락되어 뇌관 휴즈헤드 양단에 발파용 에너지 저장회로에 축적된 전하를 급격히 방출시켜 뇌관을 폭발하는 것을 특징으로 하는 마이크로컨트롤러에서 기준시간 설정방법을 이용한 전자식 뇌관. When the transistor Q2 is shorted by the control of the microcontroller after the delay time due to the blasting command of the main controller, the transistor Q3 is shorted to expel the primer by rapidly releasing the charge accumulated in the blast energy storage circuit at both ends of the primer fuse head. Electronic primer using the reference time setting method in the microcontroller characterized in that.
PCT/KR2010/005730 2009-09-03 2010-08-26 Method for setting a reference time in a microcontroller, and electronic detonator using the method WO2011027991A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0083030 2009-09-03
KR1020090083030A KR101016538B1 (en) 2009-09-03 2009-09-03 Method for setting reference time in microcontroller and electronic detonator using thereof

Publications (2)

Publication Number Publication Date
WO2011027991A2 true WO2011027991A2 (en) 2011-03-10
WO2011027991A3 WO2011027991A3 (en) 2011-07-21

Family

ID=43649756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005730 WO2011027991A2 (en) 2009-09-03 2010-08-26 Method for setting a reference time in a microcontroller, and electronic detonator using the method

Country Status (2)

Country Link
KR (1) KR101016538B1 (en)
WO (1) WO2011027991A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915513B1 (en) 2017-02-05 2018-03-13 Dynaenergetics Gmbh & Co. Kg Electronic ignition circuit and method for use
CN111561845A (en) * 2020-06-08 2020-08-21 融硅思创(北京)科技有限公司 Chip special for electronic detonator suitable for various extreme environments
US11307011B2 (en) 2017-02-05 2022-04-19 DynaEnergetics Europe GmbH Electronic initiation simulator
CN114508976A (en) * 2021-12-29 2022-05-17 四川艺迪智芯科技有限公司 Timing correction method based on MCU electronic detonator power-down delay wake-up timer
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292153B1 (en) * 2011-11-25 2013-08-09 국방과학연구소 Power storage circuit and firing circuit of fuze
KR101387371B1 (en) * 2012-11-09 2014-04-22 주식회사 오중파워텍 Output apparatus for multi-channel blast power supply using blasting method
KR101293801B1 (en) * 2013-01-30 2013-08-06 주식회사 한화 Method for counting delay time of electronic detonator
KR101925872B1 (en) * 2017-01-20 2018-12-06 주식회사 한화 Apparatus and method for logging controlling electronic delay detonator
ES2914295T3 (en) 2017-01-20 2022-06-08 Hanwha Corp Delay electronic detonator registration control device and method therefor
KR200490781Y1 (en) * 2018-02-22 2019-12-31 김희진 Electronic blasting machine
KR102129301B1 (en) 2019-01-24 2020-07-02 주식회사 한화 Blasting system and operating method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0169067B1 (en) * 1996-11-29 1999-02-01 배순훈 Timing blasting cap of electromagnetic setting method
JPH11325799A (en) 1998-05-19 1999-11-26 Asahi Chem Ind Co Ltd Electronic delay detonator
KR100551764B1 (en) * 2003-12-30 2006-02-13 석철기 a blasting method for down vibration noise mutual interference blasting vibration time difference
KR100841680B1 (en) 2007-02-14 2008-06-26 주식회사 한화 Inductive time setting system for electronic time fuze

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915513B1 (en) 2017-02-05 2018-03-13 Dynaenergetics Gmbh & Co. Kg Electronic ignition circuit and method for use
US10605578B2 (en) 2017-02-05 2020-03-31 DynaEnergenetics Europe GmbH Electronic ignition circuit
US11215433B2 (en) 2017-02-05 2022-01-04 DynaEnergetics Europe GmbH Electronic ignition circuit
US11307011B2 (en) 2017-02-05 2022-04-19 DynaEnergetics Europe GmbH Electronic initiation simulator
US11686566B2 (en) 2017-02-05 2023-06-27 DynaEnergetics Europe GmbH Electronic ignition circuit
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
CN111561845A (en) * 2020-06-08 2020-08-21 融硅思创(北京)科技有限公司 Chip special for electronic detonator suitable for various extreme environments
CN111561845B (en) * 2020-06-08 2023-07-25 融硅思创(北京)科技有限公司 Special chip for electronic detonator suitable for multiple extreme environments
CN114508976A (en) * 2021-12-29 2022-05-17 四川艺迪智芯科技有限公司 Timing correction method based on MCU electronic detonator power-down delay wake-up timer
CN114508976B (en) * 2021-12-29 2023-11-17 四川艺迪智芯科技有限公司 Timing correction method based on MCU electronic detonator power-down delay wake-up timer

Also Published As

Publication number Publication date
KR101016538B1 (en) 2011-02-24
WO2011027991A3 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2011027991A2 (en) Method for setting a reference time in a microcontroller, and electronic detonator using the method
US11686566B2 (en) Electronic ignition circuit
EP1644692B1 (en) Method of identifying an unknown or unmarked slave device such as in an electronic blasting system
US7082877B2 (en) Current modulation-based communication for slave device
US7107908B2 (en) Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator
EP1692822B1 (en) Dynamic baselining in current modulation-based communication
AU2004256313B2 (en) Detonator utilizing selection of logger mode or blaster mode based on sensed voltages
KR101293801B1 (en) Method for counting delay time of electronic detonator
US11307011B2 (en) Electronic initiation simulator
CN112393653A (en) Electronic detonator blasting control system for improving anti-interference performance
AU2004256315B2 (en) Staggered charging of slave devices such as in an electronic blasting system
CN112414236A (en) Electronic detonator for improving communication reliability
AU2004256312A1 (en) Constant-current, rail-voltage regulated charging electronic detonator
AU2019284132A1 (en) Communication system and detonator
US20050011390A1 (en) ESD-resistant electronic detonator
AU2004256303B2 (en) Pre-fire countdown in an electronic detonator and electronic blasting system
KR102168254B1 (en) Detonator device, operating method of detonator device and communication system
KR101336424B1 (en) Detonator circuit of electronic detonator
KR20220155417A (en) Triggering apparatus controlled by mcu for nonelectric detonator and triggering method and system of nonelectric detonator using thereof
US20050190525A1 (en) Status flags in a system of electronic pyrotechnic devices such as electronic detonators
WO2024063513A1 (en) Remote blasting system
RU2211435C2 (en) Detonating device
CN112393652A (en) Electronic detonator blasting control system for improving communication reliability
CN112361903A (en) Electronic detonator blasting control system for improving communication reliability and anti-interference performance
JP2984070B2 (en) Method of transmitting data from electronic delay primer to blaster and electronic delay primer and blaster used for the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813900

Country of ref document: EP

Kind code of ref document: A2