WO2011027839A1 - Cholesterol-efflux peptide - Google Patents

Cholesterol-efflux peptide Download PDF

Info

Publication number
WO2011027839A1
WO2011027839A1 PCT/JP2010/065070 JP2010065070W WO2011027839A1 WO 2011027839 A1 WO2011027839 A1 WO 2011027839A1 JP 2010065070 W JP2010065070 W JP 2010065070W WO 2011027839 A1 WO2011027839 A1 WO 2011027839A1
Authority
WO
WIPO (PCT)
Prior art keywords
leu
single bond
lys
peptide
cholesterol
Prior art date
Application number
PCT/JP2010/065070
Other languages
French (fr)
Japanese (ja)
Inventor
朔啓二郎
安東勢津子
上原吉就
Original Assignee
学校法人福岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人福岡大学 filed Critical 学校法人福岡大学
Priority to JP2011529947A priority Critical patent/JP5742029B2/en
Publication of WO2011027839A1 publication Critical patent/WO2011027839A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/775Apolipopeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to a cholesterol export peptide. More specifically, the present invention relates to a cholesterol export peptide that also has an HDL producing action.
  • ⁇ Cholesterol is an essential component for constituting and maintaining a living body.
  • cholesterol is a kind of lipid, water does not dissolve in the main blood, and cannot be transported with blood as it is. Therefore, cholesterol is transported in the blood in the form of a complex called lipoprotein by binding to apolipoprotein in vivo.
  • This lipoprotein is generally classified into four types: chylomicron, very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) depending on the density and specific gravity of apolipoprotein particles. Largely classified.
  • low density lipoprotein (LDL) and high density lipoprotein (HDL) are mainly involved in the transport of cholesterol in the blood.
  • Low density lipoprotein (LDL) plays an important role in delivering cholesterol to cells.
  • high density lipoprotein (HDL) plays an important role in transporting cholesterol from cells to the liver. Therefore, under normal conditions, LDL and HDL are balanced, and the delivery and removal of cholesterol is properly performed so that no problems arise.
  • LDL and HDL are balanced, and the delivery and removal of cholesterol is properly performed so that no problems arise.
  • LDL and HDL breaks down, it is known that cholesterol cannot be controlled in the body, causing various abnormalities, disorders, and diseases in the body.
  • LDL cholesterol lowering therapy for lowering LDL cholesterol is applied.
  • This LDL cholesterol lowering therapy is generally performed by administration of a cholesterol lowering drug such as a statin.
  • a cholesterol lowering drug such as a statin.
  • the current situation is that the onset of cardiovascular disease cannot be sufficiently suppressed by such LDL cholesterol lowering therapy alone (see, for example, Non-Patent Document 1).
  • high-density lipoprotein (HDL) plays an important role in the so-called cholesterol reverse transfer system that transports cholesterol from cells to the liver, that is, as a scavenger for tissue cholesterol. Plays an important role. For this reason, high density lipoprotein (HDL) cholesterol is called “good cholesterol”, whereas low density lipoprotein (LDL) cholesterol is commonly referred to as “bad cholesterol”. It is commonly called. Therefore, the blood concentration of high density lipoprotein (HDL) cholesterol is required to be higher than the prescribed concentration.
  • HDL cholesterol enhancing action therapy is attracting attention as the next therapeutic target of LDL cholesterol lowering therapy (see, for example, Non-Patent Documents 4 and 5).
  • Non-Patent Document 1 As HDL cholesterol enhancing action therapy, statins as HDL cholesterol increasing agents, drug administration therapy such as cholesterol ester transfer protein inhibitors are being carried out. However, none of these are sufficiently effective. In other words, currently available drugs for preventing and treating cholesterol do not have a satisfactory HDL cholesterol increasing effect (see Non-Patent Document 1, for example).
  • HDL high density lipoprotein
  • rHDL reconstituted high density lipoprotein
  • a conventional purification means such as HDL (see, for example, Non-Patent Document 11), chromatography, etc., which is isolated by a series of ultracentrifugation treatment after treating human plasma or serum, is used.
  • purified apolipoprotein AI (ApoA-I) (see, for example, Patent Document 2 and Non-Patent Document 12).
  • ApoA-I or a mutant thereof is also produced by gene recombination (see, for example, Patent Documents 1 and 5 and Non-Patent Document 13).
  • the HDL or ApoA-I produced as described above has been prepared various synthetic HDL (rHDL) in combination with lipids.
  • rHDL various synthetic HDL
  • examples of such rHDL include rHDL prepared from plasma, ApoA-I and soybean lecithin (Patent Document 6), and rHDL prepared from ApoA-I and phosphatidylcholine extracted from egg or soybean (Patent Document 7).
  • rHDL produced from ApoA-I and dimyristoylphosphatidylcholine (DMPC) see, for example, Non-Patent Document 14).
  • rHDL produced by the present inventors, rHDL (POPC / ApoA-) produced from apolipoprotein AI (ApoA-I) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) I) (see, for example, Non-Patent Documents 1 and 15) and the above rHDL (POPC / ApoA-I), sphingosine-1-phosphate (SIP), one of the active phospholipids, is added And new rDHL (POPC / SIP / ApoA-I) (see Non-Patent Document 3, for example).
  • ApoA-I apolipoprotein AI
  • HDL apolipoprotein AI
  • ApoA-I is a large molecular protein consisting of 243 amino acid residues, its production method is complicated and difficult, its production cost is expensive, and stability during storage, in vivo It has also been found that various difficult problems in production and reproducibility such as delivery and half-life of the active substance must be solved (see, for example, Patent Document 1).
  • ApoA-I pseudopeptides include, for example, a 198-2192 fragment of ApoA-I consisting of 22 residues in which only Glu, Lys and Leu are regularly arranged so as to form an amphipathic ⁇ -helix.
  • Peptide having% sequence homology (ELK peptide) (see, for example, Non-patent Documents 18 and 19); Model amphipathy having no sequence homology with ApoA-I called LAP peptide consisting of 16-24 amino acid residues Peptides (for example, see Non-patent Document 20); peptides consisting of 18-24 amino acid residues having no sequence homology with the ApoA-I helix (for example, see Non-patent Document 21); human ApoA-I helix sequences Peptides having 22 amino acid residues in common based on the above (see, for example, Non-Patent Documents 22 and 23).
  • LAP peptide Model amphipathy having no sequence homology with ApoA-I
  • LAP peptide consisting of 16-24 amino acid residues Peptides
  • peptides consisting of 18-24 amino acid residues having no sequence homology with the ApoA-I helix for example, see Non-patent Document 21
  • ApoA-I pseudopeptide In addition to the ApoA-I pseudopeptide described above, a number of ApoA consisting of a “core” peptide consisting of 15 to 29 amino acid residues, preferably 22 amino acid residues, that form an amphipathic ⁇ -helix in the presence of lipids.
  • -I agonists have been produced (see, for example, Patent Documents 1 and 5). These ApoA-I agonists are 22-mer consensus sequences (Pro (P) ⁇ ⁇ ⁇ ⁇ Val (V) Leu (L) Asp (D) Glu (E) Phe (F) proposed to be critical for activity.
  • apolipoprotein ApoA-I (ApoA-I) although only its central helix can promote lipid excretion mediated by ABCA1 (ATP-binding castle transporter A1)
  • ABCA1 ATP-binding castle transporter A1
  • a sufficiently long amino acid sequence is required between ApoA-I and ABCA1, and it has been reported that the length is 220-231 residues.
  • the present inventors have studied a synthetic peptide having an activity similar to that of human apolipoprotein AI (ApoA-I). As a result, the amino acids constituting the central helix of ApoA-I The present invention was completed by finding that certain synthetic peptides in which a part of the amino acid residues of the sequence were mutated had the ability to export cholesterol. Furthermore, the present inventors have found that such a synthetic peptide has not only the ability to export cholesterol but also the ability to produce HDL, thereby completing the present invention.
  • the present invention relates to a cholesterol export peptide having a cholesterol export ability and a HDL production ability, in which a part of the amino acid residues of the amino acid sequence constituting the central helix of ApoA-I is mutated.
  • the purpose is to provide.
  • an object of the present invention is to provide a cholesterol export peptide represented by the following general formula [I].
  • an object of the present invention is to provide a pharmaceutical composition containing the above cholesterol export peptide [I] as an active ingredient.
  • This invention provides a cholesterol export peptide, which is a certain synthetic peptide having a cholesterol export ability, in which a part of the amino acid residues of the amino acid sequence constituting the central helix of ApoA-I is mutated.
  • the present invention provides a cholesterol export peptide which is a synthetic peptide having a cholesterol export capability and an HDL production capability.
  • the present invention has a preferred embodiment represented by the general formula [I]:
  • X1a means Ala or a single bond ("-")
  • X1b means Lys, Arg or a single bond ("-")
  • X1c means Ala or a single bond ("-")
  • X1d means His or a single bond ("-")
  • X1e means Tyr or a single bond ("-").
  • X2 means Thr, Leu, Lys or Ser
  • X3 means Glu
  • X4 means Ser
  • X5 means Ser, Tyr, Trp
  • X6 represents a single bond ("-")
  • X7 represents a single bond ("-")
  • X8 means single bond ("-") or Ala
  • X9 means a single bond ("-")
  • X10 means a single bond ("-")
  • X11 means single bond ("-)
  • X17a-X17b-X17c-X1d [Ib] (In the formula, X17a means a single bond ("-"), Leu or Met, X17b means Pro, Tyr or a single bond ("-"), X17c means Val or a single bond ("-") As well as X1d means Leu or a single bond ("-”))
  • X22 means Ala or Val
  • X23 means Thr, Leu, Lys or Ser
  • X24 means Glu, Thr or Asp
  • X25 means His or Ser
  • X26 means Leu or Means Phe
  • X27 means Ser, Phe or Lys
  • X28 means Thr or Val
  • X29 means Leu or Ser
  • X30 means Ser, Gly, Phe, Tyr or Trp
  • X31 Means Glu or Leu
  • X32 means Lys or Ser
  • X33 means Ala
  • X34 means Lys, Leu, Arg or single bond (“-“)
  • X35 means Pro, Glu, Lys Or a single bond ("-")
  • X36 means Ala, Glu or a single bond ("-")
  • X37 means Leu, Tyr or a single bond (“-")
  • X38 means Glu, Gln, Asp, Thr or single bond ("-")
  • X39 means Asp, Ly
  • a cholesterol export peptide comprising a tetramer represented by the formula:
  • the present invention provides a pharmaceutical composition containing the above cholesterol export peptide as an active ingredient.
  • the cholesterol-carrying peptide of the present invention is effective in preventing and treating cardiovascular diseases because it has both the effect of carrying out cholesterol and the ability to produce HDL.
  • FIG. 10 is a graph showing the cholesterol pulling action of a peptide (FAMP-5: Type 2S9Y) in a Chinese hamster ovary-derived cell (CHO cell) ldlA7 strain (Example 4). The figure which shows the cholesterol pulling-out ability by the healthy subject origin cell and human ABCA1 deficiency patient origin cell in the human peripheral blood monocyte origin macrophage using the peptide (FAMP) synthesize
  • Example 11 shows the ability of human A172 cells to extract cholesterol in the absence of or with stimulation of TO901317 and 9cis-retinoic acid for each peptide (20 ⁇ g / ml) (Example 6).
  • Example 9 The figure which shows the analysis result of the plasma lipoprotein by the high performance liquid chromatography (HPLC) when the peptide is continuously administered to the mouse for 10 days (Example 10).
  • HPLC high performance liquid chromatography
  • Example 11 The figure which shows the analysis result of the mouse
  • Example 16 which shows the blood flow increase with respect to a mouse
  • the cholesterol export peptide according to the present invention has the general formula [I]: H-X1-X2-X3-His-Leu-X4-Thr-Leu-X5-Glu-Lys-Ala- X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16-X17- X18-OH [I]
  • X1a means Ala or a single bond ("-")
  • X1b means Lys, Arg or a single bond ("-")
  • X1c means Ala or a single bond ("-")
  • X1d means His or a single bond ("-")
  • X1e means Tyr or a single bond ("-").
  • X2 means Thr, Leu, Lys or Ser
  • X3 means Glu
  • X4 means Ser
  • X5 means Ser, Tyr, Trp
  • X6 represents a single bond ("-")
  • X7 represents a single bond ("-")
  • X8 means single bond ("-") or Ala
  • X9 means a single bond ("-")
  • X10 means a single bond ("-")
  • X11 means single bond ("-)
  • X17a-X17b-X17c-X1d [Ib] (In the formula, X17a means a single bond ("-"), Leu or Met, X17b means Pro, Tyr or a single bond ("-"), X17c means Val or a single bond ("-") As well as X1d means Leu or a single bond ("-”))
  • X22 means Ala or Val
  • X23 means Thr, Leu, Lys or Ser
  • X24 means Glu, Thr or Asp
  • X25 means His or Ser
  • X26 means Leu or Means Phe
  • X27 means Ser, Phe or Lys
  • X28 means Thr or Val
  • X29 means Leu or Ser
  • X30 means Ser, Gly, Phe, Tyr or Trp
  • X31 Means Glu or Leu
  • X32 means Lys or Ser
  • X33 means Ala
  • X34 means Lys, Leu, Arg or single bond (“-“)
  • X35 means Pro, Glu, Lys Or a single bond ("-")
  • X36 means Ala, Glu or a single bond ("-")
  • X37 means Leu, Tyr or a single bond (“-")
  • X38 means Glu, Gln, Asp, Thr or single bond ("-")
  • X39 means Asp, Ly
  • amino acid residue refers to an amino acid whose N-terminal amino group (—NH 3 ) is an imino group (—NH 2 —) and whose C-terminal carboxyl group (—COOH) is a carbonyl group (—CO It means a divalent amino acid residue in the state of-).
  • An amino acid residue has a peptide bond (—CO—NH) with its N-terminal imino group (—NH 2 —) bonded to the C-terminal carbonyl group (—CO—) of another amino acid residue adjacent to the N-terminal side.
  • the N-terminal imino group (—NH 2 —) of the amino acid residue is bonded to a hydrogen atom (H—) to form an amino group
  • the C-terminal carbonyl group is (—CO—) binds to a C-terminal hydroxy group (—OH) to form a carboxyl group (—CO—OH).
  • preferable peptides include, for example, vetide having the following amino acid sequence.
  • FAMP-5 (Type2S9Y) (SEQ ID NO: 7) H-Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Tyr-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- OH (Bevetide number 7)
  • Type2S9W (SEQ ID NO: 8) H-Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Trp-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- OH (Bevetide number 8)
  • Type3 (SEQ ID NO: 9) H-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Leu-L
  • the cholesterol export peptide according to the present invention can be prepared according to a synthetic chemical technique conventionally used in the art.
  • Synthetic chemical methods include, for example, carbodiimide condensing agents such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIPCDI), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) as condensing agents, (1H -Benzotriazol-1-yloxy) tris (dimethylamino) phosphonium hexafluorophosphate (BOP), 1- [bis (dimethylamino) methylene] -1H-benzotriazolium-3-oxide hexafluorophosphate -Condensation method using condensing agent such as HBTU, active ester method using ester with nitrophenol, N-hydroxysuccinimide, pentafluorophenol, etc., chloroformat
  • the cholesterol export peptide according to the present invention increases the high density lipoprotein (HDL) concentration, activates the cholesterol acyltransferase (LCAT), and further activates the reverse cholesterol transport system (RCT). It is useful to promote and enhance the efflux of cholesterol. Therefore, the cholesterol export peptide of the present invention is effective in the prevention and treatment of cardiovascular diseases such as atherosclerosis and hyperlipidemia such as hypercholesterolemia and cardiovascular disease related disorders. It is.
  • cardiovascular diseases such as atherosclerosis and hyperlipidemia such as hypercholesterolemia and cardiovascular disease related disorders. It is.
  • the cholesterol export peptide of the present invention may be used alone or in combination with one or more thereof, or for the prevention or treatment of cardiovascular diseases and disorders. It can be used as a pharmaceutical composition in combination with other drugs that can be used, for example, cholesterol-lowering drugs such as statins and niacin and fibrates.
  • the pharmaceutical composition of the present invention can also be formulated as a peptide-lipid complex.
  • usable lipids may be, for example, saturated or unsaturated lipids, and may be natural or synthetic lipids.
  • lipids examples include egg phosphatidylcholine, soybean phosphatidylcholine, dilaurylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, distearoylphosphatidylcholine, 1-palmitoyl-2-oleylphosphatidylcholine, 1-myristoyl-2-palmitoylphosphatidylcholine, 1-palmitoylcholine.
  • Phosphatidylcholines such as -2-stearoylphosphatidylcholine, 1-stearoyl-2-palmitoylphosphatidylcholine, dioleoylphosphatidylcholine; phosphatidylethanolamine, dimyristoylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine, dioleophosphatidylethanol, etc.
  • the ho Phosphatidylglycerols such as phosphatidylglycerol, diphosphatidylglycerol, dimyristoyl phosphatidylglycerol, dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol, dioleoylphosphatidylglycerol
  • Phosphatidic acids such as phosphatidic acid, dimyristoyl phosphatidic acid, dipalmitoyl phosphatidic acid
  • phosphatidyl serines such as phosphatidyl serine, dimyristoyl phosphatidyl serine, dipalmitoyl phosphatidyl serine, brain phosphatidyl serine
  • sphingomyelin brain sphingomyelin
  • dipalmitoyl Sphingomyelin such as sphingomyelin, distearoyl sphingomy
  • the pharmaceutical composition according to the present invention may further contain a pharmacologically acceptable carrier in addition to the cholesterol export peptide of the present invention and other drugs.
  • a pharmacologically acceptable carrier various organic or inorganic carrier substances commonly used as a raw material for preparations can be used. Examples of such carrier substances include excipients, lubricants, binders, and disintegrants in solid preparations, and solvents, dispersants, preservatives, isotonic agents, and dissolution aids in liquid preparations. , Suspending agents, stabilizers, buffers, soothing agents and the like.
  • formulation additives such as antiseptic
  • examples of excipients include lactose, sucrose, starch, pregelatinized starch, D-mannitol, D-sorbitol, dextrin, crystalline cellulose, carboxymethyl Cellulose sodium, gum arabic, pullulan, light anhydrous silicic acid, synthetic aluminum silicate, magnesium metasilicate aluminate and the like.
  • examples of the lubricant include talc, magnesium stearate, calcium stearate, colloidal silica, polyethylene glycol 6000, and the like.
  • binders include gelatin, pregelatinized starch, sucrose, gum arabic, crystalline cellulose, methyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium, sucrose, D -Mannitol, trehalose, dextrin, pullulan, polyvinylpyrrolidone and the like.
  • disintegrant include lactose, sucrose, starch, hydroxypropyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose calcium, sodium carboxymethyl starch, and light anhydrous silicic acid.
  • examples of the solvent include an aqueous solvent such as distilled water, physiological saline, Ringer's solution, a tree solvent such as alcohol, propylene glycol, polyethylene glycol, or the like. And oily solvents such as sesame oil, corn oil, olive oil, and vegetable oils such as cottonseed oil.
  • examples of the dispersant include polysorbate 80, polyoxyethylene hydrogenated castor oil 60, polyethylene glycol, carboxymethyl cellulose, sodium alginate and the like.
  • examples of preservatives include methyl paraben, propyl paraben, benzyl alcohol, chlorobutanol, phenol and the like.
  • tonicity agents include sodium chloride, glycerin, D-mannitol, D-sorbitol, glucose and the like.
  • solubilizers include ethanol, polyethylene glycol, propylene glycol, D-mannitol, trehalose, benzyl benzoate, triethanolamine, trisaminomethane, cholesterol, sodium carbonate Sodium citrate, sodium salicylate, sodium acetate and the like.
  • suspending agents examples include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glyceryl monostearate, polyvinyl alcohol, polyvinyl Hydrophilic polymer compounds such as pyrrolidone, sodium carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polysorbates, polyoxyethylene hydrogenated castor oil, etc. Is mentioned.
  • stabilizers include human serum albumin.
  • buffer examples include buffer solutions such as phosphate, acetate, carbonate, citrate and the like.
  • soothing agents include benzyl alcohol.
  • preservatives include p-hydroxybenzoates, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
  • antioxidant include sulfite and ascorbate.
  • colorants include natural pigments such as ⁇ -carotene, chlorophyll, bengara, water-soluble food tar pigments such as food red 2, 3, food yellow 4, 5, food blue 1, 2, etc. Examples thereof include water-insoluble lake dyes such as aluminum salts of water-soluble food tar dyes.
  • sweetening agents include saccharin sodium, dipotassium glycyrrhizinate, aspartame, stevia and the like.
  • the pharmaceutical composition according to the present invention can be administered by oral route or parenteral route.
  • oral route of administration for example, liquid dosage forms such as solutions, emulsions, syrups, suspensions, capsules such as tablets, soft capsules, microcapsules, granules It can be administered in a solid dosage form such as an agent, powder, powder, or troche.
  • parenteral route for example, subcutaneous injections, intravenous injections, intramuscular injections, intraperitoneal injections, infusions such as drops, transdermal preparations, etc.
  • a dosage form such as an external preparation such as an ointment, a suppository, a pellet, a nasal preparation, an inhalant, or an eye drop.
  • external preparation such as an ointment, a suppository, a pellet, a nasal preparation, an inhalant, or an eye drop.
  • These preparations may be controlled-release preparations such as immediate-release preparations or sustained-release preparations (for example, sustained-release microcapsules).
  • the pharmaceutical composition of the present invention can be produced by a method commonly used in the technical field relating to the preparation, for example, a method described in the Japanese Pharmacopoeia.
  • an oral preparation is compression-molded by adding an excipient, a disintegrant, a binder or a lubricant to an active ingredient, and then, if necessary, for the purpose of taste masking, entericity or sustainability.
  • It can be produced by coating using a coating base by a method known per se.
  • the coating base include sugar coating base, water-soluble film coating base, enteric film coating base, sustained-release film coating base and the like.
  • sugar coating base for example, sucrose, talc, precipitated calcium carbonate, gelatin, gum arabic, pullulan, carnauba wax and the like can be used.
  • water-soluble film coating base include cellulose-based polymers such as hydroxypropyl cellulose, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, methylhydroxyethyl cellulose; -Synthetic polymers such as rudiethylaminoacetate and polyvinylpyrrolidone; polysaccharides such as pullulan can be used.
  • enteric film coating bases examples include hydroxypropyl methyl cellulose phthalate, hydroxypropyl methyl cellulose acetate succinate, carboxymethyl ethyl cellulose, and cellulose acetate phthalate.
  • Cellulose polymers; acrylic acid polymers such as methacrylic acid copolymers; natural products such as shellac can be used.
  • the sustained-release film coating base for example, a cellulose polymer such as ethyl cellulose; and an acrylic acid polymer such as aminoalkyl methacrylate copolymer can be used.
  • the injection can be produced by a method known per se by dissolving, suspending or emulsifying the active ingredient in an aqueous solvent together with a dispersant, a preservative, an isotonic agent and the like.
  • a dispersant such as a solubilizing agent, a stabilizer and a soothing agent may be used as desired.
  • a solubilizing agent such as a solubilizing agent, a stabilizer and a soothing agent may be used as desired.
  • the pharmaceutical composition according to the present invention contains the cholesterol export peptide of the present invention as the main active ingredient, it is possible to carry out cholesterol export, increase serum HDL concentration and LCAT activation, and promote RCT. It is useful and can be used for the prevention and treatment of cardiovascular diseases and related disorders, particularly in mammals including humans. More specifically, the pharmaceutical composition of the present invention can be used for, for example, cardiac diseases such as angina pectoris, hypertension, hyperlipidemia such as hypercholesterolemia, and arteriosclerosis such as atherosclerosis. Because of its vascular disease and angiogenic action, it is also effective for obstructive arteriosclerosis, Buerger's disease of lower limb ischemia, Alzheimer's disease with similar risk, and the like. Furthermore, it is effective for cardiovascular disease-related disorders such as restenosis due to atherosclerotic plaque that develops as a result of medical treatment such as balloons and stents.
  • cardiovascular disease-related disorders such as restenosis due to atherosclerotic plaque that develops as
  • the single dose of the cholesterol export peptide and pharmaceutical composition according to the present invention varies depending on the patient's medical condition, physical condition, method of administration, etc., but in parenteral administration, it is about 0 as an active ingredient per kg adult body weight. .1 to 100 mg, preferably about 0.5 to 50 mg, more preferably about 1 to 25 mg, and the daily dose is preferably 1 to 3 times by intravenous or intramuscular injection.
  • the single dose is about 1 to 100 mg, preferably about 2 to 50 mg as an active ingredient per kg body weight of an adult, and the daily dose is divided into 1 to 3 doses. It is good to do.
  • Peptide No. 5 (FAMP: SEQ ID No. 6) Synthesis Method Peptides were synthesized at 0.25 mmol scal using an Applied Biosystems model 433A peptide automatic solid phase synthesizer. Amino acids are Fmoc-amino acid, Fmoc-X-PEG-Alko-Resin is used as resin, 20% Piperidine / N-Methyl-2-pyrrolidone is used as a de-Fmoc reagent, and HBTU / HOBt in DMF is used as an active condensing agent. The coupling was synthesized repeatedly.
  • the sample was transferred to a manual solid phase synthesis vessel, washed several times with DCM, and then dried in a desiccator under reduced pressure overnight. After drying, add the cleaving reagent (0.25 ml EDT / 0.25 H 2 O / TFA 9.5 ml) and stir for 2 hours to cleave the peptide from the resin and finally deprotect the side chain. The solution was filtered, and the filtrate was transferred to an eggplant flask and concentrated with nitrogen gas. Crystallization was performed using cold ether, and after 10 times decantation, this was collected by filtration to obtain a crude peptide.
  • human A172 cells were contacted with peptide (FAMP) (20 ⁇ g / ml) and human serum-derived lipid-removed ApoA-I (20 ⁇ g / ml) as a comparison, and left for 4 hours. After 4 hours, the amount of cholesterol exuded from human A172 cells was measured to examine the ability of peptide (FAMP) and ApoA-I to extract cholesterol (left side of FIG. 1). As a control, only 0.2% bovine serum albumin (BSA) was used. As a result, peptide (FAMP) and ApoA-I have the ability to extract cholesterol, and the ability of peptide (FAMP) to extract cholesterol is significantly superior to that of ApoA-I. It was.
  • FAMP peptide
  • ApoA-I human serum-derived lipid-removed ApoA-I
  • FIG. 1 shows the results of examining the cholesterol withdrawal ability of each peptide produced in Example 2 in substantially the same manner as in Example 3. Saline was used as a control.
  • plasmids in which human ABCA1 cDNA was inserted into pcDNA3.1 vector (mock) and pcDNA3.1 vector were respectively transfected using the lipofection method.
  • Mock and ABCA1 cDNA cDNA-introduced CHO cells were left in contact with peptide (FAMP-5) (20 ⁇ g / ml) and human serum-derived lipid-removed ApoA-I (20 ⁇ g / ml) as a comparison for 4 hours. After 4 hours, the amount of cholesterol exuded from the cells was measured to examine the ability of the peptide (FAMP) and ApoA-I to extract cholesterol (FIG. 2).
  • Example 1 Using the peptide synthesized in Example 1 (FAMP), the cholesterol withdrawal action in human peripheral blood monocyte-derived macrophages was examined in substantially the same manner as in Example 4.
  • a macrophage derived from human peripheral blood monocytes cells derived from healthy subjects and cells derived from patients with ABCA1 deficiency were compared with peptide (FAMP) (20 ⁇ g / ml) and human serum-derived lipid-removed ApoA-I ( 20 ⁇ g / ml) and left for 4 hours. After 4 hours, the amount of cholesterol exuded from the cells was measured to examine the ability of the peptide (FAMP) and ApoA-I to extract cholesterol (FIG. 3). As a control, only 0.2% BSA was used.
  • FAMP peptide
  • ApoA-I ApoA-I
  • each peptide (20 ⁇ g / ml) was brought into contact with human A172 cells and incubated for 4 hours, and the amount of cholesterol exuded from human A172 cells was measured to examine the ability to extract cholesterol.
  • BSA bovine serum albumin
  • ApoA-I and peptide number 13 original were used for comparison. The results are shown on the left side of FIG.
  • each peptide (20 ⁇ g / ml) was contacted with TO901317 and 9cis-retinoic acid in human A172 cells and incubated for 4 hours, and then the amount of cholesterol leached from human A172 cells was measured. Then I investigated the ability to pull out cholesterol. The results are shown on the right side of FIG.
  • Peptide No. 6 (FAMP-5) has a significantly superior cholesterol withdrawal ability.
  • each peptide (20 ⁇ g / ml) was contacted with human A172 cells under stimulation with TO901317 and 9cis-retinoic acid and incubated for 4 hours, and then the cholesterol exuded from human A172 cells. The amount was measured to determine the cholesterol withdrawal ability. The results are shown in FIG.
  • human plasma lipoprotein was analyzed by capillary electrophoresis.
  • plasma lipoprotein was analyzed by high performance liquid chromatography (HPLC) when the peptide was continuously administered to mice for 10 days.
  • Changes in blood lipid profile after continuous intraperitoneal administration of peptide (FAMP) (2 mg / ml) and physiological saline for 10 days to C57BL6 mice were measured by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • mouse plasma lipoprotein was analyzed by capillary electrophoresis when the peptide was acutely administered to mice.
  • the peptide (FAMP) (2 mg / ml) was intravenously and intraperitoneally administered to C57BL6 mice
  • changes in blood lipid profile after 30 minutes and 18 hours were measured by capillary electrophoresis (FIG. 8 and FIG. 8).
  • FIG. 9 shows that the peptide (FAMP) markedly increased the HDL subfraction even in intravenous administration and intraperitoneal administration.
  • This analysis result shows that the peptide of the present invention has an action of generating HDL even in vivo.
  • Capillary electrophoresis was performed in the same manner as in Example 9.
  • each peptide (20 ⁇ g / ml) was stimulated with TO901317, LXR agonist (5 ⁇ M), 9-cis-retinoic acid, RXR agonist (5 ⁇ M) in human A172 cells and incubated for 4 hours. Then, the amount of cholesterol exuded from human A172 cells was measured to examine the ability to extract cholesterol. Saline was used as a control. The results are shown in FIG.
  • Example 12 the peptide FAMP-5 (type2S9Y) or apoA-I (20 ⁇ g / ml) was added to TO901317, LXR agonist (5 ⁇ M), 9-cis-retinoic acid, RXR agonist (5 ⁇ M) in the same manner as in Example 12.
  • LXR agonist 5 ⁇ M
  • 9-cis-retinoic acid 9-cis-retinoic acid
  • RXR agonist 5 ⁇ M
  • the amount of cholesterol exuded from human A172 cells was measured by incubating in the absence or presence of Probunol® (10 ⁇ M) for 4 hours to examine the ability to extract cholesterol. Saline was used as a control. The results are shown in FIG.
  • each peptide (FAMP-5, FAMP-5-Duo, Human type original (221-240, Human type original (221-240) -Duo) (20 ⁇ g / ml) was added to human A172 cells.
  • LXR agonist (5 ⁇ M)
  • 9-cis-retinoic acid 5 ⁇ M
  • RXR agonist 5 ⁇ M
  • the amount of cholesterol was measured to examine the ability to extract cholesterol, and physiological saline was used as a control, and the results are shown in FIGS.
  • Macrophage specific RCT was examined. Mice were given intraperitoneal administration of PBS or peptide (FAMP-5) (50 mg / kg) for 5 days. Three days after the start of administration, 3H-cholesterol-labeled macrophages were administered into the abdominal cavity of the mouse, and the amount of 3H-cholesterol in blood and stool was measured. As a result, it was found that fecal excretion of 3H-cholesterol in macrophages was significantly increased by administration of peptide (FAMP-5) (FIG. 16).
  • FAMP-5 peptide
  • the cholesterol export peptide according to the present invention has an HDL producing action in addition to the cholesterol export action, it is effective for the prevention and treatment of cardiovascular diseases such as atherosclerosis.
  • the cholesterol export peptide of the present invention can be applied as a pharmaceutical product either as a single substance, as a peptide-lipid mixture, or as a pharmaceutical composition in combination with other drugs containing these.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Obesity (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a peptide which has an effect of promoting cholesterol efflux and another effect of generating HDL. This cholesterol-efflux peptide has an effect of generating HDL in addition to the effect of promoting cholesterol efflux. A medicinal composition that comprises the aforesaid cholesterol-efflux peptide as the main active ingredient is useful in promoting cholesterol efflux, increasing serum HDL concentration, activating LCAT and promoting RCT and, therefore, can be used for preventing and treating cardiovascular diseases, for example, angina, hypertension, hyperlipemia such as hypercholesterolemia and arterial sclerosis such as atherosclerosis, cardiovascular diseases relating to cardiovascular disorders that are induced by medical treatments using a balloon, a stent or the like such as re-stenosis caused by atherosclerotic plaque, and disorders related thereto.

Description

コレステロ-ル搬出ペプチドCholesterol export peptide
 この発明は、コレステロ-ル搬出ペプチドに関するものである。更に詳細には、この発明は、HDL産生作用を併せ持つコレステロ-ル搬出ペプチドに関するものである。 This invention relates to a cholesterol export peptide. More specifically, the present invention relates to a cholesterol export peptide that also has an HDL producing action.
 コレステロ-ルは、生体を構成し、維持していく上で必須の成分である。しかし、コレステロ-ル自体は、脂質の1種であることから、水が主体の血液には溶解しないので、そのままの状態では血液で運搬することができない。そこで、コレステロ-ルは、生体内では、アポリポタンパク質と結合してリポタンパク質という複合体の状態で血液中を運搬されている。このリポタンパク質は、一般的に、アポリポタンパク質粒子の密度・比重などにより、カイロミクロン、超低比重リポタンパク質(VLDL)、低比重リポタンパク質(LDL)および高比重リポタンパク質(HDL)の4つに大きく分類されている。 ¡Cholesterol is an essential component for constituting and maintaining a living body. However, since cholesterol is a kind of lipid, water does not dissolve in the main blood, and cannot be transported with blood as it is. Therefore, cholesterol is transported in the blood in the form of a complex called lipoprotein by binding to apolipoprotein in vivo. This lipoprotein is generally classified into four types: chylomicron, very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) depending on the density and specific gravity of apolipoprotein particles. Largely classified.
 これらのリポタンパク質のうち、低比重リポタンパク質(LDL)および高比重リポタンパク質(HDL)が血液中でのコレステロ-ルの運搬に主に関わっている。低比重リポタンパク質(LDL)は、コレステロ-ルを細胞に運搬するという重要な役割を果たしている。一方、高比重リポタンパク質(HDL)は、コレステロ-ルを細胞から肝臓に運搬するという重要な役割を果たしている。したがって、正常な状態では、LDLとHDLとは均衡が取れていて、コレステロ-ルの受け渡しと排除とが適切に行われて問題は生じないようになっている。ところが、一旦LDLとHDLとの均衡が崩れると、体内でのコレステロ-ルの制御ができなくなり、体内で様々な異常、障害、疾病などを起因することが知られている。 Among these lipoproteins, low density lipoprotein (LDL) and high density lipoprotein (HDL) are mainly involved in the transport of cholesterol in the blood. Low density lipoprotein (LDL) plays an important role in delivering cholesterol to cells. On the other hand, high density lipoprotein (HDL) plays an important role in transporting cholesterol from cells to the liver. Therefore, under normal conditions, LDL and HDL are balanced, and the delivery and removal of cholesterol is properly performed so that no problems arise. However, once the balance between LDL and HDL breaks down, it is known that cholesterol cannot be controlled in the body, causing various abnormalities, disorders, and diseases in the body.
 特に低比重リポタンパク質(LDL)コレステロ-ルの高値は、動脈硬化症などの心血管疾患の極めて高いリスクファクタ-であることはよく知られている。この意味で、低比重リポタンパク質(LDL)コレステロ-ルが「悪玉コレステロ-ル」と通称されている所以である。そこで、心血管疾患を予防または治療するための第一選択肢として、このLDLコレステロ-ルを低下させるLDLコレステロ-ル低下療法が適用される。このLDLコレステロ-ル低下療法には、一般に、スタチンなどのコレステロ-ル低下薬などの投与によって行われる。しかし、かかるLDLコレステロ-ル低下療法だけでは、心血管疾患の発症を十分には抑制できていないのが現状である(例えば、非特許文献1参照)。 Especially, it is well known that the high value of low density lipoprotein (LDL) cholesterol is an extremely high risk factor for cardiovascular diseases such as arteriosclerosis. In this sense, low density lipoprotein (LDL) cholesterol is commonly referred to as “bad cholesterol”. Therefore, as a first option for preventing or treating cardiovascular disease, LDL cholesterol lowering therapy for lowering LDL cholesterol is applied. This LDL cholesterol lowering therapy is generally performed by administration of a cholesterol lowering drug such as a statin. However, the current situation is that the onset of cardiovascular disease cannot be sufficiently suppressed by such LDL cholesterol lowering therapy alone (see, for example, Non-Patent Document 1).
 一方、上記したように、高比重リポタンパク質(HDL)は、コレステロ-ルを細胞から肝臓に運搬する”いわゆるコレステロ-ル逆転送系“において重要な役割、すなわち組織コレステロ-ルのスカベンジャ-としての重要な役割を果たしている。このことから、高比重リポタンパク質(HDL)コレステロ-ルは、低比重リポタンパク質(LDL)コレステロ-ルが「悪玉コレステロ-ル」と通称されているのに対して、「善玉コレステロ-ル」と通称されている。したがって、高比重リポタンパク質(HDL)コレステロ-ルの血中濃度は、規定濃度よりも高い値が必要とされる。反対に、HDLコレステロ-ルが規定値よりも低値になると、十分な量のコレステロ-ルが肝臓に運搬されず分解されなくなり、その結果血液中のコレステロ-ル量が増加して、心血管疾患リスクファクタ-の1つになることが示されている(例えば、非特許文献2、3参照)。したがって、LDLコレステロ-ル低下療法の次の治療標的として、HDLコレステロ-ルの作用増強療法が注目を浴びている(例えば、非特許文献4、5参照)。 On the other hand, as described above, high-density lipoprotein (HDL) plays an important role in the so-called cholesterol reverse transfer system that transports cholesterol from cells to the liver, that is, as a scavenger for tissue cholesterol. Plays an important role. For this reason, high density lipoprotein (HDL) cholesterol is called “good cholesterol”, whereas low density lipoprotein (LDL) cholesterol is commonly referred to as “bad cholesterol”. It is commonly called. Therefore, the blood concentration of high density lipoprotein (HDL) cholesterol is required to be higher than the prescribed concentration. On the other hand, if the HDL cholesterol is lower than the specified value, a sufficient amount of cholesterol is not transported to the liver and is not decomposed, resulting in an increase in the amount of cholesterol in the blood, resulting in cardiovascular It has been shown to be one of disease risk factors (see, for example, Non-Patent Documents 2 and 3). Therefore, HDL cholesterol enhancing action therapy is attracting attention as the next therapeutic target of LDL cholesterol lowering therapy (see, for example, Non-Patent Documents 4 and 5).
 現在、HDLコレステロ-ルの作用増強療法としては、HDLコレステロ-ルの増加薬としてのスタチン類、コレステロ-ルエステル転送タンパク阻害薬などの薬物投与療法が実施されている。しかし、これらはいずれも十分な効果を上げているとはいえない。つまり、現在入手できるコレステロ-ル予防・治療用薬は、満足できるHDLコレステロ-ル増加作用効果を奏することができていないのが現状である(例えば、非特許文献1参照)。 Currently, as HDL cholesterol enhancing action therapy, statins as HDL cholesterol increasing agents, drug administration therapy such as cholesterol ester transfer protein inhibitors are being carried out. However, none of these are sufficiently effective. In other words, currently available drugs for preventing and treating cholesterol do not have a satisfactory HDL cholesterol increasing effect (see Non-Patent Document 1, for example).
 一方、HDL またはその主要タンパク成分であるアポリポタンパク質A-I(ApoA-I)が、アテロ-ム性動脈硬化症状を予防することを示すインビボ(in vivo)での実験デ-タが報告されている。つまり、ヒトにおいて、血清ApoA-I(配列番号1)とアテロ-ム形成とは反比例の関係にあること(例えば、非特許文献2、6、特許文献1参照)や、HDLの構成成分がアテロ-ム性動脈硬化のリスクを減少する(例えば、非特許文献7、特許文献1参照)が明らかにされてきた。また、HDL またはApoA-Iが、プラ-クの退縮を生起することも明らかにされてきた(例えば、非特許文献8、9参照)。これらの知見から、HDLおよびその主要タンパク成分であるアポリポタンパク質であるアポリポタンパク質A-I(ApoA-I)自体を治療標的とした研究開発も進められてきた。 On the other hand, in-vivo experimental data showing that apolipoprotein AI (ApoA-I), which is HDL タ ン パ ク or its main protein component, prevents atherosclerosis symptoms have been reported. Yes. That is, in humans, serum ApoA-I (SEQ ID NO: 1) and atherogenesis are in an inversely proportional relationship (see, for example, Non-Patent Documents 2 and 6 and Patent Document 1), and HDL components are -It has been clarified that the risk of atherosclerosis is reduced (see, for example, Non-Patent Document 7 and Patent Document 1). It has also been clarified that HDL or ApoA-I causes plaque regression (see, for example, Non-Patent Documents 8 and 9). Based on these findings, research and development have been promoted targeting therapeutic targets of apolipoprotein AI (ApoA-I) itself, which is apolipoprotein which is HDL and its main protein component.
 これらの研究開発の結果、HDL作用を増強するための合成HDL (reconstituted high density lipoprotein: rHDL)が各種作製されている(例えば、非特許文献10参照)。かかるrHDLとしては、例えば、ヒト血漿または血清を処理して一連の超遠心(ultracentrifugation)処理にて単離されたHDL(例えば、非特許文献11参照)、クロマトグラフィ-等の常套の精製手段を用いて精製したアポリポタンパク質A-I(ApoA-I)(例えば、特許文献2および非特許文献12参照)などが挙げられる。その他、ApoA-Iまたはその変異体も遺伝子組替えにより作製されている(例えば、特許文献1、5および非特許文献13参照)。 As a result of these research and development, various synthetic HDL (reconstituted high density lipoprotein: rHDL) for enhancing HDL action have been produced (for example, see Non-Patent Document 10). As such rHDL, for example, a conventional purification means such as HDL (see, for example, Non-Patent Document 11), chromatography, etc., which is isolated by a series of ultracentrifugation treatment after treating human plasma or serum, is used. And purified apolipoprotein AI (ApoA-I) (see, for example, Patent Document 2 and Non-Patent Document 12). In addition, ApoA-I or a mutant thereof is also produced by gene recombination (see, for example, Patent Documents 1 and 5 and Non-Patent Document 13).
 上記のように作製されたHDLまたはApoA-Iは、脂質と組み合わせて各種の合成HDL (rHDL) が調製されている。かかるrHDLとしては、例えば、血漿とApoA-Iと大豆レシチンとから作製されたrHDL(特許文献6)、ApoA-Iと、卵もしくは大豆から抽出したホスファチジルコリンとから作製されたrHDL(特許文献7)、ApoA-Iとジミリストイルホスファチジルコリン(DMPC)とから作製されたrHDL(例えば、非特許文献14参照)などを挙げることができる。これらの他に、本発明者らによって作製されたrHDLとして、アポリポタンパク質A-I(ApoA-I)と1-パルミトイル-2-オレオイルホスファチジルコリン (POPC) とから作製されたrHDL(POPC/ApoA-I)(例えば、非特許文献1、15参照)や、上記rHDL(POPC/ApoA-I)に活性リン脂質の一つであるスフィンゴシン-1-リン酸 (sphingosine-1-phosphate: SIP) を加えた新型rDHL(POPC/SIP/ApoA-I)などが挙げられる(例えば、非特許文献3参照)。本発明者らによって作製されたrHDL(POPC/ApoA-I)は、マクロファ-ジとの共培養により、細胞内に蓄積していた余分なコレステロ-ルの引き抜きが確認された(例えば、非特許文献1、3参照)。また、この新型rHDL(POPC/SIP/ApoA-I)は、インビトロ(in vitro)においてコレステロ-ルの引き抜き作用に加えて、冠動脈内皮細胞の管腔形成促進作用を示した(例えば、非特許文献15参照)。このような結果の他に、rHDL (ApoA-I) の注入(infusion)により、血漿高比重リポタンパク質抗炎症作用とコレステロ-ル搬出能が増加したとの結果が得られたことから、rHDL (ApoA-I) の注入(infusion)は、潜在的なアテロ-ム形成予防効果を有している可能性も示された(例えば、非特許文献16参照)。このようなrHDLについての結果から、rHDLは注目を浴びてきている。 The HDL or ApoA-I produced as described above has been prepared various synthetic HDL (rHDL) in combination with lipids. Examples of such rHDL include rHDL prepared from plasma, ApoA-I and soybean lecithin (Patent Document 6), and rHDL prepared from ApoA-I and phosphatidylcholine extracted from egg or soybean (Patent Document 7). And rHDL produced from ApoA-I and dimyristoylphosphatidylcholine (DMPC) (see, for example, Non-Patent Document 14). In addition to these, as rHDL produced by the present inventors, rHDL (POPC / ApoA-) produced from apolipoprotein AI (ApoA-I) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) I) (see, for example, Non-Patent Documents 1 and 15) and the above rHDL (POPC / ApoA-I), sphingosine-1-phosphate (SIP), one of the active phospholipids, is added And new rDHL (POPC / SIP / ApoA-I) (see Non-Patent Document 3, for example). In rHDL (POPC / ApoA-I) produced by the present inventors, it was confirmed that extra cholesterol accumulated in cells was extracted by co-culture with macrophages (for example, non-patented) References 1 and 3). Further, this new type of rHDL (POPC / SIP / ApoA-I) showed an action of promoting the formation of coronary endothelial cells in vitro in addition to the action of pulling out cholesterol in vitro (for example, non-patent literature) 15). In addition to these results, rHDL (ApoA-I) infusion resulted in increased plasma high-density lipoprotein anti-inflammatory action and cholesterol removal ability. It has also been shown that infusion of ApoA-I) sputum may have a potential preventive effect on atherogenesis (see, for example, Non-Patent Document 16). From the results of rHDL, rHDL has attracted attention.
 しかし、一方では、アポリポタンパク質A-I(ApoA-I)またはHDLを医薬品として実際に使用するには、様々な問題点があることも浮き彫りになってきた。ApoA-Iは、243個のアミノ酸残基からなる大きな分子のタンパク質であることから、製造方法が複雑でかつ困難であり、その製造コストも高価になるとともに、保存中の安定性、生体内での活性物質の送達や半減期などの製造上ならびに再現性などにおける様々な困難な問題を解決しなければならないことも判明した(例えば、特許文献1参照)。 However, on the other hand, it has also been highlighted that there are various problems in actually using apolipoprotein AI (ApoA-I) or HDL as a medicine. Since ApoA-I is a large molecular protein consisting of 243 amino acid residues, its production method is complicated and difficult, its production cost is expensive, and stability during storage, in vivo It has also been found that various difficult problems in production and reproducibility such as delivery and half-life of the active substance must be solved (see, for example, Patent Document 1).
 他方、ApoA-I 自体がコレステロ-ル搬出作用を有しているとの有力な根拠から、ApoA-Iの構造または活性を疑似(mimic)する様々なペプチドが作製されてきた。かかる疑似ペプチドの設計に当たっては、ApoA-Iの鍵となる活性が、このタンパク質の独特の二次構造特性の多数の反復の存在、すなわちクラスA型の両親媒性αヘリックスに依存するとの報告(例えば、非特許文献17参照)に基づいて、クラスA型の両親媒性αヘリックスを形成するように焦点が当てられてきた。 On the other hand, various peptides that mimic the structure or activity of ApoA-I have been produced on the strong ground that ApoA-I itself has a cholesterol export function. In designing such pseudopeptides, it has been reported that the key activity of ApoA-I depends on the presence of a large number of repeats of the unique secondary structural properties of this protein, namely the class A amphipathic α-helix ( For example, see Non-Patent Document 17), the focus has been on forming a class A amphipathic α-helix.
 かかるApoA-I疑似ペプチドとしては、例えば、両親媒性αヘリックスを形成するようにGlu、Lysおよび Leuだけを完全に規則的に配置した22残基からなるApoA-Iの198-2192フラグメントと41%配列相同性を有するペプチド(ELKペプチド)(例えば、非特許文献18、19参照);16-24アミノ酸残基からなるLAPペプチドと呼ばれるApoA-Iとは配列相同性を有しないモデル両親媒性ペプチド(例えば、非特許文献20参照);ApoA-Iのへリックスと配列相同性がない18-24アミノ酸残基からなるペプチド(例えば、非特許文献21参照);ヒトApoA-Iヘリックスの配列に基づいたに基づいた共通する22アミノ酸残基を有するペプチド(例えば、非特許文献22、23参照)などが挙げられる。しかしながら、これまで作製されたApoA-I疑似ペプチドは、いずれもApoA-Iと同程度の活性を示すものはなく、医薬品として有用といえる程の活性を示すものはなかった(例えば、特許文献1参照)。 Such ApoA-I pseudopeptides include, for example, a 198-2192 fragment of ApoA-I consisting of 22 residues in which only Glu, Lys and Leu are regularly arranged so as to form an amphipathic α-helix. Peptide having% sequence homology (ELK peptide) (see, for example, Non-patent Documents 18 and 19); Model amphipathy having no sequence homology with ApoA-I called LAP peptide consisting of 16-24 amino acid residues Peptides (for example, see Non-patent Document 20); peptides consisting of 18-24 amino acid residues having no sequence homology with the ApoA-I helix (for example, see Non-patent Document 21); human ApoA-I helix sequences Peptides having 22 amino acid residues in common based on the above (see, for example, Non-Patent Documents 22 and 23). However, none of the ApoA-I pseudopeptides prepared so far show the same level of activity as ApoA-I, and none show the activity that can be said to be useful as a pharmaceutical (for example, Patent Document 1). reference).
 上記ApoA-I疑似ペプチドの他に、脂質の存在下で両親媒性αヘリックスを形成する15~29残基のアミノ酸残基、好ましくは22アミノ酸残基からなる「コア」ペプチドからなる多数のApoA-Iアゴニストが作製されている(例えば、特許文献1、5参照)。これらのApoA-Iアゴニストは、 活性にとって決定的であると提唱されている22-merの共通配列(Pro(P) Val(V) Leu(L) Asp(D) Glu(E) Phe(F) Arg(R) Glu(E) Lys(K) Leu(L) Asn(N) Glu(E) Glu(E) Leu(L) Glu(E) Ala(A) Leu(L) Lys(K) Gln(Q) Lys(K) Leu(L) Lys(K):配列番号2)(引用文献には配列番号75として引用されている。以後、「共通22-mer」という)の一次配列中の特定のアミノ酸残基を変えることにより、自然のApoA-Iの活性に近いまたはそれを上回る活性を示す合成ペプチドが得られたと記載されている(例えば、特許文献1、8参照)。さらに、この共通22-merペプチド中の3つの荷電アミノ酸残基(Glu-5、Lys-9及びGlu-13)を、疎水性ロイシン残基で置換することによって、文献から予測できなかったApoA-Iの構造および機能特性を持つ疑似ペプチドが得られたと記載されている(例えば、特許文献1、8参照)。これらの疑似ペプチドは、医薬品として有用な程度の活性を未だ有していないといわざるを得ない。 In addition to the ApoA-I pseudopeptide described above, a number of ApoA consisting of a “core” peptide consisting of 15 to 29 amino acid residues, preferably 22 amino acid residues, that form an amphipathic α-helix in the presence of lipids. -I agonists have been produced (see, for example, Patent Documents 1 and 5). These ApoA-I agonists are 22-mer consensus sequences (Pro (P) に と っ て Val (V) Leu (L) Asp (D) Glu (E) Phe (F) proposed to be critical for activity. Arg (R) Glu (E) Lys (K) Leu (L) Asn (N) Glu (E) Glu (E) Leu (L) Glu (E) Ala (A) Leu (L) Lys (K) Gln ( Q) Lys (K) Leu (L) Lys (K): SEQ ID NO: 2) (cited in the cited literature as SEQ ID NO: 75, hereinafter referred to as “common 22-mer”). It is described that synthetic peptides showing activity close to or exceeding the activity of natural ApoA-I were obtained by changing amino acid residues (see, for example, Patent Documents 1 and 8). Furthermore, by replacing three charged amino acid residues (Glu-5, Lys-9 and Glu-13) in this common 22-mer peptide with hydrophobic leucine residues, ApoA- It is described that a pseudo peptide having the structure and functional characteristics of I was obtained (see, for example, Patent Documents 1 and 8). It must be said that these pseudo-peptides still have no activity that is useful as pharmaceuticals.
 その上、アポリポタンパク質ApoA-I(ApoA-I)は、その中央ヘリツクスのみがABCA1 (ATP-binding castle transporter A1)を媒介する脂質排出を促進させることができるけれども、脂質排出やHDL産生に対して機能的な相互作用を発揮させるためには、ApoA-IとABCA1との間には十分な長さのアミノ酸配列が必要であり、その長さは220-231残基であるとの報告がなされている(非特許文献24)。 In addition, the apolipoprotein ApoA-I (ApoA-I), although only its central helix can promote lipid excretion mediated by ABCA1 (ATP-binding castle transporter A1) In order to exert a functional interaction, a sufficiently long amino acid sequence is required between ApoA-I and ABCA1, and it has been reported that the length is 220-231 residues. (Non-patent Document 24).
アメリカ特許第6004925号US Patent No. 6004925 アメリカ特許第5089602号US Patent No. 5089602 フランス特許2343251号French patent 2343251 WO/1994/013819WO / 1994/013819 WO/1999/016409WO / 1999/016409 アメリカ特許第7053049号US Patent No. 7053049 アメリカ特許第5128318号、同第5652339号US Pat. Nos. 5,128,318 and 5,652,339 特表2001-517710号、特表2001-518282号、特表2003-525565号、特表2003-525840号、特表2001-522781号Special table 2001-517710, Special table 2001-518282, Special table 2003-525565, Special table 2003-525840, Special table 2001-522781
 そこで、先行技術に鑑みて、本発明者らは、ヒトアポリポタンパク質A-I(ApoA-I)の活性に近似した活性を有する合成ペプチドを検討した結果、ApoA-I の中央ヘリックスを構成するアミノ酸配列のアミノ酸残基の1部を変異させたある種の合成ペプチドがコレステロ-ル搬出能を有することを見出して、この発明を完成した。さらに、本発明者らは、かかる合成ペプチドが、コレステロ-ル搬出能ばかりではなく、HDL産生能をも併せて持つことを見出して、この発明を完成した。 Therefore, in view of the prior art, the present inventors have studied a synthetic peptide having an activity similar to that of human apolipoprotein AI (ApoA-I). As a result, the amino acids constituting the central helix of ApoA-I The present invention was completed by finding that certain synthetic peptides in which a part of the amino acid residues of the sequence were mutated had the ability to export cholesterol. Furthermore, the present inventors have found that such a synthetic peptide has not only the ability to export cholesterol but also the ability to produce HDL, thereby completing the present invention.
 したがつて、この発明は、ApoA-Iの中央ヘリックスを構成するアミノ酸配列のアミノ酸残基の1部を変異させた、コレステロ-ル搬出能を有するとともに、HDL産生能を併せ持つコレステロ-ル搬出ペプチドを提供することを目的としている。 Therefore, the present invention relates to a cholesterol export peptide having a cholesterol export ability and a HDL production ability, in which a part of the amino acid residues of the amino acid sequence constituting the central helix of ApoA-I is mutated. The purpose is to provide.
 さらに具体的には、この発明は、下記一般式 [I] で表されるコレステロ-ル搬出ペプチドを提供することを目的としている。 More specifically, an object of the present invention is to provide a cholesterol export peptide represented by the following general formula [I].
 その上、この発明は、上記コレステロ-ル搬出ペプチド[I]を有効成分として含有する医薬組成物を提供することを目的としている。 Moreover, an object of the present invention is to provide a pharmaceutical composition containing the above cholesterol export peptide [I] as an active ingredient.
 この発明は、ApoA-Iの中央ヘリックスを構成するアミノ酸配列のアミノ酸残基の1部を変異させた、コレステロ-ル搬出能を有するある種の合成ペプチドであるコレステロ-ル搬出ペプチドを提供する。 This invention provides a cholesterol export peptide, which is a certain synthetic peptide having a cholesterol export ability, in which a part of the amino acid residues of the amino acid sequence constituting the central helix of ApoA-I is mutated.
 また、この発明は、その好ましい態様として、コレステロ-ル搬出能を有すると共に、HDL産生能を併せ持つ合成ペプチドであるコレステロ-ル搬出ペプチドを提供する。 In addition, as a preferred embodiment, the present invention provides a cholesterol export peptide which is a synthetic peptide having a cholesterol export capability and an HDL production capability.
 さらに、この発明は、その好ましい態様として、一般式[I]: Furthermore, the present invention has a preferred embodiment represented by the general formula [I]:
 H-X1-X2-X3-His-Leu-X4-Thr-Leu-X5-Glu-Lys-Ala-
X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-
X18-OH                 [I]
H-X1-X2-X3-His-Leu-X4-Thr-Leu-X5-Glu-Lys-Ala-
X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-
X18-OH [I]
  [式中、X1はAla、単結合(”-”)または一般式[Ia]: [Where X1 is Ala, single bond (“-”) or general formula [Ia]:
       X1e-X1d-X1c-X1b-X1a-      [Ia] X1e-X1d-X1c-X1b-X1a- [Ia]
 (式中、X1aはAlaまたは単結合(”-”)を意味し 、X1bはLys、Argまたは単結合(”-”)を意味し、X1cはAlaまたは単結合(”-”)を意味し、X1dはHisまたは単結合(”-”)を意味し、およびX1eはTyrまたは単結合(”-”)を意味する。)を意味し、
 X2はThr、Leu、LysまたはSerを意味し、
 X3はGlu、ThrまたはAspを意味し、
 X4はSer、PheまたはLysを意味し、
 X5はSer、Tyr、Trp、Phe またはGlyを意味し、
 X6は単結合(”-”)、Lys、LeuまたはArgを意味し、
 X7は単結合(”-”)、ProまたはLysを意味し、
 X8は単結合(”-”)またはAlaを意味し、
 X9は単結合(”-”)、Pheまたは Leuを意味し、
 X10は単結合(”-”)、Glu、GlnまたはAspを意味し、
 X11は単結合(”-”)またはAspを意味し、
 X12は単結合(”-”)またはLeuを意味し、
 X13は単結合(”-”)、Arg、LeuまたはGlyを意味し、
 X14は単結合(”-”)、GlnまたはHisを意味し、
 X15は単結合(”-”)、Gly、LysまたはSerを意味し、
 X16は単結合(”-”)、LeuまたはHisを意味し、
 X17は単結合(”-”)、Leu 、Metまたは一般式[Ib]:
(In the formula, X1a means Ala or a single bond ("-"), X1b means Lys, Arg or a single bond ("-"), and X1c means Ala or a single bond ("-"). , X1d means His or a single bond ("-"), and X1e means Tyr or a single bond ("-").)
X2 means Thr, Leu, Lys or Ser,
X3 means Glu, Thr or Asp
X4 means Ser, Phe or Lys
X5 means Ser, Tyr, Trp, Phe or Gly
X6 represents a single bond ("-"), Lys, Leu or Arg,
X7 represents a single bond ("-"), Pro or Lys,
X8 means single bond ("-") or Ala,
X9 means a single bond ("-"), Phe or Leu,
X10 means a single bond ("-"), Glu, Gln or Asp,
X11 means single bond ("-") or Asp,
X12 means single bond ("-") or Leu,
X13 represents a single bond ("-"), Arg, Leu or Gly,
X14 means single bond ("-"), Gln or His,
X15 means a single bond ("-"), Gly, Lys or Ser,
X16 means single bond ("-"), Leu or His,
X17 is a single bond ("-"), Leu, Met or general formula [Ib]:
     X17a-X17b-X17c-X1d          [Ib]
 (式中、X17aは単結合(”-”)、Leu またはMetを意味し、X17bはPro、Tyrまたは単結合(”-”)を意味し、X17c はValまたは単結合(”-”)を意味し、ならびにはX1dはLeuまたは単結合(”-”)を意味する。)を意味し、
X17a-X17b-X17c-X1d [Ib]
(In the formula, X17a means a single bond ("-"), Leu or Met, X17b means Pro, Tyr or a single bond ("-"), X17c means Val or a single bond ("-") As well as X1d means Leu or a single bond ("-"))
 ただし、記号X6-X17、X1a-X1eおよび記号X17a-X17dがいずれも単結合(”-”)を意味する場合は、それらの単結合は全体として1個の単結合(”-”)を意味し、また、同時にX1がAla、X2がThr、X3がGlu、X4がSer、X5がSer、X6がLys、X7がPro、X8がAla、X9がLeu、X10がGlu、X11がAsp、X12がLeu、X13がArg、X14がGln、X15がGly、X16がLeu、およびX17がLeuである場合を除くものとする。]
で表されるペプチド;または一般式[II]:
However, when the symbols X6-X17, X1a-X1e and the symbols X17a-X17d all mean single bonds ("-"), these single bonds as a whole mean one single bond ("-"). At the same time, X1 is Ala, X2 is Thr, X3 is Glu, X4 is Ser, X5 is Ser, X6 is Lys, X7 is Pro, X8 is Ala, X9 is Leu, X10 is Glu, X11 is Asp, X12 Is Leu, X13 is Arg, X14 is Gln, X15 is Gly, X16 is Leu, and X17 is Leu. ]
Or a peptide represented by the general formula [II]:
 A -X20 (X21-OH) - A    [II]
  [式中、Aは、一般式[IIa]:
H-X22-X23-X24-X25-X26-X27-X28-X29-X30-X31-X32-
X33-X34-X35-X36-X37-X38-X39-X40-X41-X42-X43-X44-
X45-X46-                      [IIa]
A -X20 (X21-OH)-A [II]
[Wherein A represents the general formula [IIa]:
H-X22-X23-X24-X25-X26-X27-X28-X29-X30-X31-X32-
X33-X34-X35-X36-X37-X38-X39-X40-X41-X42-X43-X44-
X45-X46- [IIa]
 (式中、X22はAlaまたはValを意味し、X23はThr, Leu, LysまたはSerを意味し、X24はGlu, ThrまたはAspを意味し、X25はHisまたはSerを意味し、X26はLeuまたはPheを意味し、X27はSer, PheまたはLysを意味し、X28はThrまたはValを意味し、X29はLeuまたはSerを意味し、X30はSer, Gly, Phe, TyrまたはTrpを意味し、X31はGluまたはLeuを意味し、X32はLysまたはSerを意味し、X33はAlaを意味し、X34はLys, Leu, Argまたは単結合(“-“)を意味し、X35はPro, Glu, Lysまたは単結合(“-“) を意味し、X36はAla, Gluまたは単結合(“-“)を意味し、X37はLeu, Tyrまたは単結合(“-“)を意味し、X38はGlu, Gln, Asp, Thrまたは単結合(“-“)を意味し、X39はAsp, Lysまたは単結合(“-“)を意味し、X40はLeu, Lysまたは単結合(“-“)を意味し、X41はArg, Gly, Leuまたはを単結合(“-“)を意味し、X42はGln, Leu, Lys, Hisまたは結合(“-“)を意味し、X43はGly, Leu, Lys, Serまたは結合(“-“)を意味し、X44はLeu, Hisまたは結合(“-“)を意味する。)を意味し、
X20はLys等のアミノ酸残基を意味し、
X21はLeuまたはAla等のアミノ酸残基を意味する。)
で表される二量体;または一般式[III]:
(Wherein X22 means Ala or Val, X23 means Thr, Leu, Lys or Ser, X24 means Glu, Thr or Asp, X25 means His or Ser, and X26 means Leu or Means Phe, X27 means Ser, Phe or Lys, X28 means Thr or Val, X29 means Leu or Ser, X30 means Ser, Gly, Phe, Tyr or Trp, X31 Means Glu or Leu, X32 means Lys or Ser, X33 means Ala, X34 means Lys, Leu, Arg or single bond (“-“), X35 means Pro, Glu, Lys Or a single bond ("-"), X36 means Ala, Glu or a single bond ("-"), X37 means Leu, Tyr or a single bond ("-"), X38 means Glu, Gln, Asp, Thr or single bond ("-"), X39 means Asp, Lys or single bond ("-"), X40 means Leu, Lys or single bond ("-") , X41 means Arg, Gly, Leu or single bond ("-"), X42 means Gln, Leu, Lys, His or bond ( "-"), X43 means Gly, Leu, Lys, Ser or bond ("-"), X44 means Leu, His or bond ("-")),
X20 means an amino acid residue such as Lys,
X21 means an amino acid residue such as Leu or Ala. )
Or a general formula [III]:
 (A)2-X22 (X23-OH)-(A)     [III]
  (式中、Aは前記と同じ意味を有し、
X22 はLys等のアミノ酸残基を意味し、および
X23はLeuまたはAla等のアミノ酸残基を意味する。)
で表される四量体からなるコレステロ-ル搬出ペプチドを提供する。
(A) 2 -X22 (X23-OH)-(A) 2 [III]
Wherein A has the same meaning as above,
X22 means an amino acid residue such as Lys, and
X23 means an amino acid residue such as Leu or Ala. )
A cholesterol export peptide comprising a tetramer represented by the formula:
 その上、この発明は、上記コレステロ-ル搬出ペプチドを有効成分として含有する医薬組成物を提供する。 Moreover, the present invention provides a pharmaceutical composition containing the above cholesterol export peptide as an active ingredient.
 この発明のコレステロ-ル搬出ペプチドは、コレステロ-ルを搬出する作用効果と、HDL産生能を併せ持つことから、心血管疾患の予防および治療に有効である。 The cholesterol-carrying peptide of the present invention is effective in preventing and treating cardiovascular diseases because it has both the effect of carrying out cholesterol and the ability to produce HDL.
ヒト A172 細胞において、ペプチド(FAMP)とApoA-I とのコレステロ-ル引き抜き能ならびにTO901317と9cis-レチノイン酸(9cisRA)刺激によりペプチド(FAMP)のコレステロ-ル引き抜き作用が著しく増加することを示す図(実施例3)。Diagram showing the ability of peptide (FAMP) and ApoA-I to pull cholesterol and the ability of peptide (FAMP) to pull cholesterol significantly upon stimulation with TO901317 and 9cis-retinoic acid (9cisRA) in human A172 cells (Example 3). チャイニ-ズハムスタ-卵巣由来細胞(CHO細胞)ldlA7株におけるペプチド(FAMP-5:Type2S9Y)のコレステロ-ル引き抜き作用を示す図(実施例4)。FIG. 10 is a graph showing the cholesterol pulling action of a peptide (FAMP-5: Type 2S9Y) in a Chinese hamster ovary-derived cell (CHO cell) ldlA7 strain (Example 4). 実施例1で合成したペプチド(FAMP)を用いて、ヒト末梢血単球由来マクロファ-ジにおける健常者由来細胞ならびに ABCA1 欠損症患者由来細胞によるコレステロ-ル引き抜き能示す図。The figure which shows the cholesterol pulling-out ability by the healthy subject origin cell and human ABCA1 deficiency patient origin cell in the human peripheral blood monocyte origin macrophage using the peptide (FAMP) synthesize | combined in Example 1. FIG. ヒトA172細胞による各ペプチド(20μg/ml)のTO901317と9cis-レチノイン酸との刺激なしまたは刺激有りの条件下でのコレステロ-ル引き抜き能を示す図(実施例6)。FIG. 11 shows the ability of human A172 cells to extract cholesterol in the absence of or with stimulation of TO901317 and 9cis-retinoic acid for each peptide (20 μg / ml) (Example 6). ヒトA172細胞による各ペプチド(20μg/ml)のTO901317と9cis-レチノイン酸との刺激下でのコレステロ-ル引き抜き能を示す図(実施例7)。The figure which shows the cholesterol extraction ability under stimulation of TO901317 and 9cis-retinoic acid of each peptide (20 μg / ml) by human A172 cells (Example 7). 実施例1で作成したペプチド(FAMP)(2 mg/ml)の存在下および非存在下でのキャピラリ-電気泳動法によるヒト血漿リポタンパク質の解析結果を示す図。(実施例9)The figure which shows the analysis result of the human plasma lipoprotein by the capillary electrophoresis method in the presence and absence of the peptide (FAMP) (2 mg / ml) prepared in Example 1. Example 9 マウスにペプチドを10日間持続投与した場合の高速液体クロマトグラフィ-(HPLC)による血漿リポタンパク質の解析結果を示す図(実施例10)。The figure which shows the analysis result of the plasma lipoprotein by the high performance liquid chromatography (HPLC) when the peptide is continuously administered to the mouse for 10 days (Example 10). ペプチドをマウスへ経静脈投与した場合のキャピラリ-電気泳動法によるマウス血漿リポタンパク質の解析結果を示す図。(実施例11)The figure which shows the analysis result of mouse | mouth plasma lipoprotein by the capillary-electrophoresis method at the time of administering a peptide intravenously to a mouse | mouth. (Example 11) ペプチドをマウスへ腹腔内投与した場合のキャピラリ-電気泳動法によるマウス血漿リポタンパク質の解析結果を示す図(実施例11)。The figure which shows the analysis result of the mouse | mouth plasma lipoprotein by the capillary electrophoresis method when a peptide is intraperitoneally administered to a mouse | mouth (Example 11). ヒトA172細胞による各ペプチド(20μg/ml)のTO901317、LXR agonist、9-cis-レチノイン酸、RXR agonistによる刺激下でのコレステロ-ル引き抜き能を示す図(実施例12)。FIG. 10 shows the ability of each peptide (20 μg / ml) to be extracted by human A172 cells under stimulation with TO901317, LXR agonist, 9-cis-retinoic acid, and RXR agonist (Example 12). ヒト A172 細胞に対するペプチド(FAMP-5) ならびにapoA-IのTO901317、LXR agonist (5μM)、9-cis-レチノイン酸、RXR agonistでの刺激によるProbunol (10 μM)の非存在下または存在下でのコレステロ-ル引き抜き能を示す図(実施例13)。Peptide (FAMP-5) に 対 す る on human A172 cells and apoA-I TO901317, LXR agonist (5μM), 9-cis-retinoic acid, in the absence or presence of Probunol (10 μM) upon stimulation with RXR agonist The figure which shows the cholesterol extraction ability (Example 13). ヒト A172 細胞に対する各ペプチドのTO901317、LXR agonist (5μM)、9-cis-レチノイン酸、RXR agonistによる刺激下でのコレステロ-ル引き抜き能を示す図(実施例14)。The figure which shows the cholesterol extraction ability under the stimulation by TO901317, LXR agonist (5μM), 9-cis-retinoic acid, RXR agonist of each peptide for human A172 cells (Example 14). ヒト A172 細胞に対する各ペプチドのTO901317、LXR agonist (5μM)、9-cis-レチノイン酸、RXR agonistでの刺激によるProbunol (10μM)の非存在下または存在下でのコレステロ-ル引き抜き能を示す図(実施例14)。Diagram showing the ability of each peptide to pull cholesterol in the absence or presence of Probunol® (10 μM) by stimulation with TO901317, LXR®agonist® (5 μM), 9-cis-retinoic acid, RXR®agonist on human A172 cells Example 14). ペプチド(FAMP-5) のアガロースリボ蛋白電気泳動を用いた実験結果を示す図(実施例15)。The figure which shows the experimental result using the agarose riboprotein electrophoresis of a peptide (FAMP-5) (Example 15). ペプチド(FAMP-5) のマウス下肢虚血モデルに対する血流増加を示す図(実施例16)。The figure (Example 16) which shows the blood flow increase with respect to a mouse | mouth leg ischemia model of a peptide (FAMP-5) sputum. マクロファージ中の3H-コレステロールの便中排泄が有意に上昇したことを示す図(実施例17)。The figure which shows that the fecal excretion of 3H-cholesterol in a macrophage increased significantly (Example 17).
 この発明に係るコレステロ-ル搬出ペプチドは、一般式[I]:
H-X1-X2-X3-His-Leu-X4-Thr-Leu-X5-Glu-Lys-Ala-
X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-
X18-OH                 [I]
The cholesterol export peptide according to the present invention has the general formula [I]:
H-X1-X2-X3-His-Leu-X4-Thr-Leu-X5-Glu-Lys-Ala-
X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-
X18-OH [I]
  [式中、X1はAla、単結合(”-”)または一般式[Ia]:
    X1e-X1d-X1c-X1b-X1a-      [Ia]
[Wherein X1 is Ala, single bond ("-") or general formula [Ia]:
X1e-X1d-X1c-X1b-X1a- [Ia]
 (式中、X1aはAlaまたは単結合(”-”)を意味し 、X1bはLys、Argまたは単結合(”-”)を意味し、X1cはAlaまたは単結合(”-”)を意味し、X1dはHisまたは単結合(”-”)を意味し、およびX1eはTyrまたは単結合(”-”)を意味する。)を意味し、
 X2はThr、Leu、LysまたはSerを意味し、
 X3はGlu、ThrまたはAspを意味し、
 X4はSer、PheまたはLysを意味し、
 X5はSer、Tyr、Trp、Phe またはGlyを意味し、
 X6は単結合(”-”)、Lys、LeuまたはArgを意味し、
 X7は単結合(”-”)、ProまたはLysを意味し、
 X8は単結合(”-”)またはAlaを意味し、
 X9は単結合(”-”)、Pheまたは Leuを意味し、
 X10は単結合(”-”)、Glu、GlnまたはAspを意味し、
 X11は単結合(”-”)またはAspを意味し、
 X12は単結合(”-”)またはLeuを意味し、
 X13は単結合(”-”)、Arg、LeuまたはGlyを意味し、
 X14は単結合(”-”)、GlnまたはHisを意味し、
 X15は単結合(”-”)、Gly、LysまたはSerを意味し、
 X16は単結合(”-”)、LeuまたはHisを意味し、
 X17は単結合(”-”)、Leu 、Metまたは一般式[Ib]:
(In the formula, X1a means Ala or a single bond ("-"), X1b means Lys, Arg or a single bond ("-"), and X1c means Ala or a single bond ("-"). , X1d means His or a single bond ("-"), and X1e means Tyr or a single bond ("-").)
X2 means Thr, Leu, Lys or Ser,
X3 means Glu, Thr or Asp
X4 means Ser, Phe or Lys
X5 means Ser, Tyr, Trp, Phe or Gly
X6 represents a single bond ("-"), Lys, Leu or Arg,
X7 represents a single bond ("-"), Pro or Lys,
X8 means single bond ("-") or Ala,
X9 means a single bond ("-"), Phe or Leu,
X10 means a single bond ("-"), Glu, Gln or Asp,
X11 means single bond ("-") or Asp,
X12 means single bond ("-") or Leu,
X13 represents a single bond ("-"), Arg, Leu or Gly,
X14 means single bond ("-"), Gln or His,
X15 means a single bond ("-"), Gly, Lys or Ser,
X16 means single bond ("-"), Leu or His,
X17 is a single bond ("-"), Leu, Met or general formula [Ib]:
   X17a-X17b-X17c-X1d          [Ib]
 (式中、X17aは単結合(”-”)、Leu またはMetを意味し、X17bはPro、Tyrまたは単結合(”-”)を意味し、X17c はValまたは単結合(”-”)を意味し、ならびにはX1dはLeuまたは単結合(”-”)を意味する。)を意味し、
X17a-X17b-X17c-X1d [Ib]
(In the formula, X17a means a single bond ("-"), Leu or Met, X17b means Pro, Tyr or a single bond ("-"), X17c means Val or a single bond ("-") As well as X1d means Leu or a single bond ("-"))
 ただし、記号X1a-X1eおよび記号X17a-X17dがいずれも単結合(”-”)を意味する場合は、それらの単結合は全体として1個の単結合(”-”)を意味し、また、同時にX1がAla、X2がThr、X3がGlu、X4がSer、X5がSer、X6がLys、X7がPro、X8がAla、X9がLeu、X10がGlu、X11がAsp、X12がLeu、X13がArg、X14がGln、X15がGly、X16がLeu、およびX17がLeuである場合を除くものとする。]
で表されるペプチド、または一般式[II]:
However, when the symbols X1a-X1e and X17a-X17d both mean a single bond ("-"), these single bonds as a whole mean one single bond ("-"), and At the same time, X1 is Ala, X2 is Thr, X3 is Glu, X4 is Ser, X5 is Ser, X6 is Lys, X7 is Pro, X8 is Ala, X9 is Leu, X10 is Glu, X11 is Asp, X12 is Leu, X13 Except Arg, X14 is Gln, X15 is Gly, X16 is Leu, and X17 is Leu. ]
Or a peptide represented by the general formula [II]:
 A -X20 (X21-OH) - A    [II]
  [式中、Aは、一般式[IIa]:
H-X22-X23-X24-X25-X26-X27-X28-X29-X30-X31-X32-
X33-X34-X35-X36-X37-X38-X39-X40-X41-X42-X43-
X44-X45-X46-                      [IIa]
A -X20 (X21-OH)-A [II]
[Wherein A represents the general formula [IIa]:
H-X22-X23-X24-X25-X26-X27-X28-X29-X30-X31-X32-
X33-X34-X35-X36-X37-X38-X39-X40-X41-X42-X43-
X44-X45-X46- [IIa]
 (式中、X22はAlaまたはValを意味し、X23はThr, Leu, LysまたはSerを意味し、X24はGlu, ThrまたはAspを意味し、X25はHisまたはSerを意味し、X26はLeuまたはPheを意味し、X27はSer, PheまたはLysを意味し、X28はThrまたはValを意味し、X29はLeuまたはSerを意味し、X30はSer, Gly, Phe, TyrまたはTrpを意味し、X31はGluまたはLeuを意味し、X32はLysまたはSerを意味し、X33はAlaを意味し、X34はLys, Leu, Argまたは単結合(“-“)を意味し、X35はPro, Glu, Lysまたは単結合(“-“) を意味し、X36はAla, Gluまたは単結合(“-“)を意味し、X37はLeu, Tyrまたは単結合(“-“)を意味し、X38はGlu, Gln, Asp, Thrまたは単結合(“-“)を意味し、X39はAsp, Lysまたは単結合(“-“)を意味し、X40はLeu, Lysまたは単結合(“-“)を意味し、X41はArg, Gly, Leuまたはを単結合(“-“)を意味し、X42はGln, Leu, Lys, Hisまたは結合(“-“)を意味し、X43はGly, Leu, Lys, Serまたは結合(“-“)を意味し、X44はLeu, Hisまたは結合(“-“)を意味する。)を意味し、
X20はLys等のアミノ酸残基を意味し、および
X21はLeuまたはAla等のアミノ酸残基を意味する。)
で表される二量体;または一般式[III]:
(Wherein X22 means Ala or Val, X23 means Thr, Leu, Lys or Ser, X24 means Glu, Thr or Asp, X25 means His or Ser, and X26 means Leu or Means Phe, X27 means Ser, Phe or Lys, X28 means Thr or Val, X29 means Leu or Ser, X30 means Ser, Gly, Phe, Tyr or Trp, X31 Means Glu or Leu, X32 means Lys or Ser, X33 means Ala, X34 means Lys, Leu, Arg or single bond (“-“), X35 means Pro, Glu, Lys Or a single bond ("-"), X36 means Ala, Glu or a single bond ("-"), X37 means Leu, Tyr or a single bond ("-"), X38 means Glu, Gln, Asp, Thr or single bond ("-"), X39 means Asp, Lys or single bond ("-"), X40 means Leu, Lys or single bond ("-") , X41 means Arg, Gly, Leu or single bond ("-"), X42 means Gln, Leu, Lys, His or bond ( "-"), X43 means Gly, Leu, Lys, Ser or bond ("-"), X44 means Leu, His or bond ("-")),
X20 means an amino acid residue such as Lys, and
X21 means an amino acid residue such as Leu or Ala. )
Or a general formula [III]:
 (A)2-X22 (X23-OH)-(A)     [III]
  (式中、Aは前記と同じ意味を有し、
X22 はLys等のアミノ酸残基を意味し、および
X23はLeuまたはAla等のアミノ酸残基を意味する。)
で表される四量体である。
(A) 2 -X22 (X23-OH)-(A) 2 [III]
Wherein A has the same meaning as above,
X22 means an amino acid residue such as Lys, and
X23 means an amino acid residue such as Leu or Ala. )
It is a tetramer represented by
本明細書において使用する用語「アミノ酸残基」は、アミノ酸のN末端アミノ基(-NH3)がイミノ基 (-NH-)、またC末端カルボキシル基(-COOH)がカルボニル基 (-CO-)の状態の2価のアミノ酸残基を意味している。アミノ酸残基は、そのN末端イミノ基(-NH-)がそのN末端側に隣接する別のアミノ酸残基のC末端カルボニル基 (-CO-)と結合してペプチド結合 (-CO-NH-)を形成し、他方そのC末端カルボニル基(-CO-)がそのC末端側に隣接するさらに別のアミノ酸残基のN末端イミノ基(-NH-)と結合してペプチド結合  (-CO-NH-) を形成して、それぞれ別のアミノ酸残基と結合している。したがって、記号Xで表される各アミノ酸残基とその隣接アミノ酸残基との間の記号(”-”)は、ペプチド結合の結合子を意味している。なお、隣接するアミノ酸残基が存在しない場合は、そのアミノ酸残基のN末端イミノ基(-NH-)は、水素原子(H-)と結合しアミノ基を形成し、他方C末端カルボニル基(-CO-)は、C末端側のヒドロキシ基(-OH)と結合してカルボキシル基(-CO-OH)を形成する。換言すると、記号 X1aで表されるアミノ酸残基に隣接する記号X1bにアミノ酸残基が存在しない場合、記号X1bおよびそれ以降の記号X1c-X1d はすべて単結合となり、X1aで表されるアミノ酸残基のN末端イミノ基(-NH-)は水素原子(H-)と結合しアミノ基を形成する。他方、同様に、X17aで表されるアミノ酸残基に隣接する記号X17bにアミノ酸残基が存在しない場合、記号X17bおよびそれ以降の記号 X17c-X17dはすべて単結合となり、X17aで表されるアミノ酸残基のC末端カルボニル基(-CO-)は、C末端側のヒドロキシ基(-OH)と結合してカルボキシル基(-CO-OH)を形成する。 As used herein, the term “amino acid residue” refers to an amino acid whose N-terminal amino group (—NH 3 ) is an imino group (—NH 2 —) and whose C-terminal carboxyl group (—COOH) is a carbonyl group (—CO It means a divalent amino acid residue in the state of-). An amino acid residue has a peptide bond (—CO—NH) with its N-terminal imino group (—NH 2 —) bonded to the C-terminal carbonyl group (—CO—) of another amino acid residue adjacent to the N-terminal side. -), And the C-terminal carbonyl group (—CO—) binds to the N-terminal imino group (—NH 2 —) of another amino acid residue adjacent to the C-terminal side to form a peptide bond (— CO—NH—) are formed, each linked to a different amino acid residue. Therefore, the symbol (“-”) between each amino acid residue represented by the symbol X and its adjacent amino acid residue means a peptide bond connector. If there is no adjacent amino acid residue, the N-terminal imino group (—NH 2 —) of the amino acid residue is bonded to a hydrogen atom (H—) to form an amino group, while the C-terminal carbonyl group is (—CO—) binds to a C-terminal hydroxy group (—OH) to form a carboxyl group (—CO—OH). In other words, if there is no amino acid residue in the symbol X1b adjacent to the amino acid residue represented by the symbol X1a, the symbol X1b and the subsequent symbols X1c-X1d are all single bonds, and the amino acid residue represented by X1a The N-terminal imino group (—NH 2 —) of N is bonded to a hydrogen atom (H—) to form an amino group. On the other hand, similarly, when there is no amino acid residue in the symbol X17b adjacent to the amino acid residue represented by X17a, the symbol X17b and the subsequent symbols X17c-X17d all become single bonds, and the amino acid residue represented by X17a The C-terminal carbonyl group (—CO—) of the group is bonded to the C-terminal hydroxy group (—OH) to form a carboxyl group (—CO—OH).
上記一般式において、X6-X17、X1a-X1eおよびX17a-X17dのそれぞれが単結合(“-“)を意味する場合、全体として連続した1個の単結合(“-“)を構成していること意味するものとする。 In the above general formula, when each of X6-X17, X1a-X1e and X17a-X17d means a single bond ("-"), it constitutes one continuous single bond ("-") as a whole. That means.
 この発明に係るコレステロ-ル搬出ペプチドのうち、好ましいペプチドとしては、例えば、次のようなアミノ酸配列を有するベブチドを挙げることができる。 Among the cholesterol export peptides according to the present invention, preferable peptides include, for example, vetide having the following amino acid sequence.
(ベブチド番号1)11アミノ酸残基 (human type)(配列番号2)
H-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-OH  
(ベブチド番号2)12アミノ酸残基 (human type)(配列番号3)
H-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-OH 
(ベブチド番号3)23アミノ酸残基 (human type) (配列番号4)
H-Tyr-His-Ala-Lys-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Glu-Asp-Leu -OH
(ベブチド番号4)Type1(配列番号5)
H- Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Leu-Lys-Leu-Leu -OH 
(ベブチド番号5)Type2 (FAMP) (配列番号6)
H- Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Ser-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu-OH
(ベブチド番号6)FAMP-5 (Type2S9Y)(配列番号7)
H- Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Tyr-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu -OH
(ベブチド番号7)Type2S9W(配列番号8)
H- Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Trp-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu -OH
(ベブチド番号8)Type3(配列番号9)
H- Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Leu-Lys-Ala-Phe-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu -OH
(ベブチド番号9)Type4(配列番号10)
H- Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu -OH 
(ベブチド番号10)25アミノ酸残基 (Type2NY) (配列番号11)
H- Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Ser-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu-Tyr-OH
(ベブチド番号11)27アミノ酸残基 (Rattus type) type-J5(配列番号12)
H- Ala-Ser-Asp-His-Leu-Lys-Thr-Leu-Gly-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Asp-Asp-Leu-Gly-Gln-Gly-His-Met-Pro-Val-Leu -OH 
(ベブチド番号12)24アミノ酸残基 (Murine type) type-J6(配列番号13)
H- Arg-Ala-Lys-Thr-His-Leu-Lys-Thr-Leu-Gly-Glu-Lys-Ala-Arg-Pro-Ala-Leu-Gln-Asp-Leu-Arg-His-Ser-Leu -OH 
(ベブチド番号13)24アミノ酸残基 (human type)(Original:配列番号14)
H-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Glu-Asp-Leu-Arg-Gln-Gly-Leu-Leu -OH
(Bebutide No. 1) 11 amino acid residues (human type) (SEQ ID No. 2)
H-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-OH
(Bebutide No. 2) 12 amino acid residues (human type) (SEQ ID NO: 3)
H-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-OH
(Bebutid No. 3) 23 amino acid residues (human type) (SEQ ID No. 4)
H-Tyr-His-Ala-Lys-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Glu-Asp-Leu-OH
(Bevetide No. 4) Type1 (SEQ ID No. 5)
H-Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Leu-Lys-Leu-Leu- OH
(Bevetide number 5) Type2 (FAMP) (SEQ ID NO: 6)
H-Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Ser-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- OH
(Bevetide No. 6) FAMP-5 (Type2S9Y) (SEQ ID NO: 7)
H-Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Tyr-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- OH
(Bevetide number 7) Type2S9W (SEQ ID NO: 8)
H-Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Trp-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- OH
(Bevetide number 8) Type3 (SEQ ID NO: 9)
H-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Leu-Lys-Ala-Phe-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- OH
(Bevetide number 9) Type4 (SEQ ID NO: 10)
H-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- OH
(Bebutide No. 10) 25 amino acid residues (Type2NY) (SEQ ID NO: 11)
H-Ala-Leu-Glu-His-Leu-Phe-Thr-Leu-Ser-Glu-Lys-Ala-Leu-Lys-Ala-Leu-Glu-Asp-Leu-Leu-Lys-Lys-Leu-Leu- Tyr-OH
(Bebutide No. 11) 27 amino acid residues (Rattus type) type-J5 (SEQ ID No. 12)
H-Ala-Ser-Asp-His-Leu-Lys-Thr-Leu-Gly-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Asp-Asp-Leu-Gly-Gln-Gly-His-Met- Pro-Val-Leu-OH
(Bebutide No. 12) 24 amino acid residues (Murine type) type-J6 (SEQ ID NO: 13)
H-Arg-Ala-Lys-Thr-His-Leu-Lys-Thr-Leu-Gly-Glu-Lys-Ala-Arg-Pro-Ala-Leu-Gln-Asp-Leu-Arg-His-Ser-Leu- OH
(Bebutide No. 13) 24 amino acid residues (human type) (Original: SEQ ID NO: 14)
H-Ala-Thr-Glu-His-Leu-Ser-Thr-Leu-Ser-Glu-Lys-Ala-Lys-Pro-Ala-Leu-Glu-Asp-Leu-Arg-Gln-Gly-Leu-Leu- OH
(ベブチド番号14)二量体 (FAMP-5 - Duo)(配列番号15)
Figure JPOXMLDOC01-appb-C000001
(Bebutide No. 14) Dimer (FAMP-5-Duo) (SEQ ID NO: 15)
Figure JPOXMLDOC01-appb-C000001
(ベブチド番号15)二量体 (Human type original (221-240) - Duo)(配列番号16)
Figure JPOXMLDOC01-appb-C000002
(Bebutide No. 15) Dimer (Human type original (221-240)-Duo) (SEQ ID NO: 16)
Figure JPOXMLDOC01-appb-C000002
(ベブチド番号16)四量体 (FAMP-5 - Quad)
Figure JPOXMLDOC01-appb-C000003
(Bebutide No. 16) Tetramer (FAMP-5-Quad)
Figure JPOXMLDOC01-appb-C000003
 この発明に係るコレステロ-ル搬出ペプチドは当該技術分野で慣用されている合成化学的手法に従って調製することができる。合成化学的手法としては、例えば、縮合剤としてジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPCDI)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)等のカルボジイミド系縮合剤、(1H-ベンゾトリアゾ-ル-1-イルオキシ)トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスファ-ト(BOP)、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム-3-オキシドヘキサフルオロホスファ-ト(HBTU) 等の縮合剤を用いた縮合法、ニトロフェノ-ル、N-ヒドロキシスクシンイミド、ペンタフルオロフェノ-ル等とのエステルを用いた活性エステル法、クロロギ酸エステル、カルボン酸クロリド等を用いた混合酸無水物法などの液相法、Fmoc法、Boc法等の固相ペプチド合成法を用いて、調製することができる。 The cholesterol export peptide according to the present invention can be prepared according to a synthetic chemical technique conventionally used in the art. Synthetic chemical methods include, for example, carbodiimide condensing agents such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIPCDI), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) as condensing agents, (1H -Benzotriazol-1-yloxy) tris (dimethylamino) phosphonium hexafluorophosphate (BOP), 1- [bis (dimethylamino) methylene] -1H-benzotriazolium-3-oxide hexafluorophosphate -Condensation method using condensing agent such as HBTU, active ester method using ester with nitrophenol, N-hydroxysuccinimide, pentafluorophenol, etc., chloroformate, carboxylic acid chloride, etc. Prepared using a liquid phase method such as the mixed acid anhydride method, a solid phase peptide synthesis method such as the Fmoc method and the Boc method. Can.
 この発明に係るコレステロ-ル搬出ペプチドは、高比重リポタンパク(HDL)濃度を上昇させ、コレステロ-ルアシルトランスフェラ-ゼ(LCAT)を活性化させ、さらに逆コレステロ-ル輸送系(RCT)を促進させてコレステロ-ルの搬出(efflux)を増強させるのに有用である。したがって、この発明のコレステロ-ル搬出ペプチドは、アテロ-ム性動脈硬化症、高コレステロ-ル血症等の高脂血症などの心血管疾患ならびに心血管疾患関連障害などの予防ならびに治療に有効である。 The cholesterol export peptide according to the present invention increases the high density lipoprotein (HDL) concentration, activates the cholesterol acyltransferase (LCAT), and further activates the reverse cholesterol transport system (RCT). It is useful to promote and enhance the efflux of cholesterol. Therefore, the cholesterol export peptide of the present invention is effective in the prevention and treatment of cardiovascular diseases such as atherosclerosis and hyperlipidemia such as hypercholesterolemia and cardiovascular disease related disorders. It is.
 かかる心血管疾患や障害を予防または治療するために、この発明のコレステロ-ル搬出ペプチドは、単独でもまたはその1つ以上と組み合わせた医薬組成物として、または心血管疾患や障害の予防もしくは治療に使用することができるその他の薬剤、例えば、スタチン、ナイアシン等のコレステロ-ル低下薬やフィブレ-ト(fibrate)などと組み合わせた医薬組成物として使用することができる。 In order to prevent or treat such cardiovascular diseases and disorders, the cholesterol export peptide of the present invention may be used alone or in combination with one or more thereof, or for the prevention or treatment of cardiovascular diseases and disorders. It can be used as a pharmaceutical composition in combination with other drugs that can be used, for example, cholesterol-lowering drugs such as statins and niacin and fibrates.
 また、この発明の医薬組成物は、ペプチド-脂質複合体としても製剤化することもできる。ペプチド-脂質複合体として製剤化する場合、使用可能な脂質は、例えば、飽和脂質または不飽和脂質であっても、また天然の脂質であっても合成の脂質であってもよい。かかる脂質としては、例えば、卵ホスファチジルコリン、大豆ホスファチジルコリン、ジラウリルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジミリストイルホスファチジルコリン、ジステアロイルホスファチジルコリン、1-パルミトイル-2-オレイルホスファチジルコリン、1-ミリストイル-2-パルミトイルホスファチジルコリン、1-パルミトイル-2-ステアロイルホスファチジルコリン、1-ステアロイル-2-パルミトイルホスファチジルコリン、ジオレオイルホスファチジルコリン等のホスファチジルコリン類;ホスファチジルエタノ-ルアミン、ジミリストイルホスファチジルエタノ-ルアミン、ジパルミトイルホスファチジルエタノ-ルアミン、ジオレオホスファチジルエタノ-ルアミン等のホスファチジルエタノ-ルアミン類;ホスファチジルグリセロ-ル、ジホスファチジルグリセロ-ル、ジミリストイルホスファチジルグリセロ-ル、ジパルミトイルホスファチジルグリセロ-ル、ジステアロイルホスファチジルグリセロ-ル、ジオレオイルホスファチジルグリセロ-ル等のホスファチジルグリセロ-ル類;ホスファチジン酸、ジミリストイルホスファチジン酸、ジパルミトイルホスファチジン酸等のホスファチジン酸類;ホスファチジルセリン、ジミリストイルホスファチジルセリン、ジパルミトイルホスファチジルセリン、脳ホスファチジルセリン等のホスファチジルセリン類;スフィンゴミエリン、脳スフィンゴミエリン、ジパルミトイルスフィンゴミエリン、ジステアロイルスフィンゴミエリン等のスフィンゴミエリン類;ホスファチジルイノシト-ル;スフィンゴシン1リン酸(SIP: sphingosine-1-phosphate) 等のスフィンゴ脂質;ガラクトセレブロシド、ガングリオシド、セレブロシド、(1,3)-D-マンノシル-(1,3)ジグリセリド、アミノフェニルグリコシド、3-コレステリル-6’-(グリコシルチオ)ヘクシルエ-テル糖脂質、ならびにコレステロ-ル、およびこれらの誘導体が挙げられる。 The pharmaceutical composition of the present invention can also be formulated as a peptide-lipid complex. When formulated as a peptide-lipid complex, usable lipids may be, for example, saturated or unsaturated lipids, and may be natural or synthetic lipids. Examples of such lipids include egg phosphatidylcholine, soybean phosphatidylcholine, dilaurylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, distearoylphosphatidylcholine, 1-palmitoyl-2-oleylphosphatidylcholine, 1-myristoyl-2-palmitoylphosphatidylcholine, 1-palmitoylcholine. Phosphatidylcholines such as -2-stearoylphosphatidylcholine, 1-stearoyl-2-palmitoylphosphatidylcholine, dioleoylphosphatidylcholine; phosphatidylethanolamine, dimyristoylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine, dioleophosphatidylethanol, etc. The ho Phosphatidylglycerols such as phosphatidylglycerol, diphosphatidylglycerol, dimyristoyl phosphatidylglycerol, dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol, dioleoylphosphatidylglycerol Phosphatidic acids such as phosphatidic acid, dimyristoyl phosphatidic acid, dipalmitoyl phosphatidic acid; phosphatidyl serines such as phosphatidyl serine, dimyristoyl phosphatidyl serine, dipalmitoyl phosphatidyl serine, brain phosphatidyl serine; sphingomyelin, brain sphingomyelin, dipalmitoyl Sphingomyelin such as sphingomyelin, distearoyl sphingomyelin Phosphatidylinositol; sphingolipids such as sphingosine 1-phosphate (SIP); galactocerebroside, ganglioside, cerebroside, (1,3) -D-mannosyl- (1,3) diglyceride, amino Examples include phenylglycoside, 3-cholesteryl-6 ′-(glycosylthio) hexyl ether glycolipid, and cholesterol, and derivatives thereof.
 この発明に係る医薬組成物は、この発明のコレステロ-ル搬出ペプチドやその他の薬剤の他に、薬理学的に許容される担体をさらに含有していてもよい。かかる薬理学的に許容される担体としては、製剤の素材として慣用されている各種有機あるいは無機の担体物質を用いることができる。かかる担体物質としては、例えば、固形製剤においては、賦形剤、滑沢剤、結合剤、崩壊剤など、また液状製剤においては、溶剤、分散剤、保存剤、等張化剤、溶解補助剤、懸濁化剤、安定剤、緩衝剤、無痛化剤などとして配合することができる。また、この発明の医薬組成物においては、例えば、防腐剤、抗酸化剤、着色剤、甘味剤などの製剤添加物を用いることもできる。 The pharmaceutical composition according to the present invention may further contain a pharmacologically acceptable carrier in addition to the cholesterol export peptide of the present invention and other drugs. As such a pharmacologically acceptable carrier, various organic or inorganic carrier substances commonly used as a raw material for preparations can be used. Examples of such carrier substances include excipients, lubricants, binders, and disintegrants in solid preparations, and solvents, dispersants, preservatives, isotonic agents, and dissolution aids in liquid preparations. , Suspending agents, stabilizers, buffers, soothing agents and the like. Moreover, in the pharmaceutical composition of this invention, formulation additives, such as antiseptic | preservative, antioxidant, a coloring agent, a sweetener, can also be used, for example.
 この発明の医薬組成物の固形製剤において、賦形剤の例としては、乳糖、白糖、デンプン、α化デンプン、D-マンニト-ル、D-ソルビト-ル、デキストリン、結晶セルロ-ス、カルボキシメチルセルロ-スナトリウム、アラビアゴム、プルラン、軽質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウムなどが挙げられる。滑沢剤の例としては、タルク、ステアリン酸マグネシウム、ステアリン酸カルシウム、コロイドシリカ、ポリエチレングリコ-ル6000などが挙げられる。結合剤の例としては、ゼラチン、α化デンプン、ショ糖、アラビアゴム、結晶セルロ-ス、メチルセルロ-ス、ヒドロキシプロピルセルロ-ス、カルボキシメチルセルロ-ス、カルボキシメチルセルロ-スナトリウム、白糖、D-マンニト-ル、トレハロ-ス、デキストリン、プルラン、ポリビニルピロリドンなどが挙げられる。崩壊剤の例としては、乳糖、白糖、デンプン、ヒドロキシプロピルセルロ-ス、カルボキシメチルセルロ-ス、カルボキシメチルセルロ-スカルシウム、カルボキシメチルスタ-チナトリウム、軽質無水ケイ酸などが挙げられる。 In the solid preparation of the pharmaceutical composition of the present invention, examples of excipients include lactose, sucrose, starch, pregelatinized starch, D-mannitol, D-sorbitol, dextrin, crystalline cellulose, carboxymethyl Cellulose sodium, gum arabic, pullulan, light anhydrous silicic acid, synthetic aluminum silicate, magnesium metasilicate aluminate and the like. Examples of the lubricant include talc, magnesium stearate, calcium stearate, colloidal silica, polyethylene glycol 6000, and the like. Examples of binders include gelatin, pregelatinized starch, sucrose, gum arabic, crystalline cellulose, methyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium, sucrose, D -Mannitol, trehalose, dextrin, pullulan, polyvinylpyrrolidone and the like. Examples of the disintegrant include lactose, sucrose, starch, hydroxypropyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose calcium, sodium carboxymethyl starch, and light anhydrous silicic acid.
 この発明の医薬組成物の液状製剤において、溶剤の例としては、蒸留水、生理的食塩水、リンゲル液等の水性溶剤、アルコ-ル、プロピレングリコ-ル、ポリエチレングリコ-ル等の有樹溶剤あるいはゴマ油、トウモロコシ油、オリ-ブ油、綿実油等の植物油などの油性溶剤が挙げられる。分散剤の例としては、ポリソルベ-ト80、ポリオキシエチレン硬化ヒマシ油60、ポリエチレングリコ-ル、カルボキシメチルセルロ-ス、アルギン酸ナトリウムなどが挙げられる。保存剤の例としては、メチルパラベン、プロピルパラベン、ベンジルアルコ-ル、クロロブタノ-ル、フェノ-ルなどが挙げられる。等張化剤の例としては、塩化ナトリウム、グリセリン、D-マンニト-ル、D-ソルビト-ル、ブドウ糖などが挙げられる。溶解補助剤の例としては、エタノ-ル、ポリエチレングリコ-ル、プロピレングリコ-ル、D-マンニト-ル、トレハロ-ス、安息香酸ベンジル、トリエタノ-ルアミン、トリスアミノメタン、コレステロ-ル、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウムなどが挙げられる。懸濁化剤の例としては、ステアリルトリエタノ-ルアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤、ポリビニルアルコ-ル、ポリビニルピロリドン、カルボキシメチルセルロ-スナトリウム、メチルセルロ-ス、ヒドロキシメチルセルロ-ス、ヒドロキシエチルセルロ-ス、ヒドロキシプロピルセルロ-スなどの親水性高分子化合物、ポリソルベ-ト類、ポリオキシエチレン硬化ヒマシ油などが挙げられる。安定化剤の例としては、ヒト血清アルブミンなどが挙げられる。緩衝剤の例としては、リン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液などが挙げられる。無痛化剤の例としては、ベンジルアルコ-ルなどが挙げられる。 In the liquid preparation of the pharmaceutical composition of the present invention, examples of the solvent include an aqueous solvent such as distilled water, physiological saline, Ringer's solution, a tree solvent such as alcohol, propylene glycol, polyethylene glycol, or the like. And oily solvents such as sesame oil, corn oil, olive oil, and vegetable oils such as cottonseed oil. Examples of the dispersant include polysorbate 80, polyoxyethylene hydrogenated castor oil 60, polyethylene glycol, carboxymethyl cellulose, sodium alginate and the like. Examples of preservatives include methyl paraben, propyl paraben, benzyl alcohol, chlorobutanol, phenol and the like. Examples of tonicity agents include sodium chloride, glycerin, D-mannitol, D-sorbitol, glucose and the like. Examples of solubilizers include ethanol, polyethylene glycol, propylene glycol, D-mannitol, trehalose, benzyl benzoate, triethanolamine, trisaminomethane, cholesterol, sodium carbonate Sodium citrate, sodium salicylate, sodium acetate and the like. Examples of suspending agents include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glyceryl monostearate, polyvinyl alcohol, polyvinyl Hydrophilic polymer compounds such as pyrrolidone, sodium carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polysorbates, polyoxyethylene hydrogenated castor oil, etc. Is mentioned. Examples of stabilizers include human serum albumin. Examples of the buffer include buffer solutions such as phosphate, acetate, carbonate, citrate and the like. Examples of soothing agents include benzyl alcohol.
 また、防腐剤の例としては、パラオキシ安息香酸エステル類、クロロブタノ-ル、ベンジルアルコ-ル、フェネチルアルコ-ル、デヒドロ酢酸、ソルビン酸などが挙げられる。抗酸化剤の例としては、亜硫酸塩、アスコルビン酸塩などが挙げられる。着色剤の例としては、β-カロチン、クロロフィル、ベンガラ等の天然色素、食用赤色2、3号、食用黄色4、5号、食用青色1、2号等の水溶性食用タ-ル色素、上記水溶性食用タ-ル色素のアルミニウム塩等の水不溶性レ-キ色素などが挙げられる。甘味剤の例としては、サッカリンナトリウム、グリチルリチン酸二カリウム、アスパルテ-ム、ステビアなどが挙げられる。 Examples of preservatives include p-hydroxybenzoates, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like. Examples of the antioxidant include sulfite and ascorbate. Examples of colorants include natural pigments such as β-carotene, chlorophyll, bengara, water-soluble food tar pigments such as food red 2, 3, food yellow 4, 5, food blue 1, 2, etc. Examples thereof include water-insoluble lake dyes such as aluminum salts of water-soluble food tar dyes. Examples of sweetening agents include saccharin sodium, dipotassium glycyrrhizinate, aspartame, stevia and the like.
 この発明に係る医薬組成物は、経口経路または非経口経路で投与することができる。この発明の医薬組成物を経口投与経路で投与するには、例えば、溶液、乳剤、シロップ液、懸濁液などの液体の剤型や、錠剤、ソフトカプセル剤、マイクロカプセル剤等のカプセル剤、顆粒剤、散剤、粉剤、トロ-チ剤などの固体の剤型で投与することができる。一方、この発明の医薬組成物を非経口投与経路で投与するには、例えば、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤、点滴剤等の注射剤、経皮製剤、軟膏剤等の外用剤、坐剤、ペレット、経鼻剤、吸入剤、点眼剤などの剤型で投与するのがよい。これらの製剤は、速放性製剤または徐放性製剤などの放出制御製剤(例えば、徐放性マイクロカプセル剤など)であってもよい。 The pharmaceutical composition according to the present invention can be administered by oral route or parenteral route. In order to administer the pharmaceutical composition of this invention by the oral route of administration, for example, liquid dosage forms such as solutions, emulsions, syrups, suspensions, capsules such as tablets, soft capsules, microcapsules, granules It can be administered in a solid dosage form such as an agent, powder, powder, or troche. On the other hand, in order to administer the pharmaceutical composition of the present invention via a parenteral route, for example, subcutaneous injections, intravenous injections, intramuscular injections, intraperitoneal injections, infusions such as drops, transdermal preparations, etc. It may be administered in a dosage form such as an external preparation such as an ointment, a suppository, a pellet, a nasal preparation, an inhalant, or an eye drop. These preparations may be controlled-release preparations such as immediate-release preparations or sustained-release preparations (for example, sustained-release microcapsules).
 この発明の医薬組成物は、製剤に関する技術分野において慣用されている方法、例えば日本薬局方に記載の方法等により製造することができる。例えば、経口剤は、有効成分に、賦形剤、崩壊剤、結合剤または滑沢剤などを添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性を目的として、コ-ティング基剤を用いてそれ自体公知の方法でコ-ティングすることにより製造することができる。コ-ティング基剤としては、例えば糖衣基剤、水溶性フィルムコ-ティング基剤、腸溶性フィルムコ-ティング基剤、徐放性フィルムコ-ティング基剤などが挙げられる。 The pharmaceutical composition of the present invention can be produced by a method commonly used in the technical field relating to the preparation, for example, a method described in the Japanese Pharmacopoeia. For example, an oral preparation is compression-molded by adding an excipient, a disintegrant, a binder or a lubricant to an active ingredient, and then, if necessary, for the purpose of taste masking, entericity or sustainability. It can be produced by coating using a coating base by a method known per se. Examples of the coating base include sugar coating base, water-soluble film coating base, enteric film coating base, sustained-release film coating base and the like.
 かかるコ-ティング基剤のうち、糖衣基剤としては、例えば、白糖、タルク、沈降炭酸カルシウム、ゼラチン、アラビアゴム、プルラン、カルナバロウなどが使用できる。水溶性フィルムコ-ティング基剤としては、例えば、ヒドロキシプロピルセルロ-ス、ヒドロキシプロピルメチルセルロ-ス、ヒドロキシエチルセルロ-ス、メチルヒドロキシエチルセルロ-スなどのセルロ-ス系高分子;ポリビニルアセタ-ルジエチルアミノアセテ-ト、ポリビニルピロリドンなどの合成高分子;プルランなどの多糖類などが使用できる。腸溶性フィルムコ-ティング基剤としては、例えば、ヒドロキシプロピルメチルセルロ-ス フタレ-ト、ヒドロキシプロピルメチルセルロ-ス アセテ-トサクシネ-ト、カルボキシメチルエチルセルロ-ス、酢酸フタル酸セルロ-スなどのセルロ-ス系高分子;メタアクリル酸コポリマ-などのアクリル酸系高分子;セラックなどの天然物などが使用できる。徐放性フィルムコ-ティング基剤としては、例えばエチルセルロ-スなどのセルロ-ス系高分子;アミノアルキルメタアクリレ-トコポリマ-などのアクリル酸系高分子などが使用できる。 Among such coating bases, as sugar coating base, for example, sucrose, talc, precipitated calcium carbonate, gelatin, gum arabic, pullulan, carnauba wax and the like can be used. Examples of the water-soluble film coating base include cellulose-based polymers such as hydroxypropyl cellulose, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, methylhydroxyethyl cellulose; -Synthetic polymers such as rudiethylaminoacetate and polyvinylpyrrolidone; polysaccharides such as pullulan can be used. Examples of enteric film coating bases include hydroxypropyl methyl cellulose phthalate, hydroxypropyl methyl cellulose acetate succinate, carboxymethyl ethyl cellulose, and cellulose acetate phthalate. Cellulose polymers; acrylic acid polymers such as methacrylic acid copolymers; natural products such as shellac can be used. As the sustained-release film coating base, for example, a cellulose polymer such as ethyl cellulose; and an acrylic acid polymer such as aminoalkyl methacrylate copolymer can be used.
 また、注射剤は、有効成分を、分散剤、保存剤、等張化剤などと共に水性溶剤などに溶解、懸濁あるいは乳化することによりそれ自体公知の方法で製造することができる。かかる注射剤の製造に際して、所望により溶解補助剤、安定剤、無痛化剤などの添加物を用いてもよい。 In addition, the injection can be produced by a method known per se by dissolving, suspending or emulsifying the active ingredient in an aqueous solvent together with a dispersant, a preservative, an isotonic agent and the like. In the production of such an injection, additives such as a solubilizing agent, a stabilizer and a soothing agent may be used as desired.
 この発明に係る医薬組成物は、この発明のコレステロ-ル搬出ペプチドを主な有効成分として含有していることから、コレステロ-ル搬出、血清HDL濃度の上昇およびLCATの活性化ならびにRCTの促進が有用であり、特にヒトを含む哺乳動物における心血管疾患ならびに関連障害の予防ならびに治療に使用することができる。より具体的には、この発明の医薬組成物は、例えば狭心症、高血圧症、高コレステロ-ル血症等の高脂血症、アテロ-ム性動脈硬化症等の動脈硬化症などの心血管疾患や、血管新生作用があることから下肢虚血の閉塞性動脈硬化症やバージャー病や、リスクの類似したアルツハイマー病などにも有効である。更には、例えばバル-ンやステントなどの医療処置の結果進展するアテロ-ム硬化性プラ-クによる再狭窄などの心血管疾患関連障害などに有効である。 Since the pharmaceutical composition according to the present invention contains the cholesterol export peptide of the present invention as the main active ingredient, it is possible to carry out cholesterol export, increase serum HDL concentration and LCAT activation, and promote RCT. It is useful and can be used for the prevention and treatment of cardiovascular diseases and related disorders, particularly in mammals including humans. More specifically, the pharmaceutical composition of the present invention can be used for, for example, cardiac diseases such as angina pectoris, hypertension, hyperlipidemia such as hypercholesterolemia, and arteriosclerosis such as atherosclerosis. Because of its vascular disease and angiogenic action, it is also effective for obstructive arteriosclerosis, Buerger's disease of lower limb ischemia, Alzheimer's disease with similar risk, and the like. Furthermore, it is effective for cardiovascular disease-related disorders such as restenosis due to atherosclerotic plaque that develops as a result of medical treatment such as balloons and stents.
 この発明に係るコレステロ-ル搬出ペプチドおよび医薬組成物の1回投与量は、患者の病状や身体的状態、投与の方法などにより異なるが、非経口投与では、成人体重1kgあたり活性成分として約0.1~100mg、好ましくは約0.5~50mg、より好ましくは約1~25mgであり、1日投与回数は1回から3回静脈または筋肉注射などにより投与するのが好ましい。また経口または経鼻での投与では、1回投与量は成人の体重1kgあたり活性成分として約1~100mg、好ましくは約2~50mgが好ましく、1日投与回数は1~3回に分けて投与するのがよい。 The single dose of the cholesterol export peptide and pharmaceutical composition according to the present invention varies depending on the patient's medical condition, physical condition, method of administration, etc., but in parenteral administration, it is about 0 as an active ingredient per kg adult body weight. .1 to 100 mg, preferably about 0.5 to 50 mg, more preferably about 1 to 25 mg, and the daily dose is preferably 1 to 3 times by intravenous or intramuscular injection. For oral or nasal administration, the single dose is about 1 to 100 mg, preferably about 2 to 50 mg as an active ingredient per kg body weight of an adult, and the daily dose is divided into 1 to 3 doses. It is good to do.
 以下、この発明を実施例により更に詳細に説明するが、以下の実施例は、この発明を限定もしくは制限する意図で一切なく記載されるものではなく、この発明を単に例示してさらに詳細に説明するだけのものであると理解さるべきである。また、この発明は、下記実施例の変異、改良などをその範囲に包含するものと理解されるべきである。 The present invention will be described in more detail with reference to the following examples. However, the following examples are not described in any way with the intention of limiting or limiting the present invention, and the present invention is merely illustrated and described in more detail. It should be understood that it is only to do. In addition, it should be understood that the scope of the present invention includes variations and improvements of the following examples.
ペプチド番号5(FAMP:配列番号6)の合成方法
 ペプチドの合成はアプライドバイオシステム社モデル433Aペプチド自動固相合成装置を用いて、0.25 mmolscalで合成した。アミノ酸はFmoc-アミノ酸を、樹脂としてFmoc-X-PEG-Alko-Resinを使用し、20% Piperidine/N-Methyl-2-pyrrolidoneを脱Fmoc 試薬として、HBTU/HOBt in DMF を活性縮合剤として用いて、カップリングを繰り返し合成した。手動固相合成容器に移し、DCMで数回洗浄後、デシケ-タ-にて一晩減圧乾燥させた。乾燥後、樹脂よりペプチドの切断および側鎖の最終脱保護のために、切り出し試薬(0.25 ml EDT/0.25 H2O/TFA 9.5 ml)を加えて2時間撹拌。溶液をろ過し、ろ液をナスフラスコに移して、窒素ガスで濃縮した。冷エ-テルを用いて結晶化させ、10回のデカンテ-ション後にこれを濾取し、粗ペプチドを得た。得られた粗ペプチド50 mgを2次水3mlに溶解し、この水溶液をSephadexG-25を用いて、ゲルクロマトグラフィ-で分画した。分画したフラクションの吸光度(260 nm)を測定し、各ピ-ク部分を集めて凍結乾燥し、目的のペプチドを得た。同定はMALDI TOF-MSにより行った。
Peptide No. 5 (FAMP: SEQ ID No. 6) Synthesis Method Peptides were synthesized at 0.25 mmol scal using an Applied Biosystems model 433A peptide automatic solid phase synthesizer. Amino acids are Fmoc-amino acid, Fmoc-X-PEG-Alko-Resin is used as resin, 20% Piperidine / N-Methyl-2-pyrrolidone is used as a de-Fmoc reagent, and HBTU / HOBt in DMF is used as an active condensing agent. The coupling was synthesized repeatedly. The sample was transferred to a manual solid phase synthesis vessel, washed several times with DCM, and then dried in a desiccator under reduced pressure overnight. After drying, add the cleaving reagent (0.25 ml EDT / 0.25 H 2 O / TFA 9.5 ml) and stir for 2 hours to cleave the peptide from the resin and finally deprotect the side chain. The solution was filtered, and the filtrate was transferred to an eggplant flask and concentrated with nitrogen gas. Crystallization was performed using cold ether, and after 10 times decantation, this was collected by filtration to obtain a crude peptide. 50 mg of the obtained crude peptide was dissolved in 3 ml of secondary water, and this aqueous solution was fractionated by gel chromatography using Sephadex G-25. The absorbance (260 nm) of the fractionated fraction was measured, and each peak portion was collected and lyophilized to obtain the target peptide. Identification was performed by MALDI TOF-MS.
 ペプチド番号(1:配列番号2)、ペプチド番号(2:配列番号3)、ペプチド番号(3:配列番号4)、ペプチド番号(4:配列番号5)、ペプチド番号(6:配列番号7)、ペプチド番号(7:配列番号8)、ペプチド番号(8:配列番号9)、ペプチド番号(9:配列番号10)、ペプチド番号(10:配列番号11)、ペプチド番号(11:配列番号12)、ペプチド番号(12:配列番号13) 、ペプチド番号(13:original:配列番号14)、、ペプチド番号(14:FAMP-5 - Duo:配列番号15)、ペプチド番号(15:Human type original (221-240) - Duo:配列番号16)およびペプチド番号(16:FAMP-5 - Quad)で表される各ペプチドは実施例1と実質的に同様にして合成・確認した。 Peptide number (1: SEQ ID NO: 2), peptide number (2: SEQ ID NO: 3), peptide number (3: SEQ ID NO: 4), peptide number (4: SEQ ID NO: 5), peptide number (6: SEQ ID NO: 7), Peptide number (7: SEQ ID NO: 8), peptide number (8: SEQ ID NO: 9), peptide number (9: SEQ ID NO: 10), peptide number (10: SEQ ID NO: 11), peptide number (11: SEQ ID NO: 12), Peptide number (12: Sequence number 13), Peptide number (13: original: Sequence number 14), Peptide number (14: FAMP-5-Duo: Sequence number 15), Peptide number (15: Human type original (221- 240) Each peptide represented by-Duo: SEQ ID NO: 16) and peptide number (16: FAMP-5-Quad) was synthesized and confirmed in substantially the same manner as in Example 1.
 実施例1で合成したペプチド(FAMP)を用いて、ヒト A172 細胞におけるコレステロ-ル引き抜き作用を調べた。 Using the peptide (FAMP) synthesized in Example 1, the cholesterol withdrawal action in human A172 cells was examined.
 本実施例では、ヒトA172 細胞に、ペプチド(FAMP)(20μg/ml)および比較としてヒト血清由来脂質除去ApoA-I(20μg/ml)を接触させて4時間放置した。4時間後に、ヒト A172 細胞から浸出したコレステロ-ル量を測定して、ペプチド(FAMP)とApoA-I とのコレステロ-ル引き抜き能を調べた(図1左側)。なお、コントロ-ルとしては、0.2%ウシ血清アルブミン(BSA)のみを用いた。その結果、ペプチド(FAMP)と ApoA-Iは、コレステロ-ル引き抜き能を有していて、ペプチド(FAMP)のコレステロ-ル引き抜き能は、ApoA-Iのコレステロ-ル引き抜き能より有意に優れていた。 In this example, human A172 cells were contacted with peptide (FAMP) (20 μg / ml) and human serum-derived lipid-removed ApoA-I (20 μg / ml) as a comparison, and left for 4 hours. After 4 hours, the amount of cholesterol exuded from human A172 cells was measured to examine the ability of peptide (FAMP) and ApoA-I to extract cholesterol (left side of FIG. 1). As a control, only 0.2% bovine serum albumin (BSA) was used. As a result, peptide (FAMP) and ApoA-I have the ability to extract cholesterol, and the ability of peptide (FAMP) to extract cholesterol is significantly superior to that of ApoA-I. It was.
 また、このコレステロ-ル引き抜き作用は、TO901317と9cis-レチノイン酸(9cisRA)による刺激により著しく増加することが分かった(図1右側)。この結果、ペプチド(FAMP)は、それ単体でコレステロ-ル引き抜き作用を有すると共に、HDL新生作用も有していることが明らかとなった。 In addition, it was found that this cholesterol withdrawal action is markedly increased by stimulation with TO901317 and 9cis-retinoic acid (9cisRA) (right side of FIG. 1). As a result, it has been clarified that peptide (FAMP) alone has a cholesterol-removing action and also has an HDL-forming action.
 実施例2で製造した各ペプチドを、実施例3と実質的に同様にしてコレステロ-ル引き抜き能を調べた結果を図1に示す。コントロールとして生理食塩水を用いた。 FIG. 1 shows the results of examining the cholesterol withdrawal ability of each peptide produced in Example 2 in substantially the same manner as in Example 3. Saline was used as a control.
実施例1で合成したペプチド(FAMP)を用いて、チャイニ-ズハムスタ-卵巣由来細胞(CHO細胞)ldlA7株におけるコレステロ-ル引き抜き作用を調べた。 Using the peptide (FAMP) synthesized in Example 1, the action of pulling out cholesterol in the ldlA7 strain of Chinese hamster ovary-derived cells (CHO cells) was examined.
 本実施例では、CHO細胞ldlA7株において、pcDNA3.1ベクタ-(mock)およびpcDNA3.1ベクタ-にヒトABCA1 cDNAを挿入したプラスミドをそれぞれリポフェクション法を用いて遺伝子導入した。MockおよびABCA1 cDNA遺伝子導入CHO細胞を、ペプチド(FAMP-5)(20μg/ml)および比較としてヒト血清由来脂質除去ApoA-I(20μg/ml)に接触させて4時間放置した。4時間後に、細胞から浸出したコレステロ-ル量を測定して、ペプチド(FAMP)と ApoA-Iとのコレステロ-ル引き抜き能を調べた(図2)。なお、コントロ-ルとしては、0.2%BSAのみを用いた。その結果、MockおよびABCA1cDNA遺伝子導入CHO細胞は、いずれもペプチド(FAMP)およびヒト血清ApoA-Iともに有意のコレステロ-ル引き抜き作用を認めたが、ABCA1 cDNA遺伝子導入CHO細胞においては、ペプチド(FAMP)はコレステロ-ル引き抜き作用をより顕著に増加させていた。このことは、ペプチド(FAMP)は、ペプチド単体でコレステロ-ル引き抜き作用を有すると共に、ABCA1輸送体に依存的にHDL新生作用を有していることを明らかにしている。 In this example, in the CHO cell ldlA7 strain, plasmids in which human ABCA1 cDNA was inserted into pcDNA3.1 vector (mock) and pcDNA3.1 vector were respectively transfected using the lipofection method. Mock and ABCA1 cDNA cDNA-introduced CHO cells were left in contact with peptide (FAMP-5) (20 μg / ml) and human serum-derived lipid-removed ApoA-I (20 μg / ml) as a comparison for 4 hours. After 4 hours, the amount of cholesterol exuded from the cells was measured to examine the ability of the peptide (FAMP) and ApoA-I to extract cholesterol (FIG. 2). As a control, only 0.2% BSA was used. As a result, both Mock and ABCA1 cDNA gene-introduced CHO cells showed a significant cholesterol-removing action for both peptide (FAMP) and human serum ApoA-I, but in ABCA1 cDNA gene-introduced CHO cells, peptide (FAMP) Increased the cholesterol withdrawal effect more significantly. This reveals that peptide (FAMP) has a cholesterol-removing action as a peptide alone and also has a HDL-forming action depending on ABCA1 transporter.
 実施例1で合成したペプチド(FAMP)を用いて、実施例4と実質的に同様にして、ヒト末梢血単球由来マクロファ-ジにおけるコレステロ-ル引き抜き作用を調べた。 Using the peptide synthesized in Example 1 (FAMP), the cholesterol withdrawal action in human peripheral blood monocyte-derived macrophages was examined in substantially the same manner as in Example 4.
 本実施例では、ヒト末梢血単球由来マクロファ-ジにおいて、健常者由来細胞ならびに ABCA1 欠損症患者由来細胞を、ペプチド(FAMP)(20μg/ml)および比較としてヒト血清由来脂質除去ApoA-I(20μg/ml)に接触させて4時間放置した。4時間後に、細胞から浸出したコレステロ-ル量を測定して、ペプチド(FAMP)とApoA-I とのコレステロ-ル引き抜き能を調べた(図3)。なお、コントロ-ルとしては、0.2%BSAのみを用いた。その結果、健常者由来細胞においては、ペプチド(FAMP)およびヒト血清ApoA-I ともに有意のコレステロ-ル引き抜き作用を認めたが、ABCA1 欠損症患者由来細胞においては、ペプチド(FAMP)はコレステロ-ル引き抜き作用を保持していたが、ヒト血清ApoA-Iのコレステロ-ル引き抜き作用は欠損していた。このことは、ペプチド(FAMP)が、ペプチド単体でコレステロ-ル引き抜き作用を有すると共に、ABCA1 輸送体に非依存的にもHDL新生作用を有していることを明らかにしている。 In this example, in a macrophage derived from human peripheral blood monocytes, cells derived from healthy subjects and cells derived from patients with ABCA1 deficiency were compared with peptide (FAMP) (20 μg / ml) and human serum-derived lipid-removed ApoA-I ( 20 μg / ml) and left for 4 hours. After 4 hours, the amount of cholesterol exuded from the cells was measured to examine the ability of the peptide (FAMP) and ApoA-I to extract cholesterol (FIG. 3). As a control, only 0.2% BSA was used. As a result, in cells derived from healthy subjects, both peptide (FAMP) and human serum ApoA-I showed significant cholesterol withdrawal, but in cells derived from ABCA1 deficiency, peptide (FAMP) was found to be cholesterol. Although the withdrawal action was retained, the cholesterol withdrawal action of human serum ApoA-I was deficient. This indicates that the peptide (FAMP) has a cholesterol-removing action with the peptide alone and also has an HDL-forming action independent of the ABCA1 transporter.
 実施例3と同様にして、ヒト A172 細胞を用いてペプチド番号5(Type2)、ペプチド番号6(FAMP-5)およびベブチド番号9(Type4)のそれぞれについてのコレステロ-ル引き抜き能を測定した。 In the same manner as in Example 3, the ability of pulling out cholesterol for each of peptide number 5 (Type 2), peptide number 6 (FAMP-5) and peptide number 9 (Type 4) was measured using human A172 cells.
 つまり、ヒト A172 細胞に各ペプチド(20μg/ml)を接触させて4時間インキュベ-ション後、ヒト A172 細胞から浸出したコレステロ-ル量を測定してコレステロ-ル引き抜き能を調べた。なお、コントロ-ルとしては0.2%ウシ血清アルブミン(BSA)のみを用い、また比較としてApoA-Iとペプチド番号13(original)とを用いた。結果を図4左側に示す。 That is, each peptide (20 μg / ml) was brought into contact with human A172 cells and incubated for 4 hours, and the amount of cholesterol exuded from human A172 cells was measured to examine the ability to extract cholesterol. As a control, only 0.2% bovine serum albumin (BSA) was used, and ApoA-I and peptide number 13 (original) were used for comparison. The results are shown on the left side of FIG.
 これに対して、ヒト A172 細胞に各ペプチド(20μg/ml)をTO901317と9cis-レチノイン酸との刺激下で接触させて4時間インキュベ-ション後、ヒト A172 細胞から浸出したコレステロ-ル量を測定してコレステロ-ル引き抜き能を調べた。結果を図4右側に示す。 On the other hand, each peptide (20μg / ml) was contacted with TO901317 and 9cis-retinoic acid in human A172 cells and incubated for 4 hours, and then the amount of cholesterol leached from human A172 cells was measured. Then I investigated the ability to pull out cholesterol. The results are shown on the right side of FIG.
 これらの結果から、ペプチド番号6(FAMP-5)が有意に優れたコレステロ-ル引き抜き能を有していることが明らかになった。 From these results, it was revealed that Peptide No. 6 (FAMP-5) has a significantly superior cholesterol withdrawal ability.
 実施例1と同様にして、ヒト A172 細胞に各ペプチド(20μg/ml)をTO901317と9cis-レチノイン酸との刺激下で接触させて4時間インキュベ-ション後、ヒト A172 細胞から浸出したコレステロ-ル量を測定してコレステロ-ル引き抜き能を調べた。結果を図5に示す。 In the same manner as in Example 1, each peptide (20 μg / ml) was contacted with human A172 cells under stimulation with TO901317 and 9cis-retinoic acid and incubated for 4 hours, and then the cholesterol exuded from human A172 cells. The amount was measured to determine the cholesterol withdrawal ability. The results are shown in FIG.
 本実施例では、キャピラリ-電気泳動法によるヒト血漿リポタンパク質の解析を行った。 In this example, human plasma lipoprotein was analyzed by capillary electrophoresis.
 インビトロ(in vitro)において、ヒト血漿を、実施例1で作成したペプチド(FAMP)(2 mg/ml)の存在下および非存在下で、17℃で150分間インキュベ-ションを行った。このインキュベ-ションしたヒト血漿をキャピラリ-電気泳動により解析した(図6)。この解析結果から、ペプチド(FAMP)の存在下でインキュベ-ションしたヒト血漿には、preβ-HDLサブフラクションが顕著に増加していることが認められた。この結果は、この発明のペプチドがHDLを新生する作用を有していることを示している。なお、キャピラリ-電気泳動は、張波らの手法(Zhang, B. et al.)に従って実施した。 In vitro, human plasma was incubated at 17 ° C. for 150 minutes in the presence and absence of the peptide (FAMP) prepared in Example 1 (2 mg / ml). The incubated human plasma was analyzed by capillary electrophoresis (FIG. 6). From this analysis result, it was recognized that the preβ-HDL subfraction was significantly increased in human plasma incubated in the presence of peptide (FAMP). This result shows that the peptide of this invention has the effect | action which born HDL. Capillary-electrophoresis was performed according to the technique of Zhangbo et al. (Zhang, B. et al.).
 本実施例では、マウスにペプチドを10日間持続投与した場合の高速液体クロマトグラフィ-(HPLC)による血漿リポタンパク質の解析を行った。C57BL6マウスにペプチド(FAMP)(2 mg/ml)と生理食塩水を10日間腹腔内持続投与した後の血中脂質プロファイルの変化を高速液体クロマトグラフィ-(HPLC)によって測定した。その結果、ペプチド(FAMP)の10日間腹腔内持続投与により、HDLサブフラクションが著名に増加していることが認められた(図7)。この解析結果は、この発明のペプチドがインビボ(in vivo)においてもHDLを新生する作用を有していることを示している。 In this example, plasma lipoprotein was analyzed by high performance liquid chromatography (HPLC) when the peptide was continuously administered to mice for 10 days. Changes in blood lipid profile after continuous intraperitoneal administration of peptide (FAMP) (2 mg / ml) and physiological saline for 10 days to C57BL6 mice were measured by high performance liquid chromatography (HPLC). As a result, it was recognized that the HDL subfraction was markedly increased by continuous administration of the peptide (FAMP) intraperitoneally for 10 days (FIG. 7). This analysis result shows that the peptide of the present invention has an action of generating HDL even in vivo.
 本実施例では、マウスへペプチド急性投与した場合のキャピラリ-電気泳動法によるマウス血漿リポタンパク質の解析を行った。C57BL6マウスにペプチド(FAMP)(2mg/ml)を経静脈投与および腹腔内投与した後、30分後および18時間後の血中脂質プロファイルの変化をキャピラリ-電気泳動によってそれぞれ測定した(図8および図9)。その結果、ペプチド(FAMP)は、経静脈投与および腹腔内投与においても、HDLサブフラクションを著名に増加していることが認められた。この解析結果は、この発明のペプチドがインビボ(in vivo)においてもHDLを新生する作用を有していることを示している。なお、キャピラリ-電気泳動は、実施例9と同様に実施した。 In this example, mouse plasma lipoprotein was analyzed by capillary electrophoresis when the peptide was acutely administered to mice. After the peptide (FAMP) (2 mg / ml) was intravenously and intraperitoneally administered to C57BL6 mice, changes in blood lipid profile after 30 minutes and 18 hours were measured by capillary electrophoresis (FIG. 8 and FIG. 8). FIG. 9). As a result, it was confirmed that the peptide (FAMP) markedly increased the HDL subfraction even in intravenous administration and intraperitoneal administration. This analysis result shows that the peptide of the present invention has an action of generating HDL even in vivo. Capillary electrophoresis was performed in the same manner as in Example 9.
実施例1と同様にして、ヒト A172 細胞に各ペプチド(20μg/ml)をTO901317、LXR agonist (5μM)、9-cis-レチノイン酸、RXR agonist (5μM)にて刺激後、4時間インキュベ-ションしてヒト A172 細胞から浸出したコレステロ-ル量を測定してコレステロ-ル引き抜き能を調べた。コントロールとして生理食塩水を用いた。結果を図10に示す。 In the same manner as in Example 1, each peptide (20 μg / ml) was stimulated with TO901317, LXR agonist (5μM), 9-cis-retinoic acid, RXR agonist (5μM) in human A172 cells and incubated for 4 hours. Then, the amount of cholesterol exuded from human A172 cells was measured to examine the ability to extract cholesterol. Saline was used as a control. The results are shown in FIG.
実施例12と同様にして、ヒト A172 細胞にペプチドFAMP-5 (type2S9Y) またはapoA-I(20μg/ml)をTO901317、LXR agonist (5μM)、9-cis-レチノイン酸、RXR agonist (5μM)にて刺激後、Probunol (10μM)の非存在下または存在下にて4時間インキュベ-ションしてヒト A172 細胞から浸出したコレステロ-ル量を測定してコレステロ-ル引き抜き能を調べた。コントロールとして生理食塩水を用いた。結果を図11図に示す。 In the same manner as in Example 12, the peptide FAMP-5 (type2S9Y) or apoA-I (20µg / ml) was added to TO901317, LXR agonist (5µM), 9-cis-retinoic acid, RXR agonist (5µM) in the same manner as in Example 12. After stimulation, the amount of cholesterol exuded from human A172 cells was measured by incubating in the absence or presence of Probunol® (10 μM) for 4 hours to examine the ability to extract cholesterol. Saline was used as a control. The results are shown in FIG.
実施例12と同様にして、ヒト A172 細胞に各ペプチド(FAMP-5、FAMP-5-Duo、Human type original (221-240、Human type original (221-240)-Duo)(20μg/ml)をTO901317、LXR agonist (5μM)、9-cis-レチノイン酸、RXR agonist (5μM)にて刺激後、Probunol (10μM)の非存在下または存在下にて4時間インキュベ-ションしてヒト A172 細胞から浸出したコレステロ-ル量を測定してコレステロ-ル引き抜き能を調べた。コントロールとして生理食塩水を用いた。結果をそれぞれ図12および13図に示す。 In the same manner as in Example 12, each peptide (FAMP-5, FAMP-5-Duo, Human type original (221-240, Human type original (221-240) -Duo) (20 μg / ml) was added to human A172 cells. After stimulation with TO901317, LXR agonist (5μM), 9-cis-retinoic acid, RXR agonist (5μM), incubate for 4 hours in the absence or presence of Probunol (10μM) and leach from human A172 cells The amount of cholesterol was measured to examine the ability to extract cholesterol, and physiological saline was used as a control, and the results are shown in FIGS.
アガロースリボ蛋白電気泳動を用いた実験を行った。ペプチド(FAMP-5)(0.2 mg/ml ~2 mg/ml)をヒト血漿と、37℃で150分間インキュベーションした後、アガロースリボ蛋白電気泳動を行った結果、ペプチド投与によってコレステロール含量の少ないアポA-Iリッチなpre-βの著名な産生が認められた。結果を図14に示す。 Experiments using agarose riboprotein electrophoresis were performed. Peptide (FAMP-5) (0.2 mg / ml ~ 2 mg / ml) was incubated with human plasma at 37 ° C for 150 minutes and then subjected to agarose riboprotein electrophoresis. Prominent production of rich pre-β was observed. The results are shown in FIG.
マウス下肢虚血モデルを使った実験を行った。マウスの左大腿動脈を結紮した後、第1、3,5病日にPBSまたはペプチド(FAMP-5)(10 mg/ml または50 mg/mlを患側(左)肢に筋注を行った。下肢血流は、ドップラー血流計で評価した。その結果、ペプチド(FAMP-5)投与により虚血肢の顕著な血流増加が認められた(図15)。 An experiment using a mouse lower limb ischemia model was conducted. After ligating the left femoral artery of the mouse, PBS or peptide (FAMP-5) (10 mg / ml or 50 mg / ml was intramuscularly injected into the affected (left) limb on the first, third, and fifth days. Lower limb blood flow was evaluated with a Doppler blood flow meter, and as a result, a significant increase in blood flow in the ischemic limb was observed with the administration of peptide (FAMP-5) (FIG. 15).
 マクロファージ特異的RCTについて調べた。マウスに対して5日間PBS またはペプチド(FAMP-5) (50 mg/kg)を腹腔内投与した。投与開始3日後からマウス腹腔内に3H-コレステロールラベルしたマクロファージを投与した後、血中ならびに便中の3H-コレステロール量を測定した。その結果、ペプチド(FAMP-5) 投与により、マクロファージ中の3H-コレステロールの便中排泄が有意に上昇したのがわかった(図16)。 Macrophage specific RCT was examined. Mice were given intraperitoneal administration of PBS or peptide (FAMP-5) (50 mg / kg) for 5 days. Three days after the start of administration, 3H-cholesterol-labeled macrophages were administered into the abdominal cavity of the mouse, and the amount of 3H-cholesterol in blood and stool was measured. As a result, it was found that fecal excretion of 3H-cholesterol in macrophages was significantly increased by administration of peptide (FAMP-5) (FIG. 16).
 この発明に係るコレステロ-ル搬出ペプチドは、コレステロ-ル搬出作用の他に、HDL産生作用を有しているので、アテロ-ム性動脈硬化症などの心血管疾患の予防ならびに治療に有効であるとこめから、この発明のコレステロ-ル搬出ペプチドは、それ単体でももしくはペプチド-脂質混合物としても、またはこれらを含むその他の薬剤との組合せによる医薬組成物としても医薬品として適用することができる。 Since the cholesterol export peptide according to the present invention has an HDL producing action in addition to the cholesterol export action, it is effective for the prevention and treatment of cardiovascular diseases such as atherosclerosis. From the above, the cholesterol export peptide of the present invention can be applied as a pharmaceutical product either as a single substance, as a peptide-lipid mixture, or as a pharmaceutical composition in combination with other drugs containing these.

Claims (5)

  1. 一般式[I]:
     H-X1-X2-X3-His-Leu-X4-Thr-Leu-X5-Glu-Lys-Ala-
     X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-
     X18-OH                 [I]
      [式中、X1はAla、単結合("-")または一般式[Ia]:
        X1e-X1d-X1c-X1b-X1a-      [Ia]
     (式中、X1aはAlaまたは単結合("-")を意味し 、X1bはLys、Argまたは単結合("-")を意味し、X1cはAlaまたは単結合("-")を意味し、X1dはHisまたは単結合("-")を意味し、およびX1eはTyrまたは単結合("-")を意味する。)を意味し、
     X2はThr、Leu、LysまたはSerを意味し、
     X3はGlu、ThrまたはAspを意味し、
     X4はSer、PheまたはLysを意味し、
     X5はSer、Tyr、Trp、Phe またはGlyを意味し、
     X6は単結合("-")、Lys、LeuまたはArgを意味し、
     X7は単結合("-")、ProまたはLysを意味し、
     X8は単結合("-")またはAlaを意味し、
     X9は単結合("-")、Pheまたは Leuを意味し、
     X10は単結合("-")、Glu、GlnまたはAspを意味し、
     X11は単結合("-")またはAspを意味し、
     X12は単結合("-")またはLeuを意味し、
     X13は単結合("-")、Arg、LeuまたはGlyを意味し、
     X14は単結合("-")、GlnまたはHisを意味し、
     X15は単結合("-")、Gly、LysまたはSerを意味し、
     X16は単結合("-")、LeuまたはHisを意味し、
     X17は単結合("-")、Leu 、Metまたは一般式[Ib]:
       X17a-X17b-X17c-X1d          [Ib]
     (式中、X17aは単結合("-")、Leu またはMetを意味し、X17bはPro、Tyrまたは単結合("-")を意味し、X17c はValまたは単結合("-")を意味し、ならびにはX1dはLeuまたは単結合("-")を意味する。)を意味し、
     ただし、記号X1a-X1eおよび記号X17a-X17dがいずれも単結合("-")を意味する場合は、それらの単結合は全体として1個の単結合("-")を意味し、また、同時にX1がAla、X2がThr、X3がGlu、X4がSer、X5がSer、X6がLys、X7がPro、X8がAla、X9がLeu、X10がGlu、X11がAsp、X12がLeu、X13がArg、X14がGln、X15がGly、X16がLeu、およびX17がLeuである場合を除くものとする。]
    で表されるペプチド、または一般式[II]:
           A -X20 (X21-OH) - A    [II]
      [式中、Aは、一般式[IIa]:
    H-X22-X23-X24-X25-X26-X27-X28-X29-X30-X31-X32-
    X33-X34-X35-X36-X37-X38-X39-X40-X41-X42-X43-
    X44-X45-X46-                  [IIa]
     (式中、X22はAlaまたはValを意味し、X23はThr, Leu, LysまたはSerを意味し、X24はGlu, ThrまたはAspを意味し、X25はHisまたはSerを意味し、X26はLeuまたはPheを意味し、X27はSer, PheまたはLysを意味し、X28はThrまたはValを意味し、X29はLeuまたはSerを意味し、X30はSer, Gly, Phe, TyrまたはTrpを意味し、X31はGluまたはLeuを意味し、X32はLysまたはSerを意味し、X33はAlaを意味し、X34はLys, Leu, Argまたは単結合("-")を意味し、X35はPro, Glu, Lysまたは単結合("-") を意味し、X36はAla, Gluまたは単結合("-")を意味し、X37はLeu, Tyrまたは単結合("-")を意味し、X38はGlu, Gln, Asp, Thrまたは単結合("-")を意味し、X39はAsp, Lysまたは単結合("-")を意味し、X40はLeu, Lysまたは単結合("-")を意味し、X41はArg, Gly, Leuまたはを単結合("-")を意味し、X42はGln, Leu, Lys, Hisまたは結合("-")を意味し、X43はGly, Leu, Lys, Serまたは結合("-")を意味し、X44はLeu, Hisまたは結合("-")を意味する。)を意味し、
     X20はLys等のアミノ酸残基を意味し、および
     X21はLeuまたはAla等のアミノ酸残基を意味する。)
    で表される二量体;または一般式[III]:
           (A)2-X22 (X23-OH)-(A)2     [III]
      (式中、Aは前記と同じ意味を有し、
        X22 はLys等のアミノ酸残基を意味し、および
        X23はLeuまたはAla等のアミノ酸残基を意味する。)
    で表される四量体からなるペプチド。
    General formula [I]:
    H-X1-X2-X3-His-Leu-X4-Thr-Leu-X5-Glu-Lys-Ala-
    X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-
    X18-OH [I]
    [Wherein X1 is Ala, single bond ("-") or general formula [Ia]:
    X1e-X1d-X1c-X1b-X1a- [Ia]
    (In the formula, X1a means Ala or a single bond ("-"), X1b means Lys, Arg or a single bond ("-"), and X1c means Ala or a single bond ("-"). , X1d means His or a single bond ("-"), and X1e means Tyr or a single bond ("-").)
    X2 means Thr, Leu, Lys or Ser,
    X3 means Glu, Thr or Asp
    X4 means Ser, Phe or Lys
    X5 means Ser, Tyr, Trp, Phe or Gly
    X6 means a single bond ("-"), Lys, Leu or Arg,
    X7 means a single bond ("-"), Pro or Lys,
    X8 means a single bond ("-") or Ala,
    X9 means a single bond ("-"), Phe or Leu,
    X10 means a single bond ("-"), Glu, Gln or Asp,
    X11 means single bond ("-") or Asp,
    X12 means single bond ("-") or Leu,
    X13 means a single bond ("-"), Arg, Leu or Gly,
    X14 means a single bond ("-"), Gln or His,
    X15 means a single bond ("-"), Gly, Lys or Ser,
    X16 means single bond ("-"), Leu or His,
    X17 is a single bond ("-"), Leu, Met or general formula [Ib]:
    X17a-X17b-X17c-X1d [Ib]
    (Where X17a means single bond ("-"), Leu or Met, X17b means Pro, Tyr or single bond ("-"), X17c means Val or single bond ("-") As well as X1d means Leu or a single bond ("-"))
    However, when the symbols X1a-X1e and X17a-X17d both mean a single bond ("-"), these single bonds as a whole mean one single bond ("-"), and At the same time, X1 is Ala, X2 is Thr, X3 is Glu, X4 is Ser, X5 is Ser, X6 is Lys, X7 is Pro, X8 is Ala, X9 is Leu, X10 is Glu, X11 is Asp, X12 is Leu, X13 Except Arg, X14 is Gln, X15 is Gly, X16 is Leu, and X17 is Leu. ]
    Or a peptide represented by the general formula [II]:
    A -X20 (X21-OH)-A [II]
    [Wherein A represents the general formula [IIa]:
    H-X22-X23-X24-X25-X26-X27-X28-X29-X30-X31-X32-
    X33-X34-X35-X36-X37-X38-X39-X40-X41-X42-X43-
    X44-X45-X46- [IIa]
    (Wherein X22 means Ala or Val, X23 means Thr, Leu, Lys or Ser, X24 means Glu, Thr or Asp, X25 means His or Ser, and X26 means Leu or Means Phe, X27 means Ser, Phe or Lys, X28 means Thr or Val, X29 means Leu or Ser, X30 means Ser, Gly, Phe, Tyr or Trp, X31 Means Glu or Leu, X32 means Lys or Ser, X33 means Ala, X34 means Lys, Leu, Arg or single bond ("-"), X35 means Pro, Glu, Lys Or X36 means Ala, Glu or single bond ("-"), X37 means Leu, Tyr or single bond ("-"), X38 means Glu, Gln, Asp, Thr or single bond ("-"), X39 means Asp, Lys or single bond ("-"), X40 means Leu, Lys or single bond ("-") , X41 means Arg, Gly, Leu or a single bond ("-"), X42 means Gln, Leu, Lys, His or a bond ("-"), X43 means Gly, Leu, Lys, Ser or bond ("-") means X44 means Leu, His or bond ("-"))
    X20 means an amino acid residue such as Lys, and X21 means an amino acid residue such as Leu or Ala. )
    Or a general formula [III]:
    (A) 2 -X22 (X23-OH)-(A) 2 [III]
    Wherein A has the same meaning as above,
    X22 means an amino acid residue such as Lys, and X23 means an amino acid residue such as Leu or Ala. )
    The peptide which consists of tetramer represented by these.
  2.  請求項1に記載のペプチドであって、該ペプチドがコレステロ-ル搬出作用を有していることを特徴とするペプチド。 The peptide according to claim 1, wherein the peptide has a cholesterol removal action.
  3.  請求項1または2に記載のペプチドであって、該ペプチドがHDL新生作用をさらに有していることを特徴とするペプチド。 The peptide according to claim 1 or 2, wherein the peptide further has an HDL nascent action.
  4.  請求項1ないし3のいずれか1項に記載のペプチドであって、ペプチド番号1~16のいずれか1つで表されることを特徴とするペプチド。 The peptide according to any one of claims 1 to 3, wherein the peptide is represented by any one of peptide numbers 1 to 16.
  5.  請求項1に記載のペプチドを有効成分として含有することを特徴とする医薬組成物。 A pharmaceutical composition comprising the peptide according to claim 1 as an active ingredient.
PCT/JP2010/065070 2009-09-02 2010-09-02 Cholesterol-efflux peptide WO2011027839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529947A JP5742029B2 (en) 2009-09-02 2010-09-02 Cholesterol export peptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009202273 2009-09-02
JP2009-202273 2009-09-02

Publications (1)

Publication Number Publication Date
WO2011027839A1 true WO2011027839A1 (en) 2011-03-10

Family

ID=43649374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065070 WO2011027839A1 (en) 2009-09-02 2010-09-02 Cholesterol-efflux peptide

Country Status (2)

Country Link
JP (1) JP5742029B2 (en)
WO (1) WO2011027839A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092550A (en) * 2007-10-10 2009-04-30 Japan Health Science Foundation Method for identifying depression or depressed state

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092550A (en) * 2007-10-10 2009-04-30 Japan Health Science Foundation Method for identifying depression or depressed state

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Joint Chemical Conference of Kyushu Branch - Gaikokujin Kenkyusha Koryu Kokusai Symposium Koen Yokoshu, 11 July 2009", vol. 46, 11 July 2009, article YUKIHIRO ONIKI ET AL.: "Saibo no Cholesterol Haishutsu o Sokushin suru apoA-I fragment no Gosei Oyobi sono Kino", pages: 334 *
NAVAB, MOHAMAD ET AL.: "Apolipoprotein A-I mimetic peptides.", ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY, vol. 25, no. 7, 2005, pages 1325 - 1331 *
SHAH, PREDIMAN K. ET AL.: "Apolipoprotein A-I mimetic peptides: potential role in atherosclerosis management.", TRENDS IN CARDIOVASCULAR MEDICINE, vol. 15, no. 8, 2005, pages 291 - 296 *
SHIN'ICHIRO MIURA ET AL.: "Cho'onpa Shindan ni Yakudatsu Domyaku Koka no Chishiki", JOURNAL OF CLINICAL ECHOCARDIOGRAPHY, vol. 6, no. 9, 2005, pages 844 - 850 *
UEHARA Y. ET AL.: "FAMP, a novel apoA-I mimetic peptide promotes HDL via abcal-dependent cholesterol efflux.", ARTERIOSCLEROSIS, vol. 11, no. 2, 2010, pages 3 *

Also Published As

Publication number Publication date
JP5742029B2 (en) 2015-07-01
JPWO2011027839A1 (en) 2013-02-04

Similar Documents

Publication Publication Date Title
DE69837809T2 (en) APOLIPOPROTEIN A-I AGONISTS AND THEIR USE FOR THE TREATMENT OF DISLIPIDEMIC ILLNESSES
DE69837855T2 (en) APOLIPOPROTEIN A-I AGONISTS AND THEIR APPLICATION FOR THE TREATMENT OF DYSLIPIDARY DISEASE
DE69839014T2 (en) APOLIPOPROTEIN A-I AGONISTS AND THEIR USE FOR THE TREATMENT OF DYSLIPIDARY DISEASES
JP2020040979A (en) GIP-GLP-1 dual agonist compounds and methods
RU2664859C2 (en) Analogues of long-acting peptides
US9938320B2 (en) Peptides for promoting angiogenesis and use thereof
JPS60248618A (en) Dipeptide-containing remedy for ulcer
JP2009507050A (en) Use of GLP-1 molecules for the treatment of biliary dyskinesia and / or biliary pain / discomfort
JP2015520128A (en) Long-acting oxyntomodulin variants and methods for their preparation
BRPI0809234A2 (en) CYCLIC RECEIVER-ASSOCIATED PROTEIN (RAP) PEPTIDES
US7208577B2 (en) Methods of increasing lean tissue mass using OB protein compositions
JP2008502736A (en) Heterocyclic derivatives for the treatment of hyperlipidemia and related diseases
JP2002502594A (en) Neuroprotective peptides and uses thereof
AU2008266753A1 (en) ApoA-1 peptide mimetics
TW202330013A (en) Lipidated peptide inhibitors of interleukin-23 receptor
JP2023071869A (en) Long-acting co-agonists of glucagon and GLP-1 receptors
JP5775356B2 (en) Peptide having neuroprotective action and drug containing the same
CN105050614B (en) Stimulate the peptide with reduced toxicity of Cholesterol Efflux
JP2005535607A (en) Use of biologically active compounds of vasoactive intestinal peptides for the treatment of sarcoidosis
JP7450724B2 (en) Incretin analogs and their uses
JP6262661B2 (en) A therapeutic agent for amyotrophic lateral sclerosis
JP6314135B2 (en) Liposomes active in-vivo for neurodegenerative diseases (especially Alzheimer's disease)
WO2011013728A1 (en) Motilin-like peptide compound having transmucosal absorbability imparted thereto
JP5742029B2 (en) Cholesterol export peptide
US9249185B2 (en) Peptides for promoting angiogenesis and an use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813787

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011529947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813787

Country of ref document: EP

Kind code of ref document: A1