WO2011027687A1 - Clutch operation device - Google Patents

Clutch operation device Download PDF

Info

Publication number
WO2011027687A1
WO2011027687A1 PCT/JP2010/064327 JP2010064327W WO2011027687A1 WO 2011027687 A1 WO2011027687 A1 WO 2011027687A1 JP 2010064327 W JP2010064327 W JP 2010064327W WO 2011027687 A1 WO2011027687 A1 WO 2011027687A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
stroke
cylinder
operating device
unit
Prior art date
Application number
PCT/JP2010/064327
Other languages
French (fr)
Japanese (ja)
Inventor
斉士 桂
義和 樋口
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to CN2010800360454A priority Critical patent/CN102472331A/en
Priority to DE112010003520T priority patent/DE112010003520T5/en
Publication of WO2011027687A1 publication Critical patent/WO2011027687A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D29/00Clutches and systems of clutches involving both fluid and magnetic actuation
    • F16D29/005Clutches and systems of clutches involving both fluid and magnetic actuation with a fluid pressure piston driven by an electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D48/04Control by fluid pressure providing power assistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D2025/081Hydraulic devices that initiate movement of pistons in slave cylinders for actuating clutches, i.e. master cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0212Details of pistons for master or slave cylinders especially adapted for fluid control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0269Single valve for switching between fluid supply to actuation cylinder or draining to the sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D25/088Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member the line of action of the fluid-actuated members being distinctly separate from the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3024Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30401On-off signal indicating the engage or disengaged position of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70205Clutch actuator
    • F16D2500/70217Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70205Clutch actuator
    • F16D2500/70235Displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • F16D2500/70264Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • F16D2500/7027Engine speed

Definitions

  • the present invention relates to a clutch operating device that operates a clutch device.
  • a clutch device is provided between the engine and the transmission, and the shift lever of the driver's seat and the transmission are mechanically connected by a link mechanism such as a control rod.
  • the clutch pedal is depressed to cut off the power transmission between the engine and the transmission by the clutch device and operate the shift lever. For this reason, when frequent shifts are required, a series of operations becomes a heavy burden on the driver.
  • the clutch device In the case of the normal open type, the clutch device is disconnected when the vehicle is powered off.
  • the pressure plate When connecting the clutch device, the pressure plate is pressed by the slave cylinder via the lever, and the clutch disk is sandwiched between the pressure plate and the flywheel. As a result, power is transmitted to the input shaft of the transmission via the clutch disk.
  • the pressing force acting on the clutch disk is determined by the operating force transmitted from the clutch operating device.
  • the clutch device is connected from the so-called half-clutch state (power transmission state).
  • the pressing force increases rapidly.
  • the load of the drive source of the clutch operating device also increases rapidly from the half-clutch state to the power transmission state.
  • the maximum output of the clutch operating device must be determined based on the required pressing force in the power transmission state.
  • the conventional clutch operation device cannot realize a smooth clutch engagement operation while suppressing an increase in cost in a normally open type clutch device.
  • An object of the present invention is to provide a clutch operating device capable of realizing a smooth clutch engagement operation of a normally open type clutch device while suppressing an increase in cost.
  • a clutch operating device is a device that switches a clutch device to a power transmission state by applying a pressing force acting on a clutch disk to the clutch device, and includes a drive unit, a speed reduction unit, an intermediate transmission unit, It has.
  • the driving unit generates a driving force.
  • the deceleration unit is a mechanism that amplifies the driving force by decelerating the driving amount of the driving unit, and has a reduction ratio that gradually increases from the power cutoff state to the power transmission state of the clutch device.
  • the intermediate transmission unit transmits the driving force amplified by the reduction unit to the clutch device as a pressing force.
  • the “reduction ratio” refers to a value obtained by dividing the input drive amount input from the drive unit to the reduction unit by the output drive amount output from the reduction unit.
  • the driving force is amplified by the speed reducer so as to follow it.
  • the required pressing force can be sufficiently secured at the portion.
  • the clutch device 9 is an example of a device for transmitting power from an engine (not shown) to a transmission (not shown), and is fixed to a flywheel 91 of the engine.
  • the clutch device 9 is a so-called normal open type device, and cuts off power transmission from the engine to the transmission when it is not operated via the clutch operating device 1 (described later).
  • the clutch device 9 includes a clutch cover 93, a pressure plate 92, a clutch disk 94, a pressing lever 96, and an engagement bearing 97.
  • the clutch cover 93 is fixed to the flywheel 91.
  • the pressure plate 92 is supported by the clutch cover 93 so as to be integrally rotatable and movable in the axial direction.
  • the pressure plate 92 is connected to the flywheel 91 by a strap plate 93a so as to move to the opposite side of the clutch disk 94.
  • the clutch disc 94 is disposed between the flywheel 91 and the pressure plate 92, and is sandwiched between the flywheel 91 and the pressure plate 92 in the axial direction when the clutch device 9 is connected.
  • the pressing lever 96 is a substantially annular plate, and is supported by a clutch cover 93 so as to be elastically deformable in the axial direction.
  • the elastic force of the pressing lever 96 is small, and the force required for elastic deformation is relatively small.
  • the inner peripheral portion of the pressing lever 96 can be pushed in the axial direction by an engagement bearing 97.
  • the engagement bearing 97 presses the pressure plate 92 in the axial direction via the pressing lever 96.
  • the engagement bearing 97 is driven in the axial direction by the clutch operating device 1.
  • the pressing force acting on the clutch disk 94 via the pressing lever 96 and the pressure plate 92 changes according to the amount of movement of the engagement bearing 97 (the amount of operation of the clutch operating device 1). .
  • a rotation speed sensor 98 for detecting the rotation speed of the clutch device 9 is provided.
  • the rotation speed sensor 98 is connected to the control device 8 (described later) of the clutch operating device 1.
  • the clutch operating device 1 performs power transmission and disconnection in the clutch device based on an operation signal output from the transmission ECU 99, for example.
  • the clutch operating device 1 can be applied to a plurality of clutch devices having different specifications.
  • the clutch operating device 1 will be described by taking the clutch device 9 as an operation target of the clutch operating device 1 as an example.
  • the clutch operating device 1 includes a drive motor 2 (an example of a drive unit), a speed reduction mechanism 3 (an example of a speed reduction unit), a master cylinder 4, a slave cylinder 5, a hydraulic circuit 6, A lever mechanism 7 and a control device 8 are provided.
  • the drive motor 2 is a drive source for driving the engagement bearing 97 of the clutch device 9 and applies thrust to the master cylinder 4 via the speed reduction mechanism 3.
  • the drive motor 2 is, for example, a brushless motor, and includes a drive shaft 21 for outputting a drive force, a drive gear 24, an encoder 22 for detecting a rotation angle (an example of a drive amount) of the drive shaft 21, and a motor torque. And a load detection sensor 23 for detection.
  • the drive gear 24 is fixed to the end of the drive shaft 21 and meshes with the worm wheel 31 of the speed reduction mechanism 3.
  • the encoder 22 and the load detection sensor 23 are electrically connected to the control device 8.
  • the load detection sensor 23 detects the load of the drive motor 2 based on the current value of the drive motor 2.
  • the load detection sensor 23 may be a sensor using a strain gauge or the like.
  • the speed reduction mechanism 3 is generated by the drive motor 2 and a function of converting the rotational motion generated by the drive motor 2 into straight motion and transmitting it to the first piston 42 of the master cylinder 4. A function of amplifying the driving force.
  • the speed reduction mechanism 3 includes a worm wheel 31 and a toggle mechanism 39.
  • the worm wheel 31 is a gear that reduces the rotation of the drive gear 24 and meshes with the drive gear 24.
  • the worm wheel 31 is rotatably supported by, for example, a housing (not shown).
  • the toggle mechanism 39 is a so-called terminal reduction mechanism, and the reduction ratio changes according to the input drive amount (more specifically, the rotation angle of the drive motor 2 or the rotation angle of the worm wheel 31). Specifically, as shown in FIG. 3, the reduction ratio of the toggle mechanism 39 gradually increases from the power cutoff state to the power transmission state of the clutch device 9, and the reduction ratio increases rapidly in the end stroke range Lt. Further, the reduction ratio of the toggle mechanism 39 is gradually increased by the increase ratio from the power cut-off state to the power transmission state. This increase ratio gradually increases from the power cutoff state to the power transmission state. For this reason, the operation of the clutch device 9 becomes smoother when the state of the clutch device 9 shifts from the power cutoff state to the power transmission state.
  • the toggle mechanism 39 includes a first link member 32, a second link member 33, and a third link member 34.
  • the first end 32 a of the first link member 32 is rotatably connected to the outer peripheral portion of the worm wheel 31.
  • the second end 32 b of the first link member 32 is rotatably connected to the second link member 33 and the third link member 34.
  • the first end portion 33a of the second link member 33 is rotatably supported by the housing via, for example, a pin 36 fixed to the housing.
  • the second end 33 b of the second link member 33 is rotatably connected to the first end 34 a of the third link member 34.
  • the second end 34 b of the third link member 34 is inserted into the recess 42 a of the first piston 42 of the master cylinder 4.
  • the second link member 33 and the third link member 34 are bent to the opposite side to the worm wheel 31.
  • the second end portion 32b of the first link member 32 is rotatably connected to the connecting portion between the second end portion 33b and the first end portion 34a.
  • the master cylinder 4 includes a first cylinder 41, a first piston 42 inserted in the first cylinder 41, a reservoir tank 43 provided in the first cylinder 41, a spring 47, A piston 45 and a pressing member 46 are provided.
  • a first hydraulic chamber 44 is formed by the first cylinder 41 and the first piston 42, and a reservoir tank 43 is connected to the first hydraulic chamber 44.
  • a hydraulic circuit 6 is connected to the first hydraulic chamber 44.
  • a spring 47 is disposed between the first piston 42 and the pressing member 46 in a pre-compressed state.
  • the spring 47 presses the first piston 42 against the third link member 34.
  • the third link member 34 and the first piston 42 move together.
  • the flow path 41b connecting the first hydraulic chamber 44 and the reservoir tank 43 is normally closed by an elongated sub-piston 45, but when the pressure in the first hydraulic chamber 44 becomes lower than the reservoir tank 43, the reservoir The hydraulic oil can flow from the tank 43 into the first hydraulic chamber 44.
  • the spring 47 presses the pressing member 46 against the first cylinder 41.
  • a cone spring (not shown) is provided between the pressing member 46 and the sub piston 45, and the cone spring presses the sub piston 45 against the periphery of the opening of the flow path 41b.
  • the slave cylinder 5 includes a second cylinder 51, a second piston 52 inserted into the second cylinder 51, a spring 57, and a rod 59.
  • a second hydraulic chamber 54 is formed by the second cylinder 51 and the second piston 52, the hydraulic circuit 6 is connected to the second hydraulic chamber 54, and a pressure gauge 53 (an example of a detection sensor) is connected.
  • a pressure gauge 53 an example of a detection sensor
  • a spring 57 is disposed in the second hydraulic chamber 54. The spring 57 presses the rod 59 against the end of the lever 71 of the lever mechanism 7 via the second piston 52. Accordingly, the end portions of the second piston 52, the rod 59, and the lever 71 are moved together.
  • the lever mechanism 7 is a mechanism for transmitting the thrust of the slave cylinder 5 to the engagement bearing 97 at a predetermined lever ratio, and has a lever 71.
  • the lever 71 is provided with a pin 72, and the lever 71 rotates around the pin 72. Since the pin 72 is disposed closer to the engagement bearing 97 than the center of the lever 71, the stroke of the slave cylinder 5 is decelerated by the lever mechanism 7 and transmitted to the engagement bearing 97, but the thrust of the slave cylinder 5 is transmitted to the lever mechanism. 7 is amplified.
  • the hydraulic circuit 6 includes a main oil passage 61, a sub oil passage 63, and a switching valve 62 (an example of a switching unit).
  • the main oil passage 61 connects a reservoir tank 43 (an example of a tank) and a switching valve 62.
  • the sub oil passage 63 connects the first hydraulic chamber 44 of the master cylinder 4, the second hydraulic chamber 54 of the slave cylinder 5, and the switching valve 62.
  • the switching valve 62 is a normally open type electromagnetic switching valve and is controlled by the control device 8. When the current is not flowing through the solenoid, the switching valve 62 connects the main oil passage 61 and the sub oil passage 63.
  • the switching valve 62 When the current is flowing through the solenoid, the switching valve 62 is connected to the main oil passage 61 and the sub oil passage 63. And shut off. For this reason, when the power supply of the vehicle is OFF, the pressure in the main oil passage 61 is released to the reservoir tank 43, and the clutch device 9 is in a power cut-off state.
  • the master cylinder 4, the slave cylinder 5, the hydraulic circuit 6 and the lever mechanism 7 constitute an intermediate transmission unit that transmits the driving force of the driving motor 2 to the clutch device 9 as a pressing force. Further, the switching valve 62 and the control device 8 constitute an adjustment unit that converts the drive amount (rotation angle of the drive shaft 21) of the drive motor 2 into an operation amount (stroke of the slave cylinder 5) by the transmission unit.
  • the control device 8 controls the drive motor 2 and the switching valve 62 based on the outputs of the encoder 22, the load detection sensor 23 and the pressure gauge 53.
  • the control device 8 includes a motor control unit 81 that controls the drive motor 2, and a stroke control unit that controls the switching valve 62 based on the outputs of the load detection sensor 23 and the pressure gauge 53. 82 (an example of an adjustment control unit).
  • the motor control unit 81 controls the drive motor 2 based on an operation signal output from the transmission ECU 99 (FIG. 1) according to the state of the vehicle, for example.
  • the motor control unit 81 controls the drive motor 2 so that the drive shaft 21 of the drive motor 2 rotates by a set angle.
  • the motor control unit 81 can detect the rotation angle of the drive shaft 21 by counting the pulses output from the encoder 22.
  • the motor control unit 81 can stop the drive motor 2 when the drive shaft 21 rotates by a set angle by monitoring the output pulse of the encoder 22.
  • the set angle is stored in advance in a memory (not shown) provided in the control device 8.
  • the control device 8 controls the drive motor 2 so that the drive shaft 21 of the drive motor 2 rotates to the opposite side by a set angle. Thereby, the rotational position of the drive shaft 21 can be returned to the initial position.
  • the stroke control unit 82 adjusts the stroke of the slave cylinder 5 (an example of the moving distance of the second piston 52 and an operation amount) so that the pressing force of the pressure plate 92 does not change greatly due to dimensional error or dimensional change. Specifically, the stroke control unit 82 calculates an appropriate stroke (an example of an appropriate operation amount) based on the detection results of the pressure gauge 53 and the load detection sensor 23.
  • the appropriate stroke means an appropriate stroke as the stroke of the slave cylinder 5.
  • the difference between the appropriate stroke and the maximum stroke Lmax of the slave cylinder 5 is called an invalid stroke ⁇ L.
  • the stroke controller 82 controls the switching valve 62 so that the slave cylinder 5 does not operate by the invalid stroke ⁇ L during operation of the master cylinder 4. .
  • the main oil passage 61 is connected to the reservoir tank 43 by the switching valve 62, hydraulic oil flows from the main oil passage 61 to the reservoir tank 43, so that the straight movement of the first piston 42 is not transmitted to the second piston 52. .
  • the straight movement of the first piston 42 is transmitted to the second piston 52 by the hydraulic oil in the main oil passage 61. That is, by adjusting the opening / closing timing of the switching valve 62, the length of the invalid stroke ⁇ L can be adjusted, and the stroke of the slave cylinder 5 can be adjusted to an appropriate stroke. That is, only a part of the rotation angle (drive amount) in the rotation range (total drive range) of the drive shaft 21 by the drive motor 2 is the stroke (operation amount) of the slave cylinder 5 by the master cylinder 4, the slave cylinder 5 and the hydraulic circuit 6. ).
  • the stroke of the slave cylinder 5 is usually constant, if the position of the pressure plate 92 at the time of power transmission approaches the flywheel 91 side, the stroke of the slave cylinder 5 becomes insufficient, and the pressure lever 96 moves to the pressure plate 92. It becomes difficult to transmit the pressing force. As a result, depending on the worn state of the clutch disc 94, the pressing force of the pressure plate 92 decreases.
  • the stroke and position of the slave cylinder 5 are adjusted so that the required pressing force can be ensured with the maximum wear amount of the clutch disk and the maximum stroke of the slave cylinder 5.
  • the stroke of the slave cylinder 5 is adjusted according to the wear state of the clutch disk.
  • an appropriate stroke of the slave cylinder 5 is calculated based on data stored in the control device 8 in advance, and the opening / closing of the switching valve 62 is switched by the control device 8 based on the calculated appropriate stroke.
  • the data shown in FIG. 5 shows the relationship between the wear amount of the clutch disk 94, the stroke L of the slave cylinder 5 and the pressure P in the second hydraulic chamber 54, and is obtained in advance by design or experiment.
  • Lines A1 to A4 shown in FIG. 5 are approximate curves of data obtained experimentally or experimentally, and approximate expressions corresponding to the lines A1 to A4 are stored in the memory of the control device 8 in advance.
  • the wear amount of the clutch disk can be roughly grasped based on the data shown in FIG. 5, and the slave disk can be determined from the obtained wear amount of the clutch disk and the target pressure. An appropriate stroke of the cylinder 5 can be obtained.
  • the data shown in FIG. 5 is stored in the memory of the control device 8.
  • the data shown in FIG. 6 shows the relationship between the wear amount of the clutch disk 94, the stroke L of the slave cylinder 5, and the motor load M of the drive motor 2, and is obtained in advance by design or experiment.
  • Lines A11 to A14 shown in FIG. 6 are approximate curves of data obtained by design or experiment.
  • the motor load M of the drive motor 2 is taken on the vertical axis and the stroke L of the second cylinder 51 is taken on the horizontal axis
  • the relationship between the motor load M and the stroke L in the state where the wear amount of the clutch disk 94 is maximized is a line.
  • the relationship between the motor load M and the stroke L in the initial state represented by A14 and the clutch disk 94 not being worn at all is represented by a line A11.
  • the relationship between the stroke L and the motor load M is as indicated by lines A12 and A13.
  • the wear amount of the clutch disk can be roughly grasped based on the data shown in FIG. 6, and from the obtained wear amount of the clutch disk and the target load, The appropriate stroke of the slave cylinder 5 can be obtained.
  • the data shown in FIG. 6 is stored in the memory of the control device 8.
  • the position of the second piston 52 of the slave cylinder 5 is adjusted at the manufacturing stage using an adjusting clutch device. Specifically, a mechanism for adjusting the position of the second piston 52 of the slave cylinder 5 or the length of the rod 59 so that the pressing force of the pressure plate is maintained at an appropriate level even when the clutch disk is most worn. Adjust (not shown).
  • the clutch device for adjustment is provided with a clutch disk that has been completely worn out (a clutch disk having the maximum amount of wear).
  • the master cylinder 4 is driven by the drive motor 2 and the pressure plate 92 is pressed by the slave cylinder 5 via the lever mechanism 7.
  • the pressure P in the second hydraulic chamber 54 increases.
  • the stroke L of the slave cylinder 5 is adjusted by adjusting the stroke of the slave cylinder 5 (or the position of the slave cylinder 5 with respect to the lever mechanism 7) so that the pressure P becomes the reference pressure P0. Is the maximum stroke Lmax (that is, when the amount of wear of the clutch disk is maximum), the necessary pressing force can be ensured.
  • the stroke of the slave cylinder 5 is automatically adjusted so that the pressing force is substantially constant regardless of the wear of the clutch disk.
  • the stroke controller 82 calculates four pressures Pc1 to Pc4 based on the current stroke Ls and the approximate expression of the lines A1 to A4.
  • the stroke control unit 82 compares the calculated four pressures Pc1 to Pc4 with the detected pressure Pd, and selects a line corresponding to the pressure closest to the detected pressure Pd from the lines A1 to A4.
  • the stroke control unit 82 calculates the stroke Lp based on the approximate expression of the line A2 and the reference pressure P0.
  • the motor load M of the drive motor 2 is detected by the load detection sensor 23, and the output of the load detection sensor 23 is stored in the memory of the control device 8 as the detection load Md.
  • the stroke controller 82 calculates four motor loads Mc1 to Mc4 based on the current stroke Ls and the approximate expression of the lines A11 to A14.
  • the stroke control unit 82 compares the calculated four motor loads Mc1 to Mc4 with the detected load Md, and selects a line corresponding to the motor load M closest to the detected load Md from the lines A11 to A14.
  • the stroke control unit 82 calculates the stroke Lm based on the approximate expression of the line A12 and the reference load M0.
  • the calculated stroke Lm is temporarily stored in the memory of the control device 8.
  • the stroke control unit 82 calculates an appropriate stroke based on the strokes Lp and Lm. Specifically, when the absolute value of the difference between the strokes Lp and Lm is equal to or less than a predetermined value ⁇ L, the stroke control unit 82 sets the stroke Lp to a new stroke Ls.
  • the reason why the pressure P is given priority over the motor load M is that the pressure P of the slave cylinder 5 close to the clutch device 9 in the driving force transmission path is more accurate as an index of the pressing force than the motor load M.
  • the stroke control unit 82 compares the strokes Lp and Lm and sets the longer stroke to the new stroke Ls.
  • the reason why the longer stroke is selected is that it is easy to ensure a large pressing force as compared with the shorter stroke.
  • the stroke control unit 82 calculates the invalid stroke ⁇ L by subtracting the new set stroke Ls from the stroke Lmax. Based on the invalid stroke ⁇ L, the operation timing of the switching valve 62 is adjusted by the stroke controller 82. Specifically, a relational expression between the invalid stroke ⁇ L and the rotation angle of the drive motor 2 is stored in advance in the stroke control unit 82, and the stroke control unit 82 calculates the rotation angle from the calculated invalid stroke ⁇ L and the relational expression. Is calculated. The opening / closing timing of the switching valve 62 is adjusted using the calculated rotation angle.
  • the appropriate stroke of the slave cylinder 5 corresponding to the wear state of the clutch disk is calculated.
  • the invalid stroke ⁇ L is set in a stroke range with a small reduction ratio (a range other than the stroke range Lt).
  • the stroke range with a large reduction ratio can be utilized to the maximum, and the pressing force can be ensured without increasing the load of the drive motor 2 more than necessary.
  • the clutch operating device 1 pushes the pressing lever 96 toward the flywheel 91, and the clutch disc 94 is sandwiched between the flywheel 91 and the pressure plate 92.
  • the switching valve 62 is closed by the control device 8, and the driving force of the driving motor 2 is transmitted to the pressure plate 92 via the speed reduction mechanism 3, the master cylinder 4, the slave cylinder 5, and the lever mechanism 7. .
  • the motor control unit 81 controls the drive motor 2 so that the drive shaft 21 rotates in the direction in which the clutch device 9 is disengaged.
  • the first link member 32 rises and the driving force transmitted from the speed reduction mechanism 3 to the master cylinder 4 is released.
  • the driving force is released, the first piston 42 moves to the left side by the elastic force of the spring 57, and accordingly, the second piston 52 also moves to the left side.
  • the engagement bearing 97 is pushed back to the right side by the pressing lever 96 and the strap plate 93a, and the pressure plate 92 moves to the side opposite to the flywheel 91.
  • the holding of the clutch disk 94 by the pressure plate 92 and the flywheel 91 is released, and the power transmission from the engine to the transmission is interrupted.
  • the drive amount (rotation angle of the drive shaft 21) by the drive motor 2 is adjusted by the motor control unit 81 based on the output pulse of the encoder 22.
  • the motor controller 81 starts counting the output pulses of the encoder 22, and when the number of count pulses reaches the number of pulses corresponding to the maximum stroke Lmax, the motor controller 81 causes the drive motor 2 to Is stopped.
  • the pressure plate 92 stops at the power cut-off position, and the release operation of the clutch device 9 is completed.
  • the switching valve 62 is switched from the closed state to the open state by the stroke control unit 82.
  • the motor control unit 81 drives the speed reduction mechanism 3 by the drive motor 2 by a drive amount corresponding to the maximum stroke Lmax.
  • the first link member 32 is pulled downward, and the third link member 34 gradually moves the first piston 42 of the master cylinder 4 to the right side. Press to.
  • the first piston 42 moves to the right side, but the switching valve 62 is in the open state, so that the hydraulic oil flowing out from the first hydraulic chamber 44 does not flow into the second hydraulic chamber 54, It flows into the reservoir tank 43 through the oil passage 63. For this reason, while the switching valve 62 is kept open, the second piston 52 remains stopped.
  • the output pulses of the encoder 22 are counted by the motor control unit 81.
  • the switching valve 62 remains open until the count pulse number reaches the pulse number corresponding to the invalid stroke ⁇ L.
  • a control signal is transmitted from the motor control unit 81 to the stroke control unit 82, and the switching valve 62 is switched from the open state to the closed state by the stroke control unit 82.
  • an appropriate stroke suitable for the wear state of the clutch disk is calculated by the stroke control unit 82, and the clutch operating device 1 operates with the calculated stroke.
  • the pressure P is maintained at or near the reference pressure P0, and the pressing force is maintained at an appropriate level.
  • the clutch device 9 is operated by the clutch operating device 1.
  • the stroke controller 82 calculates an appropriate stroke according to a dimensional error or a dimensional change under a predetermined condition (for example, once a day, after the vehicle is stopped, after the engine is stopped), and the set stroke Ls.
  • the invalid stroke ⁇ L is updated under predetermined conditions.
  • the stroke control unit 82 when the appropriate stroke is calculated, it is confirmed by the stroke control unit 82 whether or not the clutch device 9 is in a connected state (S1).
  • the state of the clutch device 9 is determined by the stroke control unit 82 based on the operation signal output from the transmission ECU 99 or the output of the encoder 22.
  • the calculation of the stroke is preferably performed when the rotational speed V of the clutch device 9 is low. This is because when the rotational speed V of the clutch device 9 is high, the influence of vibration of each member, pulsation of hydraulic pressure, and the like increases. Therefore, if the clutch device 9 is in the connected state, the stroke control unit 82 compares the rotational speed V of the clutch device 9 detected by the rotational speed sensor 98 with a preset reference value V0 (S2).
  • steps S1 and S2 are repeated, and the connected state of the clutch device 9 and the rotational speed V are monitored by the stroke control unit 82.
  • the stroke is calculated by the stroke control unit 82 according to the stroke calculation method described above.
  • the pressure P is detected by the pressure gauge 53, and the motor load M of the drive motor 2 is detected by the load detection sensor 23 (S3, S4). .
  • the detection results of the pressure gauge 53 and the load detection sensor 23 are transmitted to the control device 8 and stored in a memory (not shown) of the control device 8.
  • an appropriate stroke based on the detected pressure Pd is calculated by the stroke control unit 82 based on the data shown in FIG. 5, the detected pressure Pd, and the current set stroke Ls.
  • a calculation formula is selected from the data shown in FIG. 5 using the detected pressure Pd and the current set stroke Ls (S5).
  • the pressures Pc1 to Pc4 corresponding to the stroke Ls are calculated by the stroke controller 82 using the approximate expression of the lines A1 to A4.
  • the stroke controller 82 compares the pressures Pc1 to Pc4 with the detected pressure Pd, and the stroke controller 82 selects the line corresponding to the pressure closest to the detected pressure Pd from the lines A1 to A4.
  • the stroke Lp is calculated based on the approximate expression of the selected line and the detected pressure Pd, and the calculated stroke Lp is stored in the memory (S5).
  • the stroke controller 82 calculates a proper stroke based on the detected load Md. Specifically, an approximate expression is selected from the data shown in FIG. 6 using the detected load Md and the current set stroke Ls (S6). For example, as shown in FIG. 6, loads Mc1 to Mc4 corresponding to the stroke Ls are calculated by the stroke control unit 82 using approximate equations corresponding to the lines A11 to A14. The stroke control unit 82 compares the loads Mc1 to Mc4 with the detected load Md, and the stroke control unit 82 selects a line corresponding to the load closest to the detected load Md from the lines A11 to A14. The stroke Lm is calculated based on the approximate expression of the selected line and the detected load Md, and the calculated stroke Lm is stored in the memory (S6).
  • the stroke control unit 82 calculates an appropriate stroke. Specifically, when the absolute value of the difference between the strokes Lp and Lm is equal to or smaller than a predetermined value ⁇ L, the pressure P of the slave cylinder 5 close to the clutch device 9 in the driving force transmission path is accurate as an index of the pressing force. Therefore, the stroke control unit 82 selects the stroke Lp as an appropriate stroke, and the stroke Lp is set to a new stroke Ls (S7, S8).
  • the stroke control unit 82 compares the strokes Lp and Lm, the longer stroke is selected as the appropriate stroke, and the selected stroke Is set to a new stroke Ls (S7 to S10).
  • the pressing force transmitted to the clutch device 9 by the speed reduction mechanism 3 gradually increases from the power cutoff state to the power transmission state of the clutch device 9. For this reason, in the power transmission state in which a large pressing force is required, the load on the drive motor 2 can be reduced.
  • the load in the engagement region can be obtained by using the speed reduction mechanism 3. Can be suppressed to the level indicated by the line X2 or the line X1. As compared with the conventional characteristic shown in FIG. 9, it can be seen that the maximum load is significantly reduced.
  • the operation of the clutch device 9 can be smoothly performed and an increase in the load of the drive motor 2 can be suppressed. That is, by providing the speed reduction mechanism 3, it is possible to realize a smooth clutch engagement operation while suppressing an increase in cost.
  • the stroke Ls is periodically calculated and updated according to the wear state of the clutch disk, the stroke L is automatically adjusted according to a dimensional change such as a dimensional error or wear of the clutch disk 94, and the clutch disk.
  • the pressing force acting on 94 can be maintained at an appropriate level. That is, in this clutch operating device 1, the performance of the clutch device 9 can be stabilized.
  • toggle mechanism 39 is employed as the speed reduction mechanism 3, any other mechanism may be used as long as the speed reduction ratio increases near the end of the stroke.
  • the terminal speed reduction mechanism in addition to the toggle mechanism, a cam mechanism, a crank mechanism, a cardan circular pin applied gear mechanism, a variable rack / pinion mechanism, a belt mechanism, an elliptical gear mechanism, and the like can be considered.
  • the reduction ratio of the toggle mechanism 39 is shown in FIG. 3, but the reduction ratio of the reduction mechanism 3 is not limited to the characteristics shown in FIG.
  • the speed reduction mechanism 3 may have such characteristics that the speed reduction ratio increases at a constant rate from the power cutoff state to the power transmission state.
  • the master cylinder 4 and the slave cylinder 5 are mounted on the clutch operating device 1, but the master cylinder 4 and the slave cylinder 5 may not be provided.
  • the third link member 34 of the speed reduction mechanism 3 may directly press the lever 71 of the lever mechanism 7.
  • both the pressure P and the motor load M are detected, and the appropriate stroke and the invalid stroke ⁇ L are calculated based on both.
  • only one of the pressure P and the motor load M is used.
  • the invalid stroke ⁇ L may be calculated.
  • the means for detecting the pressure P is not limited to the pressure gauge 53, and may be a pressure switch, for example.
  • the present invention is useful in the field of clutch operating devices that operate clutch devices.

Abstract

Disclosed is a clutch operation device (1) equipped with a drive motor (2) that generates driving force, a speed reduction mechanism (3), a master cylinder (4), a slave cylinder (5), and a hydraulic circuit (6). The speed reduction mechanism (3) is a mechanism that amplifies the driving force by reducing the amount of drive from the drive motor (2), and is provided with a reduction ratio that gradually increases from the cut-power state to the power transmission state of a clutch device (9). The master cylinder (4), the slave cylinder (5), and the hydraulic circuit (6) transmit the driving force that was amplified by the speed reduction mechanism (3) to the clutch device (9) as a pressing force.

Description

クラッチ操作装置Clutch operating device
 本発明は、クラッチ装置の操作を行うクラッチ操作装置に関する。 The present invention relates to a clutch operating device that operates a clutch device.
 従来の手動変速機では、エンジンと変速機との間にクラッチ装置が設けられ、またコントロールロッド等のリンク機構により運転席のシフトレバーと変速機とが機械的に連結されている。変速時には、クラッチペダルを踏むことによって、エンジンと変速機との間で行われる動力伝達をクラッチ装置により遮断し、シフトレバーを操作する。このため、頻繁に変速が要求される場合には、一連の操作がドライバーにとって大きな負担になる。 In the conventional manual transmission, a clutch device is provided between the engine and the transmission, and the shift lever of the driver's seat and the transmission are mechanically connected by a link mechanism such as a control rod. At the time of shifting, the clutch pedal is depressed to cut off the power transmission between the engine and the transmission by the clutch device and operate the shift lever. For this reason, when frequent shifts are required, a series of operations becomes a heavy burden on the driver.
 そこで、シフト操作に関するドライバーの負担を軽減するために、クラッチ装置を自動的に断接するクラッチアクチュエータを設けて、クラッチペダルを踏むことなく変速操作を行える自動変速機が提案されている。 Therefore, in order to reduce the burden on the driver regarding the shift operation, there has been proposed an automatic transmission that is provided with a clutch actuator that automatically connects and disconnects the clutch device and can perform a shift operation without stepping on the clutch pedal.
特開2005-48924号公報JP 2005-48924 A
 上記の自動変速機用のクラッチ装置としては、通常、ノーマルクローズタイプが用いられているが、近年では、ノーマルオープンタイプのクラッチ装置を用いた自動変速機も開発されている。 As a clutch device for the above automatic transmission, a normally closed type is usually used, but in recent years, an automatic transmission using a normally open type clutch device has also been developed.
 ノーマルオープンタイプの場合、車両の電源がOFFの状態では、クラッチ装置の連結は解除されている。クラッチ装置を連結する際には、レバーを介してスレーブシリンダによりプレッシャプレートが押圧され、プレッシャプレートとフライホイールとの間にクラッチディスクが挟み込まれる。この結果、クラッチディスクを介して変速機の入力シャフトに動力が伝達される。 In the case of the normal open type, the clutch device is disconnected when the vehicle is powered off. When connecting the clutch device, the pressure plate is pressed by the slave cylinder via the lever, and the clutch disk is sandwiched between the pressure plate and the flywheel. As a result, power is transmitted to the input shaft of the transmission via the clutch disk.
 ところで、ノーマルクローズタイプとは異なり、ノーマルオープンタイプのクラッチ装置では、クラッチディスクに作用する押付力がクラッチ操作装置から伝達される操作力により決まる。例えば、図8に示すように、縦軸にエンゲージベアリングからクラッチ装置に作用する押付力、横軸にエンゲージベアリングのストロークをとった場合、いわゆる半クラッチ状態からクラッチ装置の連結状態(動力伝達状態)までの領域(以下、エンゲージ領域ともいう)では、押付力が急激に大きくなる。 Incidentally, unlike the normally closed type, in the normally open type clutch device, the pressing force acting on the clutch disk is determined by the operating force transmitted from the clutch operating device. For example, as shown in FIG. 8, when the pressing force acting on the clutch device from the engagement bearing is taken on the vertical axis and the stroke of the engagement bearing is taken on the horizontal axis, the clutch device is connected from the so-called half-clutch state (power transmission state). In the region up to (hereinafter also referred to as an engagement region), the pressing force increases rapidly.
 これに伴い、図9に示すように、クラッチ操作装置の駆動源の負荷も半クラッチ状態から動力伝達状態にかけて急激に増加する。このため、動力伝達状態での伝達トルクを許容範囲内で確保するためには、クラッチ操作装置の最大出力は動力伝達状態での必要押付力を基準に決めざるを得ない。 Accordingly, as shown in FIG. 9, the load of the drive source of the clutch operating device also increases rapidly from the half-clutch state to the power transmission state. For this reason, in order to secure the transmission torque in the power transmission state within an allowable range, the maximum output of the clutch operating device must be determined based on the required pressing force in the power transmission state.
 しかしながら、最大押付力を基準にクラッチ操作装置の最大出力を決定すると、クラッチ操作装置の駆動源として大型の機器を選定せざるを得なくなり、結果として、コストが増大することになる。 However, if the maximum output of the clutch operating device is determined based on the maximum pressing force, a large-sized device must be selected as a drive source for the clutch operating device, resulting in an increase in cost.
 一方で、円滑なクラッチ連結動作を実現するために、エンゲージ領域では比較的高い制御分解能が求められる。 On the other hand, in order to realize smooth clutch engagement operation, a relatively high control resolution is required in the engagement region.
 しかしながら、図8に示すように、エンゲージ領域では、単位ストロークあたりの押付力の変化量が大きくなるため、他の領域に比べて制御分解能が低下してしまう。 However, as shown in FIG. 8, in the engagement region, the amount of change in the pressing force per unit stroke is large, so that the control resolution is lower than in other regions.
 コストの増大および制御分解能を考慮して、例えば、単位駆動量が小さく、かつ、最大出力が大きい駆動源を選定することも考えられるが、単位駆動量を小さくすると、どうしても非エンゲージ領域での動作速度が遅くなってしまい、円滑なクラッチ連結動作を実現できなくなる。 Considering the increase in cost and control resolution, for example, it is conceivable to select a drive source with a small unit drive amount and a large maximum output. However, if the unit drive amount is small, operation in the non-engagement region is unavoidable. The speed becomes slow, and a smooth clutch engagement operation cannot be realized.
 つまり、従来のクラッチ操作装置では、ノーマルオープンタイプのクラッチ装置において、コストの増大を抑制しつつ円滑なクラッチ連結動作を実現できない。 That is, the conventional clutch operation device cannot realize a smooth clutch engagement operation while suppressing an increase in cost in a normally open type clutch device.
 本発明の課題は、コストの増大を抑制しつつ、ノーマルオープンタイプのクラッチ装置の円滑なクラッチ連結動作を実現できる、クラッチ操作装置を提供することにある。 An object of the present invention is to provide a clutch operating device capable of realizing a smooth clutch engagement operation of a normally open type clutch device while suppressing an increase in cost.
 本発明に係るクラッチ操作装置は、クラッチディスクに作用する押付力をクラッチ装置に付与することでクラッチ装置を動力伝達状態に切り換える装置であって、駆動部と、減速部と、中間伝達部と、を備えている。駆動部は駆動力を生成する。減速部は、駆動部の駆動量を減速することで駆動力を増幅する機構であって、クラッチ装置の動力遮断状態から動力伝達状態にかけて徐々に大きくなる減速比を有している。中間伝達部は減速部により増幅された駆動力を押付力としてクラッチ装置に伝達する。 A clutch operating device according to the present invention is a device that switches a clutch device to a power transmission state by applying a pressing force acting on a clutch disk to the clutch device, and includes a drive unit, a speed reduction unit, an intermediate transmission unit, It has. The driving unit generates a driving force. The deceleration unit is a mechanism that amplifies the driving force by decelerating the driving amount of the driving unit, and has a reduction ratio that gradually increases from the power cutoff state to the power transmission state of the clutch device. The intermediate transmission unit transmits the driving force amplified by the reduction unit to the clutch device as a pressing force.
 ここで、「減速比」とは、駆動部から減速部に入力される入力駆動量を減速部から出力される出力駆動量で除した値をいう。 Here, the “reduction ratio” refers to a value obtained by dividing the input drive amount input from the drive unit to the reduction unit by the output drive amount output from the reduction unit.
 このクラッチ操作装置では、クラッチ装置の動力遮断状態から動力伝達状態にかけて減速部の減速比が徐々に大きくなるため、クラッチ装置が動力遮断状態から動力伝達状態に移行するまでに、クラッチ装置の操作量が徐々に小さくなる。このため、動力伝達が完全に遮断されている状態では、クラッチ装置を素早く動作させることができ、クラッチ装置が動力伝達状態に切り換わる際にはクラッチ装置をゆっくり動作させることができる。この結果、半クラッチ状態から動力伝達状態までのエンゲージ領域において、単位駆動量あたりの押付力の変化量を小さく抑えることができ、駆動部の単位駆動量を小さくすることなくエンゲージ領域での制御分解能を確保することができる。 In this clutch operating device, since the reduction ratio of the speed reduction unit gradually increases from the power cutoff state to the power transmission state of the clutch device, the amount of operation of the clutch device before the clutch device transitions from the power cutoff state to the power transmission state. Gradually decreases. For this reason, when the power transmission is completely cut off, the clutch device can be operated quickly, and when the clutch device switches to the power transmission state, the clutch device can be operated slowly. As a result, in the engagement region from the half-clutch state to the power transmission state, the amount of change in pressing force per unit drive amount can be kept small, and the control resolution in the engagement region without reducing the unit drive amount of the drive unit Can be secured.
 さらに、クラッチディスクに作用する押付力が急激に大きくなるエンゲージ領域でも、それに追従するように減速部により駆動力が増幅されるため、駆動部の能力を高めに設定する必要がなく、小型の駆動部で必要押付力を十分確保することができる。 In addition, even in the engagement region where the pressing force acting on the clutch disk suddenly increases, the driving force is amplified by the speed reducer so as to follow it. The required pressing force can be sufficiently secured at the portion.
 以上のように、本発明によれば、コストの増大を抑制しつつ、ノーマルオープンタイプのクラッチ装置の円滑なクラッチ連結動作を実現できる、クラッチ操作装置を提供することができる。 As described above, according to the present invention, it is possible to provide a clutch operating device capable of realizing a smooth clutch coupling operation of a normally open type clutch device while suppressing an increase in cost.
クラッチ装置9およびクラッチ操作装置1の概略構成図Schematic configuration diagram of clutch device 9 and clutch operating device 1 駆動モータ2および減速機構3の概略構成図Schematic configuration diagram of the drive motor 2 and the speed reduction mechanism 3 トグル機構39の減速比を示す図The figure which shows the reduction ratio of the toggle mechanism 39 マスターシリンダ4、スレーブシリンダ5および油圧回路6の概略構成図Schematic configuration diagram of master cylinder 4, slave cylinder 5 and hydraulic circuit 6 ストロークLと圧力Pとの関係を示す図The figure which shows the relationship between stroke L and pressure P ストロークLとモータ負荷Mとの関係を示す図The figure which shows the relationship between the stroke L and the motor load M 無効ストローク演算処理のフローチャートInvalid stroke calculation processing flowchart クラッチ装置のエンゲージ特性Engagement characteristics of clutch device クラッチ操作装置の負荷特性(従来)Load characteristics of clutch operating device (conventional) クラッチ操作装置1の負荷特性Load characteristics of clutch operating device 1
 <クラッチ装置の構成>
 図1に示すように、クラッチ装置9は、エンジン(図示せず)からトランスミッション(図示せず)への動力伝達を行うための装置の一例であり、エンジンのフライホイール91に固定されている。クラッチ装置9は、いわゆるノーマルオープンタイプの装置であり、クラッチ操作装置1(後述)を介して操作されていない状態では、エンジンからトランスミッションへの動力伝達を遮断している。
<Configuration of clutch device>
As shown in FIG. 1, the clutch device 9 is an example of a device for transmitting power from an engine (not shown) to a transmission (not shown), and is fixed to a flywheel 91 of the engine. The clutch device 9 is a so-called normal open type device, and cuts off power transmission from the engine to the transmission when it is not operated via the clutch operating device 1 (described later).
 図1に示すように、クラッチ装置9は、クラッチカバー93と、プレッシャプレート92と、クラッチディスク94と、押圧レバー96と、エンゲージベアリング97と、を有している。 As shown in FIG. 1, the clutch device 9 includes a clutch cover 93, a pressure plate 92, a clutch disk 94, a pressing lever 96, and an engagement bearing 97.
 クラッチカバー93はフライホイール91に固定されている。プレッシャプレート92はクラッチカバー93により一体回転可能かつ軸方向に移動可能に支持されている。プレッシャプレート92はフライホイール91に対してクラッチディスク94と反対側に移動するようにストラッププレート93aにより連結されている。 The clutch cover 93 is fixed to the flywheel 91. The pressure plate 92 is supported by the clutch cover 93 so as to be integrally rotatable and movable in the axial direction. The pressure plate 92 is connected to the flywheel 91 by a strap plate 93a so as to move to the opposite side of the clutch disk 94.
 クラッチディスク94は、フライホイール91とプレッシャプレート92との間に配置されており、クラッチ装置9の連結時にはフライホイール91とプレッシャプレート92との軸方向間に挟み込まれる。押圧レバー96は、概ね環状のプレートであり、軸方向に弾性変形可能にクラッチカバー93により支持されている。押圧レバー96の弾性力は小さく、弾性変形させるために必要な力は比較的小さい。押圧レバー96の内周部はエンゲージベアリング97により軸方向に押し込み可能となっている。クラッチ装置9の連結時において、エンゲージベアリング97は押圧レバー96を介してプレッシャプレート92を軸方向に押圧する。エンゲージベアリング97はクラッチ操作装置1により軸方向に駆動される。このクラッチ装置9では、押圧レバー96およびプレッシャプレート92を介してクラッチディスク94に作用する押付力がエンゲージベアリング97の移動量(クラッチ操作装置1の操作量)に応じて変化するようになっている。 The clutch disc 94 is disposed between the flywheel 91 and the pressure plate 92, and is sandwiched between the flywheel 91 and the pressure plate 92 in the axial direction when the clutch device 9 is connected. The pressing lever 96 is a substantially annular plate, and is supported by a clutch cover 93 so as to be elastically deformable in the axial direction. The elastic force of the pressing lever 96 is small, and the force required for elastic deformation is relatively small. The inner peripheral portion of the pressing lever 96 can be pushed in the axial direction by an engagement bearing 97. When the clutch device 9 is connected, the engagement bearing 97 presses the pressure plate 92 in the axial direction via the pressing lever 96. The engagement bearing 97 is driven in the axial direction by the clutch operating device 1. In this clutch device 9, the pressing force acting on the clutch disk 94 via the pressing lever 96 and the pressure plate 92 changes according to the amount of movement of the engagement bearing 97 (the amount of operation of the clutch operating device 1). .
 また、クラッチ装置9の回転速度を検出する回転速度センサ98が設けられている。回転速度センサ98はクラッチ操作装置1の制御装置8(後述)に接続されている。 Further, a rotation speed sensor 98 for detecting the rotation speed of the clutch device 9 is provided. The rotation speed sensor 98 is connected to the control device 8 (described later) of the clutch operating device 1.
 <クラッチ操作装置の構成>
 クラッチ操作装置1は、例えばトランスミッションECU99から出力される操作信号に基づいて、クラッチ装置での動力伝達および遮断を行う。クラッチ操作装置1は、仕様の異なる複数のクラッチ装置に適用可能であるが、ここでは、クラッチ操作装置1の操作対象としてクラッチ装置9を例にクラッチ操作装置1について説明する。
<Configuration of clutch operating device>
The clutch operating device 1 performs power transmission and disconnection in the clutch device based on an operation signal output from the transmission ECU 99, for example. The clutch operating device 1 can be applied to a plurality of clutch devices having different specifications. Here, the clutch operating device 1 will be described by taking the clutch device 9 as an operation target of the clutch operating device 1 as an example.
 図1に示すように、クラッチ操作装置1は、駆動モータ2(駆動部の一例)と、減速機構3(減速部の一例)と、マスターシリンダ4と、スレーブシリンダ5と、油圧回路6と、レバー機構7と、制御装置8と、を備えている。 As shown in FIG. 1, the clutch operating device 1 includes a drive motor 2 (an example of a drive unit), a speed reduction mechanism 3 (an example of a speed reduction unit), a master cylinder 4, a slave cylinder 5, a hydraulic circuit 6, A lever mechanism 7 and a control device 8 are provided.
 図1および図2に示すように、駆動モータ2は、クラッチ装置9のエンゲージベアリング97を駆動するための駆動源であり、減速機構3を介してマスターシリンダ4に推力を付与する。駆動モータ2は、例えばブラシレスモータであり、駆動力を出力するための駆動シャフト21と、駆動ギヤ24と、駆動シャフト21の回転角度(駆動量の一例)を検出するエンコーダ22と、モータトルクを検出する負荷検出センサ23と、を有している。 As shown in FIGS. 1 and 2, the drive motor 2 is a drive source for driving the engagement bearing 97 of the clutch device 9 and applies thrust to the master cylinder 4 via the speed reduction mechanism 3. The drive motor 2 is, for example, a brushless motor, and includes a drive shaft 21 for outputting a drive force, a drive gear 24, an encoder 22 for detecting a rotation angle (an example of a drive amount) of the drive shaft 21, and a motor torque. And a load detection sensor 23 for detection.
 駆動ギヤ24は、駆動シャフト21の端部に固定されており、減速機構3のウォームホイール31と噛み合っている。エンコーダ22および負荷検出センサ23は制御装置8に電気的に接続されている。負荷検出センサ23は駆動モータ2の電流値に基づいて駆動モータ2の負荷を検出する。なお、負荷検出センサ23はひずみゲージなどを利用したセンサであってもよい。 The drive gear 24 is fixed to the end of the drive shaft 21 and meshes with the worm wheel 31 of the speed reduction mechanism 3. The encoder 22 and the load detection sensor 23 are electrically connected to the control device 8. The load detection sensor 23 detects the load of the drive motor 2 based on the current value of the drive motor 2. The load detection sensor 23 may be a sensor using a strain gauge or the like.
 図1および図2に示すように、減速機構3は、駆動モータ2で生成された回転運動を直進運動に変換しマスターシリンダ4の第1ピストン42に伝達する機能と、駆動モータ2で生成された駆動力を増幅する機能と、を有している。具体的には図1に示すように、減速機構3は、ウォームホイール31と、トグル機構39と、を有している。 As shown in FIG. 1 and FIG. 2, the speed reduction mechanism 3 is generated by the drive motor 2 and a function of converting the rotational motion generated by the drive motor 2 into straight motion and transmitting it to the first piston 42 of the master cylinder 4. A function of amplifying the driving force. Specifically, as shown in FIG. 1, the speed reduction mechanism 3 includes a worm wheel 31 and a toggle mechanism 39.
 ウォームホイール31は、駆動ギヤ24の回転を減速するギヤであり、駆動ギヤ24と噛み合っている。ウォームホイール31は、例えばハウジング(図示せず)により回転可能に支持されている。 The worm wheel 31 is a gear that reduces the rotation of the drive gear 24 and meshes with the drive gear 24. The worm wheel 31 is rotatably supported by, for example, a housing (not shown).
 トグル機構39は、いわゆる末端減速機構であり、入力駆動量(より詳細には、駆動モータ2の回転角度あるいはウォームホイール31の回転角度)に応じて減速比が変化する。具体的には図3に示すように、トグル機構39の減速比は、クラッチ装置9の動力遮断状態から動力伝達状態にかけて徐々に大きくなり、末端のストローク範囲Ltにおいて急激に減速比が増大する。さらに、トグル機構39の減速比は動力遮断状態から動力伝達状態にかけて増大比により徐々に増大される。この増大比は動力遮断状態から動力伝達状態にかけて徐々に大きくなる。このため、クラッチ装置9の状態が動力遮断状態から動力伝達状態に移行する際のクラッチ装置9の動作がより円滑となる。 The toggle mechanism 39 is a so-called terminal reduction mechanism, and the reduction ratio changes according to the input drive amount (more specifically, the rotation angle of the drive motor 2 or the rotation angle of the worm wheel 31). Specifically, as shown in FIG. 3, the reduction ratio of the toggle mechanism 39 gradually increases from the power cutoff state to the power transmission state of the clutch device 9, and the reduction ratio increases rapidly in the end stroke range Lt. Further, the reduction ratio of the toggle mechanism 39 is gradually increased by the increase ratio from the power cut-off state to the power transmission state. This increase ratio gradually increases from the power cutoff state to the power transmission state. For this reason, the operation of the clutch device 9 becomes smoother when the state of the clutch device 9 shifts from the power cutoff state to the power transmission state.
 例えば図3に示すように、動力遮断状態でのトグル機構39の減速比を基準減速比R0とした場合、減速比Rにおける増大比Eは以下の式(1)で表される。 For example, as shown in FIG. 3, when the reduction ratio of the toggle mechanism 39 in the power cut-off state is set to the reference reduction ratio R0, the increase ratio E in the reduction ratio R is expressed by the following equation (1).
 E=R/R0・・・・(1)
 図2に示すように、トグル機構39は、第1リンク部材32と、第2リンク部材33と、第3リンク部材34と、を有している。第1リンク部材32の第1端部32aは、ウォームホイール31の外周部に回転可能に連結されている。第1リンク部材32の第2端部32bは、第2リンク部材33および第3リンク部材34に回転可能に連結されている。
E = R / R0 (1)
As shown in FIG. 2, the toggle mechanism 39 includes a first link member 32, a second link member 33, and a third link member 34. The first end 32 a of the first link member 32 is rotatably connected to the outer peripheral portion of the worm wheel 31. The second end 32 b of the first link member 32 is rotatably connected to the second link member 33 and the third link member 34.
 第2リンク部材33の第1端部33aは、例えばハウジングに固定されたピン36を介してハウジングにより回転可能に支持されている。第2リンク部材33の第2端部33bは、第3リンク部材34の第1端部34aに回転可能に連結されている。第3リンク部材34の第2端部34bは、マスターシリンダ4の第1ピストン42の凹部42aに挿入されている。クラッチ装置9の連結が解除されている状態で、第2リンク部材33および第3リンク部材34は、ウォームホイール31とは逆側に折れ曲がったような状態となっている。第2端部33bおよび第1端部34aの連結部には、第1リンク部材32の第2端部32bが回転可能に連結されている。 The first end portion 33a of the second link member 33 is rotatably supported by the housing via, for example, a pin 36 fixed to the housing. The second end 33 b of the second link member 33 is rotatably connected to the first end 34 a of the third link member 34. The second end 34 b of the third link member 34 is inserted into the recess 42 a of the first piston 42 of the master cylinder 4. In a state where the coupling of the clutch device 9 is released, the second link member 33 and the third link member 34 are bent to the opposite side to the worm wheel 31. The second end portion 32b of the first link member 32 is rotatably connected to the connecting portion between the second end portion 33b and the first end portion 34a.
 例えば、図2に示すように、ウォームホイール31がR2方向に回転すると、第1リンク部材32により第2リンク部材33および第3リンク部材34の連結部が引っ張られる。この結果、ピン36および第1ピストン42の間で第2リンク部材33および第3リンク部材34が突っ張るようになり、第1ピストン42に右方向の推力が作用する。このとき、ウォームホイール31により駆動ギヤ24の回転が減速されているため、第1ピストン42に作用する推力に比べて、駆動モータ2の負荷をさらに低く抑えることができる。 For example, as shown in FIG. 2, when the worm wheel 31 rotates in the R2 direction, the connecting portion of the second link member 33 and the third link member 34 is pulled by the first link member 32. As a result, the second link member 33 and the third link member 34 are stretched between the pin 36 and the first piston 42, and a rightward thrust acts on the first piston 42. At this time, since the rotation of the drive gear 24 is decelerated by the worm wheel 31, the load of the drive motor 2 can be further reduced as compared with the thrust acting on the first piston 42.
 図4に示すように、マスターシリンダ4は、第1シリンダ41と、第1シリンダ41に挿入された第1ピストン42と、第1シリンダ41に設けられたリザーバータンク43と、スプリング47と、サブピストン45と、押さえ部材46と、を有している。第1シリンダ41および第1ピストン42により第1油圧室44が形成されており、第1油圧室44にはリザーバータンク43が接続されている。第1油圧室44には油圧回路6が接続されている。 As shown in FIG. 4, the master cylinder 4 includes a first cylinder 41, a first piston 42 inserted in the first cylinder 41, a reservoir tank 43 provided in the first cylinder 41, a spring 47, A piston 45 and a pressing member 46 are provided. A first hydraulic chamber 44 is formed by the first cylinder 41 and the first piston 42, and a reservoir tank 43 is connected to the first hydraulic chamber 44. A hydraulic circuit 6 is connected to the first hydraulic chamber 44.
 第1ピストン42と押さえ部材46との間にスプリング47が予め圧縮された状態で配置されている。スプリング47は第1ピストン42を第3リンク部材34に押し付けている。これにより、第3リンク部材34と第1ピストン42とは一体で移動する。 A spring 47 is disposed between the first piston 42 and the pressing member 46 in a pre-compressed state. The spring 47 presses the first piston 42 against the third link member 34. As a result, the third link member 34 and the first piston 42 move together.
 第1油圧室44とリザーバータンク43とを接続している流路41bは、細長いサブピストン45により通常は閉じられているが、第1油圧室44の圧力がリザーバータンク43よりも低くなると、リザーバータンク43から第1油圧室44へ作動油が流入可能となっている。具体的には、スプリング47は押さえ部材46を第1シリンダ41に押しつけている。押さえ部材46とサブピストン45との間には、例えばコーンスプリング(図示せず)が設けられており、コーンスプリングはサブピストン45を流路41bの開口周辺部に押し付けている。これにより、流路41bのコーンスプリングの弾性力に打ち勝つ力がサブピストン45に作用すると、サブピストン45が第1シリンダ41に対して左側に移動し、サブピストン45が流路41bの開口周辺部から離れる。このように、サブピストン45およびコーンスプリングによりチェックバルブが実現されている。 The flow path 41b connecting the first hydraulic chamber 44 and the reservoir tank 43 is normally closed by an elongated sub-piston 45, but when the pressure in the first hydraulic chamber 44 becomes lower than the reservoir tank 43, the reservoir The hydraulic oil can flow from the tank 43 into the first hydraulic chamber 44. Specifically, the spring 47 presses the pressing member 46 against the first cylinder 41. For example, a cone spring (not shown) is provided between the pressing member 46 and the sub piston 45, and the cone spring presses the sub piston 45 against the periphery of the opening of the flow path 41b. As a result, when a force that overcomes the elastic force of the cone spring in the flow path 41b acts on the sub-piston 45, the sub-piston 45 moves to the left with respect to the first cylinder 41, and the sub-piston 45 moves to the periphery of the opening of the flow path 41b. Get away from. Thus, a check valve is realized by the sub piston 45 and the cone spring.
 図4に示すように、スレーブシリンダ5は、第2シリンダ51と、第2シリンダ51に挿入された第2ピストン52と、スプリング57と、ロッド59と、を有している。第2シリンダ51および第2ピストン52により第2油圧室54が形成されており、第2油圧室54には、油圧回路6が接続されており、また圧力計53(検出センサの一例)が接続されている。第2油圧室54にはスプリング57が配置されている。スプリング57は第2ピストン52を介してロッド59をレバー機構7のレバー71の端部に押し付けている。これにより、第2ピストン52、ロッド59およびレバー71の端部は一体で移動する。 4, the slave cylinder 5 includes a second cylinder 51, a second piston 52 inserted into the second cylinder 51, a spring 57, and a rod 59. A second hydraulic chamber 54 is formed by the second cylinder 51 and the second piston 52, the hydraulic circuit 6 is connected to the second hydraulic chamber 54, and a pressure gauge 53 (an example of a detection sensor) is connected. Has been. A spring 57 is disposed in the second hydraulic chamber 54. The spring 57 presses the rod 59 against the end of the lever 71 of the lever mechanism 7 via the second piston 52. Accordingly, the end portions of the second piston 52, the rod 59, and the lever 71 are moved together.
 図1に示すように、レバー機構7は、スレーブシリンダ5の推力を所定のレバー比でエンゲージベアリング97に伝達する機構であり、レバー71を有している。レバー71にはピン72が設けられており、ピン72を中心にレバー71は回転するようになっている。ピン72はレバー71の中央よりもエンゲージベアリング97側に配置されているため、スレーブシリンダ5のストロークはレバー機構7により減速されてエンゲージベアリング97に伝達されるが、スレーブシリンダ5の推力はレバー機構7により増幅される。 As shown in FIG. 1, the lever mechanism 7 is a mechanism for transmitting the thrust of the slave cylinder 5 to the engagement bearing 97 at a predetermined lever ratio, and has a lever 71. The lever 71 is provided with a pin 72, and the lever 71 rotates around the pin 72. Since the pin 72 is disposed closer to the engagement bearing 97 than the center of the lever 71, the stroke of the slave cylinder 5 is decelerated by the lever mechanism 7 and transmitted to the engagement bearing 97, but the thrust of the slave cylinder 5 is transmitted to the lever mechanism. 7 is amplified.
 図1に示すように、油圧回路6は、メイン油路61と、サブ油路63と、切換バルブ62(切換部の一例)と、を有している。メイン油路61はリザーバータンク43(タンクの一例)と切換バルブ62とを接続している。サブ油路63は、マスターシリンダ4の第1油圧室44、スレーブシリンダ5の第2油圧室54および切換バルブ62を接続している。切換バルブ62は、ノーマルオープンタイプの電磁切換バルブであり、制御装置8により制御される。ソレノイドに電流が流れていない状態では、切換バルブ62はメイン油路61およびサブ油路63を接続し、ソレノイドに電流が流れている状態では、切換バルブ62はメイン油路61とサブ油路63とを遮断する。このため、車両の電源がOFFの状態では、メイン油路61の圧力はリザーバータンク43に開放されており、クラッチ装置9は動力遮断状態となっている。 As shown in FIG. 1, the hydraulic circuit 6 includes a main oil passage 61, a sub oil passage 63, and a switching valve 62 (an example of a switching unit). The main oil passage 61 connects a reservoir tank 43 (an example of a tank) and a switching valve 62. The sub oil passage 63 connects the first hydraulic chamber 44 of the master cylinder 4, the second hydraulic chamber 54 of the slave cylinder 5, and the switching valve 62. The switching valve 62 is a normally open type electromagnetic switching valve and is controlled by the control device 8. When the current is not flowing through the solenoid, the switching valve 62 connects the main oil passage 61 and the sub oil passage 63. When the current is flowing through the solenoid, the switching valve 62 is connected to the main oil passage 61 and the sub oil passage 63. And shut off. For this reason, when the power supply of the vehicle is OFF, the pressure in the main oil passage 61 is released to the reservoir tank 43, and the clutch device 9 is in a power cut-off state.
 なお、マスターシリンダ4、スレーブシリンダ5、油圧回路6およびレバー機構7により、駆動モータ2の駆動力を押付力としてクラッチ装置9に伝達する中間伝達部が構成されている。また、切換バルブ62および制御装置8により、伝達部により駆動モータ2での駆動量(駆動シャフト21の回転角度)を操作量(スレーブシリンダ5のストローク)に変換する調整部が構成されている。 The master cylinder 4, the slave cylinder 5, the hydraulic circuit 6 and the lever mechanism 7 constitute an intermediate transmission unit that transmits the driving force of the driving motor 2 to the clutch device 9 as a pressing force. Further, the switching valve 62 and the control device 8 constitute an adjustment unit that converts the drive amount (rotation angle of the drive shaft 21) of the drive motor 2 into an operation amount (stroke of the slave cylinder 5) by the transmission unit.
 <制御装置の構成>
 制御装置8は、エンコーダ22、負荷検出センサ23および圧力計53の出力に基づいて、駆動モータ2および切換バルブ62を制御する。具体的には図1に示すように、制御装置8は、駆動モータ2を制御するモータ制御部81と、負荷検出センサ23および圧力計53の出力に基づいて切換バルブ62を制御するストローク制御部82(調整制御部の一例)と、を有している。
<Configuration of control device>
The control device 8 controls the drive motor 2 and the switching valve 62 based on the outputs of the encoder 22, the load detection sensor 23 and the pressure gauge 53. Specifically, as shown in FIG. 1, the control device 8 includes a motor control unit 81 that controls the drive motor 2, and a stroke control unit that controls the switching valve 62 based on the outputs of the load detection sensor 23 and the pressure gauge 53. 82 (an example of an adjustment control unit).
 モータ制御部81は、例えば車両の状態に応じてトランスミッションECU99(図1)から出力される操作信号に基づいて駆動モータ2を制御する。制御装置8がその操作信号を受信すると、モータ制御部81は駆動モータ2の駆動シャフト21が設定角度だけ回転するように駆動モータ2を制御する。モータ制御部81は、エンコーダ22から出力されるパルスをカウントすることで駆動シャフト21の回転角度を検出することができる。モータ制御部81は、エンコーダ22の出力パルスを監視することで、駆動シャフト21が設定角度だけ回転した時点で駆動モータ2を停止することができる。設定角度は制御装置8に設けられたメモリ(図示せず)に予め記憶されている。 The motor control unit 81 controls the drive motor 2 based on an operation signal output from the transmission ECU 99 (FIG. 1) according to the state of the vehicle, for example. When the control device 8 receives the operation signal, the motor control unit 81 controls the drive motor 2 so that the drive shaft 21 of the drive motor 2 rotates by a set angle. The motor control unit 81 can detect the rotation angle of the drive shaft 21 by counting the pulses output from the encoder 22. The motor control unit 81 can stop the drive motor 2 when the drive shaft 21 rotates by a set angle by monitoring the output pulse of the encoder 22. The set angle is stored in advance in a memory (not shown) provided in the control device 8.
 また、トランスミッションECU99からクラッチ解除信号が出力された場合、制御装置8は、駆動モータ2の駆動シャフト21が設定角度だけ反対側に回転するように駆動モータ2を制御する。これにより、駆動シャフト21の回転位置を初期位置に戻すことができる。 Further, when a clutch release signal is output from the transmission ECU 99, the control device 8 controls the drive motor 2 so that the drive shaft 21 of the drive motor 2 rotates to the opposite side by a set angle. Thereby, the rotational position of the drive shaft 21 can be returned to the initial position.
 ストローク制御部82は、寸法誤差や寸法変化によりプレッシャプレート92の押付力が大きく変化しないように、スレーブシリンダ5のストローク(第2ピストン52の移動距離、操作量の一例)を調整する。具体的には、ストローク制御部82は、圧力計53および負荷検出センサ23の検出結果に基づいて適正ストローク(適正操作量の一例)を算出する。適正ストロークは、スレーブシリンダ5のストロークとして適正なストロークを意味している。 The stroke control unit 82 adjusts the stroke of the slave cylinder 5 (an example of the moving distance of the second piston 52 and an operation amount) so that the pressing force of the pressure plate 92 does not change greatly due to dimensional error or dimensional change. Specifically, the stroke control unit 82 calculates an appropriate stroke (an example of an appropriate operation amount) based on the detection results of the pressure gauge 53 and the load detection sensor 23. The appropriate stroke means an appropriate stroke as the stroke of the slave cylinder 5.
 適正ストロークおよびスレーブシリンダ5の最大ストロークLmaxの差を無効ストロークΔLという。後述するように、スレーブシリンダ5のストロークを適正ストロークに調整するために、マスターシリンダ4の作動中に無効ストロークΔLだけスレーブシリンダ5が作動しないように、ストローク制御部82は切換バルブ62を制御する。例えば、切換バルブ62によりメイン油路61をリザーバータンク43に接続することで、メイン油路61からリザーバータンク43に作動油が流れるため、第1ピストン42の直進運動が第2ピストン52に伝達されない。切換バルブ62によりメイン油路61がリザーバータンク43から遮断されると、第1ピストン42の直進運動がメイン油路61の作動油により第2ピストン52に伝達される。つまり、切換バルブ62の開閉タイミングを調整することで、無効ストロークΔLの長さを調整することができ、スレーブシリンダ5のストロークを適正ストロークに調整することができる。つまり、駆動モータ2による駆動シャフト21の回転範囲(全駆動範囲)のうち一部の回転角度(駆動量)だけがマスターシリンダ4、スレーブシリンダ5および油圧回路6によりスレーブシリンダ5のストローク(操作量)に変換される。 The difference between the appropriate stroke and the maximum stroke Lmax of the slave cylinder 5 is called an invalid stroke ΔL. As will be described later, in order to adjust the stroke of the slave cylinder 5 to an appropriate stroke, the stroke controller 82 controls the switching valve 62 so that the slave cylinder 5 does not operate by the invalid stroke ΔL during operation of the master cylinder 4. . For example, when the main oil passage 61 is connected to the reservoir tank 43 by the switching valve 62, hydraulic oil flows from the main oil passage 61 to the reservoir tank 43, so that the straight movement of the first piston 42 is not transmitted to the second piston 52. . When the main oil passage 61 is shut off from the reservoir tank 43 by the switching valve 62, the straight movement of the first piston 42 is transmitted to the second piston 52 by the hydraulic oil in the main oil passage 61. That is, by adjusting the opening / closing timing of the switching valve 62, the length of the invalid stroke ΔL can be adjusted, and the stroke of the slave cylinder 5 can be adjusted to an appropriate stroke. That is, only a part of the rotation angle (drive amount) in the rotation range (total drive range) of the drive shaft 21 by the drive motor 2 is the stroke (operation amount) of the slave cylinder 5 by the master cylinder 4, the slave cylinder 5 and the hydraulic circuit 6. ).
 <ストローク調整の概要>
 一般的に、クラッチ装置では、クラッチディスクの摩耗などの経年劣化が発生したり、製品ごとに寸法誤差が発生したりする。例えば図1に示すクラッチ装置9の場合、クラッチディスク94が摩耗すると、クラッチ連結時のフライホイール91に対するプレッシャプレート92の位置がフライホイール91側に寄る。
<Outline of stroke adjustment>
Generally, in a clutch device, aged deterioration such as wear of a clutch disk occurs, or a dimensional error occurs for each product. For example, in the case of the clutch device 9 shown in FIG. 1, when the clutch disc 94 is worn, the position of the pressure plate 92 with respect to the flywheel 91 at the time of clutch engagement approaches the flywheel 91 side.
 しかし、通常、スレーブシリンダ5のストロークは一定であるため、動力伝達時のプレッシャプレート92の位置がフライホイール91側に寄ると、スレーブシリンダ5のストロークが足りなくなり、押圧レバー96からプレッシャプレート92に押付力が伝わりにくくなる。この結果、クラッチディスク94の摩耗状態によっては、プレッシャプレート92の押付力が低下する。 However, since the stroke of the slave cylinder 5 is usually constant, if the position of the pressure plate 92 at the time of power transmission approaches the flywheel 91 side, the stroke of the slave cylinder 5 becomes insufficient, and the pressure lever 96 moves to the pressure plate 92. It becomes difficult to transmit the pressing force. As a result, depending on the worn state of the clutch disc 94, the pressing force of the pressure plate 92 decreases.
 そこで、このクラッチ操作装置1では、適正なレベルに押付力を保つようにスレーブシリンダ5のストロークが自動的に調整される。ここで、ストロークの調整方法の概要を説明する。 Therefore, in this clutch operating device 1, the stroke of the slave cylinder 5 is automatically adjusted so as to keep the pressing force at an appropriate level. Here, an outline of the stroke adjustment method will be described.
 クラッチ操作装置1の製造段階において、クラッチディスクの摩耗量が最大かつスレーブシリンダ5のストロークが最大の状態で必要な押付力を確保できるように、スレーブシリンダ5のストロークや位置が調整される。次に、実際の運転時において、クラッチディスクの摩耗状態に応じてスレーブシリンダ5のストロークを調整する。ストロークを調整する際、制御装置8に予め格納されたデータに基づいて、スレーブシリンダ5の適正ストロークが算出され、算出された適正ストロークに基づいて切換バルブ62の開閉が制御装置8により切り換えられる。 In the manufacturing stage of the clutch operating device 1, the stroke and position of the slave cylinder 5 are adjusted so that the required pressing force can be ensured with the maximum wear amount of the clutch disk and the maximum stroke of the slave cylinder 5. Next, during actual operation, the stroke of the slave cylinder 5 is adjusted according to the wear state of the clutch disk. When adjusting the stroke, an appropriate stroke of the slave cylinder 5 is calculated based on data stored in the control device 8 in advance, and the opening / closing of the switching valve 62 is switched by the control device 8 based on the calculated appropriate stroke.
 以上のようにスレーブシリンダ5のストロークの自動調整が行われる。 As described above, the automatic adjustment of the stroke of the slave cylinder 5 is performed.
 <ストローク算出用のデータ>
 ここで、ストローク算出用のデータについて説明する。ストローク算出用のデータとしては、図5および図6に示すデータが考えられる。
<Stroke calculation data>
Here, data for stroke calculation will be described. As data for stroke calculation, data shown in FIGS. 5 and 6 can be considered.
 例えば図5に示すデータは、クラッチディスク94の摩耗量、スレーブシリンダ5のストロークLおよび第2油圧室54内の圧力Pの関係を示しており、設計的あるいは実験的に予め求められる。図5に示すラインA1~A4は設計的あるいは実験的に得られたデータの近似曲線であり、ラインA1~A4に対応する近似式が制御装置8のメモリに予め格納されている。 For example, the data shown in FIG. 5 shows the relationship between the wear amount of the clutch disk 94, the stroke L of the slave cylinder 5 and the pressure P in the second hydraulic chamber 54, and is obtained in advance by design or experiment. Lines A1 to A4 shown in FIG. 5 are approximate curves of data obtained experimentally or experimentally, and approximate expressions corresponding to the lines A1 to A4 are stored in the memory of the control device 8 in advance.
 スレーブシリンダ5の第2油圧室54の圧力Pを縦軸にとり、第2シリンダ51のストロークLを横軸にとった場合、クラッチディスク94の摩耗量が最大となる状態での圧力PおよびストロークLの関係がラインA4で表され、クラッチディスク94が全く摩耗していない初期の状態での圧力PおよびストロークLの関係がラインA1で表される。また、クラッチディスク94の摩耗量を変えてストロークLと圧力Pとの関係を求めると、例えば、ストロークLと圧力Pとの関係はラインA2およびA3のようになる。 When the pressure P of the second hydraulic chamber 54 of the slave cylinder 5 is taken on the vertical axis and the stroke L of the second cylinder 51 is taken on the horizontal axis, the pressure P and the stroke L in the state where the wear amount of the clutch disk 94 is maximized. The relationship between the pressure P and the stroke L in the initial state in which the clutch disk 94 is not worn at all is represented by the line A1. Further, when the wear amount of the clutch disk 94 is changed to obtain the relationship between the stroke L and the pressure P, for example, the relationship between the stroke L and the pressure P is as shown by lines A2 and A3.
 言い換えると、ストロークLおよび圧力Pがわかれば、図5に示すデータをもとにクラッチディスクの摩耗量を概ね把握することができ、また、求められたクラッチディスクの摩耗量および目標圧力から、スレーブシリンダ5の適正ストロークを求めることができる。図5に示すデータは制御装置8のメモリに格納されている。 In other words, if the stroke L and the pressure P are known, the wear amount of the clutch disk can be roughly grasped based on the data shown in FIG. 5, and the slave disk can be determined from the obtained wear amount of the clutch disk and the target pressure. An appropriate stroke of the cylinder 5 can be obtained. The data shown in FIG. 5 is stored in the memory of the control device 8.
 また、図6に示すデータは、クラッチディスク94の摩耗量、スレーブシリンダ5のストロークLおよび駆動モータ2のモータ負荷Mの関係を示しており、設計的あるいは実験的に予め求められる。図6に示すラインA11~A14は設計的あるいは実験的に得られたデータの近似曲線である。駆動モータ2のモータ負荷Mを縦軸にとり、第2シリンダ51のストロークLを横軸にとった場合、クラッチディスク94の摩耗量が最大となる状態でのモータ負荷MおよびストロークLの関係がラインA14で表され、クラッチディスク94が全く摩耗していない初期の状態でのモータ負荷MおよびストロークLの関係がラインA11で表される。また、クラッチディスク94の摩耗量を変えてストロークLとモータ負荷Mとの関係を求めると、例えば、ストロークLとモータ負荷Mとの関係はラインA12およびA13のようになる。 The data shown in FIG. 6 shows the relationship between the wear amount of the clutch disk 94, the stroke L of the slave cylinder 5, and the motor load M of the drive motor 2, and is obtained in advance by design or experiment. Lines A11 to A14 shown in FIG. 6 are approximate curves of data obtained by design or experiment. When the motor load M of the drive motor 2 is taken on the vertical axis and the stroke L of the second cylinder 51 is taken on the horizontal axis, the relationship between the motor load M and the stroke L in the state where the wear amount of the clutch disk 94 is maximized is a line. The relationship between the motor load M and the stroke L in the initial state represented by A14 and the clutch disk 94 not being worn at all is represented by a line A11. Further, when the amount of wear of the clutch disk 94 is changed and the relationship between the stroke L and the motor load M is obtained, for example, the relationship between the stroke L and the motor load M is as indicated by lines A12 and A13.
 言い換えると、ストロークLおよびモータ負荷Mがわかれば、図6に示すデータをもとにクラッチディスクの摩耗量を概ね把握することができ、また、求められたクラッチディスクの摩耗量および目標負荷から、スレーブシリンダ5の適正ストロークを求めることができる。図6に示すデータは制御装置8のメモリに格納されている。 In other words, if the stroke L and the motor load M are known, the wear amount of the clutch disk can be roughly grasped based on the data shown in FIG. 6, and from the obtained wear amount of the clutch disk and the target load, The appropriate stroke of the slave cylinder 5 can be obtained. The data shown in FIG. 6 is stored in the memory of the control device 8.
 <ストロークの初期設定>
 クラッチディスクの摩耗を考慮して、調整用のクラッチ装置を用いて製造段階でスレーブシリンダ5の第2ピストン52の位置を調整する。具体的には、クラッチディスクが最も摩耗した状態であってもプレッシャプレートの押付力が適正なレベルに維持されるように、スレーブシリンダ5の第2ピストン52の位置またはロッド59の長さ調整機構(図示せず)を調整する。調整用のクラッチ装置には、摩耗し切ったクラッチディスク(摩耗量が最大であるクラッチディスク)が設けられている。
<Initial setting of stroke>
In consideration of wear of the clutch disc, the position of the second piston 52 of the slave cylinder 5 is adjusted at the manufacturing stage using an adjusting clutch device. Specifically, a mechanism for adjusting the position of the second piston 52 of the slave cylinder 5 or the length of the rod 59 so that the pressing force of the pressure plate is maintained at an appropriate level even when the clutch disk is most worn. Adjust (not shown). The clutch device for adjustment is provided with a clutch disk that has been completely worn out (a clutch disk having the maximum amount of wear).
 調整時には、駆動モータ2によりマスターシリンダ4が駆動され、スレーブシリンダ5によりレバー機構7を介してプレッシャプレート92が押圧される。プレッシャプレート92とフライホイールとの間に調整用クラッチディスクが挟み込まれると、第2油圧室54内の圧力Pが上昇する。このとき、図5に示すように、圧力Pが基準圧力P0となるようにスレーブシリンダ5のストローク(あるいは、レバー機構7に対するスレーブシリンダ5の位置)を調整することで、スレーブシリンダ5のストロークLが最大ストロークLmaxであるときに(つまり、クラッチディスクの摩耗量が最大のときに)、必要な押付力を確保することができる。 During adjustment, the master cylinder 4 is driven by the drive motor 2 and the pressure plate 92 is pressed by the slave cylinder 5 via the lever mechanism 7. When the adjustment clutch disk is sandwiched between the pressure plate 92 and the flywheel, the pressure P in the second hydraulic chamber 54 increases. At this time, as shown in FIG. 5, the stroke L of the slave cylinder 5 is adjusted by adjusting the stroke of the slave cylinder 5 (or the position of the slave cylinder 5 with respect to the lever mechanism 7) so that the pressure P becomes the reference pressure P0. Is the maximum stroke Lmax (that is, when the amount of wear of the clutch disk is maximum), the necessary pressing force can be ensured.
 しかし、図5に示すように、同じストロークLでの圧力Pを比較した場合、初期状態に対応するラインA1から求めた圧力がクラッチディスク94の摩耗量が最大となるラインA4から求めた圧力よりも高くなる。圧力Pが高くなると押付力も増大し、その結果として、駆動モータ2のモータ負荷Mも必要以上に高くなる。 However, as shown in FIG. 5, when the pressure P at the same stroke L is compared, the pressure obtained from the line A1 corresponding to the initial state is greater than the pressure obtained from the line A4 where the wear amount of the clutch disk 94 is maximum. Also gets higher. As the pressure P increases, the pressing force also increases. As a result, the motor load M of the drive motor 2 also increases more than necessary.
 そこで、このクラッチ操作装置1では、クラッチディスクの摩耗に関係なく押付力が概ね一定になるように、スレーブシリンダ5のストロークが自動的に調整される。 Therefore, in this clutch operating device 1, the stroke of the slave cylinder 5 is automatically adjusted so that the pressing force is substantially constant regardless of the wear of the clutch disk.
 <ストロークの算出方法>
 ここで、ストロークの算出方法について説明する。
<Stroke calculation method>
Here, a method for calculating the stroke will be described.
 スレーブシリンダ5のストロークが自動的に調整される際、図5および図6に示すデータを用いて、クラッチディスクの摩耗状態に応じた適正ストロークが制御装置8により算出される。 When the stroke of the slave cylinder 5 is automatically adjusted, an appropriate stroke according to the wear state of the clutch disk is calculated by the control device 8 using the data shown in FIGS.
 具体的には、実際の運転時において、スレーブシリンダ5の圧力が圧力計53により検出され、圧力計53の出力が検出圧力Pdとして制御装置8のメモリに格納される。図5に示すように、現在のストロークLsおよびラインA1~A4の近似式に基づいて、ストローク制御部82は4つの圧力Pc1~Pc4を算出する。ストローク制御部82は、算出された4つの圧力Pc1~Pc4と検出圧力Pdとを比較して、検出圧力Pdに最も近い圧力に対応するラインをラインA1~A4から選択する。 Specifically, during actual operation, the pressure of the slave cylinder 5 is detected by the pressure gauge 53, and the output of the pressure gauge 53 is stored in the memory of the control device 8 as the detected pressure Pd. As shown in FIG. 5, the stroke controller 82 calculates four pressures Pc1 to Pc4 based on the current stroke Ls and the approximate expression of the lines A1 to A4. The stroke control unit 82 compares the calculated four pressures Pc1 to Pc4 with the detected pressure Pd, and selects a line corresponding to the pressure closest to the detected pressure Pd from the lines A1 to A4.
 例えばラインA2が選択された場合、ラインA2の近似式および基準圧力P0に基づいて、ストローク制御部82はストロークLpを算出する。 For example, when the line A2 is selected, the stroke control unit 82 calculates the stroke Lp based on the approximate expression of the line A2 and the reference pressure P0.
 また、駆動モータ2のモータ負荷Mが負荷検出センサ23により検出され、負荷検出センサ23の出力が検出負荷Mdとして制御装置8のメモリに格納される。図6に示すように、現在のストロークLsおよびラインA11~A14の近似式に基づいて、ストローク制御部82は4つのモータ負荷Mc1~Mc4を算出する。ストローク制御部82は、算出された4つのモータ負荷Mc1~Mc4と検出負荷Mdとを比較して、検出負荷Mdに最も近いモータ負荷Mに対応するラインをラインA11~A14から選択する。 Further, the motor load M of the drive motor 2 is detected by the load detection sensor 23, and the output of the load detection sensor 23 is stored in the memory of the control device 8 as the detection load Md. As shown in FIG. 6, the stroke controller 82 calculates four motor loads Mc1 to Mc4 based on the current stroke Ls and the approximate expression of the lines A11 to A14. The stroke control unit 82 compares the calculated four motor loads Mc1 to Mc4 with the detected load Md, and selects a line corresponding to the motor load M closest to the detected load Md from the lines A11 to A14.
 例えばラインA12が選択された場合、ラインA12の近似式および基準負荷M0に基づいて、ストローク制御部82はストロークLmを算出する。算出されたストロークLmは制御装置8のメモリに一時的に格納される。 For example, when the line A12 is selected, the stroke control unit 82 calculates the stroke Lm based on the approximate expression of the line A12 and the reference load M0. The calculated stroke Lm is temporarily stored in the memory of the control device 8.
 さらに、ストローク制御部82は、ストロークLpおよびLmに基づいて適正ストロークを算出する。具体的には、ストロークLpおよびLmの差の絶対値が所定の値δL以下である場合は、ストローク制御部82はストロークLpを新しいストロークLsに設定する。モータ負荷Mよりも圧力Pを優先するのは、駆動力の伝達経路においてクラッチ装置9に近いスレーブシリンダ5の圧力Pが、モータ負荷Mよりも押付力の指標として正確だからである。 Furthermore, the stroke control unit 82 calculates an appropriate stroke based on the strokes Lp and Lm. Specifically, when the absolute value of the difference between the strokes Lp and Lm is equal to or less than a predetermined value δL, the stroke control unit 82 sets the stroke Lp to a new stroke Ls. The reason why the pressure P is given priority over the motor load M is that the pressure P of the slave cylinder 5 close to the clutch device 9 in the driving force transmission path is more accurate as an index of the pressing force than the motor load M.
 一方、ストロークLpおよびLmの差の絶対値が所定の値δLよりも大きい場合は、ストローク制御部82がストロークLpおよびLmを比較し、長い方のストロークを新しいストロークLsに設定する。ここで、長い方のストロークを選択するのは、短い方のストロークに比べて大きい押付力を確保しやすいためである。 On the other hand, when the absolute value of the difference between the strokes Lp and Lm is larger than the predetermined value δL, the stroke control unit 82 compares the strokes Lp and Lm and sets the longer stroke to the new stroke Ls. Here, the reason why the longer stroke is selected is that it is easy to ensure a large pressing force as compared with the shorter stroke.
 ストローク制御部82は、ストロークLmaxから新しい設定ストロークLsを差し引いて、無効ストロークΔLを算出する。この無効ストロークΔLに基づいて、切換バルブ62の作動タイミングがストローク制御部82により調整される。具体的には、無効ストロークΔLと駆動モータ2での回転角度との関係式が予めストローク制御部82に格納されており、ストローク制御部82は、算出された無効ストロークΔLおよび関係式から回転角度を算出する。算出された回転角度を用いて、切換バルブ62の開閉のタイミングが調整される。 The stroke control unit 82 calculates the invalid stroke ΔL by subtracting the new set stroke Ls from the stroke Lmax. Based on the invalid stroke ΔL, the operation timing of the switching valve 62 is adjusted by the stroke controller 82. Specifically, a relational expression between the invalid stroke ΔL and the rotation angle of the drive motor 2 is stored in advance in the stroke control unit 82, and the stroke control unit 82 calculates the rotation angle from the calculated invalid stroke ΔL and the relational expression. Is calculated. The opening / closing timing of the switching valve 62 is adjusted using the calculated rotation angle.
 以上に説明したように、クラッチディスクの摩耗状態に合ったスレーブシリンダ5の適正ストロークが算出される。 As described above, the appropriate stroke of the slave cylinder 5 corresponding to the wear state of the clutch disk is calculated.
 <無効ストロークの技術的意義>
 ここで、無効ストロークの技術的意義について補足しておく。図5に示すように、ラインA1で示す初期状態では、ストロークLsだけ第2ピストン52を駆動すれば、第2油圧室54内の圧力Pが基準圧力P0になる。したがって、単純に駆動モータ2の駆動量を減らして第2ピストン52のストロークLをストロークLsにすれば、押付力を確保できそうである。
<Technical significance of invalid stroke>
Here, the technical significance of the invalid stroke will be supplemented. As shown in FIG. 5, in the initial state indicated by line A1, if the second piston 52 is driven by the stroke Ls, the pressure P in the second hydraulic chamber 54 becomes the reference pressure P0. Therefore, if the driving amount of the drive motor 2 is simply reduced and the stroke L of the second piston 52 is changed to the stroke Ls, the pressing force is likely to be secured.
 しかし、ストロークの末端付近(図3に示すストローク範囲Lt)で減速比が急激に大きくなる末端減速機構が減速機構3に採用されているため、駆動モータ2での駆動量を減らしてしまうと、減速比が大きいストローク範囲Ltを有効利用することができず、押付力を確保するためには駆動モータ2の出力を大きくする必要がある。 However, since the terminal speed reduction mechanism in which the speed reduction ratio increases rapidly near the end of the stroke (stroke range Lt shown in FIG. 3) is adopted in the speed reduction mechanism 3, if the drive amount of the drive motor 2 is reduced, The stroke range Lt with a large reduction ratio cannot be used effectively, and the output of the drive motor 2 needs to be increased in order to ensure the pressing force.
 そこで、駆動モータ2の駆動量を最大ストロークLmaxに相当する分だけ確保し、切換バルブ62を使って減速比の小さいストローク範囲(ストローク範囲Lt以外の範囲)に無効ストロークΔLを設定することで、減速比が大きいストローク範囲を最大限に利用することができ、駆動モータ2の負荷を必要以上に高めることなく、押付力を確保することができる。 Therefore, by securing the drive amount of the drive motor 2 by an amount corresponding to the maximum stroke Lmax, and using the switching valve 62, the invalid stroke ΔL is set in a stroke range with a small reduction ratio (a range other than the stroke range Lt). The stroke range with a large reduction ratio can be utilized to the maximum, and the pressing force can be ensured without increasing the load of the drive motor 2 more than necessary.
 <クラッチ操作装置の動作>
 以上に説明したクラッチ操作装置1の動作を説明する。
<Operation of clutch operating device>
The operation of the clutch operating device 1 described above will be described.
 図1に示すように、動力伝達時には、クラッチ操作装置1により押圧レバー96がフライホイール91側に押し込まれており、フライホイール91およびプレッシャプレート92の間にクラッチディスク94が挟み込まれている。このとき、制御装置8により切換バルブ62は閉じられており、駆動モータ2の駆動力は、減速機構3、マスターシリンダ4、スレーブシリンダ5およびレバー機構7を介してプレッシャプレート92に伝達されている。 As shown in FIG. 1, when transmitting power, the clutch operating device 1 pushes the pressing lever 96 toward the flywheel 91, and the clutch disc 94 is sandwiched between the flywheel 91 and the pressure plate 92. At this time, the switching valve 62 is closed by the control device 8, and the driving force of the driving motor 2 is transmitted to the pressure plate 92 via the speed reduction mechanism 3, the master cylinder 4, the slave cylinder 5, and the lever mechanism 7. .
 その状態で、トランスミッションECU99から操作信号を検出すると、モータ制御部81は、クラッチ装置9の連結が解除される方向に駆動シャフト21が回転するように、駆動モータ2を制御する。 In this state, when an operation signal is detected from the transmission ECU 99, the motor control unit 81 controls the drive motor 2 so that the drive shaft 21 rotates in the direction in which the clutch device 9 is disengaged.
 駆動モータ2によりウォームホイール31がR1方向に回転駆動されると、第1リンク部材32が上昇し、減速機構3からマスターシリンダ4に伝達されていた駆動力が解除される。駆動力が解除されると、スプリング57の弾性力により第1ピストン42が左側に移動し、それに伴い、第2ピストン52も左側に移動する。第2ピストン52が左側に移動すると、押圧レバー96およびストラッププレート93aによりエンゲージベアリング97が右側に押し戻され、プレッシャプレート92がフライホイール91と反対側に移動する。この結果、プレッシャプレート92およびフライホイール91によるクラッチディスク94の狭持が解除され、エンジンからトランスミッションへの動力伝達が遮断される。 When the worm wheel 31 is rotationally driven in the R1 direction by the drive motor 2, the first link member 32 rises and the driving force transmitted from the speed reduction mechanism 3 to the master cylinder 4 is released. When the driving force is released, the first piston 42 moves to the left side by the elastic force of the spring 57, and accordingly, the second piston 52 also moves to the left side. When the second piston 52 moves to the left side, the engagement bearing 97 is pushed back to the right side by the pressing lever 96 and the strap plate 93a, and the pressure plate 92 moves to the side opposite to the flywheel 91. As a result, the holding of the clutch disk 94 by the pressure plate 92 and the flywheel 91 is released, and the power transmission from the engine to the transmission is interrupted.
 駆動モータ2での駆動量(駆動シャフト21の回転角度)は、エンコーダ22の出力パルスに基づいてモータ制御部81により調整される。駆動モータ2による駆動が開始されてからエンコーダ22の出力パルスのモータ制御部81によるカウントが開始され、カウントパルス数が最大ストロークLmaxに相当するパルス数に達すると、モータ制御部81により駆動モータ2が停止される。駆動モータ2が停止すると、プレッシャプレート92が動力遮断位置で停止し、クラッチ装置9のレリーズ動作が完了する。駆動モータ2の停止に伴い、ストローク制御部82により切換バルブ62が閉状態から開状態に切り換えられる。 The drive amount (rotation angle of the drive shaft 21) by the drive motor 2 is adjusted by the motor control unit 81 based on the output pulse of the encoder 22. After the drive by the drive motor 2 is started, the motor controller 81 starts counting the output pulses of the encoder 22, and when the number of count pulses reaches the number of pulses corresponding to the maximum stroke Lmax, the motor controller 81 causes the drive motor 2 to Is stopped. When the drive motor 2 stops, the pressure plate 92 stops at the power cut-off position, and the release operation of the clutch device 9 is completed. As the drive motor 2 stops, the switching valve 62 is switched from the closed state to the open state by the stroke control unit 82.
 トランスミッションECU99によりシフトチェンジが行われ、クラッチ装置1を連結する操作信号が出力されると、モータ制御部81は、最大ストロークLmaxに相当する駆動量だけ駆動モータ2により減速機構3を駆動する。このとき、駆動モータ2によりウォームホイール31がR2方向に回転駆動されるため、第1リンク部材32が下側に引っ張られ、第3リンク部材34がマスターシリンダ4の第1ピストン42を徐々に右側に押圧する。この結果、第1ピストン42が右側に移動するが、切換バルブ62が開状態であるため、第1油圧室44から流れ出た作動油は第2油圧室54へ流れずに、切換バルブ62およびサブ油路63を介してリザーバータンク43に流れ込む。このため、切換バルブ62の開状態が保持されている間は、第2ピストン52は停止した状態を保つ。 When a shift change is performed by the transmission ECU 99 and an operation signal for connecting the clutch device 1 is output, the motor control unit 81 drives the speed reduction mechanism 3 by the drive motor 2 by a drive amount corresponding to the maximum stroke Lmax. At this time, since the worm wheel 31 is rotationally driven in the R2 direction by the drive motor 2, the first link member 32 is pulled downward, and the third link member 34 gradually moves the first piston 42 of the master cylinder 4 to the right side. Press to. As a result, the first piston 42 moves to the right side, but the switching valve 62 is in the open state, so that the hydraulic oil flowing out from the first hydraulic chamber 44 does not flow into the second hydraulic chamber 54, It flows into the reservoir tank 43 through the oil passage 63. For this reason, while the switching valve 62 is kept open, the second piston 52 remains stopped.
 一方で、駆動モータ2による駆動が開始されると、エンコーダ22の出力パルスがモータ制御部81によりカウントされる。カウントパルス数が無効ストロークΔLに相当するパルス数に達するまで、切換バルブ62の開状態が保たれる。カウントパルス数が無効ストロークΔLに相当するパルス数に達すると、モータ制御部81から制御信号がストローク制御部82に送信され、ストローク制御部82により切換バルブ62が開状態から閉状態に切り換えられる。この結果、第1ピストン42の移動に伴い第1油圧室44から流れ出た作動油は、リザーバータンク43に逃げることなく第2油圧室54に流れ込み、スレーブシリンダ5の第2ピストン52が右側へ移動を開始する。第2ピストン52が右側に移動すると、レバー機構7のレバー71がピン72を中心に回転し、エンゲージベアリング97がレバー71によりフライホイール91側に押し込まれる。この結果、押圧レバー96を介してエンゲージベアリング97によりプレッシャプレート92がフライホイール側へ押され、スレーブシリンダ5のストロークが最大ストロークLmaxに達すると、クラッチディスク94がプレッシャプレート92およびフライホイール91の間に挟み込まれる。 On the other hand, when driving by the drive motor 2 is started, the output pulses of the encoder 22 are counted by the motor control unit 81. The switching valve 62 remains open until the count pulse number reaches the pulse number corresponding to the invalid stroke ΔL. When the number of count pulses reaches the number of pulses corresponding to the invalid stroke ΔL, a control signal is transmitted from the motor control unit 81 to the stroke control unit 82, and the switching valve 62 is switched from the open state to the closed state by the stroke control unit 82. As a result, the hydraulic oil that has flowed out of the first hydraulic chamber 44 as the first piston 42 moves flows into the second hydraulic chamber 54 without escaping to the reservoir tank 43, and the second piston 52 of the slave cylinder 5 moves to the right. To start. When the second piston 52 moves to the right side, the lever 71 of the lever mechanism 7 rotates around the pin 72, and the engagement bearing 97 is pushed into the flywheel 91 side by the lever 71. As a result, when the pressure plate 92 is pushed to the flywheel side by the engagement bearing 97 through the pressing lever 96 and the stroke of the slave cylinder 5 reaches the maximum stroke Lmax, the clutch disc 94 is located between the pressure plate 92 and the flywheel 91. Sandwiched between.
 前述のように、図5および図6に示すデータに基づいて、クラッチディスクの摩耗状態に合った適正ストロークがストローク制御部82により算出され、算出されたストロークでクラッチ操作装置1が作動するため、圧力Pは基準圧力P0またはその付近の値を維持することとなり、押付力が適正なレベルに維持される。 As described above, based on the data shown in FIG. 5 and FIG. 6, an appropriate stroke suitable for the wear state of the clutch disk is calculated by the stroke control unit 82, and the clutch operating device 1 operates with the calculated stroke. The pressure P is maintained at or near the reference pressure P0, and the pressing force is maintained at an appropriate level.
 フライホイール91およびプレッシャプレート92の間にクラッチディスク94が挟み込まれると、クラッチ装置9を介してエンジンからトランスミッションへ動力が伝達される。 When the clutch disc 94 is sandwiched between the flywheel 91 and the pressure plate 92, power is transmitted from the engine to the transmission via the clutch device 9.
 以上のように、クラッチ操作装置1によるクラッチ装置9の操作が行われる。 As described above, the clutch device 9 is operated by the clutch operating device 1.
 <ストローク算出動作>
 このクラッチ操作装置1では、ストローク制御部82により、寸法誤差や寸法変化に応じて適正ストロークが所定の条件で(例えば、1日1回、車両停止後、エンジン停止後)算出され、設定ストロークLsおよび無効ストロークΔLが所定の条件で更新されるようになっている。
<Stroke calculation operation>
In this clutch operating device 1, the stroke controller 82 calculates an appropriate stroke according to a dimensional error or a dimensional change under a predetermined condition (for example, once a day, after the vehicle is stopped, after the engine is stopped), and the set stroke Ls. The invalid stroke ΔL is updated under predetermined conditions.
 例えば図7に示すように、適正ストロークが算出される際、クラッチ装置9が連結状態か否かがストローク制御部82により確認される(S1)。クラッチ装置9の状態は、トランスミッションECU99から出力される操作信号、あるいは、エンコーダ22の出力に基づいて、ストローク制御部82により判定される。ストロークの算出は、クラッチ装置9の回転速度Vが低い場合に行われるのが好ましい。なぜなら、クラッチ装置9の回転速度Vが高いと、各部材の振動や油圧の脈動などの影響が増大するためである。したがって、クラッチ装置9が連結状態であれば、ストローク制御部82により、回転速度センサ98により検出されたクラッチ装置9の回転速度Vが予め設定された基準値V0と比較される(S2)。 For example, as shown in FIG. 7, when the appropriate stroke is calculated, it is confirmed by the stroke control unit 82 whether or not the clutch device 9 is in a connected state (S1). The state of the clutch device 9 is determined by the stroke control unit 82 based on the operation signal output from the transmission ECU 99 or the output of the encoder 22. The calculation of the stroke is preferably performed when the rotational speed V of the clutch device 9 is low. This is because when the rotational speed V of the clutch device 9 is high, the influence of vibration of each member, pulsation of hydraulic pressure, and the like increases. Therefore, if the clutch device 9 is in the connected state, the stroke control unit 82 compares the rotational speed V of the clutch device 9 detected by the rotational speed sensor 98 with a preset reference value V0 (S2).
 回転速度Vが基準値V0よりも高い場合は、ステップS1~S2が繰り返され、クラッチ装置9の連結状態および回転速度Vがストローク制御部82により監視される。回転速度Vが基準値V0以下の場合は、前述のストローク算出方法にしたがってストローク制御部82によりストロークが算出される。 When the rotational speed V is higher than the reference value V0, steps S1 and S2 are repeated, and the connected state of the clutch device 9 and the rotational speed V are monitored by the stroke control unit 82. When the rotation speed V is equal to or less than the reference value V0, the stroke is calculated by the stroke control unit 82 according to the stroke calculation method described above.
 具体的には、クラッチディスク94に作用する押付力を把握するために、圧力計53により圧力Pが検出され、負荷検出センサ23により駆動モータ2のモータ負荷Mが検出される(S3、S4)。圧力計53および負荷検出センサ23の検出結果は制御装置8に送信され、制御装置8のメモリ(図示せず)に格納される。 Specifically, in order to grasp the pressing force acting on the clutch disk 94, the pressure P is detected by the pressure gauge 53, and the motor load M of the drive motor 2 is detected by the load detection sensor 23 (S3, S4). . The detection results of the pressure gauge 53 and the load detection sensor 23 are transmitted to the control device 8 and stored in a memory (not shown) of the control device 8.
 次に、図5に示すデータ、検出圧力Pdおよび現状の設定ストロークLsに基づいて、検出圧力Pdを基準とした適正ストロークがストローク制御部82により算出される。具体的には、検出圧力Pdおよび現在の設定ストロークLsを用いて、図5に示すデータから算出式が選択される(S5)。例えば図5に示すように、ラインA1~A4の近似式を用いて、ストロークLsに対応する圧力Pc1~Pc4がストローク制御部82により算出される。ストローク制御部82により圧力Pc1~Pc4が検出圧力Pdと比較され、検出圧力Pdに最も近い圧力に対応するラインがラインA1~A4からストローク制御部82により選択される。選択されたラインの近似式および検出圧力Pdに基づいてストロークLpが算出され、算出されたストロークLpがメモリに格納される(S5)。 Next, an appropriate stroke based on the detected pressure Pd is calculated by the stroke control unit 82 based on the data shown in FIG. 5, the detected pressure Pd, and the current set stroke Ls. Specifically, a calculation formula is selected from the data shown in FIG. 5 using the detected pressure Pd and the current set stroke Ls (S5). For example, as shown in FIG. 5, the pressures Pc1 to Pc4 corresponding to the stroke Ls are calculated by the stroke controller 82 using the approximate expression of the lines A1 to A4. The stroke controller 82 compares the pressures Pc1 to Pc4 with the detected pressure Pd, and the stroke controller 82 selects the line corresponding to the pressure closest to the detected pressure Pd from the lines A1 to A4. The stroke Lp is calculated based on the approximate expression of the selected line and the detected pressure Pd, and the calculated stroke Lp is stored in the memory (S5).
 さらに、図6に示すデータ、検出負荷Mdおよび現状の設定ストロークLsに基づいて、
検出負荷Mdを基準とした適正ストロークがストローク制御部82により算出される。具体的には、検出負荷Mdおよび現在の設定ストロークLsを用いて、図6に示すデータから近似式が選択される(S6)。例えば図6に示すように、ラインA11~A14に対応する近似式を用いて、ストロークLsに対応する負荷Mc1~Mc4がストローク制御部82により算出される。ストローク制御部82により負荷Mc1~Mc4が検出負荷Mdと比較され、検出負荷Mdに最も近い負荷に対応するラインがラインA11~A14からストローク制御部82により選択される。選択されたラインの近似式および検出負荷Mdに基づいてストロークLmが算出され、算出されたストロークLmがメモリに格納される(S6)。
Furthermore, based on the data shown in FIG. 6, the detected load Md, and the current set stroke Ls,
The stroke controller 82 calculates a proper stroke based on the detected load Md. Specifically, an approximate expression is selected from the data shown in FIG. 6 using the detected load Md and the current set stroke Ls (S6). For example, as shown in FIG. 6, loads Mc1 to Mc4 corresponding to the stroke Ls are calculated by the stroke control unit 82 using approximate equations corresponding to the lines A11 to A14. The stroke control unit 82 compares the loads Mc1 to Mc4 with the detected load Md, and the stroke control unit 82 selects a line corresponding to the load closest to the detected load Md from the lines A11 to A14. The stroke Lm is calculated based on the approximate expression of the selected line and the detected load Md, and the calculated stroke Lm is stored in the memory (S6).
 算出されたストロークLpおよびLmに基づいて、ストローク制御部82により適正ストロークが算出される。具体的には、ストロークLpおよびLmの差の絶対値が所定の値δL以下である場合は、駆動力の伝達経路においてクラッチ装置9に近いスレーブシリンダ5の圧力Pが押付力の指標として正確であるため、ストローク制御部82によりストロークLpが適正ストロークとして選択され、ストロークLpが新しいストロークLsに設定される(S7、S8)。 Based on the calculated strokes Lp and Lm, the stroke control unit 82 calculates an appropriate stroke. Specifically, when the absolute value of the difference between the strokes Lp and Lm is equal to or smaller than a predetermined value δL, the pressure P of the slave cylinder 5 close to the clutch device 9 in the driving force transmission path is accurate as an index of the pressing force. Therefore, the stroke control unit 82 selects the stroke Lp as an appropriate stroke, and the stroke Lp is set to a new stroke Ls (S7, S8).
 一方、ストロークLpおよびLmの差の絶対値が所定の値δLよりも大きい場合は、ストローク制御部82によりストロークLpおよびLmが比較され、長い方のストロークが適正ストロークとして選択され、選択されたストロークが新しいストロークLsに設定される(S7~S10)。 On the other hand, when the absolute value of the difference between the strokes Lp and Lm is larger than the predetermined value δL, the stroke control unit 82 compares the strokes Lp and Lm, the longer stroke is selected as the appropriate stroke, and the selected stroke Is set to a new stroke Ls (S7 to S10).
 <クラッチ操作装置の特徴>
 このように、このクラッチ操作装置1では、クラッチ装置9の動力遮断状態から動力伝達状態にかけて減速機構3(より詳細には、トグル機構39)の減速比が徐々に大きくなるため、クラッチ装置9が動力伝達状態に移行する際には、クラッチ装置9の操作量が徐々に小さくなる。具体的には、クラッチ装置9での動力伝達が完全に遮断されている状態ではプレッシャプレート92が素早く移動し、プレッシャプレート92およびフライホイール91の間にクラッチディスク94が挟み込まれる段階で、プレッシャプレート92をゆっくり移動させることができる。つまり、このクラッチ操作装置1では、円滑なクラッチ装置9の動作を実現することができる。
<Characteristics of clutch operating device>
Thus, in this clutch operating device 1, since the speed reduction ratio of the speed reduction mechanism 3 (more specifically, the toggle mechanism 39) gradually increases from the power cutoff state to the power transmission state of the clutch device 9, the clutch device 9 When shifting to the power transmission state, the operation amount of the clutch device 9 gradually decreases. Specifically, in a state where the power transmission in the clutch device 9 is completely cut off, the pressure plate 92 moves quickly, and the pressure plate 92 and the flywheel 91 are sandwiched between the pressure plate 92 and the flywheel 91 at the stage where the pressure plate 92 is sandwiched. 92 can be moved slowly. That is, in the clutch operating device 1, a smooth operation of the clutch device 9 can be realized.
 また、クラッチ装置9の動力遮断状態から動力伝達状態にかけて、減速機構3によりクラッチ装置9に伝達される押付力が徐々に大きくなる。このため、大きな押付力が必要とされる動力伝達状態では、駆動モータ2の負荷を小さくすることができる。 Further, the pressing force transmitted to the clutch device 9 by the speed reduction mechanism 3 gradually increases from the power cutoff state to the power transmission state of the clutch device 9. For this reason, in the power transmission state in which a large pressing force is required, the load on the drive motor 2 can be reduced.
 例えば図10に示すように、縦軸に駆動モータ2の負荷をとり、横軸に駆動モータ2の駆動量(回転量)をとった場合、減速機構3を用いることで、エンゲージ領域での負荷をラインX2やラインX1で示すようなレベルに抑えることができる。前述の図9に示す従来の特性と比較すると、大幅に最大負荷が小さくなっていることが分かる。 For example, as shown in FIG. 10, when the load of the drive motor 2 is taken on the vertical axis and the drive amount (rotation amount) of the drive motor 2 is taken on the horizontal axis, the load in the engagement region can be obtained by using the speed reduction mechanism 3. Can be suppressed to the level indicated by the line X2 or the line X1. As compared with the conventional characteristic shown in FIG. 9, it can be seen that the maximum load is significantly reduced.
 以上より、このクラッチ操作装置1では、クラッチ装置9の動作を円滑に行うとともに駆動モータ2の負荷の増大を抑制することができる。つまり、減速機構3を設けることで、コストの増大を抑制しつつ、円滑なクラッチ連結動作を実現することができる。 As described above, in the clutch operating device 1, the operation of the clutch device 9 can be smoothly performed and an increase in the load of the drive motor 2 can be suppressed. That is, by providing the speed reduction mechanism 3, it is possible to realize a smooth clutch engagement operation while suppressing an increase in cost.
 さらに、クラッチディスクの摩耗状態に応じてストロークLsが定期的に算出および更新されるため、寸法誤差やクラッチディスク94の摩耗等の寸法変化に応じて、ストロークLが自動的に調整され、クラッチディスク94に作用する押付力を適正なレベルに維持することができる。つまり、このクラッチ操作装置1では、クラッチ装置9の性能の安定化を実現することができる。 Further, since the stroke Ls is periodically calculated and updated according to the wear state of the clutch disk, the stroke L is automatically adjusted according to a dimensional change such as a dimensional error or wear of the clutch disk 94, and the clutch disk. The pressing force acting on 94 can be maintained at an appropriate level. That is, in this clutch operating device 1, the performance of the clutch device 9 can be stabilized.
 〔他の実施形態〕
 本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。
[Other Embodiments]
The specific configuration of the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the invention.
 (A)
 減速機構3にトグル機構39が採用されているが、ストロークの末端付近で減速比が増大する末端減速機構であれば、他の機構であってもよい。末端減速機構としては、トグル機構以外に、カム機構、クランク機構、カルダン円ピン応用歯車機構、可変ラック・ピニオン機構、ベルト機構および楕円歯車機構などが考えられる。
(A)
Although the toggle mechanism 39 is employed as the speed reduction mechanism 3, any other mechanism may be used as long as the speed reduction ratio increases near the end of the stroke. As the terminal speed reduction mechanism, in addition to the toggle mechanism, a cam mechanism, a crank mechanism, a cardan circular pin applied gear mechanism, a variable rack / pinion mechanism, a belt mechanism, an elliptical gear mechanism, and the like can be considered.
 (B)
 また、トグル機構39の減速比が図3に示されているが、減速機構3の減速比は図3に示す特性に限定されない。例えば、動力遮断状態から動力伝達状態にかけて減速比が一定の割合で増加するような特性を減速機構3が有していてもよい。
(B)
Further, the reduction ratio of the toggle mechanism 39 is shown in FIG. 3, but the reduction ratio of the reduction mechanism 3 is not limited to the characteristics shown in FIG. For example, the speed reduction mechanism 3 may have such characteristics that the speed reduction ratio increases at a constant rate from the power cutoff state to the power transmission state.
 (C)
 前述の実施形態では、マスターシリンダ4およびスレーブシリンダ5がクラッチ操作装置1に搭載されているが、マスターシリンダ4およびスレーブシリンダ5が設けられていなくてもよい。例えば、減速機構3の第3リンク部材34がレバー機構7のレバー71を直接押すような構成であってもよい。
(C)
In the above-described embodiment, the master cylinder 4 and the slave cylinder 5 are mounted on the clutch operating device 1, but the master cylinder 4 and the slave cylinder 5 may not be provided. For example, the third link member 34 of the speed reduction mechanism 3 may directly press the lever 71 of the lever mechanism 7.
 (D)
 前述のクラッチ操作装置1は、無効ストロークΔLを調整する機能を有しているが、この機能を備えていなくても、減速機構3を備えていれば、クラッチ装置9の動作を円滑に行うとともに駆動モータ2の負荷の増大を抑制することができる。
(D)
Although the above-described clutch operating device 1 has a function of adjusting the invalid stroke ΔL, the clutch device 9 can be smoothly operated as long as the speed reduction mechanism 3 is provided even if this function is not provided. An increase in the load of the drive motor 2 can be suppressed.
 (E)
 前述の実施形態では、圧力Pおよびモータ負荷Mの両方を検出し、両者に基づいて適正ストロークおよび無効ストロークΔLが算出されているが、圧力Pおよびモータ負荷Mのうち一方のみを用いて適正ストロークおよび無効ストロークΔLを算出してもよい。
(E)
In the above-described embodiment, both the pressure P and the motor load M are detected, and the appropriate stroke and the invalid stroke ΔL are calculated based on both. However, only one of the pressure P and the motor load M is used. Alternatively, the invalid stroke ΔL may be calculated.
 (F)
 モータ負荷Mの検出方式として電流値を検出する方式を採用しているが、ひずみゲージを用いた方式などの他の方式であってもよい。
(F)
Although a method of detecting a current value is adopted as a method of detecting the motor load M, other methods such as a method using a strain gauge may be used.
 (G)
 圧力Pを検出する手段は、圧力計53に限定されず、例えば圧力スイッチでもよい。
(G)
The means for detecting the pressure P is not limited to the pressure gauge 53, and may be a pressure switch, for example.
 (H)
 レバー機構7を介してスレーブシリンダ5によりエンゲージベアリング97を押圧しているが、レバー機構7を省略してもよい。
(H)
Although the engagement bearing 97 is pressed by the slave cylinder 5 via the lever mechanism 7, the lever mechanism 7 may be omitted.
 本発明はクラッチ装置の操作を行うクラッチ操作装置の分野で有用である。 The present invention is useful in the field of clutch operating devices that operate clutch devices.
 1 クラッチ操作装置
 2 駆動モータ(駆動部の一例)
22 エンコーダ
23 負荷検出センサ
 3 減速機構(減速部の一例)
39 トグル機構
 4 マスターシリンダ
41 シリンダ
42 ピストン
43 リザーバータンク
44 油圧室
45 サブピストン
46 押さえ部材
47 スプリング
 5 スレーブシリンダ
51 シリンダ
52 ピストン
53 圧力計(検出センサの一例)
54 油圧室
 6 油圧回路
61 メイン油路
62 切換バルブ(切換部の一例)
63 サブ油路
 7 レバー機構
 8 制御装置
81 モータ制御部
82 ストローク制御部(調整制御部の一例)
 9 クラッチ装置
DESCRIPTION OF SYMBOLS 1 Clutch operating device 2 Drive motor (an example of a drive part)
22 Encoder 23 Load detection sensor 3 Deceleration mechanism (an example of a deceleration unit)
39 Toggle mechanism 4 Master cylinder 41 Cylinder 42 Piston 43 Reservoir tank 44 Hydraulic chamber 45 Sub-piston 46 Holding member 47 Spring 5 Slave cylinder 51 Cylinder 52 Piston 53 Pressure gauge (an example of a detection sensor)
54 Hydraulic chamber 6 Hydraulic circuit 61 Main oil passage 62 Switching valve (an example of switching section)
63 Sub oil passage 7 Lever mechanism 8 Control device 81 Motor controller 82 Stroke controller (an example of adjustment controller)
9 Clutch device

Claims (8)

  1.  クラッチディスクに作用する押付力をクラッチ装置に付与することで前記クラッチ装置を動力伝達状態に切り換えるクラッチ操作装置であって、
     駆動力を生成する駆動部と、
     前記駆動部の駆動量を減速することで前記駆動力を増幅する機構であって、前記クラッチ装置の動力遮断状態から動力伝達状態にかけて徐々に大きくなる減速比を有する減速部と、
     前記減速部により増幅された前記駆動力を前記押付力として前記クラッチ装置に伝達する中間伝達部と、
    を備えたクラッチ操作装置。
    A clutch operating device that switches the clutch device to a power transmission state by applying a pressing force acting on the clutch disc to the clutch device,
    A driving unit for generating a driving force;
    A mechanism for amplifying the driving force by decelerating the driving amount of the driving unit, and having a reduction ratio that gradually increases from a power cutoff state to a power transmission state of the clutch device;
    An intermediate transmission unit that transmits the driving force amplified by the deceleration unit to the clutch device as the pressing force;
    A clutch operating device comprising:
  2.  前記減速比は、前記動力遮断状態から前記動力伝達状態にかけて増大比により徐々に増大される、
    請求項1に記載のクラッチ操作装置。
    The reduction ratio is gradually increased by an increase ratio from the power cutoff state to the power transmission state.
    The clutch operating device according to claim 1.
  3.  前記増大比は、前記動力遮断状態から前記動力伝達状態にかけて徐々に大きくなる、
    請求項2に記載のクラッチ操作装置。
    The increase ratio gradually increases from the power cutoff state to the power transmission state.
    The clutch operating device according to claim 2.
  4.  前記減速部は、トグル機構を有している、
    請求項1から3のいずれかに記載のクラッチ操作装置。
    The speed reduction part has a toggle mechanism,
    The clutch operating device according to any one of claims 1 to 3.
  5.  前記中間伝達部から前記クラッチ装置へ伝達される操作量を調整する調整部をさらに備えた、
    請求項1から4のいずれかに記載のクラッチ操作装置。
    An adjustment unit for adjusting an operation amount transmitted from the intermediate transmission unit to the clutch device;
    The clutch operating device according to any one of claims 1 to 4.
  6.  前記調整部は、前記駆動部による全駆動範囲のうち一部の駆動量だけが前記中間伝達部で前記操作量に変換されるように前記操作量を調整可能である、
    請求項5に記載のクラッチ操作装置。
    The adjustment unit is capable of adjusting the operation amount so that only a part of the drive amount in the entire drive range by the drive unit is converted into the operation amount by the intermediate transmission unit.
    The clutch operating device according to claim 5.
  7.  前記中間伝達部は、
     第1シリンダと、前記第1シリンダに挿入され前記駆動部で生成された前記駆動力を受ける第1ピストンと、前記第1シリンダおよび前記第1ピストンにより形成される第1油圧室と、を有するマスターシリンダと、
     第2シリンダと、前記第2シリンダに挿入され前記駆動力を前記クラッチ装置に前記押付力として付与する第2ピストンと、前記第2シリンダおよび前記第2ピストンにより形成される第2油圧室と、を有するスレーブシリンダと、
     前記第1油圧室および前記第2油圧室を接続するメイン油路と、を有している、
    請求項1から6のいずれかに記載のクラッチ操作装置。
    The intermediate transmission unit is
    A first cylinder, a first piston that is inserted into the first cylinder and receives the driving force generated by the driving unit, and a first hydraulic chamber formed by the first cylinder and the first piston. A master cylinder,
    A second cylinder, a second piston that is inserted into the second cylinder and applies the driving force to the clutch device as the pressing force, a second hydraulic chamber formed by the second cylinder and the second piston, A slave cylinder having
    A main oil passage connecting the first hydraulic chamber and the second hydraulic chamber,
    The clutch operating device according to any one of claims 1 to 6.
  8.  前記調整部は、前記メイン油路に接続されたタンクと、前記第1油圧室、前記第2油圧室および前記メイン油路のうち少なくとも1つと前記タンクとの接続および遮断を切り換える切換部と、を有している、
    請求項7に記載のクラッチ操作装置。
    The adjustment unit includes a tank connected to the main oil passage, a switching unit that switches connection and disconnection between the tank and at least one of the first hydraulic chamber, the second hydraulic chamber, and the main oil passage; have,
    The clutch operating device according to claim 7.
PCT/JP2010/064327 2009-09-03 2010-08-25 Clutch operation device WO2011027687A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800360454A CN102472331A (en) 2009-09-03 2010-08-25 Clutch operation device
DE112010003520T DE112010003520T5 (en) 2009-09-03 2010-08-25 Clutch Actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009203841A JP4852132B2 (en) 2009-09-03 2009-09-03 Clutch operating device
JP2009-203841 2009-09-03

Publications (1)

Publication Number Publication Date
WO2011027687A1 true WO2011027687A1 (en) 2011-03-10

Family

ID=43649226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064327 WO2011027687A1 (en) 2009-09-03 2010-08-25 Clutch operation device

Country Status (4)

Country Link
JP (1) JP4852132B2 (en)
CN (1) CN102472331A (en)
DE (1) DE112010003520T5 (en)
WO (1) WO2011027687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150615A1 (en) * 2015-03-25 2016-09-29 Robert Bosch Gmbh Actuator for actuating a hydraulic clutch servo unit, and clutch system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962997B2 (en) 2010-07-07 2012-06-27 株式会社エクセディ Clutch operating device
JP5784550B2 (en) * 2012-06-25 2015-09-24 昭男 古川 Drive control device
JP2014055658A (en) * 2012-09-14 2014-03-27 Exedy Corp Clutch release device
CN102996679B (en) * 2012-11-26 2016-05-04 重庆长安汽车股份有限公司 The control system of clutch fluid pressing system fueller
CN102975617B (en) * 2012-11-30 2015-09-30 长城汽车股份有限公司 A kind of clutch operating system of hand-operated transmission
KR101448394B1 (en) * 2013-07-02 2014-10-07 현대다이모스(주) Clutch actuator for automated manual transmisson
WO2015062601A1 (en) * 2013-10-28 2015-05-07 Schaeffler Technologies AG & Co. KG Actuating device with a master cylinder actuable by a gear selector drum for actuating the clutch
US11167762B2 (en) 2017-06-30 2021-11-09 Honda Motor Co., Ltd. Vehicle transmission system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130628A (en) * 1984-11-30 1986-06-18 Hino Motors Ltd Clutch lever position adjusting mechanism
JP2006071070A (en) * 2004-09-06 2006-03-16 Gkn ドライブライン トルクテクノロジー株式会社 Coupling device
JP2006214477A (en) * 2005-02-02 2006-08-17 Hino Motors Ltd Clutch operation device
JP2008043992A (en) * 2006-08-21 2008-02-28 Murata Mach Ltd Linear motor-mounted press machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145821A (en) * 1998-11-13 2000-05-26 Aichi Mach Ind Co Ltd Automatic interrupting device for friction clutch
JP2005048924A (en) 2003-07-31 2005-02-24 Exedy Corp Hydraulic clutch operating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130628A (en) * 1984-11-30 1986-06-18 Hino Motors Ltd Clutch lever position adjusting mechanism
JP2006071070A (en) * 2004-09-06 2006-03-16 Gkn ドライブライン トルクテクノロジー株式会社 Coupling device
JP2006214477A (en) * 2005-02-02 2006-08-17 Hino Motors Ltd Clutch operation device
JP2008043992A (en) * 2006-08-21 2008-02-28 Murata Mach Ltd Linear motor-mounted press machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150615A1 (en) * 2015-03-25 2016-09-29 Robert Bosch Gmbh Actuator for actuating a hydraulic clutch servo unit, and clutch system

Also Published As

Publication number Publication date
JP4852132B2 (en) 2012-01-11
CN102472331A (en) 2012-05-23
DE112010003520T5 (en) 2012-10-04
JP2011052790A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP4852132B2 (en) Clutch operating device
JP4904370B2 (en) Double clutch for double clutch transmission
JP4241946B2 (en) Device for operating a unit in an automobile powertrain
US8612104B2 (en) Clutch control device and μ correction coefficient calculating method
JP4975873B1 (en) Clutch operating device
US8960400B2 (en) Clutch operating device
US20090038425A1 (en) Automated Shift Control Device and Straddle-Type Vehicle Equipped With the Same
US20100094517A1 (en) Flow control valve for clutch control device
ITMI980387A1 (en) VEHICLE WITH DEVICE FOR THE CONTROL OF AN AUTOMATED CLUTCH
JP2010059995A5 (en)
JP4892592B2 (en) Clutch operating device
US10844912B2 (en) Reduced vibration clutch actuator
US20110297504A1 (en) Clutch device
KR20030090721A (en) Method for calibrating balance position
JP4921576B2 (en) Clutch operating device
BRPI0800995B1 (en) CLUTCH CONTROLLER, CLUTCH CONTROL METHOD AND VEHICLE ASSEMBLY
US20100298093A1 (en) Control apparatus of clutch mechanism
JP3895810B2 (en) Automatic clutch for vehicle
ITMI20002256A1 (en) MOTOR VEHICLE WITH A DRIVE ENGINE AND A CONTROL UNIT FOR COMMANDING THE NUMBER OF ENGINE LAPS AND / OR THE ENGINE MOTOR TIME
US20230095322A1 (en) Clutch control device
JP4742885B2 (en) Clutch actuator
JP2013036485A (en) Clutch control unit for vehicle
JPH11247894A (en) Automatic clutch device for vehicle
JP2022167612A (en) Operation actuator of friction fastening element
JP2005214328A (en) Clutch control device for vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036045.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010003520

Country of ref document: DE

Ref document number: 1120100035202

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813636

Country of ref document: EP

Kind code of ref document: A1