WO2011027480A1 - Scroll compressor, refrigerating cycle device, and heat pump water heater - Google Patents

Scroll compressor, refrigerating cycle device, and heat pump water heater Download PDF

Info

Publication number
WO2011027480A1
WO2011027480A1 PCT/JP2009/070647 JP2009070647W WO2011027480A1 WO 2011027480 A1 WO2011027480 A1 WO 2011027480A1 JP 2009070647 W JP2009070647 W JP 2009070647W WO 2011027480 A1 WO2011027480 A1 WO 2011027480A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
scroll
back pressure
wrap
orbiting scroll
Prior art date
Application number
PCT/JP2009/070647
Other languages
French (fr)
Japanese (ja)
Inventor
雄 幸野
有吾 向井
和則 津久井
昌寛 竹林
敦 大沼
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN200980161232.2A priority Critical patent/CN102483060B/en
Priority to KR1020127005603A priority patent/KR101410550B1/en
Publication of WO2011027480A1 publication Critical patent/WO2011027480A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a scroll compressor or the like that compresses a refrigerant, and more particularly to a structure that improves the sealing performance by supplying lubricating oil to a compression chamber and reduces leakage loss.
  • Scroll compressors used in room air conditioners, heat pump water heaters, etc. control the back pressure, which is the pressure in the back pressure chamber provided on the opposite side of the orbiting scroll, by the back pressure control valve, and turn by the controlled back pressure.
  • the scroll is urged toward the fixed scroll, and the refrigerant is compressed in a compression chamber formed by both scrolls.
  • an intermittent communication structure is known in addition to a constant communication structure.
  • Lubricating oil is supplied to the compression chamber, improving the sealing performance of the compression chamber and reducing leakage loss. If the leakage loss can be kept as small as possible, the efficiency of the compressor can be increased accordingly.
  • Patent Document 1, Patent Document 2, and the like are known.
  • the compressor disclosed in Patent Document 1 has a toothed oil supply structure, and a space (20) in which discharge pressure acts as an oil supply passage for supplying lubricating oil from an oil reservoir at the bottom of a sealed container, and an orbiting scroll.
  • a passage (second communication passage) communicating with the tip of the lap is provided in the orbiting scroll.
  • a pair of arc grooves that open to the compression chambers on both the inner and outer sides of the wrap are provided at the tip of the wrap of the orbiting scroll, and either one of the pair of arc grooves communicates with the second communication passage. Accordingly, it is disclosed that the lubrication of the sliding portion between the orbiting scroll and the fixed scroll can be maintained well even in the compression space where the pressure is higher than that of the suction chamber.
  • the compressor disclosed in Patent Document 2 is provided with a communication passage that communicates a high-pressure portion that is an inner region of a sliding partition ring and a compression chamber inside the orbiting scroll, and is provided on the compression chamber side of the opening of the communication passage. Is provided at the wrap tip of the orbiting scroll so as to face the discharge port at the center of the fixed scroll. Accordingly, it is disclosed that oil is supplied to a compression chamber that is relatively close to the end of compression, and seizure of the wrap tip of the fixed scroll and the end plate of the orbiting scroll is prevented. Further, it is disclosed that performance deterioration due to volumetric efficiency reduction due to suction heating is suppressed.
  • a back pressure control valve is disposed at approximately 11:00 when viewed in the direction of FIG. 3 of the present application (FIG. 22), from the back pressure chamber through the back pressure control valve. It was set as the structure which seals a compression chamber using the oil which flows in into the suction side.
  • Patent Document 1 when an arc groove is provided at the tip of the wrap, leakage occurs between the compression chambers on the inner and outer sides of the wrap, that is, between a swirling inner chamber and a swirling outer chamber described later.
  • the arc groove is deepened, a contradictory phenomenon occurs such that leakage increases between the compression chambers.
  • Patent Document 2 it is not possible to expect an oil seal in a compression chamber on the outer diameter side far from the discharge port (region close to the suction portion), that is, a region near the start of compression.
  • the issue is how to perform oil sealing.
  • the R groove 5h is provided to lubricate the portion of the fixed scroll end plate surface having a large area and the end plate surface of the orbiting scroll. That is, the back pressure control valve is provided at the 11 o'clock position mainly from the viewpoint of lubrication. Therefore, the efficiency may be improved by devising the position of the back pressure control valve from the viewpoint of improving the sealing performance and efficiency of the compression chamber.
  • an object of the present invention is to provide a highly efficient scroll compressor. Another object of the present invention is to provide a highly efficient refrigeration cycle apparatus and heat pump water heater.
  • An object of the present invention is to provide a scroll compressor having an intermittent communication structure in which the orbiting scroll is urged to a fixed scroll by a back pressure controlled by a back pressure control valve, and the refrigerant is compressed in a compression chamber formed by both scrolls.
  • Scroll compression in which the back pressure control valve is disposed at a position where intermittent communication is started when the volume of both the suction chamber on the inner line side of the orbiting scroll and the suction chamber on the outer line side of the orbiting scroll increases. Achieved by machine.
  • Another object of the present invention is to urge the orbiting scroll against the fixed scroll by the back pressure that is the pressure of the back pressure chamber provided on the opposite side of the orbiting scroll, and to supply the refrigerant in the compression chamber formed by both scrolls.
  • This is achieved by a scroll compressor that performs tooth tip oiling into the compression chamber via a space provided at a position deeper than the tooth bottom of the fixed scroll.
  • Another object of the present invention is to control the back pressure, which is the pressure of the back pressure chamber provided on the side opposite to the orbiting scroll, by a back pressure control valve, and attach the orbiting scroll to the fixed scroll by the controlled back pressure.
  • a scroll compressor having an intermittent communication structure and a tooth tip oil supply structure that compresses refrigerant in a compression chamber formed by both scrolls, an inner suction side suction chamber and an outer suction side suction chamber of the orbiting scroll;
  • the back pressure control valve is disposed at a position where the communication start of intermittent communication is performed, and the space is provided through a space further deeper than the bottom of the fixed scroll. This is achieved by a scroll compressor that supplies the tip of the oil into the compression chamber.
  • a highly efficient scroll compressor can be provided.
  • a highly efficient refrigeration cycle apparatus and heat pump water heater can be provided.
  • Oil seal explanatory drawing of a compression chamber The figure showing the other shape of a communicating hole. The figure which showed the pressure change at the time of starting. The figure showing mesh
  • FIG. 1 is a longitudinal sectional view of a scroll compressor
  • FIG. 2 is an oil supply structure
  • FIG. 3 is a diagram in which a turning scroll and a fixed scroll are engaged with each other. Note that FIG. 2 is not an actual cross section, but a convenient cross section for explaining various configurations.
  • the scroll compressor 1 includes a compression mechanism unit 3, an electric motor 4 that drives the compression mechanism unit 3, an oil supply unit 50 for supplying lubricating oil to the compression mechanism unit 3, a compression mechanism unit 3, the electric motor 4, and an oil supply.
  • a sealed container 2 for housing the portion 50.
  • the sealed container 2 is configured by welding a lid chamber 2b and a bottom chamber 2c vertically to a cylindrical case 2a.
  • the lid chamber 2b is provided with a suction pipe 2d, and a discharge pipe 2e is provided on the side surface of the case 2a.
  • the compression mechanism part 3 is arrange
  • a lubricating oil 13 is stored at the bottom of the sealed container 2.
  • the inside of the hermetic container 2 is a so-called high-pressure chamber type scroll compressor that serves as a discharge pressure chamber 2f.
  • the compression mechanism unit 3 includes a turning scroll 6 in which a spiral wrap 6a is erected on a base plate 6b, and a fixed scroll 5 in which a spiral wrap 5c is erected on a base plate 5d.
  • a revolving scroll 6 is rotatably disposed opposite to the fixed scroll 5.
  • An Oldham ring 12 is arranged between the lower surface side of the orbiting scroll 6 and the upper surface side of the frame 9, and each key formed on one surface and the other surface of the Oldham ring 12 is used for the orbiting scroll. 6 is fitted into a groove formed on the lower surface side of the frame 6 and a groove formed on the upper surface side of the frame 9 at a right angle.
  • the fixed scroll 5 is fixed to the frame 9 with bolts 8.
  • the outer periphery of the frame 9 is fixed to the inner wall surface of the sealed container 2 by welding, so that the compression mechanism unit 3 is fixed to the sealed container 2.
  • the frame 9 includes a main bearing 9a that rotatably supports the crankshaft 7.
  • An eccentric portion 7 b of the crankshaft 7 is inserted on the lower surface side of the orbiting scroll 6.
  • the orbiting scroll 6 is positioned between the fixed scroll 5 and the frame 9, and the orbiting scroll 6 is supported by the crankshaft 7.
  • the electric motor 4 has a stator 4a and a rotor 4b.
  • the stator 4a is fixed to the sealed container 2 by press-fitting and / or welding.
  • the rotor 4b is fixed to the crankshaft 7 and is rotatably arranged in the stator 4a.
  • the crankshaft 7 includes a main shaft 7 a and an eccentric portion 7 b and is supported by a main bearing 9 a and a lower bearing 17 provided on the frame 9.
  • the eccentric portion 7 b is formed integrally with the main shaft 7 a of the crankshaft 7, and is fitted to a revolving bearing 6 c provided on the back surface of the orbiting scroll 6.
  • the crankshaft 7 supports the orbiting scroll 6. .
  • the crankshaft 7 is driven by the electric motor 4, and the eccentric portion 7b is eccentrically rotated with respect to the main shaft 7a.
  • the Oldham ring 12 transmits the eccentric rotation of the eccentric portion 7b of the crankshaft 7 without causing the orbiting scroll 6 to rotate, thereby causing the orbiting scroll 6 to revolve.
  • the crankshaft 7 is provided with an oil supply passage 7c that guides the lubricating oil 13 to the lower bearing 17, the main bearing 9a, and the slewing bearing 6c.
  • the lubricating oil is provided on the lower side of FIG.
  • An oil supply pipe 7d for sucking 13 and guiding it to the oil supply passage 7c is mounted.
  • a mechanism for supplying lubricating oil to each part through the oil supply passage 7 c is an oil supply part 50.
  • a back pressure chamber 14 is formed between the rear surface of the orbiting scroll 6 and the frame 9, that is, on the opposite side of the orbiting scroll 6.
  • Lubricating oil to which discharge pressure, which is the pressure in the sealed container, is applied is introduced into the space between the rear surface of the orbiting scroll 6 and the upper end of the crankshaft 7 via the oil supply passage 7c.
  • This space is referred to as a discharge pressure oil supply chamber 51.
  • the discharge pressure oil supply chamber 51 is also formed on the side opposite to the wrapping scroll 6.
  • the lower part of the sealed container 2 in which the lubricating oil 13 is stored is the oil passage 7c ⁇ the discharge pressure oil chamber 51 ⁇ the gap between the slewing bearing 6c and the eccentric portion 7b ⁇ the back pressure chamber 14 ⁇ the back pressure control valve 16 ⁇ the path of the suction space 10 It communicates with. Further, the oil supply passage 7c ⁇ the hole 7z ⁇ the clearance between the main shaft 7a and the main bearing 9a ⁇ the notch 100 ⁇ the back pressure chamber 14 ⁇ the back pressure control valve 16 ⁇ the suction space 10 is communicated. The lubricating oil 13 tends to flow into the suction space 10 from the lower part of the sealed container 2 that is at the discharge pressure.
  • the gap between the swivel bearing 6c and the eccentric portion 7b and the gap between the main shaft 7a and the main bearing 9a become a throttle on the oil inlet side, and the back on the oil outlet side.
  • the pressure control valve 16 becomes a throttle
  • the back pressure Pb which is the pressure in the back pressure chamber 14 becomes an intermediate pressure between the suction pressure Ps and the discharge pressure Pd.
  • the lubricating oil 13 is supplied to the slewing bearing 6 c and the main bearing 9 a by a pressure difference between the discharge pressure in the compressor lower space and the back pressure in the back pressure chamber 14. This is a so-called differential pressure lubrication system.
  • the gas refrigerant is guided from the suction pipe 2d to the compression chamber 11 formed by the orbiting scroll 6 and the fixed scroll 5.
  • the compressed gas refrigerant is discharged from the discharge port 5e provided substantially at the center of the base plate 5d of the fixed scroll 5 into the sealed container 2, that is, the discharge pressure chamber 2f, and flows out from the discharge pipe 2e to the outside.
  • the refrigerant that has flowed out returns to the scroll compressor 1 via the suction pipe 2d via a first heat exchanger, an expansion device, and a second heat exchanger (not shown).
  • a structure in which these are sequentially connected in a loop shape is referred to as a refrigeration cycle, and a device using this is referred to as a refrigeration cycle apparatus.
  • the fixed scroll 5 is provided with a release valve 15.
  • the release valve 15 is for discharging from the compression chamber 11 to the discharge pressure chamber 2f when the pressure of the compression chamber 11 becomes equal to or higher than the pressure of the discharge pressure chamber 2f.
  • the release valve 15 works in the case of a liquid compression state or an overcompression state.
  • a release valve hole 15a is provided between the release valve 15 and the compression chamber. It can be said that the release valve hole 15 a is a space provided at a deeper position than the tooth bottom of the fixed scroll 5.
  • At least one release valve 15 is disposed in each compression chamber. This is because the compression chamber can be communicated with the release valve 15 in almost any crank angle compression chamber, so that the compression chamber does not become a completely sealed space and pressure can be released. Therefore, when the number of wraps is increased and the number of compression chambers is increased, the number of release valves 15 is preferably increased corresponding to the number of compression chambers.
  • the pressure in the compression chamber is expressed by the equation (1) and is determined by the ratio of the displacement volume and the compression chamber volume.
  • Pc Ps ⁇ (V0 / Vc) ⁇ (1)
  • Pc the compression chamber pressure
  • Ps the suction pressure
  • V0 the displacement volume
  • Vc the compression chamber volume
  • the adiabatic index
  • the pressure in the compression chamber may become higher than the pressure in the discharge pressure chamber 2f, and at this time, the gas refrigerant is discharged from the release valve 15.
  • the release valve 15 located on the outer diameter side of the base plate does not open so much during steady operation because the pressure does not increase so much, but in order to avoid liquid compression when liquid refrigerant is sucked in such as immediately after startup. The implications provided are great.
  • FIG. 3 shows that the scrolls 5 and 6 are cut at the end plate surface of the orbiting scroll 6 (the bottom surface of the orbiting scroll 6) or the end plate surface of the fixed scroll 5 (the tooth tip surface of the fixed scroll 5).
  • the lap of the orbiting scroll 6 is hatched.
  • the center side is called the wrap winding start, and the outer diameter side is called the wrap winding end.
  • the wrap is wound clockwise. It can be said that the lap is rewound counterclockwise.
  • the origin of the axis shown in FIG. 3 is the center of the sealed container 2. This coincides with the center of the base plate of the fixed scroll 5.
  • the vertical axis is as follows, and the horizontal axis is perpendicular to the vertical axis and passes through the origin.
  • the vertical axis is based on the position of the winding end portion 6Xo of the outer line side wrap of the orbiting scroll 6 when the orbiting outer line chamber having the maximum volume is formed.
  • the orbiting outer line chamber is a compression chamber on the outer diameter side of the wrap of the orbiting scroll 6.
  • the turning outer line chamber having the largest volume is also the turning outer line chamber on the outermost diameter side (11a).
  • a swirling outer line chamber is also formed on the inner diameter side from here, which is represented by reference numeral 11a '.
  • FIG. 3 is represented so that the point where the winding end portion 6Xo of the outer line side wrap of the orbiting scroll 6 contacts the fixed scroll 5 is on the vertical axis.
  • the contact on the fixed scroll 5 side at this time is referred to as the winding end portion 5Xi of the extension-side wrap of the fixed scroll 5.
  • the winding end portions 5Xo of the outer line side wrap of the fixed scroll 5 are also defined, and these winding end portions 5X ride on the vertical axis in FIG.
  • a turning inner chamber that is, a compression chamber on the inner diameter side of the wrap of the orbiting scroll 6 is formed.
  • the swivel extension chamber at this time is the swivel extension chamber having the largest volume, and is also the swivel extension chamber on the outermost diameter side.
  • a swivel extension chamber is also formed on the inner diameter side. For example, it is represented as 11b 'in FIG.
  • an inner line and an outer line mean the side surface of the tooth which is a spiral, ie, the wrap side surface.
  • the portion where the curve continues further in the clockwise direction than the winding end portions 5Xi and 5Xo of the fixed scroll 5 is called an extension portion.
  • the winding end portions 5Xi and 5Xo are located at the 6 o'clock position indicated by the short hand of the watch, and the suction pipe 2d and the suction port 2d1 indicated by the broken line are located around the 7 o'clock position of the extension portion. Yes.
  • an R groove 5h is formed until about 11:00, and a back pressure control valve 16 is disposed at the 9 o'clock position. The conduction path 5i of the back pressure control valve 16 communicates with the R groove 5h.
  • the R groove 5h is formed in such a portion. Is provided. This is a groove for introducing oil from the back pressure control valve 16 in order to lubricate the end plate surfaces of the scrolls 5 and 6.
  • a suction space 10 and a compression chamber 11 which are suction portions are formed between the wrap 5c and the wrap 6a.
  • the suction space 10 refers to a region where the pressure becomes the suction pressure, and communicates with the suction pipe 2d.
  • the compression chamber 11 is a region where communication with the suction pipe 2d is blocked, and is roughly classified into two types, a swirling outer chamber and a swirling inner chamber.
  • compression chamber boundaries there are four compression chamber boundaries: first the first boundary formed by the root of the fixed scroll, second the second boundary formed by the bottom of the orbiting scroll, and third the swirl It has four boundaries: a third boundary formed by the scroll inner line, and a fourth boundary formed by the outer line of the fixed scroll.
  • a compression chamber having such a boundary as a room indicated by 11b in FIG. 3 is referred to as a swivel extension chamber (or a fixed outer chamber).
  • the first and second boundaries are the same as described above.
  • a compression chamber having four boundaries is referred to as a swirling outer chamber (or a fixed inner chamber), for example, a room indicated by 11a and 11a 'in FIG.
  • ⁇ Lubricating oil is supplied between these boundaries to maintain the sealing performance.
  • any compression chamber there is a minute gap (about 5 ⁇ m or less) between the wrap side surfaces, that is, between the third boundary and the fourth boundary.
  • minute gaps in the gap closer to the discharge port 5e at the front end of the compression chamber, that is, closer to the winding start portion of the wrap, a compression chamber with higher pressure is formed further in front of the front end. Therefore, the gas refrigerant with higher pressure leaks from the minute gap between the third boundary and the fourth boundary.
  • the gas refrigerant leaks from the minute gap between the third boundary and the fourth boundary into the compression chamber having the low pressure. It can be said that the leakage at the front end or the rear end is a leakage from the swirling extension chamber to the swiveling extension chamber or a leakage from the swirling outer chamber to the swirling outer chamber. This is referred to as type 1 leakage.
  • both the swirl inner and outer line chambers have a minute amount between the first boundary and the third boundary, and between the second boundary and the fourth boundary.
  • the compression chamber 11 is adjacent to a compression chamber having a higher pressure and a compression chamber having a lower pressure, with these gaps as a boundary.
  • the leak between the tooth tip and the tooth bottom is a leak from the swivel extension chamber to the swivel extension chamber, or a leak from the swivel extension chamber to the swivel extension chamber. This is referred to as a second type leak.
  • the winding end portion 6Xi of the inner side wrap of the orbiting scroll 6 moves so as to draw a counterclockwise locus as shown by a broken line with the position of FIG. 3 as the 6 o'clock position of the clock.
  • the winding end portion 6Xo of the other outer line side wrap also draws a locus in the same manner, but is not shown.
  • the swirling outer line chamber indicated by 11a is represented as a swirling outer line chamber having a crank angle of 0 °.
  • the turning outer line chamber indicated by 11a ′ can be expressed as a turning outer line chamber with a crank angle of 360 °.
  • the volume of the swirling outer line chamber 11a with a crank angle of 0 ° is the largest of the volumes of the swirling outer line chamber.
  • the turning extension chamber is formed when the crank angle is 180 °, and the volume of the turning extension chamber at that time is the largest of the volumes of the turning extension chamber (see FIG. 6B).
  • a compressor of a type in which the compression start timing of the turning inner and outer line chambers is shifted by 180 ° by the rotation angle of the crankshaft 7 is referred to as an asymmetric wrap type.
  • the maximum volume swirl extension chamber is shown in FIG. 6B, but is not shown in FIG.
  • the turning extension chamber indicated by 11b is a turning extension chamber whose crank angle is advanced by 180 ° from the maximum volume turning extension chamber, and becomes a turning extension chamber with a crank angle of 360 °.
  • FIG. 3 shows a swirling outer chamber 11a with a crank angle of 0 °, a swirling outer chamber 11a ′ with a crank angle of 360 °, a swirling inner chamber 11b with a crank angle of 360 °, a swirling inner chamber (11b ′) with a crank angle of 720 °, A total of four compression chambers are shown. Since the swivel extension chamber (11b ') with a crank angle of 720 ° is open to the discharge port 5e, it cannot be strictly called a compression chamber, but is expressed in this way for easy understanding.
  • the back pressure control valve 16 that is a mechanism for adjusting the back pressure Pb that is the pressure in the back pressure chamber 14 will be described.
  • the orbiting scroll 6 is urged toward the fixed scroll 5 by the back pressure Pb. That is, the orbiting scroll 6 receives a force that is pressed against the fixed scroll 5 by the back pressure Pb. If the back pressure is large, the urging force increases, and the frictional force generated between the two scrolls also increases, which is not preferable.
  • the back pressure control valve 16 is a valve that controls so that the back pressure does not become too large.
  • the fixed scroll 5 has a spring housing hole 5f.
  • a through hole 5g is formed on the back pressure chamber 14 side of the spring housing hole 5f, and a piece 16a is press-fitted into the through hole 5g.
  • the piece 16a is formed with a communication hole 16b that allows the spring housing hole 5f and the back pressure chamber 14 to communicate with each other.
  • a valve body 16c is disposed in the spring housing hole 5f, and the valve body 16c is biased by a spring 16d so as to close the communication hole 16b.
  • the spring 16d is attached to the seal member 16e, and the seal member 16e is press-fitted into the fixed scroll 5 so as to partition the spring housing hole 5f and the discharge pressure chamber 2f.
  • a conduction path 5i is formed which communicates with the R groove 5h formed in the extension of the end plate surface of the fixed scroll 5. Since the R groove 5h communicates with the suction pipe 2d, the pressure in the spring housing hole 5f eventually becomes the suction pressure Ps.
  • the operation of the back pressure control valve 16 will be described.
  • the lubricating oil 13 stored in the lower part of the sealed container 2 is supplied to each bearing through the oil supply pipe 7d and the oil supply passage 7c due to the pressure difference between the pressure in the closed container 2 and the pressure in the back pressure chamber 14.
  • the refrigerant dissolved in the lubricating oil 13 is foamed in the back pressure chamber 14.
  • the upward force applied to the valve body 16c (the upward force in FIGS. 1 and 2) due to the pressure difference between the pressure in the back pressure chamber 14 and the pressure in the spring housing hole 5f, that is, the suction pressure Ps is the downward force by the spring 16d.
  • the valve body 16c is opened, and the lubricating oil 13 in the back pressure chamber 14 is supplied to the suction space 10 through the conduction path 5i and the R groove 5h. This is because not only the gas refrigerant but also the oil passes through the back pressure control valve 16.
  • This oil is considered to be oil that has adhered to the hole or the wall surface or oil that has become a mist.
  • the pressure in the back pressure chamber 14 is adjusted by the spring force in this way, and becomes the suction pressure Ps + a constant value.
  • This constant value is determined by the spring force of 16d, and the back pressure Pb can be increased as the amount of spring deflection when the valve is closed, which is the initial displacement, and as the spring constant k increases, that is, the spring is less likely to bend.
  • CO 2 is used as a refrigerant in the refrigeration cycle apparatus.
  • This refrigeration cycle is called a supercritical refrigeration cycle in which the pressure on the high pressure side exceeds the critical point of CO 2 .
  • This high pressure is produced by, for example, a scroll compressor as in this embodiment.
  • the valve body 16c and the piece 16a are merely in metal contact with each other by a spring force, and a slight gap exists due to the surface roughness of the member and the leakage is not completely reduced to zero. While the base plate 6b closes the communication hole 16b, the gas refrigerant in the communication hole 16b leaks into the spring housing hole 5f through a minute gap between the valve body 16c and the piece 16a. At this time, since the back pressure control valve 16 is closed, the back pressure does not change. Now, the volume of the communication hole 16b is small. For example, if the diameter of the communication hole 16b is 2 mm, the volume is about 0.03 cm 3. Depressurize.
  • F is the inertial force
  • A is the cross-sectional area of the communication hole 16b
  • is the fluid density
  • V is the flow velocity
  • the intermittent communication structure causes the inertial force of the fluid to act on the valve body 16c in addition to the pressure difference between the back pressure chamber 14 and the spring storage chamber 5f, thereby making it easy to open the back pressure control valve 16.
  • the degree may be small, but the same effect It is thought that there is.
  • FIGS. 4 is a diagram showing a virtual swirl extension chamber and a virtual swirl outer chamber
  • FIG. 5A is a diagram showing the volume change of the suction chamber and the communication section of the communication hole of the back pressure control valve
  • FIG. 5B is a graph of FIG. It is the figure which compared with the graph of the order differential, arranges in the same size so that the mutual relationship is understood.
  • FIG. 6 is a diagram for explaining leakage from the virtual swirl extension chamber and the virtual swirl extension chamber
  • FIG. 7 is a diagram for explaining the position of the back pressure control valve.
  • FIG. 4 shows virtual rooms 11A and 11B into which gas refrigerant and oil flow in the suction stroke. These regions are called suction chambers and are a part of the suction space 10. These virtual rooms 11A and 11B are referred to as a virtual swirl outer line room 11A and a virtual swirl line room 11B. Therefore, the suction chamber is the virtual swirl outer chamber 11A or the virtual swirl inner chamber 11B.
  • the virtual swirl outer chamber 11A and the virtual swirl chamber 11B are both at suction pressure. This is because the above-described virtual lines AA and BB are always in communication with the suction pipe 2d. Note that the virtual swirl extension chamber 11A and the virtual swirl extension chamber 11B are defined as follows.
  • the virtual orbiting outer line chamber 11A includes an imaginary line AA connecting the winding end portion 5Xi of the inner line side wrap of the fixed scroll 5 and the winding end portion 6Xo of the outer line side wrap of the orbiting scroll 6, and the outer line side wrap of the orbiting scroll 6 An area surrounded by the extension side wrap of the fixed scroll 5.
  • the virtual orbiting extension chamber 11B includes an imaginary line BB connecting the winding end portion 5Xo of the outer line side wrap of the fixed scroll 5 and the winding end portion 6Xi of the inner line side wrap of the orbiting scroll 6, and the inner line side wrap of the orbiting scroll 6 The area surrounded by the outer line side wrap of the fixed scroll 5.
  • the spaces targeted by these rooms will be the swirling extension room 11a and the turning extension room 11b later. That is, the room 11A at the completion of the suction is the swirling outer chamber 11a having the maximum volume, and the room 11B at the completion of the suction is the swirling inner chamber 11b having the maximum volume. Thereafter, the volume is reduced as the crankshaft 7 rotates, and the gas refrigerant is compressed.
  • FIG. 5A shows a change in the volume of each suction chamber in each suction stroke with respect to the rotation angle of the crankshaft 7 and a communication section of the communication hole 16b of the back pressure control valve 16 at the back pressure control valve position ⁇ b.
  • the type of spiral is an involute curve, but it is known that an algebraic spiral also exhibits a similar volume change.
  • the volume change of the suction chamber is shown as a ratio with the suction completion time being 1. Accordingly, the peak of the suction volume ratio is larger in the virtual swirl extension chamber 11B than in the virtual swirl extension chamber 11A.
  • the vertical axis intercept and the rotation angle of 0 ° are the start of suction of the virtual swirling outer line chamber 11A, and are the states shown in FIG. 3 and FIG. 6 (a).
  • the back pressure control valve position ⁇ b is shown as an angle with the minus side of the vertical axis in FIG. 7 being 0 °. It can be considered that it corresponds to the crank angle described above.
  • ⁇ b 0 ° is the 6 o'clock direction
  • ⁇ b 210 ° is the 11 o'clock direction
  • ⁇ b 270 ° is the 9 o'clock direction.
  • the virtual orbiting outside line chamber 11A gradually increases in volume while the orbiting scroll 6 makes one rotation, exceeds the volume when it is fully closed ( ⁇ 1 ), reaches a peak on the way ( ⁇ 2 ), and then decreases. It disappears at a rotation angle of 360 ° ( ⁇ 3 ). Then, the next virtual swirling outer line chamber 11A defined as described above is newly formed and exhibits the same volume change.
  • the virtual swirl extension chamber 11B shows a volume change that is 180 ° shifted from the virtual swirl extension chamber 11A.
  • a virtual swirl extension chamber 11B having a certain volume is shown, which is about 60% of the maximum swirl extension chamber as shown in FIG. 5A.
  • the volume of the virtual swirl extension chamber 11B gradually increases, exceeds the volume when fully closed ( ⁇ 1 ), reaches a peak in the middle ( ⁇ 2 ), then decreases, and disappears at a rotation angle of 180 °. ( ⁇ 3 ).
  • the next virtual swivel extension chamber 11B defined as described above is newly formed and exhibits the same volume change.
  • the same volume change is repeated every 180 °.
  • the volume of the virtual turning extension chamber 11B begins to decrease ( ⁇ 2 to ⁇ 3 ) as the crankshaft 7 rotates in the early stage of the communication hole 16b.
  • the communication section of the communication hole 16b is in the range of 310 ° to 470 ° in rotation angle.
  • the volume of the virtual turning outer line chamber 11A starts to decrease with the rotation of the crankshaft 7 at the beginning of the communication hole 16b ( ⁇ 2 to ⁇ 3 ).
  • the communication section of the communication hole 16b which is a communication section for intermittent communication, is a portion between two oblique broken lines shown in FIG. 5A.
  • the characteristic installation position of the back pressure control valve 16 is indicated by a white arrow.
  • the angle range in which the back pressure control valve 16 and the back pressure chamber 14 communicate with each other by intermittent communication is the same at 160 °.
  • the oil that has passed through the back pressure control valve 16 from the back pressure chamber 14 passes through the R groove 5h, and is supplied to the virtual swirl outer chamber 11A and the virtual swirl chamber 11B, and then the swirl outer chamber 11a and the swirl chamber 11b. And is used to seal the compression chamber.
  • the gas refrigerant escapes from the suction chamber and flows back in the direction of the suction port 2b. It will be done against this. That is, it is difficult to refuel in this section, and refueling efficiency is poor. It can be said that refueling is hindered. This interval can be seen in FIG. 5B.
  • the section in which the volume is reduced is a portion where the first derivative graph of FIG. 5B (b) becomes negative.
  • the back pressure control valve 16 is provided at approximately the 11:00 position, that is, at the position of ⁇ b ⁇ 210 °, so that oil can be supplied to the end of the R groove 5h. This is because the end plate surfaces of the scrolls 5 and 6 can be lubricated over a wide range.
  • both the virtual swirl outer chamber 11A and the virtual swirl chamber 11B have no portion where the suction chamber volume is reduced and there is no backflow ( ⁇ 4 ). 11A, it is easy to refuel the virtual turning extension chamber 11B. That is, if the back pressure control valve is provided at the position where the intermittent communication start is performed when the volumes of both the virtual swirl outer chamber 11A and the virtual swirl chamber 11B are not reduced, the crankshaft 7 rotates. The volume of each suction chamber increases, and the suction chamber takes in oil by itself.
  • the back pressure control valve position ⁇ b where the suction chamber volume does not decrease ( ⁇ 3 to ⁇ 2 , ⁇ 3 to ⁇ 2 ) overlaps with the communication opening stage is 90 ° to 210 °, 270 ° to It is a position of 390 °, which is an 11 o'clock to 3 o'clock position, and an o'clock to 9 o'clock position.
  • the back pressure control valve 16 it is more preferable to dispose the back pressure control valve 16 at the 7 to 9 o'clock position from the point of injection, and the closer to the 7 o'clock position, the shorter the distance between the back pressure control valve 16 and the suction chamber.
  • the time for the oil to reach the suction chamber can be shortened.
  • the volume change of the suction chamber in this short time is small, so the rotation angle from the start of intermittent communication until the oil reaches the suction chamber And the rotation angle at which the volume of the suction chamber changes can be examined with little time delay.
  • the back pressure control valve 16 is disposed at the 7 to 9 o'clock position, the oil in the R groove 5h from that position to the 11 o'clock position is likely to stay. However, in reality, the supplied high-pressure oil leaks through a gap between the end plate surfaces, so that the oil can be circulated.
  • the high pressure is the back pressure Pb with respect to the suction pressure Ps.
  • a space is required to dispose the suction pipe 2d, so that the workability and assemblability are improved by removing that portion.
  • a position of approximately 7:40 to 9 o'clock that is, a position of 270 ° to 310 ° is more preferable.
  • the range ( ⁇ 5 to ⁇ 2 ) in which the volume of both the suction chambers increases is more preferable.
  • the back pressure control valve 16 and the back pressure chamber 14 communicate with each other when the volumes of both the suction chambers increase, and the injection starts while there is a flow sucked into the suction chamber. Because it can. However, if the volume of the suction chamber exceeds 1, the volume decreases and eventually the ratio becomes 1. That is, the virtual swirl inner / outer line chamber is larger than the volume when it becomes a compression chamber, which is a closed space, and is finally closed by reducing its volume.
  • both the back pressure control valve 16 and the back pressure chamber 14 are within a range ( ⁇ 5 to ⁇ 1 ) in which the volume of both the suction chambers increases until the volume ratio becomes 1. It is preferable to communicate. A position of approximately 7 o'clock to 8:30 o'clock, that is, a position of 285 ° to 330 ° is more preferable.
  • the volume of the space that is the target of the volume of the virtual swirl inner / outer line chamber that is the suction chamber increases to the volume when it becomes the respective compression chamber and swirl inner / outer line chamber that are closed spaces. It is preferable to arrange the back pressure control valve at a position where the start of intermittent communication is performed.
  • the range considered as the best position is a position of 285 ° to 310 °, that is, a position of 7:40 to 8:30.
  • both the turning inner line side and the turning outer line side before forming the compression chamber can maintain the sealing performance from the start of the compression stroke and improve the efficiency.
  • the lubricating oil 13 stored in the lower part of the sealed container 2 passes through the oil supply pipe 7d and the oil supply passage 7c due to the pressure difference between the pressure in the closed container 2 and the pressure in the back pressure chamber 14.
  • the bearing oil supply amount is closely related to the volumetric efficiency.
  • the bearing oil supply amount is the amount of oil flowing into the back pressure chamber 14, and the amount of oil flowing into the back pressure chamber 14 through the gap between the slewing bearing 6c and the eccentric portion 7b, and between the main shaft 7a and the main bearing 9a. It is the sum total of the amount flowing into the back pressure chamber 14 through the gap. That is, the bearing oil supply amount is an amount of oil mainly for lubricating the bearing.
  • This oil is supplied from the back pressure control valve 16 to the suction space 10.
  • the amount of oil supplied to the suction space 10 may be considered to be the same as the amount of oil supplied to the bearing. However, the amount of oil supplied from the back pressure control valve 16 to the suction space 10 is different from the amount of oil actually supplied into the compression chamber 11. A part of the amount of oil supplied to the suction space 10 is used for lubricating the end plate surface, and a part is taken into the suction chamber and supplied into the compression chamber 11.
  • the amount of oil supplied to the suction space 10 is small, the amount of oil supplied to the compression chamber 11 is reduced, and the oil cannot be sealed, resulting in increased leakage loss and reduced volume efficiency.
  • the volume efficiency is lowered. The reason is as follows. Since the oil supplied to the suction space 10 through the back pressure control valve 16 has a temperature higher than that of the suction gas, the suction gas is heated. As a result, the gas density of the suction gas is lowered, and the refrigerant circulation amount of the gas refrigerant flowing into the suction chamber and then the compression chamber 11 is reduced. Therefore, the volumetric efficiency decreases from the later-described equation (3). This is called heating loss of the suction gas.
  • the amount of oil supplied to the suction space 10 has an appropriate range from the viewpoint of volume efficiency.
  • FIG. 8 schematically shows the relationship between the amount of oil supplied to the suction space and the volume efficiency.
  • the range in which the volumetric efficiency is a certain value or more is appropriate.
  • the required amount of bearing oil cannot be provided.
  • problems such as seizure, which are more serious than a decrease in volumetric efficiency may occur. Therefore, generally, extra oil is supplied, and excess oil is discharged from the discharge port 5e to the discharge pressure chamber 2f.
  • the amount of oil supply required for the entire scroll compressor must be an appropriate amount. If it becomes so, the amount of oil supply to the suction space 10 seen from volume efficiency will be more than the appropriate amount of oil supply, and will become excessive. That is, the volumetric efficiency is reduced due to the heating loss of the suction gas.
  • FIG. 9 is an explanatory diagram (1) of the tooth tip lubrication
  • FIG. 10 is an explanatory diagram (2) of the tooth tip lubrication
  • FIG. 11 is an explanatory diagram of the oil seal of the compression chamber
  • FIG. FIG. 13 is a view showing a pressure change at the time of activation.
  • oil is supplied from the back pressure chamber 14 to the compression chamber 11 (the swirling outer line chamber 11a) through the communication hole 18 and the release valve hole 15a1.
  • a structure in which oil is supplied from the tooth tip of the orbiting scroll 6 in this way is referred to as a tooth tip oil supply structure.
  • oil is supplied to the compression chamber 11 (the swirling outer line chamber 11a) using a release valve hole 15a1 which is a space provided deeper than the tooth bottom of the fixed scroll 5. Supply.
  • the orbiting scroll 6 has a communication hole 18 in the wrap, and the first opening is provided at a tooth tip that is an end surface of the wrap, and the first opening with respect to the base plate of the orbiting scroll 6 is on the back side. That is, the second opening is provided on the side opposite to the wrap.
  • the first opening is referred to as a wrap tip side opening or a tooth tip opening, and the second opening is referred to as an anti-wrap side opening.
  • the tooth tip opening communicates with the release valve hole 15 a 1
  • the anti-wrap side opening communicates with the back pressure chamber 14 formed on the anti-wrap side of the orbiting scroll 6, where the pressure is a back pressure space.
  • FIG. 10 shows a state in which the communication hole 18 communicates with the release valve hole 15a1.
  • the back pressure chamber 14 and the orbiting outer line chamber 11a communicate with each other through the tooth tip opening of the communication hole 18 and the release valve hole 15a1.
  • This release valve hole 15a1 is a hole corresponding to the release valve 15 located on the outer diameter side of the base plate shown in FIG. 3, and is for the swirling outer line chamber 11a formed on the outermost diameter side.
  • FIG. 10A is the same as the positional relationship between the scrolls 5 and 6 shown in FIG. 3, and the angle of the crankshaft 7 is 0 °.
  • the communication hole 18 is not in communication with the release valve hole 15 a 1, and the lap tip side opening of the communication hole 18 is blocked by the wrap bottom surface of the fixed scroll 5.
  • FIG. 10B shows a case where the angle of the crankshaft 7 is about 80 °.
  • the communication hole 18 communicates with the release valve hole 15a1.
  • the back pressure chamber 14 and the swirling outer line chamber 11a communicate with each other via the communication hole 18 and the release valve hole 15a1, so that the lubricating oil 13 from the back pressure chamber 14 is swirled. 11a.
  • the back pressure chamber 14 and the swirling outer line chamber 11a communicate with each other through the communication hole 18 and the release valve hole 15a1 in this way when the angle of the crankshaft 7 is in the range of about 45 ° to about 90 °. It can be said that they communicate intermittently.
  • FIG. 10C shows the case where the angle of the crankshaft 7 is about 120 °.
  • the communication hole 18 is not in communication with the release valve hole 15 a 1, and the tooth tip opening of the communication hole 18 is again blocked by the bottom surface of the fixed scroll 5.
  • FIG. 11 shows a schematic diagram of a state in which the gap in the compression chamber is sealed with lubricating oil.
  • the compression chamber pressure is P1 ⁇ P2 ⁇ P3.
  • the lubricating oil 13 supplied to the compression chamber 11 adheres to the wrap wall surface, seals between the tooth tip and the tooth bottom, and suppresses the second type of leakage. Although not shown in this figure, naturally, the oil that has entered the compression chamber 11 seals the gap between the wraps and suppresses the first type leakage.
  • the minimum seal length of the gap 192 is half the value obtained by subtracting the diameter of the communication hole 18 from the thickness t of the wrap. Even if the seal length at other portions is sufficiently maintained, if the minimum seal length is short and insufficient, an unfavorable situation as described above may occur.
  • the minimum seal length has a lower limit value from the viewpoint of the strength of the wrap, the viewpoint of the sealing performance, and the viewpoint of the supply amount of the lubricating oil 13. From the viewpoint of supply amount, it is desirable that the diameter of the communication hole 18 is as large as possible. However, in terms of sealing performance and strength, it is desirable to reduce the diameter of the communication hole 18 and increase the seal length as much as possible.
  • the thickness of the wrap is 3.0 mm
  • the minimum dimension of the wall thickness is secured from the viewpoint of strength, 0.5 mm
  • the diameter of the communication hole 18 is 2.0 mm at the maximum.
  • the value determined from the size of the tool is the minimum dimension of the communication hole 18, which is, for example, 0.6 mm.
  • the diameter of the communication hole 18 is, for example, about 0.6 mm to 2.0 mm (1/5 ⁇ t to 2/3 ⁇ t).
  • the ratio of the wrap thickness t and the minimum seal length at these times is 1/6 ⁇ t to 2/5 ⁇ t, that is, the minimum seal length is 17% or more and 40% or less of the wrap thickness t. That would be desirable. However, this is a case where the center of the communication hole 18 having a circular cross section is aligned with the center line of the lap. As described above, the actual minimum seal length should be expressed by the length, regardless of the ratio to the tooth thickness. When considering this scroll compressor, the tooth thickness is at most within a range of about 1.5 to 6.0 mm, which is half the maximum, so there is no particular inconvenience in expressing the minimum seal length by the ratio as described above.
  • the communication hole 18 may be formed in an oval shape.
  • FIG. 12 shows a movement locus of the communication hole 18 when the orbiting scroll 6 revolves.
  • Fig. 13 shows the pressure change after starting the scroll compressor.
  • Three lines of suction pressure Ps, back pressure Pb, and discharge pressure Pd are experimental results.
  • the portion indicated by Pcom is the pressure in the swirling outer line chamber 11a in the section where the communication hole 18 and the release valve hole 15a1 shown in FIG. 10 communicate with each other.
  • the virtual swirling outer chamber 11A changes to the swirling outer chamber 11a at the moment when it is closed as it follows the same space.
  • the pressure in the turning outer line chamber 11a at that moment is Ps. Thereafter, as the crankshaft 7 rotates, the pressure in the turning outer line chamber 11a increases. The movement of both scrolls when going up is shown in FIG.
  • the suction pressure Ps, back pressure Pb, and discharge pressure chamber pressure P 2f are of course the same and there is no difference. Therefore , after the start-up, the pressure Pc in the compression chamber immediately becomes the pressure P 2f in the discharge pressure chamber. As a result, the release valve 15 opens. As shown in the equation (1), the compression chamber pressure Pc is determined by raising the ratio of the displacement volume V0 and the compression chamber volume Vc to a constant value, so that the discharge pressure Pd and the suction pressure Ps are immediately after starting. when the ratio Pd / Ps is low, the pressure Pc of the compression chamber 11 is because would reach the pressure P 2f of immediately discharge chamber 2f.
  • the pressure in the swirling external chamber 11a is the same as the pressure P 2f discharge chamber, Pcom in FIG. 13 will be represented as the discharge pressure Pd. This is region A.
  • the pressure P2f in the discharge pressure chamber has the same meaning as the discharge pressure Pd.
  • the ratio Pd / Ps is low in the A section immediately after the activation, Pcom becomes P 2f or more, and the release valve 15 opens.
  • Pcom is higher than the back pressure Pb immediately after the start, the back refrigerant chamber 14 and the swirling outer line chamber 11a communicate with each other through the communication hole 18 and the release valve hole 15a1, whereby the gas refrigerant in the swirling outer line chamber 11a.
  • the compression chamber is closed without supplying a part of the lubricating oil 13 supplied to the back pressure chamber 14 through the back pressure control valve 16 from the suction space 10 to the suction chamber via the back pressure control valve 16. Since it is directly supplied to the swirling outer line chamber 11a, the heating efficiency of the suction gas can be reduced and the volume efficiency can be improved. Details are as follows.
  • the heat loss of the suction gas does not move from the indirect oil supply path to the direct oil supply path, so the heat loss of the suction gas is reduced as much as the amount of oil supply to the suction space 10 is reduced. be able to. Therefore, the amount of oil supplied to the compression chamber 11 from the back pressure chamber 14 via the back pressure control valve 16 and the suction space 10 is reduced from the viewpoint of volume efficiency, and the volume efficiency is reduced by the reduced amount.
  • the volume efficiency can be improved as a whole. This corresponds to shifting to the left in the “excess” range of FIG. 8, that is, approaching the “appropriate” range. This is because if it falls within the “appropriate” range, the bearing oil supply amount will be insufficient.
  • the constant communication structure is a configuration in which the back pressure chamber 14 and the back pressure control valve 16 are always in communication, and is used when the pressure in the back pressure chamber 14 is kept relatively small. That is, the back pressure control valve 16 is easy to open without intermittent communication. Mainly used in the above-mentioned CFC refrigerant scroll compressor.
  • the pressure scroll 14 functions to increase the pressure of the back pressure chamber 14 to positively urge the orbiting scroll 6 to the fixed scroll 5. ) To improve the sealing performance in the compression chamber and improve the efficiency of the compressor.
  • the method of using the lubricating oil 13 for the gap seal differs depending on whether the gap in the compression chamber 11 is adjacent to a high-pressure room or a low-pressure room.
  • the compression chamber formed as a certain chamber has a lower pressure than the compression chamber formed 360 ° earlier in crank angle than the compression chamber. Accordingly, the oil from the room preceding the 360 ° leaks from the gap at the front end of the compression chamber. In addition, oil leaks from the gap at the rear end of the compression chamber into the room that is followed by 360 °.
  • the swirling outer line chamber 11a 'shown in FIGS. 6 (a) and 6 (b) starts to compress 360 degrees ahead of the swirling outer line chamber 11a in terms of crank angle, so that the swirling outer line chamber 11a' and the swirling outer line chamber 11a Comparing the pressure, the pressure in the swirling outer line chamber 11a 'is higher. Therefore, the lubricating oil 13 in the swirling outer line chamber 11a ′ leaks through the gap into the swirling outer line chamber 11a in the compression stroke, and the leaked lubricating oil 13 seals the gap in the swirling outer line chamber 11a. Further, the lubricating oil 13 supplied to the swirling outer line chamber 11a leaks into the virtual swirling outer line chamber 11A, thereby sealing the swirling outer line chamber.
  • the swivel extension chamber 11b ' starts to compress 360 degrees ahead of the swivel extension chamber 11b in terms of the crank angle. Comparing the pressure, the pressure in the swivel extension chamber 11b 'is higher. Therefore, the lubricating oil 13 in the turning extension chamber 11b ′ leaks through the clearance into the turning extension chamber 11b in the compression stroke, and this leaked lubricating oil 13 seals the clearance in the turning extension chamber 11b. Further, the lubricating oil 13 in the turning extension chamber 11b leaks into the virtual turning extension chamber 11B, thereby sealing the turning extension chamber.
  • the swirling outer line chamber 11a supplied with the lubricating oil 13 through the communication hole 18 and the release valve hole 15a1 is defined as a P2 room.
  • the lubricating oil 13 in the swirling outer line chamber 11 a leaks out of the gap 191 by leaking into the P1 room having a low pressure through the gap 191.
  • the lubricating oil 13 leaks from the gap 192 on the side adjacent to the P3 room where the pressure is high, so that the sealing property of the room is maintained.
  • the swirling outer chamber 11a 'shown in FIG. 6 (a) starts compression with a crank angle of 180 ° ahead of the swirling inner chamber 11b, so that the outer swirling chamber 11a' and the swirling inner chamber 11b having the same volume are started. Is compared, the pressure in the swirling outer line chamber 11a 'is higher. Accordingly, the lubricating oil 13 in the swirling outer chamber 11a ′ leaks through the clearance into the swirling inner chamber 11b in the compression stroke, and this leaked lubricating oil 13 seals the clearance in the swirling inner chamber 11b. Further, the lubricating oil 13 supplied to the swirling outer chamber 11a ′ leaks into the virtual swirling inner chamber 11B, and thus the swirling inner chamber is sealed.
  • the swirl extension chamber 11b shown in FIG. 6A starts compression with a crank angle of 180 ° ahead of the swirl extension chamber 11a, so the pressures in the swirl extension chamber 11a and the swirl extension chamber 11b are compared. Then, the pressure in the swivel extension chamber 11b is higher. Therefore, the lubricating oil 13 in the swirling extension chamber 11b leaks through the gap into the swirling outer line chamber 11a in the compression stroke, and the leaked lubricating oil 13 seals the gap in the turning outer line chamber 11a.
  • the swirling outer line chamber 11a 'shown in FIG. 6B communicates with the discharge port 5e. Therefore, the swirling outer line chamber 11a' is no longer strictly a compression chamber, but is related to the front and rear crank angles. In order to facilitate understanding, the above is described as above. Since the swirling outer chamber 11a 'starts to be compressed 180 degrees ahead of the swirling inner chamber 11b' at the crank angle, the pressures of the swirling outer chamber 11a 'and the swirling inner chamber 11b' are compared. The pressure is higher.
  • the swirling outer chamber 11a ' starts to be compressed 360 ° ahead of the swirling inner chamber 11b and 180 ° ahead of the swirling inner chamber 11b', so that the pressure in the outer swirling chamber 11a 'is higher. It is high.
  • the pressure in the swirling outer line chamber 11a ′ is the discharge pressure. This is because, as described above, the swirling outer line chamber 11a 'communicates with the discharge port 5e.
  • the lubricating oil 13 in the swirling outer chamber 11a ′ has a gap between the swirling inner chamber 11b ′ and the swirling inner chamber 11b in the compression stroke.
  • the leaked lubricating oil 13 seals the gap between the swivel extension chamber 11b 'and the gap between the swivel extension chamber 11b.
  • the swivel extension chamber 11b 'shown in FIG. 6B starts to be compressed 180 degrees ahead of the swivel outer stroke chamber 11a in terms of crank angle, so that the pressure in the swirl extension chamber 11a and the swirl extension chamber 11b' is increased.
  • the pressure in the swivel extension chamber 11b ' is higher. Accordingly, the lubricating oil 13 in the swirling extension chamber 11b 'leaks through the gap into the swirling outer line chamber 11a in the compression stroke, and the leaked lubricating oil 13 seals the gap in the turning outer line chamber 11a.
  • the swirling outer chamber 11a shown in FIG. 6B starts compression with a crank angle of 180 ° ahead of the swirling inner chamber 11b, so that the outer swirling chamber 11a and the swirling inner chamber 11b having the same volume are started.
  • the pressure of the swirling outer line chamber 11a is higher. Accordingly, the lubricating oil 13 in the swirling outer chamber 11a leaks through the clearance into the swirling inner chamber 11b during the compression stroke, and the leaked lubricating oil 13 seals the clearance of the swirling inner chamber 11b.
  • the swirl extension chamber 11b shown in FIG. 6B starts to be compressed in advance of the virtual swirl outer chamber 11A, the pressure in the swirl extension chamber 11b is higher. Therefore, the lubricating oil 13 in the turning extension chamber 11b leaks through the clearance into the virtual turning outer line chamber 11A in the compression stroke, and eventually seals the turning outer line chamber.
  • the release valve 15 has been described as not opening. However, the release valve 15 may be opened depending on actual operating conditions.
  • the release valve 15 When the release valve 15 is opened, the pressure in the compression chamber 11 exposed thereto becomes the same as the discharge pressure. There is no leakage between the compression chambers having the same pressure, and between the compression chambers having different pressures, the lubricating oil 13 leaks from the compression chamber having a high pressure to the compression chamber having a low pressure.
  • the suction completed in the virtual swirling extension chamber 11A is defined as the swirling outer stroke chamber a, and the swirling outer stroke chamber a 'whose phase is advanced by 360 ° from the swirling outer stroke chamber 11A.
  • This is a swivel extension chamber b, and a swirl extension chamber b 'whose phase is 360 ° higher than that of the swivel extension chamber.
  • the lubricating oil 13 supplied through the communication hole 18 and the release valve hole 15a1 is used to seal the gap until the end of discharge, and the surplus lubricating oil is discharged from the discharge port 5e to the discharge pressure chamber 2f. It is.
  • the back pressure chamber 14 and the swirling outer line chamber 11a are communicated with each other via the communication hole 18 and the release valve hole 15a1 for the swirling outer line chamber 11a, and the tooth tip oil supply is performed only to the swirling outer line chamber 11a.
  • the tooth tip lubrication is performed also in the swivel extension chamber 11b.
  • a communication hole (18-2) is provided in the wrap of the orbiting scroll 6, and the tooth tip is also provided to the orbiting extension chamber 11 b via the release valve hole 15 a 2 for the orbiting extension chamber 11 b.
  • a structure that supplies oil may be used.
  • the non-wrap side opening of the communication hole (18-2) may be shared with that of the communication hole 18.
  • the turning inner / outer line chambers 11a and 11b that perform tooth tip lubrication are the outermost turning inner / outer line chambers.
  • FIG. 14 is a diagram of the timing at which suction is completed for both the swirling outer chamber 11a and the swirling inner chamber 11b of the symmetrical wrap.
  • the swirling outer chamber 11a and the swirling inner chamber 11b start to be compressed at the same timing, so that the pressure is the same if the volume of the swirling outer chamber 11a and the volume of the swirling inner chamber 11b are the same. become.
  • the leakage of the lubricating oil 13 between the swirling inner and outer line chambers having the same volume that is, the second type of leakage between the swirling inner and outer line chambers having the same volume is eliminated. It is preferable to provide communication holes 18 and 18-2 communicating with the release valve holes 15a1 and 15a2 in each of the swivel extension chambers 11b.
  • the tooth refueling may be performed only to the swivel extension chamber 11b.
  • FIG. 16 shows the efficiency of the scroll compressor 1 of this embodiment.
  • the upper diagram represents volumetric efficiency as a ratio
  • the lower diagram represents compressor efficiency as a ratio.
  • (b) shows the ratio of the right figure without communication hole 18 as 100%.
  • the operating conditions are conditions for storing hot water of 65 ° C. when the scroll compressor 1 is mounted on Ecocute (registered trademark). Volumetric efficiency can be expressed by equation (3), and compressor efficiency can be expressed by equation (4).
  • eta v volumetric efficiency
  • eta c compressor efficiency gamma refrigerant circulation amount
  • V0 is ⁇ volume
  • [rho s is the suction gas density
  • f is the motor rotation frequency
  • Delta] h is the suction gas and discharge gas enthalpy
  • the difference, w represents the motor input.
  • the virtual swirl outer chamber 11A and the virtual swirl chamber 11B can be supplied with good balance, the sealing performance of each compression chamber can be improved, and the leakage loss can be reduced. Further, by connecting the communication hole 18 and the release valve hole 15a1 and supplying oil from the back pressure chamber 14 to the swirling outer line chamber 11a, the amount of oil flowing into the suction space 10 and the suction chamber through the back pressure control valve 16 is reduced. The heat loss of the suction gas can be reduced.
  • FIG. 17 is a unit configuration diagram.
  • the same reference numerals as those in the above embodiment have the same operational effects, and thus the description thereof is omitted.
  • the scroll compressor 1 is activated and the high-temperature and high-pressure refrigerant compressed from the discharge pipe 2e is discharged.
  • the discharged refrigerant is heat-exchanged with water in the hot water storage tank 32 by the water-refrigerant heat exchanger 29 and cooled.
  • the first heat exchanger described above can be used as the water-refrigerant heat exchanger 29.
  • the refrigerant exiting the water-refrigerant heat exchanger 29 is depressurized by the expansion valve 33 and enters the evaporator 34 to absorb the heat of the atmosphere and evaporate.
  • the water in the hot water storage tank 32 is conveyed by the water circulation pump 31 and led to the water-refrigerant heat exchanger 29.
  • Water guided from the lower part of the hot water storage tank 32 is heated by the water-refrigerant heat exchanger 29, and the heated water is returned to the upper part of the hot water storage tank 32.
  • the remote controller 30 sets the temperature of hot water stored in the hot water storage tank 32 by the user. Signals from the hot water temperature sensor 35 and the discharge gas temperature sensor 36 are input to the control unit 25. When the temperature detected by the hot water temperature sensor 35 or the discharge gas temperature sensor 36 is lower than the hot water temperature set by the remote controller 30, the rotation speed of the scroll compressor 1 is increased to increase the refrigerant circulation amount, Control is performed such that the valve 33 is throttled to increase the discharge pressure, thereby increasing the temperature of the hot water.
  • the refrigeration cycle is controlled so that the temperature of the hot water in the hot water storage tank 32 becomes a desired temperature.
  • the operation is stopped at 7 o'clock in the morning.
  • hot water in the hot water storage tank 32 and tap water from the water pipe are mixed, and hot water is supplied from the shower 27 and the faucet 28 which are used terminals according to the user's request.
  • the hot water in the bathtub 24 is replenished, the hot water in the bathtub and the hot water in the hot water storage tank 32 are heat-exchanged by the reheating heat exchanger 26 provided in the hot water storage tank 32.
  • Such scroll compressors are installed in room air conditioners, commercial packaged air conditioners, heat pump water heaters, and the like.
  • a year-round energy consumption efficiency (annual performance factor) as an index indicating the year-round performance of room air conditioners and heat pump water heaters.
  • this APF is determined by how much power the device consumes with respect to the hot water supply load for each outside air temperature defined in the standard, and is expressed by hot water supply load / power consumption.
  • the hot water supply load is expressed by the following equation.
  • Lw ( ⁇ o ⁇ i) ⁇ Cw ⁇ v ⁇ d (5)
  • Lw is the hot water supply load
  • ⁇ o is the hot water supply temperature
  • ⁇ i is the incoming water temperature
  • Cw is the specific heat of water
  • v is the amount of hot water supply
  • d is the number of days.
  • the hot water supply temperature ⁇ o and the incoming water temperature ⁇ i are determined by the outside air temperature.
  • the number of days d is determined by how many days in the year the outside temperature is.
  • the annual hot water supply load is calculated.
  • An improvement in compressor efficiency means a reduction in power consumption, and an APF is improved in a device equipped with the scroll compressor of this embodiment. That is, energy saving can be achieved.
  • the heating capacity can be increased. For example, since the heating capacity can be increased even in a cold region, the temperature for storing hot water can be increased, and the amount of hot water that can be used can be substantially increased without changing the capacity of the hot water storage tank 32.
  • FIG. 18 shows a second embodiment.
  • the scroll compressor shown in FIG. 18 has substantially the same configuration as that of the first embodiment, and those having the same name and code have the same operational effects.
  • the difference between the second embodiment and the first embodiment is that the communication hole 18 communicates not with the release valve hole 15a but with a recess 20 formed at a position deeper than the bottom surface of the fixed scroll 5, that is, the tooth bottom. It is to be.
  • the tooth tip opening communicates with the recess 20, and the anti-wrap side opening communicates with the back pressure chamber 14.
  • the recess 20 is also a space provided at a position deeper than the tooth bottom of the fixed scroll 5.
  • the main purpose of the release valve 15 is to operate when the liquid refrigerant is sucked, such as when the pressure in the compression chamber 11 becomes equal to or higher than the pressure P2f of the discharge pressure chamber 2f or immediately after startup. Therefore, the installation position is defined to some extent. However, as in this embodiment, the installation position can be made free by using the recess 20, and the degree of freedom in setting the timing at which the back pressure chamber 14 and the compression chamber 11 communicate with each other via the communication hole 18 and the recess 20 is increased. .
  • FIG. 19 shows a third embodiment.
  • the scroll compressor 1 shown in FIG. 19 has substantially the same configuration as that of the first embodiment, and those having the same name and code have the same operational effects.
  • the difference from the first embodiment is that the communication hole 18 communicates with the upper space of the crankshaft 7 in the slewing bearing 6 c, that is, the discharge pressure oil supply chamber 51.
  • the tooth tip opening communicates with the release valve hole 15a1, and the anti-wrap side opening communicates with the discharge pressure oil supply chamber 51 that is formed on the anti-wrap side of the orbiting scroll 6 and has a pressure higher than the back pressure. is there.
  • the inside of the discharge pressure oil supply chamber 51 is substantially at the discharge pressure Pd, it is possible to supply oil from the discharge pressure oil supply chamber 51 to the compression chamber 11 using the differential pressure by connecting the communication hole 18 and the release valve hole 15a. is there.
  • the differential pressure to be supplied is increased, it is necessary to suppress the supply amount of the lubricating oil 13 by shortening the communication section between the communication hole 18 and the release valve hole 15a. Therefore, it can be considered that the cross-sectional area of the communication hole 18 is made smaller than that of the first and second embodiments.
  • the communication hole 18 penetrates a hole from the outer peripheral surface of the base plate 6b of the orbiting scroll 6 toward the discharge pressure oil supply chamber 51, and the hole is machined from the tooth tip of the orbiting scroll 6 toward the through hole. It can be formed by plugging a stopper into a hole penetrating the outer peripheral surface of 6b by press fitting or screwing.
  • FIG. 20 shows a fourth embodiment.
  • the refrigerant flow and lubricating oil flow in this embodiment are almost the same as those in the embodiment shown in FIG.
  • the difference from the embodiment of FIG. 1 is that the orbiting bearing 6 c is a so-called shaft-through scroll compressor in which the orbiting scroll 6 penetrates.
  • the gas compression load due to the pressure in the compression chamber 11 acts on the central portion of the lap height.
  • This gas compression load acts in the direction of the slewing bearing 6c and acts as a bearing load on the slewing bearing 6c. Therefore, the action points of the gas compression load and the bearing load coincide with each other, and the moment for overturning the orbiting scroll 6 is eliminated.
  • FIG. 21 shows a fifth embodiment.
  • the flow of the refrigerant in this embodiment is almost the same as that in the embodiment shown in FIG.
  • a different point from the embodiment of FIG. 1 is an oil supply system, which is a so-called forced oil supply system.
  • An oil supply pump 103 such as a trochoid pump is provided at the lower end of the crankshaft 7. This oil pump 103 is interlocked with the rotation of the crankshaft 7. Oil is supplied to the slewing bearing 6 c and the main bearing 9 a by an oil supply pump 103.
  • the space around the crankshaft 7 and the back pressure chamber 14 are partitioned by a seal ring 102. Oil is supplied to the back pressure chamber 14 by an oil pocket 101 that travels between the space around the crankshaft 7 and the back pressure chamber 14.
  • the traffic uses the revolving motion of the orbiting scroll 6.
  • oil is supplied by an oil pump, there is an advantage that oil can be supplied by the volume of the oil pump regardless of pressure conditions, and the amount of oil supplied to the bearing can be reduced when the pressure difference between the discharge pressure and the suction pressure is large.
  • the efficiency of the compressor, the refrigeration cycle apparatus, and the like can be increased by the technology described in each embodiment. It should be noted that, in addition to the structure itself described in these embodiments, the position and tip of the back pressure control valve, which are characteristic features, can be obtained even if the vertical scroll compressor is replaced with the horizontal scroll compressor. If the portion for refueling is not changed, a similar effect can be obtained even in a configuration in which the respective configurations are appropriately combined. While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.

Abstract

Insufficient oil sealing of a compression chamber leads to insufficient compression of refrigerant, and thereby leads to inefficiency. That is, oil sealing is an issue from the viewpoint of improvements in efficiency. To solve this, a back pressure control valve is disposed at a position where intermittent communication starts when both the volume of a suction chamber adjacent to the inner line of an orbiting scroll and that adjacent to the outer line of the orbiting scroll are increased. Moreover, oil is supplied to the compression chambers through a space formed at a position deeper than the tooth root of the fixed scroll for tooth tip lubrication.

Description

スクロール圧縮機及び冷凍サイクル装置及びヒートポンプ給湯機Scroll compressor, refrigeration cycle apparatus and heat pump water heater
 本発明は、冷媒を圧縮するスクロール圧縮機等に係り、特に圧縮室へ潤滑油を給油してシール性を高め、漏れ損失を低減する構造に関する。 The present invention relates to a scroll compressor or the like that compresses a refrigerant, and more particularly to a structure that improves the sealing performance by supplying lubricating oil to a compression chamber and reduces leakage loss.
 ルームエアコンやヒートポンプ給湯機等に用いられるスクロール圧縮機は、旋回スクロールの反ラップ側に設けられた背圧室の圧力である背圧を背圧制御弁によって制御し、制御された背圧によって旋回スクロールを固定スクロールに付勢し、両スクロールによって形成された圧縮室で冷媒を圧縮する。なお、背圧制御弁を備えたものの構造としては、常時連通構造の外、間欠連通構造が知られている。 Scroll compressors used in room air conditioners, heat pump water heaters, etc. control the back pressure, which is the pressure in the back pressure chamber provided on the opposite side of the orbiting scroll, by the back pressure control valve, and turn by the controlled back pressure. The scroll is urged toward the fixed scroll, and the refrigerant is compressed in a compression chamber formed by both scrolls. As a structure having a back pressure control valve, an intermittent communication structure is known in addition to a constant communication structure.
 圧縮室には潤滑油が供給され、圧縮室のシール性を高め、漏れ損失を低減している。漏れ損失をできるだけ小さく抑えることができれば、それだけ圧縮機の効率を高めることができる。漏れ損失を低減する技術として特許文献1、特許文献2等が知られている。 Lubricating oil is supplied to the compression chamber, improving the sealing performance of the compression chamber and reducing leakage loss. If the leakage loss can be kept as small as possible, the efficiency of the compressor can be increased accordingly. As a technique for reducing leakage loss, Patent Document 1, Patent Document 2, and the like are known.
 特許文献1に開示の圧縮機は、歯先給油構造を有しており、密閉容器の底部の油溜からの潤滑油を供給する給油通路として、吐出圧力が作用する空間(20)と旋回スクロールのラップの先端とを連絡する通路(第2の連絡通路)を旋回スクロール内に設けている。旋回スクロールのラップの先端に当該ラップの内外両側の圧縮室に開口する一対の円弧溝を設け、かつ一対の円弧溝の何れか一方が、その第2連絡通路と連通する構成としている。これにより、吸入室よりも圧力が高い圧縮空間においても旋回スクロールと固定スクロールとの摺動部の潤滑を良好に維持することができると開示されている。 The compressor disclosed in Patent Document 1 has a toothed oil supply structure, and a space (20) in which discharge pressure acts as an oil supply passage for supplying lubricating oil from an oil reservoir at the bottom of a sealed container, and an orbiting scroll. A passage (second communication passage) communicating with the tip of the lap is provided in the orbiting scroll. A pair of arc grooves that open to the compression chambers on both the inner and outer sides of the wrap are provided at the tip of the wrap of the orbiting scroll, and either one of the pair of arc grooves communicates with the second communication passage. Accordingly, it is disclosed that the lubrication of the sliding portion between the orbiting scroll and the fixed scroll can be maintained well even in the compression space where the pressure is higher than that of the suction chamber.
 特許文献2に開示の圧縮機は、摺動仕切り環の内側領域である高圧部と圧縮室とを連通する連通路を旋回スクロールの内部に設け、連通路の開口部のうち圧縮室側のものを、固定スクロールの中央部の吐出ポートに臨むように旋回スクロールのラップ先端に設けている。これにより、比較的圧縮の終了に近い圧縮室に給油し、固定スクロールのラップ先端と旋回スクロールの鏡板の焼付きを防止することが開示されている。また、吸入加熱による体積効率低下による性能悪化を抑制することが開示されている。 The compressor disclosed in Patent Document 2 is provided with a communication passage that communicates a high-pressure portion that is an inner region of a sliding partition ring and a compression chamber inside the orbiting scroll, and is provided on the compression chamber side of the opening of the communication passage. Is provided at the wrap tip of the orbiting scroll so as to face the discharge port at the center of the fixed scroll. Accordingly, it is disclosed that oil is supplied to a compression chamber that is relatively close to the end of compression, and seizure of the wrap tip of the fixed scroll and the end plate of the orbiting scroll is prevented. Further, it is disclosed that performance deterioration due to volumetric efficiency reduction due to suction heating is suppressed.
 また、従来製品では、本願の第3図の方向に見たときにおおよそ11時の位置に背圧制御弁を配設しており(図22)、背圧室から背圧制御弁を介して吸込側に流入する油を用いて圧縮室のシールを行うような構成としていた。 Further, in the conventional product, a back pressure control valve is disposed at approximately 11:00 when viewed in the direction of FIG. 3 of the present application (FIG. 22), from the back pressure chamber through the back pressure control valve. It was set as the structure which seals a compression chamber using the oil which flows in into the suction side.
特開2009-062908号公報JP 2009-062908 A 特開2009-052464号公報JP 2009-052464 A
 しかし、特許文献1においては、ラップ先端に円弧溝を設けると、当該ラップの内外両側の圧縮室間で、つまり後述の旋回内線室と旋回外線室との間で、漏れが生じることになる。漏れを防止するために給油量を多くしてシール性を高めることが考えられるが、そのためには円弧溝を深くする必要がある。円弧溝を深くすると前記圧縮室間で漏れが増加するといった、相反する現象が発生してしまう。 However, in Patent Document 1, when an arc groove is provided at the tip of the wrap, leakage occurs between the compression chambers on the inner and outer sides of the wrap, that is, between a swirling inner chamber and a swirling outer chamber described later. In order to prevent leakage, it is conceivable to increase the amount of oil supply to improve the sealing performance, but for this purpose, it is necessary to deepen the arc groove. When the arc groove is deepened, a contradictory phenomenon occurs such that leakage increases between the compression chambers.
 また、特許文献2においては、比較的圧縮の開始に近い領域(吸込部に近い領域)、つまり吐出口から遠い外径側の圧縮室のオイルシールが期待できない。 Further, in Patent Document 2, it is not possible to expect an oil seal in a compression chamber on the outer diameter side far from the discharge port (region close to the suction portion), that is, a region near the start of compression.
 圧縮室のオイルシールが十分にできないと冷媒の圧縮が十分にできないので、効率を高めることができない。つまり、効率向上の観点から、オイルシールを如何に行うかが課題となる。 If the oil seal in the compression chamber is not sufficient, the refrigerant cannot be sufficiently compressed, so the efficiency cannot be increased. In other words, from the viewpoint of improving efficiency, the issue is how to perform oil sealing.
 また、従来製品では、R溝5hを設け、固定スクロールの鏡板面のうち面積が大きい部分と旋回スクロールの鏡板面との潤滑を行っていた。つまり、11時位置に背圧制御弁を設けているのは主に潤滑の観点からである。従って、背圧制御弁の位置を圧縮室のシール性、効率向上の観点から工夫することで、効率を改善できる可能性がある。 In the conventional product, the R groove 5h is provided to lubricate the portion of the fixed scroll end plate surface having a large area and the end plate surface of the orbiting scroll. That is, the back pressure control valve is provided at the 11 o'clock position mainly from the viewpoint of lubrication. Therefore, the efficiency may be improved by devising the position of the back pressure control valve from the viewpoint of improving the sealing performance and efficiency of the compression chamber.
 以上の課題に鑑み、本発明の目的は、効率の高いスクロール圧縮機を提供することにある。また、本発明の目的は、効率の高い冷凍サイクル装置、ヒートポンプ給湯機を提供することにある。 In view of the above problems, an object of the present invention is to provide a highly efficient scroll compressor. Another object of the present invention is to provide a highly efficient refrigeration cycle apparatus and heat pump water heater.
 本発明の目的は、背圧制御弁で制御された背圧によって旋回スクロールを固定スクロールに付勢し、両スクロールによって形成された圧縮室で冷媒を圧縮する間欠連通構造のスクロール圧縮機において、前記旋回スクロールの内線側の吸込室と前記旋回スクロールの外線側の吸込室との双方の容積が増加するときに、間欠連通の連通開始が行われる位置に前記背圧制御弁を配設したスクロール圧縮機によって達成される。 An object of the present invention is to provide a scroll compressor having an intermittent communication structure in which the orbiting scroll is urged to a fixed scroll by a back pressure controlled by a back pressure control valve, and the refrigerant is compressed in a compression chamber formed by both scrolls. Scroll compression in which the back pressure control valve is disposed at a position where intermittent communication is started when the volume of both the suction chamber on the inner line side of the orbiting scroll and the suction chamber on the outer line side of the orbiting scroll increases. Achieved by machine.
 また、本発明の目的は、旋回スクロールの反ラップ側に設けられた背圧室の圧力である背圧によって前記旋回スクロールを固定スクロールに付勢し、両スクロールによって形成された圧縮室で冷媒を圧縮する歯先給油構造のスクロール圧縮機において、前記固定スクロールの歯底よりも更に深い位置に設けられた空間を介して前記圧縮室に歯先給油を行うスクロール圧縮機によって達成される。 Another object of the present invention is to urge the orbiting scroll against the fixed scroll by the back pressure that is the pressure of the back pressure chamber provided on the opposite side of the orbiting scroll, and to supply the refrigerant in the compression chamber formed by both scrolls. This is achieved by a scroll compressor that performs tooth tip oiling into the compression chamber via a space provided at a position deeper than the tooth bottom of the fixed scroll.
 また、本発明の目的は、旋回スクロールの反ラップ側に設けられた背圧室の圧力である背圧を背圧制御弁によって制御し、制御された背圧によって前記旋回スクロールを固定スクロールに付勢し、両スクロールによって形成された圧縮室で冷媒を圧縮する間欠連通構造且つ歯先給油構造のスクロール圧縮機において、前記旋回スクロールの内線側の吸込室と前記旋回スクロールの外線側の吸込室との双方の容積が増加するときに、間欠連通の連通開始が行われる位置に前記背圧制御弁を配設し、前記固定スクロールの歯底よりも更に深い位置に設けられた空間を介して前記圧縮室に歯先給油を行うスクロール圧縮機によって達成される。 Another object of the present invention is to control the back pressure, which is the pressure of the back pressure chamber provided on the side opposite to the orbiting scroll, by a back pressure control valve, and attach the orbiting scroll to the fixed scroll by the controlled back pressure. In a scroll compressor having an intermittent communication structure and a tooth tip oil supply structure that compresses refrigerant in a compression chamber formed by both scrolls, an inner suction side suction chamber and an outer suction side suction chamber of the orbiting scroll; When the volume of both increases, the back pressure control valve is disposed at a position where the communication start of intermittent communication is performed, and the space is provided through a space further deeper than the bottom of the fixed scroll. This is achieved by a scroll compressor that supplies the tip of the oil into the compression chamber.
 本発明によれば、効率の高いスクロール圧縮機を提供することができる。また、効率の高い冷凍サイクル装置、ヒートポンプ給湯機を提供することができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the present invention, a highly efficient scroll compressor can be provided. In addition, a highly efficient refrigeration cycle apparatus and heat pump water heater can be provided.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
スクロール圧縮機の縦断面図。The longitudinal cross-sectional view of a scroll compressor. 給油構造。Oiling structure. 旋回スクロールと固定スクロールが噛み合っている図。The figure with which the turning scroll and the fixed scroll are meshing. 仮想旋回内線室および仮想旋回外線室を表す図。The figure showing a virtual turning extension room and a virtual turning outside room. 吸込室の容積変化と背圧制御弁の連通穴の連通区間とを示す図。The figure which shows the volume change of a suction chamber, and the communication area of the communication hole of a back pressure control valve. 図5Aのグラフとその一階微分のグラフとを比較した図。The figure which compared the graph of FIG. 5A with the graph of the 1st-order differentiation. 仮想旋回内線室および仮想旋回外線室からの漏れを説明する図。The figure explaining the leak from a virtual turning extension room and a virtual turning outside room. 背圧制御弁の配設位置を説明する図。The figure explaining the arrangement | positioning position of a back pressure control valve. 吸込空間への給油量と体積効率との関係を説明する図。The figure explaining the relationship between the amount of oil supply to suction space, and volumetric efficiency. 歯先給油の説明図(1)。Explanatory drawing (1) of tooth tip oiling. 歯先給油の説明図(2)。Explanatory drawing (2) of tooth tip oiling. 圧縮室のオイルシール説明図。Oil seal explanatory drawing of a compression chamber. 連通孔の他の形状を表す図。The figure showing the other shape of a communicating hole. 起動時の圧力変化を示した図。The figure which showed the pressure change at the time of starting. 対称ラップ型のスクロールの噛み合いを表す図。The figure showing mesh | engagement of a symmetrical wrap type scroll. 横置型スクロール圧縮機の断面図。A sectional view of a horizontal scroll compressor. 本実施例と従来技術の65℃貯湯条件における圧縮機の効率比較。The efficiency comparison of the compressor in this example and the 65 ° C. hot water storage condition of the prior art. ヒートポンプ給湯機のユニット構成図。The unit block diagram of a heat pump water heater. くぼみを説明する図。The figure explaining a hollow. 吐出圧給油室と旋回外線室とを連通する図。The figure which connects a discharge pressure oil supply chamber and a turning outside line chamber. 軸貫通型スクロール型圧縮機について説明する図。The figure explaining a shaft penetration type scroll type compressor. 強制給油について説明する図。The figure explaining forced oiling. 従来製品の背圧制御弁の配設位置。Position of the back pressure control valve of the conventional product.
 以下、図面を参照しながら本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 第1の実施例を以下詳細に説明する。 The first embodiment will be described in detail below.
 図1はスクロール圧縮機の縦断面図、図2は給油構造、図3は旋回スクロールと固定スクロールとが噛み合っている図である。なお、図2は現実の一の断面ではなく、いろいろな構成を説明するための便宜的な断面である。 1 is a longitudinal sectional view of a scroll compressor, FIG. 2 is an oil supply structure, and FIG. 3 is a diagram in which a turning scroll and a fixed scroll are engaged with each other. Note that FIG. 2 is not an actual cross section, but a convenient cross section for explaining various configurations.
 スクロール圧縮機1の基本となる構成と動作について説明する。スクロール圧縮機1は、圧縮機構部3と、この圧縮機構部3を駆動する電動機4と、圧縮機構部3へ潤滑油を供給するための給油部50と、圧縮機構部3と電動機4と給油部50とを収納する密閉容器2と、を備えている。 The basic configuration and operation of the scroll compressor 1 will be described. The scroll compressor 1 includes a compression mechanism unit 3, an electric motor 4 that drives the compression mechanism unit 3, an oil supply unit 50 for supplying lubricating oil to the compression mechanism unit 3, a compression mechanism unit 3, the electric motor 4, and an oil supply. A sealed container 2 for housing the portion 50.
 密閉容器2は、円筒状のケース2aに蓋チャンバ2bと底チャンバ2cとが上下に溶接されて構成されている。蓋チャンバ2bには吸込パイプ2dが設けられ、ケース2aの側面には吐出パイプ2eが設けられている。密閉容器2内の上部には圧縮機構部3が、下部には電動機4が配置され、その下部に給油部50が配置されている。そして、密閉容器2の底部には潤滑油13が貯留されている。なお、密閉容器2の内部は吐出圧室2fとなる、いわゆる高圧チャンバ型のスクロール圧縮機である。 The sealed container 2 is configured by welding a lid chamber 2b and a bottom chamber 2c vertically to a cylindrical case 2a. The lid chamber 2b is provided with a suction pipe 2d, and a discharge pipe 2e is provided on the side surface of the case 2a. The compression mechanism part 3 is arrange | positioned at the upper part in the airtight container 2, the electric motor 4 is arrange | positioned at the lower part, and the oil supply part 50 is arrange | positioned at the lower part. A lubricating oil 13 is stored at the bottom of the sealed container 2. The inside of the hermetic container 2 is a so-called high-pressure chamber type scroll compressor that serves as a discharge pressure chamber 2f.
 圧縮機構部3は、台板6b上に渦巻状のラップ6aを立設した旋回スクロール6と、台板5d上に渦巻状のラップ5cを立設した固定スクロール5とを有する。固定スクロール5には相対向して旋回スクロール6が旋回自在に配置されている。旋回スクロール6の下面側とフレーム9の上面側との間には、オルダムリング12が配置されており、オルダムリング12の一方の面と他方の面とに形成された各々のキーが、旋回スクロール6の下面側に形成された溝と、この溝とは直角にフレーム9の上面側に形成された溝とに嵌合している。 The compression mechanism unit 3 includes a turning scroll 6 in which a spiral wrap 6a is erected on a base plate 6b, and a fixed scroll 5 in which a spiral wrap 5c is erected on a base plate 5d. A revolving scroll 6 is rotatably disposed opposite to the fixed scroll 5. An Oldham ring 12 is arranged between the lower surface side of the orbiting scroll 6 and the upper surface side of the frame 9, and each key formed on one surface and the other surface of the Oldham ring 12 is used for the orbiting scroll. 6 is fitted into a groove formed on the lower surface side of the frame 6 and a groove formed on the upper surface side of the frame 9 at a right angle.
 固定スクロール5は、フレーム9に対してボルト8で固定される。フレーム9の外周が溶接によって密閉容器2の内壁面に固定されることで、圧縮機構部3は密閉容器2に固定される。フレーム9には、クランク軸7を回転自在に支持する主軸受9aを備えている。旋回スクロール6の下面側に、クランク軸7の偏心部7bが挿入されている。この固定スクロール5とフレーム9との間に旋回スクロール6が位置し、旋回スクロール6は、クランク軸7によって支持されている。 The fixed scroll 5 is fixed to the frame 9 with bolts 8. The outer periphery of the frame 9 is fixed to the inner wall surface of the sealed container 2 by welding, so that the compression mechanism unit 3 is fixed to the sealed container 2. The frame 9 includes a main bearing 9a that rotatably supports the crankshaft 7. An eccentric portion 7 b of the crankshaft 7 is inserted on the lower surface side of the orbiting scroll 6. The orbiting scroll 6 is positioned between the fixed scroll 5 and the frame 9, and the orbiting scroll 6 is supported by the crankshaft 7.
 電動機4は、固定子4aと回転子4bとを有している。固定子4aは密閉容器2に圧入および/または溶接などにより固定されている。また、回転子4bはクランク軸7に固定され、固定子4a内に回転可能に配置されている。クランク軸7は主軸7aと偏心部7bとを備えて構成されており、フレーム9に設けた主軸受9aと下軸受17とで支持されている。偏心部7bはクランク軸7の主軸7aに対して偏心して一体に形成されており、旋回スクロール6の背面に設けた旋回軸受6cに嵌合され、クランク軸7は旋回スクロール6を支持している。 The electric motor 4 has a stator 4a and a rotor 4b. The stator 4a is fixed to the sealed container 2 by press-fitting and / or welding. Further, the rotor 4b is fixed to the crankshaft 7 and is rotatably arranged in the stator 4a. The crankshaft 7 includes a main shaft 7 a and an eccentric portion 7 b and is supported by a main bearing 9 a and a lower bearing 17 provided on the frame 9. The eccentric portion 7 b is formed integrally with the main shaft 7 a of the crankshaft 7, and is fitted to a revolving bearing 6 c provided on the back surface of the orbiting scroll 6. The crankshaft 7 supports the orbiting scroll 6. .
 クランク軸7は電動機4によって駆動され、偏心部7bは主軸7aに対して偏心回転運動する。オルダムリング12は、旋回スクロール6を自転させることなく、クランク軸7の偏心部7bの偏心回転を伝え、旋回スクロール6を公転運動させる働きをする。また、クランク軸7には、下軸受17、主軸受9aおよび旋回軸受6cへ潤滑油13を導く給油通路7cが設けられ、図1の下側、つまり電動機4側の軸端側に、潤滑油13を吸い上げて給油通路7cに導く給油管7dが装着されている。この給油通路7cを介して各部に潤滑油を供給するための機構が給油部50である。 The crankshaft 7 is driven by the electric motor 4, and the eccentric portion 7b is eccentrically rotated with respect to the main shaft 7a. The Oldham ring 12 transmits the eccentric rotation of the eccentric portion 7b of the crankshaft 7 without causing the orbiting scroll 6 to rotate, thereby causing the orbiting scroll 6 to revolve. Further, the crankshaft 7 is provided with an oil supply passage 7c that guides the lubricating oil 13 to the lower bearing 17, the main bearing 9a, and the slewing bearing 6c. The lubricating oil is provided on the lower side of FIG. An oil supply pipe 7d for sucking 13 and guiding it to the oil supply passage 7c is mounted. A mechanism for supplying lubricating oil to each part through the oil supply passage 7 c is an oil supply part 50.
 図2に示すように、旋回スクロール6の背面とフレーム9との間には、つまり、旋回スクロール6の反ラップ側には、背圧室14が形成されている。給油通路7cを介して、旋回スクロール6の背面とクランク軸7の上側の端部との間の空間には、密閉容器内の圧力である吐出圧力がかかった潤滑油が導入される。この空間を吐出圧給油室51と称することとする。吐出圧給油室51も、旋回スクロール6の反ラップ側に形成されている。 As shown in FIG. 2, a back pressure chamber 14 is formed between the rear surface of the orbiting scroll 6 and the frame 9, that is, on the opposite side of the orbiting scroll 6. Lubricating oil to which discharge pressure, which is the pressure in the sealed container, is applied is introduced into the space between the rear surface of the orbiting scroll 6 and the upper end of the crankshaft 7 via the oil supply passage 7c. This space is referred to as a discharge pressure oil supply chamber 51. The discharge pressure oil supply chamber 51 is also formed on the side opposite to the wrapping scroll 6.
 潤滑油13が貯められた密閉容器2下部は、給油通路7c→吐出圧給油室51→旋回軸受6cと偏心部7bとの隙間→背圧室14→背圧制御弁16→吸込空間10の経路で連通している。また、給油通路7c→孔7z→主軸7aと主軸受9aとの隙間→切欠100→背圧室14→背圧制御弁16→吸込空間10の経路で連通している。吐出圧力となっている密閉容器2下部から、潤滑油13は吸込空間10へ流れようとする。このとき背圧室14から見ると、油の入口側では、旋回軸受6cと偏心部7bとの隙間と、主軸7aと主軸受9aとの隙間とが絞りとなって、油の出口側では背圧制御弁16が絞りとなって、背圧室14の圧力である背圧Pbは吸込圧力Psと吐出圧力Pdとの中間の圧力となる。また、旋回軸受6cと主軸受9aには、圧縮機下部空間の吐出圧力と背圧室14の背圧との圧力差で潤滑油13が供給される。いわゆる差圧給油方式である。 The lower part of the sealed container 2 in which the lubricating oil 13 is stored is the oil passage 7c → the discharge pressure oil chamber 51 → the gap between the slewing bearing 6c and the eccentric portion 7b → the back pressure chamber 14 → the back pressure control valve 16 → the path of the suction space 10 It communicates with. Further, the oil supply passage 7c → the hole 7z → the clearance between the main shaft 7a and the main bearing 9a → the notch 100 → the back pressure chamber 14 → the back pressure control valve 16 → the suction space 10 is communicated. The lubricating oil 13 tends to flow into the suction space 10 from the lower part of the sealed container 2 that is at the discharge pressure. When viewed from the back pressure chamber 14 at this time, the gap between the swivel bearing 6c and the eccentric portion 7b and the gap between the main shaft 7a and the main bearing 9a become a throttle on the oil inlet side, and the back on the oil outlet side. The pressure control valve 16 becomes a throttle, and the back pressure Pb, which is the pressure in the back pressure chamber 14, becomes an intermediate pressure between the suction pressure Ps and the discharge pressure Pd. Further, the lubricating oil 13 is supplied to the slewing bearing 6 c and the main bearing 9 a by a pressure difference between the discharge pressure in the compressor lower space and the back pressure in the back pressure chamber 14. This is a so-called differential pressure lubrication system.
 電動機4で駆動されるクランク軸7の回転に基づいて旋回スクロール6が公転運動すると、ガス冷媒は、吸込パイプ2dから、旋回スクロール6および固定スクロール5により形成される圧縮室11に導かれる。圧縮されたガス冷媒は固定スクロール5の台板5dの略中央に設けられた吐出口5eから密閉容器2内、すなわち吐出圧室2fへ吐き出され、吐出パイプ2eから外部へと流出していく。流出した冷媒は、図示しない第1の熱交換器,膨張装置,第2の熱交換器を経て、吸込パイプ2dを介してスクロール圧縮機1に戻ってくることになる。これらをループ状に順次接続して構成したものを冷凍サイクルといい、これを利用した機器を冷凍サイクル装置という。 When the orbiting scroll 6 revolves based on the rotation of the crankshaft 7 driven by the electric motor 4, the gas refrigerant is guided from the suction pipe 2d to the compression chamber 11 formed by the orbiting scroll 6 and the fixed scroll 5. The compressed gas refrigerant is discharged from the discharge port 5e provided substantially at the center of the base plate 5d of the fixed scroll 5 into the sealed container 2, that is, the discharge pressure chamber 2f, and flows out from the discharge pipe 2e to the outside. The refrigerant that has flowed out returns to the scroll compressor 1 via the suction pipe 2d via a first heat exchanger, an expansion device, and a second heat exchanger (not shown). A structure in which these are sequentially connected in a loop shape is referred to as a refrigeration cycle, and a device using this is referred to as a refrigeration cycle apparatus.
 固定スクロール5には、リリース弁15が設けられている。リリース弁15は、圧縮室11の圧力が吐出圧室2fの圧力以上になったとき、圧縮室11から吐出圧室2fに吐出するためのものである。例えば、液圧縮状態の場合や過圧縮状態の場合に、リリース弁15が働くことになる。なお、リリース弁15と圧縮室との間にはリリース弁穴15aが設けられている。このリリース弁穴15aは、固定スクロール5の歯底よりも更に深い位置に設けられている空間であると言える。 The fixed scroll 5 is provided with a release valve 15. The release valve 15 is for discharging from the compression chamber 11 to the discharge pressure chamber 2f when the pressure of the compression chamber 11 becomes equal to or higher than the pressure of the discharge pressure chamber 2f. For example, the release valve 15 works in the case of a liquid compression state or an overcompression state. A release valve hole 15a is provided between the release valve 15 and the compression chamber. It can be said that the release valve hole 15 a is a space provided at a deeper position than the tooth bottom of the fixed scroll 5.
 本実施例では各圧縮室に少なくとも1個以上のリリース弁15を配設している。ほぼ、どのクランク角の圧縮室においてもリリース弁15と連通させ得ることで、圧縮室を完全な密閉空間とせず、圧力を逃すことができるようにするためである。従って、ラップの巻数が増えて、圧縮室の数が増えた場合には、リリース弁15の数も圧縮室の数に対応して増やすことが好ましい。 In this embodiment, at least one release valve 15 is disposed in each compression chamber. This is because the compression chamber can be communicated with the release valve 15 in almost any crank angle compression chamber, so that the compression chamber does not become a completely sealed space and pressure can be released. Therefore, when the number of wraps is increased and the number of compression chambers is increased, the number of release valves 15 is preferably increased corresponding to the number of compression chambers.
 一般に圧縮室内の圧力は(1)式で表され、押除容積と圧縮室容積の比率で決まる。 Generally, the pressure in the compression chamber is expressed by the equation (1) and is determined by the ratio of the displacement volume and the compression chamber volume.
   Pc=Ps・(V0/Vc)γ    …(1)
 ここに、Pcは圧縮室圧力、Psは吸込圧力、V0は押除容積、Vcは圧縮室容積、γは断熱指数を表す。
Pc = Ps · (V0 / Vc) γ (1)
Here, Pc is the compression chamber pressure, Ps is the suction pressure, V0 is the displacement volume, Vc is the compression chamber volume, and γ is the adiabatic index.
 運転される圧力条件によっては、圧縮室の圧力が吐出圧室2fの圧力より高くなる場合があり、この時はリリース弁15よりガス冷媒が排出される。台板の外径側に位置するリリース弁15は、さほど圧力が上昇していないので、定常運転時に開くことはあまりないが、起動直後など液冷媒が吸い込まれた時に液圧縮を回避するために設けられている意味合いが大きい。 Depending on the operating pressure conditions, the pressure in the compression chamber may become higher than the pressure in the discharge pressure chamber 2f, and at this time, the gas refrigerant is discharged from the release valve 15. The release valve 15 located on the outer diameter side of the base plate does not open so much during steady operation because the pressure does not increase so much, but in order to avoid liquid compression when liquid refrigerant is sucked in such as immediately after startup. The implications provided are great.
 図3は、旋回スクロール6の鏡板面(旋回スクロール6の歯底面)、または、固定スクロール5の鏡板面(固定スクロール5の歯先面)で両スクロール5,6を切断し、固定スクロール5に向かって、つまり図1の上方に向かって見た場合を表している。旋回スクロール6のラップにはハッチングを施している。中心側をラップの巻き始め、外径側をラップの巻き終わりという。図3では、時計回りにラップを巻いたということになる。反時計回りにラップを巻き戻すともいえる。 FIG. 3 shows that the scrolls 5 and 6 are cut at the end plate surface of the orbiting scroll 6 (the bottom surface of the orbiting scroll 6) or the end plate surface of the fixed scroll 5 (the tooth tip surface of the fixed scroll 5). The case where it sees toward the upper direction of FIG. 1, ie, FIG. 1, is represented. The lap of the orbiting scroll 6 is hatched. The center side is called the wrap winding start, and the outer diameter side is called the wrap winding end. In FIG. 3, the wrap is wound clockwise. It can be said that the lap is rewound counterclockwise.
 図3に示された軸の原点は密閉容器2の中心である。これは固定スクロール5の台板の中心と一致している。縦軸は以下の通りであり、横軸は縦軸に直角で原点を通る。 The origin of the axis shown in FIG. 3 is the center of the sealed container 2. This coincides with the center of the base plate of the fixed scroll 5. The vertical axis is as follows, and the horizontal axis is perpendicular to the vertical axis and passes through the origin.
 縦軸は、容積が最大の旋回外線室が形成された際の旋回スクロール6の外線側ラップの巻き終わり部6Xoの位置を基準としている。旋回外線室とは、旋回スクロール6のラップの外径側の圧縮室である。その容積が最大の旋回外線室は、最も外径側の旋回外線室でもある(11a)。ここから内径側にも旋回外線室は形成されており、これは符号11a′で表されている。 The vertical axis is based on the position of the winding end portion 6Xo of the outer line side wrap of the orbiting scroll 6 when the orbiting outer line chamber having the maximum volume is formed. The orbiting outer line chamber is a compression chamber on the outer diameter side of the wrap of the orbiting scroll 6. The turning outer line chamber having the largest volume is also the turning outer line chamber on the outermost diameter side (11a). A swirling outer line chamber is also formed on the inner diameter side from here, which is represented by reference numeral 11a '.
 旋回スクロール6の外線側ラップの巻き終わり部6Xoが固定スクロール5と接する点が縦軸上に乗るようにして図3は表されている。そのときの固定スクロール5側の接点を固定スクロール5の内線側ラップの巻き終わり部5Xiという。同様に、固定スクロール5の外線側ラップの巻き終わり部5Xoも定義され、これら巻き終わり部5Xが、図3の縦軸上に乗ることになる。固定スクロール5の外線側ラップの巻き終わり部5Xoと旋回スクロール6の内線側ラップの巻き終わり部6Xiとが接するときに旋回内線室、つまり旋回スクロール6のラップの内径側の圧縮室が形成される。このときの旋回内線室は容積が最大の旋回内線室であり、最も外径側の旋回内線室でもある。図3には示されていないが、クランク軸7の回転角度によっては、そこから内径側にも旋回内線室は形成される。例えば図6(b)の11b′として表されている。また、「接する」と表現したが、より正確には各巻き終わり部同士6Xo-5Xiを繋いだ仮想線AA、6Xi-5Xoを繋いだ仮想線BBの長さが最小になるという意味である。また、内線,外線とは渦巻である歯の側面、すなわちラップ側面のことを言う。 FIG. 3 is represented so that the point where the winding end portion 6Xo of the outer line side wrap of the orbiting scroll 6 contacts the fixed scroll 5 is on the vertical axis. The contact on the fixed scroll 5 side at this time is referred to as the winding end portion 5Xi of the extension-side wrap of the fixed scroll 5. Similarly, the winding end portions 5Xo of the outer line side wrap of the fixed scroll 5 are also defined, and these winding end portions 5X ride on the vertical axis in FIG. When the winding end portion 5Xo of the outer wrap of the fixed scroll 5 and the winding end portion 6Xi of the inner wrap of the orbiting scroll 6 are in contact with each other, a turning inner chamber, that is, a compression chamber on the inner diameter side of the wrap of the orbiting scroll 6 is formed. . The swivel extension chamber at this time is the swivel extension chamber having the largest volume, and is also the swivel extension chamber on the outermost diameter side. Although not shown in FIG. 3, depending on the rotation angle of the crankshaft 7, a swivel extension chamber is also formed on the inner diameter side. For example, it is represented as 11b 'in FIG. Further, although expressed as “contact”, more precisely, it means that the length of the virtual line AA connecting 6Xo-5Xi between the winding end portions and the virtual line BB connecting 6Xi-5Xo is minimized. Moreover, an inner line and an outer line mean the side surface of the tooth which is a spiral, ie, the wrap side surface.
 それら固定スクロール5の各巻き終わり部5Xi,5Xoよりも時計回りに更に曲線が続いている部分を延長部という。図3においては、時計の短針が示す6時位置に巻き終わり部5Xi,5Xoが位置し、延長部の7時位置あたりには、破線で示された吸込パイプ2dと吸込ポート2d1が位置している。更にR溝5hが11時あたりまで形成されており、9時位置には背圧制御弁16が配設されている。背圧制御弁16の導通路5iはR溝5hに連通している。図3における第1象限、第4象限よりも、第2象限、第3象限の方が、両スクロール5,6の鏡板面の接触面積が大きくなるので、このR溝5hは斯様な部分に設けられている。これは、両スクロール5,6の鏡板面の潤滑を行うために背圧制御弁16から油を導いてくる溝である。 The portion where the curve continues further in the clockwise direction than the winding end portions 5Xi and 5Xo of the fixed scroll 5 is called an extension portion. In FIG. 3, the winding end portions 5Xi and 5Xo are located at the 6 o'clock position indicated by the short hand of the watch, and the suction pipe 2d and the suction port 2d1 indicated by the broken line are located around the 7 o'clock position of the extension portion. Yes. Further, an R groove 5h is formed until about 11:00, and a back pressure control valve 16 is disposed at the 9 o'clock position. The conduction path 5i of the back pressure control valve 16 communicates with the R groove 5h. Since the contact area of the end plate surfaces of the scrolls 5, 6 is larger in the second quadrant and the third quadrant than in the first quadrant and the fourth quadrant in FIG. 3, the R groove 5h is formed in such a portion. Is provided. This is a groove for introducing oil from the back pressure control valve 16 in order to lubricate the end plate surfaces of the scrolls 5 and 6.
 図3に示すように、ラップ5cとラップ6aとの間に吸込部である吸込空間10と圧縮室11が形成されている。吸込空間10とは、その圧力が吸込圧力となる領域をいい、吸込パイプ2dと連通している。圧縮室11は、吸込パイプ2dとの連通が遮断されている領域であり、大別して、旋回外線室と旋回内線室との二種類がある。 As shown in FIG. 3, a suction space 10 and a compression chamber 11 which are suction portions are formed between the wrap 5c and the wrap 6a. The suction space 10 refers to a region where the pressure becomes the suction pressure, and communicates with the suction pipe 2d. The compression chamber 11 is a region where communication with the suction pipe 2d is blocked, and is roughly classified into two types, a swirling outer chamber and a swirling inner chamber.
 一般に、圧縮室の境界は4つ、すなわち、第1に固定スクロールの歯底で形成される第1の境界、第2に旋回スクロールの歯底で形成される第2の境界、第3に旋回スクロールの内線で形成される第3の境界、第4に固定スクロールの外線で形成される第4の境界、の4つの境界を持つ。例えば、図3の11bで指示されている部屋のように、これらのような境界を持つ圧縮室を旋回内線室(または固定外線室)という。また、第1,第2の境界は前記と同様であって、第3に旋回スクロールの外線で形成される第3の境界、第4に固定スクロールの内線で形成される第4の境界、の4つの境界を持つ圧縮室を旋回外線室(または固定内線室)といい、例えば、図3の11a,11a′で指示されている部屋のことである。 In general, there are four compression chamber boundaries: first the first boundary formed by the root of the fixed scroll, second the second boundary formed by the bottom of the orbiting scroll, and third the swirl It has four boundaries: a third boundary formed by the scroll inner line, and a fourth boundary formed by the outer line of the fixed scroll. For example, a compression chamber having such a boundary as a room indicated by 11b in FIG. 3 is referred to as a swivel extension chamber (or a fixed outer chamber). The first and second boundaries are the same as described above. Third, the third boundary formed by the outer line of the orbiting scroll, and fourth, the fourth boundary formed by the inner line of the fixed scroll, A compression chamber having four boundaries is referred to as a swirling outer chamber (or a fixed inner chamber), for example, a room indicated by 11a and 11a 'in FIG.
 これらの境界と境界との間には潤滑油を供給してシール性を保つようにしている。何れの圧縮室であってもラップ側面同士、すなわち第3の境界と第4の境界との間には微小な隙間(5μm程度以下)が存在する。その微小な隙間のうち圧縮室前端の吐出口5eに近い、つまりラップの巻き始め部に近い方の隙間では、当該前端の更に前方に、より圧力の高い圧縮室が形成されている。従って、第3の境界と第4の境界との間の微小な隙間から、より圧力の高いガス冷媒が漏れこんでくることになる。一方、その微小な隙間のうち圧縮室後端の吸込ポート2d1に近い、つまりラップの巻き終わり部に近い方の隙間では、当該後端の更に後方に、より圧力の低い圧縮室が形成されている。従って、第3の境界と第4の境界との間の微小な隙間から、前記圧力の低い圧縮室へガス冷媒が漏れ出ていくことになる。この前端または後端での漏れは、旋回内線室から旋回内線室への漏れ、または、旋回外線室から旋回外線室への漏れであると言える。これを第1種の漏れと称する。 ¡Lubricating oil is supplied between these boundaries to maintain the sealing performance. In any compression chamber, there is a minute gap (about 5 μm or less) between the wrap side surfaces, that is, between the third boundary and the fourth boundary. Among the minute gaps, in the gap closer to the discharge port 5e at the front end of the compression chamber, that is, closer to the winding start portion of the wrap, a compression chamber with higher pressure is formed further in front of the front end. Therefore, the gas refrigerant with higher pressure leaks from the minute gap between the third boundary and the fourth boundary. On the other hand, in the gap that is closer to the suction port 2d1 at the rear end of the compression chamber, that is, closer to the winding end of the wrap, a compression chamber having a lower pressure is formed further rearward of the rear end. Yes. Therefore, the gas refrigerant leaks from the minute gap between the third boundary and the fourth boundary into the compression chamber having the low pressure. It can be said that the leakage at the front end or the rear end is a leakage from the swirling extension chamber to the swiveling extension chamber or a leakage from the swirling outer chamber to the swirling outer chamber. This is referred to as type 1 leakage.
 一方、歯先と歯底との間には各々、上記よりも更に微小な隙間(3μm程度以下)が存在している。圧縮室から見れば、旋回内外線室とも、第1の境界と第3の境界との間、および、第2の境界と第4の境界との間、の2箇所の間に、その微小な隙間が存在している。圧縮室11は、これらの隙間を境に、より圧力の高い圧縮室や、より圧力の低い圧縮室と隣接している。当然、圧力の高い圧縮室からはガス冷媒が漏れこんできて、圧力の低い圧縮室へはガス冷媒が漏れ出て行くことになる。この歯先と歯底との間での漏れは、旋回内線室から旋回外線室への漏れ、または、旋回外線室から旋回内線室への漏れであると言える。これを第2種の漏れと称する。 On the other hand, there is a finer gap (less than about 3 μm) between the tooth tip and the tooth bottom. When viewed from the compression chamber, both the swirl inner and outer line chambers have a minute amount between the first boundary and the third boundary, and between the second boundary and the fourth boundary. There is a gap. The compression chamber 11 is adjacent to a compression chamber having a higher pressure and a compression chamber having a lower pressure, with these gaps as a boundary. Naturally, the gas refrigerant leaks from the compression chamber having a high pressure, and the gas refrigerant leaks to the compression chamber having a low pressure. It can be said that the leak between the tooth tip and the tooth bottom is a leak from the swivel extension chamber to the swivel extension chamber, or a leak from the swivel extension chamber to the swivel extension chamber. This is referred to as a second type leak.
 これらの漏れを低減するために圧縮室に油を供給し、この油で隙間を埋める。従って、この部分のシールを如何に行うかが重要となる。 ¡To reduce these leaks, supply oil to the compression chamber and fill the gap with this oil. Therefore, how to seal this part is important.
 前述の旋回スクロール6の内線側ラップの巻き終わり部6Xiは図3の位置を時計の6時位置として、破線で示したように反時計回りの軌跡を描くように動くものである。もう一方の外線側ラップの巻き終わり部6Xoも同様に軌跡を描くが、図示は省略している。図3において、11aで指示されている旋回外線室をクランク角0°の旋回外線室と表す。すると、11a′で指示されている旋回外線室はクランク角360°の旋回外線室と表現することができる。クランク角0°の旋回外線室11aの容積は、旋回外線室の容積のうちで最大である。なお、旋回内線室はクランク角180°のときに形成され、そのときの旋回内線室の容積は旋回内線室の容積のうちで最大である(図6(b)参照)。 The winding end portion 6Xi of the inner side wrap of the orbiting scroll 6 moves so as to draw a counterclockwise locus as shown by a broken line with the position of FIG. 3 as the 6 o'clock position of the clock. The winding end portion 6Xo of the other outer line side wrap also draws a locus in the same manner, but is not shown. In FIG. 3, the swirling outer line chamber indicated by 11a is represented as a swirling outer line chamber having a crank angle of 0 °. Then, the turning outer line chamber indicated by 11a ′ can be expressed as a turning outer line chamber with a crank angle of 360 °. The volume of the swirling outer line chamber 11a with a crank angle of 0 ° is the largest of the volumes of the swirling outer line chamber. The turning extension chamber is formed when the crank angle is 180 °, and the volume of the turning extension chamber at that time is the largest of the volumes of the turning extension chamber (see FIG. 6B).
 このように、旋回内外線室の圧縮開始のタイミングがクランク軸7の回転角度で180°ずれているような方式の圧縮機を非対称ラップ型という。なお、最大容積の旋回内線室は図6の(b)には図示されているが、図3には図示されていない。図3において、11bで指示されている旋回内線室は、最大容積の旋回内線室からクランク角が180°進んだ旋回内線室であり、クランク角360°の旋回内線室となる。なお、図3にはクランク角0°の旋回外線室11a,クランク角360°の旋回外線室11a′,クランク角360°の旋回内線室11b,クランク角720°の旋回内線室(11b′)、の計4つの圧縮室が示されている。クランク角720°の旋回内線室(11b′)は吐出口5eに開口しているので、厳密には圧縮室とは呼べないが、理解を容易にするために斯様に表現しておく。 Thus, a compressor of a type in which the compression start timing of the turning inner and outer line chambers is shifted by 180 ° by the rotation angle of the crankshaft 7 is referred to as an asymmetric wrap type. The maximum volume swirl extension chamber is shown in FIG. 6B, but is not shown in FIG. In FIG. 3, the turning extension chamber indicated by 11b is a turning extension chamber whose crank angle is advanced by 180 ° from the maximum volume turning extension chamber, and becomes a turning extension chamber with a crank angle of 360 °. FIG. 3 shows a swirling outer chamber 11a with a crank angle of 0 °, a swirling outer chamber 11a ′ with a crank angle of 360 °, a swirling inner chamber 11b with a crank angle of 360 °, a swirling inner chamber (11b ′) with a crank angle of 720 °, A total of four compression chambers are shown. Since the swivel extension chamber (11b ') with a crank angle of 720 ° is open to the discharge port 5e, it cannot be strictly called a compression chamber, but is expressed in this way for easy understanding.
 次に、背圧室14の圧力である背圧Pbを調整する機構である背圧制御弁16について説明する。旋回スクロール6は背圧Pbによって固定スクロール5へ付勢される。旋回スクロール6は背圧Pbによって固定スクロール5に向かって押し付けられるような力を受けるということである。大きな背圧だと付勢力も大きくなり、両スクロール間に生じる摩擦力も大きくなって好ましくない。背圧制御弁16は背圧が大きくなり過ぎないように制御する弁である。 Next, the back pressure control valve 16 that is a mechanism for adjusting the back pressure Pb that is the pressure in the back pressure chamber 14 will be described. The orbiting scroll 6 is urged toward the fixed scroll 5 by the back pressure Pb. That is, the orbiting scroll 6 receives a force that is pressed against the fixed scroll 5 by the back pressure Pb. If the back pressure is large, the urging force increases, and the frictional force generated between the two scrolls also increases, which is not preferable. The back pressure control valve 16 is a valve that controls so that the back pressure does not become too large.
 固定スクロール5には、ばね収納穴5fが形成されている。ばね収納穴5fの背圧室14側に貫通穴5gが形成されており、この貫通穴5gにはピース16aが圧入されている。ピース16aにはばね収納穴5fと背圧室14とを連通する連通穴16bが形成されている。ばね収納穴5fには弁体16cが配設されており、弁体16cが、連通穴16bを塞ぐようにばね16dによって付勢されている。ばね16dはシール部材16eに取り付けられており、シール部材16eは、ばね収納穴5fと吐出圧室2fとを区画するように固定スクロール5に圧入されている。ばね収納穴5fの側面には固定スクロール5の鏡板面の前記延長部に形成されたR溝5hと連通する導通路5iが形成されている。R溝5hは吸込パイプ2dと連通しているので、結局、ばね収納穴5fの圧力は吸込圧力Psとなる。 The fixed scroll 5 has a spring housing hole 5f. A through hole 5g is formed on the back pressure chamber 14 side of the spring housing hole 5f, and a piece 16a is press-fitted into the through hole 5g. The piece 16a is formed with a communication hole 16b that allows the spring housing hole 5f and the back pressure chamber 14 to communicate with each other. A valve body 16c is disposed in the spring housing hole 5f, and the valve body 16c is biased by a spring 16d so as to close the communication hole 16b. The spring 16d is attached to the seal member 16e, and the seal member 16e is press-fitted into the fixed scroll 5 so as to partition the spring housing hole 5f and the discharge pressure chamber 2f. On the side surface of the spring housing hole 5f, a conduction path 5i is formed which communicates with the R groove 5h formed in the extension of the end plate surface of the fixed scroll 5. Since the R groove 5h communicates with the suction pipe 2d, the pressure in the spring housing hole 5f eventually becomes the suction pressure Ps.
 背圧制御弁16の動作について説明する。密閉容器2下部に溜められた潤滑油13は、密閉容器2の圧力と背圧室14の圧力との圧力差により給油管7dと給油通路7cを通って各軸受に給油される。上側のクランク軸7の端部、つまり吐出圧給油室51にまで達した潤滑油13は絞りを介して背圧室14に入る。また、孔7z,切欠100を介して背圧室14に入ってくる潤滑油13もある。この背圧室14で潤滑油13内に溶け込んでいた冷媒が発泡する。 The operation of the back pressure control valve 16 will be described. The lubricating oil 13 stored in the lower part of the sealed container 2 is supplied to each bearing through the oil supply pipe 7d and the oil supply passage 7c due to the pressure difference between the pressure in the closed container 2 and the pressure in the back pressure chamber 14. The lubricating oil 13 reaching the end of the upper crankshaft 7, that is, the discharge pressure oil supply chamber 51, enters the back pressure chamber 14 through the throttle. There is also lubricating oil 13 that enters back pressure chamber 14 through hole 7z and notch 100. The refrigerant dissolved in the lubricating oil 13 is foamed in the back pressure chamber 14.
 背圧室14の圧力とばね収納穴5fの圧力、つまり吸込圧力Psとの圧力差により弁体16cに掛かる上向きの力(図1,図2で上向きの力)が、ばね16dによる下向きの力よりも大きくなると弁体16cが開き、背圧室14内の潤滑油13は導通路5iとR溝5hを通って吸込空間10に供給される。ガス冷媒だけでなく、油も背圧制御弁16を通るからである。この油は、穴や壁面に付着していた油やミスト状になった油であると考えられる。背圧室14の圧力は、このようにばね力で調整されて、吸込圧力Ps+一定値となる。この一定値は16dのばね力によって決まり、初期変位である弁閉時のばねのたわみ量や、ばね定数kが大きいほど、つまりばねがたわみ難いほど背圧Pbを大きくすることができる。 The upward force applied to the valve body 16c (the upward force in FIGS. 1 and 2) due to the pressure difference between the pressure in the back pressure chamber 14 and the pressure in the spring housing hole 5f, that is, the suction pressure Ps is the downward force by the spring 16d. When larger than that, the valve body 16c is opened, and the lubricating oil 13 in the back pressure chamber 14 is supplied to the suction space 10 through the conduction path 5i and the R groove 5h. This is because not only the gas refrigerant but also the oil passes through the back pressure control valve 16. This oil is considered to be oil that has adhered to the hole or the wall surface or oil that has become a mist. The pressure in the back pressure chamber 14 is adjusted by the spring force in this way, and becomes the suction pressure Ps + a constant value. This constant value is determined by the spring force of 16d, and the back pressure Pb can be increased as the amount of spring deflection when the valve is closed, which is the initial displacement, and as the spring constant k increases, that is, the spring is less likely to bend.
 いわゆるエコキュート(EcoCute)(登録商標)と言われるヒートポンプ給湯機では、冷凍サイクル装置の冷媒として二酸化炭素COを用いている。この冷凍サイクルは、高圧側の圧力がCOの臨界点を超える超臨界冷凍サイクルと呼ばれる。この高圧は例えば本実施例のようなスクロール圧縮機によって作られる。COを冷媒としたスクロール圧縮機は、従来のフロン系冷媒用スクロール圧縮機に対して動作圧が3~5倍となり、背圧制御弁で制御する差圧も3~5倍となる。ばね力によって決まる背圧(=吸込圧力Ps+一定値)になると背圧制御弁が開くが、このような高圧力差の環境下では、背圧室から吸込空間に流れるガス冷媒の量と油の量が多いので、背圧制御弁が開く瞬間の背圧と開いた後の背圧とに差が出てくる。開く瞬間の背圧よりも開いた後の背圧の方が低くなる。定常運転時の背圧は、効率上適正な圧力が存在するので、背圧制御弁の設計は定常運転時の背圧に合わせて行うことになる。このため、背圧制御弁が動作しても背圧が低下し過ぎないよう、ばねをたわみ難くしている。すると、起動時など必要な場合であっても背圧制御弁が開かないといった問題に気が付くことができた。 In a so-called EcoCute (registered trademark) heat pump water heater, carbon dioxide CO 2 is used as a refrigerant in the refrigeration cycle apparatus. This refrigeration cycle is called a supercritical refrigeration cycle in which the pressure on the high pressure side exceeds the critical point of CO 2 . This high pressure is produced by, for example, a scroll compressor as in this embodiment. A scroll compressor using CO 2 as a refrigerant has an operating pressure of 3 to 5 times that of a conventional fluorocarbon refrigerant scroll compressor, and a differential pressure controlled by a back pressure control valve is also 3 to 5 times. When the back pressure determined by the spring force (= suction pressure Ps + constant value) is reached, the back pressure control valve opens. Under such a high pressure difference environment, the amount of gas refrigerant flowing from the back pressure chamber to the suction space and the amount of oil Since the amount is large, there is a difference between the back pressure when the back pressure control valve is opened and the back pressure after the back pressure control valve is opened. The back pressure after opening is lower than the back pressure at the moment of opening. Since the back pressure during the steady operation has an appropriate pressure in terms of efficiency, the design of the back pressure control valve is performed in accordance with the back pressure during the steady operation. For this reason, it is difficult to bend the spring so that the back pressure does not decrease excessively even if the back pressure control valve operates. Then, I was able to notice the problem that the back pressure control valve did not open even when necessary, such as at startup.
 この問題を解決するための手段として、旋回スクロール6の公転運動を利用して、その鏡板面によって背圧制御弁16の連通穴16bを塞いだり連通させたりする、いわゆる間欠連通構造がある。これは、旋回スクロール6がクランク軸7の回転に基づいて固定スクロール5に対して公転運動することにより、旋回スクロール6の台板6bの鏡板面が背圧制御弁16の連通穴16bを間欠的に塞ぐものであり、換言すれば、背圧制御弁16と背圧室14とを間欠的に連通させるものである。 As a means for solving this problem, there is a so-called intermittent communication structure in which the revolving motion of the orbiting scroll 6 is used to close or communicate the communication hole 16b of the back pressure control valve 16 with its end plate surface. This is because the end surface of the base plate 6b of the orbiting scroll 6 intermittently passes through the communication hole 16b of the back pressure control valve 16 when the orbiting scroll 6 revolves with respect to the fixed scroll 5 based on the rotation of the crankshaft 7. In other words, the back pressure control valve 16 and the back pressure chamber 14 are intermittently communicated with each other.
 弁体16cとピース16aは、ばね力によって金属接触しているだけで、部材の面粗さ等により微少な隙間が存在し完全に漏れをゼロにできている訳ではない。台板6bが連通穴16bを塞いでいる間に、連通穴16b内のガス冷媒は弁体16cとピース16aとの微少な隙間からばね収納穴5fに漏れる。このとき、背圧制御弁16は塞がれているので、背圧は変化しない。さて、連通穴16bの体積は小さく、例えば、連通穴16bの穴径を2mmとすると体積は0.03cm程度であり、少しでも漏れると連通が遮断されている間に連通穴16b内の圧力は減圧する。連通穴16b内の圧力が低下すると、旋回スクロール6の台板6bが連通穴16bを通過して背圧室14と連通した瞬間、背圧室14のガス冷媒と油が連通穴16bに流入し、次式で表される慣性力Fが弁体16cに作用する。 The valve body 16c and the piece 16a are merely in metal contact with each other by a spring force, and a slight gap exists due to the surface roughness of the member and the leakage is not completely reduced to zero. While the base plate 6b closes the communication hole 16b, the gas refrigerant in the communication hole 16b leaks into the spring housing hole 5f through a minute gap between the valve body 16c and the piece 16a. At this time, since the back pressure control valve 16 is closed, the back pressure does not change. Now, the volume of the communication hole 16b is small. For example, if the diameter of the communication hole 16b is 2 mm, the volume is about 0.03 cm 3. Depressurize. When the pressure in the communication hole 16b decreases, the gas refrigerant and oil in the back pressure chamber 14 flow into the communication hole 16b at the moment when the base plate 6b of the orbiting scroll 6 passes through the communication hole 16b and communicates with the back pressure chamber 14. Inertia force F expressed by the following equation acts on the valve body 16c.
   F∝A*ρ*    …(2)
 ここに、Fは慣性力、Aは連通穴16bの断面積、ρは流体密度、Vは流速を表す。
F∝A * ρ * V 2 (2)
Here, F is the inertial force, A is the cross-sectional area of the communication hole 16b, ρ is the fluid density, and V is the flow velocity.
 このように、間欠連通構造にすることにより弁体16cには、背圧室14とばね収納室5fの圧力差に加えて流体の慣性力が作用し、背圧制御弁16を開き易くする。なお、超臨界冷凍サイクルで用いられるスクロール圧縮機で斯様な効果が認められるので、より低圧で動作するフロン系冷媒用スクロール圧縮機であっても、度合いは小さいかも知れないが、同様な効果があると考えられる。 As described above, the intermittent communication structure causes the inertial force of the fluid to act on the valve body 16c in addition to the pressure difference between the back pressure chamber 14 and the spring storage chamber 5f, thereby making it easy to open the back pressure control valve 16. In addition, since such an effect is recognized in the scroll compressor used in the supercritical refrigeration cycle, even if it is a scroll compressor for a fluorocarbon refrigerant operating at a lower pressure, the degree may be small, but the same effect It is thought that there is.
 間欠連通構造にすると、背圧室14から背圧制御弁16を通って旋回外線室11aと旋回内線室11bへ分配される給油量が、背圧制御弁16の位置によって変化する。この旋回外線室と旋回内線室への給油分配について、図4~図7を参照して説明する。図4は仮想旋回内線室および仮想旋回外線室を表す図、図5Aは吸込室の容積変化と背圧制御弁の連通穴の連通区間とを示す図、図5Bは図5Aのグラフとその一階微分のグラフとを比較した図であり、相互の関係が分かるように同じサイズにして並べたものである。図6は仮想旋回内線室および仮想旋回外線室からの漏れを説明する図、図7は背圧制御弁の配設位置を説明する図である。 If the intermittent communication structure is adopted, the amount of oil distributed from the back pressure chamber 14 through the back pressure control valve 16 to the turning outer line chamber 11 a and the turning extension chamber 11 b changes depending on the position of the back pressure control valve 16. The oil distribution to the swirling outer chamber and the swirling inner chamber will be described with reference to FIGS. 4 is a diagram showing a virtual swirl extension chamber and a virtual swirl outer chamber, FIG. 5A is a diagram showing the volume change of the suction chamber and the communication section of the communication hole of the back pressure control valve, and FIG. 5B is a graph of FIG. It is the figure which compared with the graph of the order differential, arranges in the same size so that the mutual relationship is understood. FIG. 6 is a diagram for explaining leakage from the virtual swirl extension chamber and the virtual swirl extension chamber, and FIG. 7 is a diagram for explaining the position of the back pressure control valve.
 図4は吸込行程におけるガス冷媒や油が流入して行く仮想の部屋11A,11Bを表しており、これらの領域は吸込室と呼ばれ、吸込空間10の一部である。それら仮想の部屋11A,11Bを、仮想旋回外線室11A,仮想旋回内線室11Bと称する。従って、吸込室とは、仮想旋回外線室11Aまたは仮想旋回内線室11Bということになる。仮想旋回外線室11A,仮想旋回内線室11Bは双方とも吸込圧力である。前述の仮想線AA,BBが、常に吸込パイプ2dと連通しているからである。なお、仮想旋回外線室11A,仮想旋回内線室11Bとは次のように定義される。 FIG. 4 shows virtual rooms 11A and 11B into which gas refrigerant and oil flow in the suction stroke. These regions are called suction chambers and are a part of the suction space 10. These virtual rooms 11A and 11B are referred to as a virtual swirl outer line room 11A and a virtual swirl line room 11B. Therefore, the suction chamber is the virtual swirl outer chamber 11A or the virtual swirl inner chamber 11B. The virtual swirl outer chamber 11A and the virtual swirl chamber 11B are both at suction pressure. This is because the above-described virtual lines AA and BB are always in communication with the suction pipe 2d. Note that the virtual swirl extension chamber 11A and the virtual swirl extension chamber 11B are defined as follows.
 仮想旋回外線室11Aとは、固定スクロール5の内線側ラップの巻き終わり部5Xiと旋回スクロール6の外線側ラップの巻き終わり部6Xoとを結んだ仮想線AAと、旋回スクロール6の外線側ラップと、固定スクロール5の内線側ラップとで囲まれた領域をいう。 The virtual orbiting outer line chamber 11A includes an imaginary line AA connecting the winding end portion 5Xi of the inner line side wrap of the fixed scroll 5 and the winding end portion 6Xo of the outer line side wrap of the orbiting scroll 6, and the outer line side wrap of the orbiting scroll 6 An area surrounded by the extension side wrap of the fixed scroll 5.
 仮想旋回内線室11Bとは、固定スクロール5の外線側ラップの巻き終わり部5Xoと旋回スクロール6の内線側ラップの巻き終わり部6Xiとを結んだ仮想線BBと、旋回スクロール6の内線側ラップと、固定スクロール5の外線側ラップとで囲まれた領域をいう。 The virtual orbiting extension chamber 11B includes an imaginary line BB connecting the winding end portion 5Xo of the outer line side wrap of the fixed scroll 5 and the winding end portion 6Xi of the inner line side wrap of the orbiting scroll 6, and the inner line side wrap of the orbiting scroll 6 The area surrounded by the outer line side wrap of the fixed scroll 5.
 各部屋11A,11Bは仕切られていないが、それらの部屋が対象とする空間は、後々旋回外線室11aと旋回内線室11bとになる。つまり、吸込完了時の部屋11Aが即ち最大容積となる旋回外線室11aとなり、吸込完了時の部屋11Bが最大容積となる旋回内線室11bとなる。その後、クランク軸7の回転に伴って容積を縮小させていき、ガス冷媒を圧縮する。 Although the rooms 11A and 11B are not partitioned, the spaces targeted by these rooms will be the swirling extension room 11a and the turning extension room 11b later. That is, the room 11A at the completion of the suction is the swirling outer chamber 11a having the maximum volume, and the room 11B at the completion of the suction is the swirling inner chamber 11b having the maximum volume. Thereafter, the volume is reduced as the crankshaft 7 rotates, and the gas refrigerant is compressed.
 図5Aは各吸込室の各々の吸込行程における容積のクランク軸7の回転角度に対する変化と背圧制御弁位置θbにおける背圧制御弁16の連通穴16bの連通区間を示している。このスクロール圧縮機1における、螺旋の種類はインボリュート曲線であるが、代数螺旋でも同様な容積変化を示すことが知られている。ここで、吸込室の容積変化は吸込完了時を1とした比率で示している。従って、仮想旋回外線室11Aに比べて、仮想旋回内線室11Bの方が吸込容積比のピークが大きくなっている。縦軸切片、回転角度0゜は仮想旋回外線室11Aの吸込開始であり、図3や図6(a)で表された状態である。 FIG. 5A shows a change in the volume of each suction chamber in each suction stroke with respect to the rotation angle of the crankshaft 7 and a communication section of the communication hole 16b of the back pressure control valve 16 at the back pressure control valve position θb. In the scroll compressor 1, the type of spiral is an involute curve, but it is known that an algebraic spiral also exhibits a similar volume change. Here, the volume change of the suction chamber is shown as a ratio with the suction completion time being 1. Accordingly, the peak of the suction volume ratio is larger in the virtual swirl extension chamber 11B than in the virtual swirl extension chamber 11A. The vertical axis intercept and the rotation angle of 0 ° are the start of suction of the virtual swirling outer line chamber 11A, and are the states shown in FIG. 3 and FIG. 6 (a).
 背圧制御弁位置θbは図7の縦軸のマイナス側を0゜とした角度で示している。前述してきたクランク角と同様に対応すると考えればよい。なお、時計の短針で表すと、θb=0゜は6時の方向、θb=210゜は11時の方向、θb=270゜は9時の方向である。仮想旋回外線室11Aは旋回スクロール6が一回転する間に、容積が徐々に増加し、閉じ切るときの容積を越え(α)、途中でピークを向かえ(α)、その後減少して、回転角度360゜で消失する(α)。そして、前述のように定義された次の仮想旋回外線室11Aが、また新たに形成されて同じ容積変化を示すことになる。 The back pressure control valve position θb is shown as an angle with the minus side of the vertical axis in FIG. 7 being 0 °. It can be considered that it corresponds to the crank angle described above. In terms of the short hand of the watch, θb = 0 ° is the 6 o'clock direction, θb = 210 ° is the 11 o'clock direction, and θb = 270 ° is the 9 o'clock direction. The virtual orbiting outside line chamber 11A gradually increases in volume while the orbiting scroll 6 makes one rotation, exceeds the volume when it is fully closed (α 1 ), reaches a peak on the way (α 2 ), and then decreases. It disappears at a rotation angle of 360 ° (α 3 ). Then, the next virtual swirling outer line chamber 11A defined as described above is newly formed and exhibits the same volume change.
 仮想旋回内線室11Bの方は、図6(b)に示すように、仮想旋回外線室11Aとは180゜ずれた容積変化を示す。図3や図6(a)では、或る大きさの容積の仮想旋回内線室11Bが表されており、図5Aに示すように最大容積の旋回内線室の60%程度となっている。この後、仮想旋回内線室11Bの容積は徐々に増加し、閉じ切るときの容積を越え(β)、途中でピークを向かえ(β)、その後減少して、回転角度180゜で消失する(β)。そして、前述のように定義された次の仮想旋回内線室11Bが、また新たに形成されて同じ容積変化を示すことになる。 As shown in FIG. 6B, the virtual swirl extension chamber 11B shows a volume change that is 180 ° shifted from the virtual swirl extension chamber 11A. In FIG. 3 and FIG. 6A, a virtual swirl extension chamber 11B having a certain volume is shown, which is about 60% of the maximum swirl extension chamber as shown in FIG. 5A. Thereafter, the volume of the virtual swirl extension chamber 11B gradually increases, exceeds the volume when fully closed (β 1 ), reaches a peak in the middle (β 2 ), then decreases, and disappears at a rotation angle of 180 °. (Β 3 ). Then, the next virtual swivel extension chamber 11B defined as described above is newly formed and exhibits the same volume change.
 但し、吸込室である仮想旋回外線室11A,仮想旋回内線室11Bの容積の対象としている空間を追っていくと、その同じ空間が吸込室から、閉じ切られた空間である圧縮室となり、称呼が旋回外線室11a,旋回内線室11bと変化する。つまり、旋回スクロール6の公転運動により各吸込室の仮想線の要素である巻き終わり部が一致した場合、厳密には仮想線が最小長さになった場合には、吸込行程が完了して、その吸込室の対象となっていた空間である仮想旋回外線室11A,仮想旋回内線室11Bは吸込パイプ2dとの連通が遮断されたのであるから、「仮想」の文言が取れると共に符合も変わって、それぞれ閉じ切られた空間である圧縮室となり、それぞれ旋回外線室11a,旋回内線室11bと称呼が変更される。 However, if the space which is the target of the volume of the virtual swirling outer chamber 11A and the virtual swirling inner chamber 11B which are suction chambers is followed, the same space becomes a compression chamber which is a closed space from the suction chamber, and the designation is given. It changes with the turning outside line room 11a and the turning inside line room 11b. In other words, when the winding end portion that is an element of the imaginary line of each suction chamber is matched by the revolving motion of the orbiting scroll 6, strictly speaking, when the imaginary line becomes the minimum length, the suction stroke is completed, Since the virtual swirling outer chamber 11A and the virtual swirling inner chamber 11B, which are the target spaces of the suction chamber, are disconnected from the suction pipe 2d, the word “virtual” is taken and the sign is changed. The compression chambers are closed spaces, and the names of the swirling outer chamber 11a and the swirling inner chamber 11b are changed.
 仮想旋回外線室11A,仮想旋回内線室11Bの容積変化だけを見れば、180°毎に、ほぼ同じ容積変化が繰り返される。例えば、θb=30゜の位置、つまり5時位置に背圧制御弁16を設けた場合、連通穴16bの連通区間は回転角度で130゜から290゜の範囲である。この背圧制御弁位置では連通穴16bの連通序盤で、クランク軸7の回転に伴って仮想旋回内線室11Bの容積が減少し始めている(β~β)。これとは180°ずらしたθb=210゜の位置、つまり11時位置に背圧制御弁16を設けた場合、連通穴16bの連通区間は回転角度で310゜から470゜の範囲となる。この背圧制御弁位置では連通穴16bの連通序盤で、クランク軸7の回転に伴って仮想旋回外線室11Aの容積が減少し始めている(α~α)。 If only the volume changes in the virtual swirl outer chamber 11A and the virtual swirl chamber 11B are observed, the same volume change is repeated every 180 °. For example, when the back pressure control valve 16 is provided at the position θb = 30 °, that is, at the 5 o'clock position, the communication section of the communication hole 16b is in the range of 130 ° to 290 ° in rotation angle. At the back pressure control valve position, the volume of the virtual turning extension chamber 11B begins to decrease (β 2 to β 3 ) as the crankshaft 7 rotates in the early stage of the communication hole 16b. When the back pressure control valve 16 is provided at the position θb = 210 ° shifted by 180 °, that is, at the 11 o'clock position, the communication section of the communication hole 16b is in the range of 310 ° to 470 ° in rotation angle. At the back pressure control valve position, the volume of the virtual turning outer line chamber 11A starts to decrease with the rotation of the crankshaft 7 at the beginning of the communication hole 16b (α 2 to α 3 ).
 また、間欠連通の連通区間である、連通穴16bの連通区間は図5A中に示した2つの斜めの破線の間の部分である。説明のために特徴的な背圧制御弁16設置位置は白抜きの矢印で示している。当然ながら背圧制御弁16をどの位置に配設したとしても、間欠連通により背圧制御弁16と背圧室14とが連通している角度範囲は何れも160゜で同じである。 Further, the communication section of the communication hole 16b, which is a communication section for intermittent communication, is a portion between two oblique broken lines shown in FIG. 5A. For the purpose of explanation, the characteristic installation position of the back pressure control valve 16 is indicated by a white arrow. Of course, no matter where the back pressure control valve 16 is disposed, the angle range in which the back pressure control valve 16 and the back pressure chamber 14 communicate with each other by intermittent communication is the same at 160 °.
 背圧室14から背圧制御弁16を通った油はR溝5hを通過し仮想旋回外線室11Aと仮想旋回内線室11Bとに供給され、延いては旋回外線室11aと旋回内線室11bとに取り込まれ、圧縮室のシールに使われる。しかし、容積が減少している区間(α~α,β~β)では、吸込室からガス冷媒が抜け出て吸込ポート2bの方向へ逆流し戻されることになるので、給油はこれに逆らって行うこととなる。つまり、この区間では給油し難く、給油の効率が悪い。給油が阻害されているとも言える。この区間は図5Bで見ることができる。容積が減少している区間は、図5B(b)の一階微分のグラフが負になる部分である。 The oil that has passed through the back pressure control valve 16 from the back pressure chamber 14 passes through the R groove 5h, and is supplied to the virtual swirl outer chamber 11A and the virtual swirl chamber 11B, and then the swirl outer chamber 11a and the swirl chamber 11b. And is used to seal the compression chamber. However, in the section where the volume is reduced (α 2 to α 3 , β 2 to β 3 ), the gas refrigerant escapes from the suction chamber and flows back in the direction of the suction port 2b. It will be done against this. That is, it is difficult to refuel in this section, and refueling efficiency is poor. It can be said that refueling is hindered. This interval can be seen in FIG. 5B. The section in which the volume is reduced is a portion where the first derivative graph of FIG. 5B (b) becomes negative.
 すなわち、θb=30゜の時は仮想旋回内線室11Bへの給油がされ難く、θb=210゜の時は仮想旋回外線室11Aへの給油がされ難い。特に、背圧室14から背圧制御弁16を通る油は、背圧制御弁16が開いた瞬間に多量に出て行くことが考えられ、連通穴16bの連通序盤で給油できないと、ほとんど油が供給できなくなる。従って、旋回外線室11aと旋回内線室11bの給油分配がどちらか一方に偏ってしまう。取り込まれる油が少なかった方の圧縮室では、圧縮室のシール性が低下し漏れ損失が生じ得る。 That is, when θb = 30 °, it is difficult to lubricate the virtual swirl extension chamber 11B, and when θb = 210 °, it is difficult to lubricate the virtual swirl outer chamber 11A. In particular, a large amount of oil passing from the back pressure chamber 14 through the back pressure control valve 16 may come out at the moment when the back pressure control valve 16 is opened. Cannot be supplied. Accordingly, the oil distribution in the swirling extension chamber 11a and the swirling extension chamber 11b is biased to either one. In the compression chamber in which less oil is taken in, the sealing performance of the compression chamber is lowered and leakage loss may occur.
 ここで、従来製品では、R溝5hの端部に油を供給することができるよう、おおよそ11時位置、つまりθb≒210°の位置に背圧制御弁16を設けていた。そうすれば、広範囲に亘って両スクロール5,6の鏡板面の潤滑を行うことができるからである。 Here, in the conventional product, the back pressure control valve 16 is provided at approximately the 11:00 position, that is, at the position of θb≈210 °, so that oil can be supplied to the end of the R groove 5h. This is because the end plate surfaces of the scrolls 5 and 6 can be lubricated over a wide range.
 しかしながら前述の通り、11時位置に背圧制御弁16を設けていたので、一方では仮想旋回外線室11Aへの給油がされ難かったとも考えられる。一般的には余分に油を供給し、余った油は吐出口5eから吐出圧室2fに吐き出すようにするものである。従来は、仮想旋回外線室11A,仮想旋回内線室11Bともにバランス良く、体積効率の観点からの適正量以上の油を給油できていたと思っていたが、つまり全体で見るとバランス良く油を給油できていたと思っていたが、個別に検討してみると圧縮室11のシール性に関しては給油量のアンバランスがあり、体積効率の観点からの適正量に対して、一部には不足~適正量程度の油が供給され、一部には過剰気味~極めて過剰に油を供給していたのではないかと思われる。10時位置(α~α)に背圧制御弁16を配設したとしてもアンバランスは同様である。勿論、このアンバランスは間欠連通に起因するものであり、後述の常時連通であればアンバランスは生じることがない。 However, as described above, since the back pressure control valve 16 is provided at the 11 o'clock position, it is considered that it is difficult to supply oil to the virtual turning outer line chamber 11A. Generally, extra oil is supplied, and the excess oil is discharged from the discharge port 5e to the discharge pressure chamber 2f. Previously, it was thought that both the virtual swirl outer chamber 11A and the virtual swirl chamber 11B were well balanced and could supply more than the appropriate amount of oil from the viewpoint of volumetric efficiency. I thought that it was, but when I examine it individually, there is an imbalance in the amount of oil supply with respect to the sealing performance of the compression chamber 11, and in some cases the amount is insufficient to the appropriate amount from the viewpoint of volume efficiency. It is thought that the oil was supplied to a certain extent, and some of the oil seemed to be in excess or very excessively. Even if the back pressure control valve 16 is disposed at the 10 o'clock position (α 2 to α 3 ), the imbalance is the same. Of course, this unbalance is caused by intermittent communication, and no imbalance will occur if it is always connected as described later.
 これに対して、例えば、背圧制御弁位置θbを270゜の位置、つまり9時位置にすると、偏りを無くすことができる。θb=270゜では、仮想旋回外線室11A,仮想旋回内線室11Bともに吸込室容積が減少している部分が無く逆流が無いので(α)、その後に容積が増加して行く仮想旋回外線室11A,仮想旋回内線室11Bに対して給油し易い。つまり、仮想旋回外線室11A,仮想旋回内線室11Bの双方の容積が非減少のときに、間欠連通の連通開始が行われる位置に背圧制御弁を設ければ、クランク軸7の回転に伴って各吸込室の容積が増加していき、吸込室が自ら油を取り込んでいくようなものである。自動車のレシプロエンジンにおける自然吸気と同様の現象であると考えられる。このように、吸込室容積が減少していない部分(β~α,α~β)と、連通序盤とが重なる背圧制御弁位置θbは、90゜~210゜,270゜~390゜の位置であり、11時~3時位置,5時~9時位置である。 On the other hand, for example, if the back pressure control valve position θb is set to a position of 270 °, that is, the 9 o'clock position, the bias can be eliminated. At θb = 270 °, both the virtual swirl outer chamber 11A and the virtual swirl chamber 11B have no portion where the suction chamber volume is reduced and there is no backflow (α 4 ). 11A, it is easy to refuel the virtual turning extension chamber 11B. That is, if the back pressure control valve is provided at the position where the intermittent communication start is performed when the volumes of both the virtual swirl outer chamber 11A and the virtual swirl chamber 11B are not reduced, the crankshaft 7 rotates. The volume of each suction chamber increases, and the suction chamber takes in oil by itself. This is considered to be a phenomenon similar to that of natural aspiration in an automobile reciprocating engine. As described above, the back pressure control valve position θb where the suction chamber volume does not decrease (β 3 to α 2 , α 3 to β 2 ) overlaps with the communication opening stage is 90 ° to 210 °, 270 ° to It is a position of 390 °, which is an 11 o'clock to 3 o'clock position, and an o'clock to 9 o'clock position.
 ガソリンのインジェクションとの対比で検討してみると、背圧制御弁16からインジェクションした油が吸込室へ到達するのに時間がかかる。この時間は極めて短い時間であるかも知れず、必ずしも以下の通りではない虞があるが、その到達時間の間にもクランク軸7が回転し、容積が変化していると考えられるので、油が仮想旋回内外線室11A,11Bに到達するときに容積が減少していない位置から油をインジェクションすることがより望ましい。つまり、ピストンの下死点直前ではインジェクションを避けることが好ましいと思われる。従って、斯様な点から好ましい範囲を、90゜~150゜,270゜~330゜の位置とし、1時~3時位置,7時~9時位置とする。これは図7を見ると分かるように点対称な位置となっている。吸込室の容積変化が180°毎に繰り返されるからであり、非対称ラップ型のスクロール圧縮機なので、そのような位置とすることが好ましい。但し、1時~3時位置はR溝5hを11時→12時→1時~3時と伸ばしていかなければならなくなるので外径の変更か、内径側の渦巻の変更などが必要となってしまう。 When considering the comparison with gasoline injection, it takes time for the oil injected from the back pressure control valve 16 to reach the suction chamber. This time may be an extremely short time and may not necessarily be as follows, but it is considered that the crankshaft 7 is rotating and the volume is changing during the arrival time. It is more desirable to inject oil from a position where the volume does not decrease when reaching the virtual swirl inner / outer line chambers 11A, 11B. That is, it seems preferable to avoid injection immediately before the bottom dead center of the piston. Accordingly, preferable ranges from such points are 90 ° to 150 °, 270 ° to 330 °, 1 o'clock to 3 o'clock, and 7 o'clock to 9 o'clock. This is a point-symmetrical position as can be seen from FIG. This is because the volume change of the suction chamber is repeated every 180 °, and since it is an asymmetric wrap type scroll compressor, such a position is preferable. However, at the 1 o'clock to 3 o'clock position, the R groove 5h must be extended from 11 o'clock to 12 o'clock → 1 o'clock to 3 o'clock, so it is necessary to change the outer diameter or change the inner spiral. End up.
 本実施例では時計回りにラップを巻いているために、270゜~330゜の位置、つまり7時~9時位置には固定スクロール5の歯底が無く、背圧制御弁16を配設する十分なスペースがある。従って、この位置に背圧制御弁16を配設するとより好ましい。なお、9時位置辺りでは仮想旋回外線室11Aの容積はほとんど無いように思われるが(α)、ガソリンのインジェクションとの対比で検討してみると、油が仮想旋回外線室11Aに到達するときには容積が増加する領域に入っていくものと思われる。この点で1時~3時位置は、背圧制御弁16から吸込室までの距離が長くなってしまい、背圧制御弁16からの油のインジェクションのタイミングを調整するのが難しい。 In this embodiment, since the wrap is wound clockwise, there is no bottom of the fixed scroll 5 at the position of 270 ° to 330 °, that is, from 7 o'clock to 9 o'clock, and the back pressure control valve 16 is provided. There is enough space. Therefore, it is more preferable to arrange the back pressure control valve 16 at this position. Although it seems that there is almost no volume of the virtual swirling outer chamber 11A around the 9 o'clock position (α 4 ), when compared with the gasoline injection, oil reaches the virtual swirling outer chamber 11A. It seems that sometimes it enters the area where the volume increases. In this respect, at the 1 o'clock to 3 o'clock position, the distance from the back pressure control valve 16 to the suction chamber becomes long, and it is difficult to adjust the timing of oil injection from the back pressure control valve 16.
 従って、インジェクションの点からも7~9時位置に背圧制御弁16を配設するのがより好ましく、7時位置に近いほど、背圧制御弁16と吸込室との距離を短くすることができるので、油が吸込室へ到達する時間を短くすることができる。背圧制御弁16を1~3時位置とするのに比較して、この短時間での吸込室の容積変化は小さいので、間欠連通の連通開始から油が吸込室へ到達するまでの回転角度と、吸込室の容積変化する回転角度とを、時間遅れをほとんど考慮せずに検討することができる。なお、7~9時位置に背圧制御弁16を配設してしまうと、その位置から11時位置までのR溝5hの油は滞留してしまいそうである。しかし実際には、供給された高圧の油は鏡板面間である隙間を通って漏れ出て行くので、油の循環を行うことができる。ここでいう高圧とは、吸込圧力Psに対する背圧Pbのことである。 Accordingly, it is more preferable to dispose the back pressure control valve 16 at the 7 to 9 o'clock position from the point of injection, and the closer to the 7 o'clock position, the shorter the distance between the back pressure control valve 16 and the suction chamber. As a result, the time for the oil to reach the suction chamber can be shortened. Compared with setting the back pressure control valve 16 to the 1 to 3 o'clock position, the volume change of the suction chamber in this short time is small, so the rotation angle from the start of intermittent communication until the oil reaches the suction chamber And the rotation angle at which the volume of the suction chamber changes can be examined with little time delay. If the back pressure control valve 16 is disposed at the 7 to 9 o'clock position, the oil in the R groove 5h from that position to the 11 o'clock position is likely to stay. However, in reality, the supplied high-pressure oil leaks through a gap between the end plate surfaces, so that the oil can be circulated. Here, the high pressure is the back pressure Pb with respect to the suction pressure Ps.
 更に好ましい位置を検討すると、吸込パイプ2dを配設するためにはスペースを要するので、その部分を除けることで加工性や組立性も向上する。本実施例では、図7に示すとおり7時30分の位置では余裕が無いと考えられるため、おおよそ7時40分~9時の位置、つまり270゜~310゜の位置がより好ましい。 Further, considering a more preferable position, a space is required to dispose the suction pipe 2d, so that the workability and assemblability are improved by removing that portion. In the present embodiment, as shown in FIG. 7, it is considered that there is no margin at the position of 7:30, and therefore, a position of approximately 7:40 to 9 o'clock, that is, a position of 270 ° to 310 ° is more preferable.
 更には、双方の吸込室とも容積が増加していく範囲(α~β)がより好ましいと考えられる。この範囲であれば、双方の吸込室とも容積が増加していく際に背圧制御弁16と背圧室14とが連通し、吸込室に吸い込まれて行く流れがある中にインジェクションを開始することができるからである。しかし、吸込室の容積が比で1を越えると、いずれは容積が減少して最終的には比が1となる。つまり、仮想旋回内外線室とも、閉じ切られた空間である圧縮室になったときの容積よりも大きくなり、最後はその容積を減少させて閉じ切られることになる。インジェクションにより油が吸込室へ到達する時間も考慮すると、双方の吸込室とも容積比で1になるまで容積が増加する範囲(α~β)で背圧制御弁16と背圧室14とを連通させるのが好ましい。おおよそ7時~8時30分の位置、つまり285゜~330゜の位置がより好ましい。 Furthermore, it is considered that the range (α 5 to β 2 ) in which the volume of both the suction chambers increases is more preferable. Within this range, the back pressure control valve 16 and the back pressure chamber 14 communicate with each other when the volumes of both the suction chambers increase, and the injection starts while there is a flow sucked into the suction chamber. Because it can. However, if the volume of the suction chamber exceeds 1, the volume decreases and eventually the ratio becomes 1. That is, the virtual swirl inner / outer line chamber is larger than the volume when it becomes a compression chamber, which is a closed space, and is finally closed by reducing its volume. Considering the time for the oil to reach the suction chamber by injection, both the back pressure control valve 16 and the back pressure chamber 14 are within a range (α 5 to β 1 ) in which the volume of both the suction chambers increases until the volume ratio becomes 1. It is preferable to communicate. A position of approximately 7 o'clock to 8:30 o'clock, that is, a position of 285 ° to 330 ° is more preferable.
 換言すれば、吸込室である仮想旋回内外線室の容積の対象とする空間の双方の容積が、閉じ切られた空間であるそれぞれの圧縮室、旋回内外線室になった時の容積まで増加するときに間欠連通の連通開始が行われる位置に背圧制御弁を配設することが好ましい。 In other words, the volume of the space that is the target of the volume of the virtual swirl inner / outer line chamber that is the suction chamber increases to the volume when it becomes the respective compression chamber and swirl inner / outer line chamber that are closed spaces. It is preferable to arrange the back pressure control valve at a position where the start of intermittent communication is performed.
 従って、最良の位置と考えられる範囲は、285゜~310゜の位置、つまり7時40分~8時30分の位置ということになる。 Therefore, the range considered as the best position is a position of 285 ° to 310 °, that is, a position of 7:40 to 8:30.
 以上のようにして、圧縮室形成前から旋回内線側、旋回外線側の双方にバランス良く油を供給することで、双方とも圧縮行程開始時からのシール性を保ち、効率を向上することができる。 As described above, by supplying oil in a well-balanced manner to both the turning inner line side and the turning outer line side before forming the compression chamber, both can maintain the sealing performance from the start of the compression stroke and improve the efficiency. .
 さて、上記の各軸受部には、密閉容器2の下部に溜められた潤滑油13が、密閉容器2の圧力と背圧室14の圧力との圧力差により給油管7dと給油通路7cを通って給油されることを説明したが、この給油量は体積効率に密接に関係している。ここで、軸受給油量について説明しておく。軸受給油量とは、背圧室14に流入する油の量であり、旋回軸受6cと偏心部7bとの隙間を介して背圧室14に流入した量と、主軸7aと主軸受9aとの隙間を介して背圧室14に流入した量との合計である。つまり、軸受給油量とは、主に軸受を潤滑するための油の量である。 The lubricating oil 13 stored in the lower part of the sealed container 2 passes through the oil supply pipe 7d and the oil supply passage 7c due to the pressure difference between the pressure in the closed container 2 and the pressure in the back pressure chamber 14. However, the amount of oil supply is closely related to the volumetric efficiency. Here, the bearing oil supply amount will be described. The bearing oil supply amount is the amount of oil flowing into the back pressure chamber 14, and the amount of oil flowing into the back pressure chamber 14 through the gap between the slewing bearing 6c and the eccentric portion 7b, and between the main shaft 7a and the main bearing 9a. It is the sum total of the amount flowing into the back pressure chamber 14 through the gap. That is, the bearing oil supply amount is an amount of oil mainly for lubricating the bearing.
 この油は、背圧制御弁16から吸込空間10へ供給される。基本的には吸込空間10への給油量は軸受給油量と同じであると考えてよい。しかし、このような背圧制御弁16からの吸込空間10への給油量と、実際に圧縮室11内へ供給される油の量とは異なる。吸込空間10への給油量は、一部が鏡板面の潤滑に用いられ、一部が吸込室に取り込まれて圧縮室11内に供給される。 This oil is supplied from the back pressure control valve 16 to the suction space 10. Basically, the amount of oil supplied to the suction space 10 may be considered to be the same as the amount of oil supplied to the bearing. However, the amount of oil supplied from the back pressure control valve 16 to the suction space 10 is different from the amount of oil actually supplied into the compression chamber 11. A part of the amount of oil supplied to the suction space 10 is used for lubricating the end plate surface, and a part is taken into the suction chamber and supplied into the compression chamber 11.
 この吸込空間10への給油量が少ないと、延いては圧縮室11への給油量が低下して、油によるシールができずに漏れ損失が増え体積効率が低下する。しかし、吸込空間10への給油量が多過ぎても体積効率が低下する。その理由は以下の通りである。背圧制御弁16を通って吸込空間10に供給された油は吸込ガスよりも温度が高いため吸込ガスを加熱する。すると、吸込ガスのガス密度が低下して吸込室、延いては圧縮室11へ流入するガス冷媒の冷媒循環量が小さくなってしまう。従って、後述の(3)式から体積効率が低下する。これを吸込ガスの加熱損失という。 If the amount of oil supplied to the suction space 10 is small, the amount of oil supplied to the compression chamber 11 is reduced, and the oil cannot be sealed, resulting in increased leakage loss and reduced volume efficiency. However, even if the amount of oil supplied to the suction space 10 is too large, the volume efficiency is lowered. The reason is as follows. Since the oil supplied to the suction space 10 through the back pressure control valve 16 has a temperature higher than that of the suction gas, the suction gas is heated. As a result, the gas density of the suction gas is lowered, and the refrigerant circulation amount of the gas refrigerant flowing into the suction chamber and then the compression chamber 11 is reduced. Therefore, the volumetric efficiency decreases from the later-described equation (3). This is called heating loss of the suction gas.
 つまり、吸込空間10への給油量は体積効率の観点から適正な範囲が存在する。図8に吸込空間への給油量と体積効率の関係を模式的に示す。ここでは体積効率が一定以上の値になる範囲を適正としている。しかし、体積効率の観点から吸込空間10への給油量を適正にしてしまうと、軸受給油量としては必要な量をまかなえない。軸受給油量が少な過ぎると体積効率の低下よりも深刻な、焼き付きなどの問題も生じ得る。従って、一般的には余分に油を供給し、余った油は吐出口5eから吐出圧室2fに吐き出すようにしている。このように、軸受や摺動部分の信頼性の観点から必要な給油量もあり、スクロール圧縮機全体として必要な給油量である軸受給油量を適正量にしなければならない。そうなると、体積効率からみた吸込空間10への給油量は適正給油量よりも多く、過剰となる。つまり、吸込ガスの加熱損失により、体積効率が低下することとなる。 That is, the amount of oil supplied to the suction space 10 has an appropriate range from the viewpoint of volume efficiency. FIG. 8 schematically shows the relationship between the amount of oil supplied to the suction space and the volume efficiency. Here, the range in which the volumetric efficiency is a certain value or more is appropriate. However, if the amount of oil supplied to the suction space 10 is made appropriate from the viewpoint of volume efficiency, the required amount of bearing oil cannot be provided. When the amount of bearing oil supply is too small, problems such as seizure, which are more serious than a decrease in volumetric efficiency, may occur. Therefore, generally, extra oil is supplied, and excess oil is discharged from the discharge port 5e to the discharge pressure chamber 2f. As described above, there is a required amount of oil supply from the viewpoint of the reliability of the bearing and the sliding portion, and the amount of oil supply required for the entire scroll compressor must be an appropriate amount. If it becomes so, the amount of oil supply to the suction space 10 seen from volume efficiency will be more than the appropriate amount of oil supply, and will become excessive. That is, the volumetric efficiency is reduced due to the heating loss of the suction gas.
 以下に説明する本実施例では、この吸込ガスの加熱損失を低減できる構成となっており、以下、図9~図13,図6を用いて説明する。図9は歯先給油の説明図(1)、図10は歯先給油の説明図(2)、図11は圧縮室のオイルシール説明図、図12は連通孔の他の形状を表す図、図13は起動時の圧力変化を示した図である。 In the present embodiment described below, the heating loss of the suction gas can be reduced, which will be described below with reference to FIGS. 9 to 13 and FIG. 9 is an explanatory diagram (1) of the tooth tip lubrication, FIG. 10 is an explanatory diagram (2) of the tooth tip lubrication, FIG. 11 is an explanatory diagram of the oil seal of the compression chamber, and FIG. FIG. 13 is a view showing a pressure change at the time of activation.
 図9に示すように背圧室14から圧縮室11(旋回外線室11a)へ、連通孔18とリリース弁穴15a1とを介して、油を供給しようというものである。このように旋回スクロール6の歯先から油を供給する構造を歯先給油構造と称する。図9では、歯先給油構造に加えて、固定スクロール5の歯底よりも更に深い位置に設けられた空間であるリリース弁穴15a1を利用して圧縮室11(旋回外線室11a)へ油を供給する。 As shown in FIG. 9, oil is supplied from the back pressure chamber 14 to the compression chamber 11 (the swirling outer line chamber 11a) through the communication hole 18 and the release valve hole 15a1. A structure in which oil is supplied from the tooth tip of the orbiting scroll 6 in this way is referred to as a tooth tip oil supply structure. In FIG. 9, in addition to the tooth tip oil supply structure, oil is supplied to the compression chamber 11 (the swirling outer line chamber 11a) using a release valve hole 15a1 which is a space provided deeper than the tooth bottom of the fixed scroll 5. Supply.
 旋回スクロール6は、ラップ内に連通孔18を有しており、第1の開口がラップの端面である歯先に設けられ、旋回スクロール6の台板に対して第1の開口とは裏側、つまり反ラップ側に第2の開口が設けられている。第1の開口をラップ先端側開口または歯先開口と称し、第2の開口を反ラップ側開口と称することとする。歯先開口はリリース弁穴15a1に連通し、反ラップ側開口は旋回スクロール6の反ラップ側に形成されている、圧力が背圧の空間である背圧室14に連通することになる。 The orbiting scroll 6 has a communication hole 18 in the wrap, and the first opening is provided at a tooth tip that is an end surface of the wrap, and the first opening with respect to the base plate of the orbiting scroll 6 is on the back side. That is, the second opening is provided on the side opposite to the wrap. The first opening is referred to as a wrap tip side opening or a tooth tip opening, and the second opening is referred to as an anti-wrap side opening. The tooth tip opening communicates with the release valve hole 15 a 1, and the anti-wrap side opening communicates with the back pressure chamber 14 formed on the anti-wrap side of the orbiting scroll 6, where the pressure is a back pressure space.
 図10は、連通孔18がリリース弁穴15a1と連通する様子を示している。旋回スクロールの公転運動によって、連通孔18の歯先開口とリリース弁穴15a1とを介して、背圧室14と旋回外線室11aとが連通される。このリリース弁穴15a1は、図3に示す台板の外径側に位置するリリース弁15に対応する穴であり、最も外径側に形成される旋回外線室11aのためのものである。 FIG. 10 shows a state in which the communication hole 18 communicates with the release valve hole 15a1. By the revolving motion of the orbiting scroll, the back pressure chamber 14 and the orbiting outer line chamber 11a communicate with each other through the tooth tip opening of the communication hole 18 and the release valve hole 15a1. This release valve hole 15a1 is a hole corresponding to the release valve 15 located on the outer diameter side of the base plate shown in FIG. 3, and is for the swirling outer line chamber 11a formed on the outermost diameter side.
 図10(a)は、図3で表されている両スクロール5,6の位置関係と同じであり、クランク軸7の角度が0°の場合である。ここでは、連通孔18はリリース弁穴15a1と連通しておらず、連通孔18のラップ先端側開口は固定スクロール5のラップ底面によって塞がれている状態である。 FIG. 10A is the same as the positional relationship between the scrolls 5 and 6 shown in FIG. 3, and the angle of the crankshaft 7 is 0 °. Here, the communication hole 18 is not in communication with the release valve hole 15 a 1, and the lap tip side opening of the communication hole 18 is blocked by the wrap bottom surface of the fixed scroll 5.
 図10(b)はクランク軸7の角度が約80°の場合である。ここで連通孔18はリリース弁穴15a1と連通している。図9に示すように、このタイミングで背圧室14と旋回外線室11aとが連通孔18とリリース弁穴15a1とを介して連通するので、背圧室14からの潤滑油13が旋回外線室11aに供給されることになる。なお、このように背圧室14と旋回外線室11aとが連通孔18とリリース弁穴15a1とを介して連通するのは、クランク軸7の角度が約45°~約90°の範囲であり、間欠的に連通しているといえる。 FIG. 10B shows a case where the angle of the crankshaft 7 is about 80 °. Here, the communication hole 18 communicates with the release valve hole 15a1. As shown in FIG. 9, at this timing, the back pressure chamber 14 and the swirling outer line chamber 11a communicate with each other via the communication hole 18 and the release valve hole 15a1, so that the lubricating oil 13 from the back pressure chamber 14 is swirled. 11a. The back pressure chamber 14 and the swirling outer line chamber 11a communicate with each other through the communication hole 18 and the release valve hole 15a1 in this way when the angle of the crankshaft 7 is in the range of about 45 ° to about 90 °. It can be said that they communicate intermittently.
 図10(c)はクランク軸7の角度が約120°の場合である。ここでは連通孔18はリリース弁穴15a1と連通しなくなっており、連通孔18の歯先開口は、再び固定スクロール5のラップ底面により塞がれる。 FIG. 10C shows the case where the angle of the crankshaft 7 is about 120 °. Here, the communication hole 18 is not in communication with the release valve hole 15 a 1, and the tooth tip opening of the communication hole 18 is again blocked by the bottom surface of the fixed scroll 5.
 図11に圧縮室内の隙間が潤滑油によってシールされる状態の模式図を示す。圧縮室圧力はP1<P2<P3とする。圧縮室11へ供給された潤滑油13はラップ壁面に付着し、歯先と歯底との間をシールし、第2種の漏れを抑制する。また、この図には表れていないが、当然圧縮室11に入った油はラップ同士の隙間をシールして第1種の漏れも抑制する。 FIG. 11 shows a schematic diagram of a state in which the gap in the compression chamber is sealed with lubricating oil. The compression chamber pressure is P1 <P2 <P3. The lubricating oil 13 supplied to the compression chamber 11 adheres to the wrap wall surface, seals between the tooth tip and the tooth bottom, and suppresses the second type of leakage. Although not shown in this figure, naturally, the oil that has entered the compression chamber 11 seals the gap between the wraps and suppresses the first type leakage.
 図11において、隣り合う圧縮室には圧力差があるので、この圧力差により潤滑油13は隙間191や隙間192に流入する。圧縮室11に供給する潤滑油13が少ないと隙間191,192は潤滑油13で満たされなくなりシールが破れる。するとシール性が保てないのでガス冷媒の吹き抜けが起きて漏れ損失が増加し、延いては効率低下を招く。 In FIG. 11, since there is a pressure difference between adjacent compression chambers, the lubricating oil 13 flows into the gap 191 and the gap 192 due to this pressure difference. If the lubricating oil 13 supplied to the compression chamber 11 is small, the gaps 191 and 192 are not filled with the lubricating oil 13 and the seal is broken. As a result, the sealing performance cannot be maintained, so that the gas refrigerant is blown out, the leakage loss is increased, and the efficiency is lowered.
 図10(b)で説明したとおり、背圧室14の圧力が旋回外線室11aの圧力より高い場合には、背圧室14から潤滑油13が旋回外線室11aに流入する。このとき、潤滑油13だけでなく、ガス冷媒が旋回外線室11aに流入する。この間、クランク軸7は約45°回転するため旋回外線室11aの圧力は上昇する。この上昇分が図13に示す下側の破線から上側の破線への上昇である。圧力の上昇には、油やガス冷媒の流入も寄与しているが、旋回外線室11aの容積変化が主要因である。 10B, when the pressure in the back pressure chamber 14 is higher than the pressure in the swirling outer line chamber 11a, the lubricating oil 13 flows from the back pressure chamber 14 into the swirling outer line chamber 11a. At this time, not only the lubricating oil 13 but also the gas refrigerant flows into the swirling outer line chamber 11a. During this time, the crankshaft 7 rotates about 45 °, so that the pressure in the orbiting outer chamber 11a rises. This rise is the rise from the lower broken line to the upper broken line shown in FIG. Inflow of oil or gas refrigerant also contributes to the increase in pressure, but the volume change of the swirling outer line chamber 11a is the main factor.
 連通孔18が固定スクロール5のラップ底面で塞がれている時、隙間192の最小シール長さはラップの厚みtから連通孔18の径を引いた値の半分となる。その他の部分でのシール長さが十分に保たれていても、この最小シール長さが短くて不十分だと上記のように好ましくない状況が起こり得る。 When the communication hole 18 is blocked by the bottom surface of the fixed scroll 5, the minimum seal length of the gap 192 is half the value obtained by subtracting the diameter of the communication hole 18 from the thickness t of the wrap. Even if the seal length at other portions is sufficiently maintained, if the minimum seal length is short and insufficient, an unfavorable situation as described above may occur.
 従って、最小シール長さには、ラップの強度という観点と、シール性という観点と、潤滑油13の供給量という観点とから下限値が存在する。供給量という観点からすれば連通孔18の径はなるべく大きいことが望ましい。しかし、シール性や強度という点では連通孔18の径は小さくしてシール長さをなるべく大きくすることが望ましい。 Therefore, the minimum seal length has a lower limit value from the viewpoint of the strength of the wrap, the viewpoint of the sealing performance, and the viewpoint of the supply amount of the lubricating oil 13. From the viewpoint of supply amount, it is desirable that the diameter of the communication hole 18 is as large as possible. However, in terms of sealing performance and strength, it is desirable to reduce the diameter of the communication hole 18 and increase the seal length as much as possible.
 ラップの厚さが仮に3.0mmだとして、強度上の観点から肉厚としての最小寸法を0.5mm確保するとすれば、連通孔18の径は最大で2.0mmとなる。また、工具のサイズから決まってくる値が連通孔18の最小寸法となるが、これは例えば、0.6mmである。従って、連通孔18の直径は例えば0.6mm~2.0mm程度(1/5・t~2/3・t)となる。連通孔18の直径が0.6mm以下の場合など、潤滑油13の供給量が不足する場合等には、後述の図12のような更なる工夫が必要となる。これらのときのラップの厚みtと最小シール長さとを比率で表すと1/6・t~2/5・tとなり、つまり、最小シール長さはラップの厚みtの17%以上40%以下が望ましいということになる。但し、これはラップの中心線上に円形断面の連通孔18の中心を一致させた場合である。以上の通りであるが、実際の最小シール長さは歯厚との比率によらず、あくまでも長さで表されるべきである。本スクロール圧縮機を考えた場合、歯厚は、せいぜい倍半分の1.5~6.0mm程度の範囲内に納まるので、最小シール長さも上記の通り比率で表すことに特段の不都合は無い。 Suppose that the thickness of the wrap is 3.0 mm, and if the minimum dimension of the wall thickness is secured from the viewpoint of strength, 0.5 mm, the diameter of the communication hole 18 is 2.0 mm at the maximum. Further, the value determined from the size of the tool is the minimum dimension of the communication hole 18, which is, for example, 0.6 mm. Accordingly, the diameter of the communication hole 18 is, for example, about 0.6 mm to 2.0 mm (1/5 · t to 2/3 · t). When the supply amount of the lubricating oil 13 is insufficient, such as when the diameter of the communication hole 18 is 0.6 mm or less, a further device as shown in FIG. The ratio of the wrap thickness t and the minimum seal length at these times is 1/6 · t to 2/5 · t, that is, the minimum seal length is 17% or more and 40% or less of the wrap thickness t. That would be desirable. However, this is a case where the center of the communication hole 18 having a circular cross section is aligned with the center line of the lap. As described above, the actual minimum seal length should be expressed by the length, regardless of the ratio to the tooth thickness. When considering this scroll compressor, the tooth thickness is at most within a range of about 1.5 to 6.0 mm, which is half the maximum, so there is no particular inconvenience in expressing the minimum seal length by the ratio as described above.
 リリース弁穴15aの径は1.8mmとしているので、このような最小シール長さであれば、図9に示すように、リリース弁穴15a1が連通孔18を跨ぐことが可能となる。従って、連通孔18とリリース弁穴15a1とを介して、背圧室14から旋回外線室11aへ油を供給することができる。 Since the diameter of the release valve hole 15a is 1.8 mm, such a minimum seal length allows the release valve hole 15a1 to straddle the communication hole 18, as shown in FIG. Therefore, oil can be supplied from the back pressure chamber 14 to the swirling outer line chamber 11a through the communication hole 18 and the release valve hole 15a1.
 他にも、図12に示すように、この連通孔18を長円形状にしても良い。図12に旋回スクロール6が公転運動したときの連通孔18の運動軌跡を示す。連通孔18を長円形状等とすることにより、リリース弁穴15a1と連通孔18とが連通する区間を長くできる。また、最小シール長さを大きく保ちながら、連通孔18がリリース弁穴15a1に開口する面積を大きくすることができ、背圧室14から旋回外線室11aへの給油量を増やせるといった利点がある。 Besides, as shown in FIG. 12, the communication hole 18 may be formed in an oval shape. FIG. 12 shows a movement locus of the communication hole 18 when the orbiting scroll 6 revolves. By making the communication hole 18 into an oval shape or the like, a section where the release valve hole 15a1 and the communication hole 18 communicate with each other can be lengthened. Further, the area where the communication hole 18 opens into the release valve hole 15a1 can be increased while keeping the minimum seal length large, and there is an advantage that the amount of oil supply from the back pressure chamber 14 to the swirling outer line chamber 11a can be increased.
 また逆に、旋回外線室11aの圧力が背圧室14の圧力より高い場合は、上記図10(b)で説明したのと逆の潤滑油13流れが生じる。もし逆流が生じると、旋回外線室11aのガスが背圧室14に多量に流入し背圧室14の圧力を過剰に上昇させるようなこととなる。しかし背圧制御弁16が開くため、背圧Pbは所定値に落ち着く。こうなると、せっかく途中まで圧縮しても、それに要したエネルギーは無駄となり、効率を低下させることとなる。従って、ここでもシール性を保つためシール長さを十分とる必要がある。ここでも上記と同じく、最小シール長さをラップの厚みtの17%以上40%以下とすることが望ましいということになる。 On the contrary, when the pressure in the swirling outer line chamber 11a is higher than the pressure in the back pressure chamber 14, the flow of the lubricating oil 13 opposite to that described with reference to FIG. If a reverse flow occurs, a large amount of gas in the swirling outer line chamber 11a flows into the back pressure chamber 14 and excessively increases the pressure in the back pressure chamber 14. However, since the back pressure control valve 16 opens, the back pressure Pb settles to a predetermined value. In this case, even if it is compressed halfway, the energy required for it is wasted and the efficiency is reduced. Therefore, it is necessary to take a sufficient seal length in order to maintain the sealing performance. Here again, as described above, it is desirable that the minimum seal length is 17% to 40% of the wrap thickness t.
 図13にスクロール圧縮機起動後の圧力変化を示す。吸込圧力Ps,背圧Pb,吐出圧力Pdの3本の線は実験結果である。Pcomで示している部分は図10に示した連通孔18とリリース弁穴15a1とが連通している区間の旋回外線室11aの圧力である。圧縮機が起動すると吐出圧力Pdと吸込圧力Psとの差圧が大きくなっていく。 Fig. 13 shows the pressure change after starting the scroll compressor. Three lines of suction pressure Ps, back pressure Pb, and discharge pressure Pd are experimental results. The portion indicated by Pcom is the pressure in the swirling outer line chamber 11a in the section where the communication hole 18 and the release valve hole 15a1 shown in FIG. 10 communicate with each other. When the compressor is started, the differential pressure between the discharge pressure Pd and the suction pressure Ps increases.
 仮想旋回外線室11Aは、その同じ空間を追っていくと閉じ切られた瞬間に旋回外線室11aに変化する。その瞬間の旋回外線室11aの圧力はPsである。その後、クランク軸7が回転するに従って旋回外線室11aの圧力は上昇して行く。この上昇して行く場合の両スクロールの動きは図10で示されている。 The virtual swirling outer chamber 11A changes to the swirling outer chamber 11a at the moment when it is closed as it follows the same space. The pressure in the turning outer line chamber 11a at that moment is Ps. Thereafter, as the crankshaft 7 rotates, the pressure in the turning outer line chamber 11a increases. The movement of both scrolls when going up is shown in FIG.
 図13の破線で囲まれた帯状の部分(Pcomで指示している部分)は、連通孔18とリリース弁穴15a1とが連通しているときの旋回外線室11aの圧力Pcomを表している。つまり、図10(b)で説明された旋回外線室11aの圧力である。但し、その閉じ切られた1つの旋回外線室11aを追っているのではなく、n回転後の圧力が連続的に表されている。 13 represents a pressure Pcom in the swirling outer line chamber 11a when the communication hole 18 and the release valve hole 15a1 communicate with each other. That is, the pressure in the swirling outer line chamber 11a described with reference to FIG. However, the pressure after n rotations is represented continuously, not following the closed one-turn outer chamber 11a.
 起動前は吸込圧力Ps、背圧Pb、吐出圧室の圧力P2fは当然ながら同じであり差が無いため、起動後初期は圧縮室の圧力Pcが直ぐに吐出圧室の圧力P2fとなってしまうのでリリース弁15が開く。(1)式で示したように圧縮室圧力Pcは、押除容積V0と圧縮室容積Vcとの比率を一定の値でべき乗して決まるので、起動直後のように吐出圧力Pdと吸込圧力Psの比率Pd/Psが低いときは、圧縮室11の圧力Pcは直ぐに吐出圧室2fの圧力P2fに達してしまうからである。すると旋回外線室11aの圧力は吐出圧室の圧力P2fと同じになり、図13ではPcomは吐出圧力Pdとして表されることになる。これが領域Aである。なお、吐出圧室の圧力P2fは吐出圧力Pdと同じ意味である。 Before starting, the suction pressure Ps, back pressure Pb, and discharge pressure chamber pressure P 2f are of course the same and there is no difference. Therefore , after the start-up, the pressure Pc in the compression chamber immediately becomes the pressure P 2f in the discharge pressure chamber. As a result, the release valve 15 opens. As shown in the equation (1), the compression chamber pressure Pc is determined by raising the ratio of the displacement volume V0 and the compression chamber volume Vc to a constant value, so that the discharge pressure Pd and the suction pressure Ps are immediately after starting. when the ratio Pd / Ps is low, the pressure Pc of the compression chamber 11 is because would reach the pressure P 2f of immediately discharge chamber 2f. Then the pressure in the swirling external chamber 11a is the same as the pressure P 2f discharge chamber, Pcom in FIG. 13 will be represented as the discharge pressure Pd. This is region A. The pressure P2f in the discharge pressure chamber has the same meaning as the discharge pressure Pd.
 従って、起動直後のA区間は比率Pd/Psが低く、PcomはP2f以上となり、リリース弁15が開く。起動直後のようにPcomが背圧Pbより高い時は、連通孔18とリリース弁孔15a1とを介して背圧室14と旋回外線室11aとが連通することによって、旋回外線室11aのガス冷媒が背圧室14に逆流し、背圧室14の圧力を上昇させようとする。このときの背圧Pbと吸込圧力Psとの差は小さい圧力なので、まだ背圧制御弁16のばね16dによる付勢力に打ち勝つことができず、背圧制御弁16は開かない。従って、逆流により背圧Pbが高まり、スクロール圧縮機1の起動時に旋回スクロール6が確実に浮上して、歯先と歯底との隙間を小さくすることができる。つまり、起動時の効率を向上することができる。 Accordingly, the ratio Pd / Ps is low in the A section immediately after the activation, Pcom becomes P 2f or more, and the release valve 15 opens. When Pcom is higher than the back pressure Pb immediately after the start, the back refrigerant chamber 14 and the swirling outer line chamber 11a communicate with each other through the communication hole 18 and the release valve hole 15a1, whereby the gas refrigerant in the swirling outer line chamber 11a. Flows back into the back pressure chamber 14 and tries to increase the pressure in the back pressure chamber 14. Since the difference between the back pressure Pb and the suction pressure Ps at this time is small, the urging force by the spring 16d of the back pressure control valve 16 cannot be overcome yet, and the back pressure control valve 16 does not open. Therefore, the back pressure Pb is increased by the back flow, and the orbiting scroll 6 is reliably lifted when the scroll compressor 1 is started, so that the gap between the tooth tip and the tooth bottom can be reduced. That is, the efficiency at startup can be improved.
 起動後、或る程度の時間が経過すると、吸込圧力Psと吐出圧力Pdとの差が大きくなってくる。これが領域Bである。この領域Bの初期ではリリース弁15が開き、Pcomは吐出圧力Pdとなる。この辺りまでは、Pcomが背圧Pbよりも高いので、歯先開口から反ラップ側開口へとガス冷媒が流れ込み背圧Pbを上昇させる。 When a certain amount of time has elapsed after startup, the difference between the suction pressure Ps and the discharge pressure Pd increases. This is region B. In the initial stage of the region B, the release valve 15 is opened, and Pcom becomes the discharge pressure Pd. Up to this point, since Pcom is higher than the back pressure Pb, the gas refrigerant flows from the tooth tip opening to the non-wrap side opening and raises the back pressure Pb.
 その後、Pcomは吸込圧力Psとともに低下していく。(1)式において、Vcを連通孔18とリリース弁穴15a1が連通している時の旋回外線室11aの容積とし、PcをPcomとすると、Pcomは吸込圧力Psが低くなるとともに低下していくことが分かる。背圧Pbは背圧制御弁16のばね力によって吸込圧力Ps+一定値となるように制御されるが、ばね力に打ち勝って弁を開けない限り、図13のようにPb>Psとなる挙動を示す。ばね力に打ち勝って弁を開けると、背圧Pb吸込圧力Ps+一定値となる。この結果、B区間の始めの方のPcomは背圧Pbより高いが、その後、背圧Pbより低くなる。 After that, Pcom decreases with the suction pressure Ps. In the formula (1), when Vc is the volume of the swirling outer line chamber 11a when the communication hole 18 and the release valve hole 15a1 are in communication and Pc is Pcom, Pcom decreases as the suction pressure Ps decreases. I understand that. The back pressure Pb is controlled by the spring force of the back pressure control valve 16 so as to be a suction pressure Ps + a constant value. However, unless the valve is opened by overcoming the spring force, the behavior of Pb> Ps as shown in FIG. Show. When the spring force is overcome and the valve is opened, the back pressure Pb suction pressure Ps + a constant value. As a result, Pcom at the beginning of the B section is higher than the back pressure Pb, but thereafter becomes lower than the back pressure Pb.
 定常運転になる等して、Pcomが背圧Pbより低くなると、つまり背圧PbがPcomより高くなると、反ラップ側開口から歯先開口へとガス冷媒が流れ込むように、背圧室14の潤滑油13が連通孔18とリリース弁孔15a1とを介して旋回外線室11aに供給される。前述の通り、従来製品では11時位置に背圧制御弁16を設けていたので、仮想旋回外線室11Aへの給油がされ難かったと考えられる。従って、旋回外線室11a形成後ではあるが、閉じ切られた空間である旋回外線室11aに歯先給油することによって、旋回外線室11aのシール性を高めて圧縮機の効率を向上させることができる。また、この歯先給油は前述のアンバランスが解消される方向に作用する。 When Pcom becomes lower than the back pressure Pb due to a steady operation or the like, that is, when the back pressure Pb becomes higher than Pcom, the lubrication of the back pressure chamber 14 is performed so that the gas refrigerant flows from the counter lap side opening to the tooth tip opening. Oil 13 is supplied to the swirling outer line chamber 11a through the communication hole 18 and the release valve hole 15a1. As described above, in the conventional product, since the back pressure control valve 16 is provided at the 11 o'clock position, it is considered that it was difficult to supply oil to the virtual swirling outer line chamber 11A. Therefore, even after the formation of the swirling outer line chamber 11a, it is possible to increase the sealing performance of the swirling outer line chamber 11a and improve the efficiency of the compressor by refueling the swirling outer line chamber 11a, which is a closed space. it can. Further, this tooth tip oiling acts in a direction in which the above-mentioned unbalance is eliminated.
 また、軸受を給油し背圧室14に供給された潤滑油13の一部を、背圧制御弁16を介して吸込空間10から吸込室に流入させずに、閉じ切られた圧縮室である旋回外線室11aに直接供給するので、吸込ガスの加熱損失を低減して体積効率を改善することができる。詳細には次の通りである。 Further, the compression chamber is closed without supplying a part of the lubricating oil 13 supplied to the back pressure chamber 14 through the back pressure control valve 16 from the suction space 10 to the suction chamber via the back pressure control valve 16. Since it is directly supplied to the swirling outer line chamber 11a, the heating efficiency of the suction gas can be reduced and the volume efficiency can be improved. Details are as follows.
 背圧制御弁16、吸込空間10経由で吸込室である仮想旋回外線室11Aや仮想旋回内線室11Bに油を供給すると、吸込ガスが加熱されてガス冷媒の密度が小さくなるので冷媒循環量が低下して体積効率が低下する。しかし、吸込空間10へ供給する油を減らせば冷媒循環量の低下を抑制して体積効率の低下も抑制することができる。その減らした分の給油量は連通孔18を介して歯先から圧縮室11に給油する。圧縮室11は閉じ切られた空間であるため冷媒循環量が変化せず、体積効率は低下しない。 When oil is supplied to the virtual swirl outer chamber 11A and the virtual swirl chamber 11B, which are suction chambers, via the back pressure control valve 16 and the suction space 10, the suction gas is heated and the density of the gas refrigerant is reduced, so that the amount of refrigerant circulation is reduced. The volumetric efficiency is lowered. However, if the oil supplied to the suction space 10 is reduced, it is possible to suppress a decrease in the circulation rate of the refrigerant and to suppress a decrease in volume efficiency. The reduced amount of oil is supplied from the tooth tip to the compression chamber 11 through the communication hole 18. Since the compression chamber 11 is a closed space, the refrigerant circulation amount does not change and the volumetric efficiency does not decrease.
 つまり、吸込空間10を経由して圧縮室11に間接的に油を供給する間接給油経路から、吸込空間10を経由せず圧縮室11に直接的に油を供給する直接給油経路へと給油量の一部を移動しても、吸込ガスの加熱損失は間接給油経路から直接給油経路へ移動しないので、吸込空間10への給油量を低減した分だけ、全体として吸込ガスの加熱損失を低減することができる。従って、体積効率という観点で過剰となっていた、背圧室14から背圧制御弁16、吸込空間10経由での圧縮室11の給油量を低減し、その低減した分だけ体積効率の低下を抑制し、全体としても体積効率を改善することができる。これは、図8の「過剰」範囲内において左側にシフトすること、つまり「適正」範囲に近付けることに相当する。「適正」範囲になってしまうとすると、軸受給油量が不足することになるからである。 That is, the amount of oil supply from the indirect oil supply path for supplying oil indirectly to the compression chamber 11 via the suction space 10 to the direct oil supply path for supplying oil directly to the compression chamber 11 without passing through the suction space 10. Even if a part of the suction gas is moved, the heat loss of the suction gas does not move from the indirect oil supply path to the direct oil supply path, so the heat loss of the suction gas is reduced as much as the amount of oil supply to the suction space 10 is reduced. be able to. Therefore, the amount of oil supplied to the compression chamber 11 from the back pressure chamber 14 via the back pressure control valve 16 and the suction space 10 is reduced from the viewpoint of volume efficiency, and the volume efficiency is reduced by the reduced amount. The volume efficiency can be improved as a whole. This corresponds to shifting to the left in the “excess” range of FIG. 8, that is, approaching the “appropriate” range. This is because if it falls within the “appropriate” range, the bearing oil supply amount will be insufficient.
 例えば、常時連通や7~9時位置に背圧制御弁16を配設するなどして、仮想旋回内外線室への給油量が既にバランスしている状態であっても、歯先給油による体積効率の改善効果を得ることができる。なお、常時連通構造とは常に背圧室14と背圧制御弁16とを連通させている構成であり、背圧室14の圧力が比較的小さく抑えられている場合に用いられる。つまり、間欠連通しなくても背圧制御弁16が開きやすい構成である。主に、前述のフロン系冷媒用スクロール圧縮機で用いられている。また、いわゆるエコキュート(登録商標)と言われるヒートポンプ給湯機に用いられるCO2を冷媒としたスクロール圧縮機であっても、旋回スクロール6の反ラップ側の縦軸方向の投影面積のうち、吐出圧力の作用する面積を本実施例のものより大きくしたような構成であれば、背圧を小さくすることが可能となり常時連通構造を採用することができる。 For example, even if the amount of oil supply to the virtual swirl inner / outer line chamber is already balanced, such as by always communicating or arranging the back pressure control valve 16 at the 7-9 o'clock position, An efficiency improvement effect can be obtained. The constant communication structure is a configuration in which the back pressure chamber 14 and the back pressure control valve 16 are always in communication, and is used when the pressure in the back pressure chamber 14 is kept relatively small. That is, the back pressure control valve 16 is easy to open without intermittent communication. Mainly used in the above-mentioned CFC refrigerant scroll compressor. Further, even in a scroll compressor using CO 2 as a refrigerant used in a so-called Ecocute (registered trademark) heat pump water heater, a discharge pressure out of the projected area in the vertical axis direction on the side opposite to the wrapping scroll 6 is shown. If the area in which the above acts is larger than that of the present embodiment, the back pressure can be reduced, and the continuous communication structure can be adopted.
 以上の通り、起動直後は背圧室14の圧力を上昇させるように機能して旋回スクロール6を固定スクロール5に確実に付勢し、その後、定常運転になると、圧縮室11(旋回外線室11a)へ潤滑油13を供給し圧縮室内のシール性を向上させ、圧縮機の効率を向上することができる。 As described above, immediately after startup, the pressure scroll 14 functions to increase the pressure of the back pressure chamber 14 to positively urge the orbiting scroll 6 to the fixed scroll 5. ) To improve the sealing performance in the compression chamber and improve the efficiency of the compressor.
 ここで、圧縮室11内の隙間が圧力の高い部屋と隣接しているか、圧力の低い部屋に隣接しているかによって潤滑油13の隙間シールへの利用方法が異なってくる。 Here, the method of using the lubricating oil 13 for the gap seal differs depending on whether the gap in the compression chamber 11 is adjacent to a high-pressure room or a low-pressure room.
 先ず第1種の漏れを抑制していることを具体的に説明する。 First, it will be specifically described that the first type leakage is suppressed.
 或る一つの部屋として形成された圧縮室は、その圧縮室よりもクランク角で360°早く形成された圧縮室よりも圧力が低い。従って、その360°先行した部屋からの油が当圧縮室の前端の隙間から漏れこんでくる。また、当圧縮室の後端の隙間から、360°後行した部屋へ油が漏れ出て行く。 The compression chamber formed as a certain chamber has a lower pressure than the compression chamber formed 360 ° earlier in crank angle than the compression chamber. Accordingly, the oil from the room preceding the 360 ° leaks from the gap at the front end of the compression chamber. In addition, oil leaks from the gap at the rear end of the compression chamber into the room that is followed by 360 °.
 図6(a)(b)に示された旋回外線室11a′は旋回外線室11aよりクランク角で360゜先行して圧縮を開始しているので、旋回外線室11a′と旋回外線室11aの圧力を比較すると旋回外線室11a′の圧力の方が高くなっている。よって、旋回外線室11a′内の潤滑油13は圧縮行程において旋回外線室11aに隙間を通って漏れこみ、この漏れこんだ潤滑油13が旋回外線室11aの隙間のシールを行う。また、旋回外線室11aに供給された潤滑油13は仮想旋回外線室11Aに漏れこみ、延いては旋回外線室のシールを行うこととなる。 The swirling outer line chamber 11a 'shown in FIGS. 6 (a) and 6 (b) starts to compress 360 degrees ahead of the swirling outer line chamber 11a in terms of crank angle, so that the swirling outer line chamber 11a' and the swirling outer line chamber 11a Comparing the pressure, the pressure in the swirling outer line chamber 11a 'is higher. Therefore, the lubricating oil 13 in the swirling outer line chamber 11a ′ leaks through the gap into the swirling outer line chamber 11a in the compression stroke, and the leaked lubricating oil 13 seals the gap in the swirling outer line chamber 11a. Further, the lubricating oil 13 supplied to the swirling outer line chamber 11a leaks into the virtual swirling outer line chamber 11A, thereby sealing the swirling outer line chamber.
 図6(a)(b)に示された旋回内線室11b′は旋回内線室11bよりクランク角で360゜先行して圧縮を開始しているので、旋回内線室11b′と旋回内線室11bの圧力を比較すると旋回内線室11b′の圧力の方が高くなっている。よって、旋回内線室11b′内の潤滑油13は圧縮行程において旋回内線室11bに隙間を通って漏れこみ、この漏れこんだ潤滑油13が旋回内線室11bの隙間のシールを行う。また、旋回内線室11b内の潤滑油13は仮想旋回内線室11Bに漏れこみ、延いては旋回内線室のシールを行うこととなる。 6 (a) and 6 (b), the swivel extension chamber 11b 'starts to compress 360 degrees ahead of the swivel extension chamber 11b in terms of the crank angle. Comparing the pressure, the pressure in the swivel extension chamber 11b 'is higher. Therefore, the lubricating oil 13 in the turning extension chamber 11b ′ leaks through the clearance into the turning extension chamber 11b in the compression stroke, and this leaked lubricating oil 13 seals the clearance in the turning extension chamber 11b. Further, the lubricating oil 13 in the turning extension chamber 11b leaks into the virtual turning extension chamber 11B, thereby sealing the turning extension chamber.
 次に第2種の漏れを抑制していることを具体的に説明する。 Next, it will be specifically explained that the second type of leakage is suppressed.
 図11の中で、連通孔18とリリース弁孔15a1とを介して潤滑油13が供給された旋回外線室11aをP2の部屋とする。旋回外線室11a内の潤滑油13は、隙間191を通って圧力の低いP1の部屋へ漏れ出て行くことにより、ガス冷媒が隙間191から漏れ出ていくことを抑制している。圧力の高いP3の部屋と隣接している側の隙間192からは潤滑油13が漏れこんでくることにより、その部屋のシール性を保っている。 In FIG. 11, the swirling outer line chamber 11a supplied with the lubricating oil 13 through the communication hole 18 and the release valve hole 15a1 is defined as a P2 room. The lubricating oil 13 in the swirling outer line chamber 11 a leaks out of the gap 191 by leaking into the P1 room having a low pressure through the gap 191. The lubricating oil 13 leaks from the gap 192 on the side adjacent to the P3 room where the pressure is high, so that the sealing property of the room is maintained.
 図6(a)に示された旋回外線室11a′は旋回内線室11bよりクランク角で180゜先行して圧縮を開始しているので、同じ容積である旋回外線室11a′と旋回内線室11bの圧力を比較すると旋回外線室11a′の圧力の方が高くなっている。よって、旋回外線室11a′内の潤滑油13は圧縮行程において旋回内線室11bに隙間を通って漏れこみ、この漏れこんだ潤滑油13が旋回内線室11bの隙間のシールを行う。また、旋回外線室11a′に供給された潤滑油13は仮想旋回内線室11Bにも漏れこみ、延いては旋回内線室のシールを行うこととなる。 The swirling outer chamber 11a 'shown in FIG. 6 (a) starts compression with a crank angle of 180 ° ahead of the swirling inner chamber 11b, so that the outer swirling chamber 11a' and the swirling inner chamber 11b having the same volume are started. Is compared, the pressure in the swirling outer line chamber 11a 'is higher. Accordingly, the lubricating oil 13 in the swirling outer chamber 11a ′ leaks through the clearance into the swirling inner chamber 11b in the compression stroke, and this leaked lubricating oil 13 seals the clearance in the swirling inner chamber 11b. Further, the lubricating oil 13 supplied to the swirling outer chamber 11a ′ leaks into the virtual swirling inner chamber 11B, and thus the swirling inner chamber is sealed.
 また、図6(a)に示された旋回内線室11bは旋回外線室11aよりクランク角で180゜先行して圧縮を開始しているので、旋回外線室11aと旋回内線室11bの圧力を比較すると旋回内線室11bの圧力の方が高くなっている。よって、旋回内線室11b内の潤滑油13は圧縮行程において旋回外線室11aに隙間を通って漏れこみ、この漏れこんだ潤滑油13が旋回外線室11aの隙間のシールを行うこととなる。 In addition, the swirl extension chamber 11b shown in FIG. 6A starts compression with a crank angle of 180 ° ahead of the swirl extension chamber 11a, so the pressures in the swirl extension chamber 11a and the swirl extension chamber 11b are compared. Then, the pressure in the swivel extension chamber 11b is higher. Therefore, the lubricating oil 13 in the swirling extension chamber 11b leaks through the gap into the swirling outer line chamber 11a in the compression stroke, and the leaked lubricating oil 13 seals the gap in the turning outer line chamber 11a.
 また、図6(a)に示された旋回外線室11aは仮想旋回内線室11Bより先行して圧縮を開始しているので、旋回外線室11aの圧力の方が高くなっている。よって、旋回外線室11a内の潤滑油13は圧縮行程において仮想旋回内線室11Bに隙間を通って漏れこみ、延いては旋回内線室のシールを行うこととなる。 In addition, since the swirling outer line chamber 11a shown in FIG. 6A has started to be compressed in advance of the virtual swirling inner line chamber 11B, the pressure in the swirling outer line chamber 11a is higher. Therefore, the lubricating oil 13 in the swirling extension chamber 11a leaks through the clearance into the virtual swirling extension chamber 11B in the compression stroke, and eventually the swiveling extension chamber is sealed.
 また、図6(b)に示された旋回外線室11a′は吐出口5eと連通しているので、旋回外線室11a′は厳密には最早圧縮室ではないが、前後のクランク角との関係で理解を容易にするために前記と同様に記載する。旋回外線室11a′は旋回内線室11b′よりクランク角で180゜先行して圧縮を開始しているので、旋回外線室11a′と旋回内線室11b′の圧力を比較すると旋回外線室11a′の圧力の方が高くなっている。また、旋回外線室11a′は旋回内線室11bよりクランク角で360゜先行し、旋回内線室11b′より180゜先行して圧縮を開始しているので、旋回外線室11a′の圧力の方が高くなっている。図6(b)に示す旋回外線室11a′そのものでは、高くなっているというに止まらず、旋回外線室11a′の圧力は吐出圧力となっている。前述した通り、旋回外線室11a′は吐出口5eと連通しているからである。よって、これらのように、旋回外線室11a′の圧力の方が高くなっているので、旋回外線室11a′内の潤滑油13は圧縮行程において旋回内線室11b′と旋回内線室11bに隙間を通って漏れこみ、この漏れこんだ潤滑油13が旋回内線室11b′の隙間のシールと旋回内線室11bの隙間のシールを行うこととなる。 Further, the swirling outer line chamber 11a 'shown in FIG. 6B communicates with the discharge port 5e. Therefore, the swirling outer line chamber 11a' is no longer strictly a compression chamber, but is related to the front and rear crank angles. In order to facilitate understanding, the above is described as above. Since the swirling outer chamber 11a 'starts to be compressed 180 degrees ahead of the swirling inner chamber 11b' at the crank angle, the pressures of the swirling outer chamber 11a 'and the swirling inner chamber 11b' are compared. The pressure is higher. Further, the swirling outer chamber 11a 'starts to be compressed 360 ° ahead of the swirling inner chamber 11b and 180 ° ahead of the swirling inner chamber 11b', so that the pressure in the outer swirling chamber 11a 'is higher. It is high. In the swirling outer line chamber 11a ′ itself shown in FIG. 6 (b), the pressure is not limited to being high, and the pressure in the swirling outer line chamber 11a ′ is the discharge pressure. This is because, as described above, the swirling outer line chamber 11a 'communicates with the discharge port 5e. Accordingly, since the pressure in the swirling outer chamber 11a ′ is higher as described above, the lubricating oil 13 in the swirling outer chamber 11a ′ has a gap between the swirling inner chamber 11b ′ and the swirling inner chamber 11b in the compression stroke. The leaked lubricating oil 13 seals the gap between the swivel extension chamber 11b 'and the gap between the swivel extension chamber 11b.
 また、図6(b)に示された旋回内線室11b′は旋回外線室11aよりクランク角で180゜先行して圧縮を開始しているので、旋回外線室11aと旋回内線室11b′の圧力を比較すると旋回内線室11b′の圧力の方が高くなっている。よって、旋回内線室11b′内の潤滑油13は圧縮行程において旋回外線室11aに隙間を通って漏れこみ、この漏れこんだ潤滑油13が旋回外線室11aの隙間のシールを行うこととなる。 In addition, the swivel extension chamber 11b 'shown in FIG. 6B starts to be compressed 180 degrees ahead of the swivel outer stroke chamber 11a in terms of crank angle, so that the pressure in the swirl extension chamber 11a and the swirl extension chamber 11b' is increased. When compared, the pressure in the swivel extension chamber 11b 'is higher. Accordingly, the lubricating oil 13 in the swirling extension chamber 11b 'leaks through the gap into the swirling outer line chamber 11a in the compression stroke, and the leaked lubricating oil 13 seals the gap in the turning outer line chamber 11a.
 また、図6(b)に示された旋回外線室11aは旋回内線室11bよりクランク角で180゜先行して圧縮を開始しているので、同じ容積である旋回外線室11aと旋回内線室11bの圧力を比較すると旋回外線室11aの圧力の方が高くなっている。よって、旋回外線室11a内の潤滑油13は圧縮行程において旋回内線室11bに隙間を通って漏れこみ、この漏れこんだ潤滑油13が旋回内線室11bの隙間のシールを行う。 In addition, the swirling outer chamber 11a shown in FIG. 6B starts compression with a crank angle of 180 ° ahead of the swirling inner chamber 11b, so that the outer swirling chamber 11a and the swirling inner chamber 11b having the same volume are started. When the pressures of these are compared, the pressure of the swirling outer line chamber 11a is higher. Accordingly, the lubricating oil 13 in the swirling outer chamber 11a leaks through the clearance into the swirling inner chamber 11b during the compression stroke, and the leaked lubricating oil 13 seals the clearance of the swirling inner chamber 11b.
 また、図6(b)に示された旋回内線室11bは仮想旋回外線室11Aより先行して圧縮を開始しているので、旋回内線室11bの圧力の方が高くなっている。よって、旋回内線室11b内の潤滑油13は圧縮行程において仮想旋回外線室11Aに隙間を通って漏れこみ、延いては旋回外線室のシールを行うこととなる。 Further, since the swirl extension chamber 11b shown in FIG. 6B starts to be compressed in advance of the virtual swirl outer chamber 11A, the pressure in the swirl extension chamber 11b is higher. Therefore, the lubricating oil 13 in the turning extension chamber 11b leaks through the clearance into the virtual turning outer line chamber 11A in the compression stroke, and eventually seals the turning outer line chamber.
 なお、以上の説明ではリリース弁15が開かないものとして説明したが、実際の運転条件によってはリリース弁15が開くこともあり、そうなると必ずしも以上の説明の通りにはならない。リリース弁15が開くと、そこに曝されている圧縮室11の圧力は吐出圧力と同じになる。同じ圧力になった圧縮室間では漏れが無くなり、圧力が異なる圧縮室間では、圧力の高い圧縮室から圧力の低い圧縮室へ潤滑油13が漏れ出て行くこととなる。 In the above description, the release valve 15 has been described as not opening. However, the release valve 15 may be opened depending on actual operating conditions. When the release valve 15 is opened, the pressure in the compression chamber 11 exposed thereto becomes the same as the discharge pressure. There is no leakage between the compression chambers having the same pressure, and between the compression chambers having different pressures, the lubricating oil 13 leaks from the compression chamber having a high pressure to the compression chamber having a low pressure.
 なお、仮想旋回外線室11Aで吸い込みが完了したものを旋回外線室a、この旋回外線室よりも位相が360°進んだものを旋回外線室a′とし、仮想旋回内線室11Bで吸い込みが完了したものを旋回内線室b、この旋回内線室よりも位相が360°進んだものを旋回内線室b′としている。ラップの巻き数を増やして圧縮室の数が増える場合は、a″,a′′′,・・・,b″,b′′′,・・・、などとして同様に説明することができる。 In addition, the suction completed in the virtual swirling extension chamber 11A is defined as the swirling outer stroke chamber a, and the swirling outer stroke chamber a 'whose phase is advanced by 360 ° from the swirling outer stroke chamber 11A. This is a swivel extension chamber b, and a swirl extension chamber b 'whose phase is 360 ° higher than that of the swivel extension chamber. When the number of wraps is increased to increase the number of compression chambers, it can be similarly described as a ″, a ′ ″,..., B ″, b ′ ″,.
 このように、連通孔18とリリース弁孔15a1とを介して供給された潤滑油13は吐出終了まで隙間をシールするために利用され、余った潤滑油は吐出口5eから吐出圧室2fに吐き出される。 Thus, the lubricating oil 13 supplied through the communication hole 18 and the release valve hole 15a1 is used to seal the gap until the end of discharge, and the surplus lubricating oil is discharged from the discharge port 5e to the discharge pressure chamber 2f. It is.
 以上のような漏れや余りも考慮すると、圧縮開始時から確実に圧縮できるよう、圧縮室形成時の前後で、なるべく外径側の圧縮室に給油することがより有利である。また、圧縮室11の圧力が高くなるほど歯先給油による給油量は少なくなり、圧縮室11の圧力が背圧以上になると背圧室14からは歯先給油ができなくなる。従って、この点からもなるべく外径側の圧縮室に給油することがより有利である。背圧制御弁16による吸込室への給油と、歯先給油による旋回外線室11aへの給油とを行うことで、より効率の高い圧縮機とすることができる。 Considering the above leakage and remainder, it is more advantageous to supply oil to the compression chamber on the outer diameter side as much as possible before and after forming the compression chamber so that the compression can be reliably performed from the start of compression. In addition, the higher the pressure in the compression chamber 11, the smaller the amount of oil supplied by the tooth tip lubrication. When the pressure in the compression chamber 11 becomes higher than the back pressure, the tip pressure oil cannot be supplied from the back pressure chamber 14. Therefore, it is more advantageous to supply oil to the compression chamber on the outer diameter side as much as possible from this point. By performing the oil supply to the suction chamber by the back pressure control valve 16 and the oil supply to the swirling outer line chamber 11a by the tip oil supply, a more efficient compressor can be obtained.
 ここで、本実施例では、背圧室14と旋回外線室11aとを連通孔18と旋回外線室11a用のリリース弁穴15a1を介して連通させ、旋回外線室11aへのみ歯先給油を行う形態で説明したが、更に旋回内線室11bへも歯先給油を行えば、更なる高効率とすることができる。その際には、連通孔18と同様に、旋回スクロール6のラップ内に連通孔(18-2)を設け、旋回内線室11b用のリリース弁穴15a2を介して旋回内線室11bへも歯先給油を行う構造とすれば良い。このとき、連通孔(18-2)の反ラップ側開口は連通孔18のものと共用しても良い。歯先給油を行う旋回内外線室11a,11bは、最も外径側の旋回内外線室である。 Here, in this embodiment, the back pressure chamber 14 and the swirling outer line chamber 11a are communicated with each other via the communication hole 18 and the release valve hole 15a1 for the swirling outer line chamber 11a, and the tooth tip oil supply is performed only to the swirling outer line chamber 11a. Although explained in the form, further high efficiency can be achieved if the tooth tip lubrication is performed also in the swivel extension chamber 11b. In this case, similarly to the communication hole 18, a communication hole (18-2) is provided in the wrap of the orbiting scroll 6, and the tooth tip is also provided to the orbiting extension chamber 11 b via the release valve hole 15 a 2 for the orbiting extension chamber 11 b. A structure that supplies oil may be used. At this time, the non-wrap side opening of the communication hole (18-2) may be shared with that of the communication hole 18. The turning inner / outer line chambers 11a and 11b that perform tooth tip lubrication are the outermost turning inner / outer line chambers.
 旋回外線室11aと旋回内線室11bとの双方へ歯先給油を行う構成は、特に、対称ラップ型の場合に特有の効果がある。図14は対称ラップの旋回外線室11aと旋回内線室11bが共に吸込完了したタイミングの図である。対称ラップ型の場合には、旋回外線室11aと旋回内線室11bとが同じタイミングで圧縮を開始するので、旋回外線室11aの容積と旋回内線室11bの容積とが同じであれば圧力も同じになる。よって対称ラップ型の場合は同じ容積である旋回内外線室相互間の潤滑油13の漏れ、つまり同じ容積である旋回内外線室相互間では第2種の漏れが無くなるので、旋回外線室11aと旋回内線室11bそれぞれにリリース弁穴15a1,15a2と連通する連通孔18,18-2を設けることが好ましい。 The configuration in which the tooth tip oil supply is performed to both the swirling outer line chamber 11a and the swirling inner line chamber 11b has a specific effect particularly in the case of a symmetrical wrap type. FIG. 14 is a diagram of the timing at which suction is completed for both the swirling outer chamber 11a and the swirling inner chamber 11b of the symmetrical wrap. In the case of the symmetrical lap type, the swirling outer chamber 11a and the swirling inner chamber 11b start to be compressed at the same timing, so that the pressure is the same if the volume of the swirling outer chamber 11a and the volume of the swirling inner chamber 11b are the same. become. Therefore, in the case of the symmetrical wrap type, the leakage of the lubricating oil 13 between the swirling inner and outer line chambers having the same volume, that is, the second type of leakage between the swirling inner and outer line chambers having the same volume is eliminated. It is preferable to provide communication holes 18 and 18-2 communicating with the release valve holes 15a1 and 15a2 in each of the swivel extension chambers 11b.
 もし前述のアンバランスが仮想旋回内線室11Bの方への吸い込みが少ないようなものであれば、歯先給油は旋回内線室11bへのみ行っても良い。 If the aforementioned imbalance is such that the suction toward the virtual swivel extension chamber 11B is small, the tooth refueling may be performed only to the swivel extension chamber 11b.
 なお、以上においては全て図1に示した縦型スクロール圧縮機1を前提にして説明してきたが、図15のように横型スクロール圧縮機を前提にしても、同じ作用効果を得ることができる。 Although the above description has been made on the assumption that the vertical scroll compressor 1 shown in FIG. 1 is used, the same effect can be obtained even if the horizontal scroll compressor is assumed as shown in FIG.
 図16に、本実施例のスクロール圧縮機1の効率を示す。(a)(b)とも、上図が体積効率を比で表しており、下図が圧縮機効率を比で表している。(a)は本実施例のθb=270゜(9時位置)を表す左図と従来のθb=210゜(11時位置)を表す右図とを比較した図である。(b)はθb=270゜で、連通孔18を有する左図と連通孔18を有さない右図とを比較した図である。ここで、(a)はθb=210゜を表す右図の効率を100%とした比率で示し、(b)は連通孔18を有さない右図の効率を100%とした比率で示している。運転条件は、スクロール圧縮機1をエコキュート(登録商標)に搭載した場合の65℃のお湯を貯湯する条件である。体積効率は(3)式、圧縮機効率は(4)式で表すことができる。 FIG. 16 shows the efficiency of the scroll compressor 1 of this embodiment. In both (a) and (b), the upper diagram represents volumetric efficiency as a ratio, and the lower diagram represents compressor efficiency as a ratio. (A) is the figure which compared the left figure showing (theta) b = 270 degrees (9 o'clock position) and the right figure showing the conventional (theta) b = 210 degrees (11 o'clock position) of a present Example. (B) is the figure which compared the left figure which has the communicating hole 18, and the right figure which does not have the communicating hole 18 at (theta) b = 270 degrees. Here, (a) shows the ratio of the right figure representing θb = 210 ° as 100%, and (b) shows the ratio of the right figure without communication hole 18 as 100%. Yes. The operating conditions are conditions for storing hot water of 65 ° C. when the scroll compressor 1 is mounted on Ecocute (registered trademark). Volumetric efficiency can be expressed by equation (3), and compressor efficiency can be expressed by equation (4).
   η=Γ/(V0・ρ・f)    …(3)
   η=Γ・Δh/w         …(4)
 ここに、ηは体積効率、ηは圧縮機効率、Γは冷媒循環量、V0は押除容積、ρは吸込ガス密度、fはモータ回転周波数、Δhは吸込ガスと吐出ガスのエンタルピ差、wはモータ入力を表す。
η v = Γ / (V0 · ρ s · f) (3)
η c = Γ · Δh / w (4)
Here, eta v is volumetric efficiency, eta c compressor efficiency, gamma refrigerant circulation amount, V0 is押除volume, [rho s is the suction gas density, f is the motor rotation frequency, Delta] h is the suction gas and discharge gas enthalpy The difference, w, represents the motor input.
 (a)を見れば分かるとおり、背圧制御弁位置θb=270゜(9時位置)はθb=210゜(11時位置)に対して体積効率と圧縮機効率とが1.5~2%程度向上している。また、(b)を見れば分かるとおり、連通孔18を有するものは連通孔18を有さないものに対して体積効率と圧縮機効率が2~2.5%向上している。特に、体積効率が上昇していることから圧縮室のシール性が向上し、(3)式,(4)式の冷媒循環量が増えていることが分かる。 As can be seen from (a), the back pressure control valve position θb = 270 ° (9 o'clock position) has a volume efficiency and a compressor efficiency of 1.5-2% relative to θb = 210 ° (11 o'clock position). The degree has improved. Further, as can be seen from (b), the volume efficiency and the compressor efficiency of the one having the communication hole 18 are improved by 2 to 2.5% compared to the one having no communication hole 18. In particular, it can be seen that since the volumetric efficiency is increased, the sealing performance of the compression chamber is improved, and the refrigerant circulation amount of the equations (3) and (4) is increased.
 以上により、仮想旋回外線室11Aと仮想旋回内線室11Bにバランス良く給油することができ、各圧縮室のシール性が向上して漏れ損失を低減することができる。更に、連通孔18とリリース弁穴15a1を連通させ背圧室14から旋回外線室11aに油を供給することにより、背圧制御弁16を通って吸込空間10、吸込室に流入する油量を低減でき吸込ガスの加熱損失を低減することができる。 As described above, the virtual swirl outer chamber 11A and the virtual swirl chamber 11B can be supplied with good balance, the sealing performance of each compression chamber can be improved, and the leakage loss can be reduced. Further, by connecting the communication hole 18 and the release valve hole 15a1 and supplying oil from the back pressure chamber 14 to the swirling outer line chamber 11a, the amount of oil flowing into the suction space 10 and the suction chamber through the back pressure control valve 16 is reduced. The heat loss of the suction gas can be reduced.
 次に、このスクロール圧縮機1をヒートポンプ給湯機,エコキュート(登録商標)に搭載してユニットとした場合について説明する。図17はユニット構成図である。上記実施例と同じ符号のものは同一の作用効果を奏するので説明は省略する。 Next, the case where the scroll compressor 1 is mounted on a heat pump water heater, Ecocute (registered trademark) to form a unit will be described. FIG. 17 is a unit configuration diagram. The same reference numerals as those in the above embodiment have the same operational effects, and thus the description thereof is omitted.
 深夜の或る設定された時刻(例えば、午前3時)になるとスクロール圧縮機1が起動し、吐出パイプ2eから圧縮された高温高圧の冷媒が吐き出される。吐き出された冷媒は水-冷媒熱交換器29で貯湯タンク32の水と熱交換され冷却される。水-冷媒熱交換器29として前述の第1の熱交換器を使用することができる。水-冷媒熱交換器29を出た冷媒は、膨張弁33で減圧され蒸発器34に入り、大気の熱を吸熱し蒸発する。蒸発器34を出た冷媒は、吸込パイプ2dからスクロール圧縮機1に吸い込まれ、ここで再び圧縮される。このような本実施例のスクロール圧縮機1を搭載した冷凍サイクル装置も、スクロール圧縮機1の効率が上がった分だけ高効率な冷凍サイクル装置となる。 At a certain time (for example, 3:00 am) at midnight, the scroll compressor 1 is activated and the high-temperature and high-pressure refrigerant compressed from the discharge pipe 2e is discharged. The discharged refrigerant is heat-exchanged with water in the hot water storage tank 32 by the water-refrigerant heat exchanger 29 and cooled. The first heat exchanger described above can be used as the water-refrigerant heat exchanger 29. The refrigerant exiting the water-refrigerant heat exchanger 29 is depressurized by the expansion valve 33 and enters the evaporator 34 to absorb the heat of the atmosphere and evaporate. The refrigerant exiting the evaporator 34 is sucked into the scroll compressor 1 from the suction pipe 2d and is compressed again here. Such a refrigeration cycle apparatus equipped with the scroll compressor 1 of this embodiment also becomes a highly efficient refrigeration cycle apparatus by the amount that the efficiency of the scroll compressor 1 is increased.
 一方、貯湯タンク32の水は水循環ポンプ31で搬送され、水-冷媒熱交換器29へと導かれる。貯湯タンク32下部から導かれた水が水-冷媒熱交換器29で加熱され、加熱された水が貯湯タンク32上部に戻される。 On the other hand, the water in the hot water storage tank 32 is conveyed by the water circulation pump 31 and led to the water-refrigerant heat exchanger 29. Water guided from the lower part of the hot water storage tank 32 is heated by the water-refrigerant heat exchanger 29, and the heated water is returned to the upper part of the hot water storage tank 32.
 次に、制御方法について説明する。リモコン30で使用者が貯湯タンク32に貯めるお湯の温度を設定する。制御ユニット25には、出湯温度センサ35、吐出ガス温度センサ36からの信号が入力される。出湯温度センサ35または吐出ガス温度センサ36で検出された温度がリモコン30で設定されたお湯の温度より低い場合には、スクロール圧縮機1の回転数を上げて冷媒循環量を増加させたり、膨張弁33を絞って吐出圧力を上昇させたりして湯の温度を上げるような制御を行う。 Next, the control method will be described. The remote controller 30 sets the temperature of hot water stored in the hot water storage tank 32 by the user. Signals from the hot water temperature sensor 35 and the discharge gas temperature sensor 36 are input to the control unit 25. When the temperature detected by the hot water temperature sensor 35 or the discharge gas temperature sensor 36 is lower than the hot water temperature set by the remote controller 30, the rotation speed of the scroll compressor 1 is increased to increase the refrigerant circulation amount, Control is performed such that the valve 33 is throttled to increase the discharge pressure, thereby increasing the temperature of the hot water.
 以上の方法により、貯湯タンク32のお湯の温度が所望の温度となるように冷凍サイクルが制御され、例えば朝7時になると運転が停止される。昼間になると、貯湯タンク32のお湯と水道管からの水道水とが混合され、使用者の要求に応じて使用端末であるシャワー27や蛇口28から給湯される。また、浴槽24のお湯を追い焚きする場合には貯湯タンク32内に設けられた追い焚き用熱交換器26によって浴槽内のお湯と貯湯タンク32内のお湯を熱交換する。 By the above method, the refrigeration cycle is controlled so that the temperature of the hot water in the hot water storage tank 32 becomes a desired temperature. For example, the operation is stopped at 7 o'clock in the morning. In the daytime, hot water in the hot water storage tank 32 and tap water from the water pipe are mixed, and hot water is supplied from the shower 27 and the faucet 28 which are used terminals according to the user's request. When the hot water in the bathtub 24 is replenished, the hot water in the bathtub and the hot water in the hot water storage tank 32 are heat-exchanged by the reheating heat exchanger 26 provided in the hot water storage tank 32.
 このようなスクロール圧縮機は、ルームエアコンや業務用のパッケージエアコン、ヒートポンプ給湯機等に搭載される。ルームエアコンやヒートポンプ給湯機の年間を通した性能を示す指標として通年エネルギー消費効率(Annual Performance Factor)というものがある。このAPFは、例えばヒートポンプ給湯機の場合は、規格で定められた外気温別の給湯負荷に対して、機器がどの程度の電力を消費したのかで決定され、給湯負荷÷消費電力で表される。ここで、給湯負荷は、次式で表される。 Such scroll compressors are installed in room air conditioners, commercial packaged air conditioners, heat pump water heaters, and the like. There is a year-round energy consumption efficiency (annual performance factor) as an index indicating the year-round performance of room air conditioners and heat pump water heaters. For example, in the case of a heat pump water heater, this APF is determined by how much power the device consumes with respect to the hot water supply load for each outside air temperature defined in the standard, and is expressed by hot water supply load / power consumption. . Here, the hot water supply load is expressed by the following equation.
   Lw=(θo-θi)・Cw・v・d    …(5)
 ここに、Lwは給湯負荷、θoは給湯温度、θiは入水温度、Cwは水の比熱、vは給湯量、dは日数を示す。
Lw = (θo−θi) · Cw · v · d (5)
Here, Lw is the hot water supply load, θo is the hot water supply temperature, θi is the incoming water temperature, Cw is the specific heat of water, v is the amount of hot water supply, and d is the number of days.
 ここで、給湯温度θoと入水温度θiは外気温によって決まる。日数dは、その外気温が年間何日あるかで決まる。上記給湯負荷Lwを年間で積分すると年間の給湯負荷が算出される。圧縮機効率が向上するということは、消費電力が低減するということであり、本実施例のスクロール圧縮機を搭載した機器はAPFが向上するということになる。つまり、省エネルギー化を図ることができる。或いは、従前と同じ消費電力を使える場合には加熱能力を上げることができる。例えば、寒冷地でも加熱能力を高くすることができるので、貯湯する温度を高くすることができ、貯湯タンク32の容量を変更しなくても実質的に使えるお湯の量を増やすことができる。 Here, the hot water supply temperature θo and the incoming water temperature θi are determined by the outside air temperature. The number of days d is determined by how many days in the year the outside temperature is. When the hot water supply load Lw is integrated over the year, the annual hot water supply load is calculated. An improvement in compressor efficiency means a reduction in power consumption, and an APF is improved in a device equipped with the scroll compressor of this embodiment. That is, energy saving can be achieved. Alternatively, when the same power consumption as before can be used, the heating capacity can be increased. For example, since the heating capacity can be increased even in a cold region, the temperature for storing hot water can be increased, and the amount of hot water that can be used can be substantially increased without changing the capacity of the hot water storage tank 32.
 図18に第2の実施例を示す。図18に示したスクロール圧縮機は、ほぼ第1の実施例と同じ構成であり、同一名称,同一符号のものは同じ作用効果が得られる。第2の実施例と第1の実施例で異なる点は、連通孔18がリリース弁穴15aとではなく、固定スクロール5のラップ底面、つまり歯底よりも深い位置に形成されたくぼみ20と連通することである。つまり、歯先開口がくぼみ20と連通し、反ラップ側開口が背圧室14と連通するものである。このくぼみ20も、固定スクロール5の歯底よりも更に深い位置に設けられている空間であると言える。 FIG. 18 shows a second embodiment. The scroll compressor shown in FIG. 18 has substantially the same configuration as that of the first embodiment, and those having the same name and code have the same operational effects. The difference between the second embodiment and the first embodiment is that the communication hole 18 communicates not with the release valve hole 15a but with a recess 20 formed at a position deeper than the bottom surface of the fixed scroll 5, that is, the tooth bottom. It is to be. In other words, the tooth tip opening communicates with the recess 20, and the anti-wrap side opening communicates with the back pressure chamber 14. It can be said that the recess 20 is also a space provided at a position deeper than the tooth bottom of the fixed scroll 5.
 実施例1で述べたように、リリース弁15は圧縮室11の圧力が吐出圧室2fの圧力P2f以上になった時や起動直後など液冷媒が吸い込まれた時に動作することが主たる目的であるので、ある程度設置位置が規定される。しかし、本実施例のように、くぼみ20にすることにより設置位置が自由になり、背圧室14と圧縮室11が連通孔18とくぼみ20とを介して連通するタイミングの設定自由度が増える。 As described in the first embodiment, the main purpose of the release valve 15 is to operate when the liquid refrigerant is sucked, such as when the pressure in the compression chamber 11 becomes equal to or higher than the pressure P2f of the discharge pressure chamber 2f or immediately after startup. Therefore, the installation position is defined to some extent. However, as in this embodiment, the installation position can be made free by using the recess 20, and the degree of freedom in setting the timing at which the back pressure chamber 14 and the compression chamber 11 communicate with each other via the communication hole 18 and the recess 20 is increased. .
 図19に第3の実施例を示す。図19に示したスクロール圧縮機1は、ほぼ第1の実施例と同じ構成であり、同一名称,同一符号のものは同じ作用効果が得られる。第1の実施例と異なる点は、連通孔18が旋回軸受6c内のクランク軸7の上部空間、つまり吐出圧給油室51と連通することである。歯先開口はリリース弁穴15a1に連通し、反ラップ側開口は旋回スクロール6の反ラップ側に形成されている、圧力が背圧よりも高い空間である吐出圧給油室51に連通するものである。 FIG. 19 shows a third embodiment. The scroll compressor 1 shown in FIG. 19 has substantially the same configuration as that of the first embodiment, and those having the same name and code have the same operational effects. The difference from the first embodiment is that the communication hole 18 communicates with the upper space of the crankshaft 7 in the slewing bearing 6 c, that is, the discharge pressure oil supply chamber 51. The tooth tip opening communicates with the release valve hole 15a1, and the anti-wrap side opening communicates with the discharge pressure oil supply chamber 51 that is formed on the anti-wrap side of the orbiting scroll 6 and has a pressure higher than the back pressure. is there.
 吐出圧給油室51内はほぼ吐出圧力Pdであるので、連通孔18とリリース弁穴15aを連通させることにより、差圧を利用して吐出圧給油室51から圧縮室11への給油が可能である。但し、第1の実施例に比べ、給油する差圧が大きくなるので、連通孔18とリリース弁穴15aの連通区間を短くする等して潤滑油13の供給量を抑える必要がある。従って、連通孔18の断面積を第1、第2の実施例と比較して小さい範囲にすることが考えられる。ここで、連通孔18は旋回スクロール6の台板6b外周面から吐出圧給油室51に向けて穴を貫通させ、この貫通穴に向けて旋回スクロール6の歯先から孔を加工し、台板6b外周面に貫通させた穴に栓を圧入若しくはネジ止めなどにより密栓することにより形成できる。 Since the inside of the discharge pressure oil supply chamber 51 is substantially at the discharge pressure Pd, it is possible to supply oil from the discharge pressure oil supply chamber 51 to the compression chamber 11 using the differential pressure by connecting the communication hole 18 and the release valve hole 15a. is there. However, as compared with the first embodiment, since the differential pressure to be supplied is increased, it is necessary to suppress the supply amount of the lubricating oil 13 by shortening the communication section between the communication hole 18 and the release valve hole 15a. Therefore, it can be considered that the cross-sectional area of the communication hole 18 is made smaller than that of the first and second embodiments. Here, the communication hole 18 penetrates a hole from the outer peripheral surface of the base plate 6b of the orbiting scroll 6 toward the discharge pressure oil supply chamber 51, and the hole is machined from the tooth tip of the orbiting scroll 6 toward the through hole. It can be formed by plugging a stopper into a hole penetrating the outer peripheral surface of 6b by press fitting or screwing.
 図20に第4の実施例を示す。本実施例の冷媒の流れや潤滑油の流れは図1に示した実施例とほとんど同じである。図1の実施例と異なる点は、旋回軸受6cが旋回スクロール6を貫通している、いわゆる軸貫通型スクロール圧縮機である点である。圧縮室11の圧力によるガス圧縮荷重はラップ高さの中央部に作用する。このガス圧縮荷重は旋回軸受6c方向に働き、旋回軸受6cに軸受荷重として作用する。よって、ガス圧縮荷重と軸受荷重の作用点が一致し、旋回スクロール6を転覆させようとするモーメントが無くなる。 FIG. 20 shows a fourth embodiment. The refrigerant flow and lubricating oil flow in this embodiment are almost the same as those in the embodiment shown in FIG. The difference from the embodiment of FIG. 1 is that the orbiting bearing 6 c is a so-called shaft-through scroll compressor in which the orbiting scroll 6 penetrates. The gas compression load due to the pressure in the compression chamber 11 acts on the central portion of the lap height. This gas compression load acts in the direction of the slewing bearing 6c and acts as a bearing load on the slewing bearing 6c. Therefore, the action points of the gas compression load and the bearing load coincide with each other, and the moment for overturning the orbiting scroll 6 is eliminated.
 図21に第5の実施例を示す。本実施例の冷媒の流れは図1に示した実施例とほぼ同じである。図1の実施例と異なる点は給油方式であり、いわゆる強制給油と呼ばれる方式である。クランク軸7の下端部にはトロコイドポンプ等の給油ポンプ103が設けられている。この給油ポンプ103はクランク軸7の回転と連動している。旋回軸受6cや主軸受9aには、給油ポンプ103によって油が供給される。クランク軸7周辺の空間と背圧室14はシールリング102によって区画されている。背圧室14への油の供給は、クランク軸7周辺の空間と背圧室14とを往来する油ポケット101によって行われる。その往来は、旋回スクロール6の公転運動を利用している。給油ポンプで油を供給する場合、圧力条件に依らず給油ポンプの容積分だけ給油でき、吐出圧力と吸込圧力の圧力差が大きい時に軸受給油量を低減できるといった利点がある。 FIG. 21 shows a fifth embodiment. The flow of the refrigerant in this embodiment is almost the same as that in the embodiment shown in FIG. A different point from the embodiment of FIG. 1 is an oil supply system, which is a so-called forced oil supply system. An oil supply pump 103 such as a trochoid pump is provided at the lower end of the crankshaft 7. This oil pump 103 is interlocked with the rotation of the crankshaft 7. Oil is supplied to the slewing bearing 6 c and the main bearing 9 a by an oil supply pump 103. The space around the crankshaft 7 and the back pressure chamber 14 are partitioned by a seal ring 102. Oil is supplied to the back pressure chamber 14 by an oil pocket 101 that travels between the space around the crankshaft 7 and the back pressure chamber 14. The traffic uses the revolving motion of the orbiting scroll 6. When oil is supplied by an oil pump, there is an advantage that oil can be supplied by the volume of the oil pump regardless of pressure conditions, and the amount of oil supplied to the bearing can be reduced when the pressure difference between the discharge pressure and the suction pressure is large.
 以上の通りであり、各実施例に説明してきた技術により、圧縮機や冷凍サイクル装置等の効率を高くすることができる。なお、これら実施例に記載したそのものの構成の外、縦型スクロール圧縮機を横型スクロール圧縮機にしても同じ作用効果が得られるように、特徴となる背圧制御弁の配設位置や歯先給油の部分を変更しなければ、各構成を適宜組み合わせた構成でも同様の作用効果を得ることができる。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
As described above, the efficiency of the compressor, the refrigeration cycle apparatus, and the like can be increased by the technology described in each embodiment. It should be noted that, in addition to the structure itself described in these embodiments, the position and tip of the back pressure control valve, which are characteristic features, can be obtained even if the vertical scroll compressor is replaced with the horizontal scroll compressor. If the portion for refueling is not changed, a similar effect can be obtained even in a configuration in which the respective configurations are appropriately combined.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
 1 スクロール圧縮機
 2 密閉容器
 2a ケース
 2b 蓋チャンバ
 2c 底チャンバ
 2d 吸込パイプ
 2d1 吸込ポート
 2e 吐出パイプ
 2f 吐出圧室
 3 圧縮機構部
 4 電動機
 4a 固定子
 4b 回転子
 5 固定スクロール
 5c ラップ
 5d 台板
 5e 吐出口
 5f ばね収納穴
 5g 貫通穴
 5h R溝
 5i 導通路
 5Xi 固定スクロール5の内線側ラップの巻き終わり部
 5Xo 固定スクロール5の外線側ラップの巻き終わり部
 6 旋回スクロール
 6a ラップ
 6b 台板
 6c 旋回軸受
 6Xi 旋回スクロール6の内線側ラップの巻き終わり部
 6Xo 旋回スクロール6の外線側ラップの巻き終わり部
 7 クランク軸
 7a 主軸
 7b 偏心部
 7c 給油通路
 7d 給油管
 7z 孔
 8 ボルト
 9 フレーム
 9a 主軸受
 10 吸込空間
 11 圧縮室
 11A 仮想旋回外線室
 11a 旋回外線室
 11a′ 旋回外線室
 11B 仮想旋回内線室
 11b 旋回内線室
 11b′ 旋回内線室
 12 オルダムリング
 13 潤滑油
 14 背圧室
 15 リリース弁
 15a リリース弁穴
 16 背圧制御弁
 16a ピース
 16b 連通穴
 16c 弁体
 16d ばね
 16e シール部材
 17 下軸受
 18 連通孔
 191,192 隙間
 20 くぼみ
 25 制御ユニット
 26 追い焚き用熱交換器
 29 水-冷媒熱交換器
 30 リモコン
 31 水循環ポンプ
 32 貯湯タンク
 33 膨張弁
 34 蒸発器
 35 出湯温度センサ
 36 吐出ガス温度センサ
 50 給油部
 51 吐出圧給油室
 101 油ポケット
 102 シールリング
 103 給油ポンプ
DESCRIPTION OF SYMBOLS 1 Scroll compressor 2 Airtight container 2a Case 2b Cover chamber 2c Bottom chamber 2d Suction pipe 2d1 Suction port 2e Discharge pipe 2f Discharge pressure chamber 3 Compression mechanism part 4 Electric motor 4a Stator 4b Rotor 5 Fixed scroll 5c Lap 5d Base plate 5e Discharge Exit 5f Spring storage hole 5g Through hole 5h R groove 5i Conducting path 5Xi End of winding of inner line side wrap of fixed scroll 5 5Xo End of winding of outer side wrap of fixed scroll 5 6 Orbiting scroll 6a Wrap 6b Base plate 6c Orbiting bearing 6Xi Winding end portion 6Xo of the inner line side wrap of the orbiting scroll 6 7Crank shaft 7a Main shaft 7b Eccentric part 7c Oil supply passage 7d Oil supply pipe 7z hole 8 Bolt 9 Frame 9a Main bearing 10 Suction space 11 Compression chamber 11A Virtual Rotating outer chamber 11a Swivel outer chamber 11a 'Swivel outer chamber 11B Virtual swirl inner chamber 11b Swivel inner chamber 11b' Swivel inner chamber 12 Oldham ring 13 Lubricating oil 14 Back pressure chamber 15 Release valve 15a Release valve hole 16 Back pressure control valve 16a Piece 16b Communication hole 16c Valve body 16d Spring 16e Seal member 17 Lower bearing 18 Communication hole 191, 192 Clearance 20 Recess 25 Control unit 26 Reheating heat exchanger 29 Water-refrigerant heat exchanger 30 Remote control 31 Water circulation pump 32 Hot water storage tank 33 Expansion Valve 34 Evaporator 35 Hot water temperature sensor 36 Discharge gas temperature sensor 50 Oil supply section 51 Discharge pressure oil supply chamber 101 Oil pocket 102 Seal ring 103 Oil supply pump

Claims (15)

  1.  背圧制御弁で制御された背圧によって旋回スクロールを固定スクロールに付勢し、両スクロールによって形成された圧縮室で冷媒を圧縮する間欠連通構造のスクロール圧縮機において、
     前記旋回スクロールの内線側の吸込室と前記旋回スクロールの外線側の吸込室の双方の容積が増加するときに、間欠連通の連通開始が行われる位置に前記背圧制御弁が配設されていることを特徴とする、スクロール圧縮機。
    In the scroll compressor of the intermittent communication structure that urges the orbiting scroll to the fixed scroll by the back pressure controlled by the back pressure control valve and compresses the refrigerant in the compression chamber formed by both scrolls,
    The back pressure control valve is disposed at a position where intermittent communication starts when the volumes of the suction chamber on the inner line side of the orbiting scroll and the suction chamber on the outer line side of the orbiting scroll are increased. A scroll compressor characterized by that.
  2.  前記固定スクロールの内線側ラップの巻き終わり部と前記旋回スクロールの外線側ラップの巻き終わり部とを結んだ仮想線と、前記旋回スクロールの外線側ラップと、前記固定スクロールの内線側ラップとで囲まれた前記吸込室のうちの一つである仮想旋回外線室の容積が増加している際に前記背圧制御弁と前記背圧室が連通すると共に、
     前記固定スクロールの外線側ラップの巻き終わり部と前記旋回スクロールの内線側ラップの巻き終わり部とを結んだ仮想線と、前記旋回スクロールの内線側ラップと、前記固定スクロールの外線側ラップとで囲まれた前記吸込室のうちの一つである仮想旋回内線室の容積が増加している際に前記背圧制御弁と前記背圧室が連通するような位置に、前記背圧制御弁が配設されている、請求項1に記載のスクロール圧縮機。
    Surrounded by an imaginary line connecting the winding end portion of the inner scroll side wrap of the fixed scroll and the winding end portion of the outer scroll side wrap of the orbiting scroll, the outer scroll side wrap of the orbiting scroll, and the inner scroll side of the fixed scroll The back pressure control valve and the back pressure chamber communicate with each other when the volume of the virtual swirl outer line chamber that is one of the suction chambers is increased,
    Surrounded by an imaginary line connecting the winding end portion of the outer line side wrap of the fixed scroll and the winding end portion of the inner line side wrap of the orbiting scroll, the inner line side wrap of the orbiting scroll, and the outer line side wrap of the fixed scroll The back pressure control valve is disposed at a position where the back pressure control valve communicates with the back pressure chamber when the volume of the virtual swirl extension chamber, which is one of the suction chambers, is increased. The scroll compressor according to claim 1, wherein the scroll compressor is provided.
  3.  前記旋回スクロールの内線側の吸込室と前記旋回スクロールの外線側の吸込室の双方の容積が、前記各吸込室が閉じ切られた空間である前記各圧縮室になった時のそれぞれの容積まで増加するときに、間欠連通の連通開始が行われる位置に前記背圧制御弁配設されている、請求項1に記載のスクロール圧縮機。 The volume of both the suction chamber on the inner line side of the orbiting scroll and the suction chamber on the outer line side of the orbiting scroll is up to the respective volume when the respective compression chambers are spaces in which the respective suction chambers are closed. 2. The scroll compressor according to claim 1, wherein the back pressure control valve is disposed at a position where the communication start of intermittent communication is performed when increasing.
  4.  前記圧縮室は、前記旋回スクロールの内線側および前記旋回スクロールの外線側に形成される旋回内線室および旋回外線室であって、前記旋回スクロールの内線側の吸込室が、前記旋回内線室になった時の容積と同じ容積になるまで増加するとき、且つ、前記旋回スクロールの外線側の吸込室が、前記旋回外線室になった時の容積と同じ容積になるまで増加するときに、間欠連通の連通開始が行われる位置に前記背圧制御弁が配設されている、請求項1に記載のスクロール圧縮機。 The compression chamber is a swirling extension chamber and a swirling outer line chamber formed on an inner line side of the orbiting scroll and an outer line side of the orbiting scroll, and the suction chamber on the inner line side of the orbiting scroll becomes the orbiting extension chamber. When the volume of the suction scroll on the outer line side of the orbiting scroll increases to the same volume as that of the orbiting outer line chamber. The scroll compressor according to claim 1, wherein the back pressure control valve is disposed at a position where the communication start is performed.
  5.  前記固定スクロールのラップの巻き終わり部から前記ラップを巻き戻す方向に270°~330°の位置に前記背圧制御弁が配設されている、請求項1に記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the back pressure control valve is disposed at a position of 270 ° to 330 ° in a direction in which the wrap is rewound from a winding end portion of the wrap of the fixed scroll.
  6.  旋回スクロールの反ラップ側に設けられた背圧室の圧力である背圧によって前記旋回スクロールを固定スクロールに付勢し、両スクロールによって形成された圧縮室で冷媒を圧縮する歯先給油構造のスクロール圧縮機において、前記固定スクロールの歯底よりも更に深い位置に設けられた空間を介して前記圧縮室に歯先給油を行う、スクロール圧縮機。 A scroll having a toothed oil supply structure in which the orbiting scroll is urged to a fixed scroll by a back pressure that is a pressure of a back pressure chamber provided on the opposite side of the orbiting scroll, and the refrigerant is compressed in a compression chamber formed by both scrolls. In the compressor, a scroll compressor that supplies tooth tip oil to the compression chamber via a space deeper than a tooth bottom of the fixed scroll.
  7.  前記旋回スクロールは、ラップの端面である歯先に設けられた歯先開口と、前記旋回スクロールの台板に対して反ラップ側に設けられた反ラップ側開口と、を備えた連通孔を前記ラップ内に有し、前記旋回スクロールの公転運動によって、前記空間と前記歯先開口とを間欠的に連通し、前記旋回スクロールの反ラップ側に設けられ、前記背圧以上の圧力となる空間と前記反ラップ側開口とを連通し、前記背圧以上の圧力となる空間から前記圧縮室に歯先給油を行う、請求項6に記載のスクロール圧縮機。 The orbiting scroll has a communication hole provided with a tooth tip opening provided at a tooth tip which is an end surface of the wrap and an anti-lap side opening provided on the anti-lap side with respect to the base plate of the orbiting scroll. A space that is provided in the lap side of the orbiting scroll and has a pressure equal to or higher than the back pressure; The scroll compressor according to claim 6, wherein the anti-wrap side opening communicates with each other and tooth tip oil is supplied to the compression chamber from a space having a pressure equal to or higher than the back pressure.
  8.  前記固定スクロールは、前記圧縮室の圧力を前記スクロール圧縮機の密閉容器内に逃がすリリース弁を有し、前記固定スクロールの歯底よりも更に深い位置に設けられた空間は、前記リリース弁のリリース弁穴であり、前記背圧以上の圧力となる空間は、前記背圧室である、請求項7に記載のスクロール圧縮機。 The fixed scroll has a release valve that releases the pressure of the compression chamber into the sealed container of the scroll compressor, and the space provided at a position deeper than the bottom of the fixed scroll has a release valve The scroll compressor according to claim 7, wherein a space that is a valve hole and has a pressure equal to or higher than the back pressure is the back pressure chamber.
  9.  前記固定スクロールの歯底よりも更に深い位置に設けられた空間は、前記固定スクロールに設けられたくぼみであり、前記背圧以上の圧力となる空間は、前記背圧室である、請求項7に記載のスクロール圧縮機。 The space provided at a position deeper than the tooth bottom of the fixed scroll is a recess provided in the fixed scroll, and the space having a pressure higher than the back pressure is the back pressure chamber. Scroll compressor described in 1.
  10.  前記背圧以上の圧力となる空間は、前記旋回スクロールの反ラップ側であって、前記スクロール圧縮機の密閉容器内の圧力の油が導入される吐出圧給油室である、請求項7に記載のスクロール圧縮機。 The space which becomes the pressure more than the back pressure is a discharge pressure oil supply chamber into which the oil of the pressure in the sealed container of the scroll compressor is introduced on the side opposite to the orbiting scroll. Scroll compressor.
  11.  密閉容器内に、
     渦巻状のラップを有する固定スクロールと、
     渦巻状のラップを有するとともに前記固定スクロールのラップと噛み合って冷媒を圧縮する圧縮室を形成し、クランク軸の回転に基づいて前記固定スクロールに対して公転運動する旋回スクロールと、
     前記旋回スクロールの反ラップ側に形成される背圧室の圧力を制御する背圧制御弁と、
     前記固定スクロールに配設されたリリース弁であって、前記圧縮室の圧力が前記密閉容器内の圧力より大きくなると当該圧縮室の冷媒を前記密閉容器内に排出するリリース弁とを備え、
     前記背圧制御弁と前記背圧室とが間欠連通するスクロール圧縮機において、
     前記固定スクロールの内線側ラップの巻き終わり部と前記旋回スクロールの外線側ラップの巻き終わり部とを結んだ仮想線と、前記旋回スクロールの外線側ラップと、前記固定スクロールの内線側ラップとで囲まれた仮想旋回外線室の容積が、前記クランク軸の回転に伴って増加している際に前記背圧制御弁と前記背圧室が連通するような位置であって、且つ、前記固定スクロールの外線側ラップの巻き終わり部と前記旋回スクロールの内線側ラップの巻き終わり部とを結んだ仮想線と、前記旋回スクロールの内線側ラップと、前記固定スクロールの外線側ラップとで囲まれた仮想旋回内線室の容積が、前記クランク軸の回転に伴って増加している際に前記背圧制御弁と前記背圧室が連通するような位置に、前記背圧制御弁が配設され、
     前記旋回スクロールは、ラップの端面である歯先に設けられた歯先開口と、前記旋回スクロールの台板に対して反ラップ側に設けられた反ラップ側開口と、を備えた連通孔を前記ラップ内に有し、
     前記旋回スクロールの公転運動によって、前記歯先開口と前記リリース弁のリリース弁穴とが間欠的に連通し、
     前記背圧室と前記反ラップ側開口とが連通し、
     前記背圧室と前記圧縮室とが連通することを特徴とする、スクロール圧縮機。
    In a sealed container,
    A fixed scroll having a spiral wrap;
    A rotating scroll that has a spiral wrap and forms a compression chamber that meshes with the wrap of the fixed scroll to compress refrigerant, and revolves with respect to the fixed scroll based on rotation of a crankshaft;
    A back pressure control valve for controlling the pressure of the back pressure chamber formed on the side opposite to the orbiting scroll;
    A release valve disposed in the fixed scroll, the release valve for discharging the refrigerant in the compression chamber into the sealed container when the pressure in the compression chamber becomes larger than the pressure in the sealed container;
    In the scroll compressor in which the back pressure control valve and the back pressure chamber communicate intermittently,
    Surrounded by an imaginary line connecting the winding end part of the inner line side wrap of the fixed scroll and the winding end part of the outer line side wrap of the orbiting scroll, the outer line side wrap of the orbiting scroll, and the inner line side wrap of the fixed scroll. When the volume of the virtual swirling outer line chamber increases as the crankshaft rotates, the back pressure control valve and the back pressure chamber communicate with each other, and the fixed scroll A virtual swirl surrounded by a virtual line connecting a winding end part of the outer line side wrap and a winding end part of the inner line side wrap of the orbiting scroll, the inner line side wrap of the orbiting scroll, and the outer line side wrap of the fixed scroll. The back pressure control valve is disposed at a position where the back pressure control valve and the back pressure chamber communicate with each other when the volume of the extension chamber increases as the crankshaft rotates.
    The orbiting scroll has a communication hole provided with a tooth tip opening provided at a tooth tip which is an end surface of the wrap and an anti-lap side opening provided on the anti-lap side with respect to the base plate of the orbiting scroll. In the wrap,
    By the revolving motion of the orbiting scroll, the tooth tip opening and the release valve hole of the release valve communicate intermittently,
    The back pressure chamber communicates with the anti-wrap side opening,
    The scroll compressor, wherein the back pressure chamber and the compression chamber communicate with each other.
  12.  前記圧縮室は、前記旋回スクロールのラップの外径側に形成される圧縮室である旋回外線室である、請求項8又は11に記載のスクロール圧縮機。 The scroll compressor according to claim 8 or 11, wherein the compression chamber is a turning outer line chamber which is a compression chamber formed on an outer diameter side of the wrap of the turning scroll.
  13.  前記固定スクロールは、前記圧縮室のうち、前記旋回スクロールのラップの内径側に形成される旋回内線室の圧力を前記スクロール圧縮機の密閉容器内に逃がす第2リリース弁を有し、
     前記旋回スクロールは、ラップの端面である歯先に設けられた第2歯先開口と、前記旋回スクロールの台板に対して反ラップ側に設けられた第2反ラップ側開口と、を備えた第2連通孔を前記ラップ内に有し、
     前記旋回スクロールの公転運動によって、前記第2歯先開口と前記第2リリース弁のリリース弁穴とが間欠的に連通し、
     前記背圧室と前記第2反ラップ側開口とが連通し、
     前記背圧室と前記旋回内線室とが連通する、請求項12に記載のスクロール圧縮機。
    The fixed scroll has a second release valve for letting the pressure of the swivel extension chamber formed on the inner diameter side of the wrap of the orbiting scroll out of the compression chamber into the sealed container of the scroll compressor,
    The orbiting scroll includes a second tooth tip opening provided at a tooth tip which is an end surface of the wrap, and a second anti-wrap side opening provided on the anti-wrap side with respect to the base plate of the orbiting scroll. A second communication hole in the wrap;
    By the revolving motion of the orbiting scroll, the second tooth tip opening and the release valve hole of the second release valve communicate intermittently,
    The back pressure chamber communicates with the second anti-wrap side opening,
    The scroll compressor according to claim 12, wherein the back pressure chamber and the swivel extension chamber communicate with each other.
  14.  スクロール圧縮機の吐出パイプと、第1の熱交換器と、膨張装置と、第2の熱交換器と、前記スクロール圧縮機の吸込パイプとを順次接続した冷凍サイクル装置において、
     前記スクロール圧縮機として請求項1,6,11の何れかに記載のスクロール圧縮機が使用され、
     冷媒が二酸化炭素である超臨界冷凍サイクルが構成されている、冷凍サイクル装置。
    In the refrigeration cycle apparatus in which the discharge pipe of the scroll compressor, the first heat exchanger, the expansion device, the second heat exchanger, and the suction pipe of the scroll compressor are sequentially connected,
    The scroll compressor according to any one of claims 1, 6, and 11 is used as the scroll compressor,
    A refrigeration cycle apparatus comprising a supercritical refrigeration cycle in which the refrigerant is carbon dioxide.
  15.  請求項14に記載の冷凍サイクル装置と、貯湯タンクと、水-冷媒熱交換器と、水循環ポンプを備え、
     前記水-冷媒熱交換器として前記第1の熱交換器が使用され、前記水循環ポンプを運転することで前記貯湯タンクから水を導いて前記水-冷媒熱交換器で水が加熱され、前記貯湯タンクに当該加熱された水が戻され、
     前記貯湯タンクに貯めた湯が使用端末に給湯されるヒートポンプ給湯機。
    A refrigeration cycle apparatus according to claim 14, a hot water storage tank, a water-refrigerant heat exchanger, and a water circulation pump,
    The first heat exchanger is used as the water-refrigerant heat exchanger, the water circulation pump is operated to guide water from the hot water storage tank, and water is heated by the water-refrigerant heat exchanger. The heated water is returned to the tank,
    A heat pump water heater in which hot water stored in the hot water storage tank is supplied to a use terminal.
PCT/JP2009/070647 2009-09-02 2009-12-10 Scroll compressor, refrigerating cycle device, and heat pump water heater WO2011027480A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980161232.2A CN102483060B (en) 2009-09-02 2009-12-10 Scroll compressor, refrigerating cycle device, and heat pump water heater
KR1020127005603A KR101410550B1 (en) 2009-09-02 2009-12-10 Scroll compressor, refrigerating cycle device, and heat pump water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009202175A JP5352386B2 (en) 2009-09-02 2009-09-02 Scroll compressor, refrigeration cycle equipment, heat pump water heater
JP2009-202175 2009-09-02

Publications (1)

Publication Number Publication Date
WO2011027480A1 true WO2011027480A1 (en) 2011-03-10

Family

ID=43649041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070647 WO2011027480A1 (en) 2009-09-02 2009-12-10 Scroll compressor, refrigerating cycle device, and heat pump water heater

Country Status (4)

Country Link
JP (1) JP5352386B2 (en)
KR (1) KR101410550B1 (en)
CN (1) CN102483060B (en)
WO (1) WO2011027480A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140458A1 (en) * 2012-03-23 2013-09-26 日立アプライアンス株式会社 Scroll compressor
JP2019143550A (en) * 2018-02-21 2019-08-29 三菱重工サーマルシステムズ株式会社 Scroll fluid machine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869854B2 (en) * 2011-11-25 2016-02-24 日立アプライアンス株式会社 Scroll compressor
JP5879274B2 (en) * 2013-01-15 2016-03-08 日立アプライアンス株式会社 Scroll compressor
JP5870056B2 (en) * 2013-03-19 2016-02-24 日立アプライアンス株式会社 Scroll compressor
JP6118702B2 (en) * 2013-10-01 2017-04-19 日立アプライアンス株式会社 Scroll compressor and refrigeration equipment
CN106468260B (en) * 2015-08-18 2018-07-06 珠海格力节能环保制冷技术研究中心有限公司 Screw compressor and air-conditioning system
DE102016105302B4 (en) * 2016-03-22 2018-06-14 Hanon Systems Control flow control valve, in particular for scroll compressors in vehicle air conditioners or heat pumps
JP6343328B2 (en) * 2016-11-21 2018-06-13 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
WO2018150540A1 (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Scroll compressor
JP6755428B1 (en) * 2020-06-08 2020-09-16 日立ジョンソンコントロールズ空調株式会社 Scroll compressor and refrigeration cycle equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185892A (en) * 1983-04-05 1984-10-22 Toyoda Autom Loom Works Ltd Scroll type compressor
JP2004225644A (en) * 2003-01-24 2004-08-12 Matsushita Electric Ind Co Ltd Scroll compressor
JP2007138868A (en) * 2005-11-21 2007-06-07 Hitachi Appliances Inc Scroll compressor
JP2008121624A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Scroll compressor
JP2008138888A (en) * 2006-11-29 2008-06-19 Nippon Thermostat Co Ltd Water heater
JP2009052464A (en) * 2007-08-27 2009-03-12 Panasonic Corp Scroll compressor
JP2009127506A (en) * 2007-11-22 2009-06-11 ▲荒▼田 哲哉 Method for lubricating working chamber of scroll fluid machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185892A (en) * 1983-04-05 1984-10-22 Toyoda Autom Loom Works Ltd Scroll type compressor
JP2004225644A (en) * 2003-01-24 2004-08-12 Matsushita Electric Ind Co Ltd Scroll compressor
JP2007138868A (en) * 2005-11-21 2007-06-07 Hitachi Appliances Inc Scroll compressor
JP2008121624A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Scroll compressor
JP2008138888A (en) * 2006-11-29 2008-06-19 Nippon Thermostat Co Ltd Water heater
JP2009052464A (en) * 2007-08-27 2009-03-12 Panasonic Corp Scroll compressor
JP2009127506A (en) * 2007-11-22 2009-06-11 ▲荒▼田 哲哉 Method for lubricating working chamber of scroll fluid machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140458A1 (en) * 2012-03-23 2013-09-26 日立アプライアンス株式会社 Scroll compressor
CN104105881A (en) * 2012-03-23 2014-10-15 日立空调·家用电器株式会社 Scroll compressor
JP2019143550A (en) * 2018-02-21 2019-08-29 三菱重工サーマルシステムズ株式会社 Scroll fluid machine

Also Published As

Publication number Publication date
KR20120040262A (en) 2012-04-26
CN102483060B (en) 2015-04-08
KR101410550B1 (en) 2014-06-20
CN102483060A (en) 2012-05-30
JP5352386B2 (en) 2013-11-27
JP2011052590A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5352386B2 (en) Scroll compressor, refrigeration cycle equipment, heat pump water heater
KR101287716B1 (en) Scroll compressor
JP5272031B2 (en) Scroll compressor
JP6948531B2 (en) Compressor with injection function
JP6948530B2 (en) Asymmetric scroll compressor
JP2010106780A (en) Scroll compressor
WO2016052503A1 (en) Scroll compressor and refrigeration cycle device using same
JP6928792B2 (en) Scroll compressor
JP5022291B2 (en) Scroll compressor
JP2010053798A (en) Scroll compressor
JP5428522B2 (en) Scroll compressor
JPH1037868A (en) Scroll compressor
WO2016137002A1 (en) Scroll-type compressor
JP2009270433A (en) Scroll compressor
WO2022209582A1 (en) Screw compressor and freezer
JP6762113B2 (en) Scroll compressor and air conditioner
JP2006307753A (en) Scroll expander
JP2009052464A (en) Scroll compressor
JP2012219791A (en) Hermetic scroll compressor
JP5114708B2 (en) Hermetic scroll compressor
JP2016145522A (en) Scroll compressor and air conditioner using the same
JP5060352B2 (en) Scroll expander
KR102407603B1 (en) A compressor
JP2007182870A (en) Scroll compressor
JP3566837B2 (en) Scroll compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161232.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127005603

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849009

Country of ref document: EP

Kind code of ref document: A1